Level Crossing case study - SHARCS
development

1 Overview

K}
3 | Level Crossing (LC) System level |
E
& Allow cars and trains to cross
& without collision
1
| e j

i - [Safe Barrier | Car Detector Safe Train Signal
N :
E g a £ Barrier stops cars entering when a Indicates thattheLC is unsafe Signal stops trains passing the
aEg° train is passingthe LC because a car has notleft LCunless the LCis safe

£ [T T T) —L

2 [Barrier] [Train Detector] [Train Approach Detector | [Traffic Light] [Car Detector] Train Signal
5%
§ 8. Indicates thatthe train is Indicates that a train is Warns cars to stop when the
g 5 E passing the LC approachingto pass the LC barrier is about to be lowered
g E‘
EEES

Figure 1: Level crossing: hierarchical component design, flow down requirements

o 4
>
K
£ F1: A train passes when a car is crossing
2 _
-5 e N -
53 FB1: Barrier raised FS1: Signal at clear FCD1: Detector at false
L2)
£ s 2 & | while train is passing when LCis not safe when the LCis not safe
dE88 \ J (a car present)
5 (" FTD1: Detector at
% false when a train is
o
£ £ __passingthe LC)
= 8

Figure 2: Level crossing: hierarchical failures

System level

F2: A train is not able to pass the LC

f

lower

Train Signal

Car Detector
comps

Barrier

N
FB2: Barrier will not] [FSZ: Signal at danger] FCD2: Detector at

when LCis safe true when the LCis

safe)

Figure 3: Level crossing: hierarchical failures

System level
——

F3: A caris not able to cross the LC]

I

Train Signal

comps.

5
E
8

FB3: Barrier will not | [FB4: Barrier lowered) (* FS3: Signal atclear
raise when a caris when no train
crossi

approaching the LC

Figure 4: Level crossing: hierarchical failures

2 System Level

a car will
leave the LC
assoon as it
can

a train will

'
'
'
!

v

c_leave

[no trains]/c_enter

Crossing

'
'
'
'
|

v

leave the LC as
soon asit can

t_leave g @

[no cars]/t_enter

Component

——-—-—» |nput
——————————» [Condition]/Action
———————— » [Condition]

Figure 5: System level, abstraction control diagram

Level Crossing System level

Purpose: Allow cars and trains to cross without collision.

Actions: Trains can enter and leave the LC, Cars can enter and leave the LC.

Failures:

. F3: Acaris not

. F1: Atrain passes when a caris crossing
. F2: Atrain is not able to pass the LC

ble to cross the LC

System Action

Not Occurring
Causes Failure

Occurring
Causes Failure

Wrong Timing or Order
Causes Failure

Train enters the LC

No failure

A12: Atrain enters the
LC when a caris
crossing (F1)

A13: Atrain enters the LC
before a car finishes
crossing (F1)

Train leaves the LC

A21: Atrain does not leave
(F3)

No failure

A23: Atrain does not leave
before a car crosses (F1)

Car enters the LC

No failure

A32: A car enters the LC
when a train is passing
(F1)

A33: A car enters the LC
before a train finishes
passing (F1)

Car leaves the LC

A41: A car does not leave
the LC when a train passes
(F2)

No failure

A43: A car does not leave
the LC before a train
passes (F1)

Figure 6: System level, action analysis table

2.1 Event-B System Model

context c0
sets
CAR // Theset of cars
TRAIN // The set of trains
end

machine m0
sees c0
variables
cars // The set of cars in the level crossing
trains // The set of trains in the level crossing
invariants
theorem Otypeof—cars: cars C CAR
theorem Otypeof—trains: trains C TRAIN

// There should be no collision
@safety: trains=@ V cars =@
events
event INITIALISATION
begin
Qinit—cars: cars: = @
Qinit—trains: trains := &
end

/#x

* A car Qc enters the level crossing.

* Guards:

x — @c is not yet in the level crossing

* — There are no trains in the level crossing
x Actions:

x — @c is added to the set of cars in the level crossing.
*/
event car_enters_LC
any c where

Ogrdl: c ¢ cars

Q@grd2: trains= @
then

Q@actl: cars:=cars U {c}
end

VEE:
* A car Qc leaves the level crossing.
* Guards:
* — @c is in the level crossing
* Actions:
x — @c is removed from the set of cars in the level crossing.
/
event car_leaves_LC
any c where
Q@grdl: c € cars
then
@actl: cars:=cars \ {c}
end

/%%
x A train @t enters the level crossing.
x Guards:
* — There are no trains in the level crossing
x — There are no cars in the level crossing
x Actions:
*x — @t is added to the set of trains in the level crossing.
/
event train_enters_LC
any t where
Q@grdl: t € TRAIN
Qgrd2: cars=o
then
@actl: trains := trains U {t}
end

/*%
x A train @t leaves the level crossing.
* Guards:
* — @t is in the level crossing
* Actions:
* — @t is removed from the set of trains in the level crossing.
*/
event train_leaves_LC
any t where
Qgrdl: t € trains
then
@actl: trains :=trains \ {t}
end

end

Safe Barrier Component

|

[no trains]/rais:
[no cars}/lower|

cars, trains

\

[raised]

[raised]

v “x
i T no cars]/t_enter
c_leave t_leave

—————— —» Input
Component —— [Condition]/Action
—————————————— + [Condition]

Figure 7: Safe Barrier component, abstraction control diagram

Safe Barrier

Purpose: Barrier stops cars entering when a train is passing the LC.
Actions: Barrier can raise and lower.

Failures:

. FB1: Barrier raised while train is passing (causes F1)

. FB2: Barrier will not lower (F2)

. FB3: Barrier will not raise (F3)

. FB4: Barrier lowered when a car is crossing (new)

System Action

Not Occurring
Causes Failure

Barrier raises

AB11: Barrier will not
raise, when no train
approaching or passing,
preventing cars from
crossing (FB3)

Occurring

Causes Failure
AB12: Barrier raises
while train is passing
(FBT)

Wrong Timing or Order
Causes Failure

AB13: Barrier raises
before train leaves the LC
(FB1)

Barrier lowers

AB21: Barrier will not
lower, when a train
approaching and no car
crossing, preventing trains
from passing (FB2)

AB22: Barrier lowers
when a caris
entering or leaving
the LC (FB4)

AB23: Barrier does not
lower before train enters
the LC (FB1)

Figure 8: Barrier component, action analysis table

3.1 Event-B Safe Barrier Model

context cl
sets
BARRIER
constants
Lowered
Raised
axioms
©def—BARRIER: partition (BARRIER, {Lowered}, {Raised})
end

machine m1l
refines m0
sees cOcl
variables
cars // The set of cars in the level crossing
trains // The set of trains in the level crossing
barriers // The status of the barriers: Lowered, Raised
invariants
@safety—barriers_cars: barriers = Lowered = cars = &
@safety—barriers_trains: barriers = Raised = trains = &

events
event INITIALISATION extends INITIALISATION
begin
Q@init—barriers: barriers := Raised
end

/x%
* A car only can enter if the barriers are not Lowered
*/
event car_enters_LC refines car_enters_LC
any c where
©grdl: c ¢ cars
@grd2: barriers = Raised
then
@actl: cars:=cars U {c}
end

/x%

x A car only can leave if the barriers are not Lowered

*/

event car_leaves_LC extends car_leaves_LC

when
©@grd2: barriers = Raised
end

/%%
x A train only can safely enters the level crossing if the barriers are
Lowered
/
event train_enters_LC refines train_enters_LC
any t where
Qgrdl: t € TRAIN
@grd2: barriers = Lowered
then
Q@actl: trains := trains U {t}
end

event train_leaves_LC extends train_leaves_LC
end

/*%
* Lowering the barrier from ”raised” status
x Guards:
+ — The barriers are raised
* Actions:
* — The barriers are lowered
*/
event barriers_lowers
when
©@grdl: barriers = Raised
Qgrd2: cars=g
then
©actl: barriers := Lowered
end

/*%

* Raising the barrier from ”lowered” status
x Guards:

* — The barriers are lowering

* — There are no trains

x Actions:

* — The barriers are raised

*/

event barriers_raises

when
©@grdl: barriers = Lowered
Q@grd2: trains= o
then
Q@actl: barriers := Raised
end

end

10

[no trains &
Signal at dang

4 Safe Train Signal Component

er] |
J

Barrieris lowered|

[raise
[no cars}/lower

cars, trains

T
3

_leave

/clear

danger

Safe Train Signal

train does
not pass a
danger signal

v
tenter
Crossing
t_leave

Figure 9: Safe Train Signal component, abstraction control diagram

Safe Train Signal

Purpose: Signal stops trains passing the LC unless the LC is safe (barrier lowered).
Actions: Signal changes to clear or to danger

Failures:

. FS1: Signal at clear when LC is not safe (causes F1)
. FS2: Signal at danger when the LC is safe (causes F2)
. FS3: Signal at clear when no train approaching the LC (causes F3)

danger

change to danger when
LC is unsafe (FS7)

changes to danger
when the LC is safe
(FS2)

System Action Not Occurring Occurring Wrong Timing or Order
Causes Failure Causes Failure Causes Failure
Signal changes to AS11: Signal does not AS12: Signal AS13: Signal does not

change to danger when
no train approaching
(FS3)

Signal changes to

AS21: Signal does not

AS22: Signal

AS23: Signal changes to

clear changes to clear when the | changes to clear clear when no train
LC is safe (FS2) when LC is unsafe approaching (FS3)
(FS1)
Figure 10: Train Signal component, action analysis table

11

4.1 Event-B Safe Train Signal Model

context c2

sets

TRAIN_SIGNAL

constants

SIGNAL_CLEAR

SIGNAL_DANGER

axioms

©def—TRAIN_SIGNAL : partition (TRAIN_SIGNAL, {SIGNAL_CLEAR}, {

SIGNAL_DANGER})

end

machine m2
refines ml
sees c0cl c2
variables
cars // The set of cars in the level crossing
trains // The set of trains in the level crossing
barriers // The status of the barriers: Lowered, Raised
train_signal // The train signal
invariants
@safe_train_signal : train_signal = SIGNAL_CLEAR = barriers = Lowered
events
event INITIALISATION extends INITIALISATION
begin
@init—train_signal: train_signal := SIGNAL_DANGER
end

event car_enters_LC extends car_enters_LC
end

event car_leaves_LC extends car_leaves_LC
end

/%%

x A train @t enters the level crossing.

* Guards:

* — There are no trains in the level crossing

% — The train signal is ” Clear”

x Actions:

x — @t is added to the set of trains in the level crossing.

12

k
/
event train_enters_LC refines train_enters_LC
any t where
@grdl: t € TRAIN
©@grd?2: train_signal = SIGNAL_CLEAR
then
@actl: trains:=trains U {t}
end

event train_leaves_LC extends train_leaves_LC
end

event barriers_lowers extends barriers_lowers
end

VEE:
* The barriers are raising only when the train signal is " Danger”
i/
event barriers_raises extends barriers_raises
when
©@grd3: train_signal = SIGNAL_DANGER
end

/*%
* Train signal set to ” Clear”
x Guards:
* — Train signal is current ” Danger”
x — There are no cars detected
* — The barriers are Lowered
x Actions:
x — Train signal is set to ” Clear”
*/
event train_signal_to_clear
when
@grdl: train_signal = SIGNAL_DANGER
©@grd2: barriers = Lowered
then
@actl: train_signal := SIGNAL_CLEAR
end

/%%
+ Train signal set to ” Danger”
* Guards:

13

x — Train signal is current ” Clear”

* Actions:

* — Train signal is set to ”Danger”
*/

event train_signal_to_danger

when
@grdl: train_signal = SIGNAL_CLEAR

then
Q@actl: train_signal := SIGNAL_DANGER

end

end

14

5 Car Detection Component

trains

——.fmins _ _]

[car detector is false]

Barrier Car Detector

c_leave

danger

[barrier is lowered]

Train Signal

traindoes not
passa danger
signal

v
le—
. t_enter
Crossing
tleave

—————— — Input
—————————————— » [Condition]

Figure 11: Car detector component, abstraction control diagram

Car Detector

Purpose: (assists the Safe Train Signal) Indicates that the LC is unsafe because a car has not left.
Actions: Detector changes to true or false.

Failures:

° FCD2: Detector

. FCD1: Detector at false when the LC is not safe (acar present) (causes F7)
at true when the LC is safe (no car present) (causes F2)

System Action

Not Occurring
Causes Failure

Detector changes to
true

Occurring Wrong Timing or Order
Causes Failure Causes Failure

ACD11: Detector does not
change to true when LC is
unsafe (FCD1T)

ACD12: Detector No failure
changes to true
when LC is safe
(FCD2)

Detector changes to
false

ACD21: Detector does not
change to false when the
LC is safe (FCD2)

ACD22: Detector No failure
changes to false
pass when LC is
unsafe (FCD1)

Figure 12: Car detector component, action analysis table

15

5.1 Event-B Car Detector Model

machine m3
refines m2
sees c0cl c2
variables
cars // The set of cars in the level crossing
trains // The set of trains in the level crossing — at most one
barriers // The status of the barriers: Lowered, Lowering, Raising, Raised
train_signal // The train signal
car_detector // car detector mechanism
invariants
// The car detector mechanism indicating whether or not there are cars
in the level crossing
@car_detector: car_detector = TRUE <> cars # @

events
event INITIALISATION extends INITIALISATION
begin
Qinit—car_detector: car_detector := FALSE
end

/x%
x Activate the car detector when a car enter the level crossing.
+/
event car_enters_LC extends car_enters_LC
begin
Q@act2: car_detector := TRUE
end

/%%

x Set the car detector accordingly to whether or not @c is the only car in
the level crossing
/
event car_leaves_LC extends car_leaves_LC
begin
@act2: car_detector := bool (cars # {c})
end

event train_enters_LC extends train_enters_LC
end

event train_leaves_LC extends train_leaves_LC
end

16

VEE:
* Lowering the barrier from "raised” status
* Guards:
* — The barriers are raised
x — The car detector is FALSE
x Actions:
* — The barriers are lowered
/
event barriers_lowers refines barriers_lowers
when
@grd1: barriers = Raised
@grd2: car_detector = FALSE
then
©actl: barriers := Lowered
end

event barriers_raises extends barriers_raises
end

event train_signal_to_clear extends train_signal_to_clear
end

event train_signal_to_danger extends train_signal_to_danger
end

end

17

6 Train Detector Component

]
o —_ A ?
% 2 i =
" 2 2 i | 1
) @ 1 o
532 g ! 5
£5E| 5% J i 5| &
RS 58 ol i &
RS 23]
) @ 8 ! 5= 3
£ 2 i ! £
= !
& 8 j i]
Barrier Car Detector Train Detector Train Signal
| i
—i ' :
= o = train does not
@
ks 21 gl & ol g D e---- pass a danger
= =i 5| & =| 5 =0 signal
|
1
v

v H
] t_enter
v —>
c| t_leave
****** —> Input
Component —————— [Condition]/Action
-------------- » [Condition]

Figure 13: Train detector component, abstraction control diagram

Train Detector

Purpose: Indicates that the train is passing the LC.

Actions: Detector changes to true or false.

Failures:

« FTD1: Detector at false when a train is passing the LC (causes FBT)
« FTD2: Detectorat true when no train is passing the LC (causes FB3)

System Action NotOccurring Occurring Wrong Timing or Order
Causes Failure Causes Failure Causes Failure
Train detector ATD11: Train detector ATD12: Train No failure
changes to true does not change to true detector changes to
when a train is passing true when a train is
(FTD1) not passing (FTD2)
Train detector ATD21: Train detector ATD22: Train No failure
changes to false does not change to false detector changes to
when a train is not passing | false when atrain is
the LC (FTD2) passing (FTD1)

Figure 14: Train detector component, action analysis table

18

6.1 Event-B Train Detector Model

machine m4
refines m3
sees c0cl c2
variables
cars // The set of cars in the level crossing
trains // The set of trains in the level crossing — at most one
barriers // The status of the barriers: Lowered, Lowering, Raising, Raised
train_signal // The train signal
car_detector // car detector mechanism
train_detector // train detector mechanism
invariants
// The train detector mechanism indicating whether or not there are
trains in the level crossing
@train_detector: train_detector = TRUE < trains # @

events
event INITIALISATION extends INITIALISATION
begin
Q@init—train_detector: train_detector := FALSE
end

event car_enters_LC extends car_enters_LC
end

event car_leaves_LC extends car_leaves_LC
end

event train_enters_LC extends train_enters_LC
begin

@act2: train_detector := TRUE
end

event train_leaves_LC extends train_leaves_LC
begin

@act2: train_detector := bool (trains # {t})
end

event barriers_lowers extends barriers_lowers
end

/x%

* Raising the barrier from ”lowered” status

19

x Guards:
* — The barriers are lowered
* — The train detector is FALSE
* — The train signal is Danger
x Actions:
+ — The barriers are raised
/
event barriers_raises refines barriers_raises
when
Q©grd1: barriers = Lowered
©@grd?2: train_detector = FALSE
@grd3: train_signal = SIGNAL_DANGER
then
@actl: barriers := Raised
end

event train_signal_to_clear extends train_signal_to_clear
end

event train_signal_to_danger extends train_signal_to_danger
end

end

20

7 Train Approach Detector Component

[train detector is false &
trainapproach detector is false &
signal at danger]

/raise

[car detector is false &train
approach detector is true]
/lower
cars
train approaches signal
[barrier is lowered]
/clear

Y
|
I
|
|
|
I
I
I
|
I
|

Barrier Car Detector Train Detector Approach SafeTrain Signal
Detector

train does not
pass a danger
signal

v v
X Tenter i
Crossing approach Train
t_leave

,,,,,, — Input
———————————» [Condition]/Action
,,,,,,,,,,,,,, » [Condition]

false
true
[true]
false
true
[clear]
&

Figure 15: Train approach detector component, abstraction control diagram

Train Approach Detector

Purpose: Indicates that a train is approaching to pass the LC

Actions: Approach detector changes to true or false

Failures:

» FTAD1: Approach detector at false when a train is approaching the LC (causes FB2)
+ FTAD2: Approach detector at true when no train is approaching the LC (causes FS3)

System Action Not Occurring Occurring Wrong Timing or Order

Causes Failure Causes Failure Causes Failure
Train approach ATAD11: Train detector ATAD12: Train No failure
detector changes to | does not change to true detector changes to
true when a train is true when a train is

approaching (FTAD1) not approaching

(FTAD2)

Train approach ATAD21: Train detector ATAD22: Train No failure
detector changes to | does not change to false detector changes to
false when a train is not false when a train is

approaching the LC approaching

(FTAD2) (FTADT)

Figure 16: Train approach detector component, action analysis table

21

7.1 Event-B Train Approach Detector Model

machine mb
refines m4
sees c0cl c2
variables
cars // The set of cars in the level crossing
trains // The set of trains in the level crossing — at most one
barriers // The status of the barriers: Lowered, Lowering, Raising, Raised
train_signal // The train signal
car_detector // car detector mechanism
train_detector // train detector mechanism
train_approach_detector // train approach detector mechanism
invariants
theorem Q@typeof—train_approach_detector: train_approach_detector €
BOOL
events
event INITIALISATION extends INITIALISATION
begin
@init—train_approach_detector: train_approach_detector := FALSE
end

event car_enters_LC extends car_enters_LC
end

event car_leaves_LC extends car_leaves_LC
end

event train_enters_LC extends train_enters_LC

when

@grd3: train_approach_detector = TRUE
then

@act3: train_approach_detector := FALSE
end

event train_leaves_LC extends train_leaves_LC
end

event barriers_lowers extends barriers_lowers
when

@grd3: train_approach_detector = TRUE
end

event barriers_raises extends barriers_raises

22

when
@grd4: train_approach_detector = FALSE
end

event train_signal_to_clear extends train_signal_to_clear
end

event train_signal_to_danger extends train_signal_to_danger
when

©@grd?2: train_approach_detector = FALSE
end

event train_approaches_LC
begin

@actl: train_approach_detector := TRUE
end

end

23

8 Traffic Light Component

LC control

& £ - 4 4
g cs | 1
=~ ~ k4 &5
> > & 2 35
3 2 PR D e i i 5
g5l 3 5% 8. Wl ! 3
5 2 8o o & 282 21 I z .
£) 5 g 582 83 g i 23
£ a SwT 3 s v < = o
s © Bow L T < i i [y
= £ Leg>] k]
3 go 2 3§ | | £
g 3 2
£ =82 | Tg i i g
58 & kA
T g o
£ = | |
s !
< i i
= i i
Train
TrafficLight Barrier Car Detector Train Detector Approach Safe Train Signal
Detector
P - ' = traindoes not
car does Ny i o ol o T ele o p—— passa danger
notpassa .)----- B B 1 23 2 oz g) signal
red light " [e & =) 8

S . :
Ly
t_enter
W sl - T approach /3
c_leave _leave
777777 — Input
—————————» [Condition]/Action
—————————————— » [Condition]

Figure 17: Traffic Light component, abstraction control diagram

Traffic Light

Purpose: Warns cars to stop when the barrier is about to be lowered.
Actions: Light changes to green and red.

Failures:

. FL1: Light at green when the barrier is about to be lowered (causes FB4)

. FL2: Light at red when the barrier is not about to be lowered (causes F3)
System Action Not Occurring Occurring Wrong Timing or Order
Causes Failure Causes Failure Causes Failure
Light changes to AS11: Light does not AS12: Light changes | No failure
Red change to red when the to red when the
barrier is about to be barrier is not about to
lowered (FLT) be lowered (FL2)
Light changes to AS21: Light does not AS22: Light changes | No failure
Green change to green when the | to green when the
barrier has been raised barrier is about to be
(FL2) lowered (FL1)

Figure 18: Traffic Light component, action analysis table

24

8.1 Event-B Traffic Light Model

context cb
sets

TRAFFIC_LIGHT
constants

LIGHT_RED

LIGHT_GREEN
axioms

Qdef—TRAFFIC_LIGHT : partition (TRAFFIC_LIGHT, {LIGHT_RED}, {

LIGHT_GREEN})

end

machine m6
refines mb
seescOclc2cb
variables
cars // The set of cars in the level crossing
trains // The set of trains in the level crossing — at most one
barriers // The status of the barriers: Lowered, Lowering, Raising, Raised
train_signal // The train signal
car_detector // car detector mechanism
train_detector // train detector mechanism
train_approach_detector // train approach detector mechanism
traffic_light // The traffic light
invariants
// If the traffic light is green then the barriers are not Lowered
@safety—traffic_light_barriers: traffic_light = LIGHT_GREEN => barriers =

Raised
events
event INITIALISATION extends INITIALISATION
begin
@init—traffic_light: traffic_light := LIGHT _RED
end

event car_enters_LC refines car_enters_LC
any c where

©grdl: c ¢ cars

©@grd2: traffic_light = LIGHT _GREEN
then

@actl: cars:=cars U {c}

@act2: car_detector := TRUE

25

end

event car_leaves_LC extends car_leaves_LC
end

event train_enters_LC extends train_enters_LC
end

event train_leaves_LC extends train_leaves_LC
end

event barriers_lowers extends barriers_lowers
when

@grd4: traffic_light = LIGHT_RED
end

event barriers_raises extends barriers_raises
end

event train_signal_to_clear extends train_signal_to_clear
end

event train_signal_to_danger extends train_signal_to_danger
end

event train_approaches_LC extends train_approaches_LC
end

event traffic_light_to_green
when
@grd1: traffic_light = LIGHT_RED
©@grd2: barriers = Raised
then
@actl: traffic_light := LIGHT _GREEN
end

event traffic_light_to_red

when
@grd1: traffic_light = LIGHT _GREEN
@grd2: train_approach_detector = TRUE

then
@actl: traffic_light := LIGHT_RED

end

end

26

