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For an infectious disease such as COVID-19, we present a
new four-stage vaccination model (unvaccinated, dose 1 + 2,
booster, repeated boosters), which examines the impact of
vaccination coverage, vaccination rate, generation interval,
control reproduction number, vaccine efficacies and rates of
waning immunity upon the dynamics of infection. We derive
a single equation that allows computation of equilibrium
prevalence and incidence of infection, given knowledge
about these parameters and variable values. Based upon a
20-compartment model, we develop a numerical simulation
of the associated differential equations. The model is not a
forecasting or even predictive one, given the uncertainty
about several biological parameter values. Rather, it is
intended to aid a qualitative understanding of how
equilibrium levels of infection may be impacted upon, by the
parameters of the system. We examine one-at-a-time
sensitivity analysis around a base case scenario. The key
finding which should be of interest to policymakers is that
while factors such as improved vaccine efficacy, increased
vaccination rates, lower waning rates and more stringent
non-pharmaceutical interventions might be thought to
improve equilibrium levels of infection, this might only be
done to good effect if vaccination coverage on a recurrent
basis is sufficiently high.
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1. Introduction
In this paper, we introduce a mathematical model to explore the possible long-term prevalence of
COVID-19 infection under a current four-dose vaccination regime, which we refer to as doses 1 and 2,
booster dose and further booster doses. With varying vaccination coverage across the world, with
newer variants of concern having much higher intrinsic transmissibility than the wild-type, with
immune escape and waning immunity both from vaccination and prior infection, and with different
levels of non-pharmaceutical interventions (NPIs), this paper attempts to understand how these affect
the long-term prevalence and incidence of infection. We cannot know the nature of future variants of
concern, so this is not intended to be a predictive model. A central parameter is the control
reproduction number (Rc), which is the expected number of secondary infections from a primary
infector in a completely susceptible population under specified NPIs. A related parameter is the basic
reproduction number (R(0)) which is the corresponding number of such infections in the absence of
any NPIs.

We provide conditions for the disease to be eliminated, and conversely for it to exhibit the more
likely endemic behaviour. At the time of writing, in most countries, the omicron variant is dominant
with very high intrinsic transmissibility. For example, Ito et al. [1] estimated the effective reproduction
number to be 3.19 (95% CI (2.82,3.61)) times that of the delta variant under similar epidemiological
conditions. With the more transmissible sub-lineages BA4 and BA5, a basic reproduction number, R(0)

of at least 10 is likely. We assume a constant level for Rc below R(0) to reflect a supposed new normal
of ‘living with the virus’. We assume that this arises in such a way as to maximize expected utility to
society. That might reflect balancing COVID mortality, economic damage, effects of a compromised
health system, damage to young persons’ education, reduced individual freedom, etc. It assumes, for
example, that during colder periods when contact between people is greater, that individual and
community behaviour and any government interventions adjust themselves to maintain that constant
level of Rc.

A key feature of the paper is the derivation of a single equation which allows the easy computation
of equilibrium prevalence of infection given estimates of the various parameter values. This
aids understanding of how differing levels of vaccine coverage, immune escape both from vaccine and
prior infection, and waning immunity, all impact upon the nature of endemic equilibrium. We
produce specimen epidemic curves over 5 years. We show quantitatively how the cumulative infection
incidence over 5 years varies with different parameter scenarios. We perform sensitivity analyses to
show which biological parameters have the greatest impact upon equilibrium levels.

The structure of the paper is as follows. In §2, we summarize the relevant literature in this area.
In §3, the mathematical model is developed. Experimental results for a base case scenario are given in
§4. In §5, we conduct sensitivity analysis by perturbing the base case scenario. In §6, we summarize
and flag the importance of maintaining a high level of repeated boosters for a large proportion of
the population.
2. Vaccine models reviewed
There is an established history of using mathematical models to study the evolution of epidemics and the
effectiveness of vaccination programmes in epidemic control. In searching the literature, we were
particularly interested in identifying those studies that included waning of immunity, which seems to
be an important issue with COVID-19; see, for example, [2].

Scherer & McLean [3] developed SIR vaccination models to answer basic questions regarding diseases
such as measles, mumps and rubella, where a certain proportion are vaccinated just once in early
childhood, and where an assumption of lifelong immunity was relaxed by introducing waning of
immunity. They showed how to calculate thresholds for disease-free and endemic behaviour. If the
threshold was only just exceeded, then that typically resulted in long honeymoon periods of low
prevalence between successive subsequent waves. Feng et al. [4] developed SIR and stochastic
simulation models for pandemic influenza with seasonal transmission rates, vaccination and antiviral
treatments included. As waning immunity was not modelled, the question of long-term endemic
levels of disease was not considered.

When we focus on the literature for COVID-19 and related vaccination programmes, SIR and SEIR
models have been frequently used. Hollingsworth et al. [5], in a non-immunizing environment,
examined the combined effect of transient controls and waning immunity, which can result in



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221277
3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 M

ar
ch

 2
02

4 
accumulation of susceptibles and a resultant emergence of larger than expected waves, the so-called
divorce effect. Annas et al. [6] and Batistela et al. [7] both modelled vaccination by moving people
from a susceptible compartment to a recovered one, which implicitly assumed 100% vaccine efficacy
and both included theoretical stability analysis of disease-free and endemic equilibrium. Giordano
et al. [8] used a compartmental vaccine model to predict outcomes in Italy from initial roll-out in
April 2021 until January 2022, under various non-pharmaceutical intervention (NPI) control strategies
and rates of vaccination of the population. Their results confirmed the importance of not releasing
NPIs until a sufficient proportion of the population has been vaccinated. The methodology
optimistically assumed 100% vaccine efficacy and no waning of immunity after vaccination or infection.

Models developed by [9–12] are age-homogeneous. In the early stages of the pandemic in the UK,
Crellen et al. [13] used an SEIR model to investigate the effect of different mean durations of
immunity (90–365 days), on short-term dynamics and long-term endemic behaviour, in an age-based
model, in the absence of vaccination, under various assumptions about the time-varying effective
reproduction number. In [9], the authors considered a short-term SEIR model, over 200 days, that
optimized vaccination roll-out, subject to thresholds on death rates, cumulative deaths and target
numbers of those vaccinated. It assumed 100% vaccine efficacy, with no waning of immunity
following vaccination or infection. Ghostine et al. [10] developed an SEIR model for short-term
predictions in Saudi Arabia. It was age-homogeneous, fitted to actual data, and took account of
vaccine efficacy, but not of waning immunity. Wintachai & Prathom [11] used an SEIR model to study
the efficiency of vaccines for COVID-19 situations, again fitting parameters to actual data. Antonini
et al. [12] used a mean duration of vaccinal and infection immunity of 240 days to predict short-term
outcomes in Italy. For the first wave of COVID-19, Esteban & Almodovar-Abreu [14] used a seven-
compartment vaccination model, which assumed no waning of efficacy, to forecast and compare
deaths at 180 days into the first wave for assumed unvaccinated and vaccinated populations under an
assumed 95% vaccine efficacy. Steyn et al. [15] developed a vaccination model for New Zealand,
assuming no waning of efficacy, with an assumed basic reproduction number of 6 for the delta
variant. They concluded that almost 100% vaccination coverage would be needed to allow controls to
be removed, if the objective was to have subsequent occasional small outbreaks.

Other authors have used heterogeneous SIR/SEIR models. Saad-Roy et al. [16] developed a COVID-
19 SIR-based model that demonstrated a large range of model outcomes, ranging from elimination to
high levels of endemic behaviour, as the speculative biological parameters, including vaccine efficacy
and waning rates, were changed. The authors emphasized the importance of characterizing these
parameters if such models were to be useful for informing management policies. Moore et al. [17]
developed a compartmental model, heterogeneous by age and region, to predict the evolution of
COVID-19 under various combinations of vaccine roll-out and time-dependent NPIs in the UK. This
pre-dated the delta variant’s emergence as the dominant variant. It did not consider waning of
immunity, either from infection or vaccination, or a combination of these two. We try to address these
features, which are now recognized to be an important issue, as exemplified by a perceived urgent
need to roll out booster doses. A finding of their study is that vaccination alone, even pre-delta,
would not contain the virus. Patel et al. [18] used agent-based simulation within an SEIR framework
with heterogeneous transmission and age-specific mortality rates to model decision strategies over an
18-month period in North Carolina. The model did not consider waning immunity. The authors
found that removing NPIs while distributing vaccines resulted in a significant increase in the number
of infections, hospitalizations and deaths.

Many of the above are characterized by being short-term predictive studies, prior to emergence of the
delta and omicron variants, fitting parameters to local data, and with no explicit consideration of waning
immunity and vaccine efficacy. There appears to be a dearth of modelling showing how people graduate
from non-vaccinated status, to doses 1 and 2, through to boosters, and then to top-up boosters. This is a
key feature of our model. It is now generally believed that COVID-19 will be with us for a long time [19].
At the time of writing, estimates of the efficacy against infection by the delta variant were improving [20],
but there is uncertainty in waning rates and one cannot predict what new, more transmissible variants
might emerge. While writing the paper, the omicron variant became dominant and data on efficacy
against infection, as opposed to symptoms, together with waning rates after doses 1 and 2, booster
and top-up boosters are not known with any great certainty. Therefore, rather than prediction, we are
interested in understanding what the long-term endemic levels of infection might be under
speculative assumptions about vaccine efficacy, waning immunity following both vaccination and
infection, and control reproduction number. In our model we also include efficacy against
transmission given infection, in the hope that future research may be able to elicit estimates of this.



V0 V1 V2 V3

M3I3M2M1 I2I1M0I0

T3R3T2T1 R2R1T0R0

γ1V0H0

γ1T0H0
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N
βV1 (1 –   1) Sumi
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i = 0
�sumi =       Ii (1 – δi) 
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i = 0
�

π = σ       (1 – φi)Ii

3

i = 0
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N

1

i = 0
�

Figure 1. Flow chart of the vaccine model with variables and parameters shown in table 1.
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3. A multi-dose vaccination model
The model is of a homogeneously mixing population with 20 compartments. Figure 1 shows the
structure of the compartmental model. We assume that births and non-COVID-19 deaths can be
ignored since the rates are small in comparison with other compartmental entering and leaving rates.
There are four vertical sub-blocks, each comprising five compartments. These sub-blocks are identified
as vaccination stages 0, 1, 2, 3, respectively. Stage 0 contains persons who are currently non-
vaccinated. Stage 1 contains those who have received only doses 1 and 2. For simplicity, doses 1 and 2
are grouped together, as from the start of the pandemic, in the UK at least, a person was not
considered properly immunized until they had received both. Stage 2 contains persons vaccinated
with doses 1, 2, and a booster dose, but not a second booster. Stage 3 contains those who have
received doses 1, 2, booster and one or more subsequent boosters.

In vaccination stage 0, V0 is the current number of non-vaccinated persons who have not been
infected. I0 is the prevalence of those infected. For simplicity, and to reduce the number of
compartments, we assume that there is no latent period (exposed but not yet infectious) as we are
concerned only with the long-term behaviour of the epidemic curve spanning many years. R0 is the
number who have recovered from the most recent infection and are considered to have full immunity
initially. However, that immunity wanes at rate w0 so that T0 is the number who now do not have
complete immunity but one that is equivalent to a vaccine with efficacy e00. The probability of death
given infection is 1− ϕ0 and M0 is the cumulative number of deaths of the non-vaccinated. Those who
are part of V0 or T0 can transit to vaccination with doses 1 and 2 at rate γ1, but only if that does not
exceed the threshold proportion θ1 who aspire to doses 1 and 2. The model allows for repeat
infections of an individual within the stage, moving from compartments I0 to R0 to T0 to I0. At the
time of writing, approximately 56 million of a UK population of 67 million had received doses 1 and
2, and so, as an example, we set θ1 = 56/67.

The dynamics for vaccination stages 1, 2 and 3 are similar to those of stage 0, with minor differences.
Efficacy after vaccination wanes at rate ωi

0 from ei to e0i. Following waning of a person’s immunity by
either the vaccination or infection route, a person becomes a candidate for repeat infection or
vaccination to the next stage. In stage 3, transition to the ‘next’ vaccination stage is actually within
stage, to represent repeated booster doses. In all vaccination stages, we allow for the possibility that
the efficacy against transmission, δi, improves with the number of vaccinations. By definition δ0 = 0
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and we might expect δ3≥ δ2≥ δ1≥ δ0 = 0. Uncertainty about many parameter values, and indeed the
current state of the system, leads us to emphasize that we do not intend this model to be predictive.
Rather, we use it to gain some understanding of how different levels of aspiration to vaccination, of
vaccine efficacy against infection and transmission, and of waning immunity, impact upon the long-
term infection prevalence. By numerical simulation of the differential equations (3.1), we are also able
to determine transient behaviour involving the various waves of the pandemic.

We cannot know the future course of the pandemic and the response in terms of new vaccines. For
the moment, we assume the current situation of dose 1 plus 2, booster and subsequent boosters. Such
subsequent boosters, possibly targeted at higher-risk groups are assumed to continue in perpetuity.
Indeed, in the UK third boosters are now being administered to such groups. We cannot predict the
nature of future variants and while two or more may coexist for a certain period, the more
transmissible one is likely to dominate quickly, as happened with omicron superseding delta and
delta dominating alpha. In future, with a different circulating variant, the model can be run with new
parameter values in so far as they are known. Parameter definitions are shown in the second column
of table 1. The epidemic dynamics shown in figure 1 lead to the differential equations (3.1).

dV0

dt
¼ p� sRcV0

N
(1� e0)

X3
i¼0

Ii(1� di)� g1V0H0, ð3:1aÞ

dI0
dt

¼ sRc

N
(V0(1� e0)þ T0(1� e00))

X3
i¼0

Ii(1� di)� sI0, ð3:1bÞ

dR0

dt
¼ sf0I0 � v0R0, ð3:1cÞ

dM0

dt
¼ s(1� f0)I0, ð3:1dÞ

dT0

dt
¼ v0R0 � sRc

N
T0(1� e00)

X3
i¼0

Ii(1� di)� g1T0H0, ð3:1eÞ

dV1

dt
¼ (V0 þ T0)g1H0 � sRc

N
V1(1� e1)

X3
i¼0

Ii(1� di)� g2V1H1 � v0
1V1, ð3:1fÞ

dI1
dt

¼ sRc

N
(V1(1� e1)þ T1(1� e01))

X3
i¼0

Ii(1� di)� sI1, ð3:1gÞ

dR1

dt
¼ sf1I1 � v1R1, ð3:1hÞ

dM1

dt
¼ s(1� f1)I1, ð3:1iÞ

dT1

dt
¼ v1R1 � sRc

N
T1(1� e01)

X3
i¼0

Ii(1� di)� g2T1H1 þ v0
1V1, ð3:1jÞ

dV2

dt
¼ ðV1 þ T1Þg2H1 � sRc

N
V2(1� e2)

X3
i¼0

Ii(1� di)� v0
2V2 � g3V2H2, ð3:1kÞ

dI2
dt

¼ sRc

N
(V2(1� e2)þ T2(1� e02))

X3
i¼0

Ii(1� di)� sI2, ð3:1lÞ

dR2

dt
¼ sf2I2 � v2R2, ð3:1mÞ

dM2

dt
¼ s(1� f2)I2, ð3:1nÞ



Table 1. Description of variables and parameters in the model, where rates are per day.

variable/
parameter interpretation illustrative values

N number of living population 67 × 106 (UK)

Vi number in vaccination compartment of

stage i (i = 0, 1, 2, 3)

V(0) = (V0(0), V1(0), V2(0), V3(0)) = (N− 1, 0, 0, 0)

Ii prevalence of infectious in vaccination

stage i (i = 0, 1, 2, 3)

I(0) = (I0(0), I1(0), I2(0), I3(0)) = (1, 0, 0, 0)

Ri number of recovered in vaccination stage

i (i = 0, 1, 2, 3)

R(0) = (R0(0), R1(0), R2(0), R3(0)) = (0, 0, 0, 0)

Ti number in vaccination stage i with

waned efficacy e0i (i = 0, 1, 2, 3)

T(0) = (T0(0), T1(0), T2(0), T3(0)) = (0, 0, 0, 0)

Mi cumulative number of COVID-19 deaths

in vaccination stage i (i = 0, 1, 2, 3)

M(0) = (M0(0), M1(0), M2(0), M3(0)) = (0, 0, 0, 0)

Rc control reproduction number = average

number of secondary infections from

one primary infector in a completely

susceptible population, under

current NPIs

Rc = 4

σ rate of leaving the infected state 1/7

β transmission rate for a completely

susceptible population under current

NPIs

β = Rcσ

ωi waning rate following infection ω0 = ω1 = ω2 = ω3 = 1/180

ωi
0 waning rate following vaccination ω1

0 = ω2
0 = ω3

0 = 1/360

ei peak efficacy against infection following

vaccination (i = 0, 1, 2, 3)

e0 ¼ 0, e1 ¼ 0:55, e2 ¼ 0:75, e3 ¼ 0:85

e0i waned efficacy against infection

following compartment Ti (i = 0,

1, 2, 3)

e00 ¼ 0:05, e01 ¼ 0:25, e02 ¼ 0:3, e03 ¼ 0:4

δi efficacy against transmission given

infection (i = 0, 1, 2, 3)

δ0 = δ1 = δ2 = δ3 = 0

1− ϕi Prob (death given infection) (i = 0, 1,

2, 3)

1 − ϕ0 = 2 × 10−3, 1� f1 ¼ ð1� f0Þ � 1�0:48
1�0:15,

1− ϕ2 = (1− ϕ0) × (1− 0.9)/(1− 0.6),

1− ϕ3 = (1− ϕ0) × (1− 0.95)/(1− 0.7)

π population replenishment rate p ¼ s
P3

i¼0ð1� fiÞIi
γi transition rate per person to next

vaccination stage (i = 1, 2, 3, 4)

γ1 = γ2 = γ3 = γ4 = 1/90

θ1 proportion of population who aspire to

doses 1 and 2

56/67

θ2 proportion of population who aspire to

first booster

42/67

θ3 proportion of population who aspire to

the second and further boosters

6/67
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dT2

dt
¼ v2R2 � sRc

N
T2(1� e02)

X3
i¼0

Ii(1� di)� g3T2H2 þ v0
2V2, ð3:1oÞ

dV3

dt
¼ ðV2 þ T2Þg3H2 � sRc

N
V3(1� e3)

X3
i¼0

Ii(1� di)� v0
3V3 þ g4T3, ð3:1pÞ

dI3
dt

¼ sRc

N
(V3(1� e3)þ T3(1� e03))

X3
i¼0

Ii(1� di)� sI3, ð3:1qÞ

dR3

dt
¼ sf3I3 � v3R3, ð3:1rÞ

dM3

dt
¼ s(1� f3)I3 ð3:1sÞ

and
dT3

dt
¼ v3R3 þ v0

3V3 � sRc

N
T3(1� e03)

X3
i¼0

Ii(1� di)� g4T3: ð3:1tÞ

In the model differential equations (3.1),

p ¼ s
X3
i¼0

(1� fi)Ii, ð3:2aÞ

H0 ¼ H
V0 þ I0 þ R0 þ T0

N
� (1� u1)

� �
, ð3:2bÞ

H1 ¼ H
1
N

X1
i¼0

(Vi þ Ii þ Ri þ Ti)� (1� u2)

 !
ð3:2cÞ

and H2 ¼ H
1
N

X2
i¼0

(Vi þ Ii þ Ri þ Ti)� (1� u3)

 !
, ð3:2dÞ

where the Heaviside function H is replaced by the continuous error function with a very small scale
parameter, that is

H(x) ¼ 1þ erf (x=0:001)
2

: ð3:3Þ

The control reproduction number Rc is the average number of secondary infections from a primary
infector, under current NPIs, in a hypothetical completely susceptible population. It is smaller than
the basic reproduction number R(0) because of the NPIs. In seeking to understand long-term
dynamics, we assume that Rc does not vary with time. That is, for t > 0 the mix of NPIs at any time,
including individual behaviours such as level of homeworking, mask-wearing (e.g. [21]), improved
ventilation and improved test-trace-isolate methods, adjust themselves in such a way that results in a
constant Rc, that is smaller than R(0). Thus, during winter periods with more indoor mixing, the
intrinsic transmission rate and therefore R(0) might be expected to increase, but we assume a
behavioural control policy that increases NPIs to bring Rc back to a constant level. The basic
reproduction number for the omicron variant is perhaps as high as 12 but we will examine the impact
of values of Rc below that, to reflect the new normal of ‘living with the virus’. We assume that there
will be no new variant that is more transmissible, more virulent and has more vaccine escape than the
omicron variant. In future, as such changes become apparent, the parameter values can be reset. We
do not intend the model to be predictive, rather to use it to gain some understanding of the impact of
different levels of vaccination coverage, of waning immunity and of vaccine efficacy, on the long-term
infection prevalence and incidence. For these reasons, parameter values are to be regarded as
illustrative ones only.

The size of the living population is an assumed constant N ¼P3
i¼0 Vi þ Ii þ Ri þ Ti. To achieve this, it

is assumed that the population replenishment rate p ¼ s
P3

i¼0ð1� fiÞIi. The proportion of the living
population in each compartment is scale-invariant with respect to N. Henceforth, unless otherwise
stated, we set N = 1 with Vi, Ii, Ri, Ti, Mi for i = 0, 1, 2, 3 now representing proportions of that living
population. For this compartmental model, the control reproduction number is

Rc ¼ b

s
: ð3:4Þ

The expected transmission rate for a randomly selected infectious person is b
P3

j¼0ð1� d jÞI j=
P3

j¼0 I j and
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this leads to an effective (time-dependent) reproduction number of

Re ¼
Rc
P3

j¼0 (1� d j)I j
P3

i¼0 [(1� ei)Vi þ (1� e0i)Ti]P3
j¼0 I j

: ð3:5Þ

Let IðtÞ ¼P3
i¼0 IiðtÞ denote the total infection prevalence at time t. Then using the differential

equations and (3.5) leads to

dI
dt

¼ sðRe � 1ÞI, ð3:6Þ

showing that the prevalence of infectives is increasing or decreasing according as Re > 1, Re < 1. Further,
the cumulative incidence of infection in [0, T ] is

iðtÞ ¼ s

ðT
0
Re(t)I(t) dt: ð3:7Þ

A disease-free equilibrium (DFE) is obtained by setting the derivatives of (3.1a)–(3.1t) to zero with Ii =
0 for i = 0, 1, 2, 3. We find that the solution is

T�
0 ¼ ð1� u1Þ, T�

1 ¼ ðu1 � u2Þ, T�
2 ¼ ðu2 � u3Þ, T�

3 þ V�
3 ¼ u3, ð3:8Þ

where ω3
0V3

� = γ4T3
� and all other state variables become zero. This corresponds to exactly meeting the

vaccination aspirations, with static behaviour in all but vaccination stage 3 where further boosters are
given once waning has set in.

In the absence of studies under current vaccine technology giving conclusive evidence that the
efficacy against transmission, given infection is anything other than zero, we consider a default
scenario δ3 = δ2 = δ1 = δ0 = 0. In that case

Re ¼ Rc

X3
i¼0

[(1� ei)Vi þ (1� e0i)Ti], ð3:9Þ

and from result (3.8), the disease-free equilibrium is achieved when

Rcf(1� e3)V�
3 þ

X3
i¼0

[(1� e0i)T
�
i ]g , 1: ð3:10Þ

This is the condition for disease elimination in the long run. If it is not satisfied then the disease is
endemic and persists forever.

The more likely endemic equilibrium can be obtained by numerical simulation of the differential
equations. However, when efficacy against transmission given infection is zero, we now derive a
single equation which allows us to obtain the equilibrium prevalence of infection I, under the
additional assumption that the population replenishment rate π (¼s

P3
i¼0ð1� fiÞIiÞ can be neglected.

As we shall see in §5, there is little difference between the numerically simulated prevalence after 5
years using the infection fatality rates shown in table 1 and the theoretical result assuming zero
infection fatality rates, using equation (3.14). Defining θ0 = 1 and setting the derivatives to zero, we
find that at equilibrium

I j ¼
(u j � u jþ1)I

1þ s

v j

� �
I þ [Rc(1� e0j)]

�1
, ð3:11Þ

for j = 0, 1, 2 and

I3 ¼ u3I
(1þ ðs=v3Þ)I þ ð[1þ K(I)]=½Rcð1� e3 þ ð1� e03ÞK(I)Þ�Þ

ð3:12Þ

where

K(I) ¼ (1� e3)sRcI þ v0
3

g4
: ð3:13Þ
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Adding these equations and equating to I, we have

1 ¼
X2
j¼0

(u j � u jþ1)

(1þ ðs=v jÞ)I þ [Rc(1� e0j)]
�1 þ

u3
(1þ ðs=v3Þ)I þ ð[1þ K(I)]=½Rcð1� e3 þ ð1� e03ÞK(I)Þ�Þ

, ð3:14Þ

giving the equilibrium infection prevalence I in the endemic case. The threshold for this behaviour is
obtained by setting I = 0 in (3.14), that is

R�1
c ,

X2
j¼0

(u j � u jþ1)(1� e0j)þ
u3[(1� e3)g4 þ (1� e03)v

0
3]

g4 þ v0
3

, ð3:15Þ

which is the complement of (3.10).
4. Experimental results for a base case scenario
We define a base case scenario using parameter values shown in column 3 of table 1. Those for
vaccine efficacy are partly guided by the UK Health Security Agency [22] report, but as with other
parameter values should be taken as a fictitious scenario, in view of uncertainties, the fact that the
report refers to symptomatic infection (rather than symptomatic plus asymptomatic infection),
the varying data for different combinations of vaccines, and no knowledge as to the nature of
future variants and vaccines. The base case value for σ reflects a study by Manica et al. [23], who
estimated the mean generation interval for omicron as 6.84 days (95% CI 5.72–8.60). The base
case figures for vaccine aspiration are guided by data released by the Public Health England [24]
website as of 3 August 2022. In this simulation, all state variables are initially zero, except for
V0(0) = (N− 1)/N and I0(0) = 1/N, where N = 6.7 × 107 for the UK. We solve the system of differential
equations (3.1) numerically for t = 365 × 5 days to illustrate the long-term behaviour of the state
variables {Vi, Ii, Ri, Ti}. We have not attempted to show the dynamics of M ¼P3

0 Mi. This would
require accurate estimates of {1− ϕi} which will be dependent upon the age distribution within each
stage and we might expect this to change with time as vaccines are rolled out. We concentrated on
the behaviour of {Vi, Ii, Ri, Ti} and found it to be largely unaffected by changes in {1− ϕi} over a range
of plausible values.

Figure 2 shows the dynamics for vaccination stages 0, 1, 2 and 3. We observe that the proportion
of the population who are unvaccinated (stage 0) decreases and reaches the equilibrium value of
16:2%, which is close to 1� u1 ¼ 1� 56=67 ¼ 16:4%. Correspondingly, the proportion in stage 1
increases initially, and then decreases to an equilibrium u1� u2 ¼ 14=67 ¼ 20:9% due to their
migration to stage 2 (first booster). After around 500 days, the proportion in stage 2 (first booster
only) has stabilized at u2 � u3 ¼ 36=67 ¼ 53:7%, leaving 9:2% in stage 3 equilibrium.

Figure 3 shows the changing proportion of people in each of the four categories of compartments.
Thus, V(t) =V0(t) +V1(t) +V2(t) +V3(t), and similarly for the remaining three categories. As shown in
figure 3, V(t) declines from an initial 100% (initially everyone is susceptible). It first decreases very
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sharply due to a huge first wave of infection followed by a short period of increase, due mainly to
dose 1 + 2 vaccination. It then declines gradually to an equilibrium level. The behaviour of the
recovered fraction, R(t), is almost exactly opposite to that of V(t). The waned fraction T(t) increases
following the first wave of infection, then decreases slightly, only to increase following the second
wave, towards its equilibrium level. At equilibrium, the prevalence of infection is approximately 2:4%
of the population.

Figure 4a,b shows how the prevalence of infection, I(t), and its component parts I0(t), I1(t), I2(t), I3(t)
change with time. From 4a, a huge first wave dominated by I0(t) and to a lesser extent by I1(t) peaks at
around 55 days. The second wave for all four components of infection is smaller than the first. As the
prevalences, I2(t) and I3(t) are much smaller than the other two, figure 4b shows zoomed images of
these two. In all cases, the honeymoon period between the first and second peaks is larger than the
time to the first peak.

Figure 5 shows the change of Re(t). Re decreases sharply for about 70 days and reaches to its lowest
value, which is around 0.47. After that, it increases for around 200 days and then fluctuates around 1.
After day 500, it remains very close to 1, reflecting the equilibrium prevalence of infection.
5. Sensitivity analysis
The model requires input values for parameters. In general, estimates of biological parameters have high
uncertainty. Here we perform sensitivity analysis for a range of scenarios, by one-at-a-time change of
parameter values from the base case scenario of §4.

Table 2 shows corresponding equilibrium prevalence levels of infection, equilibrium incidence per
year and cumulative infections in (0,1825) days, the latter being a measure of the total damage
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inflicted by the virus over that period. In table 2, the ‘theo.’ column gives the theoretical equilibrium
prevalence obtained from equation (3.14), while the ‘exp.’ column gives the experimental prevalence
at t = 1825 in the numerical simulation of the differential equations. These are in close agreement.
The column ‘equilibrium incidence per year’ is just 365σI where I is the theoretical equilibrium
prevalence, since at equilibrium Re(t) = 1. Apart from the changing values shown in the first
column, all parameter values are those defined in the base case scenario (excluding θ) of table 1. The
results shown in columns 2–5 are for θ = [56/67, 42/67, 6/67], while those in columns 6–9, are those
for a highly vaccinated population with θ = [1, 0.95, 0.9]. Further details as to how the dynamics of
infected prevalence are altered by changing parameter values, are shown in figures 6–11 in appendix
A. Those sub-plots labelled ‘(1)’ are for θ = [56/67, 42/67, 6/67] and those with label ‘(2)’ are for
θ = [1, 0.95, 0.9].

In (a), while θ = [56/67, 42/67, 6/67], table 2 shows that both the cumulative infections over 5 years
and the equilibrium incidence per year change little as the mean generation interval changes. For θ = [1,
0.95, 0.9], both these measures of infection are predictably smaller for corresponding values of σ.
However, while the equilibrium incidence is quite insensitive to the value of σ, there is a notable
reduction in cumulative infections when σ = 1/14. For both vaccination scenarios, figure 6 shows that
the onset of the first wave is delayed and its peak prevalence reduces as the mean generation interval
increases. Once vaccine roll out of 90% to stage 3 is achieved, the lower equilibrium levels of infection
are very apparent when compared with θ = [56/67, 42/67, 6/67].

In (b) as in (a), the benefit of greater vaccination coverage is again clear. Changing ω0 has little effect
on cumulative infections when θ = [56/67, 42/67, 6/67], but a significant effect on all measures of
infection when θ = [1, 0.95, 0.9]. For both vaccination scenarios, changing ω has a large impact on all
measures of infection.

In (c), we examine the effect of different vaccine efficacies, e (before waning). It includes the cases of a
perfect vaccine in stage 3, e ¼ ð0, 1, 1, 1Þ, ð0, 0:3, 0:4, 1Þ, for which disease-free equilibrium is achieved
when θ = [1, 0.95, 0.9]. For this scenario of high vaccination coverage, all equilibrium infection
measures are highly sensitive to e3. In equilibrium, it is noticeable that there is very little sensitivity to
changing e when θ = [56/67, 42/67, 6/67]. In that case, even for a perfect vaccine, endemic behaviour
ensues, albeit with a very long honeymoon period between the first and second waves, as figure 8 shows.

In (d), we consider the effect of changing e0. When θ = [56/67, 42/67, 6/67], increasing e0 by a modest
amount has little effect on any of the measures of infection. But for θ = [1, 0.95, 0.9], table 2 shows that
such a change results in a significant decline in equilibrium incidence per year and a modest one in
cumulative infections over 5 years.

In (e), we examine the effect of changing vaccination rates γ. With high vaccination coverage in stage
3, that is θ = [1, 0.95, 0.9], changing γ has a marked effect on all equilibrium measures of infection, in
contrast to what happens when θ = [56/67, 42/67, 6/67].

In (f ), for θ = [56/67, 42/67, 6/67], decreasing Rc reduces the size of the first and second waves but
has only a limited effect on equilibrium incidence. The latter is in contrast to when θ = [1, 0.95, 0.9].
It seems that in equilibrium, increasing NPIs works best when vaccination coverage is high but has
only a marginal effect when vaccination coverage is low.



Table 2. A summary of equilibrium infection prevalence and incidence and cumulative infections over 5 years, under different
conditions. The basic parameters are shown in table 1.

parameter value

(1) θ = [56/67, 42/67, 6/67] (2) θ = [1, 0.95, 0.9]

equilibrium
prevalence
(%)

equilibrium
incidence
per year
(/N)

cumulative
infections
(/N)

equilibrium
prevalence
(%)

equilibrium
incidence
per year
(/N)

cumulative
infections
(/N)theo. exp. theo. exp.

(a) change σ−1

7 2.37 2.37 1.24 6.30 0.52 0.49 0.27 2.15

14 4.57 4.57 1.19 5.95 1.00 0.96 0.26 1.68

3.5 1.21 1.21 1.26 6.48 0.27 0.25 0.29 2.37

(b) change ω−1 and ω0−1

ω−1 = 180,

ω0−1 = 360

2.37 2.37 1.24 6.30 0.52 0.49 0.27 2.15

ω−1 = 180,

ω0−1 = 180

2.38 2.39 1.24 6.48 1.04 1.04 0.54 3.48

ω−1 = 90,

ω0−1 = 360

4.61 4.60 2.40 11.90 1.26 1.22 0.66 5.01

ω−1 = 90,

ω0−1 = 180

4.63 4.63 2.41 12.10 2.22 2.20 1.16 7.11

ω−1 = 45,

ω0−1 = 360

8.65 8.65 4.49 22.17 3.43 3.38 1.79 12.00

ω−1 = 45,

ω0−1 = 180

8.69 8.68 4.53 22.36 4.76 4.75 2.48 14.63

(c) change e ¼ ½e0, e1, e2, e3�
[0, 0.55, 0.75, 0.85] 2.37 2.37 1.24 6.30 0.52 0.49 0.27 2.15

[0, 0.3, 0.4, 0.7] 2.42 2.42 1.26 6.82 1.53 1.54 0.80 5.00

[0, 0.3, 0.4, 1] 2.28 2.27 1.18 6.39 0 0 0 1.61

[0, 1, 1, 1] 2.28 2.25 1.18 4.81 0 0 0 0.50

(d) change e0 ¼ ½e00, e01, e02, e03�
[0.05, 0.25, 0.3, 0.4] 2.37 2.37 1.24 6.30 0.52 0.49 0.27 2.15

[0.1, 0.3, 0.4, 0.5] 2.21 2.21 1.15 5.88 0.18 0.04 0.10 1.41

(e) change γ−1.

90 2.37 2.37 1.24 6.30 0.52 0.49 0.27 2.15

180 2.40 2.40 1.25 6.46 1.16 1.11 0.60 4.85

45 2.35 2.34 1.22 6.26 0.03 0 0.02 0.70

(f ) change Rc
4 2.37 2.37 1.24 6.30 0.52 0.49 0.26 2.15

6 2.83 2.83 1.48 7.79 1.78 1.63 0.93 5.86

8 3.06 3.06 1.60 8.55 2.39 2.40 1.25 7.63
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In cases (a) to (f ), figures 6–11 show that for each value of the parameter shown in the corresponding
caption, changing from θ = [56/67, 42/67, 6/67] to θ = [1, 0.95, 0.9], has limited effect on the size and
timing of the huge first waves, presumably because vaccination coverage is quite low for both these
vaccination scenarios at that time.
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It is of interest to ask what happens if we relax the assumption made in §3 that births
and non-COVID-19 deaths can be neglected. We altered the model for the base-case scenario,
introducing extra births and deaths at the rate of 2.74 × 10−5 per day per head of population,
corresponding to approximately 1% per head of population per year. This changed the actual
prevalence at 5 years from 2:37% to 2:38% for θ = [56/67, 42/67, 6/67], and from 0:49% to 0:46% for
θ = [1, 0.95, 0.9]. Overall, when we consider the considerable uncertainty in parameter values, the
differences are small enough to justify the simplifying assumption of neglecting crude birth and
death rates.
 .org/journal/rsos

R.Soc.Open
Sci.10:221277
6. Summary and conclusion
In this paper, we develop a new vaccination model which explicitly focuses on subjects’ vaccination
journeys through dose 1, dose 2, booster and further boosters. The aim is to understand how infection
prevalence and incidence and cumulative infections depend upon key biological parameters and
control variables. We derive a single equation for calculating equilibrium prevalence in the case of
endemic behaviour. We provide analytical conditions for a disease-free equilibrium. We develop a
numerical simulation using this compartmental vaccination model and have shown results for various
parameter and control variable scenarios over a 5-year period. Our approach is to take a selection of
parameter values constituting a ‘base case’. In §5, we examine the effect of one-at-a-time change in
parameter values.

The key limitation of our approach is that it is not age heterogeneous, and therefore, because infection
fatality rates are highly age-dependent, it applies only to levels of infection, and not to COVID deaths.
Secondly, many parameter values are not known with any accuracy. In future, as parameter values,
including that pertaining to efficacy against transmission given infection, become known with greater
certainty, and as new variants appear, the model can be run for such situations.

We examined two vaccination scenarios. The first (low aspiration) involved a population in which
84%, 63% and 9% of the population aspire to doses 1 + 2, booster and repeated boosters, respectively.
This approximately corresponds to the vaccination coverage in the UK as of August 2022. The second
scenario (high aspiration) was a hypothetical population with aspiration levels of 100%, 95% and 90%
for dose 1 + 2, booster and repeated boosters, respectively.

We found that as far as equilibrium behaviour was concerned, with low vaccine aspiration, as
hypothetical vaccine efficacies increased, there was no great decrease in levels of infection. The
opposite was true for the high vaccine aspiration group with a disease-free equilibrium actually
possible for a vaccine in which repeated boosters had a hypothetical 100% efficacy. A similar effect
was noticed as we changed vaccination rates. When it comes to the rate of waning immunity after
vaccination, lower waning rates had little effect on equilibrium infection levels with low vaccine
aspiration, but a significant effect for high vaccine aspiration. By contrast, for lower rates of waning
immunity following infection, there were significant reductions in equilibrium levels of infection for
both vaccination scenarios. We also found that reducing the control reproduction number (i.e.
increasing NPIs) had a limited effect upon equilibrium infection levels with low vaccine aspiration,
but a significant one with high vaccination aspiration.

The key message therefore appears to be, that for equilibrium endemic behaviour over a period of 5
years, in a world where vaccines are available, if one wishes to achieve low levels of infection in
equilibrium, by improving any one of vaccine efficacy, waning rates, vaccination rates and NPIs, it
may only help to a significant effect if a large proportion of the population is being vaccinated on a
recurrent basis.
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Appendix A
The following figures relate to the ‘Sensitivity analysis’ section.
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Figure 6. Changes in infected fraction I(t)/N for different σ−1, and values used for other parameters are shown in table 1.
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Figure 9. Changes in infected fraction I(t)/N for different e0, and values used for other parameters are shown in table 1.
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Figure 11. Changes in infected fraction I(t)/N for different Rc, and values used for other parameters are shown in table 1.
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