
Level Crossing case study - SHARCS

development

1 Overview

Figure 1: Level crossing: hierarchical component design, flow down requirements

Figure 2: Level crossing: hierarchical failures

1



Figure 3: Level crossing: hierarchical failures

Figure 4: Level crossing: hierarchical failures

2 System Level

2



Figure 5: System level, abstraction control diagram

Figure 6: System level, action analysis table

3



2.1 Event-B System Model

context c0
sets
CAR // The set of cars
TRAIN // The set of trains
end

machinem0
sees c0
variables
cars // The set of cars in the level crossing
trains // The set of trains in the level crossing
invariants
theorem @typeof−cars: cars⊆ CAR
theorem @typeof−trains: trains⊆ TRAIN

// There should be no collision
@safety: trains=∅ ∨ cars=∅
events
event INITIALISATION
begin
@init−cars: cars :=∅
@init−trains: trains :=∅
end

/∗∗
∗A car @c enters the level crossing.
∗Guards:
∗−@c is not yet in the level crossing
∗−There are no trains in the level crossing
∗Actions:
∗−@c is added to the set of cars in the level crossing.
∗/
event car enters LC
any cwhere
@grd1: c /∈ cars
@grd2: trains=∅
then
@act1: cars := cars ∪ {c}
end

4



/∗∗
∗A car @c leaves the level crossing.
∗Guards:
∗−@c is in the level crossing
∗Actions:
∗−@c is removed from the set of cars in the level crossing.
∗/
event car leaves LC
any cwhere
@grd1: c ∈ cars
then
@act1: cars := cars \ {c}
end

/∗∗
∗A train @t enters the level crossing.
∗Guards:
∗−There are no trains in the level crossing
∗−There are no cars in the level crossing
∗Actions:
∗−@t is added to the set of trains in the level crossing.
∗/
event train enters LC
any twhere
@grd1: t ∈ TRAIN
@grd2: cars=∅
then
@act1: trains := trains ∪ {t}
end

/∗∗
∗A train @t leaves the level crossing.
∗Guards:
∗−@t is in the level crossing
∗Actions:
∗−@t is removed from the set of trains in the level crossing.
∗/
event train leaves LC
any twhere
@grd1: t ∈ trains
then
@act1: trains := trains \ {t}
end

5



end

6



3 Safe Barrier Component

Figure 7: Safe Barrier component, abstraction control diagram

Figure 8: Barrier component, action analysis table

7



3.1 Event-B Safe Barrier Model

context c1
sets
BARRIER
constants
Lowered
Raised
axioms
@def−BARRIER: partition(BARRIER, {Lowered}, {Raised})
end

machinem1
refinesm0
sees c0 c1
variables
cars // The set of cars in the level crossing
trains // The set of trains in the level crossing
barriers // The status of the barriers: Lowered, Raised
invariants
@safety−barriers cars: barriers= Lowered⇒ cars=∅
@safety−barriers trains: barriers= Raised⇒ trains=∅
events
event INITIALISATION extends INITIALISATION
begin
@init−barriers: barriers := Raised
end

/∗∗
∗A car only can enter if the barriers are not Lowered
∗/
event car enters LC refines car enters LC
any cwhere
@grd1: c /∈ cars
@grd2: barriers= Raised
then
@act1: cars := cars ∪ {c}
end

/∗∗
∗A car only can leave if the barriers are not Lowered
∗/
event car leaves LC extends car leaves LC

8



when
@grd2: barriers= Raised
end

/∗∗
∗A train only can safely enters the level crossing if the barriers are

Lowered
∗/
event train enters LC refines train enters LC
any twhere
@grd1: t ∈ TRAIN
@grd2: barriers= Lowered
then
@act1: trains := trains ∪ {t}
end

event train leaves LC extends train leaves LC
end

/∗∗
∗ Lowering the barrier from ”raised” status
∗Guards:
∗−The barriers are raised
∗Actions:
∗−The barriers are lowered
∗/
event barriers lowers
when
@grd1: barriers= Raised
@grd2: cars=∅
then
@act1: barriers := Lowered
end

/∗∗
∗Raising the barrier from ”lowered” status
∗Guards:
∗−The barriers are lowering
∗−There are no trains
∗Actions:
∗−The barriers are raised
∗/
event barriers raises

9



when
@grd1: barriers= Lowered
@grd2: trains=∅
then
@act1: barriers := Raised
end

end

10



4 Safe Train Signal Component

Figure 9: Safe Train Signal component, abstraction control diagram

Figure 10: Train Signal component, action analysis table

11



4.1 Event-B Safe Train Signal Model

context c2
sets
TRAIN SIGNAL
constants
SIGNAL CLEAR
SIGNAL DANGER
axioms
@def−TRAIN SIGNAL: partition(TRAIN SIGNAL, {SIGNAL CLEAR}, {

SIGNAL DANGER})
end

machinem2
refinesm1
sees c0 c1 c2
variables
cars // The set of cars in the level crossing
trains // The set of trains in the level crossing
barriers // The status of the barriers: Lowered, Raised
train signal // The train signal
invariants
@safe train signal: train signal= SIGNAL CLEAR⇒ barriers= Lowered
events
event INITIALISATION extends INITIALISATION
begin
@init−train signal: train signal := SIGNAL DANGER
end

event car enters LC extends car enters LC
end

event car leaves LC extends car leaves LC
end

/∗∗
∗A train @t enters the level crossing.
∗Guards:
∗−There are no trains in the level crossing
∗−The train signal is ”Clear”
∗Actions:
∗−@t is added to the set of trains in the level crossing.

12



∗/
event train enters LC refines train enters LC
any twhere
@grd1: t ∈ TRAIN
@grd2: train signal= SIGNAL CLEAR
then
@act1: trains := trains ∪ {t}
end

event train leaves LC extends train leaves LC
end

event barriers lowers extends barriers lowers
end

/∗∗
∗The barriers are raising only when the train signal is ”Danger”
∗/
event barriers raises extends barriers raises
when
@grd3: train signal= SIGNAL DANGER
end

/∗∗
∗Train signal set to ”Clear”
∗Guards:
∗−Train signal is current ”Danger”
∗−There are no cars detected
∗−The barriers are Lowered
∗Actions:
∗−Train signal is set to ”Clear”
∗/
event train signal to clear
when
@grd1: train signal= SIGNAL DANGER
@grd2: barriers= Lowered
then
@act1: train signal := SIGNAL CLEAR
end

/∗∗
∗Train signal set to ”Danger”
∗Guards:

13



∗−Train signal is current ”Clear”
∗Actions:
∗−Train signal is set to ”Danger”
∗/
event train signal to danger
when
@grd1: train signal= SIGNAL CLEAR
then
@act1: train signal := SIGNAL DANGER
end

end

14



5 Car Detection Component

Figure 11: Car detector component, abstraction control diagram

Figure 12: Car detector component, action analysis table

15



5.1 Event-B Car Detector Model

machinem3
refinesm2
sees c0 c1 c2
variables
cars // The set of cars in the level crossing
trains // The set of trains in the level crossing− at most one
barriers // The status of the barriers: Lowered, Lowering, Raising, Raised
train signal // The train signal
car detector // car detector mechanism
invariants
// The car detector mechanism indicating whether or not there are cars

in the level crossing
@car detector: car detector= TRUE⇔ cars ̸=∅
events
event INITIALISATION extends INITIALISATION
begin
@init−car detector: car detector := FALSE
end

/∗∗
∗Activate the car detector when a car enter the level crossing.
∗/
event car enters LC extends car enters LC
begin
@act2: car detector := TRUE
end

/∗∗
∗ Set the car detector accordingly to whether or not @c is the only car in

the level crossing
∗/
event car leaves LC extends car leaves LC
begin
@act2: car detector := bool(cars ̸= {c})
end

event train enters LC extends train enters LC
end

event train leaves LC extends train leaves LC
end

16



/∗∗
∗ Lowering the barrier from ”raised” status
∗Guards:
∗−The barriers are raised
∗−The car detector is FALSE
∗Actions:
∗−The barriers are lowered
∗/
event barriers lowers refines barriers lowers
when
@grd1: barriers= Raised
@grd2: car detector= FALSE
then
@act1: barriers := Lowered
end

event barriers raises extends barriers raises
end

event train signal to clear extends train signal to clear
end

event train signal to danger extends train signal to danger
end

end

17



6 Train Detector Component

Figure 13: Train detector component, abstraction control diagram

Figure 14: Train detector component, action analysis table

18



6.1 Event-B Train Detector Model

machinem4
refinesm3
sees c0 c1 c2
variables
cars // The set of cars in the level crossing
trains // The set of trains in the level crossing− at most one
barriers // The status of the barriers: Lowered, Lowering, Raising, Raised
train signal // The train signal
car detector // car detector mechanism
train detector // train detector mechanism
invariants
// The train detector mechanism indicating whether or not there are

trains in the level crossing
@train detector: train detector= TRUE⇔ trains ̸=∅

events
event INITIALISATION extends INITIALISATION
begin
@init−train detector: train detector := FALSE
end

event car enters LC extends car enters LC
end

event car leaves LC extends car leaves LC
end

event train enters LC extends train enters LC
begin
@act2: train detector := TRUE
end

event train leaves LC extends train leaves LC
begin
@act2: train detector := bool(trains ̸= {t})
end

event barriers lowers extends barriers lowers
end

/∗∗
∗Raising the barrier from ”lowered” status

19



∗Guards:
∗−The barriers are lowered
∗−The train detector is FALSE
∗−The train signal is Danger
∗Actions:
∗−The barriers are raised
∗/
event barriers raises refines barriers raises
when
@grd1: barriers= Lowered
@grd2: train detector= FALSE
@grd3: train signal= SIGNAL DANGER
then
@act1: barriers := Raised
end

event train signal to clear extends train signal to clear
end

event train signal to danger extends train signal to danger
end

end

20



7 Train Approach Detector Component

Figure 15: Train approach detector component, abstraction control diagram

Figure 16: Train approach detector component, action analysis table

21



7.1 Event-B Train Approach Detector Model

machinem5
refinesm4
sees c0 c1 c2
variables
cars // The set of cars in the level crossing
trains // The set of trains in the level crossing− at most one
barriers // The status of the barriers: Lowered, Lowering, Raising, Raised
train signal // The train signal
car detector // car detector mechanism
train detector // train detector mechanism
train approach detector // train approach detector mechanism
invariants
theorem @typeof−train approach detector: train approach detector ∈

BOOL
events
event INITIALISATION extends INITIALISATION
begin
@init−train approach detector: train approach detector := FALSE
end

event car enters LC extends car enters LC
end

event car leaves LC extends car leaves LC
end

event train enters LC extends train enters LC
when
@grd3: train approach detector= TRUE
then
@act3: train approach detector := FALSE
end

event train leaves LC extends train leaves LC
end

event barriers lowers extends barriers lowers
when
@grd3: train approach detector= TRUE
end

event barriers raises extends barriers raises

22



when
@grd4: train approach detector= FALSE
end

event train signal to clear extends train signal to clear
end

event train signal to danger extends train signal to danger
when
@grd2: train approach detector= FALSE
end

event train approaches LC
begin
@act1: train approach detector := TRUE
end

end

23



8 Traffic Light Component

Figure 17: Traffic Light component, abstraction control diagram

Figure 18: Traffic Light component, action analysis table

24



8.1 Event-B Traffic Light Model

context c6
sets
TRAFFIC LIGHT
constants
LIGHT RED
LIGHT GREEN
axioms
@def−TRAFFIC LIGHT: partition(TRAFFIC LIGHT, {LIGHT RED}, {

LIGHT GREEN})
end

machinem6
refinesm5
sees c0 c1 c2 c6
variables
cars // The set of cars in the level crossing
trains // The set of trains in the level crossing− at most one
barriers // The status of the barriers: Lowered, Lowering, Raising, Raised
train signal // The train signal
car detector // car detector mechanism
train detector // train detector mechanism
train approach detector // train approach detector mechanism
traffic light // The traffic light
invariants
// If the traffic light is green then the barriers are not Lowered
@safety−traffic light barriers: traffic light= LIGHT GREEN⇒ barriers=

Raised
events
event INITIALISATION extends INITIALISATION
begin
@init−traffic light: traffic light := LIGHT RED
end

event car enters LC refines car enters LC
any cwhere
@grd1: c /∈ cars
@grd2: traffic light= LIGHT GREEN
then
@act1: cars := cars ∪ {c}
@act2: car detector := TRUE

25



end

event car leaves LC extends car leaves LC
end

event train enters LC extends train enters LC
end

event train leaves LC extends train leaves LC
end

event barriers lowers extends barriers lowers
when
@grd4: traffic light= LIGHT RED
end

event barriers raises extends barriers raises
end

event train signal to clear extends train signal to clear
end

event train signal to danger extends train signal to danger
end

event train approaches LC extends train approaches LC
end

event traffic light to green
when
@grd1: traffic light= LIGHT RED
@grd2: barriers= Raised
then
@act1: traffic light := LIGHT GREEN
end

event traffic light to red
when
@grd1: traffic light= LIGHT GREEN
@grd2: train approach detector= TRUE
then
@act1: traffic light := LIGHT RED
end
end

26


