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Human Activity Recognition (HAR) applications are most commonly deployed on em-

bedded systems with limited computational resources. Our work focuses on applying

deep learning methods to HAR and developing compact architectures.

The first chapter of this report introduces a novel label representation for HAR in which

we introduce the soft label shown to be capable of inducing better representation per-

formance than that of the one-hot label. We will further investigate the teacher-student

architecture for HAR. In our approach, we incorporate soft label by the teacher that su-

pervises the next generation of training via the students. Experiments on 3 benchmark

datasets, widely used in the community, which confirm that after a few generations of

training, the model’s performance surpasses that of the one-hot label. We also introduce

the ECE, to avoid over-confident predictions, we use ECE as a performance metric, to

evaluate the calibration performance of the HAR models. The experimental results also

confirm that the teacher-student architecture effectively reduces the ECE and trains

well-calibrated networks.

In the second chapter of this report, we evaluate the application of Binary Neural Net-

works (BNNs) in Human Activity Recognition (HAR) more suitable for constraints of

embedded systems the features of embedded systems. Our goal is to significantly re-

duce the storage requirements and forward propagation latency of the model. We use

XNOR-Net as the backbone architecture, where the weights, activation functions, and

inputs to the convolutional layer are binary. The most crucial aspect is that the convo-

lution operation is replaced by XNOR, resulting in a 32-fold reduction in memory usage

and a 58-fold reduction in convolution operation latency. This enables operations to be

performed on CPUs with limited computing power, rather than powerful GPUs, in most

cases. We also examine the impact of using BNNs on the model’s performance and the

potential for transfer learning. Our findings show that these benefits do not come at

the cost of accuracy or Expected Calibration Error (ECE) performance. However, the

dataset we used has different sensors in different body parts, making transfer learning

challenging.

In the third chapter, we study the application of a hybrid XNOR-Net and teacher-

student architecture in HAR. The teacher network is first trained with a hard label

that supervises the BNN student networks. Our approach improves the performance of

future generations (i.e., the students of the student).

Finally, as part of our previous research, we participated in the OU-ISIR Wearable

Sensor-based Gait Challenge in 2019 as part of an international competition in HAR

and finished as runners-up. This involved gender and age-related multitasking learning.

The gradient normalization algorithm was used in conjunction with the hybrid ResNet

and BLSTM blocks. However, we no longer use it in subsequent research as the employed

dataset is a single classification challenge rather than multi-task learning.
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This research contributes to the ongoing advancement in HAR, offering insights and

methodologies that may inspire future research in this field.
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Chapter 1

Introduction

Over the past decade, deep learning technology has emerged as an effective tool for a wide

range of applications, particularly in computer vision and natural language processing

(Baghezza et al., 2020).

Human Activity Recognition (HAR) has received extensive attention in recent years

due to its significant impact and diverse societal applications, such as health care (Sagha

et al., 2011), gaming (Kang et al., 2004), and assistive technologies (Bächlin et al., 2010).

HAR is primarily based on sensor data and collecting such data requires specialized hard-

ware. However, recent technological advancements have made it easier to access such

data due to the integration of various sensors into smartphones, such as accelerometers,

gyroscopes, and other tracking sensors. These sensors have enabled the development of

convenient and ubiquitous, yet affordable, health monitoring. In the past, the typical

approach to HAR was limited to extracting hand-crafted features from raw sensor data,

and the performance of these HAR classification methods was directly tied to the rele-

vance of these hand-crafted features, which is a time-consuming and resource-intensive

task.

Deep learning technology has become the mainstream technology in natural language

processing, data mining, and computer vision (LeCun et al., 2015). A typical example of

such technology is AlexNet (Krizhevsky et al., 2012), which achieved great success and

gained state-of-the-art performance on the ImageNet LSVRC-2010 competition (Ham-

merla et al., 2016).

Deep learning has also been applied to HAR, eliminating the need for extracting spe-

cific hand-crafted features (Guan and Plötz, 2017; Edel and Köppe, 2016; Hammerla

et al., 2016). As HAR is often based on time series data, deep learning architectures

such as RNN and LSTM components are well-suited to enhance its performance. These

architectures model the inherent time-series characteristics of sensor data, which reflect

different human activities (Alharbi and Farrahi, 2018; Yao et al., 2017; Davarci et al.,

2017; Steven Eyobu and Han, 2018; Delgado-Escaño et al., 2019). Studies have shown

that the automatic feature extraction from inertial sensors by deep neural networks

2
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outperforms hand-crafted features. The temporal dynamics in such data can also be

extracted by convolution windows and recurrent components, which obtain the relation-

ship between different time intervals (Yao et al., 2017). Furthermore, the combination

of multiple RNNs with convolution layers has been citep to be an effective approach for

inertial sensor data (Yao et al., 2017; Delgado-Escaño et al., 2019).

Multi-task learning is utilized in HAR. In the competition we participated in, the task

was to predict the age and gender of subjects simultaneously based on wearable sen-

sor data (Delgado-Escaño et al., 2019; Ruder, 2017). These studies show that a neural

network that outputs multiple predictions provides better performance than splitting

them into separate single-task predictions. This is due to the generation of more general

features. However, in some cases, different targets have different criteria.

In the competition mentioned earlier, the goal was to predict the age and gender based

on sensor data. Usually, cross-entropy is used as the loss function for classification,

while MAE and MSE are used for regression. However, as MSE is often much larger

than MAE, the network tends to focus on the aging task and neglect the gender goal.

To address this issue, we modified the gradient normalization algorithm in (Chen et al.,

2017) to automatically balance the training process in deep multitask models through

dynamic adjustment of gradient magnitudes. These approaches aim to improve the

model architecture with a given one-hot label. However, the one-hot label has limited

information, as it cannot represent the potential relationship between different cate-

gories. To address this, we explore the use of soft labels.

While deep learning has greatly improved model accuracy, in real-world classification

systems, accuracy is not the only measure of performance. Confidence is also crucial, as

it ensures the correctness of a model’s predictions. For instance, in automated health-

care, if the confidence level of a diagnosis result is low, the result must be referred to

human doctors (Jiang et al., 2012). Another example is self-driving cars, where neural

networks are used to detect pedestrians and other obstacles. To ensure safety, tasks such

as these require a high confidence level in detecting the presence or absence of immediate

obstacles (Bojarski et al., 2016). Hence, in some applications, the deep learning network

should provide a calibrated confidence measure in addition to its predictions.

In other words, the probability associated with the predicted class label should accurately

reflect its likelihood of being correct (Guo et al., 2017). Additionally, a high-confidence

prediction provides valuable information that contributes to its trustworthiness, which

is particularly important for deep neural networks whose classification processes can be

difficult to interpret.

As demonstrated in (Guo et al., 2017), despite the remarkable improvement in accu-

racy of modern neural networks in recent years, they are often no longer well-calibrated.

The authors compare a 5-layer LeNet (LeCun et al., 1998) and a 110-layer ResNet

(Al-Shedivat et al., 2017) on the CIFAR-100 dataset and find that while the LeNet is

well-calibrated and has a high confidence level, the ResNet is not well-calibrated but has
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much higher accuracy. Furthermore, (Müller et al., 2019) have shown that label smooth-

ing can be used to calibrate a network and reduce its ECE through a teacher-student

architecture. In our work, we adopt this architecture to develop a well-calibrated and

high-performing network for HAR.

The size of the model is crucial in HAR as these applications are often deployed on

small devices with limited computational resources. Knowledge distillation, a model

compression method, is applied by training a smaller model to mimic a pre-trained,

larger model (or ensemble of models). This is known as the teacher-student architec-

ture, where the large model serves as the teacher and the small model is the student.

The teacher is often a high-capacity model with high performance, while the student is

a compact model. The goal of knowledge distillation is to transfer knowledge from the

teacher to the student and benefit from the compactness of the student model without

sacrificing too much performance.

In recent years, a new perspective on knowledge distillation has emerged, referred to as

Born Again Neural Networks (BANS), in which the student models are trained to be

identically parameterized with their corresponding teachers. This approach has been

applied successfully in computer vision and language modeling and is expected to be a

good fit for the HAR task.

In real-world classification systems, accuracy is not the only factor that matters. Con-

fidence is equally important as it ensures the correctness of the model. For example,

in automated healthcare, if the confidence level of a diagnosis result is low, it must be

reviewed by human doctors.

1.1 List of contributions

The contributions of this thesis as follows:

1. To the best of our knowledge, we are the first to introduce the ECE metric in HAR

and investigate the significance of model calibration. We also explore how ECE

relates to the classification performance of various types of activities.

2. We propose the teacher-student architectures to generate the soft label for training

the next generations of students. This approach has rich information and a more

powerful representation. By employing KD and BANS, this results in an ensemble

model for more efficiency and improved ECE performance obtaining state-of-the-

art performance for HAR on the Daphnet dataset.

3. We apply the XNOR-Net architecture as the backbone in BNN. This approach

achieves a significant reduction in the memory size and forward propagation la-

tency with only partial loss of F1 score.
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4. We combine the teacher-student architectures with the XNOR-Net to train a high-

performance binary student network. This also reduces the ECE and calibrates

the model by the noise introduced via binarization.

5. We evaluate the performance of transfer learning on BNN with the Daphnet, Op-

portunity, and PAMAP2 dataset.



Chapter 2

Literature review of human

activity recognition

2.1 Human activity recognition

Human activity recognition is a challenging time-series classification task that aims to

provide information about human body activities and detect simple or complex move-

ments in the real world. This technology can improve the quality of life in various

areas, such as geriatric care, rehabilitation, daily life documentation, personal health,

and assistance to people with cognitive impairments (Golestani and Moghaddam, 2020).

Traditional methods for HAR require deep domain expertise and techniques from signal

processing to design raw data features that are suitable for machine learning models.

The two main methods for deploying Human Activity Recognition (HAR) systems are

external sensors and wearable sensors (Lara and Labrador, 2012). The external approach

involves setting up a monitoring device at a fixed point, and the user is expected to in-

teract with it (Wang et al., 2015). This approach often uses vision-based techniques and

has been extensively studied for human activity analysis, but it faces several challenges

such as coverage, accuracy, privacy, and cost. For example, it requires infrastructure

support, like installing cameras in surveillance areas, which can be expensive. Addition-

ally, if the user goes out of the camera’s range, the device will not be able to capture

any data (Bodor et al., 2003).

On the other hand, wearable sensors, such as accelerometers, gyroscopes, and magne-

tometers, are used to convert human movement into signal patterns for activity recog-

nition (Kumari et al., 2017). Advances in embedded sensor technology have made it

possible to monitor user activity using smart devices. Body sensors are designed to

capture the state of the user and their environment, and they utilize information from

heterogeneous sensors that are connected to the subject’s body. This allows for con-

tinuous monitoring of numerous physiological signals and is useful for authentication,

6
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health and aging, and activity recognition in sports and exercise monitoring applications

(Chetty and White, 2016; Lu et al., 2017). The use of smartwatches and smartphones

in human activity monitoring has been reported, and satisfactory performance has been

achieved (Lu et al., 2017).

Prior research (Banos et al., 2014) has shown that for capturing the significant motion

variation found in activities with intricate details, like domestic chores, extended win-

dow sizes are typically necessary. However, a number of activities could take advantage

of smaller window sizes. Activities engaging the entire body or multiple parts can be

identified more readily and also allow for the adjustment of the window duration. Walk-

ing, jogging, running, and various other sports exercises are examples of such activities.

These activities provide a more comprehensive description compared to those that in-

volve only certain body parts, such as particular jumps and isolated limb movements.

In these instances, some data windows obtained from specific body parts may not sig-

nificantly contribute to differentiation, causing the recognition process to depend on a

smaller set of informative windows. To counteract this, it’s necessary to gather more

data from the parts that yield larger, more informative windows.

2.2 Datasets Overview

Three datasets related to HAR are employed in the experiments. Figure 2.1 illustrates a

visualization of label distribution, which is unbalanced. Hence using the weighted label

strategy is necessary. Also, Figure 2.2 presents a visualization of a 45-frame segment

from the Daphnet Gait Dataset, depicting the Normalized Data Over Frame. This visu-

alization distinctly highlights the intense fluctuations observed during freeze states, in

contrast to the relative stability in no-freeze conditions. The other two datasets are sim-

ilarly visualized, employing the same methodology but encompassing more dimensions.

Tables 2.1, 2.2, and 2.3 detail the key information of the Daphnet Freezing of Gait,

OPPORTUNITY, and PAMAP2 datasets respectively.

Daphnet Gait Dataset: This dataset (Bachlin et al., 2010) is a binary classification

dataset consisting of recordings from 10 participants diagnosed with Parkinson’s disease

(PD). Dataset activities correspond to recognizing whether or not gait freeze occurs

based on wearable acceleration sensors. The dataset was recorded in a lab environment

with the subjects were instructed to carry out activities with a high likelihood of inducing

freezing of gait, which is a common motor complication in PD.

Opportunity Dataset: This dataset (Roggen et al., 2010) contains recordings from

various wearables and environment sensors from four participants who carry out com-

mon kitchen activities, such as Open/Close Door, Dishwasher, and Fridge, via Inertial

Measurement Units (IMUs) at 30Hz. Each participant is recorded in five different runs.
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Detail Description

Wearable Sensors 3 wireless sensors (ankle, thigh, hip), 3D acceleration

Sampling Frequency 64 Hz

Sample Length 151,987

Number of different classes 9

Recording Sessions 10 subjects, 1-3 runs each

Annotations 0: not experiment, 1: no freeze, 2: freeze

Data Format Sensor readings and annotations in text matrix format

Instances Combined data from all runs for each subject

Table 2.1: Daphnet Freezing of Gait Dataset Details

PAMAP2 Dataset: The physical activity monitoring dataset (Reiss and Stricker,

Detail Description

Wearable Sensors 7 IMUs, 12 3D accelerometers

Sampling Frequency 30 Hz

Sample Length 51,116

Number of different classes 77

Recording Sessions 4 subjects, 6 runs each (5 ADL, 1 drill)

Annotations Locomotion modes, actions, objects, gestures, activities

Data Format Sensor readings and annotations in text matrix format

Instances All subjects/recordings; Locomotion: 3653, Gestures: 2551

Table 2.2: OPPORTUNITY Dataset Details

2012) is similar to the opportunity dataset, consisting of nine participants performing

12 kinds of daily physical activities, such as cycling, walking, sitting. The sensors used

in the inertial measurement units (IMUs) include accelerometers, gyroscopes, magne-

tometers, temperature, and heart rate.

Detail Description

Wearable Sensors 3 Colibri wireless IMUs, positions: wrist, chest, ankle

Sampling Frequency IMUs: 100Hz, HR Monitor: 9Hz

Sample Length 319,352

Number of different classes 52

Recording Sessions 9 subjects, various activities including optional ones

Annotations Activity labeling via GUI

Data Format Sensor readings in text matrix format

Instances Each subject’s data collected according to protocol

Table 2.3: PAMAP2 Physical Activity Monitoring Dataset Details
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(a) Daphnet dataset (b) Opportunity dataset (c) PAMPA2 dataset

Figure 2.1: Label distribution of HAR datasets, the irrelevant labels are in the ma-
jority, and labels are grossly unbalanced.

2.3 The essential of model compression

In HAR, the original datasets are often quite large, therefore, features are usually com-

puted on the segments of the available data using a sliding window. They are also often

stacked with their derivatives (Lara and Labrador, 2013). Also, HAR applications are

often used in wearable devices which are not computationally powerful.

However, the practical application of deep learning is often limited by its scale of storage

and computation. For example, if the VGG-16 network contains about 140 million float-

ing point parameters, the entire network needs more than 500 Megabytes of storage space

(Simonyan and Zisserman, 2014). At present, Although in theory such computations

could be executed by a Turing machine, practically, they are typically conducted using

high-performance parallel devices due to the impracticality of achieving timely results

otherwise. Therefore, the compression of neural network can be promising for HAR.

According to machine learning theory and existing deep model compression methods,

there are divided into four main categories:

• Network pruning

• Low-rank factorization

• Transferred/compact convolutional filters

• Knowledge distillation

Neural network pruning aims to remove the redundant parts of networks with good

performance but high cost of resources. Although the learning ability of large neural

networks is obvious, in fact, not all neural networks are useful after the training process,

and the idea of neural network pruning is to remove these useless parts without affecting

network performance. Low-rank factorization techniques use matrix/tensor factorization

to estimate the information parameters of deep learning models. Moreover, A special
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Figure 2.2: Visualizes a segment (length 45) of the Daphnet Gait Dataset, showing
the Normalized Data Over Frame. It includes both freeze and no-freeze results
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structured convolution filter is designed to reduce the storage and computational com-

plexity.

Knowledge distillation, introduced by (Hinton et al., 2015), uses soft labels which contain

potentially rich additional information. It introduces the teacher-student architecture

while focusing on model compression and transferring knowledge from one machine-

learning model to another. It trains a more compact neural network to reproduce the

output of a larger network. The knowledge of one network can be transferred to another

network, and those two networks can be isomorphic or heterogeneous, which can be used

to transform the network from a large network into a small network and retain perfor-

mance close to that of the large network. Chapter 3 will illustrate the further research

on soft label, and the derived structures, Born again network (Furlanello et al., 2018;

Yim et al., 2017), where a student model supervises itself to train a duplicate version

in the iteration. It is then shown that the student eventually becomes the master after

a few generations. After performing an ensemble of all students, (Bucilu et al., 2006)

proposed a feasible method to compress the knowledge from the ensemble models into

a single model.

In this thesis, we adopt the teacher-student method, where the same architecture is used

for both the teacher and the student. We call this algorithm the soft-label generator

and provide theoretical evidence to confirm its feasibility.

2.4 To Calibrate or not to calibrate

Following the definition by (Guo et al., 2017) the problem is set in supervised multi-class

classification with the input X ∈ χ and label Y ∈ γ . Let h be the trained neural network

with h(X) = (Ŷ , P̂ ). Where Ŷ is a class prediction and P̂ is its associated confidence.To

calibrate the confidence as true probability, we define the perfect calibration as Eq. 2.1

P(Ŷ = Y |P̂ = p) = p, ∀p ∈ [0, 1] (2.1)

However, achieving the perfect calibration is impossible because of the finite number of

samples. To estimate the empirical approximation, the samples are then grouped into

M interval bins with 1
M size, depending on their confidence level. Let Bm be the set

of indices of samples whose prediction confidence falls into the interval Im =
(
m−1
M , m

M

)
.

Therefore, the accuracy of Bm is defined as in Eq. 2.2. where ŷi and yi are the predicted

and true class labels for sample i respectively.

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi) (2.2)

Furthermore, the average confidence within bin Bm is as in Eq. 2.3. where p̂i is the

confidence for sample i.
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Back to Eq. 2.1, the left-hand and right-hand sides are exactly acc(Bm) and conf(Bm).

Hence, the perfectly calibrated model will have acc(Bm) = conf(Bm) for all indications

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i (2.3)

To measure the miscalculations of models, the difference in the expectation between the

accuracy and confidence is employed as in Eq. 2.4. This term is also named expected

calibration error (ECE) as in Naeini et al. (2015) which is the primary empirical metric

to measure the calibration

EP̂

[
|P(Ŷ = Y |P̂ = p) − p|

]
(2.4)

For the finite number of samples, the approximation formula is Eq.2.5, in which the

predictions are partitioned prediction into M bins with weights

ECE =

M∑
m=1

|Bm|
n

|acc(Bm) − conf(Bm)| (2.5)

2.5 Rich information in the soft label

(Hinton et al., 2015) show that the soft label carries rich information, especially on

the confidence on non-correct label. For example, Suppose the dataset space is four

classification problem, and the confidence vector of trained neural network output is

[0.7, 0.15, 0.14, 0.01], compare with the ground truth target [1, 0, 0, 0]. The predicated

label of the trained neural network is the argmax selected term, so its actual output

classification is correct. While, it is interesting on the incorrect label, which shows more

information that: the trained neural network illustrates the second and third dimension

are almost the same and very tiny possibility on the last dimension.

To review the foundation of machine learning, the cross-entropy loss function is widely

employed. The first Derivative of it in Eq. 2.6:

∂L

∂zi
=

∂L

∂aj

∂aj
∂zi

(2.6)

Where L is the cross-entropy loss function, zi is the gradient of neuron output and aj is

the Softmax function

For the first term:
∂L

∂aj
=

−
∑

j yi ln aj

∂aj
= −

∑
j

yi
1

aj
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Figure 2.3: ResNet architecture the data is segmented to sensor-independent first.
Then the x,y,z dimensions from the same accelerometer are grouped so they are distin-

guished from other sensors.
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For the second term:

when i = j

∂aj
∂zi

=
∂ ezi∑

k ezk

∂zi
=

∑
k e

zkezi − (ezi)2

(
∑

k e
zk)2

= (
ezi∑
k e

zk
)(1 − ezi∑

k e
zk

) = ai(1 − ai)

when i ̸= j

∂aj
∂zi

=
∂

∂zi

(
ezj∑
k e

zk

)
= −ezj

(
1

(
∑

k e
zk)2

)
= −aiaj

Thus:

∂L

∂zi
= (−

∑
j

yj
1

aj
)
∂aj
∂zi

= −yi
ai
ai(1−ai)+

∑
j ̸=i

yi
aj

aiaj = −yi+yiai+
∑
j ̸=i

yi
ai

= −yi+ai
∑
j

yj

Where yi is the ground truth with one-hot label. For the example above, the gradient

zi = −1 + 0.7 = −0.3

Obviously, it only employed the confidence on the correct label term and discards others

confidence. Our interesting is that employ those ’discard’ information to further boost

the neural network. However, obtaining the soft label distribution of data on each label

is a significantly challenging task by manual labeling.

It can be obtained using forwarding propagation on a trained model, namely a teacher

model. The well-performing teacher model generates the correct label with high confi-

dence (low probability of classifying in an incorrect category).

In distillation, knowledge is transferred from the teacher model to the student through a

minimization loss function, where the target is the probability-like distribution predicted

by the teacher model. That is – the output of the softmax function of the logarithm of

the teacher model. However, in many cases, the probability of the correct category of

this probability distribution is very high, while the probability of all other categories is

very close to zero. Therefore, it does not provide much information beyond the basic

fact labels already provided in the dataset. To solve this problem, (Hinton et al., 2015).

introduced the concept of ”Softmax temperature” in 2015. The probability of the class

is calculated from the logarithm.

as in Eq. 2.7

qi =
exp(zi/T )∑
j exp(zj/T )

(2.7)

where T is the temperature parameter, and the higher the value of T , the softer the

probability distribution.

When T=1, we get the standard Softmax function. As T increases, the probability

distribution generated by softmax functions becomes softer, providing more information
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about which classes the teacher finds to be more similar to the predicted classes. Hinton

calls this ”dark knowledge” embedded in the teacher model, and it’s this dark knowledge

that we transfer into the student model in the distillation process. When calculating

the loss function and the teacher’s soft goal, we use the same t-value to calculate the

student’s logarithmic Softmax. We call this loss ”distillation loss”.

2.6 Experimental Setup and Result Presentation

We first select ResNet He et al. (2016) as the model backbone, on teacher-student ar-

chitecture, for our experiments and apply that on all the HAR datasets. Furthermore,

ResNet-16 and ResNet-64 are arranged to assess the impact of reducing the number

of layers on the HAR performance. To enable a fair comparison with the results pre-

sented in (Hammerla et al., 2016), we also use the weighted F1 score in Eq. 2.8 for the

opportunity dataset. For the other two datasets, we use the mean F1 score as in Eq. 2.9.

Fw = 2
∑
c

Nc

Ntotal

precc × recallc
precc + recallc

(2.8)

Fm =
2

|c|
∑
c

precc × recallc
precc + recallc

(2.9)

Where precc, recallc represent the precision and recall in label c, respectively, Nc refers

to the number of samples in class c and Ntotal is the number of samples in the dataset

Experiments were run on a machine with four GPU cluster (4x Nvidia GTX 1080Ti)

on Iridis 5. In the software used section, PyTorch version: 2.0.1 CUDA version: 11.7

(suitable for NVIDIA GPU acceleration). The different hyper-parameters explored in

this work are: batch size = 128, initial learning rate = 0.1, weigh decay factor=0.1,

patience=10, for all introduced architecture. For teacher-student architecture, SGD op-

timizer momentum = 0.9, alpha=0.5 for KD and generation = 5 for maximum students.

For the XNOR-Net Adam optimizer, betas = (0.9, 0.999) eps = 1e-8.

The code for calculating the Expected Calibration Error is written as follows.

# Define the computation ECE

def compute_ece(confidence , ground_truth ):

Histogram , Acc , Conf = np.zeros (10), np.zeros (10), np.zeros (10)

bins = np.linspace(0, 1, 11) # 10 bins

bin_indices = np.digitize(confidence , bins) - 1

for i, bin_index in enumerate(bin_indices ):

Histogram[bin_index] += 1

Conf[bin_index] += confidence[i]

if confidence[i] == ground_truth[i]:

Acc[bin_index] += 1
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valid_bins = Histogram > 0

Acc[valid_bins] = Acc[valid_bins] / Histogram[valid_bins]

Conf[valid_bins] = Conf[valid_bins] / Histogram[valid_bins]

ECE = np.abs(Acc - Conf) * (Histogram / Histogram.sum ())

return ECE.sum()
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Born Again Network

3.1 Principle

(Furlanello et al., 2018) propose a new perspective based on the KD that is referred to

as born-again networks. It employs a powerful teacher model to generate a soft label to

supervise the light student structure with a hard label. In this case, the learning task is

described by Eq. 3.1:

θ∗2 = argmin
θ2

L(f(x, argmin
θ1

L(y, f(x, θ1))), f(x, θ2)) (3.1)

where θ2, θ1 represent the student and teacher network parameters, respectively. Once

the student network finishes training, it becomes a teacher to support the next genera-

tion of the student iteration.

Here we experiment with the teacher-student architecture. After the first model, the

teacher is trained within hard-label, and we initialize another network (the student) with

the same architecture. The student, however, now has a soft-label which is the output

provided by the teacher, as well as a weighted hard-label. We examine how to combine

these labels. Fig. 4.1 illustrates the structure of our method. We first experiment with

the temperature parameter T as 1 and the weights w1, w2 in Eq. 3.2. These contain

information on the output of both the teacher and the one-hot label.

θ∗2 = w1 argmin
θ2

L(f(x, argmin
θ1

L(y, f(x, θ1))), f(x, θ2))

+w2 argmin
θ2

L(y, f(x, θ2))
(3.2)

In the backpropagation processes, the first derivative between the loss function and the

logits output is given by Eq. 3.3:

17
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Figure 3.1: Graphical representation of the employed architecture. In the first step,
we initialize the random-seed generator and a sample model. Then, the prototype
model is trained in the usual way by copying the parameter from the sample model.
In the next consecutive step, an identical model is created with the copied parameter
and trained from the supervision of both the previous generation and the hard label.
Note that the one-way arrows represent the forward propagation, and two-way arrows

represent both forward and backpropagation.

∂ L
∂l

=
1

2b

b∑
n=1

(
exp(l∗)∑n
i=1 exp(li)

− 1 +
exp(li)∑n
i=1 exp(li)

− exp(ti)∑n
i=1 exp(ti)

)
(3.3)

where t is the teacher’s output. The first term is the cross-entropy with the hard label

and the second term represents the cross-entropy with the soft label.

In the experimental setup, we test 1D ResNets on the datasets described in Section 4.

We use the fixed evaluation test and training set to follow the previous works by (Edel

and Köppe, 2016; Guan and Plötz, 2017; Reiss and Stricker, 2012) for comparison. We

use the same architectures and parameters, except for the last dense layer in which a

different number of classification targets are considered.

The details of the structure are as follows: 64 filters convolution layer with 15 kernel

size at the beginning. This is followed by the basic ResBlocks (3,4,4,5) and a global-

average pooling layer, SoftMax activation, and the dense layer. For the network, there

are five generations trained and each generation is trained for 400 epochs using stochastic

gradient descent with moment. We set the momentum to 0.9. and the learning rate is

0.1.

Following the idea of (Furlanello et al., 2018) for the BANs, here, we consider the same

architecture for the student and teacher. Figure 3.2 shows the results on the considered

HAR datasets, where at least one of the student networks achieves a better F1 score

than that of the initial model (the teacher). This student is then selected to present the
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final result. In the opportunity dataset, all of the students achieve better F1 scores than

the teacher. Similar results can be observed in Figure 3.5, where at least one student

achieves better ECE performance than the teacher.



20 Chapter 3 Born Again Network

(a) Daphnet dataset loss curve (b) Daphnet dataset F1 score curve

(a) Opportunity dataset loss curve (b) Opportunity dataset F1 score curve

(a) PAMAP2 dataset loss curve (b) PAMAP2 dataset F1 score curve

Figure 3.2: Loss and F1 score results on the HAR datasets, based on ResNet-16
architecture. A student performs better than the teacher

In Table 3.1 we present the number of parameters for each model and the number of

required floating-point operations. As can be seen, due to the reduction of the number

of layers in ResNet, the numbers of parameters and floating-point operations are ap-

proximately halved. In Table 3.2 we also present comparisons with the state-of-the-art

methods. Since the datasets are imbalanced, we use F1-score for comparisons. The en-

semble student model is selected, and as seen, its performance is better than the teacher.
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Metric Model Daphnet Opportunity PAMAP2

Parameters ResNet-16 1,974,850 2,040,130 2,016,130

ResNet-64 7,889,400 8,140,520 8,044,520

FLOPs ResNet-16 0.126 Gb 0.063 Gb 0.032 Gb

ResNet-64 0.502 Gb 0.251 Gb 0.121 Gb

Table 3.1: The number of models’ parameters (above) and the number of floating-
point operations (below) on each dataset.

It is also seen the teacher-student networks achieve a better performance of generation

of students. Nevertheless, by increasing the number of generations, the ECE is also

increased. Considering that our application is focused on healthcare, an uncalibrated

model might result in a lower confidence level for the medices.

Figure 3.3 and 3.4 illustrate how ECE relates to the classification performance of actions

in Opportunity and PAMPA2 dataset. In Opportunity, it is less accurate recognition of

actions with high similarities, such as switching on or off an appliance. However, with

a wide variety of activities, our approach works well on the PAMAP2 dataset. These

evidences may suggest that our method may not be so sensitive to temporal order, but

works well on very different actions.
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Metric Daphnet Opportunity PAMAP2

LSTM baseline - 0.659 0.756

LSTM Ensemble - 0.726±0.008 0.854±0.026

DeepConvLSTM - - 0.917

Binarized-BLSTM - 0.78±0.002 0.93±0.002

CNN 0.684± 0.122 0.894±0.104 0.937±0.071

LSTM-F 0.637±0.281 0.908±0.156 0.929±0.10

LSTM-S 0.76±0.297 0.912±0.168 0.882±0.128

b-LSTM-S 0.741±0.221 0.927±0.172 0.868±0.087

ResNet-16 Teacher 0.737±0.032 0.889±0.021 0.835±0.351

ResNet-16 Student-0 0.751±0.023 0.895±0.011 0.826±0.012

ResNet-16 Student-1 0.726±0.021 0.901±0.019 0.835±0.047

ResNet-16 Student-2 0.771±0.014 0.875±0.028 0.819±0.018

ResNet-16 Student-3 0.711±0.001 0.894±0.017 0.829±0.051

ResNet-16 Student-4 0.755±0.031 0.894±0.028 0.858±0.021

ResNet-16 Student-Ensamble 0.773±0.012 0.891±0.026 0.823±0.022

ResNet-64 Teacher 0.764±0.012 0.885±0.014 0.901±0.024

ResNet-64 Student-0 0.762±0.017 0.892±0.018 0.914±0.018

ResNet-64 Student-1 0.771±0.024 0.901±0.021 0.894±0.016

ResNet-64 Student-2 0.758±0.031 0.904±0.019 0.906±0.022

ResNet-64 Student-3 0.752±0.019 0.889±0.024 0.912±0.026

ResNet-64 Student-4 0.757±0.021 0.891±0.026 0.914±0.032

ResNet-64 Student-Ensamble 0.778±0.017 0.891±0.019 0.941±0.024

Table 3.2: Comparison with the state-of-the-art for each model and dataset using F1
scores. The results confirm that our method achieves the best results on Daphnet, and

achieves high performance on the opportunity and PAMAP2 datasets.

Metric Daphnet Opportunity PAMAP2

ResNet-16 Teacher 5.287±1.235 5.264±0.158 4.321±0.351

ResNet-16 Student-0 6.285±0.193 5.971±0.024 3.922±1.052

ResNet-16 Student-1 6.473±1.861 5.869±0.349 5.158±2.446

ResNet-16 Student-2 5.369±1.974 6.138±0.389 6.096±3.674

ResNet-16 Student-3 7.181±0.657 6.399±0.074 6.251±2.824

ResNet-16 Student-4 5.883±5.987 6.032±1.233 5.851±6.638

Table 3.3: The expected calibration error on HAR datasets, where the original teacher
achieves the minimal ECE, except for the PAMAP2 with the first generation of the

student, although the variance is higher.
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Figure 3.3: The confidence(Deep blue) and F1 score(sky blue) comparison on Oppor-
tunity dataset

Figure 3.4: The confidence(Deep blue) and F1 score(sky blue) comparison on
PAMPA2 dataset
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(a) Daphnet dataset ResNet16 (b) Opportunity dataset ResNet16

(c) PAMAP2 dataset ResNet16

Figure 3.5: ECE results on the HAR datasets, based on ResNet-16 architecture. A
student performs better than the teacher



Chapter 4

Binary Neural Networks

4.1 Deterministic and Stochastic Binarization

In this section, we present the details of the binarization function and its impact on the

computation of the parameter gradient on backpropagation. The BNN constrains the

weights and the activation function to either +1 or 1. Those two values are suitable for

FPGA hardware implementation. In general, the float-32 formula is widely used to save

both weights and activation. To binarize these parameters, two types of functions are

presented as in Eq. 4.1 and Eq. 4.2 for deterministic and stochastic binarization.

xb =

 +1 if x ≥ 0,

−1 otherwise.
(4.1)

where xb is the binarized variable and x is the float-32 value.

xb =

 +1 withprobability p = δ(x),

−1 withprobability 1 − p.
(4.2)

The stochastic binarization is more complicated, and δ(x) is the hard sigmoid function

as shown in Eq. 4.3

δ(x) = clip(
x + 1

2
, 0, 1) = max(0,min(1,

x + 1

2
)) (4.3)

The stochastic binarization is often more appealing than that of the deterministic func-

tion. However, stochastic binarization is more challenging because it needs to generate

25
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Figure 4.1: Graphical representation of the Straight-through estimator: the extra
buffer is employed to temporarily store the float-32 type of weights, also with the
gradients. There is no change with forwarding propagation, but the weights are binary

after gradients are updated through the backpropagation

random bits, which is computationally complex. Thus, here we use the former for quan-

tification.

4.1.1 Straight-through estimator

In the quantification step with a deterministic function, the derivative of the sign func-

tion is zero almost everywhere. This makes quantization incompatible with backprop-

agation as the gradients of weights are accumulated in real values. It is, therefore,

essential to maintain sufficient resolution for the accumulator to maintain the high pre-

cision results.

Table 4.1 shows the comparison between the regular network training progress, BNN,

and the combination of the BANS with BNN. As seen, for the BNN, the network size is

significantly reduced (90%) with a reasonable reduction of the F1 score (5%). It is also

seen that combining BANS and BNN and selecting the ensemble results from students

after 5 iterations, results in a slight increase of their corresponding F1 scores, while their

ECE values are further decreased. This means that in this setting, the calibration in

our model outperforms the other models.
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Method Metric Daphnet Opportunity PAMAP2

BANS F1 score 0.737±0.032 0.889±0.001 0.895±0.351

ECE 0.09±0.02 0.08±0.02 0.08±0.01

Size 7.44 MB 7.96 MB 7.77 MB

XNOR-Net F1 score 0.692±0.062 0.842±0.031 0.734±0.521

ECE 0.07±0.02 0.07±0.01 0.07±0.02

Size 0.98 MB 1.03 MB 0.96 MB

BANS + XNOR-Net F1 score 0.712±0.052 0.853±0.001 0.753±0.272

ECE 0.06±0.01 0.06±0.01 0.06±0.01

Size 0.98 MB 1.03 MB 0.96 MB

Table 4.1: Comparisons between the regular teacher network training (above), BNN
(middle), and the combination of BANS and BNN (below).

4.2 Transfer learning Results

Table 4.2 illustrates the result of transfer learning for the datasets. For the Opportunity

dataset across users, with 15 channels from the accelerometers. We also try to trans-

fer across the datasets, from Opportunity to PAMAP2 with sensor signal at the same

location as the participant. The results indicate a great potential for transfer learning

performance across datasets in HAR. However, the FOG dataset only has 3 IMU sensors

on the ankle, leg, and trunk. However due to the large dimensional difference, training

is not possible, we tried filling missing dimensions with zeros, however this would not

lead to network convergence. In the experiment, due to the number sample being insuf-

ficient, we performed data augmentation by oversampling the windows, increasing data

by 4 times. The result illustrates that with transfer learning, the performance decreased

approximately 13-15%. Transfer learning still works in binarization, even if the location

of the sensors on the data has changed, which suggests that sensor shift migration learn-

ing has some potential for HAR. Moreover, due to the noise introduced by binarisation,

the ECE instead improves, indicating that the model is more calibrated.
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Method Metric Result

Without transfer F1 score 0.911±0.014

Without binarization ECE 0.08±0.01

Without transfer F1 score 0.831±0.034

With binarization ECE 0.07±0.01

With transfer F1 score 0.779±0.067

Without binarization ECE 0.06±0.02

With transfer F1 score 0.729±0.037

With binarization ECE 0.05±0.02

Table 4.2: The comparison between with and without transfer learning and binariza-
tion, from Opportunity to PAMPA2 dataset.
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Conclusions

Our research has thoroughly examined the application of soft labels and demonstrated

its effectiveness in enhancing classification performance in Human Activity Recognition

(HAR), confirming that our proposed teacher-student network model achieves great

performance, In particular, it achieves an F1 performance of 0.778 ± 0.017, surpassing

the results reported in (Hammerla et al., 2016) by 0.684 (CNN), LSTM-F (0.637), LSTM-

S (0.76) and b-LSTM-S (0.741) on the Daphnet dataset. Moreover, it achieves 0.941

± 0.024, surpassing the results reported in LSTM baseline (Guan and Plötz, 2017)

by 0.756, LSTM Ensemble (0.854), DeepConvLSTM (Ordóñez and Roggen, 2016) by

0.917, Binarized-BLSTM (Edel and Köppe, 2016) by 0.93, CNN (Hammerla et al., 2016)

(0.937), LSTM-F (0.929), LSTM-S (0.882) and b-LSTM-S (0.868) on the PAMAP2

datase. However, in the Opportunity dataset, it does not achieve the highest score,

specifically at 0.891 ± 0.019. Performance inferior to (Hammerla et al., 2016) CNN’s

(0.894), LSTM-F (0.908), LSTM-S (0.912) and the b-LSTM-S (0.927). Although it

beats LSTM baseline (Guan and Plötz, 2017) by 0.659, LSTM Ensemble (0.726) and

Binarized-BLSTM (Edel and Köppe, 2016) by 0.78.

A key strategy in our methodology involved using the Born again networks (BANS)

technique to aggregate student models and finalize the selection of optimal parameters.

Moreover, we incorporated Expected Calibration Error (ECE) into HAR, underlining

the crucial role of model calibration in applications where the F1 score is not the sole

performance measure. With our proposed method, it’s possible to train an ensemble

network to achieve superior performance.

The binary Neural Networks (BNN) proved to be highly efficient in processing HAR

datasets, reducing the model size by an impressive 90%. When BNN was paired with

BANS, the F1 scores experienced a slight decrease, but ECE saw a substantial reduction.

29
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As for transfer learning performance across different datasets as well as within the same

dataset, the results were quite satisfactory. However, it’s worth noting that the sensor

placement can impose significant constraints.

5.1 Future work

Following this line of research, our future research plans are as the following:

Attention maybe is our need : The Attention mechanism was proposed by Vaswani

et al. (2017) in 2017 and has been widely applied in various areas of deep learning in

recent years, such as in computer vision for capturing perceptual fields in images, or the

NLP for locating key tokens or features. Google team’s (Devlin et al., 2018) proposed

BERT algorithm for generating word vectors has achieved a significant improvement in

the effectiveness of 11 tasks in NLP, which is the most exciting news in deep learning in

2018. The most important part of the BERT algorithm is the concept of Transformer

proposed in this paper, in which the traditional CNN and RNN are abandoned, and

the entire network structure is composed entirely of the Attention mechanism. In other

words, the Transformer only consists of a self-attention mechanism and feed forward

Neural network. This may also apply to our research by introducing a transformer

structure in our proposed architecture. One of the motivation is that, the attention

mechanism solves the problem of very long-time series issues, especially in NLP. Our

current research finds that the Opportunity dataset, it is not sensitive to very long time

series signals. This may be helpful for our further research.

Neural Architecture Search : Convolutional neural networks are usually developed

with a fixed resource. They are scaled up to obtain better performance, if more resources

are available, by increasing the network depth, width, and input resolution. However,

the combination space is significantly large that it is difficult to tune by manual. Among

them, the most famous achievement belongs to Efficientnet(Tan and Le, 2019). At the

beginning of its release, it amazed the entire CV class with its various SOTA results

in image classification, and it was completed fast and accurately. From the NAS, the

optimal set of parameters: depth, width, resolution can be obtained. We would like

to research how NAS works on our BNN model to get better performances. Also, we

build the end-to-end network to produce the soft label, which is highly correlated with

ECE we introduced. An optimal parameter network that may help us explain the inter-

pretability of neural networks, better understand the role of ECE in it and the nature

of neural network black box.



Appendix A

OU-ISIR Wearable Sensor-based

Gait Challenge

A.1 Deep Convolutional BLSTM

This appendix presents a report of our participation in the international competition,

the ”OU-ISIR Wearable Sensor-based Gait Challenge”. Our task in the competition

was to predict the age and gender of subjects based on the data collected from wearable

sensors. To accomplish this task, we employed a residual neural network (ResNet) with

bidirectional long short-term memory (BLSTM) blocks in combination with multitask

learning, which enabled us to achieve favorable results and secure the runners-up position

in the competition.

This project was a collaborative effort with Fangfei Liu and Takuya Yaguchi. My specific

contributions included the design of the backbone architecture of the model and the

implementation of the gradient normalization (GradNorm) (Chen et al., 2018) algorithm.

To separate the dataset and ensemble the predictions, we utilized 5-fold cross-validation.

The dataset comprised a total of 610 subjects for model training and an additional 150

for validation. The network was trained over 500 epochs using the Adam optimizer.

The initial learning rate was set to 0.1, and was decreased by a factor of 10 at the 3rd,

100th, and 200th epochs

Figure A.1 illustrates the structure of our proposed deep neural network, which is in-

spired by (Ordóñez and Roggen, 2016). We have modified the original architecture by

using a bidirectional LSTM (BLSTM) instead of a simple LSTM. This modification was

made to better handle the mixed flatland-, uphill-, and downhill-walking environments

present in the dataset, to which the bidirectional structure is more sensitive. The ef-

fectiveness of the bidirectional structure has also been proven in the field of Natural

Language Processing (NLP), particularly for handling sequences. Moreover, our model

accepts multiple inputs and has been adapted to perform multitasking for both age and

31
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Figure A.1: Data pre-processing steps

Figure A.2: The structure of the multi-task deep convolutional BLSTM

gender prediction tasks.

The input to the network is divided into two parts: angular velocity (Gx, Gy, Gz)

and acceleration (Ax, Ay, Az), both of which can capture essential connection infor-

mation. These inputs are concatenated after passing through the first convolutional

layer. Subsequently, the data is processed by three additional convolutional layers and

two bidirectional LSTMs. To enable multi-output prediction, the network branches into

two paths, each leading to an output. Before reaching the output layer, the data passes

through a fully connected layer. Additionally, we have implemented batch normalization

and max-pooling operations after each convolutional layer.

Our model operates as a multi-task network that simultaneously predicts gender and

age. The gender prediction task is considered a binary classification problem and, con-

sequently, we adopt binary cross-entropy as its loss function. On the other hand, for the

age estimation task, we use mean absolute error (MAE) as the loss function. Typically,
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Figure A.3: The structure of the Gradient Normalization

the MAE loss is much larger than the binary cross-entropy loss. To balance these differ-

ent magnitudes, we manually assign weights of 5 and 1 to the binary cross-entropy and

MAE losses, respectively.

Multitask learning presents a particular challenge in terms of balancing the weights of

different tasks for the network parameters, ensuring features can be effectively shared

across tasks. Additionally, within a Balanced Academic Network (BAN), the student

model needs to maintain a balanced loss between the teacher model’s predictions and

the hard labels. GradNorm (Chen et al., 2017) provides a novel solution to this problem.

It automatically balances training in deep multitask models by dynamically tuning the

gradient magnitudes, as illustrated in Figure A.2.

A.2 Competition Result

We concluded the competition as the runners-up. Our primary oversight was not taking

into account the sensor orientation, which significantly affects the performance of the

network. As the sensor orientation differed between the training and test sets, this

information was lost. Despite this, we achieved reasonably good results, with 75%

accuracy on gender prediction and a mean absolute error of 7 on age estimation. The

results of the competition are illustrated in Table A.1.
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Category Gender(Prediction error) Age(Mean absoulte error)

Ours 30.41 7.54

Champion 24.22 5.39

Mean 39.71 9.81

Table A.1: GAGP2019 competition result
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(2019). An end-to-end multi-task and fusion cnn for inertial-based gait recognition.

IEEE Access, 7:1897–1908.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training

of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805.
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