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Quantum state discrimination plays an essential role in quantum technology, crucial for quantum
error correction, metrology, and sensing. While conventional methods rely on integrating readout
signals or classifying raw signals, we developed a method to extract information about state tran-
sitions during readout, based on the path signature method, a tool for analyzing stochastic time
series. The hardware experiments demonstrate an improvement in transmon qutrit state readout
fidelity from 85.9± 1.0% to 91.0± 0.5%, without the need for additional hardware. This method has
the potential to become a foundational tool for quantum technology.

Rapid high-fidelity single-shot readout is essential for
engineering quantum processors. The recent demonstra-
tion of quantum error correction highlights that a con-
siderable amount of the error budget is related to the
readout process, therefore enhancement in readout can
benefit quantum error correction [1]. Dispersive readout
stands as one of the most widely-used readout mecha-
nisms [2, 3]. The resonator coupled to the qubit exhibits
a frequency shift that depends on the state of the qubit,
therefore, the qubit state can be inferred by probing the
resonance mode. This mechanism has been demonstrated
across various solid-state qubits architectures, including
spin-qubits [4, 5], quantum dots [6–8], superconducting
qubits [9, 10].

The conventional state discrimination method for dis-
persive readout integrates the readout signal and pro-
duces a single data point that reflects the resonator re-
sponse at the probing frequency [11]. This method as-
sumes the qubit state remains steady during readout,
which is not always the case. When the measurement
pulse length is not negligible compared to the qubit re-
laxation time, the qubit may decay during the measure-
ment [12, 13]. When the probing signal is driven too
strongly, it may induce state transitions due to the Stark-
shift effect [14, 15]. On the other hand, the dispersive
readout signals capture a time series of resonator re-
sponses, enabling the potential for continuous tracking
of the qubit state. To take this advantage, various stan-
dard statistical learning techniques have been employed
to analyze the readout signal, such as Linear Discrimi-
nant Analysis (LDA), Quadratic Discriminant Analysis
(QDA), and Support Vector Machines (SVMs) [16]. In
addition, machine learning models such as the Hidden
Markov Model (HMM) [17], Feed-forward Neural Net-
works (FFNN) [18], and Variational Autoencoders (VAE)
[19] have been applied to improve the readout fidelity
by taking the time-series data as inputs. Although they
show improvements, the models are often treated as black
boxes and do not emphasize their physical significance.
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This study focuses on feature engineering for capturing
information about during measurement state transitions.
Consider a cumulative sum of the collected signal that
forms a trajectory that can be modeled as a stochastic
controlled differential equation. The qubit’s state and
noise are random variables influencing the trajectory.
Motivated by this structure, we employ the stochastic
time series tool “path signature” to extract information
from the readout signal [20–22]. Our findings show that
the signature feature captures information about state
transition events during the readout, and by applying
this advantage, its application considerably boosts read-
out fidelity.
Consider a resonator coupled to a qubit, where the

resonator has resonance frequency 𝜔𝑟 = 𝜔
(0)
𝑟 when the

qubit is at the ground state. It exhibits a dispersive shift
𝜒𝑖 when the qubit is in state |𝑖⟩, resulting in the res-

onator frequency becoming 𝜔
(𝑖)
𝑟 = 𝜔𝑟 + 𝜒𝑖. See Fig.1(a).

Consider the probing signal sent to the resonator has
frequency 𝜔𝑝 with a pulse envelope 𝑓𝑡 , where 𝑡 denotes
the time. The response signal is a complex number
time series, denoted as 𝑅𝑡 . The in-phase channel signal
𝐼𝑡 = Re(𝑅𝑡 ) and the quadrature channel 𝑄𝑡 = Im(𝑅𝑡 )
are the real and imaginary part of the response sig-
nal, respectively. The conventional way of implement-
ing state discrimination is to find the integrated sig-
nal 𝑅 =

∫
𝑅𝑡 𝑓 (𝑡)d𝑡, and classify 𝑅 for different states

[9, 10, 23]. See to Fig.1(b). Instead of doing simple in-
tegration of the signal, we define a two-dimensional vari-

able 𝑋𝑡 = {𝐼𝑡 , 𝑄𝑡 }, and construct a trajectory 𝐹𝑡 =
∫ 𝑡

0
d𝑋𝑡

which is the cumulated sum of 𝑋𝑡 . Now consider the com-
position of the increment d𝑋𝑡 which corresponds to the
experimentally received signal 𝑅𝑡 . Referring to Fig.1(c),
we model the signal to contain a deterministic term 𝐹𝑘

which is dependent on the qubit state, and a noise term
as a random variable for Gaussian noise d𝜖𝑡 , therefore

d𝑋 𝑘
𝑡 = d𝐹𝑘

𝑡 + d𝜖𝑡 (1)

where 𝑋 𝑘
𝑡 is a random variable that denotes the re-

ceived signal at time 𝑡, and 𝐹𝑘
𝑡 is the resonator noise-

less response at time 𝑡. The signal contains two chan-
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nels, with 𝑘 ∈ {𝐼, 𝑄} representing the in-phase and
quadrature-phase channels, respectively.

The signature of a multi-dimensional time-series path
is a graded, infinite collection of iterated integrals, where
the signature of a path 𝑋 with dimension 𝑑 up to degree
𝑁 is the collection

Sig𝑁 (𝑋) :=

©­­­«
∫

· · ·
∫

0<𝑡1<· · ·<𝑡𝑘<1

d𝑋𝑖1

d𝑡
(𝑡1 ) ·

d𝑋𝑖2

d𝑡
(𝑡2 ) · · ·

d𝑋𝑖𝑘

d𝑡
(𝑡𝑘 )d𝑡1 · · · d𝑡𝑘

ª®®®¬1≤𝑖1 ,...,𝑖𝑘 ≤𝑑
𝑘=0,1,2,...,𝑁

.

(2)

The signature describes the time series in a global, ge-
ometric, and interacting way. For example, the degree
1 signatures are the displacement between the endpoint
and the startpoint in different dimensions, and the de-
gree 2 signatures describe the area enclosed by the loop
formed by building a curve from the time series of incre-
ments and closing it with the chord from the end-point to
the start-point. See [20–22] for more information about
the signature method.

Signatures of variable 𝐹𝑡 have physical significance.
The degree 1 signature is given by 𝑆 (1) (𝐹) = {𝐹𝑡 − 𝐹0}.
Since 𝐹0 is always zero in practice, and 𝐹𝑡 is the integral
of the received signal, 𝑆 (1) (𝐹) falls back to the tradi-
tional approach of integrating the signal. The degree 2
signature corresponds to the Lévy area 𝐴 of a 2D path
{𝑋𝑖 (𝑡), 𝑋 𝑗 (𝑡)}, given by

𝐴 =
1

2

(
𝑆(𝑋)𝑖, 𝑗 − 𝑆(𝑋) 𝑗 ,𝑖

)
, (3)

where 𝑆(𝑋)𝑖, 𝑗 corresponds to the terms in Eq.(2) with 𝑘 =

2, 𝑖1 = 𝑖, 𝑖2 = 𝑗 . The higher-order signatures generalize
the definition of Lévy area to higher dimension volumes.

Consider a state transition that occurred at time 𝑡𝑠
during the measurement. For 𝑡 < 𝑡𝑠, d𝐹𝑡 remains con-
stant, resulting in a linear trajectory under the assump-
tion of a noiseless signal and negligible ramp-up and
ramp-down duration of the signal envelope. For 𝑡 > 𝑡𝑠,
d𝑋𝑡 is a different value and forms discontinuity of the
signal, creating a new linear segment starting from the
end of the previous trajectory. Referring to Fig.1(d), the
shaded area, which appears only if a transition occurs,
is captured by the degree 2 signatures. An exception
arises when the trajectories before and after 𝑡𝑠 are ex-
actly opposite in directions. To address this, we employ
the time-augmentation method during the evaluation of
signatures, adding time as an additional dimension to the
data, which ensures the detection of state transitions.

To benchmark the performance of the signature ap-
proach to characterize the state transition during the
measurement of real hardware, we first developed a sim-
ulator to generate synthetic traces according to Eq.(1)
from a dataset collected on the hardware. The detailed
characterization of this device has been reported in a pre-
vious work [24, 25]. For the details of the data collection,
please refer to App.A. The mean values of the synthetic
traces are evaluated from the average values of the exper-
imental dataset and then Gaussian noise is added to the
mean value to generate synthetic traces. The Gaussian

Figure 1: A simulated model for dispersive readout of a
transmon coupled to a resonator. The blue, red, green,
and yellow colors denote the transmon in the |0⟩, |1⟩,
|2⟩, and |3⟩ states, respectively. (a) The phase (top)
and amplitude (bottom) response of a resonator. (b)
The simulated distribution by integrating the signal on
the IQ plane. (c) The constructed trajectory is based
on Eq.(1). (d) A generic example of Lévy area of the
noiseless signal. The trajectory moves towards the
direction where the qubit is in |1⟩ initially; then it shifts
direction to the |0⟩ state when the qubit decays.

noise’s standard deviation corresponds to the experimen-
tal dataset’s standard deviation at each time point. We
defined the simulated transition time 𝑡𝑠 for each trace.
Before 𝑡𝑠, traces follows the experimental traces of state
|1⟩, and after 𝑡𝑠, they follow the traces of state |0⟩. We
generated a synthetic dataset of 10,000 traces with a
uniform distribution of 𝑡𝑠. This dataset was randomly
divided into training and testing sets and then used to
evaluate the performance of linear regression across var-
ious depth signatures [26].

The correlation coefficient (𝑟2) values to signature
depth are shown in Fig.2(b). The depth-𝑛 signature con-
tains all signatures up to degree 𝑛. An upward trend
in the 𝑟2 value as the signature depth increases suggests
that higher-order signatures contribute additional infor-
mation for estimating transition time. The 𝑟2 value sat-
urates when depth equals 5. The correlation between
simulated and predicted decay times for the depth-5 sig-
nature configuration is depicted in Fig.2(a). The clear
correlation in the plot demonstrates the effectiveness of
using path signatures in modeling transition times.

Fig.2(c) illustrates the model’s application to the ex-
perimental dataset, predicting the time that state tran-
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Figure 2: (a) Comparison of simulated transition times
with those predicted by an XGBoost regressor [27]
trained on a depth-5 signature. This analysis uses a
dataset synthesized from experimental data, and the
simulated transition times are considered the ground
truth for this prediction task. (b) The coefficient of
determination (𝑟2 score) of the linear regressor, trained
across various signature depths. (c) Prediction of
transition points in a trajectory on the experimental
data. This plot contains blue and red point blobs,
representing the |0⟩ and |1⟩ states, respectively, in a
traditional approach for integrating demodulated
signals into a single data point. The yellow areas
indicate equal probabilities for the |0⟩ and |1⟩ states
predicted by the regression, with gradients toward red
and blue indicating the likelihood of being in the |0⟩ or
|1⟩ state, respectively.

sition occurs. The presented traces exhibit clear di-
rectional changes during measurement, with the yellow
color—indicating the state transition point predicted by
the model, which aligns closely with these changes. The
model, having been trained on a synthetic dataset, is
based on the assumption of the existence of exactly one-
state transition. The model’s prediction of a state tran-
sition at a specific time does not necessarily confirm that
such a transition occurred.

Given the above evidence that signature captures ad-
ditional information indicating the state transition time,
we use signatures as a feature set to train the machine
learning models for state classifications on the hardware
experimental dataset. The traditional integration ap-
proach provides the distribution shown in Fig.4(a). We
evaluate the depth-5 path signature using LDA to reduce
the number of dimensions to 2, and visualize its distri-

bution in Fig.4(b). We have shown that the |0⟩, |1⟩ and
|2⟩ states are more located in a region, especially since
the leakage distributions have disappeared. We plot the
log-scale histogram of |0⟩ and |1⟩ states in Fig.4(c) and
(d) for the integration approach signal and the path sig-
nature, respectively.

Figure 3: (a) Distribution of experimental dataset on
the IQ plane using conventional integration methods.
The blue, red and green denotes the state is prepared to
|0⟩, |1⟩, and |2⟩ respectively. (b) Projection of a depth-5
signature calculated from the same dataset. The
projection direction is evaluated using LDA. (c)
Histogram of the integration method projected linearly
along the most distinguishable direction using LDA,
acting on the data of |0⟩ and |= 1⟩ state only. (d)
Histogram of signature features (depth=5) from the
same dataset, projected similarly.

The performance of the classifier is measured by assign-
ment accuracy, which is the percentage of correctly iden-
tified states compared to the intended prepared states.
Each method is benchmarked with variations in the cut-
off point of the time series provided to the classifier. See
Fig.4(e). Our study demonstrates that combining the
random forest (RF) algorithm with the signature method
surpasses the performance of the conventional approach
of integration followed by the Gaussian Mixture Model
(GMM). We selected a linear support vector classifier
(SVC) and RF for implementing the classification of the
signature features. Notably, the RF performs better than
linear SVC, which indicates that the signature features
between classes are likely not linearly separable. The per-
formance of the random forest model is enhanced when
applied to the path signatures, as opposed to directly
using the raw trace signals. The above results indicate
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the effectiveness and added value of incorporating path
signatures in the analysis.

Finally, we incorporate an extra post-selection in the
dataset, to remove the traces where state transition
likely occurred during the measurement. This is done
by conducting another measurement immediately after
the measurement traces are collected for classification
analysis, then applying the traditional integration and
the GMM method for readout on the collected signals.
See Appendix A for more details. We kept only those
traces where the last measurement agreed on the state
we intended to prepare. When we applied the signa-
ture method to this post-selected dataset, we noted an
improvement in accuracy at shorter measurement times.
However, this enhancement diminished with longer mea-
surement durations. See Fig.4(f). This outcome leads
further evidence to the claim that the signature approach
is effective by capturing state transitions occurring dur-
ing the measurement process.

Figure 4: (a) Classification accuracy as a function of
measurement length, compared across various
classification methods. The tested classification
approaches are Gaussian Mixture Model (GMM),
Random Forest (RF), Linear support vector classifier on
path signature of depth 𝑥 (SIG𝑥+SVC), Random forest
on path signature of depth 𝑥 (SIG𝑥+RF) (b)
Classification accuracy, excluding state transitions,
which is achieved by implementing an extra
measurement for post-selection. See supplementary
material for more details.

The signature-based features for dispersive readout
provide the following benefits: First, the signature ap-
proach offers superior accuracy in state discrimination
compared to the standard integration and GMM ap-
proach. In addition, compared to other machine learning
models that directly process the input signal, signatures
can be evaluated during the data integration time, which
allows the signature method to be efficiently implemented
on Field-Programmable Gate Arrays (FPGAs) [20–22].
This efficiency is essential for enabling fast feedback con-

trol.
This study has certain limitations. Firstly, the system

used for this study does not equip a quantum amplifier,
which causes long measurement times. While signatures
may be helpful in other aspects than state transition
tracking, they are not observable here because the state
transition dominates the error. Secondly, our approach
employs relatively basic machine learning models. The
efficacy of the signature method could potentially be en-
hanced by integrating more advanced models. However,
our focus was on identifying simple models that are eas-
ily implementable on FPGAs, thus not delving into more
complex machine-learning methods.
In the future, there are a few more directions we can

continue research using the path signature approach for
improvements of dispersive readout. The first is to com-
bine the signature method with multi-frequency probing,
which could provide additional dimensional information
[28], potentially improving readout fidelity further. In
addition, this method shows potential in quantum trajec-
tory studies [29, 30] and weak-measurement experiments
[31] for accurately analyzing data traces and tracking
state changes.
In summary, the signature-based approach offers con-

siderable improvements for dispersive readout. Com-
bined with its potential for tracking the state transition,
it can be marked as a valuable tool for quantum technol-
ogy.
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Appendix A: Experiment Scheme and Dataset,

The experimental pulse scheme is depicted in Fig.5. It involves three measurements. The qubit state is initially
determined using the conventional GMM method, based on data from the first measurement. The traces are then
post-selected to ensure that the initial state is the ground state. Subsequently, the qubit is prepared into the |0⟩, |1⟩,
and |2⟩ states by applying 𝜋 pulses for the transitions |0⟩ → |1⟩ and |1⟩ → |2⟩. The gate fidelity is approximately
99.7%. A second measurement is conducted afterwards, and the traces are recorded for analysis. Following the second
measurement, a third measurement is immediately performed. The third measurement aims to identify any state
transitions that occur during the second measurement. Transition events are considered to have occurred if the third
measurement yields a state different from the intended preparation state. The state discrimination is implemented
with the conventional approach, by applying the GMM model on integrated signals.

Figure 5: Experimental pulse scheme. There are three measurement pulses involved in the experiment. The first
measurement is used to implement post-selection, ensuring the initial state is in the ground state. The second
measurement pulse is analyzed using the signature approach, while the third measurement is used to detect if a
state transition event occurred during the second measurement.

Each trace was acquired using two analog-digital converters with a sampling rate of 1 Gsps each. The traces have
two distinct dimensions (I and Q). The recorded signal data has a carrier frequency of 125 MHz. A short-term Fourier
transformation was applied to segments of 256 samples to demodulate the signal at this frequency. Samples of the
collected traces are shown in Fig.6.

Figure 6: Signal obtained by probing the resonator when the transmon qubit is in states |0⟩, |1⟩, and |2⟩,
respectively. The solid line represents the average result, and the translucent line denotes a single-shot example
trace. Blue and red colors correspond to the I and Q channels of the signal, respectively.

Using the described experimental scheme, a database was established containing 70,000 traces for each targeted
state, culminating in a total of 210,000 traces. The statistics of the post-selection process are presented in the table
below. Here, 𝑁𝑖 represents the number of traces intended for state preparation |𝑖⟩ that pass the initial post-selection,
ensuring the initial state is the ground state. 𝑁𝑖 denotes the number of traces that pass both the initial post-selection
and the final post-selection, where the third measurement identifies the state at |𝑖⟩. The ratio 𝑁𝑖/𝑁𝑖 demonstrates a
measure of the proportion of the state that remained unchanged during the second measurement.

http://dx.doi.org/10.1103/PhysRevX.10.011006
http://dx.doi.org/10.1088/1464-4266/2/4/201
http://dx.doi.org/10.1088/1464-4266/2/4/201
http://dx.doi.org/10.1088/1742-6596/504/1/012016
http://dx.doi.org/10.1088/1742-6596/504/1/012016
http://dx.doi.org/10.5281/ZENODO.22558
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Prepared state 𝑁𝑖 𝑁𝑖 𝑁𝑖/𝑁𝑖

|0⟩ 59, 768 58, 273 97.50%

|1⟩ 52, 630 32, 414 61.59%

|2⟩ 55, 997 32, 339 57.75%

For each machine learning classification experiment, 2,000 traces per state were randomly selected from the database,
resulting in 6,000 traces per experiment. These traces were then divided into a training set of 4,800 traces and a
testing set of 1,200 traces, and the accuracies reported are testing set accuracies. Each hyperparameter configuration
was evaluated across 10 repeated experiments with different random seeds for selecting the data from the database
and for splitting the training and testing datasets to ensure robust statistical analysis.

Appendix B: Experiment Setup

The experiment setup of the readout chain is sub-optimal due to the lack of quantum amplifiers. The detailed
readout chain is described in Fig.7.

Figure 7: The schematics of the readout chain of the experiment setup.
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