
From Shapes to Shapes: Inferring SHACL Shapes for Results of
SPARQL CONSTRUCT Queries (Extended Version)

Philipp Seifer

University of Koblenz

Koblenz, Germany

pseifer@uni-koblenz.de

Daniel Hernández

University of Stuttgart

Stuttgart, Germany

daniel.hernandez@ki.uni-stuttgart.de

Ralf Lämmel

University of Koblenz

Koblenz, Germany

laemmel@uni-koblenz.de

Steffen Staab

University of Stuttgart

Stuttgart, Germany

University of Southampton

Southampton, UK

steffen.staab@ki.uni-stuttgart.de

ABSTRACT

SPARQL CONSTRUCT queries allow for the specification of data pro-

cessing pipelines that transform given input graphs into new out-

put graphs. It is now common to constrain graphs through SHACL

shapes allowing users to understandwhich data they can expect and

which not. However, it becomes challenging to understand what

graph data can be expected at the end of a data processing pipeline

without knowing the particular input data: Shape constraints on the

input graph may affect the output graph, but may no longer apply

literally, and new shapes may be imposed by the query template. In

this paper, we study the derivation of shape constraints that hold

on all possible output graphs of a given SPARQL CONSTRUCT query.

We assume that the SPARQL CONSTRUCT query is fixed, e.g., being

part of a program, whereas the input graphs adhere to input shape

constraints but may otherwise vary over time and, thus, are mostly

unknown. We study a fragment of SPARQL CONSTRUCT queries

(SCCQ) and a fragment of SHACL (Simple SHACL). We formally

define the problem of deriving the most restrictive set of Simple

SHACL shapes that constrain the results from evaluating a SCCQ

over any input graph restricted by a given set of Simple SHACL

shapes. We propose and implement an algorithm that statically

analyses input SHACL shapes and CONSTRUCT queries and prove

its soundness and complexity.

CCS CONCEPTS

• Information systems → Graph-based database models; Re-

source Description Framework (RDF); Query languages; Ex-

traction, transformation and loading.

KEYWORDS

SHACL; semantic queries; SPARQL CONSTRUCT; data pipelines

1 INTRODUCTION

Shape description languages like SHACL [19] or ProGS [29] can

play two different, but equally important roles. Normatively they

impose schematic constraints on the evoluion of a graph, such that

a triple store may automatically reject illegitimate configurations.

Used informatively, they aid software developers in understanding

graphs, or inform downstream applications, e.g., [21].

Graph query languages like SPARQL CONSTRUCT or G-CORE [1]

allow for the composition of queries into data processing pipelines.

To execute a given pipeline, the developer must understand what it

may output, regardless of its inputs. Even if the possible inputs are

well-described using a shape language like SHACL, it becomes very

challenging to understand which shapes apply after one or several

querying steps: SHACL constraints that apply on the input graph

may or may no longer apply, e. g., existential quantification may

become inapplicable because the corresponding relationship might

not be part of the WHERE clause, and new constraints may or may

not be imposed by the CONSTRUCT template. The developer may

hold misconceptions about the structure of the result graph, which

might even seem to be endorsed by one particular graph instance,

but can lead to errors (e. g., when processing query results within a

program) for other valid instances of input graphs.

In this paper, we define the problem of computing a set of SHACL

shapes characterizing the possible output graphs of a SPARQL

CONSTRUCT query based on (1) the set of shapes applicable to input

graphs, and (2) the graph patterns and the template of the query. We

present an algorithm for constructing a sound upper approximation

by statically analyzing shapes and query, relying on an encoding

in description logics, and without referring to any specific input

graph. Thus, our approach allows for investigating data processing

pipelines regardless of what (valid) data will be encountered.

Outline. The paper is structured as follows. Section 2 introduces

foundations, including the fragment of SPARQL queries, SHACL

shapes, and description logics we rely upon. In Section 3 we for-

malize our validation problem. Throughout Section 4, Section 5,

and Section 6 we break the validation problem down into subprob-

lems, and present algorithms for solving them. We discuss related

work in Section 7 and conclude in Section 8. For an overview of

the appendix, which includes full proofs, extended examples, an

overview of our implementation
1
including a feasibility experiment

thereof, as well as details on how the approach can be generalized

to a larger fragment of SHACL, see Appendix A.

1
https://github.com/softlang/s2s

1

ar
X

iv
:2

40
2.

08
50

9v
1

 [
cs

.D
B

]
 1

3
Fe

b
20

24

https://orcid.org/0000-0002-7421-2060
https://orcid.org/0000-0002-7896-0875
https://orcid.org/0000-0001-9946-4363
https://orcid.org/0000-0002-0780-4154
https://github.com/softlang/s2s

Philipp Seifer, Daniel Hernández, Ralf Lämmel, and Steffen Staab

2 FOUNDATIONS

We interpret all RDF classes, instances, and properties as description

logic concepts, individuals, and roles, respectively. For clarity, we

always use description logic terminology, e.g., we will refer to

“concept” rather than “RDF class”. We assume that C ⊂ C̄, I ⊂ Ī,
R ⊂ R̄, and V ⊂ V̄ are finite subsets of the four infinite, pairwise

disjoint sets C̄, R̄, Ī, and V̄. We assume these finite sets to be given

as (sufficiently large) inputs to our problem in order to simplify

definitions. This is not a restriction as their size is arbitrary. We

use 𝐴, 𝐵, 𝐸 ∈ C for description logic concept names, 𝑎, 𝑏, 𝑒 ∈ I for
description logic individual names, 𝑝, 𝑟 ∈ R for description logic

role names, and𝑤, 𝑥,𝑦, 𝑧 ∈ V as SPARQL variables.

2.1 The Description Logic ALCHOI
We use the description logicALCHOI to define the semantics of

RDF graphs and SHACL shapes following the formalism by Bogaerts

et al. [6]. We next present the standard ALCHOI syntax and

semantics defined in Baader et al. [4].

Definition 1 (ALCHOI concept descriptions). ALCHOI con-

cept descriptions are defined by the following grammar

𝐶 F ⊤ | ⊥ | 𝐴 | ¬𝐶 | {𝑎} | 𝐶 ⊓𝐶 | 𝐶 ⊔𝐶 | ∃𝜌.𝐶 | ∀𝜌.𝐶
𝜌 F 𝑝 | 𝑝−

where the symbols ⊤ and ⊥ are two special concept names, and 𝐴,

𝑎, and 𝑝 stand for concept names, individual names, and role names,

respectively. Given two concept descriptions 𝐶 and 𝐷 , two indi-

vidual names 𝑎, 𝑏 ∈ I, and two role descriptions 𝜌1, 𝜌2 (as defined

above), 𝐶 ⊑ 𝐷 and 𝜌1 ⊑ 𝜌2 are axioms, 𝑎:𝐶 is a concept assertion

and (𝑎, 𝑏):𝑝 is a role assertion. We write 𝐶 ≡ 𝐷 as an abbreviation

for two axioms 𝐶 ⊑ 𝐷 and 𝐷 ⊑ 𝐶 , and likewise for 𝜌1 ≡ 𝜌2.

An ALCHOI knowledge base K is a pair (T ,A) where T is a

finite set of axioms and A is a finite set of assertions. In a slight

abuse of notation, given an ABox A, we write A to refer to the

knowledge base (∅,A), and given a TBox T we write T to refer to

(T , ∅). An interpretation I is a pair (ΔI , ·I) consisting of a set ΔI ,
called the domain, and a function ·I such that we have for each

individual name 𝑎 ∈ I, an element 𝑎I ∈ ΔI ; for each concept name

𝐴 ∈ C, a subset 𝐴I ⊆ ΔI ; and for each role name 𝑝 ∈ R, a relation
𝑝I ⊆ ΔI × ΔI .

The function ·I is extended to concept descriptions as follows:

⊥I = ∅,⊤I = ΔI , {𝑎}I = {𝑎I }, (𝐶⊓𝐷)I = 𝐶I∩𝐷I , (𝐶⊔𝐷)I =

𝐶I ∪ 𝐷I , (¬𝐶)I = ⊤I \𝐶I ,
(∃𝑝.𝐶)I = {𝑑 ∈ ΔI | (𝑑, 𝑒) ∈ 𝑝I with 𝑒 ∈ 𝐶I },

(∃𝑝− .𝐶)I = {𝑑 ∈ ΔI | (𝑒, 𝑑) ∈ 𝑝I with 𝑒 ∈ 𝐶I },

(∀𝑝.𝐶)I = {𝑑 ∈ ΔI | for all 𝑒 ∈ ΔI ,

if (𝑑, 𝑒) ∈ 𝑝I then 𝑒 ∈ 𝐶I },

(∀𝑝− .𝐶)I = {𝑑 ∈ ΔI | for all 𝑒 ∈ ΔI ,

if (𝑒, 𝑑) ∈ 𝑝I then 𝑒 ∈ 𝐶I }.
An interpretation I is a model of a knowledge baseK = (T ,A)

if and only if 𝐶I ⊆ 𝐷I for every axiom 𝐶 ⊑ 𝐷 in T , 𝑝I ⊆ 𝑟I

for every axiom 𝑝 ⊑ 𝑟 in T , 𝑎I ∈ 𝐶I for every assertion 𝑎:𝐶 in

A, and (𝑎I , 𝑏I) ∈ 𝑝I for every assertion (𝑎, 𝑏):𝑝 in A. Given two

knowledge bases K1 and K2, K1 entails K2, denoted K1 |= K2, if

and only if every model I of K1 is also a model of K2.

2.2 Simple RDF Graphs

According to the RDF specification [11], an RDF graph is a finite set

of triples whose elements belong to three pairwise disjoint sets: IRIs,

blank nodes, and literals. For convenience, we assume the fragment

of RDF graphs, called Simple RDF graphs, that only considers triples

whose elements are IRIs. Furthermore, we assume that IRIs are

partitioned in the four sets C, I, R, and {rdf:type}, and that an RDF

triple has either the form (𝑎, 𝑝, 𝑏) or (𝑎, rdf:type, 𝐴) where 𝑎, 𝑏 ∈ I,
𝐴 ∈ C, and 𝑝 ∈ R. We interpret each triple (𝑎, 𝑝, 𝑏) as an assertion

(𝑎, 𝑏):𝑝 , and each triple (𝑎, rdf:type, 𝐴) as an assertion 𝑎:𝐴. With

these assumptions we define Simple RDF graphs, and introduce

running examples in Figure 1.

Definition 2 (Simple RDF Graph Syntax). A Simple RDF graph (or

just graph) is anALCHOI ABox𝐺 where the concept description

of each concept assertion in 𝐺 is a concept name 𝐴 ∈ C.
Bogaerts et al. [6] highlight that RDF graphs have two different

semantics, depending on the inference task we want to perform: If

the task is deduction, the semantics of a graph is given by an ABox,

and following the no-unique-name, no-domain-closure and open-

world assumptions. If the task is validation, the semantics is given

by a model. Instead of relying on a model-theoretic semantics for

validation, our approach benefits from a proof-theoretic semantics.

As Reiter [27] suggests, the model-theoretic semantics of databases

can be defined in proof theoretic terms: A database can be seen as

a set of formulas instead of a model, where queries are formulae

to be proven, and satisfaction of constraints is defined in terms of

consistency. We can therefore extend the deduction semantics of

Simple RDF graphs with axioms that encode these assumptions,

which are based on the proof-theoretic semantics for relational

databases by Reiter [27].

Proposition 1 below implies the equivalence of the Bogaerts et al.

[6] model-theoretic SHACL semantics (Definition 3) and our proof

theoretic SHACL semantics (Definition 4).

Definition 3 (Graph Interpretation [6]). The canonical interpre-

tation of a Simple RDF graph 𝐺 is the interpretation I𝐺 such

that ΔI𝐺 = I; for each 𝑎 ∈ I, 𝑎I𝐺 = 𝑎; for every concept name

𝐴 ∈ C, 𝐴I𝐺 = {𝑎 | 𝑎:𝐴 ∈ 𝐺}; and for every role name 𝑟 ∈ R,
𝑟I𝐺 = {(𝑎, 𝑏) | (𝑎, 𝑏):𝑟 ∈ 𝐺}. A graph𝐺 is model-valid according to

a set Σ of ALCHOI axioms if and only if I𝐺 is a model of Σ.

Definition 4 (Simple RDF Graph Validation Semantics). The ax-

ioms of a Simple RDF graph𝐺 , denoted T𝐺 , are the TBox consisting
of the following ALCHOI axioms:

(1) Domain Closure Assumption (DCA): ⊤ ≡ ⊔
𝑎∈I{𝑎}.

(2) Unique Name Assumption (UNA): {𝑎} ⊓ {𝑏} ≡ ⊥, for each
pair of distinct individual names 𝑎, 𝑏 ∈ I.

(3) Closed-World Assumption (CWA):

• 𝐴 ≡ ⊔
𝑎:𝐴∈𝐺 {𝑎}, for each concept name 𝐴 ∈ C,

• ∃𝑝.{𝑎} ≡ ⊔
(𝑏,𝑎) :𝑝∈𝐺 {𝑏}, and

• ∃𝑝− .{𝑎} ≡ ⊔
(𝑎,𝑏) :𝑝∈𝐺 {𝑏}, for each role name 𝑝 ∈ R

and each individual name 𝑎 ∈ I.
(T𝐺 ,𝐺) is the validation knowledge base of 𝐺 . A graph 𝐺 is proof-

valid according to a set Σ of ALCHOI axioms if and only if

2

From Shapes to Shapes (Extended Version)

𝑎𝐴 𝑏 𝐵, 𝐸

𝑝

𝑝, 𝑟

(a)𝐺1

𝑎
𝐴

𝑏

𝐵, 𝐸
𝑒
𝐸

𝑝𝑝

(b)𝐺2

Figure 1: Two example graphs, where we visualize rdf:type

edges as floating labels next to nodes (e.g., 𝐴 𝑎 for 𝑎:𝐴).

Σ is consistent with the validation knowledge base of 𝐺 (i.e., the

knowledge base (T𝐺 ∪ Σ,𝐺) admits a model).

Proposition 1. For a graph𝐺 and set ofALCHOI axioms Σ, the
following statements are equivalent: (i) 𝐺 is model-valid according

to Σ, (ii) 𝐺 is proof-valid according to Σ, and (iii) 𝐺 is proof-valid

according to {𝜑} for every 𝜑 ∈ Σ.

2.3 Simple SHACL Shapes

Following the idea that a SHACL schema is a description logic

TBox [6], a SHACL shape is an axiom of the form 𝜓 ⊑ 𝜙 where

𝜓 and 𝜙 are concept descriptions, called the target query and the

shape constraint, respectively. We restrictALCHOI axioms to an

essential subset for the sake of simplification, as defined below. We

lift this restriction in the extended version.

Definition 5 (Simple SHACL Syntax). A Simple SHACL shape (or

just a shape) is an ALCHOI axiom𝜓 ⊑ 𝜙 such that the concept

expressions𝜓 and 𝜙 are defined by:

𝜓 F 𝐴 | ∃𝜌.⊤ 𝜙 F 𝐴 | ∃𝜌.𝐴 | ∀𝜌.𝐴
A Simple SHACL schema S is an ALCHOI TBox that consists

of a finite set of Simple SHACL shapes.

Given that shapes are defined in terms of ALCHOI axioms,

their semantics is defined in terms of the semantics of ALCHOI
axioms over the validation knowledge base of a graph.

Definition 6 (Simple SHACL Semantics). A graph 𝐺 is valid for a

set 𝑆 of Simple SHACL shapes, denoted valid(𝐺, 𝑆), if and only if𝐺

is proof-valid according to 𝑆 .

Example 1. Consider the set of shapes 𝑆1 = {𝑠1, 𝑠2, 𝑠3} where
𝑠1 = 𝐴 ⊑ ∃𝑝.𝐵, 𝑠2 = ∃𝑟 .⊤ ⊑ 𝐵 and 𝑠3 = 𝐵 ⊑ 𝐸. Shape 𝐴 ⊑ ∃𝑝.𝐵, for
example, targets all individuals that are instances of𝐴, and requires

that there exists at least one edge 𝑝 to a 𝐵. Both graphs in Figure 1

are valid with respect to 𝑆1.

2.4 Simple Conjunctive CONSTRUCT Queries
This section defines the SPARQL fragment we consider, called Sim-

ple Conjunctive CONSTRUCT Queries (SCCQ, or just queries). This

fragment follows the semantics proposed by Kostylev et al. [20] and

is restricted to basic graph patterns generated by adding variables

for individual names on Simple RDF graphs.

Definition 7 (SCCQ Syntax). An atomic pattern 𝑡 is defined by the

following grammar:

𝑡 F 𝑎:𝐴 | 𝑥 :𝐴 | (𝑎, 𝑏):𝑝 | (𝑥, 𝑎):𝑝 | (𝑎, 𝑥):𝑝 | (𝑥,𝑦):𝑝
where 𝐴 stands for concept names, 𝑎 and 𝑏 for individual names,

𝑝 for role names, and 𝑥 and 𝑦 for variables. A finite set of atomic

patterns is a simple graph pattern. Given a simple graph pattern 𝑃 ,

wewrite var(𝑃) and ind(𝑃) to denote the respective sets of variables
and individual names occurring in pattern 𝑃 . Given two simple

graph patterns 𝑃 and 𝐻 , where var(𝐻) ⊆ var(𝑃), the expression
𝐻 ← 𝑃 is a SCCQ, where 𝐻 and 𝑃 are called the template and the

pattern of the query, respectively.

A valuation of a simple graph pattern 𝑃 is a function 𝜇 : V∪I→ I
such that 𝜇 (𝑎) = 𝑎 for every 𝑎 ∈ I. In a slight abuse of notation,

given two elements 𝑢, 𝑣 ∈ V ∪ I and a simple graph pattern 𝑃 , we

write 𝜇 (𝑢:𝐴) = 𝜇 (𝑢):𝐴, 𝜇 ((𝑢, 𝑣):𝑝) = (𝜇 (𝑢), 𝜇 (𝑣)):𝑝 , and 𝜇 (𝑃) =
{𝜇 (𝑡) | 𝑡 ∈ 𝑃}. Intuitively, a valuation substitutes variables in a

pattern by individual names. The semantics of SCCQ is defined

below.

Definition 8 (SCCQ Semantics). The result of evaluating a SCCQ

𝐻 ← 𝑃 over a Simple RDF graph 𝐺 is the Simple RDF graph,

denoted J𝐻 ← 𝑃K𝐺 , defined as follows:

J𝐻 ← 𝑃K𝐺 =
⋃

𝜇 (𝑃)⊆𝐺
𝜇 (𝐻).

Intuitively, the pattern 𝑃 retrieves valuations 𝜇 such that 𝜇 (𝑃) is
a subgraph of 𝐺 , which are used to generate the output graph by

replacing variables in the template.

Example 2. Let 𝑞1 = 𝐻 ← 𝑃 =

{y:𝐸, z:𝐵, (y, z):𝑝} ← {(w, y):𝑝, y:𝐵, (x, z):𝑝, z:𝐸}
For evaluation over the first example graph, J𝑞1K𝐺1

, we need to find

valuations 𝜇 where 𝜇 (𝑃) ⊆ 𝐺1. This holds for 𝜇 where 𝜇 (w) = 𝑎,

𝜇 (x) = 𝑎, 𝜇 (y) = 𝑏, and 𝜇 (z) = 𝑏. Hence, the result is the graph

J𝐻 ← 𝑃K𝐺1
= 𝜇 (𝐻) = {𝑏:𝐸,𝑏:𝐵, (𝑏, 𝑏):𝑝}. Similarly, evaluation

J𝑞1K𝐺2
= {𝑏:𝐸,𝑏:𝐵, 𝑒:𝐵, (𝑏, 𝑏):𝑝, (𝑏, 𝑒):𝑝}.

3 FORMAL PROBLEM STATEMENT

We aim to construct shapes characterizing the possible result graphs

of a query where the input is constrained by shapes as well.

Definition 9 (Input and Output Graph). A graph 𝐺in is an input

graph with respect to a finite set of shapes Sin if valid(𝐺in,Sin). A
graph𝐺out is an output graph for a query 𝑞 and a finite set of shapes

Sin if there exists an input graph 𝐺in such that 𝐺out = J𝑞K𝐺in
.

Definition 10 (Vocabulary). A vocabulary is the set of concept and

role names that occur in a concept description 𝐶 , shape 𝑠 , graph 𝐺 ,

or template of a query 𝑞, denoted voc(𝐶), voc(𝑠), voc(𝐺), or voc(𝑞),
respectively.

Definition 11 (Relevancy). Shape 𝑠 = 𝜓 ⊑ 𝜙 is relevant for

query 𝑞 if there exists a graph 𝐺+ with voc(𝐺+) ⊆ voc(𝑞) such
that valid(𝐺+, {𝑠}) and (T𝐺+ ,𝐺+) ̸|= 𝜓 ⊑ ⊥, and a graph 𝐺− with

voc(𝐺−) ⊆ voc(𝑞) such that not valid(𝐺−, {𝑠}).

Problem OutputShapes formalizes the set of shapes that best

characterize the possible output graphs of a SCCQ. The first re-

striction on the solution ensures only relevant shapes are in the

output, i.e., shapes that validate some graphs in the vocabulary

voc(𝑞), but not all of them (Definition 11). This excludes, for exam-

ple, shapes with targets outside the vocabulary (which are thereby

vacuously satisfied), or shapes with constraints requiring concept

3

Philipp Seifer, Daniel Hernández, Ralf Lämmel, and Steffen Staab

or role names outside the vocabulary, which can never be satis-

fied. The second restriction states that Sout-opt defines an upper

bound for the set of output graphs, while the third requires this

upper bound to be minimal. Later in this paper, we will present a

sound, but not complete, algorithm for solving this problem, i.e., an

algorithm that satisfies the first two, but not the last condition.

Problem OutputShapes : (Sin, 𝑞) ↦→ Sout-opt
Input A finite set of shapes Sin and a SCCQ 𝑞.

Output A set of shapes Sout-opt such that:

1. every 𝑠 ∈ Sout-opt is relevant for 𝑞,
2. for every 𝐺 with valid(𝐺,Sin) and 𝐺out = J𝑞K𝐺 ,
valid(𝐺out,Sout-opt),
3. the set of graphs 𝐺 such that valid(𝐺,Sout-opt) is minimal.

Example 3. Consider 𝑞1 (Example 2) and 𝑆1 (Example 1). The

shapes 𝐸 ⊑ ∃𝑝.𝐵, 𝐸 ⊑ 𝐵 ∈ 𝑆1-out constrain the results of evaluating

𝑞1 on any graph that is valid with respect to 𝑆1, e.g., the example

graphs in Figure 1. Shape 𝐸 ⊑ ∃𝑝.𝐵 ∈ 𝑆1-out follows directly from

the query template, whereas shape 𝐸 ⊑ 𝐵 is only contained in 𝑆1-out

because 𝐵 ⊑ 𝐸 holds on all input graphs and we can thus infer that

all bindings for y are also bindings for z.

Simple SHACL shapes are not sufficiently expressive to rule out

all impossible output graphs of a query. For example, we know for𝑞1

and 𝑆1 that each instance of 𝐸 has a 𝑝 edge to itself. Simple SHACL

shapes cannot express reflexivity, so graphs without reflexive 𝑝

cannot be ruled out.

4 COMPUTING CANDIDATE OUTPUTSHAPES

We break down ProblemOutputShapes into two subproblems: The

generation of a finite set of candidate shapesScan – a superset of the
solution – and the filtering of this set (Problem IsOutputShape).

Problem 2 IsOutputShape : (Sin, 𝑞, 𝑠) ↦→ {yes,na}
Input A finite set of shapes Sin, a SCCQ 𝑞 = 𝐻 ← 𝑃 , and a shape

𝑠 that is relevant for this query 𝑞.

Output Does valid(J𝑞K𝐺in
, {𝑠}) hold for every graph 𝐺in where

valid(𝐺in,Sin)?

Algorithm 1 outlines this approach, by referring to Problem

IsOutputShape. In Section 6, we will define a sound, but not com-

plete, algorithm solving this problem (Algorithm 2). Thus, Algo-

rithm 1 is a sound approximation of problem OutputShapes satis-

fying its first two, but not the third condition (minimality). In the

following we use Sout to refer to such an approximation of Sout-opt.
In order to obtain a finite set of candidates Scan, Proposition 2

allows us to discard shapes that do not describe output graphs and

limit thus the search space of Algorithm 1 to the shapes that are

built from the vocabulary of the query.

Proposition 2. If a shape 𝑠 = 𝜓 ⊑ 𝜙 is relevant for a SCCQ 𝑞, then

𝑠 satisfies one of the following two conditions: (i) voc(𝑠) ⊆ voc(𝑞), or
(ii) voc(𝜓) ⊆ voc(𝑞) and𝜙 is either∀𝑝.𝐴 or∀𝑝− .𝐴 where 𝑝 ∈ voc(𝑞)
and 𝐴 ∉ voc(𝑞).

Algorithm 1 OutputShapes : (Sin, 𝑞) ↦→ Sout
Input A finite set of shapes Sin and a SCCQ 𝑞.

Output The set of output shapes Sout.
1: Sout ← ∅, Scan ← the finite set of shapes over voc(𝑞)
2: for all 𝑠 ∈ Scan do

3: if IsOutputShape(Sin, 𝑞, 𝑠) = YES then

4: Sout ← Sout ∪ {𝑠}
5: return Sout

In order to cover all relevant shapes that satisfy condition (i), we

can include the finite combinations of elements in the vocabulary

of the query. Condition (ii) requires special care: Each role name

𝑝 ∈ voc(𝑞) defines a family of shapes of the form 𝜓 ⊑ ∀𝑝.𝐴 or

𝜓 ⊑ ∀𝑝− .𝐴, where 𝐴 ∉ voc(𝑞). To explore this family, it suffices

to consider a representative by including in the set of candidate

shape constraints for each role name 𝑝 ∈ voc(𝑞) the two concept
descriptions ∀𝑝.𝐴 and ∀𝑝− .𝐴, such that 𝐴 ∉ voc(𝑞).

The search space is therefore bounded by the vocabulary of the

query, which is relatively small. In the extended version we show

that there are (𝑛+2𝑚) (𝑛+4𝑛𝑚+2𝑚) −𝑛 candidate shapes if voc(𝑞)
contains 𝑛 concept names and𝑚 role names.

5 AXIOMATIZATIONS OVER EXECUTIONS

A query 𝑞 = 𝐻 ← 𝑃 works on any input graph 𝐺in defined by Sin

(Definition 9) and returns a result graph𝐺out in two steps: Bymatch-

ing 𝑃 with 𝐺in, determining valuations 𝜇 where 𝜇 (𝑃) ⊆ 𝐺in, and

then by replacing variables in 𝐻 with these valuations producing

𝐺out. As a result, multiple occurrences of the same concept names

do not have the same extensions: As an example, consider the query

{x: ¥𝐴, y: ¥𝐴, y: ¥𝐸} ← {x: ¤𝐴, x: ¤𝐵, y: ¤𝐸} and the input shape 𝐴 ⊑ 𝐸, where

we mark different occurrences of the same names with zero, one,

or two dots. The extension of ¤𝐴 includes only individuals matched

by the query pattern, which requires ¤𝐵 as well. Thus, ¤𝐴 may be sub-

sumed by and may be unequal to 𝐴. Similarly, ¥𝐴 now also includes

all bindings of variable y, unlike 𝐴 or ¤𝐴.
We now want to axiomatize how all possible𝐺in are connected

with their corresponding 𝐺out. Virtually putting these axiomatiza-

tions together creates an extended graph that holds axioms from

these two steps allowing us to prove statements about𝐺out. We dis-

tinguish inputs and step outcomes by a syntactic trick that rewrites

input symbols 𝐴, 𝑝 into fresh symbols ¤𝐴, ¤𝑝 after the first step, and

into ¥𝐴, ¥𝑝 after the second step. We also write, e.g., ¤𝐺 , meaning

substitution of all symbols 𝐴, 𝑝 in graph 𝐺 with ¤𝐴, ¤𝑝 .
These rewritten symbols allow us to encode assertions that are

valid for only specific states of query execution. Variable bindings,

on the other hand, hold throughout: We codify a variable binding

𝜇 (𝑥) = 𝑎 as a concept assertion 𝑎:𝑉𝑥 , where 𝑉𝑥 is a fresh concept

name. Note, that we assume that all concept names and role names

with dots, as well as concept names for variable concepts, exist as

fresh names in C and R. Example 4 illustrates the construction of

such an extended graph, which is defined in Definition 12.

Definition 12 (Extended Graph). Given an input graph 𝐺in and

a query 𝐻 ← 𝑃 , the following graphs are defined with correspon-

dences to the query execution steps:

(1) The intermediate graph 𝐺
med
B

⋃
𝜇 (𝑃)⊆𝐺in

𝜇 (𝑃).
4

From Shapes to Shapes (Extended Version)

(2) The variable concept graph𝐺V containing an assertion 𝑎:𝑉𝑥
if and only if there exists a valuation 𝜇 such that 𝜇 (𝑃) ⊆ 𝐺in

and 𝜇 (𝑥) = 𝑎.

(3) The output graph 𝐺out B J𝑞K𝐺in
.

(4) The extended graph 𝐺ext B 𝐺in ∪ ¤𝐺med
∪𝐺V ∪ ¥𝐺out.

Example 4. Consider𝑞1 (Example 2), 𝑆1 (Example 1), and the graph

𝐺1 (Figure 1) as one possible input graph for 𝑞1. The respective

extended graph and its components are given in Figure 2. Note,

that these graphs satisfy different axioms (in different namespaces),

e.g., ∃ ¤𝑝− .⊤ ⊑ ¤𝐸 is valid in ¤𝐺
med

but ∃𝑝− .⊤ ⊑ 𝐸 is not valid in 𝐺in.

A range of axioms are valid for 𝐺ext, such as ¤𝐸 ⊑ 𝐸 or 𝑉𝑦 ⊑ 𝑉𝑧 .

Indeed, these axioms are valid on every extended graph of 𝑞1, as

long as valid(𝐺in, 𝑆1), e.g., 𝐺in = 𝐺1 or 𝐺in = 𝐺2 (Figure 1).

Assertions added per step are sound, but not sufficient to fully

characterize what happens at each query execution step. Therefore,

axioms we can find to characterize the relationships between 𝐺in

and 𝐺out will be sound but incomplete. In the following sections,

we will introduce additional axioms per step to extend possible in-

ferences and thus determine a tighter description by output shapes.

Proposition 3 shows that axioms valid on any of the graphs 𝐺in,

𝐺
med

,𝐺V and𝐺out are valid on the extended graph when applying

syntactic rewriting, and vice versa.

Proposition 3. Given a graph 𝐺in and a query 𝑞, let the graphs

𝐺
med

, 𝐺out, and 𝐺ext be defined according to Definition 12. For every

axiom 𝜑 that does not include names with dots (e.g., ¤𝐴, ¥𝐴, ¤𝑝 , ¥𝑝), the
following equivalences hold:

(1) valid(𝐺in, {𝜑}) if and only if valid(𝐺ext, {𝜑}).
(2) valid(𝐺

med
, {𝜑}) if and only if valid(𝐺ext, { ¤𝜑}).

(3) valid(𝐺out, {𝜑}) if and only if valid(𝐺ext, { ¥𝜑}).

6 CHECKINGWHETHER ISOUTPUTSHAPE

Algorithm 2 (IsOutputShape) checks for a given shape 𝑠 if the

rewritten shape ¥𝑠 is entailed by a set of axioms Σ valid for every

extended graph𝐺ext and derived from 𝑞 and Sin (YES). If this entail-

ment can not be proven, the algorithm returns no answer (NA). In

the remainder of this section, we construct Σ: We start by inferring

the assumptions of the validation knowledge base of𝐺ext based on

the atoms of the input query (Σ
vkb

). Next, we identify subsump-

tions between query variables in different components of the input

query by establishing a mapping between them (Σmap). Finally, we

include subsumptions between role names by considering the query

variables constraining them (Σprop). In the extended version we

prove that Problem IsOutputShape is NP-hard.

Corollary 1 establishes the formal foundation for IsOutput-

Shape based on Proposition 3.

Corollary 1. Let 𝑞 be a SCCQ, Σ a set of ALCHOI axioms such

that valid(𝐺ext, Σ) for every extended graph 𝐺ext of 𝑞, and 𝑠 a shape

including no names with dots. If Σ |= ¥𝑠 , then valid(𝐺out, {𝑠}) for every
output graph 𝐺out of 𝑞 .

6.1 Axiomatizations from the Validation KB

We first utilize the assumptions of the validation knowledge base

(see Definition 4) to infer axioms from a query 𝑞 that are valid on

any extended graph of 𝑞. Since we do not know all individual names

Algorithm 2 IsOutputShape : (Sin, 𝑞, 𝑠) ↦→ {yes,na}
Input A finite set of shapes Sin, a SCCQ 𝑞 = 𝐻 ← 𝑃 , and a shape

𝑠 that is relevant for this query 𝑞.

Output Does valid(J𝑞K𝐺in
, {𝑠}) hold for every graph 𝐺in where

valid(𝐺in,Sin)?
1: Σin ← Sin

2: Σ
vkb
← UNA(𝑞) ∪ CWA(𝑞) (Section 6.1)

3: Σmap ← MASin
(𝑃) (Section 6.2 and 6.3)

4: Σprop ← RS(𝑞) (Section 6.4)

5: Σ← Σin ∪ Σ
vkb
∪ Σmap ∪ Σprop

6: return if Σ |= ¥𝑠 then yes else na

in the extended graphs, we limit the UNA-encoding to individual

names that appear in the query (Definition 13), which are in any

non-empty extended graph per definition (see Definition 12).

Definition 13 (UNA-encoding). The UNA-encoding of a query

𝑞, denoted UNA(𝑞), is the set of ALCHOI axioms of the form

{𝑎} ⊓ {𝑏} ≡ ⊥ for every pair of distinct individual names 𝑎, 𝑏 in 𝑞.

Proposition 4. For every extended graph𝐺ext of a SCCQ 𝑞, it holds

that valid(𝐺ext,UNA(𝑞)).

We do not infer any axioms based on the DCA because a SCCQ

does not determine the set of individual names I. Concerning the
CWA, a query imposes restrictions on concept names that appear

in the query pattern (e.g., ¤𝐴), the query template (e.g., ¥𝐴), variables
(e.g. 𝑉𝑥), and individual names (e.g., {𝑎}). All other concept names

are irrelevant (see Proposition 2).

We define the following utility concepts C𝑢 (Definition 14) for

referring to the nominal concept or variable concept for an indi-

vidual name or variable 𝑢, and vcg(𝑞), referring to the variable

connectivity graph of a query 𝑞.

Definition 14. For each individual name or variable 𝑢, C𝑢 is {𝑎}
if 𝑢 is an individual name 𝑎, or C𝑢 is 𝑉𝑥 if 𝑢 is a variable 𝑥 .

Definition 15 (Variable Connectivity Graph). The variable con-

nectivity graph of query pattern 𝑃 , denoted vcg(𝑃), is the graph
whose nodes are the atoms in 𝑃 , and which has an undirected edge

{𝑡1, 𝑡2} if and only if atoms 𝑡1 and 𝑡2 share a variable.

A SCCQ imposes restrictions on concept names in extended

graphs, by definition of 𝐺
med

, 𝐺out, and 𝐺V. For example, each

atom 𝑥 :𝐴 ∈ 𝑃 implies 𝑉𝑥 ⊑ ¤𝐴, since concept 𝑉𝑥 is defined from all

individual names referred to by 𝑥 , which according to the evaluation

semantics of SCCQ result from filtering𝐴. More generally, all atoms

𝑥 :𝐴 and (𝑥,𝑦):𝑝 in 𝑃 (Example 4) restrict the instances of variable

concept 𝑉𝑥 . These observations can be combined over all atoms in

a query, leading to Definition 16.

Definition 16 (CWA-encoding). The CWA-encoding for a SCCQ

𝑞 = (𝐻 ← 𝑃), denoted CWA(𝑞), is the minimal set of ALCHOI
axioms including:

1. For each concept name 𝐴 in 𝑃 , ¤𝐴 ≡ 𝐴 ⊓ ⊔
𝑢:𝐴∈𝑃 C𝑢 .

2. For each concept name 𝐴 in 𝐻 , ¥𝐴 ≡ ⊔
𝑢:𝐴∈𝐻 C𝑢 .

3. For each variable 𝑥 in var(𝑞) the axiom

𝑉𝑥 ⊑
l

𝑥 :𝐴∈𝑃
𝐴 ⊓

l

(𝑥,𝑢) :𝑝∈𝑃
∃𝑝.C𝑢 ⊓

l

(𝑢,𝑥) :𝑝∈𝑃
∃𝑝− .C𝑢 ,

5

Philipp Seifer, Daniel Hernández, Ralf Lämmel, and Steffen Staab

𝑎𝐴,𝑉𝑤 ,𝑉𝑥 𝑏
𝐵, ¤𝐵, ¥𝐵,𝑉𝑦,
𝐸, ¤𝐸, ¥𝐸,𝑉𝑧

𝑝, ¤𝑝

𝑝, 𝑟

¥𝑝
𝑎𝐴 𝑏 𝐵, 𝐸

𝑝

𝑝, 𝑟

(a)𝐺in

𝑎 𝑏 ¤𝐵, ¤𝐸
¤𝑝

𝑝, 𝑟

(b) ¤𝐺
med

𝑎 𝑉𝑤 ,𝑉𝑥

𝑏 𝑉𝑦,𝑉𝑧

(c)𝐺V

𝑏 ¥𝐵, ¥𝐸¥𝑝

(d) ¥𝐺out

Figure 2: On the left the graph 𝐺ext as the union of 𝐺in (a), ¤𝐺
med

(b), 𝐺V (c), and ¥𝐺out (d).

and if vcg(𝑃) is acyclic w.r.t 𝑥 , then also the axiom

𝑉𝑥 ⊒
l

𝑥 :𝐴∈𝑃
𝐴 ⊓

l

(𝑥,𝑢) :𝑝∈𝑃
∃𝑝.C𝑢 ⊓

l

(𝑢,𝑥) :𝑝∈𝑃
∃𝑝− .C𝑢 .

4. For each role name 𝑝 in pattern 𝑃 the axioms

∃ ¤𝑝.C𝑣 ≡
⊔
(𝑢,𝑣) :𝑝∈𝑃 C𝑢 , ∃ ¤𝑝.⊤ ≡

⊔
(𝑢,𝑣) :𝑝∈𝑃

C𝑢 ⊓∃ ¤𝑝.C𝑣,

∃ ¤𝑝− .C𝑢 ≡
⊔
(𝑢,𝑣) :𝑝∈𝑃 C𝑣, ∃ ¤𝑝− .⊤ ≡

⊔
(𝑢,𝑣) :𝑝∈𝑃

C𝑣 ⊓∃ ¤𝑝− .C𝑢 .

5. For each role name 𝑝 in template 𝐻 the axioms

∃ ¥𝑝.C𝑣 ≡
⊔
(𝑢,𝑣) :𝑝∈𝐻 C𝑢 , ∃ ¥𝑝.⊤ ≡

⊔
(𝑢,𝑣) :𝑝∈𝐻

C𝑢 ⊓∃ ¥𝑝.C𝑣,

∃ ¥𝑝− .C𝑢 ≡
⊔
(𝑢,𝑣) :𝑝∈𝐻 C𝑣, ∃ ¥𝑝− .⊤ ≡

⊔
(𝑢,𝑣) :𝑝∈𝑃

C𝑣 ⊓∃ ¥𝑝− .C𝑢 .

Observe, that unlike in the definition for concepts ¤𝐴 (Defini-

tion 16, 1.), the definition for concepts ¥𝐴 (Definition 16, 2.) does

not include 𝐴, since elements of ¤𝐴 are the result of filtering 𝐴,

whereas ¥𝐴 is newly constructed for the query template 𝐻 . We first

demonstrate the general meaning of these axioms in Example 5.

Example 5. Consider again the query 𝑞1 = {y:𝐸, z:𝐵, (y, z):𝑝} ←
{(w, y):𝑝, y:𝐵, (x, z):𝑝, z:𝐸} (Example 2). Then, CWA(𝑞1) consists of
the following axioms:

(1) { ¤𝐵 ≡ 𝐵 ⊓𝑉𝑦, ¤𝐸 ≡ 𝐸 ⊓𝑉𝑧 }, because, e.g., concept ¤𝐵 in the

extended graph is defined by filtering 𝐵 with variable 𝑉𝑦 ,

based on the query pattern y:𝐵 in 𝑞1.

(2) { ¥𝐵 ≡ 𝑉𝑧 , ¥𝐸 ≡ 𝑉𝑦}, because, e.g., concept ¥𝐵 in the extended

graph is defined by 𝑉𝑧 , since it only occurs in the single

construct pattern z:𝐵. If there were multiple occurences, it

would be defined by the union of all variables, instead.

(3) {𝑉𝑤 ⊑ ∃𝑝.𝑉𝑦, 𝑉𝑥 ⊑ ∃𝑝.𝑉𝑧 , 𝑉𝑦 ⊑ ∃𝑝.𝑉𝑤 ⊓ 𝐵, 𝑉𝑧 ⊑ ∃𝑝.𝑉𝑥 ⊓
𝐸}, because variable concepts are defined by constraints

to the variable in the query pattern. For example, 𝑉𝑦 is

constrained by patterns (w, y):𝑝 and y:𝐵 in 𝑞1, and thus

bound by ∃𝑝.𝑉𝑤 ⊓ 𝐵. This is a crucial step, since concept
and role names in the extended graph are defined in terms

of these variable concepts. The inverse cases are included,

because vcg(𝑃) is acyclic: {𝑉𝑤 ⊒ ∃𝑝.𝑉𝑦, 𝑉𝑥 ⊒ ∃𝑝.𝑉𝑧 , 𝑉𝑦 ⊒
∃𝑝.𝑉𝑤 ⊓ 𝐵, 𝑉𝑧 ⊒ ∃𝑝.𝑉𝑥 ⊓ 𝐸} (cf. Example 6).

(4) {∃ ¤𝑝.𝑉𝑦 ≡ 𝑉𝑤 , ∃ ¤𝑝.𝑉𝑧 ≡ 𝑉𝑥 , ∃ ¤𝑝.⊤ ≡ (𝑉𝑤 ⊓ ∃ ¤𝑝.𝑉𝑦) ⊔ (𝑉𝑥 ⊓
∃ ¤𝑝.𝑉𝑧)}, because, e.g., role name ¤𝑝 in the extended graph

is defined by the variables concepts that it occurs with.

Similarly, the following axioms for inverse role names are

included: {∃ ¤𝑝− .𝑉𝑤 ≡ 𝑉𝑦, ∃ ¤𝑝− .𝑉𝑥 ≡ 𝑉𝑧 , ∃ ¤𝑝− .⊤ ≡ (𝑉𝑦 ⊓
∃ ¤𝑝− .𝑉𝑤) ⊔ (𝑉𝑧 ⊓ ∃ ¤𝑝− .𝑉𝑥)}.

𝑎1 𝑎2 𝑎3 𝑎4

𝑟

𝑟

𝑟

𝑟

𝑝

𝑝

𝑟

𝑟

Figure 3: Input graph 𝐺 for Example 6.

(5) {∃ ¥𝑝.𝑉𝑧 ≡ 𝑉𝑦, ∃ ¥𝑝.⊤ ≡ 𝑉𝑦 ⊓ ∃ ¥𝑝.𝑉𝑧 } and {∃ ¥𝑝− .𝑉𝑦 ≡ 𝑉𝑧 ,

∃ ¥𝑝− .⊤ ≡ 𝑉𝑧 ⊓ ∃ ¥𝑝− .𝑉𝑦}, with analogous reasoning as the

previous case.

Note the additional condition in the second part of Definition 16

(3.) where we require vcg(𝑞) to be acyclic. In the following example

(Example 6), we will motivate why this condition is required and

then define Lemma 1 with respect to this case.

Example 6. Consider the pattern 𝑃 = {(𝑥,𝑦):𝑟, (𝑦, 𝑧):𝑟, (𝑥, 𝑧):𝑝}
of a query 𝑞 = 𝐻 ← 𝑃 , and the graph 𝐺 in Figure 3. Note, that

vcg(𝑃) is cyclic, since ((𝑥,𝑦):𝑟, (𝑦, 𝑧):𝑟), ((𝑦, 𝑧):𝑟, (𝑥, 𝑧):𝑝) as well
as ((𝑥, 𝑧):𝑝, (𝑥,𝑦):𝑟) each share variables.

Evaluating 𝑞 on 𝐺 results in mappings 𝜇1 = {𝑥 ↦→ 𝑎1, 𝑦 ↦→
𝑎2, 𝑧 ↦→ 𝑎3} and 𝜇2 = {𝑥 ↦→ 𝑎3, 𝑦 ↦→ 𝑎2, 𝑧 ↦→ 𝑎1}. Thus, the variable
concepts are defined as 𝑉𝑥 = {𝑎1, 𝑎3}, 𝑉𝑦 = {𝑎2} and 𝑉𝑧 = {𝑎3, 𝑎1}.
Note, that 𝑦 ↦→ 𝑎4 is not in any result mapping for query 𝑞 on

graph𝐺 (and 𝑎4 ∉ 𝑉𝑦). However, {𝑎4} ⊑ ∃𝑟− .𝑉𝑥 ⊓∃𝑟 .𝑉𝑧 . Therefore,
𝑉𝑦 A ∃𝑟− .𝑉𝑥 ⊓ ∃𝑟 .𝑉𝑧 , so we can not include this axiom.

Intuitively, an acyclic graph vcg(𝑃) allows for separating the

pattern 𝑃 (given, as an example, variable 𝑥 and concept name𝐴) into

patterns 𝑃𝑙 , {𝑥 : 𝐴}, and 𝑃𝑟 , where 𝑃𝑙 shares at most variable 𝑥 with

𝑃𝑟 . In these cases, the implicit dependencies between bindings for

variables that cause issues as demonstrated for 𝑥 and 𝑧 in Example 6

do not occur.

Lemma 1. Let 𝑞 = 𝐻 ← 𝑃 be a query such that vcg(𝑃) is acyclic.
Let 𝐺 be a graph, and let 𝑥 be a variable corring in 𝑃 . Then

𝑉𝑥 ⊒
d

𝑥 :𝐴∈𝑃𝐴 ⊓
d
(𝑥,𝑢) :𝑝∈𝑃∃𝑝.C𝑢 ⊓

d
(𝑢,𝑥) :𝑝∈𝑃∃𝑝− .C𝑢 .

Given Lemma 1, the following proposition holds.

Proposition 5. For every extended graph𝐺ext of a SCCQ 𝑞, it holds

that valid(𝐺ext,CWA(𝑞)), if either 𝑞 does not include any individual

names, or the output graph is guaranteed to be non-empty.

Note the additional condition in Proposition 5: If the output graph

is empty and the query includes individual names, then 𝐺ext may

not be valid with respect to CWA(𝑞), since the constructed axioms

may include individual names that are not guaranteed to exist. This

could be remedied by not allowing individual names in queries;

however, since Simple SHACL shapes do not allow individual names,

these axioms do not impact soundness of the method.

6

From Shapes to Shapes (Extended Version)

6.2 Axiomatizations for Query Subpatterns

We refer to a pattern 𝑃 ′ ⊆ 𝑃 as a component of the pattern 𝑃 , if

vcg(𝑃 ′) (see also Definition 15) is a connected subgraph of vcg(𝑃)
and there exists no 𝑃 ′′ such that 𝑃 ′ ⊂ 𝑃 ′′ and vcg(𝑃 ′′) is a con-
nected subgraph of vcg(𝑃).

Example 7. Query 𝑞1 (Example 2) has components {(w, y):𝑝, y:𝐵}
and {(x, z):𝑝, z:𝐸}. The CWA encoding (Example 5) does not entail

𝑉𝑦 ⊑ 𝑉𝑧 , even though this axiom is both valid in all extended graphs,

and required for inferring, e.g., the result shape 𝐸 ⊑ 𝐵.

Example 7 shows that the CWA encoding alone is not sufficient

for inferring all subsumptions between variable concepts. If we

could find a homomorphism between two components of the query

pattern, we would know that the valuations of one component are

a subset of the valuations of the other component (modulo variable

names), and thus infer subsumptions between variable concepts.

Definition 17 (Component Map). For components 𝑃1 and 𝑃2 of 𝑃 ,

every function ℎ : var(𝑃1) → I ∪ V such that ℎ(𝑃1) ⊆ 𝑃2 is called a

component map on 𝑃 , where we write ℎ(𝑃1) to mean substitution

of each variable 𝑥 in 𝑃1 by ℎ(𝑥).

Definition 18 (Component Map Axioms). The set of axioms in-

ferred from a component map ℎ on 𝑃 , denoted MAℎ (𝑃), contains
axiom Cℎ (𝑥) ⊑ 𝑉𝑥 for every variable 𝑥 in the domain of ℎ. The

union of all sets MAℎ (𝑃) of a graph pattern 𝑃 is called MA(𝑃).

Example 8. Consider two components 𝑃1 = {(𝑥,𝑦):𝑝} and 𝑃2 =

{(𝑧, 𝑧):𝑝, 𝑧:𝐴}. Thenwe can define themappingℎ(𝑥) = 𝑧 andℎ(𝑦) =
𝑧, such that ℎ(𝑃1) ⊆ 𝑃2. Therefore, we can construct the axioms

𝑉𝑧 ⊑ 𝑉𝑥 and 𝑉𝑧 ⊑ 𝑉𝑦 valid on 𝐺ext.

Proposition 6. For every extended graph 𝐺ext of a SCCQ 𝑞 = 𝐻 ←
𝑃 , it holds that valid(𝐺ext,MA(𝑃)).

6.3 Extending Query Patterns via Constraints

The basic mapping MA(𝑃) is not sufficient for inferring certain

crucial variable concept subsumptions, as Example 9 shows.

Example 9. Consider components 𝑃1 = {(x, z):𝑝, z:𝐸} and 𝑃2 =

{(w, y):𝑝, y:𝐵} of query 𝑞1 (Example 2). Here, we can not find a

mapping ℎ satisfying Definition 17. However, we know based on

𝑆1 that 𝐵 ⊑ 𝐸 (Example 1). We can utilize this knowledge to extend

component 𝑃2, adding the pattern y:𝐸 which does not alter the

queries results. Now we can find the mapping ℎ(x) = w, ℎ(z) = y

such that ℎ(𝑃1) ⊆ 𝑃2.

Intuitively, by extending a component as illustrated in Example 9,

we reveal a subsumption relationship that was implicit in the input

shapes. For the same reason, the extended component is not more

restrictive than the original one. We now show how this approach

can be generalized.

Definition 19 (Target Variables). A variable 𝑥 is target variable

for a shape𝜓 ⊑ 𝜙 in an atomic pattern 𝑡 if and only if either

(1) 𝑡 = 𝑥 :𝐴 and𝜓 = 𝐴,

(2) 𝑡 = (𝑥,𝑦):𝑝 and𝜓 = ∃𝑝.⊤, or
(3) 𝑡 = (𝑦, 𝑥):𝑝 and𝜓 = ∃𝑝− .⊤.

Definition 20 (Extension). The extension Ext(𝑥, 𝜙) of a variable 𝑥
with respect to a shape constraint 𝜙 and component 𝑃𝑖 is the set of

atoms defined below, where 𝑥0 is a fresh variable.

Ext(𝑥,𝐴) = {𝑥 :𝐴},
Ext(𝑥, ∃𝑝− .𝐴) = {(𝑥0, 𝑥):𝑝, 𝑥0:𝐴},

Ext(𝑥,∀𝑝.𝐴) = {𝑦:𝐴 | (𝑥,𝑦):𝑝 ∈ 𝑃𝑖 },
Ext(𝑥, ∃𝑝.𝐴) = {(𝑥, 𝑥0):𝑝, 𝑥0:𝐴}, and

Ext(𝑥,∀𝑝− .𝐴) = {𝑦:𝐴 | (𝑦, 𝑥):𝑝 ∈ 𝑃𝑖 }.

Since new atoms are added to the pattern, they can be targets of

input shapes, too. The recursive extension is bound by themaximum

degree and diameter of the connectivity graph vcg(𝑃) of the query
pattern 𝑃 (Definition 15).

Definition 21 (Bound extension). Let 𝑃𝑖 be a component of a query

pattern 𝑃 , 𝑥 be a variable in var(𝑃𝑖),Sin be a finite set of shapes, and

𝑃𝑥
𝑖
be a pattern that results from adding iteratively atoms Ext(𝑢, 𝑠)

to 𝑃𝑖 , where 𝑠 ∈ Sin, 𝑢 is a target variable for 𝑠 , and either 𝑢 = 𝑥 or

𝑢 ∉ var(𝑃𝑖). Then, 𝑃𝑥𝑖 is a bound 𝑥-extension of 𝑃𝑖 using Sin if and

only if the followings conditions are satisfied:

(1) the maximum degree of vcg(𝑃𝑥
𝑖
) is not bigger than the

maximum degree of vcg(𝑃),
(2) the diameter of graph vcg(𝑃𝑥

𝑖
\ 𝑃𝑖) is not longer than the

maximum diameter of the components of vcg(𝑃).

Definition 22 (Maximum Extension). Given a component 𝑃𝑖 of

pattern 𝑃 , a variable 𝑥 ∈ var(𝑃𝑖), and a finite set of Simple SHACL

shapes Sin, MaxExt𝑥 (𝑃𝑖 ,Sin) is the maximum bound 𝑥-extension

for 𝑃𝑖 using Sin. The maximum extension for 𝑃𝑖 using Sin, denoted

MaxExt(𝑃𝑖 ,Sin), is the pattern
⋃

𝑥∈var(𝑃𝑖) MaxExt𝑥 (𝑃𝑖 ,Sin).

Intuitively, Definition 21 and Definition 22 ensure that an ex-

tended component is finite, but still allows for all possible mappings

with another component: Since we are only interested in finding

axioms involving names in 𝐺ext, we must use at least one such

name in the mapping. Since the other mapping component is a

subset of 𝑃 , the mapping can then, in the worst case, only extend

with respect to the maximum degree and diameter of 𝑃 .

The maximum extension thus allows for finding all axioms of

interest via component maps ℎ from 𝑃1 to MaxExt(𝑃2,Sin), where
𝑃1 and 𝑃2 are components of 𝑃 .

Definition 23 (Extended Component Map Axioms). The set of

extended component map axioms of a pattern 𝑃 , and a set of shapes

Sin, denoted MASin
(𝑃) is the set that includes an axiom C𝑢 ⊑ 𝑉𝑥

if and only if there is a pair of components 𝑃1 and 𝑃2 of 𝑃 , and a

component map ℎ from 𝑃1 to MaxExt(𝑃2,Sin) such that ℎ(𝑥) = 𝑢

and 𝑢 is a variable or an individual name occurring in 𝑃2.

Proposition 7. For every extended graph𝐺ext of a SCCQ𝑞 = 𝐻 ← 𝑃

and set of input shapes Sin, it holds that valid(𝐺ext,MASin
(𝑃)).

6.4 Axiomatizations for Role Hierachies

Not only variable concepts form hierarchies that are not entailed by

the axioms included this far. We finally infer axioms representing

additional role hierarchies, that are determined from the query

(Definition 24).

7

Philipp Seifer, Daniel Hernández, Ralf Lämmel, and Steffen Staab

Definition 24 (Role Hierarchy Axioms). The role hierarchy axioms

of a query 𝑞 = (𝐻 ← 𝑃) are the set of axioms, denoted RS(𝑞), that
include:

(1) for each role name 𝑝 ∈ 𝑃 , the axiom ¤𝑝 ⊑ 𝑝 ,

(2) for each role name 𝑝 ∈ 𝑃 , the axiom 𝑝 ⊑ ¤𝑝 , if all atoms with

role name 𝑝 occurring in 𝑃 have the form (𝑥,𝑦):𝑝 where

variables 𝑥 and 𝑦 occur in no other atom in 𝑃 and 𝑥 ≠ 𝑦,

(3) for each pair of role names 𝑝, 𝑟 with (𝑥,𝑦):𝑝 ∈ 𝑃 and either

(𝑥,𝑦):𝑟 ∈ 𝐻 or (𝑦, 𝑥):𝑟 ∈ 𝐻
(a) the axiom ¤𝑝 ⊑ ¥𝑟 (if (𝑥,𝑦):𝑟 ∈ 𝐻) or the axiom ¤𝑝 ⊑ ¥𝑟−

(if (𝑦, 𝑥):𝑟 ∈ 𝐻), if 𝑃 does not contain any other atoms

with role name 𝑝 , and

(b) the axiom ¥𝑟 ⊑ ¤𝑝 (if (𝑥,𝑦):𝑟 ∈ 𝐻) or the axiom ¥𝑟− ⊑ ¤𝑝
(if (𝑦, 𝑥):𝑟 ∈ 𝐻), if 𝐻 does not contain any other atoms

with role name 𝑟 .

Trivially, for any role name 𝑝 ∈ 𝑃 , the axiom ¤𝑝 ⊑ 𝑝 holds, since,

by definition, 𝐺
med
⊆ 𝐺in. The inverse axiom 𝑝 ⊑ ¤𝑝 holds, if the

role name is unconstrained in pattern 𝑃 . Role hierarchy axioms

between 𝑝 ∈ 𝑃 and 𝑟 ∈ 𝐻 , that is axioms ¥𝑟 ⊑ ¤𝑝 and ¤𝑝 ⊑ ¥𝑟 , hold, if
there are no further restrictions on 𝑟 and 𝑝 , respectively.

Example 10. Consider the input shape 𝐴 ⊑ ∃𝑝.𝐴 and the query

𝑞2 = {(x, y):𝑝, z:𝐴} ← {(x, y):𝑝, z:𝐴}. The axioms presented prior

to Definition 24 do not entail the shape ¥𝐴 ⊑ ∃ ¥𝑝. ¥𝐴, even though

𝐴 ⊑ ∃𝑝.𝐴 should apply to the output graph: After all, we simply

copy all instances of𝐴 and the entirety of 𝑝 . If we include, however,

axioms 𝑝 ⊑ ¤𝑝 and ¤𝑝 ⊑ 𝑝 , the new set of axioms does indeed entail

¥𝐴 ⊑ ∃ ¥𝑝. ¥𝐴, as expected. We can include these axioms – in this case –

since we simply copy 𝑝 in its entirety, or, formally, the variables in

the only atomic pattern including the role name 𝑝 are not further

constrained.

Proposition 8. For every extended graph𝐺ext of a SCCQ 𝑞, it holds

that valid(𝐺ext, RS(𝑞)).

7 RELATEDWORK

The problem of automatically inferring SHACL (or ShEx [25])

shapes from various inputs has been studied before. Most com-

monly it has been considered in the context of constructing shapes

from concrete instance data, based on summaries of statistical in-

formation over graphs [14, 26, 31], or more involved machine learn-

ing techniques [15, 22, 23]. Some approaches combine such meth-

ods with tools for manual exploration and adaptation of inferred

schemata [7]. Our approach, on the other hand, allows the con-

struction of valid shapes from only input shapes and a given query,

without the need to consider (or indeed provide) any concrete in-

stance data.

Our work is based in the correspondence of SHACL and descrip-

tion logics, inspired by Bogaerts et al. [6]. This correspondence has

been investigated before. Astrea [10] produces SHACL shapes from

OWL ontologies by providing a mapping relating patterns of ontol-

ogy constructs (i.e., language constructs including a specific usage

context) with equivalent patterns of SHACL constructs validating

them. Similarly, Pandit et al. [24] explore the usage of ontology

design patterns for the generation of SHACL shapes.

Inference of constraints, as well as SHACL shapes, from other

data formalisms has been studied as well. Calvanese et al. [9] and Se-

queda et al. [30] consider inference of RDFS and OWL, respectively,

from direct mappings [2] between relational data and RDF. Simi-

larly, Thapa and Giese [33] consider inferences of SHACL shapes

from direct mappings, while RML2SHACL [12] allows the transla-

tion of RML rules to SHACL shapes. These approaches differ from

our approach, in that the input is restricted to a direct mapping

or RML mapping from relational data, whereas in our case, the

input is defined by an arbitrary query pattern imposing additional

constraints, as well as constraints explicitly given as input shapes.

More generally, the inference of constraints over views of rela-

tional databases has been studied in the past [13, 17, 18, 32]. While

these approaches are similar to our work, they face severe problems:

In [17], general first-order formulas are considered as constaints.

Even though these are more expressive than our constraints, the

presented approach is not feasible in practice. As a result, other

approaches restrict constraints, most commonly to functional or

join dependencies, e.g., [13, 18]. These approaches can be consid-

ered complementary to our approach, since our approach lacks

cardinalities, which are required to express functional dependen-

cies in SHACL; on the other hand, functional dependencies can not

express crucial typing constraints for knowledge graphs that are

supported by our approach.

Finally, Thapa and Giese [34] consider mappings of relational

data to RDF. In particular, the work focuses on including SQL in-

tegrity constraints (keys, uniqueness and not-null constraints) in

the translation to SHACL constraints, allowing for a limited number

of property constraints mapped from integrity constraints.

8 CONCLUDING REMARKS

We have presented an algorithm for constructing a set of shapes

characterizing the possible output graphs of CONSTRUCT queries,

where the input graphs of these queries can be constrained by

a set of shapes as well. The shapes are expressed in a subset of

SHACL, whereas the queries are expressed in a subset of SPARQL.

This enables the inference of shapes over result graphs of data

processing pipelines (i.e., compositions of CONSTRUCT queries),

which can be used both for validation purposes when working with

these result graphs, and informatively, aiding developers directly.

The algorithm decides for the finite set of candidate shapes,

whether they are entailed by a set of description-logic axioms valid

on the union of graphs involved in the query operation. We prove

soundness of this algorithm, and provide an implementation.

Limitations. (1) The output shapes computed by our approach are

sound, but incomplete. Consider the problem𝑞3 = {(𝑥,𝑦):𝑝, 𝑧:𝐴} ←
{(𝑥,𝑦):𝑝, 𝑧:𝐴, (𝑧,𝑤):𝑝} and Sin = {𝐴 ⊑ ∃𝑝.𝐴}, where the input

shape would apply to the output, but we can not infer it. This

and similar problems could perhaps be remedied by extending the

inference of role hierachy axioms to also consider input shapes.

(2) Our approach is limited to a subset of SHACL and SPARQL.

In the extended version, we show how to extend the approach

to arbitrary ALCHOI constraints. Intuitively, this extension is

possible because the propositions presented in this paper are not

restricted to Simple SHACL (consider, in particular, Proposition 3).

8

From Shapes to Shapes (Extended Version)

FutureWork. In order to extend the approach to queries involving

generic patterns (e.g., (𝑥,𝑦):𝑧 or 𝑥 :𝑧), an expansion to non-generic

queries may be possible, since all relevant role and concept names

are known from template and input shapes.

While the application of our approach to entire data processing

pipelines is straightforward, there are interesting empirical ques-

tions regarding the properties of results shapes, e.g., depending on

the nature of input shapes or number of processing steps left as

future work.

ACKNOWLEDGMENTS

This work was partially funded by the Deutsche Forschungsge-

meinschaft (DFG) under COFFEE – STA 572_15-2, and the DFG

Germany’s Excellence Strategy – EXC 2120/1 – 390831618.

REFERENCES

[1] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L.

Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow,

Juan F. Sequeda, Oskar van Rest, and Hannes Voigt. 2018. G-CORE: A Core for

Future Graph Query Languages. In Proc. of SIGMOD. ACM, 1421–1432. https:

//doi.org/10.1145/3183713.3190654

[2] Marcelo Arenas, Alexandre Bertails, Eric Prud’hommeaux, Juan Sequeda, et al.

2012. A Direct Mapping of Relational Data to RDF. Retrieved 12.02.2024 from

https://www.w3.org/TR/rdb-direct-mapping/

[3] KRR Group at University of Oxford. 2008. HermiT OWL Reasoner. Retrieved

12.10.2023 from http://www.hermit-reasoner.com/

[4] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider (Eds.). 2003. The Description Logic Handbook: Theory,

Implementation, and Applications. Cambridge University Press.

[5] Adrian Bielefeldt, Julius Gonsior, and Markus Krötzsch. 2018. Practical Linked

Data Access via SPARQL: The Case of Wikidata. In Workshop on Linked Data on

the Web co-located with The Web Conference 2018, LDOW@WWW 2018 (CEUR

Workshop Proceedings, Vol. 2073). CEUR-WS.org. https://ceur-ws.org/Vol-2073/

article-03.pdf

[6] Bart Bogaerts, Maxime Jakubowski, and Jan Van den Bussche. 2022. SHACL: A

Description Logic in Disguise. In Proc. of Logic Programming and Nonmonotonic

Reasoning (LNCS, Vol. 13416). Springer, 75–88. https://doi.org/10.1007/978-3-

031-15707-3_7

[7] Iovka Boneva, Jérémie Dusart, Daniel Fernández-Álvarez, and José Emilio Labra

Gayo. 2019. Shape Designer for ShEx and SHACL constraints. In Proc. of the

ISWC 2019 Satellite Tracks co-located with ISWC 2019 (CEURWorkshop Proceedings,

Vol. 2456). CEUR-WS.org, 269–272. https://ceur-ws.org/Vol-2456/paper70.pdf

[8] Angela Bonifati, Wim Martens, and Thomas Timm. 2020. An analytical study of

large SPARQL query logs. VLDB J. 29, 2-3 (2020), 655–679. https://doi.org/10.

1007/s00778-019-00558-9

[9] Diego Calvanese, Wolfgang Fischl, Reinhard Pichler, Emanuel Sallinger, and Man-

tas Simkus. 2014. Capturing Relational Schemas and Functional Dependencies

in RDFS. In Proc. of the AAAI Conference on Artificial Intelligence. AAAI Press,

1003–1011. https://doi.org/10.1609/AAAI.V28I1.8867

[10] Andrea Cimmino, Alba Fernández-Izquierdo, and Raúl García-Castro. 2020. As-

trea: Automatic Generation of SHACL Shapes from Ontologies. In Proc. of ESWC

(LNCS, Vol. 12123). Springer, 497–513. https://doi.org/10.1007/978-3-030-49461-

2_29

[11] Richard Cyganiak, David Wood, Markus Lanthaler, Graham Klyne, Jeremy J.

Carroll, and Brian McBride. 2014. RDF Concepts and Abstract Syntax. Retrieved

12.02.2024 from https://www.w3.org/TR/rdf11-concepts/

[12] Thomas Delva, Birte De Smedt, Sitt Min Oo, Dylan Van Assche, Sven Lieber, and

Anastasia Dimou. 2021. RML2SHACL: RDF Generation Taking Shape. In Proc. of

Knowledge Capture Conference. ACM, 153–160. https://doi.org/10.1145/3460210.

3493562

[13] Wenfei Fan, Shuai Ma, Yanli Hu, Jie Liu, and Yinghui Wu. 2008. Propagating

functional dependencies with conditions. Proc. VLDB Endow. 1, 1 (2008), 391–407.

https://doi.org/10.14778/1453856.1453901

[14] Daniel Fernández-Álvarez, José Emilio Labra Gayo, and Daniel Gayo-Avello.

2022. Automatic extraction of shapes using sheXer. Knowledge-Based Systems

238 (2022), 107975. https://doi.org/10.1016/J.KNOSYS.2021.107975

[15] Benoît Groz, Aurélien Lemay, Slawek Staworko, and Piotr Wieczorek. 2022.

Inference of Shape Graphs for Graph Databases. In ICDT (LIPIcs, Vol. 220). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 14:1–14:20. https://doi.org/10.4230/

LIPICS.ICDT.2022.14

[16] Claudio Gutierrez, Carlos A. Hurtado, Alberto O. Mendelzon, and Jorge Pérez.

2011. Foundations of Semantic Web databases. J. Comput. Syst. Sci. 77, 3 (2011),

520–541.

[17] Barry E. Jacobs, Alan R. Aronson, and Anthony C. Klug. 1982. On Interpretations

of Relational Languages and Solutions to the Implied Constraint Problem. ACM

Trans. Database Syst. 7, 2 (1982), 291–315. https://doi.org/10.1145/319702.319730

[18] Anthony C. Klug and Rod Price. 1982. Determining View Dependencies Using

Tableaux. ACM Trans. Database Syst. 7, 3 (1982), 361–380. https://doi.org/10.

1145/319732.319738

[19] Holger Knublauch and Dimitris Kontokostas. 2017. Shapes Constraint Language

(SHACL). Retrieved 12.02.2024 from https://www.w3.org/TR/shacl/

[20] Egor V. Kostylev, Juan L. Reutter, and Martín Ugarte. 2015. CONSTRUCT Queries

in SPARQL. In Proc. of International Conference on Database Theory, ICDT (LIPIcs,

Vol. 31). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 212–229. https:

//doi.org/10.4230/LIPIcs.ICDT.2015.212

[21] Martin Leinberger, Philipp Seifer, Claudia Schon, Ralf Lämmel, and Steffen Staab.

2019. Type Checking Program Code Using SHACL. In Proc. of ISWC (LNCS,

Vol. 11778). Springer, 399–417. https://doi.org/10.1007/978-3-030-30793-6_23

[22] Nandana Mihindukulasooriya, Mohammad Rifat Ahmmad Rashid, Giuseppe

Rizzo, Raúl García-Castro, Óscar Corcho, and Marco Torchiano. 2018. RDF Shape

Induction Using Knowledge Base Profiling. In Prov. of the Symposium on Applied

Computing. ACM, 1952–1959. https://doi.org/10.1145/3167132.3167341

[23] Pouya Ghiasnezhad Omran, Kerry Taylor, Sergio José Rodríguez Méndez, and

Armin Haller. 2023. Learning SHACL shapes from knowledge graphs. Semantic

Web 14, 1 (2023), 101–121. https://doi.org/10.3233/SW-223063

[24] Harshvardhan J. Pandit, Declan O’Sullivan, and Dave Lewis. 2018. Using On-

tology Design Patterns To Define SHACL Shapes. In Proc. of the Workshop on

Ontology Design and Patterns (WOP 2018) co-located with ISWC 2018 (CEUR Work-

shop Proceedings, Vol. 2195). CEUR-WS.org, 67–71. https://ceur-ws.org/Vol-

2195/research_paper_3.pdf

[25] Eric Prud’hommeaux, José Emilio Labra Gayo, and Harold R. Solbrig. 2014. Shape

expressions: an RDF validation and transformation language. In Proc. of the

International Conference on Semantic Systems, SEMANTiCS. ACM, 32–40. https:

//doi.org/10.1145/2660517.2660523

[26] Kashif Rabbani, Matteo Lissandrini, and Katja Hose. 2023. Extraction of Validating

Shapes from very large Knowledge Graphs. Proc. VLDB Endow. 16, 5 (2023), 1023–

1032. https://doi.org/10.14778/3579075.3579078

[27] Raymond Reiter. 1982. Towards a Logical Reconstruction of Relational Database

Theory. In On Conceptual Modelling (Intervale) (Topics in Information Systems).

Springer, 191–233.

[28] Philipp Seifer, Daniel Hernández, Ralf Lämmel, and Steffen Staab. 2024. Code for

From Shapes to Shapes. https://doi.org/10.18419/darus-3977

[29] Philipp Seifer, Ralf Lämmel, and Steffen Staab. 2021. ProGS: Property Graph

Shapes Language. In Proc. of ISWC (LNCS, Vol. 12922). Springer, 392–409. https:

//doi.org/10.1007/978-3-030-88361-4_23

[30] Juan F. Sequeda, Marcelo Arenas, and Daniel P. Miranker. 2012. On directly

mapping relational databases to RDF and OWL. InWWW. ACM, 649–658. https:

//doi.org/10.1145/2187836.2187924

[31] Blerina Spahiu, Andrea Maurino, and Matteo Palmonari. 2018. Towards Improv-

ing the Quality of Knowledge Graphs with Data-driven Ontology Patterns and

SHACL. In Proc. of the Workshop on Ontology Design and Patterns (WOP 2018)

co-located with ISWC 2018 (CEURWorkshop Proceedings, Vol. 2195). CEUR-WS.org,

52–66. https://ceur-ws.org/Vol-2195/research_paper_2.pdf

[32] Michael Stonebraker. 1975. Implementation of Integrity Constraints and Views

by Query Modification. In Proc. of SIGMOD. ACM, 65–78. https://doi.org/10.

1145/500080.500091

[33] Ratan Bahadur Thapa and Martin Giese. 2021. A Source-to-Target Constraint

Rewriting for Direct Mapping. In Proc. of ISWC (LNCS, Vol. 12922). Springer,

21–38. https://doi.org/10.1007/978-3-030-88361-4_2

[34] Ratan Bahadur Thapa and Martin Giese. 2022. Mapping Relational Database

Constraints to SHACL. In Proc. of ISWC (LNCS, Vol. 13489). Springer, 214–230.

https://doi.org/10.1007/978-3-031-19433-7_13

A STRUCTURE OF THE APPENDIX

This appendix is structured as follows. In Appendix Bwe give details

about our implementation, and a feasibility experiment investigat-

ing runtime performance. Appendix C gives extended versions of

the running examples used throughout the paper. Appendix D con-

tains the full proofs for all propositions from the main paper. Finally,

Appendix E details how the method from the main paper can be

extended for more general types of SHACL shapes, and Appendix F

gives proofs related to these extensions.

9

https://doi.org/10.1145/3183713.3190654
https://doi.org/10.1145/3183713.3190654
https://www.w3.org/TR/rdb-direct-mapping/
http://www.hermit-reasoner.com/
https://ceur-ws.org/Vol-2073/article-03.pdf
https://ceur-ws.org/Vol-2073/article-03.pdf
https://doi.org/10.1007/978-3-031-15707-3_7
https://doi.org/10.1007/978-3-031-15707-3_7
https://ceur-ws.org/Vol-2456/paper70.pdf
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.1609/AAAI.V28I1.8867
https://doi.org/10.1007/978-3-030-49461-2_29
https://doi.org/10.1007/978-3-030-49461-2_29
https://www.w3.org/TR/rdf11-concepts/
https://doi.org/10.1145/3460210.3493562
https://doi.org/10.1145/3460210.3493562
https://doi.org/10.14778/1453856.1453901
https://doi.org/10.1016/J.KNOSYS.2021.107975
https://doi.org/10.4230/LIPICS.ICDT.2022.14
https://doi.org/10.4230/LIPICS.ICDT.2022.14
https://doi.org/10.1145/319702.319730
https://doi.org/10.1145/319732.319738
https://doi.org/10.1145/319732.319738
https://www.w3.org/TR/shacl/
https://doi.org/10.4230/LIPIcs.ICDT.2015.212
https://doi.org/10.4230/LIPIcs.ICDT.2015.212
https://doi.org/10.1007/978-3-030-30793-6_23
https://doi.org/10.1145/3167132.3167341
https://doi.org/10.3233/SW-223063
https://ceur-ws.org/Vol-2195/research_paper_3.pdf
https://ceur-ws.org/Vol-2195/research_paper_3.pdf
https://doi.org/10.1145/2660517.2660523
https://doi.org/10.1145/2660517.2660523
https://doi.org/10.14778/3579075.3579078
https://doi.org/10.18419/darus-3977
https://doi.org/10.1007/978-3-030-88361-4_23
https://doi.org/10.1007/978-3-030-88361-4_23
https://doi.org/10.1145/2187836.2187924
https://doi.org/10.1145/2187836.2187924
https://ceur-ws.org/Vol-2195/research_paper_2.pdf
https://doi.org/10.1145/500080.500091
https://doi.org/10.1145/500080.500091
https://doi.org/10.1007/978-3-030-88361-4_2
https://doi.org/10.1007/978-3-031-19433-7_13

Philipp Seifer, Daniel Hernández, Ralf Lämmel, and Steffen Staab

B IMPLEMENTATION RUNTIME EVALUATION

B.1 Implementation Overview

We implemented Algorithm 1, relying on a straightforward transla-

tion of Algorithm 2 to Scala for validation with respect to a single

candidate shape, and a generator for candidates based on the syn-

tax of Simple SHACL. For reasoning tasks, our implementation

supports any OWL API
3
reasoner. In particular, we rely on the

HermiT [3] reasoner as a default.

Our implementation features tools for generative exploration

regarding query and vocabulary size, a setup for performance evalu-

ation and results (see also the remainder of this section), a test suite,

and the examples from this paper in mechanized form. To this end,

the implementation features a command-line application for pars-

ing and inferring result shapes for examples (e.g., those supplied in

the project repository), taking SCCQ and (Simple) SHACL shapes

as input, both in DL and JSON-LD syntax. The implementation

also features a library for applying the shapes-to-shapes method,

supporting both Simple SHACL and ALCHOI-based shapes as

input, and returning inferred axioms in internal datastructures that

can then be utilized in a wider range of reasoning tasks. Addition-

ally, we also include a tutorial giving a more intuitive and hands-on

introduction to our method. The implementation [28] is available

under a free software license on GitHub
4
.

B.2 Evaluation: Feasibility

We show feasibility of our method and implementation through the

following evaluation of runtime performance. This evaluation is

based on randomly generated problems (i.e., sets of input shapes as

well as queries). Thus, the experiment discussed here shows basic

feasibility of our method with synthetic data, though results on

real-world data may differ.

As performance depends largely on the reasoning task (see also

below), results can differ based on the reasoner implementation

used. Multiple reasoners are available with our implementation, and

their respective optimization strategies may differ. Some reasoner

implementations or optimization strategies are not deterministic;

Thus, as a simple optimization, our implementation can abort runs

with a set timeout and retry computing results, in order to avoid

unlucky models for non-deterministic reasoner optimization strate-

gies (this is reported in the results).

Experimental Setup. We refer to the project setup (in particular,

the specification in build.sbt) with respect to versions of the re-

spective software, et. al. Beyond that, we run experiments with

Microsoft JDK build openjdk 17.0.7 2023-04-18 LTS on Win-

dows 10 Pro (Version 10.0.19045), on commodity hardware (Intel

i5-6600K @ 3.5GHz, 16GB RAM).

We define the following three sample configurations and give

the number of atomic patterns per query (for template and pattern

each) as well as the number of input shapes:

• SMALL 1-2 templates and patterns, 1-2 shapes.

• MEDIUM 5-7 templates and patterns, 5-7 shapes.

• LARGE 11-13 templates and patterns, 11-13 shapes

3
https://github.com/owlcs/owlapi

4
https://github.com/softlang/s2s

Table 1: Results (average and median execution time in mil-

liseconds without timeouts, the number of timeouts (limit:

10 minutes), as well as percentage of processing time spent

on reasoning) for SMALL, MEDIUM and LARGE configurations.

Configuration Average Median T/O Reasoning

SMALL 3 0 0 38,42%

MEDIUM 40 20 0 87,11%

LARGE 693 243 20 97,66%

As a basis for these scenarios, we refer to the following real-

world query datasets (logs), where most queries (more than 90%)

have fewer than 6 or 7 patterns [5, 8], relating to our MEDIUM con-
figuration. More than half include only on pattern, relating to our

SMALL configuration. Our LARGE configuration covers outliers of

very large queries (less than 1% of real-world queries).

For all samples, we draw fresh variables (per pattern) with a

probability of 0.5 and fresh concepts or role nameswith a probability

of 0.8, and sample property versus concept atomic patterns with a

ratio of 0.3. We provide the full details on all parameters used for

sampling with the implementation source code.

Note, that we generate shapes from the vocabulary of the query.

Thus, the number of input shapes given here is not comparable

to the size of usual sets of SHACL shapes in real-world datasets.

That is, the sets of 1.5/6/12 shapes constrain the relatively small

vocabulary of an input query rather tightly. We do not know of

any empirical data on the average number of shapes in the query

(pattern) vocabulary, i.e., that apply to a particular query, thus we

estimate the numbers as given above.

We run and measure 5.000 samples each for the three given

configurations, using a fixed seed for the random generator, and

measure execution time for a single run of the algorithm per sam-

ple, after first running 100 additional samples as warmup. This

experiment uses the HermiT[3] reasoner.

Results of the Experiment. A summary of results is given in Ta-

ble 1. The full output with input shapes, input queries, fine-grained

execution metrics, as well as output shapes is included with the

project source code as a CSV file and a summary report. Both the full

output as well as the summary can be generated by executing the

profile main method (see the implementation documentation for

details on how to re-run the experiment as-is, or modify it across

various dimensions).

Interpretation. We show in this experiment the basic feasibility

of our method, with average and median execution times for even

very large samples of less than one second. For the largest samples,

few (0.4%) samples time out, with a set timeout of 10 minutes. We

hypothesize that this is due to the reasoner sometimes choosing

an unlucky model, where reasoning takes a very long time; though

this could also perhaps be caused by bugs in the reasoner imple-

mentation. Indeed, the majority of time is spent on reasoning for

larger configuration (see Table 1) and by detailed inspection of the

full log, this holds true for timeouts as well.

10

https://github.com/owlcs/owlapi
https://github.com/softlang/s2s

From Shapes to Shapes (Extended Version)

C EXTENDED EXAMPLES

In this section, we extend upon the running examples. We first

provide additional details on the running example incorporated in

the body of the paper, including the example using concrete SHACL

and SPARQL syntax. Next, we extend upon the running example

by giving additional example queries.

Implementation. All examples from the main paper and from

this section are also provided in mechanized form with the im-

plementation. To this end, the implementation contains .shacl
(as well .json) and .sparql files, where example shapes are in-

cluded in formal description logics and JSON-LD syntax, and SCCQ

queries in concrete SPARQL syntax. We refer to the documentation

(README.md) for more details on running example instances, and

obtaining different kinds of outputs.

Running Example: Full Set of Shapes Sout. The full set of output
shapes from Example 3 is given below. Note, that some shapes (such

as tautologies and shapes trivially entailed by other shapes) are

omitted.

Example 11. Full output shapes for 𝑞1 = {y:𝐸, z:𝐵, (y, z):𝑝} ←
{(w, y):𝑝, y:𝐵, (x, z):𝑝, z:𝐸} (Example 2) and the set of input shapes

𝑆1 = {𝐴 ⊑ ∃𝑝.𝐵, ∃𝑟 .⊤ ⊑ 𝐵, 𝐵 ⊑ 𝐸} (Example 1), as first introduced

in Example 3.

𝑆1-out = {
𝐵 ⊑ ∀𝑝− .𝐵, 𝐵 ⊑ ∀𝑝− .𝐸, 𝐵 ⊑ ∀𝑝.𝐵,
𝐵 ⊑ ∃𝑝− .𝐵, 𝐵 ⊑ ∃𝑝− .𝐸, 𝐸 ⊑ 𝐵,

𝐸 ⊑ ∀𝑝− .𝐵, 𝐸 ⊑ ∀𝑝− .𝐸, 𝐸 ⊑ ∀𝑝.𝐵,
𝐸 ⊑ ∃𝑝− .𝐵, 𝐸 ⊑ ∃𝑝− .𝐸, 𝐸 ⊑ ∃𝑝.𝐵,
∃𝑝− .⊤ ⊑ 𝐵, ∃𝑝− .⊤ ⊑ ∀𝑝− .𝐵, ∃𝑝− .⊤ ⊑ ∀𝑝− .𝐸,
∃𝑝− .⊤ ⊑ ∀𝑝.𝐵, ∃𝑝− .⊤ ⊑ ∃𝑝− .𝐵, ∃𝑝− .⊤ ⊑ ∃𝑝− .𝐸,
∃𝑝.⊤ ⊑ 𝐵, ∃𝑝.⊤ ⊑ 𝐸, ∃𝑝.⊤ ⊑ ∀𝑝− .𝐵,
∃𝑝.⊤ ⊑ ∀𝑝− .𝐸, ∃𝑝.⊤ ⊑ ∀𝑝.𝐵, ∃𝑝.⊤ ⊑ ∃𝑝− .𝐵,
∃𝑝.⊤ ⊑ ∃𝑝− .𝐸, ∃𝑝.⊤ ⊑ ∃𝑝.𝐵 }

Running Example: Concrete Syntax. We next give the running

example (e.g., Example 11) in concrete SPARQL and SHACL (Turtle)

syntax. We assume the default prefix : for the example domain

(unspecified), and prefix sh: for SHACL (i.e., bound to http://www.

w3.org/ns/shacl#).

Additional Examples. We now give additional examples problem

instances, that is, queries and sets of input shapes, and (a subset of)

the corresponding output shapes. For the full output, as well as all

intermediate components, i.e., the inferred axioms, we refer to the

implementation, which renders full internal details via the –debug
flag. All examples are included with the implementation.

Example 12. With input 𝑞4 = {x:𝐵, y:𝐴, } ← {x:𝐴, y:𝐵, } and
𝑆4 = {𝐴 ⊑ 𝐵}, we obtain the set {𝐵 ⊑ 𝐴} as output.

Query 𝑞4 is a simple example, demonstrating how our method

maintains subsumption relationships through renaming of concepts,

in this simple case swapping the names𝐴 and 𝐵. A core mechanism

allowing this is the subsumption between the variable concept for

query variables ?x and ?y entailed by our inferred axioms, which

holds on all extended graphs for 𝑞4 and 𝑆4.

: s1 a sh :NodeShape ;

sh : targe tClass :A ;

sh : property [

sh : path : p ;

sh : qua l i f i e dMinCoun t 1 ;

sh : q u a l i f i e dV a l u e S h a p e [

sh : c l a s s : B

]

] .

: s2 a sh :NodeShape ;

sh : targetSubjec tsOf : r ;

sh : c l a s s : B .

: s3 a sh :NodeShape ;

sh : targe tClass : B ;

sh : c l a s s : E .

Figure 4: Shapes 𝑠1 (𝐴 ⊑ ∃𝑝.𝐵), 𝑠2 (∃𝑟 .⊤ ⊑ 𝐵), and 𝑠3 (𝐵 ⊑ 𝐸)

using a concrete SHACL syntax (Turtle).

CONSTRUCT {

?y a : E .

?y : p ? z .

? z a : B

} WHERE {

?w : p ?y .

?y a : B .

? x : p ? z .

? z a : E

}

Figure 5: Example query 𝑞1 = {y:𝐸, z:𝐵, (y, z):𝑝} ←
{(w, y):𝑝, y:𝐵, (x, z):𝑝, z:𝐸} in concrete SPARQL syntax.

Example 13. With input 𝑞5 = {x:𝐵, y:𝐴, } ← {x:𝐴, (x, y):𝑝, y:𝐵, }
and 𝑆5 = {𝐵 ⊑ 𝐴, 𝐵 ⊑ ∃𝑝.𝐵}, we obtain the set {𝐴 ⊑ 𝐵} as output.

Here, we continue with another example with the same, simple

template as in the previous example. This simple template serves

to demonstrate the consequences of variable concept subsumption

between the variables ?y and ?x directly, as the output shape 𝐴 ⊑
𝐵. This subsumption relationship results from the mapping step

discussed in Section 6: Since we know for all bindings of y in the

query, that both the pattern y:𝐴 is always satisfied (since 𝐵 ⊑ 𝐴) and

the same for (y, 𝑧):𝑝, 𝑧:𝐵 (for some fresh variable 𝑧, since 𝐵 ⊑ ∃𝑝.𝐵),
we can obtain a mapping resulting in subsumption 𝑉y ⊑ 𝑉x.

Example 14. With input 𝑞6 = {x:𝐴, y:𝐵, (x, y):𝑝} ← {x:𝐴, y:𝐵, }
and 𝑆6 = {}, we obtain the set {𝐴 ⊑ ∀𝑝− .𝐴,𝐴 ⊑ ∀𝑝.𝐵,𝐴 ⊑
∃𝑝.𝐵, 𝐵 ⊑ ∀𝑝− .𝐴, 𝐵 ⊑ ∀𝑝.𝐵, 𝐵 ⊑ ∃𝑝− .𝐴, ∃𝑝− .⊤ ⊑ 𝐵, ∃𝑝− .⊤ ⊑
∀𝑝− .𝐴, ∃𝑝− .⊤ ⊑ ∀𝑝.𝐵, ∃𝑝− .⊤ ⊑ ∃𝑝− .𝐴, ∃𝑝.⊤ ⊑ 𝐴, ∃𝑝.⊤ ⊑ ∀𝑝− .𝐴,
∃𝑝.⊤ ⊑ ∀𝑝.𝐵, ∃𝑝.⊤ ⊑ ∃𝑝.𝐵, } as output.

11

http://www.w3.org/ns/shacl#
http://www.w3.org/ns/shacl#

Philipp Seifer, Daniel Hernández, Ralf Lämmel, and Steffen Staab

With this example, we demonstrate inference of shapes from the

query (template) itself, without any given input shapes, resulting

only from the closure assumptions used in the method. The query

pattern simply introduces the variables ?x and ?y without any

further context (arbitrary names 𝐴 and 𝐵). In the template, we

introduce the additional role name 𝑝 between these two variables.

D PROOFS

In this section, we present the full proofs for Proposition 1 through

Proposition 8, and introduce Theorem 1 (and its proof) as well as

Proposition 9 (and its proof).

D.1 Proof for Proposition 1

In order to prove Proposition 1 we need to show that every model

of the validation knowledge base of a graph is isomorphic to the

canonical model of the graph. To this end, we introduce the follow-

ing lemma.

Lemma 2. Let 𝐺 be a graph, I𝐺 the canonical interpretation of 𝐺 ,

and (T𝐺 ,𝐺) the validation knowledge base of 𝐺 . Then, all models I
of (T𝐺 ,𝐺) are isomorphic to I𝐺 .

Proof. The fact that I and I𝐺 are isomorphic follows from the

existence of a function 𝑓 : ΔI𝐺 → ΔI satisfying the following

properties:

P.1 Function 𝑓 is bijective.

P.2 𝑓 (𝑎I𝐺) = 𝑎I for every 𝑎 ∈ I.
P.3 {𝑓 (𝑥) | 𝑥 ∈ 𝐴I𝐺 } = 𝐴I for every 𝐴 ∈ C.
P.4 {(𝑓 (𝑥), 𝑓 (𝑦)) | (𝑥,𝑦) ∈ 𝑟I𝐺 } = 𝑟I for every 𝑟 ∈ R.
We next prove properties P.1 to P.4 for function 𝑓 .

Proof for P.1: Let 𝑓 : ΔI𝐺 → ΔI be the function defined as

𝑓 (𝑎) = 𝑎I , for every individual name 𝑎 ∈ I. Function 𝑓

is well-defined because, by definition of I𝐺 , ΔI𝐺 = I. To
show that function 𝑓 is bijective, it suffices to prove that 𝑓

is injective and surjective:

Surjective: The domain closure assumption axioms in the

knowledge base (T𝐺 ,𝐺) imply that ΔI =
⋃

𝑎∈I{𝑎I }.
Then, for every element 𝑒 ∈ ΔI , there exists an indi-

vidual name {𝑎} such that 𝑒 ∈ {𝑎}I . That is, 𝑓 (𝑎) = 𝑒 .

Hence, 𝑓 is surjective.

Injective: The unique-name assumption axioms in the

knowledge base (T𝐺 ,𝐺) imply that I |= {𝑏}⊓{𝑎} ≡ ⊥
for every pair of distinct individual names𝑎 and𝑏. That

is, 𝑓 (𝑎) ≠ 𝑓 (𝑏). Hence, 𝑓 is injective.

Proof for P.2: Let 𝑎 ∈ I be an arbitrary individual name. By def-

inition of I𝐺 , 𝑎I𝐺 = 𝑎. By definition of 𝑓 , 𝑓 (𝑎) = 𝑎I .
Hence, combining both identities, we obtain the identity

𝑓 (𝑎I𝐺) = 𝑎I .
Proof for P.3: Let 𝐴 ∈ C be an arbitrary concept name. By def-

inition of I𝐺 , 𝐴I𝐺 = {𝑎 | 𝑎:𝐴 ∈ 𝐺}. The closed-world

assumption axioms in the knowledge base (T𝐺 ,𝐺) imply

that 𝐴I =
⋃

𝑎:𝐴∈𝐺 {𝑎I }. That is, 𝐴I = {𝑎I | 𝑎:𝐴 ∈ 𝐺}.
Since 𝑓 (𝑎) = 𝑎I , we conclude that {𝑓 (𝑎) | 𝑎 ∈ 𝐴I𝐺 } = 𝐴I .

Proof for P.4: Let 𝑟 ∈ R be an arbitrary role name. By definition

of I𝐺 , 𝑟I𝐺 = {(𝑎, 𝑏) | (𝑎, 𝑏):𝑟 ∈ 𝐺}. The closed-world as-

sumption axioms in the knowledge base (T𝐺 ,𝐺) imply that

(∃𝑟 .{𝑏})I =
⋃
(𝑎,𝑏) :𝑟 ∈𝐺 {𝑎I }. That is, 𝑟I = {(𝑎I , 𝑏I) |

(𝑎, 𝑏):𝑟 ∈ 𝐺}}. Since 𝑓 (𝑎) = 𝑎I and 𝑓 (𝑏) = 𝑏I , we con-
clude that {(𝑓 (𝑎), 𝑓 (𝑏)) | (𝑎, 𝑏) ∈ 𝑟I𝐺 } = 𝑟 I .

Hence, we have proved the lemma. □

Proof of Proposition 1. This proof follows from Lemma 2,

which states that (T𝐺 ,𝐺) has a unique model up to isomorphism,

namely I𝐺 ; thus for every set Σ of ALCHOI axioms, I𝐺 |= Σ
if and only if I𝐺 |= (T𝐺 ∪ Σ,𝐺). That is, I𝐺 |= 𝑆 if and only if

(T𝐺 ∪ 𝑆,𝐺) is consistent. Hence, statements (i) and (ii) are equiva-

lent. Similarly, statements (ii) are (iii) are equivalent because (T𝐺 ,𝐺)
has a unique model up to isomorphism. In general, given two sets

of axioms Σ1 and Σ2, the consistence of (Σ1,𝐺) and (Σ2,𝐺) does
not imply the consistency of (Σ1 ∪ Σ2,𝐺) because the sets models

of (Σ1,𝐺) and (Σ2,𝐺) can be non-empty and disjoint. However, in

this case the implication is true because (T𝐺 ,𝐺) admits a single

model up to isomorphism. □

D.2 Proof for Proposition 2

In order to prove Proposition 2, we show by contraposition that if

a given shape 𝑠 does not satisfy the conditions of the proposition,

then it is irrelevant.

To this end, we introduce two lemmas, relating the structure of a

concept expression𝐶 with the vocabulary of𝐶 and of a given graph

𝐺 . First, we consider concept names and existential quantification.

Lemma 3. Let 𝐶 be a concept description defined as follows:

𝐶 ::= 𝐴 | ∃𝑝.⊤ | ∃𝑝− .⊤ | ∃𝑝.𝐴 | ∃𝑝− .𝐴 ,

where 𝐴 is a concept name, and 𝑝 is a role name. Let 𝐺 be a Simple

RDF graph, and (T𝐺 ,𝐺) be the validation knowledge base of𝐺 . Then,

voc(𝐶) ⊈ voc(𝐺) implies (T𝐺 ,𝐺) |= 𝐶 ≡ ⊥.

Proof. LetI be amodel of (T𝐺 ,𝐺). Wewill prove this lemma by

proving the contraposition: the existence of an individual 𝑎I ∈ 𝐶I
implies that voc(𝐶) ⊆ voc(𝐺). By Lemma 2, every model I of

(T𝐺 ,𝐺) is isomorphic to the canonical model of𝐺 . The proof follows

case by case:

(1) If 𝐶 is 𝐴 then, 𝑎:𝐴 ∈ 𝐺 . Hence, voc(𝐶) ⊆ voc(𝐺).
(2) If 𝐶 is ∃𝑝.⊤ or ∃𝑝− .⊤, then there is an individual name 𝑏

such that (𝑎, 𝑏):𝑝 ∈ 𝐺 or (𝑏, 𝑎):𝑝 ∈ 𝐺 . Hence, voc(𝐶) ⊆
voc(𝐺).

(3) If 𝐶 is ∃𝑝.𝐴 or ∃𝑝− .𝐴, then there is an individual name 𝑏

such that 𝑏:𝐴 ∈ 𝐺 , and (𝑎, 𝑏):𝑝 ∈ 𝐺 or (𝑏, 𝑎):𝑝 ∈ 𝐺 . Hence,
voc(𝐶) ⊆ voc(𝐺).

Hence, we prove the lemma by contraposition. □

Next, we consider universal quantification.

Lemma 4. Let 𝐶 be a concept description defined as follows:

𝐶 ::= ∀𝑝.𝐴 | ∀𝑝− .𝐴 ,

where 𝐴 is a concept name, and 𝑝 is a role name. Let 𝐺 be a Simple

RDF graph, and (T𝐺 ,𝐺) be the validation knowledge base of 𝐺 . Then

the following holds.

(1) If 𝑝 ∉ voc(𝐺) then (T𝐺 ,𝐺) |= 𝐶 ≡ ⊤.
(2) If 𝐴 ∉ voc(𝐺) and 𝐶 is ∀𝑝.𝐴 then

(T𝐺 ,𝐺) |= 𝐶 ≡ ¬(∃𝑝.⊤).
12

From Shapes to Shapes (Extended Version)

(3) If 𝐴 ∉ voc(𝐺) and 𝐶 is ∀𝑝− .𝐴 then

(T𝐺 ,𝐺) |= 𝐶 ≡ ¬(∃𝑝− .⊤).

Proof. Let I be a model of the validation knowledge base of

graph 𝐺 . We prove this lemma using the equivalencies ∀𝑝.𝐴 ≡
¬∃𝑝.¬𝐴 and ∀𝑝− .𝐴 ≡ ¬∃𝑝− .¬𝐴.

(1) If 𝑝 ∉ voc(𝐺) then 𝑝I is empty, since I is isomorphic to

the canonical interpretation of 𝐺 (Lemma 2). Thus, every

element in the domain ΔI belongs to concepts ¬∃𝑝.¬𝐴 and

¬∃𝑝− .¬𝐴. Hence, I |= 𝐶 ≡ ⊤.
(2) If 𝐴 ∉ voc(𝐺) then 𝐴I is empty, since I is isomorphic to

the canonical interpretation of 𝐺 (Lemma 2). Then, I |=
¬𝐴 ≡ ⊤. Hence,
(a) If 𝐶 is ∀𝑝.𝐴, then I |= 𝐶 ≡ ¬(∃𝑝.⊤).
(b) If 𝐶 is ∀𝑝− .𝐴, then I |= 𝐶 ≡ ¬(∃𝑝− .⊤).

SinceI is an arbitrary model of (T𝐺 ,𝐺), we conclude this proof. □

Proof of Proposition 2. Let𝜓 ⊑ 𝜙 be a Simple SHACL shape,

𝑞 be a SCCQ, and 𝐺 be a Simple RDF graph with voc(𝐺) ⊆ voc(𝑞),
and (T𝐺 ,𝐺) be the validation knowledge base of graph𝐺 . We have

the following disjoint cases:

(1) Case voc(𝜓) ⊈ voc(𝑞). Then, by Lemma 3, (T𝐺 ,𝐺) |= 𝜓 ≡
⊥ (since𝜓 is, per definition, restricted to one of the cases

covered in the lemma). Hence, shape𝜓 ⊑ 𝜙 is not relevant

(Definition 11).

(2) Case voc(𝜓) ⊆ voc(𝑞) and 𝜙 has the form ∀𝑝.𝐴 or ∀𝑝− .𝐴.
We have the following subcases:

(a) Case 𝑝 ∉ voc(𝑞). Then, by Lemma 4, (T𝐺 ,𝐺) |= 𝜙 ≡ ⊤.
Hence, shape𝜓 ⊑ 𝜙 is not relevant.

(b) Case 𝑝 ∈ voc(𝑞) and 𝐴 ∉ voc(𝐺). Then, by Lemma 3,

(T𝐺 ,𝐺) |= ¬𝐴 ≡ ⊤. We have the following subcases:

(i) Case 𝜙 is ∀𝑝.𝐴, then (T𝐺 ,𝐺) |= 𝜙 ≡ ¬(∃𝑝.⊤).
(ii) Case 𝜙 is ∀𝑝− .𝐴, then (T𝐺 ,𝐺) |= 𝜙 ≡ ¬(∃𝑝− .⊤).

(3) Case voc(𝜓) ⊆ voc(𝑞) and voc(𝜙) ⊈ voc(𝑞) and 𝜙 has

not the form ∀𝑝.𝐴 or ∀𝑝− .𝐴. Then, 𝜙 has one of the forms

covered in Lemma 3, and by this lemma, (T𝐺 ,𝐺) |= 𝜙 ≡ ⊥.
Therefore, the shape is not relevant.

(4) Case voc(𝜓) ⊆ voc(𝑞) and voc(𝜙) ⊆ voc(𝑞). We have the

following subcases:

(a) Shape 𝜓 ⊑ 𝜙 has the form 𝐴 ⊑ 𝐴. Then, the shape is

not relevant because it is a tautology.

(b) Shape𝜓 ⊑ 𝜙 has not the form 𝐴 ⊑ 𝐴.

Hence, we have shown that in all cases, except for those mentioned

in Proposition 2 (2.b.i, 2.b.ii, and 4.b), the shapes are not relevant.

Hence, for all relevant shapes, the properties in Proposition 2 hold.

□

D.3 Proof for Proposition 3

Proof. We prove first the second case of Proposition 3, namely

valid(𝐺
med

, {𝜑}) if and only if valid(𝐺ext, { ¤𝜑}). The proofs for the
other two cases work exactly analogously, since all three subgraphs

𝐺in, 𝐺med
and 𝐺out form distinct namespaces.

Let Iext and Imed
be the canonical models of 𝐺

med
and 𝐺ext,

respectively. To prove this case, it suffices to show that for every

axiom 𝜑 not including any names with dots (e.g., ¤𝐴, ¥𝐴, ¤𝑝 , or ¥𝑝), and
every concept expression𝐶 occurring in 𝜑 ,𝐶Iext = 𝐶Imed . Indeed, if

this is true for every arbitrary concept expression 𝐶 in 𝜑 , then for

every such axiom 𝜑 , valid(𝐺
med

, {𝜑}) if and only valid(𝐺ext, { ¤𝜑}).
By construction of 𝐺ext, for every concept assertion 𝑎:𝐴 ∈ 𝐺

med
,

𝑎: ¤𝐴 ∈ 𝐺ext if and only if 𝑎: ¤𝐴 ∈ ¤𝐺
med

, and for every role assertion

(𝑎, 𝑏):𝑝 ∈ 𝐺
med

, (𝑎, 𝑏): ¤𝑝 ∈ 𝐺ext if and only if (𝑎, 𝑏): ¤𝑝 ∈ ¤𝐺
med

. That

is, for every concept name 𝐴 ∈ C and role name 𝑝 ∈ R, it holds
that 𝐴Imed = ¤𝐴Iext

and 𝑝Imed = ¤𝑝Iext
. Hence, for every concept

description 𝐶 , 𝐶Imed = ¤𝐶Iext
.

We give below, for the sake of completeness, the remaining two

cases, case 1. and case 3.

• Case 1. By construction of𝐺ext, for every concept assertion

𝑎:𝐴 ∈ 𝐺in, 𝑎:𝐴 ∈ 𝐺ext if and only if 𝑎:𝐴 ∈ 𝐺in, and for every

role assertion (𝑎, 𝑏):𝑝 ∈ 𝐺in, (𝑎, 𝑏):𝑝 ∈ 𝐺ext if and only if

(𝑎, 𝑏):𝑝 ∈ 𝐺in. That is, for every concept name 𝐴 ∈ C and

role name 𝑝 ∈ R, it holds that 𝐴Iin = 𝐴Iext
and 𝑝Iin = 𝑝Iext

.

Hence, for every concept description 𝐶 , 𝐶Iin = 𝐶Iext
.

• Case 3. By construction of𝐺ext, for every concept assertion

𝑎:𝐴 ∈ 𝐺out, 𝑎: ¥𝐴 ∈ 𝐺ext if and only if 𝑎: ¥𝐴 ∈ ¥𝐺out, and for

every role assertion (𝑎, 𝑏):𝑝 ∈ 𝐺out, (𝑎, 𝑏): ¥𝑝 ∈ 𝐺ext if and

only if (𝑎, 𝑏): ¥𝑝 ∈ ¥𝐺out. That is, for every concept name

𝐴 ∈ C and role name 𝑝 ∈ R, it holds that 𝐴Iout = ¥𝐴Iext

and 𝑝Iout = ¥𝑝Iext
. Hence, for every concept description 𝐶 ,

𝐶Iout = ¥𝐶Iext
.

□

D.4 Proof for Corollary 1

Proof. The proof for Corollary 1 follows immediately from case

3 of Proposition 3. Let 𝑞 be a SCCQ, Σ a set of ALCHOI axioms

such that valid(𝐺ext, Σ) for every extended graph𝐺ext of 𝑞, and 𝑠 a

Simple SHACL shape such that Σ |= ¥𝑠 . Then also valid(𝐺ext, {¥𝑠}),
from which by case 3 of Proposition 3 follows immediately that

valid(𝐺out, 𝑠). □

D.5 Proof for Proposition 4

Proof. By construction, each axiom in UNA(𝑞) is also an axiom
in the validation knowledge base of the graph𝐺ext (see Definition 4).

□

D.6 Proof for Proposition 5

We first prove Lemma 1.

Proof. We prove Lemma 1 by contradiction. Let 𝑞 = 𝐻 ← 𝑃 be

a query such that vcg(𝑃) is acyclic. Let𝐺 be a graph, and let 𝑥 be a

variable corring in 𝑃 . Let 𝐶 be a concept defined as

𝐶 ≡
d

𝑥 :𝐴∈𝑃𝐴 ⊓
d
(𝑥,𝑢) :𝑝∈𝑃∃𝑝.C𝑢 ⊓

d
(𝑢,𝑥) :𝑝∈𝑃∃𝑝− .C𝑢 .

and assume that there is an individual name 𝑐 in 𝐺 such that 𝑐:𝐶 is

valid in 𝐺ext, but 𝑐:𝑉𝑥 is not valid in 𝐺ext.

Without loss of generality, assume that 𝑃 includes a single con-

cept assertion including the variable 𝑥 , namely 𝑥 :𝐴, and no role

assertions (𝑥, 𝑑):𝑟 where 𝑑 is an individual name. Indeed, if there

are serveral atoms 𝑥 :𝐴1, . . . , 𝑥 :𝐴𝑛 and (𝑥, 𝑑1):𝑟1, . . . , (𝑥, 𝑑𝑚):𝑟𝑚 we

can define𝐴 ≡ 𝐴1⊓ . . .⊓𝐴𝑚 ⊓∃𝑟1 .{𝑑1} ⊓ . . .⊓∃𝑟𝑚 .{𝑑𝑚}. Without

loss of generality, assume that 𝐺ext includes the graph

{𝑎:𝑉𝑦, (𝑎, 𝑐):𝑟, 𝑐:𝐴, (𝑐, 𝑏):𝑠, 𝑏:𝑉𝑧 }
13

Philipp Seifer, Daniel Hernández, Ralf Lämmel, and Steffen Staab

Let Ω be the set of all mappings 𝜇 such that 𝜇 (𝑃) ⊆ 𝐺 .

Then, by definition there exist the mappings 𝜇1, 𝜇2 ∈ Ω such that

𝜇1 (𝑦) = 𝑎 and 𝜇2 (𝑧) = 𝑏, but there not exists the mapping 𝜇 ∈ Ω
such that 𝜇 (𝑥) = 𝑐 . Then, 𝜇1 (𝑥) ≠ 𝑐 and 𝜇2 (𝑥) ≠ 𝑐 .

Let 𝑃𝑦 be the part of pattern 𝑃 which connects with variables 𝑦

and 𝑥 , but not 𝑧. Let 𝑃𝑧 be the part of pattern 𝑃 which connects with

variables 𝑧 and 𝑥 , but not 𝑦. Let

𝜇
𝑦

1
= 𝜇1

��
var(𝑃𝑦)\{𝑥 } , 𝜇𝑧

1
= 𝜇1

��
var(𝑃𝑧)\{𝑥 } ,

𝜇
𝑦

2
= 𝜇2

��
var(𝑃𝑦)\{𝑥 } , 𝜇

𝑦

2
= 𝜇2

��
var(𝑃𝑧)\{𝑥 } .

Then, 𝜇1 = 𝜇
𝑦

1
∪{𝑥 ↦→ 𝜇1 (𝑥)}∪𝜇𝑧

1
and 𝜇2 = 𝜇

𝑦

2
∪{𝑥 ↦→ 𝜇2 (𝑥)}∪𝜇𝑧

2
.

Since 𝜇
𝑦

1
and 𝜇𝑧

2
share no variables, 𝜇3 = 𝜇

𝑦

1
∪ {𝑥 ↦→ 𝑐} ∪ 𝜇𝑧

2
is a

mapping.

By the definition of the semantics of SCCQ, 𝜇3 ∈ Ω. Then 𝑐:𝑉𝑥 is

valid in 𝐺ext. This contradicts the initial assumptions, from which

we conclude 𝑉𝑥 ⊒ 𝐶 . □

We now continue with the proof for Proposition 5.

Proof. We prove Proposition 5 by showing the validity of this

proposition for the cases 1 through 5 in Definition 16. We divide

the proof in two groups: First, for cases 1, 2, and 3, and then for

cases 4 and 5.

Cases 1, 2, and 3. For cases 1 through 3, we divide the proof in

two parts each, one for either inclusion (i.e., ⊑ and ⊒). To show

an inclusion 𝐴 ⊑ 𝐵 in 𝐺ext, we will assume that there exists at

least one valuation 𝜇 such that 𝜇 (𝑃) ⊆ 𝐺in, and then prove that

inclusion {𝑎} ⊑ 𝐴 implies inclusion {𝑎} ⊑ 𝐵 for every individual

name occurring in 𝐺ext.

1⊑ ¤𝐴 ⊑ 𝐴 ⊓ ⊔
𝑢:𝐴∈𝑃 C𝑢 . Let 𝑎 be an arbitrary individual name

such that {𝑎} ⊑ ¤𝐴 is valid in 𝐺ext. Then 𝑎: ¤𝐴 ∈ 𝐺ext, so

𝑎:𝐴 ∈ 𝐺
med

. Then 𝑎:𝐴 ∈ 𝐺in and there is an atom 𝑣 :𝐴 ∈ 𝑃
where 𝑣 is either individual name 𝑎 or a variable 𝑥 . If 𝑣 is

𝑎, then {𝑎} ⊑ C𝑣 is trivially valid in 𝐺ext. Otherwise 𝑣 is 𝑥

and by construction, 𝑎:𝑉𝑥 ∈ 𝐺ext. Then, {𝑎} ⊑ C𝑣 is valid

in𝐺ext, so {𝑎} ⊑
⊔
𝑢:𝐴∈𝑃 C𝑢 is also valid in𝐺ext. Similarly,

since 𝐺in ⊆ 𝐺ext, 𝑎:𝐴 ∈ 𝐺ext, so {𝑎} ⊑ 𝐴 is valid in 𝐺ext.

Therefore, {𝑎} ⊑ 𝐴 ⊓ ⊔
𝑢:𝐴∈𝑃 C𝑢 is valid in 𝐺ext.

1⊒ ¤𝐴 ⊒ 𝐴 ⊓ ⊔
𝑢:𝐴∈𝑃 C𝑢 . Let 𝑎 be an arbitrary individual name

such that {𝑎} ⊑ 𝐴 ⊓ ⊔
𝑢:𝐴∈𝑃 C𝑢 is valid in 𝐺ext. By con-

struction, for every individual name 𝑏, if 𝑏:𝐴 ∈ 𝐺ext then

𝑏:𝐴 ∈ 𝐺in. Since 𝑎:𝐴 ∈ 𝐺ext, 𝑎:𝐴 ∈ 𝐺in holds. By definition,

{𝑎} ⊑ C𝑢 is valid in𝐺ext for at least one atom 𝑢:𝐴 ∈ 𝑃 . If 𝑢
is an individual name, then 𝑢 is 𝑎, and 𝑎:𝐴 ∈ 𝑃 . If 𝐺

med
is

not empty, then 𝑎:𝐴 ∈ 𝐺
med

. Otherwise, if 𝑢 is a variable 𝑥

then C𝑢 is the variable concept𝑉𝑥 , and 𝑎:𝑉𝑥 ∈ 𝐺ext. By def-

inition, 𝑎 is an instance of variable 𝑥 , and thus 𝑎:𝐴 ∈ 𝐺
med

.

Hence, 𝑎:𝐴 ∈ 𝐺
med

in all possible cases (when 𝑢 is an in-

dividual name or when 𝑢 is a variable). By construction,

𝑎: ¤𝐴 ∈ 𝐺ext and therefore {𝑎} ⊑ ¤𝐴.
2⊑ ¥𝐴 ⊑

⊔
𝑢:𝐴∈𝐻 C𝑢 . Let 𝑎 be an arbitrary individual name such

that {𝑎} ⊑ ¥𝐴 is valid in 𝐺ext. By construction, 𝑎:𝐴 ∈ 𝐺out

so there is an atom 𝑣 :𝐴 ∈ 𝐻 such that 𝑎:𝐴 is an instance of

pattern 𝑣 :𝐴, and 𝑣 is either concept name 𝑎 or a variable 𝑥 .

If 𝑣 is 𝑎 then {𝑎} ⊑ C𝑣 is trivially valid in𝐺ext. Otherwise 𝑣

is 𝑥 and since 𝑎 is an instance of 𝑥 , it holds that 𝑎:𝑉𝑥 ∈ 𝐺ext,

so {𝑎} ∈ C𝑣 is valid in 𝐺ext. Therefore, {𝑎} ⊑
⊔
𝑢:𝐴∈𝐻 C𝑢

is valid in 𝐺ext.

2⊒ ¥𝐴 ⊒
⊔
𝑢:𝐴∈𝐻 C𝑢 . Let 𝑎 be an arbitrary individual name such

that {𝑎} ⊑ ⊔
𝑢:𝐴∈𝐻 C𝑢 is valid in𝐺ext. Then there is at least

one atom 𝑣 :𝐴 ∈ 𝐻 such that {𝑎} ⊑ C𝑣 is valid in 𝐺ext. If 𝑣

is 𝑎, then 𝑎:𝐴 ∈ 𝐺out, and thus 𝑎: ¥𝐴 ∈ 𝐺ext. Otherwise 𝑣 is

a variable 𝑥 , and 𝑎:𝑉𝑥 ∈ 𝐺ext. By the definition of variable

concepts, 𝑎:𝐴 ∈ 𝐺out, so 𝑎: ¥𝐴 ∈ 𝐺ext. Therefore, {𝑎} ⊑ ¥𝐴 is

valid in 𝐺out.

3⊑ Variable (⊑). Let 𝑎 be an arbitrary individual name such

that {𝑎} ⊑ 𝑉𝑥 is valid in 𝐺ext. We show separately for each

operand 𝑘 in the intersection, that {𝑎} ⊑ 𝑘 , assuming that

the respective component is defined, below.

(a) For 𝑘 =
d

𝑥 :𝐴∈𝑃𝐴: If {𝑎} ⊑ 𝑉𝑥 , then by definition 𝑎 is

an instance of variable 𝑥 in 𝑃 , i.e., 𝑎 ∈ 𝜇 (𝑥). Then for

each concept name 𝐴 occurring in an atomic pattern

of the form 𝑥 :𝐴 ∈ 𝑃 there must be 𝑎:𝐴 ∈ 𝐺in (since

otherwise 𝑎 ∉ 𝜇 (𝑥)), so also 𝑎:𝐴 ∈ 𝐺ext for each such

𝐴. Therefore, {𝑎} ⊑ 𝑘 .

(b) For 𝑘 =
d
(𝑥,𝑢) :𝑝∈𝑃∃𝑝.C𝑢 : If {𝑎} ⊑ 𝑉𝑥 , then by defini-

tion 𝑎 is an instance of variable 𝑥 in 𝑃 , i.e., 𝑎 ∈ 𝜇 (𝑥).
Then for each property name 𝑝 occurring in an atomic

pattern of the form (𝑥,𝑢):𝑝 ∈ 𝑃 , one of two cases ap-
plies: If 𝑢 is an individual name, then there must be

(𝑎,𝑢):𝑝 ∈ 𝐺in, so also (𝑎,𝑢):𝑝 ∈ 𝐺ext for such 𝑝 . If 𝑢 is

a variable name, then there must be (𝑎, 𝑏):𝑝 ∈ 𝐺in, so

also (𝑎, 𝑏):𝑝 ∈ 𝐺ext, and also 𝑏 ∈ 𝜇 (𝑢) (since otherwise
𝑎 ∉ 𝜇 (𝑥)). Therefore, {𝑎} ⊑ 𝑘 .

(c) For 𝑘 =
d
(𝑢,𝑥) :𝑝∈𝑃∃𝑝− .C𝑢 : Analogous to the previ-

ous case.

If at least one component 𝑘 is defined, then it follows that

{𝑎} ⊑
l

𝑥 :𝐴∈𝑃
𝐴 ⊓

l

(𝑥,𝑢) :𝑝∈𝑃
∃𝑝.C𝑢 ⊓

l

(𝑢,𝑥) :𝑝∈𝑃
∃𝑝− .C𝑢 .

We know, that at least one component 𝑘 must be defined,

since otherwise concept 𝑉𝑥 would not be defined, as there

must exists either 𝑥 :𝐴 ∈ 𝑃 for some concept name 𝐴, or

(𝑥,𝑢):𝑝 ∈ 𝑃 (or (𝑥,𝑢):𝑝 ∈ 𝑃 respectively) for some property

𝑝 , if 𝑥 ∈ var(𝑃). Then, at least one of the components 𝑘

must be defined as well, and we prove this case.

3⊒ Variable (⊒).The inverse case follows directly fromLemma 1.

This concludes the proof of cases 1., 2., and 3. We next consider

cases 4. and 5.

Cases 4 and 5. Since the proofs of these two cases are similar, we

exemplify them proving the equivalency:

∃ ¤𝑝.C𝑢 ≡
⊔
(𝑣,𝑢) :𝑝∈𝑃 C𝑣

Let I be the canonical model of𝐺ext. By definition of the validation

knowledge base of a graph, 𝑎I ∈ (∃ ¤𝑝.C𝑢)I if and only if there

exists an individual name 𝑏 such that (𝑎, 𝑏): ¤𝑝 ∈ 𝐺ext and (𝑎I , 𝑏I) ∈
𝑝𝐼 . By construction, (𝑎, 𝑏): ¤𝑝 ∈ 𝐺ext if and only if there exists an

atom (𝑣,𝑢):𝑝 ∈ 𝑃 where 𝑣 is the individual name 𝑎 or a variable 𝑥 ,

and 𝑢 is the individual name 𝑏 or a variable 𝑦 (and thus 𝑎𝐼 ∈ C
I
𝑣).

Thus, 𝑎I ∈ (∃ ¤𝑝.C𝑢)I if and only if 𝑎I ∈ ⋃
(𝑣,𝑢) :𝑝∈𝑃 C

I
𝑣 . Hence,

∃ ¤𝑝.C𝑢 ≡
⊔
(𝑣,𝑢) :𝑝∈𝑃 C𝑣 .

14

From Shapes to Shapes (Extended Version)

Similarly, we exemplify the proof of the remaining axioms of the

following form, using one of these axioms:

∃ ¤𝑝.⊤ ≡
⊔

(𝑢,𝑣) :𝑝∈𝑃
C𝑢 ⊓∃ ¤𝑝.C𝑣

By definition of the validation knowledge base of a graph, 𝑎I ∈
(∃ ¤𝑝.⊤)I if and only if there exists an individual name 𝑏 such that

(𝑎, 𝑏): ¤𝑝 ∈ 𝐺ext and (𝑎I , 𝑏I) ∈ 𝑝I . By construction, (𝑎, 𝑏): ¤𝑝 ∈ 𝐺ext

if and only if there exists an atom (𝑢, 𝑣):𝑝 ∈ 𝑃 where 𝑢 is the

individual name 𝑎 or a variable 𝑥 and 𝑣 is the individual name 𝑏 or a

variable 𝑦. Then, 𝑎I ∈ C
I
𝑢 and 𝑎I ∈ (∃ ¤𝑝.C𝑣)I , so 𝑎I ∈ (∃ ¤𝑝.⊤)I

if and only if 𝑎I ∈ ⋃(𝑢,𝑣) :𝑝∈𝑃 C
I
𝑢 ∩(∃ ¤𝑝.C𝑣)I .

Conclusion. Finally, given the proofs for the individual cases

listed above, we prove this proposition. □

D.7 Proof for Proposition 6

We begin with the following utility definition.

Definition 25. For every individual name or variable 𝑢 we define

the set of individual names ins(𝑢) as follows:

ins(𝑢) =
{
{𝑎} if 𝑢 is ind. name 𝑎,

{𝑎 | 𝑎 instance of 𝑥} if 𝑢 is a variable 𝑥 .

In order to prove Proposition 6, we now define the following

lemma, stating a relation between ins(𝑢) (Definition 25) and C𝑢

(Definition 14).

Lemma 5. Let 𝐻 ← 𝑃 be a SCCQ, 𝐺ext an extended graph for the

query, and 𝑢 and 𝑣 two individual names or variables occurring in

the query. Then, ins(𝑣) ⊆ ins(𝑢) if and only if the inclusion C𝑣 ⊑ C𝑢

is valid for graph 𝐺ext.

Proof. Let 𝐼 be an interpretation of the validation knowledge

base of graph 𝐺ext. By definition, for every individual 𝑏 ∈ ⊤𝐼 there
exists a unique individual name 𝑎 in the graph such that 𝑎𝐼 = 𝑏. Let

𝑢 and 𝑣 be two individual or variable names occurring in pattern

𝑃 . Then, ·𝐼 defines a bijection between sets ins(𝑢) and C
𝐼
𝑢 , and a

bijection between sets ins(𝑣) and C
𝐼
𝑣 . Thus, ins(𝑣) ⊆ ins(𝑢) if and

only if C
𝐼
𝑣 ⊆ C

𝐼
𝑢 . Hence, ins(𝑣) ⊆ ins(𝑢) if and only if C𝑣 ⊑ C𝑢 . □

Proof for Proposition 6. Let 𝑃1 and 𝑃2 be components of graph

pattern 𝑃 , the function ℎ : var(𝑃1) → var(𝑃2) be a component map,

and 𝑥 and 𝑦 be two variables in 𝑃1 and 𝑃2, respectively, such that

ℎ(𝑥) = 𝑦. According to Lemma 5, to prove that 𝑉𝑦 ⊑ 𝑉𝑥 is valid

in graph𝐺ext it suffices to prove 𝑎 ∈ ins(𝑦) implies 𝑎 ∈ ins(𝑥) for
every individual name 𝑎.

Let 𝑎 be an individual name in ins(𝑦). Then, there exists a val-
uation 𝜇 such that 𝜇 (𝑃) ⊆ 𝐺in. Let ℎ

′
: var(𝑃) → var(𝑃) be the

function that extends ℎ for the variables in 𝑃 that are not in the

domain of ℎ as follows:

ℎ′ (𝑧) =
{
𝑧 if 𝑧 ∉ dom(ℎ),
ℎ(𝑧) if 𝑧 ∈ dom(ℎ).

By construction, ℎ′ (𝑃) ⊆ 𝑃 . Applying 𝜇 to both sides of the in-

clusion we get 𝜇 (ℎ′ (𝑃)) ⊆ 𝜇 (𝑃). By transitivity, 𝜇 (ℎ′ (𝑃)) ⊆ 𝐺in.

That is, 𝜇′ (𝑃) ⊆ 𝐺in where 𝜇′ is the composite valuation ℎ′𝜇. Since
𝜇′ (𝑥) = 𝑎, we conclude that 𝑎 ∈ ins(𝑥). □

D.8 Proof for Proposition 7

Proof. To prove Proposition 7, it suffices to show that the ex-

tension approach is sound, i.e., that both the extended and non-

extended components are equivalent with respect to the bindings

for all actual query variables, since then the proof for Proposition 6

applies.

Consider the variable 𝑥 as a target of shape 𝑠 = 𝜓 ⊑ 𝜙 . Then, the

following extensions extp(𝑥, 𝜙) are permitted, depending on 𝜙 :

(1) 𝜙 = 𝐴 and {𝑥 :𝐴}. For any input graph 𝐺in it holds that

valid(𝐺in, {𝜓 ⊑ 𝐴}). Then ∀𝑎 ∈ 𝜇 (𝑥) : 𝑎:𝐴 ∈ 𝐺in, since 𝑥

is a target of 𝑠 . Therefore, pattern 𝑥 :𝐴 is satisfied for all𝐺in.

(2) 𝜙 = ∃𝑝.𝐴 and {(𝑥, 𝑥0):𝑝, 𝑥0:𝐴}. For every input graph 𝐺in,

valid(𝐺in, {𝜓 ⊑ ∃𝑝.𝐴}). Then for all𝑎 ∈ 𝜇 (𝑥), (𝑎, 𝑏):𝑝,𝑏:𝐴 ∈
𝐺in, since 𝑥 is a target of 𝑠 . Therefore, patterns (𝑥, 𝑥0):𝑝 and

𝑥0:𝐴 are satisfied for all 𝐺in.

(3) 𝜙 = ∃𝑝− .𝐴 and {(𝑥0, 𝑥):𝑝, 𝑥0:𝐴}. This case is similar to the

previous case.

(4) 𝜙 = ∀𝑝.𝐴 and {𝑦:𝐴 | (𝑥,𝑦):𝑝 ∈ 𝑃ext}. For every input

graph 𝐺in, valid(𝐺in, {𝜓 ⊑ ∀𝑝.𝐴}). Then, for all 𝑎 ∈ 𝜇 (𝑥),
(𝑎, 𝑏):𝑝 ∈ 𝐺in implies 𝑏:𝐴 ∈ 𝐺in, since 𝑥 is a target of 𝑠 .

Therefore, for any pattern (𝑥,𝑦):𝑝 ∈ 𝑃ext, 𝑦:𝐴 is satisfied

for all 𝐺in.

(5) 𝜙 = ∀𝑝− .𝐴 and {𝑦:𝐴 | (𝑦, 𝑥):𝑝 ∈ 𝑃ext}. This case is similar

to the previous case.

□

D.9 Proof for Proposition 8

We separately prove the two components (1) and (2) of Definition 24

involved in Proposition 8. To this end, we write valid(𝐺ext, RS1 (𝑞))
and valid(𝐺ext, RS2 (𝑞)), where 𝑞 = 𝐻 ← 𝑃 is a SCCQ.

Proof for valid(𝐺ext, RS1 (𝑞)). For an arbitrary property name

𝑝 ∈ voc(𝑃), the axiom ¤𝑝 ⊑ 𝑝 is always true since 𝐺
med
⊆ 𝐺in, by

definition. When the pattern only contains (𝑥,𝑦):𝑝 such that 𝑥 and

𝑦 do not occur in any other atomic patterns in 𝑃 (i.e., 𝑥 and 𝑦 are

otherwise unrestricted), then for any (𝑎, 𝑏):𝑝 ∈ 𝐺in, (𝑎, 𝑏): ¤𝑝 ∈ 𝐺med
.

Therefore 𝑝 ⊑ ¤𝑝 . □

Proof for valid(𝐺ext, RS2 (𝑞)). Let 𝑝 ∈ voc(𝑃) and 𝑟 ∈ voc(𝐻),
such that 𝑃 contains the atomic pattern (𝑥,𝑦):𝑝 and 𝐻 contains

(𝑥,𝑦):𝑟 , and neither 𝐻 nor 𝑃 contains any other atomic patterns

involving 𝑥 or 𝑦, and 𝑝 or 𝑟 , respectively. Then, for any (𝑎, 𝑏): ¤𝑝 ∈
𝐺

med
we construct (𝑎, 𝑏):¥𝑟 ∈ 𝐺out, therefore, ¤𝑝 ⊑ ¥𝑟 . In addition,

since 𝑟 does not occur again in 𝐻 , ¤𝑝 ≡ ¥𝑟 , i.e. also ¥𝑟 ⊑ ¤𝑝 . □

D.10 Theorem 1 and Proof

Theorem 1. Problem IsOutputShape is NP-hard.

Proof. We next show that the simple graph entailment problem

described by Gutierrez et al. [16] (called SGE in what follows) can be

reduced to problem IsOutputShape. Problem SGE is equivalent to

deciding if for a pattern 𝑃 consisting of two components 𝑃1 and 𝑃2

there is a component map ℎ from 𝑃1 to 𝑃2. Let Sin be an empty set,

and 𝑞 be the SCCQ𝐻 ← 𝑃 where𝐻 contains an atom𝑢:𝐴𝑢 for each

variable or individual name in 𝑃 . By Proposition 6, there exists such

a mapping ℎ if and only if IsOutputShape(Sin, 𝑞, 𝐴𝑢 ⊑ 𝐴𝑥) = yes,

for each pair (𝑥,𝑢) where ℎ(𝑥) = 𝑢 and 𝑥 is a variable in 𝑃1 and 𝑢 is

15

Philipp Seifer, Daniel Hernández, Ralf Lämmel, and Steffen Staab

a variable in 𝑃2. Since the number of pairs (𝑥,𝑢) is quadratic on the

size of 𝑃 , we have shown a reduction from problem SGE to problem

IsOutputShape. Since SGE is NP-hard, problem IsOutputShape

is also NP-hard. □

D.11 Proposition 9 and Proof

Proposition 9. If voc(𝑞) contains 𝑛 concept names, and 𝑚 role

names, then we need to iterate over 𝑛 + 2𝑚 target queries, and 𝑛 +
4𝑛𝑚 + 2𝑚 shape constraints, and return (𝑛 + 2𝑚) (𝑛 + 4𝑛𝑚 + 2𝑚) − 𝑛
many relevant shapes.

Proof. We have 𝑛 possible target queries with a concept name

(𝐴 for each𝐴 ∈ voc(𝑞)), and 2𝑚 with a role name (∃𝑝.⊤ and ∃𝑝− .⊤
for each 𝑝 ∈ voc(𝑞)). Similarly, we have𝑛 possible shape constraints

including only a concept name, and 4𝑛𝑚 possible shape constraints

including a concept name and a role name (∃𝑝.𝐴, ∃𝑝− .𝐴, ∀𝑝.𝐴,
and ∀𝑝− .𝐴 for each 𝐴 ∈ voc(𝑞) and 𝑝 ∈ voc(𝑞)). We also have 2𝑚

representatives for families of the form ∀𝑝.𝐵 and ∀𝑝− .𝐵 for each

𝑝 ∈ voc(𝑞) and for some proxy concept name 𝐵 ∉ voc(𝑞). The
subtrahend in the number of relevant shapes indicates the number

of tautologies of the form 𝐴 ⊑ 𝐴 for all 𝐴 ∈ voc(𝑞). □

E EXTENDING THE METHOD

In this section, we show how our approach can be extended to

arbitrary ALCHOI axioms, and thus a much more extensive

subset of SHACL. To this end, we first define ALCHOI SHACL

shapes as follows.

Definition 26 (ALCHOI SHACL Syntax). AALCHOI SHACL

shape is an ALCHOI axiom𝜓 ⊑ 𝜙 such that the concept expres-

sions 𝜙 is an arbitrary ALCHOI concept description, and 𝜓 is

defined by:

𝜓 F 𝐴 | ∃𝑝.⊤ | ∃𝑝− .⊤
A ALCHOI SHACL schema S is an ALCHOI TBox that

consists of a finite set of ALCHOI SHACL shapes.

Definition 27 (ALCHOI SHACL Semantics). A graph𝐺 is valid

for a set 𝑆 of ALCHOI SHACL shapes, denoted valid(𝐺, 𝑆), if
and only if 𝐺 is proof-valid according to 𝑆 .

We omit explicitly redefining the remainder of the main paper

in terms of ALCHOI SHACL shapes, for the sake of simplicity,

since definitions do not substantially change (as we argue in the

next subsection). Instead, we instruct the reader to consider Sin,

Scan and Sout (and other sets of shapes) as a set of ALCHOI
SHACL shapes for the remainder of this section, and with respect

to prior definitions.

We first consider soundness. In the remainder of this section, we

present further notes on extending the method, first considering

and extended axiom inferences then additional features beyond

ALCHOI axioms. Finally, we remark how to extend the imple-

mentation.

E.1 Soundness

In this subsection, we argue for the soundness of our presented

approach for more generalALCHOI SHACL shapes. Indeed, we

show that soundness of the method introduced in the main body of

the paper is not affected by more generalALCHOI input shapes

or shape candidates. We revisit each proposition from the main

body of the paper and consider, whether the proposition or its proof

need to be adapted.

(1) Proposition 1 is independent of the subset of SHACL, so

the same proof applies.

(2) Proposition 2 must be extended for the extended set of

SHACL shapes to demonstrate that the method is useful for

ALCHOI SHACL shapes (i.e., there is a meaningful finite

set of candidates), though this does not effect soundness,

as a set of candidates could also be determined by some

heuristic. See Appendix F for the extended proof. Indeed,

not generating the full set of shapes is likely desireable in

most use cases, anyways.

(3) Proposition 3 (and Corollary 1) were already proven for

arbitraryALCHOI axioms, and thus apply in the context

of ALCHOI SHACL shapes as well.

(4) For Proposition 4, neither its definition, nor the definition

of the UNA for a simple RDF graph, depend on the subset

of SHACL.

(5) Similarly, for Proposition 5 the proof is independent of the

subset of SHACL and still applies as well.

(6) The proof for Proposition 6 does not depend on the subset

of SHACL shapes as well, and thus the proposition holds.

(7) Proposition 7 does involve the set of input shapes. Here, we

need to decide whether we extend the approach. As per the

argument in the following subsection, we consider this ex-

tension to be future work, and limit expansion to the subset

of Simple SHACL shapes. Then, the proof applies and the

proposition holds. Note, that this is only a minor restric-

tion, since extending the query with respect toALCHOI
SHACL shapes would be limited to shapes expressible as

SCCQ anyways, which essentially means that we would

need to include intersection of constraints in shapes as two

sets of extension patterns, which is a trivial extension to

the method we present.

(8) Finally, for Proposition 8, while this step of the approach

does depend on the input shapes, it only considers the role

names in the vocabulary of the input shapes. Neither the

method itself, nor the proof of this proposition, depend

on the types of constraints expressed as input shapes, but

rather are about the query patterns used to restrict these

specific role names. Thus, the proposition (and its proof)

still apply without modification.

Thus, the method remains sound forALCHOI SHACL shapes.

We only need to show that there is a sensible finite set of candidates

for ALCHOI SHACL as well (see Appendix F for the proof), in

order to demonstrate that the algorithm can obtain a useful and

finite set of result shapes.

For the sake of completeness, we mention that Proposition 9

(count of candidate shapes) does no longer apply for the extended

method. However, Proposition 9 is not required for soundness;

indeed, a similar proposition could be formulated for the count of

candidates for the extended method.

Finally, Theorem 1 (NP-hardness) clearly holds for the extended

method, since the original problem can be trivially reduced to the

extended problem by restricting the set of shapes to Simple SHACL.

16

From Shapes to Shapes (Extended Version)

E.2 Extended Axiom Inference

In the previous section we show that our approach is sound for

ALCHOI SHACL. This extension also makes the approach more

powerful in multiple ways. The set of input shapes can be extended

to ALCHOI SHACL, thus, more expressive constraints are con-

sidered to hold on the input graph. Similarly, the set of candidates

(and thus output shapes) also includes more general shapes.

The remaining question to consider is whether or not more ax-

ioms can now be inferred in order to further improve the method:

The axioms inferred for the UNA-encoding and CWA-encoding

are independent of the subset of SHACL, but rather depend on

the query language (and indeed graph model) used. Similarly, the

axioms inferred as subsumptions between query variables (map-

pings) again depend on the query language, not on the subset of

SHACL; however, the extension approach utilizing input shapes

does depend on the set of input shapes. Here, additional rules could

be added for extending the approach; we leave this as future work,

as this is not a substantial addition to the method.

E.3 SHACL Features Beyond ALCHOI
We consider in passing our intuition on whether our approach can

be extended for additional SHACL features beyond ALCHOI.
• Node target queries. Node target queries where omitted for

the sake of simplicity, since inferring such shapes based

on the query template would not be very productive. We

believe this is a trivial extension to our method, if a use

case were to require such shapes.

• Qualified number restrictions. Using an underlying DLwith

support for qualified number restrictions, we believe that

there would not be an issue with supporting them. How-

ever, we omit them, since we think that there are only

exceedingly rare circumstances, where meaningful quali-

fied number restriction (other than existential and universal

quantification) could indeed be inferred for SPARQL CON-

STRUCT queries. The particular restrictions to consider

likely form a finite set informed by the query template.

• Non-cyclic shape references. Non-cyclic shape references

are syntactic sugar and can be resolved by substitution.

Thus, our method essentially supports non-cyclic shape

references already.

• Cyclic (i.e., recursive) shape references are not supported.

For recursive SHACL shapes, sets of results shapes would

no longer be independent, and thus, our filtering method

not applicable. However, we think that only validating a

given set of shapes that include recursive shape references

over the axioms inferred by our method should be possible.

• SHACL features validating literal values. We omit literals

for the sake of simplicity; from SCCQ queries, no interesting

constraints on literal values could be inferred. Literal value

constraints that occur in the input shapes could perhaps be

maintained through an encoding via some utility concept

definition.

E.4 Practicality and Implementation

In order to efficiently explore the finite (see also the next section),

but much larger search space of candidate ALCHOI SHACL

shapes, we suggest the following approaches. Importantly, one can

notice that full exploration of the candidate space is rarely required.

Indeed, a subset of result shapes entailing all other shapes is most

sensible for the majority of use cases, no matter whether the use

case is informing users (including redundant shapes would not

be necessary, but rather confusing), suggesting shapes for some

data set (e.g., data integration use case), or for validation in a pro-

gramming language context, or any other automatic processing

of result shapes, where a minimal set entailing a larger set would

generally suffice. Indeed, in such automatic cases one may not need

to instantiate any shapes, but instead rely only on the set of axioms,

which already can be used to check for entailment of individual

shapes to the extend required by such a use case.

In order to reduce the set of candidates, one can reduce the

syntax by relying on the set semantics of the set of result shapes.

For example, union and intersection of constraints is not required

on the top-level of a constraint, since both can be reconstructed

from entailment in the result set (e.g., if both𝜓1 ⊑ 𝜙1 and𝜓1 ⊑ 𝜙2

are result shapes, trivially, 𝜓1 ⊑ 𝜙1 ⊓ 𝜙2 is as well. This holds

similarly for union and some types of quantification.

Secondly, one can systematically cover the search space with a

breath-first search strategy, where immediate candidates are vali-

dated, before constructing more complex shapes. For example, if

𝜓1 ⊑ 𝜙1 is not a result shape, then for target𝜓1 we do not need to

validate any intersection involving 𝜙1.

Our Implementation. Our implementation allows for arbitrary

ALCHOI axioms as input. However, when obtaining result shapes,

only Simple SHACL shapes are enumerated. Thus, in order to con-

struct a larger set of result shapes, the API must be used to obtain

the inferred axioms, which can then be used to search an arbitrary

set of shapes candidates, constructed by some heuristic suitable to

the use case.

F PROOFS FOR THE EXTENSION

We show here, that a finite set of candidate shapes can be con-

structed for the extended method. To this end, we revise Proposi-

tion 2 as Proposition 10 for ALCHOI shapes.

Proposition 10. If a ALCHOI SHACL shape 𝑠 = 𝜓 ⊑ 𝜙 is

relevant for a SCCQ 𝑞, then voc(𝑠) ⊆ voc(𝑞).

We only consider constraints, i.e., the right hand side 𝜙 of a

ALCHOI SHACL shape 𝜓 ⊑ 𝜙 , since for 𝜓 , we already show

that the set of target queries is finite, given a finite vocabulary of a

query 𝑞 (Proof of Proposition 2, Appendix D.2).

Without loss of generality, we assume that all constraints are

in disjunctive normal form, without (syntactical) duplications and

with components sorted according to some total order (e.g., by

syntactic construct and then alphanumerically by role, concept or

individual names). Thus, patterns such as 𝐴 ⊓𝐴 do not occur, and

𝐵 ⊓ 𝐴 is considered equal to 𝐴 ⊓ 𝐵. Furthermore, we omit ∀𝑝.𝐶 ,
since it is equivalent ¬∃𝑝.¬𝐶 .

We define the following lemmas. The first one (Lemma 6) intu-

itively means, that for each concept description defined according

to the grammar presented in the lemma, if the vocabulary of this

description is not a subset of the vocabulary of some graph𝐺 , then

the result is either equivalent to ⊤ or ⊥, or the concept description
17

Philipp Seifer, Daniel Hernández, Ralf Lämmel, and Steffen Staab

can be simplified, such that the resulting concept description is in

the vocabulary of 𝐺 , or equivalent to ⊤ or ⊥.
Lemma 6. Let 𝐺 be a Simple RDF graph, (T𝐺 ,𝐺) the validation
knowledge base of 𝐺 , and 𝐶1 a concept description defined by the

following grammar

𝐶1 ::= 𝐶2 ⊔𝐶1 | 𝐶2 (1)

𝐶2 ::= 𝐶3 ⊓𝐶2 | 𝐶3 (2)

𝐶3 ::= ¬𝐶4 | 𝐶4 (3)

𝐶4 ::= ⊤ | ⊥ | 𝐴 | {𝑎} (4)

where𝐴 is a concept name and𝑎 an individual name. Then, voc(𝐶1) ⊈
voc(𝐺) implies one of the following cases:

(1) (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊥
(2) There exists a concept description (T𝐺 ,𝐺) |= 𝐶′

1
≡ 𝐶1, such

that either voc(𝐶′
1
) ⊆ voc(𝐺), or voc(𝐶′

1
) ⊈ voc(𝐺) and

(T𝐺 ,𝐺) |= 𝐶1 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊥.

Proof. Let I be a model of (T𝐺 ,𝐺). Note, that according to

Lemma 2, every model I of (T𝐺 ,𝐺) is isomorphic to the canonical

model of 𝐺 .

We first consider the two trivial cases for 𝐶4.

(1) If 𝐶4 is ⊤, then trivially (T𝐺 ,𝐺) |= ⊤ ≡ ⊤.
(2) If 𝐶4 is ⊥, then trivially (T𝐺 ,𝐺) |= ⊥ ≡ ⊥.
We next consider the two remaining cases for 𝐶4.

(1) If𝐶4 is𝐴 and𝐴 ∉ voc(𝐺), then𝐴I is empty. Thus, (T𝐺 ,𝐺) |=
𝐴 ≡ ⊥.

(2) If 𝐶4 is 𝑎 ∉ voc(𝐺), then {𝑎}I is empty. Thus, (T𝐺 ,𝐺) |=
{𝑎} ≡ ⊥.

(3) If 𝐶4 is ∃𝑝.𝐶1, we have the following cases:

We next consider the cases for 𝐶3.

(1) If 𝐶3 is ¬𝐶4 and voc(𝐶4) ⊈ voc(𝐺), then either (T𝐺 ,𝐺) |=
𝐶4 ≡ ⊥ (and thus (T𝐺 ,𝐺) |= ¬𝐶4 ≡ ⊤), or (T𝐺 ,𝐺) |= 𝐶4 ≡
⊤ (and thus (T𝐺 ,𝐺) |= ¬𝐶4 ≡ ⊥). Thus, (T𝐺 ,𝐺) |= 𝐶3 ≡ ⊤
or (T𝐺 ,𝐺) |= 𝐶3 ≡ ⊥, if voc(𝐶3) ⊈ voc(𝐺).

(2) If 𝐶3 is 𝐶4 and voc(𝐶4) ⊈ voc(𝐺), then, as previously

shown, either (T𝐺 ,𝐺) |= 𝐶4 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶4 ≡ ⊥
and thus (T𝐺 ,𝐺) |= 𝐶3 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶3 ≡ ⊥, if
voc(𝐶3) ⊈ voc(𝐺).

(3) If𝐶3 is ¬𝐵 and voc(𝐶3) ⊈ voc(𝐺), then (T𝐺 ,𝐺) |= ¬𝐵 ≡ ⊤,
since, by definition, there exists no 𝑏:𝐵 ∈ 𝐺 .

We next consider the cases for 𝐶2 by induction.

(1) If 𝐶2 is 𝐶3 and voc(𝐶3) ⊈ voc(𝐺), then, as previously

shown, either (T𝐺 ,𝐺) |= 𝐶3 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶3 ≡ ⊥
and thus (T𝐺 ,𝐺) |= 𝐶2 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶2 ≡ ⊥, if
voc(𝐶2) ⊈ voc(𝐺).

(2) If 𝐶2 is 𝐶3 ⊓𝐶′
2
and voc(𝐶3) ⊈ voc(𝐺), then, as previously

shown, either (T𝐺 ,𝐺) |= 𝐶3 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶3 ≡ ⊥.
In the first case, we can reduce the term to𝐶′

2
(since⊤⊓𝐶 ≡

𝐶), and by induction, either voc(𝐶′
2
) ⊈ voc(𝐺) and then

(T𝐺 ,𝐺) |= 𝐶′
2
≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶′

2
≡ ⊥, or voc(𝐶′

2
) ⊆

voc(𝐺).
In the second case, then also (T𝐺 ,𝐺) |= 𝐶2 ≡ ⊥, since
(⊥ ⊓𝐶 ≡ ⊥).

(3) If 𝐶2 is 𝐶3 ⊓ 𝐶′
2
and voc(𝐶3) ⊆ voc(𝐺), then, for 𝐶′

2
if

voc(𝐶′
2
) ⊈ voc(𝐺) one of the other cases applies recur-

sively.

We finally consider the cases for 𝐶1 by induction.

(1) If 𝐶1 is 𝐶2 and voc(𝐶2) ⊈ voc(𝐺), then, as previously

shown, either (T𝐺 ,𝐺) |= 𝐶2 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶2 ≡ ⊥
and thus (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊥, if
voc(𝐶1) ⊈ voc(𝐺).

(2) If 𝐶1 is 𝐶2 ⊓ 𝐶′
1
and voc(𝐶2) ⊈ voc(𝐺), then either, as

previously shown, (T𝐺 ,𝐺) |= 𝐶2 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶2 ≡ ⊥.
In the first case, then also (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊤, since ⊤⊔𝐶 ≡
⊤.
In the second case, we can reduce the term to 𝐶′

1
(since

⊥ ⊔ 𝐶 ≡ 𝐶), and by induction, either voc(𝐶′
1
) ⊈ voc(𝐺)

and then (T𝐺 ,𝐺) |= 𝐶′
1
≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶′

1
≡ ⊥, or

voc(𝐶′
1
) ⊆ voc(𝐺).

(3) If 𝐶1 is 𝐶2 ⊔ 𝐶′
1
and voc(𝐶2) ⊆ voc(𝐺), then for 𝐶′

1
if

voc(𝐶′
1
) ⊈ voc(𝐺) one of the other cases applies recur-

sively.

Hence, we prove the lemma. □

For Lemma 7, we slightly adapt the allowed concept descriptions

by allowing existential quantification for 𝐶4, thus, the concept

descriptions now cover arbitrary ALCHOI concept descriptions

in disjunctive normal form.

Lemma 7. Let 𝐺 be a Simple RDF graph, (T𝐺 ,𝐺) the validation
knowledge base of 𝐺 , and 𝐶5 a concept description defined by the

following grammar

𝐶5 ::= 𝐶6 ⊔𝐶5 | 𝐶6 (5)

𝐶6 ::= 𝐶7 ⊓𝐶6 | 𝐶7 (6)

𝐶7 ::= ¬𝐶8 | 𝐶8 (7)

𝐶8 ::= ⊤ | ⊥ | 𝐴 | {𝑎} | ∃𝑝.𝐶5 | ∃𝑝− .𝐶5 (8)

where𝐴 is a concept name and𝑎 an individual name. Then, voc(𝐶5) ⊈
voc(𝐺) implies one of the following cases:

(1) (T𝐺 ,𝐺) |= 𝐶5 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶5 ≡ ⊥
(2) There exists a concept description (T𝐺 ,𝐺) |= 𝐶′

5
≡ 𝐶5, such

that either voc(𝐶′
5
) ⊆ voc(𝐺), or voc(𝐶′

5
) ⊈ voc(𝐺) and

(T𝐺 ,𝐺) |= 𝐶5 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶5 ≡ ⊥.

Proof. We prove this property by induction on the structure

of 𝐶5 (Lemma 7). To this end, we consider first as a base cases the

case where in 𝐶8 existential quantification is restricted to ∃𝑝.𝐶1

(or ∃𝑝− .𝐶1, respectively). According to Lemma 6, then the prop-

erty under investigation holds for 𝐶1. Furthermore, we assume

without loss of generality, that 𝐶1 is fully reduced according to

Lemma 6. Thus, if voc(𝐶1) ⊈ voc(𝐺) then either (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊤
or (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊥, since otherwise𝐶1 would not be fully reduced

according to Lemma 6.

We have the following cases if 𝐶8 is ∃𝑝.𝐶1 (cases for ∃𝑝− .𝐶1

work exactly equivalently):

(1) If 𝑝 ∉ voc(𝐺), then 𝑝I is empty, from which we can follow

that (T𝐺 ,𝐺) |= ∃𝑝.𝐶1 ≡ ⊥. Note, that this holds indepen-
dently from 𝐶1.

(2) If 𝑝 ∈ voc(𝐺) and voc(𝐶1) ⊈ voc(𝐺), then, by definition,

either (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊥. Thus, we
can reduce the expression to ∃𝑝.⊤ or ∃𝑝.⊥, respectively.

18

From Shapes to Shapes (Extended Version)

Since the cases for 𝐶7, 𝐶6 and 𝐶5 depend only on the common

property between Lemma 7 and Lemma 6, the proofs work exactly

analogously to the proofs of 𝐶3, 𝐶2 and 𝐶1 (Lemma 6), and are

omitted for brevity here.

Then, by induction, starting form the restricted 𝐶8 as the base

case, the property follows for arbitrary concept descriptions 𝐶5.

Thus, we prove the lemma. □

Finally, we prove Proposition 10.

Proof of Proposition 10. Let 𝑠 = 𝜓 ⊑ 𝜙 be a ALCHOI
SHACL shape, 𝑞 be a SCCQ, and 𝐺 be a Simple RDF graph with

voc(𝐺) ⊆ voc(𝑞), and (T𝐺 ,𝐺) be the validation knowledge base of

graph 𝐺 . We prove first property (i) of Proposition 10. We have the

following disjoint cases:

(1) Case voc(𝜓) ⊈ voc(𝑞). Then, by Lemma 3, (T𝐺 ,𝐺) |= 𝜓 ≡
⊥ (since𝜓 is, per definition, restricted to one of the cases

covered in the lemma). Hence, shape𝜓 ⊑ 𝜙 is not relevant

(Definition 11).

(2) Case voc(𝜓) ⊆ voc(𝑞) and voc(𝜙) ⊈ voc(𝑞). Let us assume,

without loss of generality, that the concept description 𝜙 is

fully reduced according to Lemma 7. (Note, that if due to

reduction voc(𝑝ℎ𝑖) ⊈ voc(𝐺) no longer applies, the next

case below would be applicable.)

Then, according to Lemma 7, either (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊤ or

(T𝐺 ,𝐺) |= 𝐶1 ≡ ⊥, in which case the shape is not relevant

(Definition 11).

(3) Case voc(𝜓) ⊆ voc(𝑞) and voc(𝜙) ⊆ voc(𝑞). In this case,

property (i) is trivially satisfied.

Thus we prove Proposition 10. □

Corollary 2. As corollary of Proposition 10, the set of ALCHOI
shapes over voc(𝑞) of a query 𝑞 is not finite.

Proof. Follows immediately by inspection of the syntax of a

ALCHOI concept description over a finite vocabulary. □

However, we can further restrict the set of candidates to obtain

a meaningful, finite set of shapes. To this end, we first define the

quantification nesting depth as a property of anALCHOI concept

description.

Definition 28. The nesting depth ndep(𝐶) is defined as:

ndep(∃𝑝.𝐶) := 1 + ndep(𝐶) (9)

ndep(∀𝑝.𝐶) := 1 + ndep(𝐶) (10)

ndep(𝐶1 ⊓𝐶2) := max(ndep(𝐶1), ndep(𝐶2)) (11)

ndep(𝐶1 ⊔𝐶2) := max(ndep(𝐶1), ndep(𝐶2)) (12)

ndep(𝐶) := 0 for all other cases (13)

Example 15. The nesting depth ndep(∃𝑝.𝐴) is 1+ 0 = 1. The nest-

ing depth ndep(∀𝑝.𝐴⊓∃𝑝.(𝐵⊔∃𝑝.𝐶)) is max(1+ 0, 1+ (max(0, 1+
0))) = 2.

Then, we restrict the nesting depth of candidate ALCHOI
SHACL shapes over the vocabulary voc(𝑞) of a given query 𝑞 to

the diameter of the variable connectivity graph vcg(𝑞).

Proposition 11. Given a query 𝑞, the set of relevant ALCHOI
SHACL shapes over voc(𝑞) and with finite nesting depth is finite.

Proof. Follows immediately by inspection of the syntax of a

ALCHOI concept description over a finite vocabulary and Propo-

sition 10. □

19

	Abstract
	1 Introduction
	2 Foundations
	2.1 The Description Logic ALCHOI
	2.2 Simple RDF Graphs
	2.3 Simple SHACL Shapes
	2.4 Simple Conjunctive CONSTRUCT Queries

	3 Formal Problem Statement
	4 Computing Candidate OutputShapes
	5 Axiomatizations Over Executions
	6 Checking Whether IsOutputShape
	6.1 Axiomatizations from the Validation KB
	6.2 Axiomatizations for Query Subpatterns
	6.3 Extending Query Patterns via Constraints
	6.4 Axiomatizations for Role Hierachies

	7 Related Work
	8 Concluding Remarks
	Acknowledgments
	References
	A Structure of the Appendix
	B Implementation Runtime Evaluation
	B.1 Implementation Overview
	B.2 Evaluation: Feasibility

	C Extended Examples
	D Proofs
	D.1 Proof for Proposition 1
	D.2 Proof for Proposition 2
	D.3 Proof for Proposition 3
	D.4 Proof for Corollary 1
	D.5 Proof for Proposition 4
	D.6 Proof for Proposition 5
	D.7 Proof for Proposition 6
	D.8 Proof for Proposition 7
	D.9 Proof for Proposition 8
	D.10 Theorem 1 and Proof
	D.11 Proposition 9 and Proof

	E Extending the Method
	E.1 Soundness
	E.2 Extended Axiom Inference
	E.3 SHACL Features Beyond ALCHOI
	E.4 Practicality and Implementation

	F Proofs for the Extension

