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Bacteria identification and counting at the small population scale is important to
many applications in the food safety industry, the diagnostics of infectious
diseases and the study and discovery of novel antimicrobial compounds. There
is still a lack of easy to implement, fast and accuratemethods to count populations
ofmotile cells at the single-cell level. Here, we report a label-freemethod to count
and localize bacterial cells freely swimming in microfluidic anchored picolitre
droplets. We used the object detection oriented YOLOv4 deep learning
framework for cell detection from bright-field images obtained with an
automated Z-stack setup. The neural network was trained to recognize
Escherichia coli cell morphology with an average precision of approximately
84%. This allowed us to accurately identify individual cell division events,
enabling the study of stochastic bacterial growth starting from initial
populations as low as one cell. This work also demonstrates the ability to study
single cell lysis in the presence of T7 lytic bacterial viruses (phages). The high
precision in cell numbers facilitated the visualization of bacteria-phage
interactions over timescale of hours, paving the way towards deciphering
phage life cycles in confined environments.
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1 Introduction

The early detection of bacterial presence is of primordial importance for human and
animal welfare (Maurer et al., 2017; Wang et al., 2020). In particular, the presence of food
microbial contaminants, or antimicrobial resistant strains in hospital settings constitutes a
severe threat to human health with up to 15% of all hospitalized patients affected by
healthcare-associated infections (Rudd et al., 2020; Tropea, 2022; Accolti et al., 2019). Rapid
identification strategies and their translation into diagnostic devices hold the promise to
improve prevention and alleviate healthcare burden (Pliakos et al., 2018). In addition, early
elimination of pathogenic bacteria would reduce risks that they develop defence mechanisms
under long-term selection pressure (e.g., from a specific food source, antibiotic regimen) (Oz
et al., 2014; Lambert and Kussell, 2015).
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With rising numbers of antimicrobial resistant strains, it is also
important to rapidly identify and assess the efficacy of bacteriolytic
agents without the need for long culturing times (which may not be
feasible for non-culturable strains) (Balouiri et al., 2016; Qin et al.,
2021).

Amongst alternatives to antibiotics to combat bacterial
infections, bacterial viruses or phages lyze bacteria in a highly
specific manner, preserving healthy microbiomes while making
safe and effective patient-specific treatment a possibility (Koskella
andMeaden, 2013; Ross et al., 2016). Compassionate use has already
seen some significant success in treating recurrent infections
(Dedrick et al., 2019; McCallin et al., 2019). However, current
gold standard assays to quantify phage efficacy such as the
plaque assay are slow and labour intensive (Acs et al., 2020).
Methods that can rapidly assess the lytic potential of phages
without requiring extensive bacterial culture are still needed.
Likewise, platforms that inform on possible bacterial resistance to
phages will play an important role to understand future clinical use
for phage therapy (Ly-Chatain, 2014).

Testing antimicrobials on a small subset of cells would accelerate
time to results which could shorten the time to deliver adequate
treatment. Current methods to study bacterial populations down to
the single-cell level focus on either growth of bacterial cells in 2D on
the surface of agar plates, confined within microchannels or in small
liquid cultures (Koutsoumanis and Lianou, 2013; Jin et al., 2018;
Yang et al., 2018; Barizien et al., 2019; Taylor et al., 2022). 2D
cultures produce cell monolayers in early growth stages which are
highly suited for high-resolution imaging with the ability to track
cell divisions and individual lineages for an in-depth understanding
of growth kinetics. This has allowed the development of analytical
models for predicting bacterial growth from a single or a few cells
(Alonso et al., 2014; Garcia et al., 2017).

In their natural environment, bacteria may be found in water-
filled microcavities or in condensation droplets in which they can
proliferate without attachment to a solid substrate. For some strains,
the ability to swim is an essential phenotypic trait which help them
colonize new habitats or respond to physical or chemical cues (Ni
et al., 2020). Understanding unconstrained bacterial growth in 3D is
therefore desirable to quantify cell lifestyle which includes non-
surface attached aggregates or biofilms (Cai, 2020). Growing cells
within microfluidic or sessile droplets enable long-term visualization
of a small group of cells confined within picolitre volumes (Jin et al.,
2018). Many methods have been developed to ensure long-term,
stable imaging, for example, by anchoring droplets in multilayer
devices, or using geometrical traps (Schmitz et al., 2009; Abbyad
et al., 2011; Knowles et al., 2011; Bentley et al., 2022a). In addition,
numerous methods have been developed for counting cells using
various imaging modalities in 2D formats (Ollion et al., 2019; Smith
et al., 2019). In the context of 3D motion, there is an unavoidable
trade-off between technical simplicity, counting accuracy and time-
to-result (Jelli et al., 2023).

The use of fluorescence markers to count and track individual
cells result in high sensitivity and signal-to-noise ratio, and has been
historically successful for assessing bacterial population dynamics
(Muthukrishnan et al., 2017; Nikolic et al., 2023). On the other hand,
fluorescently labelling bacteria may interfere with the cell biology
and would increase the number of steps of the overall sample
preparation. For these reasons, it is desirable to use label-free

imaging (e.g., transmitted light, phase contrast, dark field) on
unaltered cell samples, simplifying overall procedures and
making them generally more applicable. Various complex optical
systems have been devised to perform 3D object tracking. Multifocal
imaging can provide volumetric imaging data and be used in phase
contrast or darkfield modes (Xiao et al., 2020; Amin et al., 2022).
Digital holographic microscopy with multiple light sources has been
used to track freely diffusing Escherichia coli bacteria (Saglimbeni
et al., 2014). In phase contrast mode, diffraction patterns can be used
to infer localization of bacterial cells (Taute et al., 2015). Dark-field
imaging with an 87-channel multispectral system has been used to
identify several bacterial species (Wilson and Vigil, 2013). Standard
bright-field imaging has already shown potential for high-resolution
imaging of bacterial cells (Sakuma et al., 2014; Li et al., 2022).
Accurate counting of individual, unstained cells over time remains a
significant challenge (Spahn et al., 2022). Even when using low
height microchambers relative to cell size, cell identification is
difficult as cells can move in and out from the focal plane and
orient themselves randomly resulting in various appearances for the
same cell. This explains why studies, even when using fluorescent
strains, have focussed on obtaining estimates of absolute cell counts
for large populations of up to ~10,000 cells (Taylor et al., 2022;
Barizien et al., 2019). Although such approaches provide
information on large population growth kinetics, they are not so
informative on early-stage population development. In particular,
early cell division events may be missed even though they are crucial
for informing on cell viability, capturability and adaptation phase.

Cell detection has recently benefited from significant advances
made in deep learning algorithms, including from images obtained
using bright-field microscopy. Deep learning algorithms such as
two-stage (e.g., R-CNN, SPP-Net) and single-stage detectors (e.g.,
YOLO, SSD) have proven abilities to accurately identify, classify and
locate objects in images using manually curated training datasets
(Nitta et al., 2018; Anagnostidis et al., 2020; Howell et al., 2022).
Efforts towards dissemination of such deep learning models (e.g.,
through open-access training datasets) have made these methods
more widely accessible (Spahn et al., 2022).

In this paper, we demonstrate label-free, accurate counting of
freely-swimming bacterial cell populations starting from as few as
one cell. We combine standard bright-field imaging with a rapid and
automated Z-scanning method which enables detection of 3D
positions for cells growing in 8 μm tall, anchored droplets. We
use the YOLOv4 object detector to count in-focus cells and obtain
accurate cell numbers over time. Finally, we demonstrate the ability
of the platform to detect single cell lysis events induced by lytic
phages.

2 Methods

2.1 Bacterial strain and phage lysate
preparation

Bacterial strain Escherichia coli BW25113 was used for all the
experiments in this study. Streaks consisting of single colonies on
Lysogeny Broth (LB) agar plates were obtained from a glycerol stock
of the strain stored at −80°C. Individual colonies were picked for
each experiment and added to a sterile culture tube containing 4 mL
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of LB media (10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl) and
incubated overnight at 37°C with shaking at 230 rpm. 40 μL of the
overnight culture was added to 4 mL of fresh LB media and
cultivated at 37°C and 230 rpm until it reached a desirable OD600

reading between 0.20 and 0.35 (optical density measured at 600 nm,
serving as a proxy for bacterial population size). One culture was
cultivated longer, until the late exponential phase with OD600 of 1.
(optical density measured at 600 nm, serving as a proxy for bacterial
population size). Standard colony forming unit (CFU) assays were
also carried out for each experiment (Supplementary Section S2.1).
Phage T7 lysates were preserved in SM buffer (0.1 M NaCl, 8 mM
MgSO4·7H2O, 50 mM Tris-Cl pH 7.5, 0.01% gelatin) at 4°C, with
phage titer of 109 PFU/mL (PFU, plaque-forming unit)
(Supplementary Section S3.2 and Supplementary Figure S2). All
experiments were performed at room temperature (measured to be
around 25°C) and at 37°C with all equipment placed in a warm room
respectively, as E. coli is capable of growing in a wide temperature
range (8°C–48°C) (Madigan, 2017).

Our aim was to start each experiment in exponential phase of
growth and encapsulate a small number of cells per droplet. Since
the number of cells in each droplet follows a Poisson distribution, we
could expect the average number of cells based on population data
for different OD600 values. Our protocol included cultivation of
precisely 2 h for each bacterial culture to reach exponential growth
phase. This resulted inmeasured OD600 in the range of 0.2–0.35 after
this cultivation period, due to well-known stochasticity in growth
reported between independently cultivated cultures of the same
bacterial species or genotype. Each experiment starts with an
independently cultivated bacterial culture of the same bacterial
genotype to capture a variety of phenotypic differences constantly
encountered in any population.

For growth experiments, 1 mL aliquots of desired OD600 culture
were directly utilized for experiments. For lysis experiments, aliquots
of OD600 cultures were mixed with phage titers in different volumes
to obtain a desired multiplicity of infection (MOI). MOI is the ratio
between the number of phage particles and number of bacterial cells.
The experimental conditions are listed in Tables 1, 2.

2.2 Microfluidic device fabrication

The two-layer microfluidic device was fabricated using soft
lithography with a high-resolution acetate mask
(Microlithography Services). Supplementary Figure S1 shows the
fabrication process in form of a schematic. Negative photoresist
SU8 TF6000 (MicroChem) was patterned on a silicon wafer by
exposure to UV light through a transparent film mask. The device
consists of two layers with pillars (first layer, 4 μm) and
microdroplet traps (second layer, 4 μm). The droplet trap
diameter was 60 µm. A detailed procedure is described in a
previous work (Bentley et al., 2022b). PDMS
(polydimethylsiloxane, Ellsworth) and curing agent were mixed
in a ratio of 10:1, poured on the patterned silicon wafer and
degassed. To minimize evaporation of droplets during the time-
lapse experiments, a small piece of coverslip (thickness 0.15 mm)
was placed over the trap array prior to the curing process. The wafer
was then cured at 70°C for 120 min. The cured PDMS was cut out
and 1 mm holes were punched (Kai Medical) to create inlets for the
oil and bacteria culture media. Plasma treatment (Diener Zepto) was
used to bond the PDMS to a thin coverslip (22 × 50 mm,
0.13–0.17 mm thick). Finally, a solution of 1% (v/v)
trichloro(1H,1H,2H,2H-perfluorooctyl)silane (Merck) silane

TABLE 1 Experimental conditions for growth experiments.

Experiment OD600 CFU density (cells/mL) Temperature Initial cell count in droplet

G1 0.19 0.6 × 108 Room Temperature 2

G2 0.35 2.4 × 108 Room Temperature 1

G3 1.00 6.5 × 108 Room Temperature 5

G4 0.29 1.8 × 108 37°C 4

G5 0.30 2.1 × 108 37°C 3

G6 0.35 2.2 × 108 37°C 2

TABLE 2 Experimental conditions for lysis experiments.

Experiment CFU density (cells/mL) Phage titer concentration (PFU/mL) MOI Temperature Initial cell count in droplet

L1 1.10 × 109 1 × 109 0.35 Room Temperature 28

L2 9.00 × 108 1 × 109 0.45 Room Temperature 29

L3 1.34 × 109 1 × 109 0.48 Room Temperature 17

L4 1.07 × 109 1 × 109 0.15 37°C 18

L5 8.65 × 108 1 × 109 0.18 37°C 17

L6 7.65 × 108 1 × 109 0.20 37°C 18

L7 1.20 × 109 1 × 109 1.00 37°C 14
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dissolved in HFE-7500 oil was flushed through the device which was
incubated at 70°C for at least 30 min.

2.3 Droplet generation and trapping

The microfluidic device was placed on the microscope stage and
clamped using scotch tape. Droplets were generated on-chip by
phase change in which the aqueous phase containing the bacterial
cells/bacteria-phage mix was replaced by the oil phase, forming
anchored droplets where traps were designed. The continuous phase
consisted of 1% (w/v) 008-Fluorosurfactant (RAN Biotechnologies)
in HFE-7500 (Fluorochem) oil. The aqueous phase consisted of
E. coli cultured in growthmedium until the indicated OD600 (control
experiments) or E. coli-T7 phage mixture at a specific MOI. A
schematic of the microscope setup is shown in Figure 1A. To start
the experiments, the aqueous and carrier oil phase were loaded into
PTFE tubing (SLS) connected to 1 mL plastic syringes (BD
Plastipak) and syringes were mounted on syringe pumps
(Nemesys, Cetoni). 100 μL of bacterial cell culture/bacteria-phage

mix was aspirated in one of the syringes as aqueous phase. The
device was filled with the oil solution to remove all the air inside the
trapping chambers. The oil flow was then stopped, and bacteria
solution/bacteria-phage mix was flown until the whole trapping
array was filled. In turn, the bacteria solution/bacteria-phage mix
was stopped, and the oil solution was introduced again to flush the
cell sample. This procedure created droplets of the cell sample
immobilised in the circular traps as seen in Figure 1B.

2.4 Imaging

A major challenge for observing individual bacteria by
microscopy in 3D environments include their ability to swim
away from optimum focus between different planes as well as
lateral movement within the said environment. To compensate
for this motion and obtain accurate counting, we employed a
Z-stack method together with image-based drift correction to
image the bacterial cells inside the traps as shown in Figure 1C
over timescales of hours. Figure 1D shows an example droplet

FIGURE 1
Imaging andmicrofluidics setup to observe individual bacterial cells trapped in droplets. (A)Droplets were illuminated by a collimatedwhite LED light
source and imaged in bright-field, using a ×40 objective on amicroscope with motorized Z-focus control. (B)Droplets were generated using a water-in-
oil self-digitization method. The microfluidic chip was first primed with oil to remove any air. Bacteria solution or bacteria-phage mix was flushed to
replace the oil solution. The oil solutionwas flushed oncemore to formdroplets in individual traps. (C) 3D schematic of Z-stack imaging on a trapped
droplet. (D) Example image of multiple cells encapsulated in an anchored droplet and zoomed-in image panel showing two cells obtained at eight
different Z focal planes. The relative vertical distance between images is indicated at the bottom left of every image.
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containing multiple cells and zoomed-in images of cells obtained at
different Z focal planes.

An inverted Olympus IX73 semi-motorized microscope was
used to image the bacteria trapped in the chambers. The microscope
was equipped with a white LED (CoolLED pE-100) and a direct
coupling motorized Z-focus with a focus controller (ProScan III,
Prior Instruments). We used a ×40 objective with a numerical
aperture of 0.45 (UPLFLN40X-2, Olympus). The microscope was
placed on a vibration damping platform (Newport VIP320X1218-
50140). A USB camera (DMK 37AUX287, The Imaging Source) was
used to obtain images of droplets of size 720 x 540 pixels encoded on
8 bits.

A Python script was written to control the imaging sequence as
well as the movement of the vertical position of the microscope
objective Z-axis. Drift correction was utilized to compensate for the
possible impact of any external factors such as movement of the
clamped device or vibration of the table on which the microscope is
set. The Python script enabled us to control the number of stacks, the
time gap between the stacks, the height of each step in the stack as
well as correct any drift in focus that might occur due to factors
mentioned above. The first step in drift correction was to generate an
average image calculated from 10 different images of the same
chamber. The average image was generated by taking an average
of light intensity over 10 images. This average image was then used
as a reference for actual stack imaging. Each time a new stack was
acquired, the first image of the stack was checked against the average
image obtained initially (sum of all absolute values of pixel-to-pixel
subtraction). If this global difference between the images was found
to be over a certain threshold, the Z-axis would move in either
direction (upwards or downwards) until the difference between the
new stack image and the average image changed to less than the
threshold. If Z-axis movement failed to find suitable correction with
vertical movement, a new average image was generated replacing the
old image. This process continued over the duration of the
experiment. All images within each Z-stack were taken within
2.1 s (at the speed limit of the setup) to minimize the effect of
cell motion during acquisition. All imaging parameters used in this
study can be found in Supplementary Section S1.

2.5 Deep learning using YOLOv4 for E. coli
single-cell detection: labelling, training, and
detection

YOLOv4 is a one-stage deep learning based object detection
framework capable of detecting different classes of objects in images
with high speed and accuracy (Bochkovskiy et al., 2020). The choice
of YOLOv4 model was based on existing comparisons of deep
learning object detection model performances on the standard
MS-COCO dataset (Liu et al., 2021). YOLOv4 was shown to
outperform other algorithms such as R-CNN, Mask R-CNN,
Single Shot MultiBox Detector and RetinaNET.

Images were obtained using the setup mentioned in Section 2.4
to create a dataset containing examples of E. coli cells in droplets.
The dataset consisted of 200 images chosen across different
microscopy conditions (light intensity, collimator position) to
improve the robustness and versatility of the model. A total of
1,670 in-focus cells were manually labelled by drawing bounding

boxes. Examples of cells considered in focus can be seen in
Supplementary Figure S3. The labelled data were split into a ratio
of 70:30 for training and validation, respectively. The model was
trained for 6,000 iterations on YOLOv4 darknet using the Google
CoLab platform. Trained YOLOv4 weights that exhibited high
average precision (AP) and low loss were obtained and converted
into TensorFlow format for post processing. To test whether we
could improve the model, we undertook preliminary
hyperparameter optimization by changing the learning rate and
momentum for training. The results are listed in the Supplementary
Material (Supplementary Section S5; Supplementary Figures S4, S5).
The converted YOLOv4model was used to perform detections on all
experimental data. For every raw image input, the model outputs a
detection image containing bounding boxes around cells and a
NumPy file containing the information on the coordinates of
these bounding boxes.

2.6 Utilising detections for data analysis

A counting method extracting the number of E. coli cells per
droplet using Z-stack information was implemented using
MATLAB. Every image part of the Z-stack had associated
YOLOv4 detections. In a typical experiment, a selected droplet
was imaged across more than 20 focal planes, each spaced by
0.5 microns. The plane with the maximum number of cell
detections was used to obtain an initial cell count. However, the
same cell may be detected in multiple planes due to its changing
orientation and motility. It took 75 milliseconds to image two
consecutive slices that were 0.5 microns apart. We experimentally
determined that a cell would have moved on average less than
4 microns in the same timeframe (c.f. analysis in Supplementary
Figure S7). If, for a slice different than the initial one, a cell was
detected at a position sufficiently close to a cell already counted, we
assumed that it was the same cell and therefore was registered only
once. However, if two cells lied in the same plane, the algorithm
would count both, independent of their relative location. After all
slices were processed, a final cell count and location was obtained
(referred to as “detection count”). This process was repeated for all
time points, enabling tracking of cell counts in a given droplet.

The raw “Detection count” data was filtered to extract accurate
times for individual cell division events. We implemented a function
that decreased detection noise and rounded the cell counts to the
local maximum values. Briefly, we applied a moving average
function for every 3 data points to attenuate sudden spikes.
Inaccuracies in cell detection count can occur, mainly because of
the positioning of the cells with respect to the droplet interface.
Supplementary Figure S9 displays examples of false detections. This
results in local fluctuations across time series. Consequently, a single
change in the detection count may not be reflective of an actual
change in cell number. Therefore, we only updated the cell count
whenever the same detection number was repeated N times
within a given time interval (referred to as the Nth maximum
method). This filtered cell count was termed “processed count”
in Figures 2C, 3.

Similarly, for lysis experiments, if a decrease in cell count was
observed N times, the processed cell count was decreased to the
lowest count value (‘Nth minimum method’). This allowed us to
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generate the step count increases/decreases and obtain accurate cell
division and lysis times for all growth and lysis experiments.

Figure 2 summarizes the image processing workflow, including
YOLOv4 training, detections across slices and post-processing to
obtain final cell counts and locations.

2.7 Calculation of doubling times using
processed bacterial counts

Doubling times for bacterial population were calculated using
the slope of the bacterial count plots. We manually identified the
portion of the plots with highest slope and excluded at least the first
20 and 70 min for the 37°C and room temperature experiments
respectively (individual fits are shown in Supplementary Figure
S12). The resulting linear fits helped us obtain the specific
growth rates and doubling times using the following equation:

D � ln 2( )
SR

(1)

Where D is the population doubling time and SR the specific
growth rate.

3 Results

3.1 Counting single E. coli cells using
YOLOv4

We developed a method to characterize growth and lysis of
bacterial populations by counting single bacterial cells using label-
free bright-field microscopy and YOLOv4 based object detection
oriented deep learning. Lysis of bacterial cells was induced upon
infection of bacterial populations with their virus called

FIGURE 2
YOLOv4 model training and data analysis (A) Flow chart of labelling procedure involving dataset acquisition, labelling using LabelImg and training
using YOLOv4. (B) Flow chart showing imagemasking, image passing through YOLOv4 and cell detection output image. (C)MATLAB analysis flowchart. 1)
Example Z-stack with cells detected for 3 planes. 2) The location of detected single cells overlaid on one of the Z-stack images are represented by red
dots (Supplementary Figure S7). 3) Cell counts over time. The figure was plotted using the process described in (2) for every time point. The final
processed count was generated using the 3rd maximum method (Section 2).
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bacteriophage or phage. In our experimental system, we employed
the most studied bacterium, Escherichia coli to investigate bacterial
growth in droplets, or infected E. coli with their phage T7 to observe
bacterial cell death due to lysis. We employed the E. coli strain
BW25113, which is a derivative of the wild-type E. coli K-12 strain,
described as weakly motile, and it is a known host strain for
propagation of phage T7 (Wang and Wood, 2011; Mutalik et al.,
2020). T7 is the most suitable phage model for bacterial real-time
lysis experiments because of its short infection cycle (approx. 15 min
at 37°C) and high lytic activity (Mandal et al., 2021). Using our
method, individual E. coli cells were trapped in anchored droplets
and their growth and lysis observed in a 3D liquid environment. The
YOLOv4 model to detect cells in focus was trained for
6,000 iterations and the average precision (AP) value of 83.6%
was obtained (Supplementary Figures S5, S6). Our model
achieved an accuracy of ~84% with IoU of 50% and 93% with
IoU of 25%. For each experiment, one anchored droplet was selected
and observed over a period of up to 10 h. Droplets were imaged
using a Z-stack method. Briefly, 20 to 30 images at 0.5 microns
intervals were acquired, ensuring that cells were in focus and
detected by our model in at least one focal plane in the stack (c.f.
Section 2.4). The whole stack was acquired in 1.5–2.1 s depending on
the number of slices chosen. Z-stack images were circularly masked
to avoid any detections outside the zone of interest (Supplementary

Section S8). The masked images were used as the input for the
trained YOLOv4 model and detection images were obtained along
with coordinates of all bounding boxes. YOLO detections for each
Z-stack generated the detection counts which were then processed
using the 3rd maximum or 3rd minimum method to identify
individual cell doubling and cell lysis events, respectively (Section
2.4; Supplementary Figure S11).

Figure 3 shows representative bacterial growth and bacteriolysis
assays. Figure 3A shows the increase in cell count over time. Each
step in the processed count plot represents cell division events.
Increase in cell count for each step was manually verified using
corresponding time-point images as seen in Figure 3B and
Supplementary Movie S1. Similarly, Figure 3C shows a decrease
in cell count as phages cause bacteriolysis. Each step corresponds to
lysis events and was verified using corresponding time-point images
as seen in Figure 3D and Supplementary Movie S2.

3.2 Analysis of E. coli growth

Experiments were conducted at different temperatures and
different initial cell numbers to check the versatility and
applicability of the cell count method developed using the
YOLOv4 model. For all experiments, we visualised E. coli cells

FIGURE 3
Time-resolved bacterial growth and phage-induced bacteriolysis. (A) Example of detection and processed counts for E. coli population growth.
Starting from a single E. coli cell, we tracked the growth of the population. (B) Selected images showing corresponding detections at different time points
(Supplementary Movie S1) (C) Example of detection and processed counts for lysis of individual E. coli cells. (D) Selected images showing corresponding
detections at different time points (Supplementary Movie S2).
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growing in culture medium in the 3-dimensional environment of the
anchored droplet. Table 1 gives a detailed account of experimental
conditions employed during growth experiments. The parameters
for imaging of each of these growth experiments have also been
listed in Supplementary Table S1. All growth curves include a 10-
min delay due to the time required for cell loading and initiation of
image acquisition.

3.2.1 Growth of E. coli at room temperature
We conducted multiple experiments at room temperature

starting at various loading optical densities corresponding to
different bacterial population size and initial cell numbers. Mean
cell number could be anticipated from Poisson statistics using a
droplet volume of 15 pL calculated assuming an ellipsoid droplet
shape. In the first experiment, we started with a loading OD600 value
of 0.19 and an initial cell count of 2. We reached a final cell count of
47 after 470 min. When the loading OD600 was 0.35 and initial cell
count was 1, cell number reached a final count of 37 in 396 min.
When we started with a loading OD600 of 1 and an initial cell count
of 5, we reached a final count of 21 in 445 min. Figure 4A shows the
increment in cell count in the form of individual steps every time a
cell divides for each of these experiments. We observed that the
growth of cells in each condition was dependent on the loading
OD600 values in all the cases. Single-cell times to division in all
experiments were broadly evenly spread across the duration of the
experiments as seen in Figure 4B. Population doubling times of
103 ± 3 min (OD600=0.35), 156 ± 3 min (OD600=0.19) and 215 ±
5 min (OD600=1) were calculated. The growth of cells in the droplets

was found to be reflective of the media carrying capacity. At lower
OD600 values (0.19 and 0.35), we observed faster cell division and
higher cell yield due to higher concentration of nutrients present,
whereas droplets generated with high initial OD600 showed slower
growth and lower yields due to nutrient depletion in the media as
media carrying capacity was approached.

3.2.2 Growth of E. coli at 37°C
We performed three experiments starting with different OD600 and

number of bacterial cells in droplets. When the loading OD600 were
0.29 and 0.30 with cell count of 4 and 3 respectively, the cell population
reached the same count of 16 in 135 min and 100 min respectively.
When theOD600 was 0.35, and the droplet contained 2 cells initially, the
cell number reached a total of 15 in 145 min. Since the media carrying
capacity was almost identical in all three cases, the growth yields for all
experiments were comparable. Figure 4C shows the increment in cell
count in formof individual steps for experiments conducted at 37°C and
Figure 4D the corresponding single-cell times to division. The doubling
times were calculated to be 29 ± 3 min (OD600=0.30), 43 ± 3 min
(OD600=0.35) and 79 ± 5 min (at OD600=0.29).

3.3 Analysis of E. coli lysis with T7 phage

Phage T7 was chosen to perform bacteriolysis experiments as its
lytic cycle causes the infected cells to undergo sudden burst,
making identification of intact cells that retained their
morphology easier.

FIGURE 4
Comparison between growth of E. coli cells at room temperature and 37°C. (A)Growth of E. coli populations at room temperature determined by the
increase in number of cells due to cell division. (B) The corresponding histogram showing the distribution of single-cell time-to-division for each
experiment. (C) Growth of E. coli populations at 37°C determined by increase in number of cells due to cell division. (D) The corresponding histogram
showing the distribution of single-cell time-to-division.
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3.3.1 Lysis of E. coli cells at room temperature
Aliquots of exponentially growing E. coli cultures with

determined OD600 values were mixed with the T7 phage lysate
(109 PFU/mL) at different volumes to obtain different expectedMOI
in droplets for each experiment. Specific parameters of all lysis
experiments are summarized in Table 2. The initial cell counts in
experiment with expected MOI value 0.35 was 28 and all the cells in
the observed droplet were lyzed within 206 min. In the experiment
with an expected MOI value of 0.45, we started the experiment with
an initial cell count of 29 and noted complete bacteriolysis in
123 min. For the droplets with expected MOI value of 0.48,
complete cell lysis from an initial cell counts of 17 was observed
within 106 min. Figure 5A shows the comparison for the three lysis
experiments at room temperature. We observed that higher MOI
resulted in faster cell lysis, which is to be expected as applying higher
MOI indicates that bacterial cells were initially challenged with more
phage particles. Figure 5B shows individual cell lysis events extracted
from Figure 5A. A peak of lysis at time 60 min seem to point towards
the average time to lysis of E. coli at room temperature. Indeed, in
experiments L2 and L3, we observed a sudden onset of cell burst at
60 min, lyzing more than half the population of cells.

3.3.2 Lysis of E. coli by T7 phages at 37°C
The lytic cycle of the T7 phage at 37°C is known to be around 17min

resulting in the duration of lysis experiments at 37°C being significantly
shorter than that of lysis experiments at room temperature (Heineman
and Bull, 2007; Jack et al., 2019). Considering the speed of T7 lytic cycle,

low expectedMOI values were chosen to aid in observing individual lysis
events. Parameters of experiments and imaging are summarized in
Supplementary Table S2. For droplets withMOI value 0.15, we began the
experiment with an initial cell count of 18 (i.e., estimated initial phage
count of 3) and observed complete cell lysis in 48min. For droplets with
expected MOI value 0.18, the initial cell count was noted to be 17
(estimated initially as 3 phage particles) and almost all the cells were
lyzed within 39min. The T7 phage burst size refers to the number of
viral particles produced during the lytic cycle of phage infection and is
predicted to be hundreds for T7 phage (Nguyen and Kang, 2014).
However, one cell was observed to remain whole even with the expected
presence of large number of T7 phages produced by previous lysis of
other cells in the same droplet (experiment L5).

For droplets with expected MOI 0.20 with initial cell count 18,
cell count increased to 22 (experiment L6) and most cells lyzed after
around 30 min with complete lysis observed within 38 min. For the
experiment with a relatively high MOI of 1 (experiment L7) and
initial cell count 14 (14 expected phages initially), approximately
75% of the population was lysed within 16 min and complete cell
lysis was observed in 36 min. Figure 5C shows the comparison
between lysis experiments at different expected MOI. Similar to
room temperature experiments, we observed faster cell lysis in
droplets with higher expected MOI. Figure 5D shows individual
cell lysis events for each experiment in Figure 5C. Overall, we
observed both early lysis (between 11 and 17 min) and late
events with noticeable time delay as seen in Figure 5D (with
many recorded lysis events occurring after 28 min from mixing).

FIGURE 5
Comparison between lysis of E. coli cells by T7 phages at room temperature and 37°C. (A) Lysis of individual E. coli cells at room temperature. (B) The
corresponding histogram shows the distribution of time to lysis of single bacterial cells for each experiment. (C) Lysis of individual E. coli cells at 37°C. (D)
The corresponding histogram shows the distribution of time to lysis of single bacterial cells. All lysis curves include a 10-min delay due to the time required
for cell loading and initiation of image acquisition.
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4 Discussion

By combining bright field microscopy, microfluidics, Z-stack
imaging and YOLOv4 based object detection framework, we
demonstrate a robust platform that enables single-cell level
monitoring of growth or lysis of bacterial cells in liquid
environments. Growth experiments demonstrated the ability of
anchored droplets to act as independent microreactors allowing
the cells to grow with little physical constraints. This label-free
platform enabled us to detect and count individual cells purely based
on their morphological features without any biological
modifications or need for fluorescent labelling. Our method poses
limited restrictions (presence of an oil-water interface, finite
resources within the droplet) on the cells and allows us to
monitor large cell populations which more faithfully represent
both in vivo and environmental conditions.

A key enabling advance has been the ability to detect cells of various
morphology using deep learning methods. Our YOLOv4 model
exhibited adaptable and accurate detection of E. coli cells in focus
across different levels of brightness and contrast (Supplementary Figure
S8) making the method robust to experimental drift. Average Precision
(AP) was calculated to be 83.6% with an average loss of 0.4 after
5,600 iterations of training (Supplementary Figure S5 for more details).
The weights corresponding to these conditions were used to perform all
deep learning-based detections and analysis throughout this study.
E. coli detection in bright-field images using YOLO was also
performed by Sun et al (Sun et al., 2022) in a solidified agar-based
microchannel in a microfluidic chip. Their study employed the use of
YOLOv3, YOLOv4 and YOLOv5 to identify and E. coli cells with a
training dataset consisting of 400 images. The precision they obtained in
detecting the E. coli cells using YOLOv3, YOLOv4 and YOLOv5 was
noted to be 68.6%, 72.9% and 73.4% respectively. In contrast, the
detection precision in our method (~84%) has already surpassed this
detection precision using fewer images and with freely swimming cells.

We have observed that the cells could swim at speeds
commensurate with the one of our Z-scan acquisition. It is therefore
possible for the same cell to be in-focus in different images of a Z-stack.
To alleviate this issue, we therefore counted all cells sharing the same
(x,y) coordinates within a tolerance (‘exclusion’) radius as one (unless
there was more than one cell detected in the slice with the most number
of cells). This choice of methodology partly explains the noise we report
in the detection counts. However, the probability that 2 cells share the
same (x,y) coordinates within an 8 micron deep trap is small and cells
will eventually swim away from one another.

The accuracy of detections wasmainly limited by the positioning
of cells with respect to the droplet interface and by the local density.
Supplementary Sections S8, S9 exemplify false positive detections
and show standard deviation as a function of cell number. We
observed that cells were often undetected if they were positioned or
moved around the circumference of the selected droplet as they
could not be resolved in images as seen in image in Supplementary
Figure S9. Similarly, the accuracy in cell count was found to be
directly dependent on the number of cells. Supplementary Figure
S10 shows the standard deviation for cell count accuracy versus the
total number of cells. We observed that the accuracy of cell count
decreased as the number of cells in the droplet increased, imposing a
practical limit on the maximum number of cells that can be counted
per experiment. Our radius of exclusion method also set a hard

boundary on the maximum cell density (i.e., one cell per 44 μm2)
corresponding to about 50 cells given our droplet diameter. This
method is generalizable to other bacterial species. Our approach is
directly applicable to any rod-shaped bacteria of similar size. For
instance, in Supplementary Figure S13 we demonstrate the
detections of P. aeruginosa using the same model utilized to
detect E. coli in our study.

T7 phages cause infected E. coli cells to burst. The
YOLOv4 model did not detect the lyzed cells or floating debris
because it was specifically trained to detect cells that retain their
shape as seen in Supplementary Figure S3. One limitation of our
method is the finite tracking ability of cells on an individual basis to
construct the lineage tree of a population. This is linked to the
relatively long time required to acquire complete Z-stacks, limiting
our time resolution to typically 1.5–2.1 s. The use of smaller Z-stacks
and shallower traps could increase this time resolution further and
enable tracking of low-motility strains. Extension of the presented
method to larger populations in larger drops (i.e., with larger, taller
traps) could be implemented by adapting the method to evaluate
cell-to-cell distances in 3D instead of the exclusion radius method
presented. Automated screens of multiple droplets at a time could
also be done using a motorized microscope stage at the cost of time
resolution per droplet. Bacterial growth starting from a few cells
exhibited strong stochasticity. As the histograms in Figure 4B
illustrate, population development did not follow reproducible
patterns, in line with expected stochasticity at the single-cell level
which has been covered in detail in other studies (Koutsoumanis and
Lianou, 2013; Garcia et al., 2017; Barizien et al., 2019). Experiments
at both room temperature and 37°C show stochasticity under similar
growth conditions.

For phage experiments, we hypothesize that all cells in a given
droplet may not be infected immediately especially at low MOI
experiments. This allows non-infected cells to grow and divide as
seen in Figures 5A, C (experiments L2, L5 and L6). As infected cells
lyze, the concentration of phages in the droplet increases, causing
the rest of the cells within the droplet to lyze from secondary
infections as seen in Figure 5C. Phage life cycle highly depends
on temperature. At room temperature, as found in the environment,
phage adsorption and replication dynamics may be affected. Our
experiment at room temperature still shows efficient lysis albeit
much slower than at 37°C. In our droplet microfluidics setup,
T7 phage lyzed almost all cells within 200 and 50 min at room
temperature and 37° respectively. However, some cells did not lyze
for several minutes even after the lysis of all other cells and remained
motile in the droplet (Figure 5C, experiment L5). This could be
explained by resistance against phage infection developed via many
different mechanisms (Labrie et al., 2010).

We have shown the utility of the currently presented low
throughput setup in the precise characterization of bacteria-phage
interactions monitored via the change in number of bacteria present
at any given time, with a realistic 3 repeats per day currently possible.
Extending this work to higher throughput would be desirable to
obtain larger datasets but will require compromise in either spatial
or temporal resolution. We foresee two main approaches for
increasing throughput: using a motorised microscope stage or
lower magnification objectives to simultaneously image multiple
droplets. Increasing the density of traps in the microfluidic design
would also enable multiple droplet acquisition per image. An

Frontiers in Lab on a Chip Technologies frontiersin.org10

Tiwari et al. 10.3389/frlct.2023.1258155

https://www.frontiersin.org/journals/lab-on-a-chip-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frlct.2023.1258155


example of implementing a lower magnification approach is shown
is Supplementary Section S14 of Supplementary Material (imaging
two droplets at once).

5 Conclusion

Our microdroplet trapping device and analysis pipeline from
Z-stack bright-field images provides a means to study dynamic
interactions between microbes and antimicrobial agents. This
includes the life cycle of phages, e.g., dynamic transition between
lysogenic and lytic pathways observed via long-term balance
between growth and lysis, and the evolution of resistance to phages,
an essential consideration for pre-empting future resistance to phage
treatment. The technical simplicity of the setup coupled with shareable
deep learning models will accelerate phenotypic studies of bacterial
populations. In future work, the platform could be used to study
combinatorial effects of antibiotics and phages. One could also
expand object detection-oriented methods to study polymicrobial
cultures of clinically relevant strains to characterise the impact of a
microbial community composition with respect to the lytic efficacy of
phages. Finally, our method could be used to evaluate susceptibility of
cells to antimicrobial agents other than phages via change in bacterial
growth dynamics or morphological changes at sub-inhibitory
concentrations.
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