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Abstract: White Etching Cracks (WEC) have become a subject of extensive research in material
science, chemistry and lubrication, and even operational mathematics by AI learning. Initially
reported in the 1960s and considered an exotic anomaly, the failures gained importance with the
global rise of wind energy power and the automotive industry. Unexpectedly high failure rates in
various bearing applications have led to the need for a deeper understanding and prevention of
WEC. It has come a long way from materials inspection, to parametrically studying WECs on test
rigs, to the understanding that WEC is a stand-alone phenomenon and sparingly related to common
failures in bearing technology. It has been commonly accepted that WEC drivers have multiple
dimensions, e.g., material, contact mechanics, chemistry, and electricity. The impact of these factors
on WEC failures is frequently studied using test rigs at the component level, such as the FE8 test
rig. The FE8 has been utilized in numerous investigations due to its ability to replicate WEC failures
without requiring artificial electricity or hydrogen charging by using specific lubricant chemistry
and operating conditions. However, through intensive testing, it was observed in this study that a
standard material in an FE8 rig component demonstrated a profound influence on WEC formation.
This paper presents the details of the testing and analysis, aiming to investigate the mechanisms of
interactions between the hose material and the low reference lubricant. The results demonstrate that
the chemistry of the component material plays an important role in WEC formation. This finding
may have significant impact in WEC studies, especially when the FE8 rig is used.

Keywords: white etching cracks; rolling bearing failure; lubricant chemistry; surface analysis

1. Introduction

White Etching Crack (WEC) failures have posed a significant challenge in the field
of bearing technology. Although much as this topic has attracted researchers worldwide,
until today, a concise understanding of this failure mode is still missing. It is reasonable to
assume that even before WEC gained widespread recognition, it was a latent phenomenon
present in the past, though not at the forefront of attention for many years. The first
observation of “White Etching” was reported in 1966 [1]. Following a prolonged period
of relative silence, a series of research activities commenced in the early 1980s and 1990s.
However, during that time, researchers were not yet aware of White Etching Cracks. Prior
studies primarily focused on material and surface breakdown under boundary lubrication,
considering the mechanical impact in the contact and the emergence of thin-film lubrication
(see, for example, [2]). Nevertheless, a very detailed study on the material response versus
different scenarios of load, e.g., contact pressure and tangential slip, that showed the
appearance of subsurface crack networks—although not decorated by white etching matter
reaching the surface—was published in [3]. As the failures started to impact more and more
upon the industry, WEC has become an important research topic in the material science
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community. However, the tendency to associate WEC with contact mechanics was still
very strong. The change in the perception of WEC began in the midst of the 1990s by the
steep increase in wind power installation, especially the generator bearings, and later the
planetary stage and main bearings. Nevertheless, WEC came up at the same time as a wave
in automotive applications, namely in the belt tensioner and generator bearings, but also the
wheel bearings. Numerous trials were made to bring the phenomenon down to parameter
test rigs, especially those reflecting the dimension used in reality. Early WEC creation under
rolling contact conditions are reported by [4–9]. Years after [3], the mechanical impact on
WEC was discussed by [10]. A numerical approach was published by [11]. The authors
in [12–15] gave a broad overview on the status of WEC research related to wind turbine
gearboxes. The search for the root cause of WEC is split in various approaches, mainly to
identify parameters leading to WEC from the perspective of contact mechanics by the use
of test rigs, as expressed for example in [10,11,16–19]. The specific influence of electrical
current in conjunction with contact mechanics has been reported by [20–22].

The relationship between lubricant chemistry and WEC has been reported in numerous
studies [18,19,23–33]. According to these studies, lubricant chemistry plays a significant role
in WEC creation, and specific additives, such as zinc dithiophosphate (ZDDP), have been
shown to have a particularly important influence [23,26,29]. Overbased calcium sulfonates
and their combinations with ZDDP are also reported [7,26,28,29,32]. Additional combina-
tions with ZDDP, such as sodium–calcium sulfonates, boric acid esters, and polyacrylates,
are described in references [18,19,25,27]. Dicyclohexylamine’s significant impact on WEC
creation, particularly in combination with ZDDP, is documented in [23,34]. Interestingly,
this substance plays a crucial role in the bearing industry, notably as a corrosion inhibitor.

To understand the mechanism of WEC initiation and the role of chemistry in this
process, we have used an FE8 test rig following the DIN 51819 standard, building on our
previous work [23]. Drawing parallels with recent findings reported in [33], we analysed
test specimens after testing using specific low and high reference lubricants (detailed
in [23]). We intentionally focussed on identifying chemical reaction products arising under
these specific FE8 test conditions. This study investigated the influence of chemistry on the
WEC formation, including the role of test rig materials.

2. Materials and Methods

To investigate WEC formation, this study started with reproducing WEC bearing
failures on an FE8 rig under rolling/sliding conditions and utilizing lubricants with distinct
compositions. After testing, a series of surface and material analyses were carried out.
The details of the methods and devices utilized for these analyses are provided in the
subsequent sections of this chapter.

2.1. FE8 Test Rig

A standard FE8 test rig produced by Schaeffler Technologies AG & Co. (Herzoge-
naurach, Germany) has been used. A summary of WEC studies on the FE8 test rig and
the conditions used therein is provided in Table A1, Appendix A. Pictures of the test rig
(Figure A1) and a schematic of the test head (Figure A2) used in this study are provided
in Appendix A also. In order to maintain a constant bearing temperature, a fan for the
test head and a heat exchanger (SWEP International AB, type B8Hx10/1P-SC-S, volume
prim (oil) = 0.17 L and sec (water) = 0.21 L) for the lubricant oil was used. The lubricant
flow rate through this heat exchanger was adjusted with the aid of a pump to 130 L/h.
The pump for the heat exchanger was linked to the lubricant drain outlet of the test rig’s
lubricant tank. The heat exchanger backflow, in turn, was connected to the filler opening
of the lubricant tank. The overall lubricant quantity was 6 kg. The heat exchanger was in
operation during the running-in phase until bearing temperature has dropped below 100
◦C. Each of the two test bearings was supplied with 0.12 L/min of lubricant by a pump
mounted on the lubricant tank. The lubricant was fed through the connection piece on
the test head without a direct connection of lubricant supply hoses and test bearings. The
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backflow from the lower side of the test head (Figures A1–A8) was linked to the filler
opening of the lubricant tank.

The temperature of the two bearings was monitored by thermocouples installed on
the stationary housing washer of the two bearings. To set the axial load, the test head
was placed into a mounting press, and the desired axial load was controlled by a load
cell. The used load cell had a nominal force of Fnom = 100 kN and a nominal sensitivity
of Cnom = 2 mV/V. Assembly and dismantling of the test rig followed the instructions
described in [35].

2.1.1. The Bearings and Their Material Properties

Cylindrical roller thrust bearings (CRTBs) with the designation 81212 (material AISI
52100) are employed for the testing supplied by Schaeffler Technologies AG & Co. (Her-
zogenaurach, Germany). Figure 1 shows a picture of the bearing components, containing
two washers, one brass cage and 15 cylindrical rollers. The dimensions of the bearing
components are outlined in Figure 1 as well. Prior to each test, bearings are carefully
cleaned by flushing firstly with heptane (analytical grade), then with isopropanol (analyt-
ical grade) and finally with heptane again (0.1 L solvent used for each cleaning step) to
ensure machining fluids or corrosion inhibitors are being removed from the test specimens.
This cleaning procedure was ensured to be sufficient according to analysis presented in
Appendix A. After each test, the test bearings are packed straight out of the test rig into a
heptane flushed aluminium foil for further analysis.
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Figure 1. Illustrations of the 81212 bearing components and their dimensions [mm]: T (height)
26, d (bore diameter) 60, D = d1 (outer diameter) 95, D1 (bore diameter housing washer) 62, roller
length = roller diameter 11 [36]. Please note that the actual bearing used for the tests has a cage
containing 15 rolling elements.

2.1.2. FE8 Test Conditions

A series of FE8 tests have been conducted to investigate the influence of lubricant
chemistry on WEC formation. All tests were conducted under 60 kN load (1900 MPa
Hertzian Pressure) on the test bearings at 750 revolutions per minute (rpm) shaft rotating
speed and 100 ◦C bearing temperature, similar to the tests reported in [7,25,28], and others.
Based on the elastohydrodynamic theory for line contacts by Dowson and Higginson [37],
the minimum oil film thickness, hmin, was calculated to be 0.046 µm. With the measured
root mean square surface roughness values for the washer (0.05 µm) and the rolling element
(0.07 µm), the λ-value was calculated to be 0.53, indicating a boundary lubrication condition
for the FE8 tests conducted in this study. The standardized lubricant flow rate of 0.12 L/min,
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in accordance with [38], was employed. The tests were either terminated by exceeding a
torque threshold, or by detecting a pitting by the use of an acceleration sensor (see Figure 1).
The acceleration threshold has been defined based on the multiplication of a steady state
noise recorded over a 24 h duration by a factor of 16. This is to ensure that pitting has
occurred based on previous experiences. Furthermore, some tests were stopped after
exceeding a predefined running time in order to study the different temporal stages of
WEC formation.

2.2. Lubricant Properties

With reference to the findings already reported in [23], two lubricants, denoted as High
Reference (HR) and Low Reference (LR), were formulated. With the given test conditions,
WEC did not occur with the use of the HR lubricant, whereas it was observed when LR
lubricant was employed. In order to create both lubricants, a poly-α-olefin (PAO) was used
as HR, while LR was formulated by taking 2.5 wt. % zinc dithiophosphate (ZDDP) and
2.5 wt. % dicyclohexylamine (DCHA) added to 95 wt. % of PAO (Table 1). The detailed
preparation procedure is described in Appendix B. The chemistry of these oil components,
as well as of the formulated oils, is described below. To enhance traceability, an IR-spectrum
of each substance is given in Appendix B (Figures A4–A6).

Table 1. Summary of the oil samples prepared for the study.

Preparation Tag PAO [%] ZDDP [%] DCHA [%]

PAO 100
PAO/ZDDP/DCHA 95 2.5 2.5

PAO (viscosity at 100 ◦C 8 mm2/s) was bought from Ineos, being registered in the
EU under 500-183-1. Measured data of this base oil is referred to in Table A2, Appendix B.
The ZDDP is an undiluted zinc di(2-ethylhexyl)dithiophosphate from Lanxess/Germany
(EC list no. 224-235-5), brand name Additin RC 3080, and a primary ZDDP in structure.
The stoichiometry was confirmed by an ICP-analysis resulting in 8.7 wt. % zinc, 7.4 wt. %
phosphorus and 15.1 wt. % sulphur.

Dicyclohexylamine (DCHA)

The substance was bought from Overlack under the registration number 202-980-7.
The purity is guaranteed to be >99% with a water content <0.3%.

2.3. Metallographic Sample Preparation, Etching, and LOM Analysis for WEC

After testing, the bearing surfaces were inspected, focusing on those washer areas
where severe damage was observed. Cross-section analysis was used to identify microstruc-
tural alterations in the subsurface. In the case of inconclusive results, e.g., if WEC was
expected but not found, a further analysis was performed taking washer(s) from a second
bearing out of the same test. The procedure is detailed in Appendix C.

2.4. Infrared Surface Reflection Spectrometry

Infrared spectrometry in combination with optical reflection as non-destructively and
high lateral resolution (approx. 20 µm) was used to identify the chemical residuals on
the washer surfaces created during the tests. The instruments were provided by Thermo
Fisher (Nicolet 6700, 64 scans), Shimadzu (AIM-900, 30 scans), and Perkin Elmer (Spotlight
400, 20 scans). Detection took place in each case with a semi-conductor detector (mercury
cadmium telluride, MCT) within a measurable wave number region in between 700 cm−1

and 4000 cm−1. The test specimens taken out from the test rig were cleaned carefully with
heptane, rinsing the base oil away. This procedure resulted in spectra of reaction products
adhering to the surface. To identify the chemicals based on their spectra, the following
literature was consulted: [39–41].
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2.5. Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)

In the first step, the tested bearing washers were cleaned by rinsing them with heptane
and cutting them into samples of approx. 1 cm × 1 cm size with nitrogen cooling to
avoid interfering residues of a machining lubricant. TOF-SIMS, as a highly sensitive and
reproducible analytical technique, was used in order to identify the elements and residuals
on the metal surfaces created by the test, well aware that the sensitivities of the signals
may vary by orders of magnitude [42]. In order to overcome these challenges, comparative
measurements using a virgin sample were performed. The measurements were carried out
using a TOF-SIMS 5 (Iontof) with Bi+-Ion sputtering at 30 keV. The extractor voltage was
set to 3000 V.

3. Results

The results section of this paper is structured into two subsections. Firstly, we present
the outcomes of the test runs related to WEC formation. Secondly, we present the results
of the surface analyses performed on the obtained bearing washer specimens, utilizing
infrared spectrometry and TOF-SIMS.

3.1. FE8 Test Runs

A series of FE8 test runs was carried out using the LR (test tag PAO/ZDDP/DCHA-1,
-2, -3), consistently leading to WEC (see Table 2 as an overview). Exemplary results of the
metallographic analysis, along with a detailed description of the process, are presented in
Appendix C.

Table 2. Overview of the conducted tests on the FE8 test rig. Oil supply hosing material
PA = polyamide, AISI 316 = flexible stainless steel and silicone, n.d. = not determined.

Test Tag Running Time [hh:mm] Cause of Ending Hosing Oil Supply WEC y/n

PAO/ZDDP/DHCA-1 72:15 Torque > 35 Nm PA y
PAO/ZDDP/DHCA-2 32:30 Sound sensor > 16 PA y
PAO/ZDDP/DHCA-3 24:52 Manually stopped PA y
PAO/ZDDP/DHCA-4 96:05 Torque > 35 Nm Silicone n
PAO/ZDDP/DHCA-5 30:00 Preset running time AISI 316 n
PAO/ZDDP/DHCA-6 91:57 Torque > 35 Nm PA y
PAO/ZDDP/DHCA-7 92:50 Torque > 35 Nm Silicone n
PAO/ZDDP/DHCA-8 20:00 Preset running time PA n
PAO/ZDDP/DHCA-9 18:00 Preset running time PA n.d.
PAO/ZDDP/DHCA-

10 18:00 Preset running time Silicone n.d.

PAO-1 160:42 Torque > 35 Nm PA n
PAO-2 137:47 Torque > 35 Nm PA n
PAO-3 18:00 Preset running time PA n.d.
PAO-4 18:00 Preset running time Silicone n.d.

Moreover, comparative test runs were carried out using PAO as the HR lubricant
serving as the high reference sample, as no WEC were found within these bearings after
the full test runs (test tag PAO-1, PAO-2 in Table 2).

The objective of this study was to investigate early stage WEC formations during their
early operational stages based on previous research [23] that highlighted the emergence
of initial WEC damage within the bearings in 24 h using this lubricant. In a prior inves-
tigation [34], the authors illustrated that pores were present within the LR-bearings in as
early as 15 h. These pores were subsequently identified by [43] to be critical in terms of
crack creation.

Upon conducting the initial analysis on these bearing surfaces from earlier stages, as
elaborated in detail below in Section 3.2.1, an unforeseen deposition of hosing material
was observed on the surfaces of the bearing washers. By changing the initially used
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polyamide (PA) hosing material with a silicone hose, a noticeable alteration in the chemical
composition of the deposition occurred. However, even more remarkable was the result
of the subsequent full test-run until bearing failure (PAO/ZDDP/DHCA-4), where no
occurrence of WEC within the bearings was observed. Returning to the initially used PA-
hosing reinstated the occurrence of the WEC damage (PAO/ZDDP/DHCA-6). A further
transition to silicon wiring (PAO/ZDDP/DHCA-7) similarly did not lead to the WEC-
failure. Another test run was conducted using a stainless steel supply hose as a reference
for the surface analysis. However, no WEC was detected in these bearings, even though
WEC was found in the bearings with PA hosing and shorter running times.

3.2. Bearing Washer Surface Analysis

This section is organized into four subsections. Initially, we present the unexpected
finding concerning the deposition of lubricant supply hose material onto bearing washers
using infrared surface reflection spectrometry. The second section outlines the results of
additional analysis conducted with TOF-SIMS to substantiate these findings. In the third
part, we illustrate the findings of reaction products generated during the test runs with high
and low reference lubricants. Lastly, we draw a comparison between the reaction products
generated under tribological conditions on the bearing washer surface and those attained
under static conditions, achieved by subjecting PAO to copper, iron and zinc-powder while
stored at 100 ◦C.

3.2.1. Infrared Surface Reflection Spectrometry I: Unexpected Deposition of Lubricant
Supply Hose Material

After the test runs, the bearing washer surface was analysed by infrared surface
reflection spectrometry “as received” at sites of optically visible irregularities. Spectra
taken from these features of the “as received” washers from the test runs showed solely
CH-stretching vibrations related to the presence of the poly-α-olefin hydrocarbon.

Cleaning of the “as received” specimen by the use of n-heptane removed the layer
of poly-α-olefin and lead after the solvent evaporated to the spectra shown in Figure 2.
Overlaying a spectrum of polyamide 6.6 showed a very good match. However, the peaks
at 2058 cm−1 and 1077 cm−1 are distinct from Polyamide. Peaks in the region between
2200 cm−1 and 2000 cm−1 are associated with cyanides, cyanates and carbonyl complexes.
A spectrum of Prussian Blue (Fe4[Fe(CN)6]3) shows a very good match for this peak.

Similar to the former procedure, surface infrared spectra were taken from the low
reference bearing test using PAO/ZDDP/DCHA-8 as a lubricant. A clear similarity to
the already-mentioned spectra of a polyamide was found. Additional peaks at 1578 cm−1

(designated to carboxylates as reaction products) and 1060 cm−1 (C-O,) (Figure 3) were
seen. The peaks related to polyamide are found as well within spectra taken from the area
at the surface that appeared discoloured (see Figure 4). It has to be acknowledged that the
spectra shown here were found at local spots (decolorized), but were not uniformly spread
across the surface. Various spots (basically not showing a discoloration) do not show any
residuals (see Figure 5).

The origin of the PA spectra was confirmed by exchanging the PA hoses from the oil
supply line by a silicone hose. While PA was identified with the use of the PA hoses, it was
not found by the use of silicone hoses in the high reference case. Instead, a Si-O signal at
1200–1000 cm−1 emerged on bearing surfaces in both the high and low reference test runs.

Replacing the silicon hose with a metal-wired one, the results show neither silicon
bands nor cyanides or polyamides (test tag PAO/ZDDP/DHCA-5).
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spectra. Typical wavenumbers allocated to secondary amides are indicated with the letters a–e in
the spectra: 3330 cm−1 (N-H stretching, a), 1656 cm−1 (amide-carbonyl stretching, amide I-band, b),
1546 cm−1 (coupling of N-H bending and C-N stretching, amide II-band, c), 3074 cm−1 (overtone
of amide II-band, d), and 701 cm−1 (NH-wagging, e). Peaks not allocated to amides are 2060 cm−1

(CN, CO, NCO complexes), 1450 cm−1, 1407 cm−1, 1243 cm−1 (C-O stretching of carboxylic acid),
1081 cm−1 (C-O stretching), and 930 cm−1 (C-O-H bending of carboxylic acid). If the C-O originated
from alcohols, a peak at 3600 cm−1 would appear.
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3.2.2. TOF-SIMS Analysis

In addition to the IR findings, TOF SIMS (negative and positive mode) depth profiles
were taken from a virgin bearing washer and a washer taken from a low reference test
run with the silicone hosing (PAO/ZDDP/DHCA-4). The results of these analyses are
presented in Figures 6 and 7. Compared to the virgin bearings (Table 3), higher levels
were observed of: Si (approx. 1800 times higher intensity), CN (approx. 1200 times higher
intensity), H (approx. 280 times higher intensity) and also Cu (not present at the unused
bearing). P, S, C, and O residuals refer to the additives being used.
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Figure 7. Negative (left) and positive (right) TOF-SIMS measurement carried out solely with Bi-ions
without additional sputter source. Estimated maximum depth of profile was 25 nm. Bearing surface
of Z0051 (PAO/ZDDP/DHCA-5, running time 96 h).

Table 3. Overview of the mean values of measured TOF-SIMS signals until an approx. depth of 25 nm
from a low reference bearing washer compared to an unused one.

Element x Ionisation Mode Mean Value of Signal x/Signal Fe
from PAO/ZDDP/DCHA (a)

Mean Value of Signal x/Signal Fe from
a Virgin Bearing after Cleaning (b) a/b

H Negative 2223 8 278
C Negative 1090 0.39 2795
O Negative 265 0.58 457
Si Negative 197 0.11 1791
S Negative 1353 0.22 6150
P Negative 6630 0.76 8724

CN Negative 4697 3.72 1263
H Positive 0.61 0.01 61
Si Positive 5.98 0.00 -
Cu Positive 7.43 0.00 -
Zn Positive 9.26 0.00 -
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3.2.3. Infrared Surface Reflection Spectrometry II: Investigation on Reaction Products after
Test Runs under WEC-Critical Conditions

Apart from the unexpected deposition of hosing materials on the bearing washers as
presented in the last two sections, a broad variety of functional groups could be identified
with the aid of an IR surface reflection spectrometry. Exemplarily spectra of these reaction
products are presented below; a comprehensive listing of the findings is given in Table 4.

Different carboxylate peaks came up at various spots on the surface. In addition,
further peaks indicate esters and ketones as residuals (Figure 8).
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Figure 8. The surface IR-spectra of two different spots on the shaft washer of the test-head-sided
bearing of the test run PAO-4 (test duration 18 h 0 min, ending criteria preset running time) with
different C=O-species. Peaks at 1755 cm−1, 1733 cm−1 (ester C=O stretching), and 1724 cm−1 (ketone
C=O stretching), with different carboxylic acid salts at 1560 cm−1, 1552 cm−1, 1544 cm−1 (black
spectrum), 1577 cm−1, and 1561 cm−1 (red spectrum).

A further example of a carbonyl group in a surface spectrum is displayed in Figure 9.
A peak at 1795 cm−1 may be related to an anhydride ester or lactones. No further efforts
were taken to identify them.
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The infrared spectra of different spots on the washer surface from a bearing of the
test run PAO/ZDDP/DCHA-10 were taken by a modified ATR-technique after cleaning
the bearing surface with heptane. The recorded spectra indicate the occurrence of double
bonds and various CN (cyanide) and CO (carbonyl) species (Figure 10).
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Figure 10. Infrared spectra on the washer surface of motor sided bearing PAO/ZDDP/DCHA-10,
test duration 18 h 0 min, ending criteria preset running time. The spectra were recorded by using
the ATR mode with using a pressure of 100 psi. Procedure: Background on the fresh metal surface;
recorded spectra at point of interest; used the implemented recording software (Omnic, Version
8.1.11) to calculate the difference in spectra regarding the background; and used Kubelka-Munk
function for reflectance correction. Each line with different colour represents a spectrum on the
bearing surfaces. Peaks at 3900–3500 cm−1 (Me-OH, R-OH), 3006 cm−1 with small shoulders at
3033 cm−1 and 3051 cm−1 (=C-H stretching), 2163 cm−1 (CN, SCN, OCN), 2058, 1998, 1954 cm−1

(typical for carbonyl metal complexes), 1747 cm−1 (ester C=O stretching), 1713 cm−1 (carboxylic acid
C=O stretching), 1542 cm−1 (carboxylate), 1528, 1511 cm−1 (NO, amides), and 1400 cm−1 (=C-H
in-plane bending).

Despite the absence of polyamide material in the lubricant hosing, several spots on
the surface of the low reference bearing washer did also show signals at 3280 cm−1 (sec.
amide N-H stretching vibration) and 1650 cm−1 (typical amide C=O stretch vibration) in
combination with 1550 cm−1 (typical amide N-H bending vibration) (Figure 11) in the case
of the low referent lubricant.
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Figure 11. Infrared spectra on the washer surface (PAO/ZDDP/DCHA-10) with peaks at 3280 cm−1

(secondary amide N-H stretching), 1650 cm−1 (amide C=O), and 1550 cm−1 (amide N-H). Each colour
represents a spectrum on a different location.
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3.2.4. Evaluation of Catalytic Degradation

To determine whether the residues observed on the washer surfaces resulted solely
from metal-catalysed oxidation, we conducted the following test procedure:

A sample of poly-α-olefin was stored at 100 ◦C with the presence of copper, iron and
zinc powder. This test aimed to clarify whether the peaks detected on the washer surfaces
were generated by tribological processes in combination with elevated temperature or
by catalytic reactions accelerated by temperature. The concentration of all three metals
was set to one per cent by mass each. Infrared spectra of the oil sample initially showed
the first signs of peaks associated with carboxyl functionality after 48 h, becoming more
pronounced after 6 days, with a maximum peak at 1722 cm−1. After 11 days, a new peak
began to emerge at 1598 cm−1, becoming more pronounced in the spectrum taken after
42 days (Figure 12).

In addition to the peaks highlighted in Figure 12, the sample’s infrared spectrum
showed a peak at 1176 cm−1 (C-O stretching) after 41 d.

An ICP-analysis of the PAO after 42 days detected dissolved concentrations of 1993 ppm
zinc, 34 ppm copper, and less than 10 ppm of iron in the oil.
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Figure 12. Infrared spectra of poly-α-olefin containing 1% of iron, 1% of copper and 1% of zinc
powder stored at 100 ◦C for 1d (magenta), 2d (blue), 3d (red), 7d (green), 11d (black) and 41d (cyan).
The first indication of carboxyl functionalities after 2–3 d, clearly pronounced after 7d at 1786 cm−1

and 1722 cm−1. Formation of 1599 cm−1 peak after 11d.
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Table 4. Overview of functional groups on bearing washers detected by infrared spectrometry after
FE8 tests with high and low reference lubricants. Evaluation of catalytic degradation displays the
resulting functionalities from a static test at 100 ◦C with Fe, Cu, Zn contact: (x) Functional group was
detected, (-) Functional group was not detected.

Functional Group
Low Reference

Bearing Washers
(PAO/ZDDP/DCHA)

High Reference
Bearing Washers

(PAO)

Evaluation of Catalytic
Degradation (Static

Test See Section 3.2.4)
Remarks

Alcohols, Metalhydroxides x x -
Amides x x - PA-hosing
Amides x - - Without PA-hosing
Alkenes x - -

Thiocyanate/Cyanate x - -
Cyanide/Carbonyle x x -
Anhydrid/Lactone x x x Static test after 7 days

Ester x x -
Ketone x x x Static test after 7 days

Carboxylic Acid x - -
Soaps x x x Static test after 7 days

4. Discussion

The FE8 test rig is capable to replicate the WEC damage as demonstrated by numerous
studies (refer to Table A1 for an overview). The authors of this study also demonstrated
that WEC creation arises by the use of a simple low reference lubricant containing the three
chemicals (PAO, ZDDP, DCHA) but also two components combining simply PAO and
ZDDP [23], albeit requiring an extended running time to WEC failure.

Both washers from low reference as well high reference washers show depositions of
polyamide, most likely as a consequence of leaching them from the lubricant supply hoses.
The relevance of deposits from auxiliary materials on WEC creation is not yet described in
the literature. This is especially of interest, as the corresponding standard for the FE8 does
not describe auxiliary materials, such as lubricant supply hoses, in detail [38]. Furthermore,
other polyamide components, such as rolling element cages made out of polyamide, seem
to be preferably used in FE8 test runs to study WEC (see Table A1). In this context, the
repetitive finding of WEC through the use of polyamide hosing material in combination
with the low reference lubricant is a novelty. In the same sense, the finding that the use of
silicone or stainless steel hosing does not lead to WEC sheds a new light on the creation of
WEC in industrial and automotive applications. The terminology of low and high reference
lubricants in WEC-affected applications should be reconsidered.

The bearing washers from both low and high reference oil-lubricated test runs exhibit
a broad variety of functional groups at the surface, as identified with IR analysis (refer to
Table 4 for an overview). The formation of a large share of the identified functional groups,
such as alcohols, ketones, carboxylic acids, esters, and anhydrides, can be explained by
hydrocarbon oxidation. Hydrocarbon oxidation, which is a free radical reaction, follows
three primary stages: a relatively slow initiation phase, a propagation step, and eventual
termination [44,45]. The initiation step starts with the formation of an R• –radical, most
likely supported in this case by the presence of traces of transition metal ions (e. g. Fe, Cr,
Cu). The active peroxide radical (R-OO•) is formed by a reaction with oxygen. The latter
reacts with alkanes R-H to form alkane hydroperoxide (R-OOH) and alkyl free radicals
(R•), thus maintaining the chain reaction. The reaction possibilities in the course of alkane
oxidation are manifold, and some of the mechanisms were not fully understood until now.
Possible pathways resulting in the identified functionalities summarized in Table 4 are
presented in the following Equations. Alcohols can be achieved in two main ways: through
a propagation reaction as presented in Equation (1), or via a combination of two peroxyl
radicals as shown in Equation (2), together with the formation of a ketone [45].
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The presence of free carboxylic acids on the low reference washer in contrast to the
high reference washers indicates fewer possibilities for the carboxylic acid to react with
iron oxide in the low reference test run according to the mechanism presented in (8) and
(9). Compared to the static test, exposing PAO to Fe, Cu, and Zn-powder at an elevated
temperature of 100 ◦C, reactions within the FE8-tribocontact take place much faster and
with a broader variety of reaction products. The authors in [47] showed that exposure
to tribological stress reduces the inception time of alkane oxidation by three times for
the appearance of a carboxyl-IR-peak. This refers to the field of mechanochemistry. In
mechanochemistry, mechanical work is used to modify chemical reactions. Mechanical
work can be concentrated onto a certain part of a solid, leading to the breakage of inter-
atomic bonds and introducing defects around it, enhancing the activity. Through this
activation, a part of the activation energy necessary for a chemical reaction is supplied
by mechanical work. It could also be the case that the actual activation energy needed is
decreased by mechanical work. The application of mechanochemistry to the lubrication of
a solid contact is called tribochemistry and tribocatalysis [48,49].

Within both the high reference test runs and the static tests, copper carboxylates
are most likely seen as a peak at approx. 1600 cm−1. This peak is not found in the low
reference case (PAO/ZDDP/DCHA). Copper is known to form stable complexes with
amines. Despite the fact that the complex stability for secondary amines is lower compared
to primary amines [50], it is quite likely that the dicyclohexylamine forms a complex with
copper ions blocking the copper soap formation. As another possibility for the absence of
copper soaps, an exchange of Zn by Cu is reasonable [51–53].

Small IR peaks from low reference bearing washers after a test run of 18 h indicate the
presence of alkenes. Alkene formation apart from catalytically degradation is described to
take place above 350 ◦C by dehydrogenation when accompanied by hydrogen liberation,
shown in Equation (10), or chain splitting, shown in Equation (11) [44].
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tion. 

The presence of an amide functionality on the bearing washer is indicated even with-
out PA-lubricant hosing in the low reference test run using a silicone hose. A formation 
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at elevated temperatures with amines [55] such as DCHA, thus explaining the formation 
of amide functionalities in the PAO/ZDDP/DCHA test run. 

In the test runs without polyamide lubricant hosing and the usage of silicon hoses, 
no amide functionality occurred on the high reference bearing washers. Instead, both 
washers show infrared peaks indicating the presence of Si-C or inorganic Si-O functional-
ities [39], repeatedly indicating that auxiliary components are interacting significantly. 

A comparison of TOF-SIMS signals from a cleaned, unused bearing washer and a 
washer after the test run lubricated with the low reference oil and a silicone supply hose 
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element Si with a factor of approx. 1800, alongside anticipated increases in S, P, Zn, and 
C. Hints for the deposition of a silicon hosing material on the bearing washer were already 
given with infrared reflection spectrometry. The notably increased Si signal aligns well 
with this indication, providing further evidence of additional auxiliary material deposi-
tion, apart from the deposition of polyamide. Interestingly, the signal for copper is clearly 
elevated as well. This gives evidence that copper is present, despite the fact that no copper 
soaps were detected in the low reference case through infrared spectrometry. Since the 
removal of a potential copper-DCHA complex during the cleaning procedure before TOF-
SIMS measurement is quite likely, a central atom exchange of ZDDP as presented in [51–
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A mechanism of stepwise cleavage of carbon chains is suggested by the authors
of [54]. According to their findings in a study with a pin-on-disc tribometer and a paraffinic
lubricant at room temperature, a mechanism is suggested that uses an alkene formation on
a nascent steel surface followed by a further cleavage of the hydrocarbon chain into smaller
molecules and carbon deposits, with each step accompanied by hydrogen liberation.
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The presence of an amide functionality on the bearing washer is indicated even without
PA-lubricant hosing in the low reference test run using a silicone hose. A formation during
the test run is therefore likely. Carboxylic acids are, in general, able to form amides at
elevated temperatures with amines [55] such as DCHA, thus explaining the formation of
amide functionalities in the PAO/ZDDP/DCHA test run.

In the test runs without polyamide lubricant hosing and the usage of silicon hoses, no
amide functionality occurred on the high reference bearing washers. Instead, both washers
show infrared peaks indicating the presence of Si-C or inorganic Si-O functionalities [39],
repeatedly indicating that auxiliary components are interacting significantly.

A comparison of TOF-SIMS signals from a cleaned, unused bearing washer and a
washer after the test run lubricated with the low reference oil and a silicone supply hose
is provided in Table 3. This comparison highlights a substantial rise in the signal of the
element Si with a factor of approx. 1800, alongside anticipated increases in S, P, Zn, and C.
Hints for the deposition of a silicon hosing material on the bearing washer were already
given with infrared reflection spectrometry. The notably increased Si signal aligns well with
this indication, providing further evidence of additional auxiliary material deposition, apart
from the deposition of polyamide. Interestingly, the signal for copper is clearly elevated
as well. This gives evidence that copper is present, despite the fact that no copper soaps
were detected in the low reference case through infrared spectrometry. Since the removal
of a potential copper-DCHA complex during the cleaning procedure before TOF-SIMS
measurement is quite likely, a central atom exchange of ZDDP as presented in [51–53]
becomes highly probable. Remarkably, the signals for CN were also significantly elevated
by a factor of 1200 compared to an unused bearing washer. This finding is most likely
explained by a characteristic of the TOF-SIMS measurement method. According to [42],
signals for CN− will be found if any species within the sample has N bound to a C, which
is the case for the DCHA in the low reference lubricant.

5. Conclusions

A series of FE8 tests were performed to provoke WEC using a chemically well-defined
low reference oil. Concurrently, tests were performed using a high reference oil that did
not result in WEC. The reaction products were analysed using non-destructive infrared
reflection spectrometry. A novel and significant factor on WEC creation was identified
as deposits of auxiliary components material on the washers. While the low reference
oil led to WEC in conjunction with the deposition of auxiliary polyamide material, the
same oil did not induce failure when a silicone or stainless steel hose was used. This
study reveals an unknown and significant parameter in WEC applications, suggesting its
potential importance in discussions about WEC countermeasures in the field.

Similarly, the discussion in the field concerning the impact of low reference and high
reference lubricants on WEC, and the root causes, should be reconsidered in light of the
results from this study. These interesting results need to be further substantiated through
more extensive statistics. Additionally, the underlying mechanism needs to be explored
through further investigations to provide a detailed understanding of the observations
outlined in this paper. It is noteworthy that polyamide and silicone occupy opposing ends
of the triboelectric series.
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Appendix A

Table A1. Summary of the FE8 parameters of 30 studies [5–9,17–19,24,25,27–30,32,34,56–69]: (1) 31
load settings (1 study with 4 settings); (2) 33 speed settings (2 studies with 2 settings), 2 studies
conducted a running-in phase, the final value (750 rpm) was used for the calculation; (3) 32 Temper-
ature settings (4 studies with 2 settings); (4) 18 settings (3 studies with 2 settings), artificial surface
smoothening/roughening in some studies led to a big variance; (5) 2 studies expressed the viscosity
as SAE 80, and the mean viscosity of this SAE-class (9.8 mm2/s) was set in these cases; (6) 17 settings
(3 studies with 2 settings). The authors extended a summary initially presented by [58] to include
additional parameters such as location of WEC analysis and cage material.

Parameter Minimum
Value Maximum Value Mean Value Standard

Deviation n Studies

Load [kN] (1) 20 80 57.7 14.5 28
Speed [1/min] (2) 300 1220 649 212 31

Bearing Temperature [◦C] (3) 70 120 98.1 10.9 28
Hertzian Pressure [MPa] 1200 2200 1788 325 13

Cage Material Brass 9
Cage Material Polymer 10

WEC Analysis in the washer 14
WEC Analysis in roller 11

Surface Roughness Roller [µm] (4) 0.015 5 0.43 1.16 15
Surface Roughness Washer [µm] (4) 0.018 0.7 0.23 0.23 15

Lubricant Flow Volume/Bearing
[mL/min] 100 250 134 58 8

Lubricant Viscosity/40 ◦C [mm2/s] 46 100 69.3 18.5 18
Lubricant Viscosity/100 ◦C [mm2/s] (5) 9.2 9.8 9.5 0.3 5

Testing Time to WEC [h] (6) 18 200 70 62 16
Testing Time to Bearing Failure High

Reference Lubricant [h] 200 980 4

κ-Value 0.44 0.50 0.46 0.03 4
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Figure A1. A picture of the FE8 test rig: 1. Frame and crane for the test head. 2. Torque transducer. 
3. Thermocouples for each bearing. 4. Test head. 5. Acceleration sensor. 6. Driving unit. 7. Control 
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Figure A1. A picture of the FE8 test rig: 1. Frame and crane for the test head. 2. Torque transducer.
3. Thermocouples for each bearing. 4. Test head. 5. Acceleration sensor. 6. Driving unit. 7. Control
cabinet for terminals for cooling and fan heating. Figure adapted with permission from Ref. [35].
Copyright 2017, Schaeffler Technologies AG & Co.
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Figure A2. A schematic of the test head with axial cylindrical roller bearings. 1. Housing. 2. Test 
bearing 2 (test head sided bearing). 3. Spacer. 4. Test bearing 1 (motor sided bearing). 5. Shaft. 6. 
Clamping bolt. 7. Bearing seat. 8. Drain pipe. 9. Cap. 10. Bearing support with screwed-on pilot pin. 
11. Lid cup of spring package. 12. Lid. 13. Auxiliary bearing. Both test bearings consisted of a sta-
tionary housing (HW) and a rotating shaft washer (SW). The housing and the shaft washer are in-
dicated in this schematic by HW and SW. Figure adapted with permission from Ref. [35]. Copyright 
2017, Schaeffler Technologies AG & Co. 
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To evaluate the effectiveness of the cleaning procedure in removing impurities (e.g., 
residues of the machining lubricants, corrosion protection of the bearing components) 
from the “as received” bearings before testing, several cleaning procedures were per-
formed followed by a TOF-SIMS analysis of the bearing surface. Three different cleaning 
approaches were performed. All solvents and chemicals used were analytical-grade: 
1. Multi-step flushing: Flushing in several steps (squeeze bottles) with heptane, then 

with isopropanol and again with heptane (flushing volume of each solvent 0.1 L) 
(Figure A3, first row). 

2. Heptane flushing and oxalic acid immersion: Flushing with heptane, immersion of 
the bearing for 1 min in an 8% (w/w) solution of oxalic acid in water/ethanol (90/10, 
w/w), flushing with isopropanol and again with heptane (each solvent 0.1 L) (Figure 
A3, second row). 

3. Extended oxalic acid immersion: Flushing with heptane, then immerse the bearing 
for 5 min in an 8% (w/w) solution of oxalic acid in water/ethanol (90/10, w/w), flushing 
with isopropanol and again with heptane (each solvent 0.1 L) (Figure A3, third row). 
Based on these tests, a cleaning procedure including acid treatment does not provide 

any additional benefits in removing residues. A cleaning procedure involving heptane, 

Figure A2. A schematic of the test head with axial cylindrical roller bearings. 1. Housing. 2. Test
bearing 2 (test head sided bearing). 3. Spacer. 4. Test bearing 1 (motor sided bearing). 5. Shaft.
6. Clamping bolt. 7. Bearing seat. 8. Drain pipe. 9. Cap. 10. Bearing support with screwed-on pilot
pin. 11. Lid cup of spring package. 12. Lid. 13. Auxiliary bearing. Both test bearings consisted of a
stationary housing (HW) and a rotating shaft washer (SW). The housing and the shaft washer are
indicated in this schematic by HW and SW. Figure adapted with permission from Ref. [35]. Copyright
2017, Schaeffler Technologies AG & Co.

Evaluating Cleaning Procedure Efficiency for FE8 Test Runs Using TOF-SIMS Analysis for
Residue Determination

To evaluate the effectiveness of the cleaning procedure in removing impurities (e.g.,
residues of the machining lubricants, corrosion protection of the bearing components) from
the “as received” bearings before testing, several cleaning procedures were performed fol-
lowed by a TOF-SIMS analysis of the bearing surface. Three different cleaning approaches
were performed. All solvents and chemicals used were analytical-grade:

1. Multi-step flushing: Flushing in several steps (squeeze bottles) with heptane, then
with isopropanol and again with heptane (flushing volume of each solvent 0.1 L)
(Figure A3, first row).

2. Heptane flushing and oxalic acid immersion: Flushing with heptane, immersion
of the bearing for 1 min in an 8% (w/w) solution of oxalic acid in water/ethanol
(90/10, w/w), flushing with isopropanol and again with heptane (each solvent 0.1 L)
(Figure A3, second row).

3. Extended oxalic acid immersion: Flushing with heptane, then immerse the bearing for
5 min in an 8% (w/w) solution of oxalic acid in water/ethanol (90/10, w/w), flushing
with isopropanol and again with heptane (each solvent 0.1 L) (Figure A3, third row).
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Based on these tests, a cleaning procedure including acid treatment does not provide
any additional benefits in removing residues. A cleaning procedure involving heptane,
isopropanol and a final heptane rinse (variant 1) proves to be adequate for eliminating
residues from the bearing components.
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Figure A3. Negative (left) and positive (right) TOF-SIMS. Device: Iontof ToF-SIMS5. Measurement
carried out solely with Bi ions without additional sputter source. Estimated maximum of depth
profile is 25 nm. First row: After flushing in several steps with heptane, then with isopropanol and
again with heptane (each solvent 0.1 L). Second row: After flushing with heptane, immersion of the
bearing for 1 min in an 8% (w/w) solution of oxalic acid in water/ethanol (90/10 w/w), flushing
with isopropanol and again with heptane (each solvent 0.1 L). Third row: After flushing with
heptane, immersion of the bearing for 5 min in an 8% (w/w) solution of oxalic acid in water/ethanol
(90/10, w/w), flushing with isopropanol and again with heptane (each solvent 0.1 L).
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cm−1 display symmetric and asymmetric stretching vibrations of the C-H groups. The bending vi-
bration of CH2 groups occur within the range of 1500 and 1300 cm−1. An intense peak at 970 cm−1 
relates to the stretching vibration of the P-O-C group. The region below 700 cm−1 shows the sym-
metric and asymmetric stretching vibrations of the P-S bond [70]. 

Figure A4. An IR spectrum of the PAO base oil (transmission, spacer thickness 0.1 mm). The IR-
spectrum shows peaks at (cm−1) 2942–2842 C-H stretching, (2730), (2674), (2026), (1460) methylene
scissoring, (1378) C-H bending, (1341) C-CH3 bending, (1302) methylene twisting, (1077), (962) C-CH3
bending, (890), (721/0.16) methylene rocking.
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Figure A5. IR-spectrum of the ZDDP (Additin RC 3080) (ATR) peaks in the IR-spectrum of Additin RC
3080 are categorised into 4 regions: the regions of higher wavenumbers between 3000 and 2800 cm−1

display symmetric and asymmetric stretching vibrations of the C-H groups. The bending vibration of
CH2 groups occur within the range of 1500 and 1300 cm−1. An intense peak at 970 cm−1 relates to
the stretching vibration of the P-O-C group. The region below 700 cm−1 shows the symmetric and
asymmetric stretching vibrations of the P-S bond [70].
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Preparation of the low reference lubricant: 
In preparation for the FE8 test runs, 7 kg of each lubricant was prepared by mixing 

the necessary components and stirring it at 40 °C for 10 min. The lubricant preparation 
started with adding the base oil PAO followed by adding the additives ZDDP and DCHA. 
One kg of each lubricant mixture was retained for property analysis, while the remaining 
batch was used for FE8 testing. Since dicyclohexylamine reacts with CO2 in the air, pro-
moted by moisture (from the air), it is important to avoid supernatant air in the sample 
bottle over a long period of time. This can be achieved by either filling the sample bottle 
entirely with the preparation to avoid any residual air above the liquid, or by blanketing 
the liquid with nitrogen to replace the residual air. Both of these precautions will prevent 
a chemical alteration of the DCHA-containing samples during storage. 
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Figure A6. IR spectrum of DCHA (transmission, spacer thickness 0.05 mm). Typical secondary
amine-related peaks are at 3310 cm−1 (NH stretch), 1143, and 1126 cm−1 (CN stretch).

Table A2. Measured properties of the PAO base oil.

Parameter Standard Durasyn 168

Optical assessment no colour, clear, no sludge
Colour DIN ISO 2049 L0.5

Viscosity 40 ◦C [mm2/s] ASTM D 7042 46.3
Viscosity 100 ◦C [mm2/s] ASTM D 7042 7.85

Viscosity index [-] ASTM D 2270 140
Density 15 ◦C [g/cm3] DIN EN ISO 12185 0.832

Refractive index [-] DIN 51423-2 1.4621
Water content (procedure C) [%] DIN 51777 <0.01

TAN [mg KOH/g] DIN EN 12634 <0.1
Insoluble in petrol (10 µm) [%] 0.01
Insoluble in petrol (5 µm) [%] 0.06

Insoluble in petrol (1.2 µm) [%] 0.06
Insoluble in petrol (0.8 µm) [%] 0.07

Conductivity [pS/m] DIN 51412-1 0.02

Preparation of the low reference lubricant:
In preparation for the FE8 test runs, 7 kg of each lubricant was prepared by mixing the

necessary components and stirring it at 40 ◦C for 10 min. The lubricant preparation started
with adding the base oil PAO followed by adding the additives ZDDP and DCHA. One kg
of each lubricant mixture was retained for property analysis, while the remaining batch
was used for FE8 testing. Since dicyclohexylamine reacts with CO2 in the air, promoted
by moisture (from the air), it is important to avoid supernatant air in the sample bottle
over a long period of time. This can be achieved by either filling the sample bottle entirely
with the preparation to avoid any residual air above the liquid, or by blanketing the liquid
with nitrogen to replace the residual air. Both of these precautions will prevent a chemical
alteration of the DCHA-containing samples during storage.
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Appendix C

After testing, the bearing surfaces were inspected, and areas with severe damage
on the washer surfaces were cross-sectioned to identify microstructural alterations in the
subsurface. In the case of inconclusive results, such as when WEC was expected but not
found within an initial analysis, further analyses were performed on the second bearing
washer, or washer(s) of the second bearing from the same test. Metallographic analyses
were performed according to the following steps. An illustration of the sample preparation
is shown in Figure A7.

• First, a bearing washer is sectioned using a Discotom 5 saw from Struers GmbH,
Germany, at a workpiece feed of 0.2 mm/s. Struers Corrozip coolant was used during
cutting. According to the safety data sheet, the coolant contained boric acid and
polyethylene glycols.

• The prepared bearing piece was then mounted in an epoxy resin “EpoFix” manufac-
tured by Struers GmbH, Germany.

• The exposed surface in the resin was then ground and polished, following the steps
described in Table A3.

• The polished surfaces were etched with 3% nitric acid in isopropanol for 15 s before
they were examined under the LOM (a BX51 from Olympus and a Smartzoom 5
from Zeiss).
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Table A3. Grinding/polishing steps. All polishing aids were from Struers GmbH, Germany. Polishing
agents contained diamond suspensions with 9 µm, 3 µm and 1 µm particles.

Grinding Wheel Polishing Agent rpm Clamping Force Duration

MD-Piano 220 - 300 40 until plane

MD-Allegro DiaPro
Allegro/Largo 9 150 30 5 min

MD-Dac DiaPro Dac 3 150 30 5 min

MD-Nap DiaPro Nap B 1 150 15 3 min
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Figure A8. Images from PAO-1 test (duration 160 h 42 min). Top row: images of two cuts from the 
housing washer (HW) (left) and shaft washer (SW) (right). Blue arrows indicate the subsurface an-
alysed. Middle row: Images after etching of subsurface of the HW. Bottom row: Images of subsur-
face after etching of the SW. 

Figure A8. Images from PAO-1 test (duration 160 h 42 min). Top row: images of two cuts from
the housing washer (HW) (left) and shaft washer (SW) (right). Blue arrows indicate the subsurface
analysed. Middle row: Images after etching of subsurface of the HW. Bottom row: Images of
subsurface after etching of the SW.

Lubricants 2024, 12, x FOR PEER REVIEW 27 of 31 
 

 

 
Figure A9. Metallographic analysis from PAO/ZDDP/DCHA-2 (test duration 32.5 h). Top row: Im-
ages of a cut from the SW (left) and the HW (right). Blue arrows indicate the area being further 
analysed. Middle row: Images of subsurface after etching of the HW. Bottom row: Images of sub-
surface after etching of the SW. 

Figure A9. Metallographic analysis from PAO/ZDDP/DCHA-2 (test duration 32.5 h). Top row:
Images of a cut from the SW (left) and the HW (right). Blue arrows indicate the area being further
analysed. Middle row: Images of subsurface after etching of the HW. Bottom row: Images of
subsurface after etching of the SW.



Lubricants 2024, 12, 45 26 of 29Lubricants 2024, 12, x FOR PEER REVIEW 28 of 31 
 

 

 
Figure A10. Metallographic analysis from the PAO/ZDDP/DCHA-4 (silicone lubricant supply hose), 
running time 96 h. First picture: Image of a cut from the SW. Blue arrow indicates the area being 
further analysed. Further pictures: Images of subsurface after etching, no WEC detected. 
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