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Abstract: Engine oil oxidation is one of the major reasons for oil aging which can result in variations
in the physical and chemical properties of oil. Organic acids generated by oil oxidation can react
with water to form inorganic acids and acidic substances (including organic and inorganic acids) that
corrode engine parts, resulting in the generation of rust or damage to engine parts. This is one of
the important reasons why oil should be regularly changed. One of the most commonly applied
methods for judging the aging degree of engine oil is monitoring its acid number (AN). However,
generally, the effect of oil water content on acid value measurement is not considered. When oils
are used in engines, they are often contaminated by water due to condensation, which accelerates
engine oil aging. Therefore, it is crucial to explore the water content effect on AN in the process
of engine oil aging. In this research, a water content sensor was applied to characterize moisture
content in oxidized oil samples. The sensor could also obtain oil sample electrical conductivity which
corresponded to its dielectric constant. Using a mid-infrared spectrometer to measure oil sample
AN at this point to obtain the variation in AN with oxidation time, oil sample AN was connected
in series with the water content, dielectric constant and electrical conductivity. These parameters
were monitored through sensors, and the effect of water content on AN was studied. Experimental
results revealed that with the increase in oxidation time, the water content, electrical conductivity,
dielectric constant increase and AN of oil were increased. At the same time, since the temperature had
a greater effect on electrical conductivity, the application of an air-conditioned constant-temperature
environment removed the effect of temperature change on electrical conductivity.

Keywords: oil oxidation; water content; electrical conductivity; dielectric constant; acid number

1. Introduction

Engine oils are exposed to high-temperature and high-pressure operation and are
often in contact with air. Over time, oils are oxidized as part of the aging process, which
results in variations in oil properties [1]. Figure 1 shows the aged engine oil.

If aged oil continues to be used, it will exert negative influences on the lubrication,
cleaning and anti-corrosion efficiencies of engine oil [2]. Furthermore, when engine oil is
working, it is subjected to catalytic effects of various metals and gradually ages, resulting
in carbon deposits, sludge and dissolution of other substances that can cause damage to
the engine [3]. This phenomenon accelerates engine component wearing, poor lubrication
and other effects, affecting engine life. Therefore, the oil needs to be regularly changed.
Engine oil’s physical and chemical properties are important indicators for measuring its
quality [4]. The properties to be considered are viscosity, flash point, acid number (AN),
ignition point, etc. Among them, AN plays a key role in measuring oxidation degree [5].
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Base oil is oxidized during operation. At low temperatures (below 120 °C), oxidation 
goes through four stages of free radical chain reaction, irreversible free radical chain 
growth, chain branching and free radical chain termination [6]. In the early stage, second 
phases or chain alkyl radicals are formed to react with oxygen to produce oxygen free 
radicals, and then, other hydrocarbons extract hydrogen from hydrogen peroxide and 
other free radicals. During hydrogen peroxide generation and accumulation, the oil oxi-
dation process eventually terminates. The product of this process is carboxylic acid, which 
results in an increase in oil acidity [7]. The typical oxidation reactions are as follows: 
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In engine oil aging process, not only acidic substances are produced, but also a trace 
amount of water is generated [8], as illustrated in the following reaction: 

 2CO H∗ → COO∗ + CO∗ + H O (4)

The most commonly employed AN monitoring methods include titration and infra-
red spectroscopy; however, these methods cannot consider the effect of oil water content 
on research results. Water can exert great effects on oil monitoring results. This research 
studied the relationship of oil trace moisture and AN, thereby judging the impact of en-
gine oil water content and providing reference opinions for engine oil replacement. In this 
research, first, an experimental platform was established based on the LubCosH20Ⅱ water 
content sensor. The oil sample was prepared by adding iron acetylacetonate to engine oil. 
Karl Fischer titrant was applied for the determination of oil sample water contents after 
different oxidation times. The electrical conductivity and permittivity of oil samples were 
measured by the LubCosH20Ⅱ sensor. Finally, an infrared spectrometer was applied for 
the verification of oil sample AN. Based on the correlation of the variations in water con-
tent and acid number with oxidation time, guidance is provided for research on oil change 
standards for engine oil. 

2. Related Works

Figure 1. Aged engine oil.

Base oil is oxidized during operation. At low temperatures (below 120 ◦C), oxidation
goes through four stages of free radical chain reaction, irreversible free radical chain growth,
chain branching and free radical chain termination [6]. In the early stage, second phases
or chain alkyl radicals are formed to react with oxygen to produce oxygen free radicals,
and then, other hydrocarbons extract hydrogen from hydrogen peroxide and other free
radicals. During hydrogen peroxide generation and accumulation, the oil oxidation process
eventually terminates. The product of this process is carboxylic acid, which results in an
increase in oil acidity [7]. The typical oxidation reactions are as follows:

CH3 − (CH2)n − CH3 + O2 → CH3(CH2)COCH3 + CH2O (1)

CH3(CH2)nCOCH3 + O2 → CH3(CH2)nCO2H + HCHO (2)

CH3(CH2)n − CHO2H − CH3 → CH3(CH2)n − CH2O − CH3 + O (3)

In engine oil aging process, not only acidic substances are produced, but also a trace
amount of water is generated [8], as illustrated in the following reaction:

2CO2H∗ → COO∗ + CO∗ + H2O (4)

The most commonly employed AN monitoring methods include titration and infrared
spectroscopy; however, these methods cannot consider the effect of oil water content on
research results. Water can exert great effects on oil monitoring results. This research
studied the relationship of oil trace moisture and AN, thereby judging the impact of engine
oil water content and providing reference opinions for engine oil replacement. In this
research, first, an experimental platform was established based on the LubCosH20II water
content sensor. The oil sample was prepared by adding iron acetylacetonate to engine oil.
Karl Fischer titrant was applied for the determination of oil sample water contents after
different oxidation times. The electrical conductivity and permittivity of oil samples were
measured by the LubCosH20II sensor. Finally, an infrared spectrometer was applied for the
verification of oil sample AN. Based on the correlation of the variations in water content
and acid number with oxidation time, guidance is provided for research on oil change
standards for engine oil.

2. Related Works

Several research works have focused on oil monitoring. Monitoring the variations in
oil AN is an effective approach for engine oil condition monitoring. Kauffman et al. [9]
measured total AN (TAN) using voltammetry techniques. Liao [10] applied the AD5933
Analyzer Module to develop a detection system for AN and achieve detection without
chemicals. Ma [11] introduced a new method on the basis of mid-infrared spectral data and
improved partial least squares (PLS) for the determination of the AN of used lubricating
oil and developed multiple principal components of PLS. Chen [12] searched for a method
for the detection of AN in transformer oil. The temperature titration method has also been
used to determine the AN of transformer oil. Soleimani et al. [13,14] studied the feasibility
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of the application of thick-film (TF) sensors using ion-selective electrodes for the detection
of lubricating oil aging. They found that thick-film electrodes presented a linear response
to oil acidity variations at different temperatures, with electrical conductivity, viscosity
and AN of oil samples increasing with the increase in oil oxidation degree. Yang et al. [15]
further studied TF electrode reaction time in lubricating oil and the effect of lubricating oil
moisture content on the detection performance of TF sensors. They found that glass-based
TF sensors were able to work under high temperatures of up to 120 ◦C and metal particles
in oil could help significantly decrease sensor response time. Wang [16] compared sensor
output to TAN obtained with a widely accepted titration method. He found that the correla-
tion between TAN and sensor output could be improved if the data scatter originating from
the titration method was decreased. The original assessment was verified by measuring
TAN using titration and electrochemical (EC) methods. Rivera-Barrera [17] concluded that
the intensities and frequencies of oil mid-infrared attenuated total reflectance (MIR-ATR)
spectra (4000–400 cm−1) could be applied as independent variables for several principal
component regression (PCR) and partial least squares regression (PLSR) models. The latter
was applied for the correlation of the spectra with their respective TAN values to construct
a suitable prediction model. Twenty-six Colombian crude oil samples were used for the
validation of the model. Beatriz [18] et al. measured TAN using infrared data and devel-
oped a prediction model to predict the degree of oil aging. Different techniques, including
projection pursuit regression (PPR), partial least squares (PLS), support vector machines,
linear models and random forest (RF), have been used. An innovative mechanism has been
implemented for wider feature selection based on a genetic algorithm. Zhou [19] devel-
oped an acid value index prediction model based on an infrared spectroscopy monitoring
method. The support vector machine regression method has been applied to quantitatively
analyze oil sample AN, which verified the stability and prediction ability of the developed
quantitative prediction model. In this work, we provide a theoretical basis and practical
examples for online monitoring of oil indicators. Du [20] developed a new real-time quanti-
tative detection method. After the first derivative pretreatment of spectra, discriminant
analysis (DA) successfully identified cheap oil types adulterated in CAO with an accuracy
of 96.7%. Macián [21] demonstrated that infrared spectroscopy is the most suitable method
for quantifying diesel in used motor oil. Furthermore, the use of near-infrared spectroscopy
in combination with a multivariate calibration approach allowed the prediction of fuel
concentrations for samples used to validate the model.

It can be seen from relevant research works performed around the world that AN
is an important indicator for engine oil monitoring. However, most researchers do not
consider the effect of trace amounts of water on research results during the research process;
therefore, errors may occur.

3. Experiment Preparation and Methods
3.1. Experimental Platform

The LubCosH20II sensor (ARGO HYTOS, Karlsruhe, Germany) was applied for mon-
itoring in this research. The sensing part was composed of a metal grid printed on a
circuit board and two platinum metal wires without direct contact. Based on the measured
electrical signal and the built-in circuit processing and conversion device, data transmission
and exchange were performed directly with external equipment through a cable. The
sensor detected the following physical characteristics of oil and their changes over time:
temperature, relative oil humidity or relative dielectric constant (relative permittivity)
and electrical conductivity of fluid. Since electrical conductivity and relative permittivity
were strongly affected by temperature, the sensor also defined the values at a reference
temperature (40 ◦C) in addition to characteristic values at the measurement temperature.
The sensor automatically evaluated state changes. The structure and parameters of the
LubCosH20II sensor are illustrated in Figures 2 and 3.
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3.2. Preparation of Oil Samples

In this research, base oil obtained from Great Wall Lubricants was artificially oxidized
for the preparation of aged oil samples. Iron acetylacetonate is a catalyst capable of promot-
ing oil deterioration. Iron acetylacetonate powder was added at a ratio of 0.3 g/50 mL to
achieve a rapid testing process. Since oil’s flash point is 250 ◦C, in order to quickly oxidize
the lubricating oil, it is generally heated at 70% of its flash point temperature; therefore,
the heating temperature was set at 140 ◦C. Six groups of the same base oils were placed in
round-bottom flasks of the same volume, and 0.4 g iron acetylacetonate was added as a
catalyst to 50 mL of each of the six oil samples. An air pump was applied to blow air at a
flow rate of 330 mL/min (air flow rate in cabin) into the oil sample while it was heated at a
fixed temperature of 175 ◦C for 0, 2, 4, 8, 16 and 24 h.

Iron acetylacetonate powder is a β-diketone organic iron compound and is widely
applied as a catalyst and ligand in organic synthesis. Acetylacetone can form stable
complexes, especially with transition metal ions. These metal complexes can catalyze
oxidation reactions and promote active redox reactions of oxygen molecules. At the
same time, iron acetylacetonate provides an active surface capable of promoting oxygen
adsorption and intermolecular reactions. In order to better and evenly oxidize the oil,
air was introduced with a flow rate of 330 mL/min into the beaker of burning oil. The
introduction of air resulted in some of the volatile components in the oil being evaporated
and, at the same time, helped remove air bubbles from the liquid. Bubbles can affect liquid
uniformity and stability, so blowing air in could remove bubbles and ensure a more uniform
liquid. Furthermore, blowing air in could help mix and agitate the oil to ensure that its
ingredients were evenly distributed.
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The as-prepared oil samples were used for experiments. The oil sample information is
shown in Table 1.

Table 1. Experimental oil samples.

Time of Oxidation ID Quantity Supplier

No. 40/0 h/air R130003622 50 mL Great Wall Lubricant
No. 40/2 h/air R140000119 50 mL Great Wall Lubricant
No. 40/4 h/air R140000120 50 mL Great Wall Lubricant
No. 40/8 h/air R140000121 50 mL Great Wall Lubricant

No. 40/16 h/air R140000122 50 mL Great Wall Lubricant
No. 40/24 h/air R140000123 50 mL Great Wall Lubricant

Experiments were designed for the verification of the catalytic effect of iron acetylace-
tonate powder. Using an electronic balance, 0.1–0.8 g of iron acetylacetonate (excessive
powder would cause the oil to deteriorate) was weighed and added separately to sampled
oils. Nine oil sample groups containing 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 g catalyst were
prepared; air was passed through them at a flow rate of 330 mL/min, and they were
heated at 175 ◦C for two hours. After cooling, the viscosity of samples was measured by a
rotational viscometer, and the results are shown in Table 2.

Table 2. Viscosity of oil samples containing different amounts of catalyst.

Number Oxidation Time Weight Viscosity

1 2 h 0 g 212 mPa·s
2 2 h 0.1 g 223 mPa·s
3 2 h 0.2 g 209 mPa·s
4 2 h 0.3 g 197 mPa·s
5 2 h 0.4 g 213 mPa·s
6 2 h 0.5 g 208 mPa·s
7 2 h 0.6 g 203 mPa·s
8 2 h 0.7 g 202 mPa·s
9 2 h 0.8 g 203 mPa·s

It was seen that the addition of a catalyst had no effect on the viscosity index of oil
samples. Therefore, the addition of iron acetylacetonate did not affect oil sample quality.
Small errors could be generated due to too slow viscometer rotor rotation speed, resulting
in an overly large range and making the obtained results less accurate.

Stabilization experiments were designed to select the optimum amount of iron acety-
lacetonate powder. The principle of this experiment was the measurement of electrical
conductivity stabilization time. Methods with shorter monitoring times are needed. Shorter
stabilization times for conductivity meant shorter times for data output. At the same time,
on the basis of a stable range of electrical conductivity, it could be confirmed that the
catalyst did not affect the physical and chemical indicators of oil samples.

Sensors were applied to monitor the electrical conductivities of nine groups of oil
samples, and electrical conductivity stabilization times were recorded. The obtained
stabilization times are summarized in Figure 4.

It was seen from the obtained results that with the increase in the amount of catalyst
iron acetylacetonate (accelerator), the stabilization speed of the curve showed a gradually
accelerating trend. After the addition of 0.4 g catalyst, although there was still a slight
speed change, the difference was small and could be ignored. Therefore, we selected 0.3 g
as the optimal catalyst amount.
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3.3. Sensor Calibration

In the beginning, the sensor system (as shown in Figure 5) had to be calibrated. A
standard oil sample was applied as a calibration sample. The base oil was put into a 50 mL
small beaker, and a sensor probe was placed into the beaker so that it was completely
immersed in the oil sample.
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Figure 5. LubCosH20II sensing system.

Oil sample electrical conductivity and permittivity could be read by a computer
connected to the sensor. The results measured using LubMonPClight software (Software
Zoom PC-Visualization and Recording Software for Oil Sensors) are illustrated as Figure 6
(under the system-defined reference temperature, the dielectric constant was represented
by P40, and the electrical conductivity was represented by C40).
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It can be seen from the figure that the electrical conductivity and dielectric constant
of the base oil were dynamically stable within a certain range. Also, the stabilization time
was short. Then, trace water was added to base oil samples for testing. The test results are
shown in Figure 7
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From the above curves, it can be seen that the oil sample electrical conductivity and
dielectric constant were stable and the curve was smooth within a short period of time.
This meant that the sensor was sensitive. Furthermore, there were no additional variables
other than moisture difference.

3.4. Elimination of Temperature Effects

The oil environment temperature presented a certain instability and was slightly
changed at different times. In order to explore whether the test results were affected by
temperature at different experimental times, the following experiments were designed.

Using a temperature-controlled heating and stirring device, the same group of oil
samples was heated and evaluated, and the oil sample pH was measured at different
temperatures. The obtained results are summarized in Figure 8.

Since laboratory temperature was considered to be 25 ◦C, the default temperature
of data monitored without heating was 25 ◦C. It was seen that when temperature was in
the range of 25–30 ◦C, it had little effect on pH. With the increase in temperature from 25
to 27 ◦C, the pH was slightly decreased. This was because temperature affected the ion
product in oil, while the concentration of positive true hydrogen ions remained unchanged.
Then, the data re-increased slightly with the increase in temperature. This was because
the oil only contained a very small amount of water. However, hydrogen ions in oil were
generated mainly due to the ionization of organic acids and not water; therefore, it could
be considered that temperature had no effect on the acidity at this stage. At temperatures
above 30 ◦C, it was seen that the oil sample pH was significantly changed. Therefore, at
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temperatures greater than 30 ◦C, the experiments needed to be temperature-compensated.
An air conditioner was applied as temperature compensation, and the temperature was
fixed at 25 ◦C.
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4. Results and Discussion

After five groups of oil samples (not considering base oil) were oxidized at a high
temperature, their water contents were measured with Karl Fischer titrant. For accurate
data, each group of oil samples was tested three times, and the average value of water
content was reported in Table 3.

Table 3. Water contents of experimental oil samples.

Oxidation Time 2 h 4 h 8 h 16 h 24 h

Water content Average value 120 ppm 139 ppm 161 ppm 182 ppm 201 ppm
Average error ±1 ppm ±6 ppm ±3 ppm ±3 ppm 0

Using the built-up sensor system, when measuring an oil sample with 120 ppm water
content (oxidation time of 2 h), the dielectric constant was 2.126 and electrical conductivity
was 8974 PS/M, which finally reached a stable state. The dielectric constant and electrical
conductivity showed a strong correlation, and curve fit (polynomial fit) results obtained
from the least square method were also good, with a value of 0.93. The monitoring results
are shown in Figure 9.
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According to the test results obtained for an oil sample with 139 ppm water content
(oxidation time of 4 h), the dielectric constant was 2.133 and electrical conductivity was
9994 PS/M, which was stable. There was no correlation between electrical conductivity
and permittivity. The monitoring results are shown in Figure 10.
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Figure 10. Dielectric constant and electrical conductivity with 139 ppm water content.

When an oil sample with 161 ppm water content (oxidation time of 8 h) was measured,
the figure showed that the dielectric constant was 2.134 and electrical conductivity was
16,123 PS/M, which presented a correlation coefficient (polynomial fitting) of 0.82. The
monitoring results are shown in Figure 11.
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By measuring the oil sample containing 182 ppm water content (oxidation time of
16 h), it could be concluded that the dielectric constant was stable at 2.139 and the electrical
conductivity was stable at 206,351 PS/M. For the relationship between electrical conduc-
tivity and dielectric constant, the curve-fitting polynomial obtained by the least square
method was better, and the correlation coefficient reached 0.98, which had good reference
significance. The monitoring results are shown in Figure 12.
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Figure 12. Dielectric constant and electrical conductivity with 182 ppm water content.

When an oil sample with 201 ppm water content (oxidation time of 24 h) was mea-
sured, the dielectric constant was stable at 2.118, and electrical conductivity was stable at
310,499 PS/M. At the same time, the curve fit between electrical conductivity and dielectric
constant was relatively high. The correlation coefficient of polynomial fitting using the
least square method reached 0.99. The monitoring results are shown in Figure 13.
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For this group of experiments, the experimental results of the final five oil sample
groups are shown in the Table 4.

Table 4. Data of experiments.

Oil Sample Water Content (ppm) Dielectric constant (P) Electrical
Conductivity [pS/m]

1 120 2.126 8974
2 139 2.133 9994
3 161 2.134 16,123
4 182 2.139 206,351
5 201 2.118 310,499

From the table, it can be seen that at oxidation times of 2–16 h, the increase in water
content first decreased and then increased the oil sample dielectric constant and increased
electrical conductivity. This was because the increase in water content provided more free
charged ions to the oil sample. At the same time, water existed in the oil in a dynamic and
stable state. Both free water and mixed water were present. Therefore, the oil sample’s
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electrical conductivity was increased. As oxidation time was increased, engine oil produced
more and more acid. Therefore, oil sample AN was increased. Since oil AN presented
a good positive correlation with the dielectric constant, its dielectric constant was also
increased. At an oxidation time of 24 h, the oil sample dielectric constant was decreased.
This might be due to long-term high-temperature oxidation causing the evaporation and
loss of water to a certain extent.

Furthermore, a horizontal comparison of the obtained experimental results revealed
that the change laws of the dielectric constant and electrical conductivity were the same; that
is, the dielectric constant and electrical conductivity had the same increasing and decreasing
trends. This proved that there was a certain relationship between the dielectric constant
and electrical conductivity. The horizontal comparison was mainly on a longitudinal span
of time, which could explore the mathematical relationship between dielectric constant and
electrical conductivity.

It is known that there is a good positive correlation between the dielectric constant
and AN in engine oil [22]. In order to better verify the relationship between water content
and AN, mid-infrared spectroscopy was applied to determine the AN of the prepared oil
samples. The reference standard method ASTM E2412 was adopted for measuring total
AN by infrared spectroscopy. The infrared spectra of oil products were collected using a
Fourier transform infrared spectrometer and attenuated total reflection accessories, using
the collection and analysis software OMNIC developed by Nicolet. Figure 14 shows the
ATR accessories used for infrared spectroscopy monitoring
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Figure 14. ATR accessories and schematic diagram.

Using OMNIC software, background spectra were collected before the collection
of sample spectra in order to subtract the effects of moisture and carbon dioxide in the
atmosphere. Then, a pipette was used to absorb a quantitative amount of the oil sample to
be sided, which was dropped evenly on the ZnSe crystal of the attenuated total reflection
accessory, and the collection of the spectrum of the oil was started.

The Figure 15 shows the spectral comparison of the six groups of oil samples.
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Here, 3000~2500 cm−1 was chosen as the characteristic peak area for measuring
oil sample AN. A hydroxyl O-H stretching vibration peak characterized the produced
hydroxy acid. There was a coupling of O-H in-plane deformation vibration and C-O
stretching vibration in the vicinity of 1420 cm−1 and 1300 to 1200 cm −1. There were
various interferences for O-H out-of-plane deformation vibration near 920 cm−1, or the
absorption peak was not strong enough and was only used as a qualitative reference, not
for accurate quantitative analysis.

Using the area method to characterize the ANs of the six groups of oil samples, the
relationship between AN and oxidation time could be obtained, and is shown as Figure 16.
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It can be seen from the figure that after 0–8 h, oil sample AN tended to increase. This
was because acidic molecules were generated at this time, and acidic molecules decomposed
under heating and reacted with alkane molecules in engine oil to produce acidic substances.
After 8–24 h, the increasing trend of AN slowed down. This was because free H+ in oil
samples was close to dynamic equilibrium.

This experiment verified that AN was increased with oxidation time. In other words,
water content in oil samples was positively correlated with electrical conductivity, dielectric
constant and AN. Therefore, changes in AN can be monitored through changes in moisture
content. When AN reaches the critical value required by the oil, it means that the oil needs
to be replaced.

5. Conclusions

In this research, the relationships between water content and electrical conductivity
and between dielectric constant and AN were studied using a LubCosH20II sensing device.
From the obtained scatter plot and fitting curve between electrical conductivity and dielec-
tric constant, it was seen that the relationship between the variations in dielectric constant
and electrical conductivity was a positive correlation. As lubricating oil oxidation time
was increased, the correlation coefficient of the fitting equation was gradually increased,
indicating that this method was not suitable for monitoring lubricating oil aging in the early
stage of lubricating oil use. On the other hand, the fitting equation correlation coefficient
between electrical conductivity and dielectric constant reached 0.82–0.99, indicating that
mutual influence factors between electrical conductivity and dielectric constant were strong.
AN could be characterized by the relationship between the water content, electrical con-
ductivity and dielectric constant, which could be applied as a new method for monitoring
lubricating oil quality. Experiments proved that an increase in oxidation time increased the
oil water content, electrical conductivity, dielectric constant, and AN. In this research, the
temperature effect was excluded using a constant-temperature method.
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