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Abstract

The first key use of a nation’s Census is to count its resident population. A Census will have

counting errors, often referred to as over-coverage and under-coverage. So it is common practice in

many countries to conduct an independent count of its residents, a so-called coverage survey, and

estimate or adjust for these counting errors within the capture-recapture framework. In recent times,

many censuses and coverage surveys have faced challenges in counting the population efficiently and

effectively due to rising costs, declining response rates and respondent burden. This has led to a shift

towards exploring the role that administrative registers could play in counting the population within

the capture-recapture framework. Administrative registers are relatively inexpensive and can have

high coverage of a nation’s population. This paper explores methods to overcome common problems

with the use of administrative registers within this framework, including linking errors and scoping

the register to only capture residents. These methods are empirically assessed in the context of the

Australian population.

Keywords: Capture-recapture, administrative registers, multi-system estimation, resident pop-

ulation counts

1 Introduction

1.1 Background

The first key use of a nation’s population Census, and one that we focus on here, is to count its

resident population. However, the count of Census responses is not equal to the count of residents

(or in-scope individuals), according to the definition adopted by the Census. For instance, someone

who is not present in the country on census night might be counted or a resident present in the

country might not be counted. Over-coverage error in the count occurs if an out-of-scope individual

is counted, i.e., erroneous enumeration, or if an in-scope individual is counted more than once (e.g.,

two Census forms may be submitted for the same person). Under-coverage occurs if an in-scope

individual is not counted (e.g., non-response).

It is common practice in many countries to conduct an independent count of residents, a so-

called coverage survey, and estimate or adjust the census under-count within the capture-recapture

framework. (A separate sample survey of the census returns may be deployed to deal with the erro-

neous enumeration error.) In the original development of capture-recapture methods in application

to wildlife population measurement (see Seber 1986), animals were captured, marked and recaptured

resulting in two incomplete lists of the population: one list is used to estimate the capture rate of

1Views expressed in this paper are those of the author(s) and do not necessarily represent those of the Australian Bureau
of Statistics. Where quoted or used, they should be attributed clearly to the author.
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the other list and the estimate of the population count is equal to the count of a list divided by its

estimated capture rate.

Estimation of the unknown population size relies on a set of intertwined assumptions so that a

failure of any one can invalidate the others leading to biased estimates (International Working Group

for Disease Monitoring and Forecasting 1995; Zhang 2019a). These assumptions are:

• no change in the population between captures (i.e., the population is closed, or there is no in-

or out-migration)

• individuals can be matched from capture to recapture (without error)

• homogeneity of capture or recapture (i.e., on each sampling occasion all individuals have the

same capture probability)

• independence between the capture and recapture processes.

While it was recognised from the earliest papers (e.g., Sekar and Deming, 1949) that, in applica-

tions to human populations, the failure of the distributional assumptions about the capture-recapture

events leads to incorrect population estimates, it was not until later that it was termed ‘correlation

bias’ (Alho et al. 1999; Brown et al. 2006). They also noted that this bias can be as a result of two

types of dependence

• List dependence: the act of being included in the first list makes an individual more or less

likely to be included in the second list, i.e. inclusion in the first sample has a causal effect on

inclusion in the second sample. This is sometimes referred to as causal dependence (Wolter,

1986; Brown et al. 2006).

• Heterogeneity: even if the two lists are independent, the lists may become dependent if the

capture probabilities are not the same (i.e. not homogenous, or are heterogenous) amongst

individuals. This is sometimes referred to as apparent (or autonomous) dependence (e.g., Wolter,

1986; Coull and Agresti 1999).

In official statistics, capture-recapture methods are commonly referred to as Multi-System Es-

timation (MuSE). In census applications there are often only two captures or lists (Dual System

Estimation, DSE), namely the Census and coverage survey. For country specific studies, see e.g.

Thomas (2008) for the USA, Brown et al. (2011) for the UK, Chipperfield et al. (2017) for Australia,

Statistics Canada (2019) and Statistics New Zealand (2019, 2020). Use of three (Triple System Es-

timation, or TSE) or more lists to some degree allows relaxation of the list dependence assumption.

See Nirel and Glickman (2009) for an overview and see Zaslavsky and Wolfgang (1993), Darroch et

al. (1993), Baffour (2009), Baffour et al (2013) and Griffin (2014) and Fienberg (1972), for more

specific details about the population estimation.

In recent times, censuses have faced challenges in counting the population efficiently and effectively,

due to its cost, declining response rates, respondent burden, and its ability to correctly measure

complex living arrangements. This has led to a shift towards reliance on administrative registers:

by 2010 there was a clear shift towards register-based censuses in countries such as Switzerland,
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Netherlands, Belgium and Slovenia (Skinner 2018). For other countries, engaged in their respective

census transformation programmes, this led to considering the possibility of replacing the traditional

coverage survey or Census with administrative registers. For example, the Central Bureau of Statistics

of Israel conducted a Register Survey for its current round of population census (see also Bernardini,

et al, 2022; Zhang, 2022), Office for National Statistics (2013, 2017) and ISTAT (Bernardini et al

2021) discuss replacing a Census with administrative registers. Natural disasters (e.g. Covid-2019)

have led to the delay of censuses in many nations. In contrast, other countries (e.g. Scandanavian)

have long-standing practices of register-based censuses and so are not under the same contemporary

pressures.

In the context of official statistical agencies using registers (Zhang, 2019a, 2022) for MuSE, two

preconditions are critical:

• lists contain no erroneous enumeration or duplicates,

• no errors occur in the linkage of the lists

These errors are far from trivial in official statistics if one lacks a centralised population register and

its unique person identification number (such as the case in the Nordic countries) which can be used

to link all the lists. These are discussed in more detail in the context of this present study below.

Though not our perspective here, the on-going development of completely register-based pop-

ulation size estimation methods should also be mentioned. Statistics New Zealand (2021) counts

the number of administrative records that have a level of activity that is consistent with a resident,

though it is experimental at this stage. Statistics Estonia (Tiit and Maasing, 2016) and Central

Bureau of Statistics of Latvia (2019) derive residency scores for an Extended Population Register.

Van der Heijden et al (2021) use 5 registers to estimate the Māori population in New Zealand. Cen-

tral Statistical Office of Ireland (Dunne and Zhang, 2023) develop a system of population estimates

compiled on administrative data only.

1.2 Outline of Study

In the context of Australia, since 1971, the resident population has been estimated by a DSE, using

the Post-Enumeration Survey (PES) and the Australian Census of Population and Housing. Much

has changed in the data landscape in recent years, most notably the creation of Australia’s “Person

Linkage Spine”, or “Spine”, that is the union of three administrative registers from 2006 to present:

Medicare (Services Australia), Centrelink (Department of Social Services) and Personal Income Tax

(Australian Taxation Office).

This study assesses the role that the Spine could play, within the MuSE framework, to estimate

the resident population over the next 5 to 10 years. This assessment is complicated by the fact that

the MuSE preconditions mentioned above are not easily satisfied. Erroneous enumeration arises since

there is no error-free indicator on the Spine that a record belongs to a resident, however defined.

There are also two problems with linkage at the time of writing this paper:
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i. lack of Spine-PES linkage,

ii. false negative of Census-Spine linkage (i.e., missing Census-Spine matches).

Another important issue in our study is when a subpopulation classification variable for Indigenous

status is not observed for all records on the Spine. Instead a predicted status is used in MuSEs.

We develop alternative DSE and TSE, where Spine erroneous enumeration is dealt with by trim-

ming (Zhang and Dunne, 2017; Dunne and Zhang, 2023), and we handle the linkage problems by

False-Negative adjustments in estimation. Notice that, while the details differ, Statistics New Zealand

(2019) applied a DSE in the presence of similar problems of Spine over-coverage and false-negative

Census-Spine linkages, which was an inspiration to our work. We refer to the methods developed and

implemented in this paper as a practical approach to MuSE, in the presence of erroneous enumeration

and linkage error, noting that there have been some recent developments in the modelling approach

to deal with erroneous enumeration and undercounting jointly; see e.g. Di Cecco et al (2018), Zhang

(2015, 2019b) and Ballerini (2021). The practical approach to MuSE developed in this paper may be

relevant, wherever the investigation is complicated by the failure of preconditions.

The rest of the paper is organised as follows. In Section 2 we set out the basics of MuSE and,

in particular, the notations for DSE and TSE, where the preconditions are assumed to be satisfied.

In Section 3, we detail the methods for dealing with the Spine erroneous enumeration and linkage

problems, as well as the estimation of subpopulation. A case study applying these methods in

combination with the Australian Census and PES in 2016 is presented in Section 4. Some final

remarks and future research topics are given in Section 5.

2 Basics of MuSE, DSE and TSE

We consider a closed population with (unknown) N individuals. In full generality, let us define K ≥ 2

as the number of incomplete lists taken from the population. Define δ for an individual to be a K-

vector where the kth element is equal to 1 if the individual is captured by the kth list and is equal

to zero otherwise. For example, in the two-list case, δ = (0, 1) indicates that the individual is not

captured (missed) in the first list, but is captured in the second list. Similarly, for the three-capture

case, δ = (1, 0, 1) indicates that the individual is captured in the first and third list, but missed in the

second. Individuals with capture patterns δ = (0, 0) and δ = (0, 0, 0) are by definition unobserved,

for the two-list and the three-list cases, respectively.

The target parameter of MuSEs is N . We can estimate this by modelling the probability dis-

tribution of the observed capture patterns, f(δ). The probability distribution of the unobserved

pattern f(0), where 0 = (0, 0, ..., 0, ..., 0), is assumed to be a function of the observed capture pat-

tern. Noting that the observed counts of δ can be written in the form of an incomplete contingency

table, Fienberg (1972) outlines log-linear modelling for the estimation of the unknown population

size, where the counts nδ follow the multinomial distribution. The log-linear modelling framework

for capture-recapature data is intuitively appealing since it allows for explicit considerations of de-
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pendence among lists and heterogeneity of capture. Moreover, given any model, either a closed form

estimator exists for N or it can be obtained through iterative techniques; see Chapter 6 of Bishop et

al. (1975).

Under this framework, the goodness of fit of alternative models can be formally tested, although

a good fit does not guarantee the validity of a given model. Typically in MuSE, the best model is

taken to be the one with the fewest possible parameters that allows for some dependency amongst

the lists. This model is then used to predict the missing cell count, and subsequently estimate the

population size. Note that the motivation for selecting the most parsimonious model is to reduce the

variance of the estimator of N , since usually the simpler the model, the smaller the variance.

Below we describe some necessary details of the DSE and TSE for this study.

2.1 DSE

Here there are two incomplete lists of units that cover to the target population. For argument’s sake

call one the S-list and the other the C-list. Let s = 1 if a population unit is on the S-list and s = 0

otherwise. Similarly, define c for the C-list. All units in the population belong to one of four cells

(c, s) for c, s = 0, 1. Let the number of units in the (c, s)-cell be ncs. The target population size

can be expressed as N = n11 + n10 + n01 + n00. The count n00 is not observable from the two lists

and the aim is to calculate its estimate, n̂00, using the three observed cells and to estimate N by

n11 + n10 + n01 + n̂00. The notation of cell counts and other totals are summarised in Table 1.

Table 1: Two-list counts, n00 unobservable, N = n++

S-List Captures
C-List Captures s = 0 s = 1 s = +

c = 0 n00 n01 n0+

c = 1 n10 n11 n1+

c = + n+0 n+1 n++

Now, provided the first precondition holds, the population can be regarded as closed since each

record on a list belongs to one and only one unit in the target population. That is, there are no

units on a list that are outside the target population. Provided the second precondition holds, the

count n11 can be observed without errors, whatever the marginal list-counts n1+ and n+1, so that

n01 and n10 are also observed without errors. Then, the two distributional assumptions of causal and

autonomous independence together imply that, for any i ∈ U , where U is the population we wish to

count,

Pr(δi1δi2 = 1 | i ∈ U) = Pr(δi1 = 1 | i ∈ U) Pr(δi2 = 1 | i ∈ U) := π1π2.

If we let µcs = E(ncs), it follows that

µ00µ11

µ01µ10
:=

E(n00)E(n11)

E(n01)E(n10)
= 1

and an estimator of µ00 is µ̂00 = n01n10/n11. An estimator of N follows as N̂ = n1+n+1/n11 with
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the variance estimator V̂ (N̂) = n+1n1+n01n10/n
3
11 which can be derived using the Delta method (see

e.g. p.162, Baffour, 2009).

As noted by Zhang (2019a), the same N̂ and V̂ (N̂) follow by the method of moment, conditioning

on one of the lists, say, {δi2 : i ∈ U} and assuming that the other list has a constant capture

probability (regardless of δi2), i.e.

π := Pr(δi1 = 1 | i ∈ U) = Pr(δi1 = 1 | i ∈ U, δi2)

such that

E(n1+)/N = π = E(n11 | n+1)/n+1.

2.2 TSE

Now we bring in a third list, called the P-list. Let p = 1 if a population unit is on the P-list and

p = 0 otherwise. All the population units belong to one of the 8 cells (c, p, s) for c, p, s = 0, 1. Let

the number of units in the (c, p, s)-cell by ncps (as in Table 2). The population size can be expressed

as N =
∑

c,p,s ncps, where n000 is unobservable and so the TSE aims to estimate it using the seven

observed cell counts.

Table 2: Three-list counts, n000 unobservable

c = 0 c = 1
s = 0 s = 1 s = + s = 0 s = 1 s = +

p = 0 n000 n001 n00+ p = 0 n100 n101 n10+

p = 1 n010 n011 n01+ p = 1 n110 n111 n11+

p = + n0+0 n0+1 n0++ p = + n1+0 n1+1 n1++

Let µcps = E(ncps) be the expected number of individuals in the (c, p, s) cell of the 2×2×2

contingency table, then the (‘saturated’) log-linear model can be specified as

logµcps = λ+ λ(1)
c + λ(2)

p + λ(3)
s + λ(12)

cp + λ(13)
cs + λ(23)

ps + λ(123)
cps , (1)

where λ
(1)
c , λ

(2)
p , λ

(3)
s are the main effect terms, λ

(12)
cp , λ

(13)
cs , λ

(23)
ps are the two-way interaction terms,

and λ
(123)
cps is the three-way interaction term.

When we have an incomplete 2×2×2 contingency table, with µ000 for the unobserved (‘missing’)

cell, the saturated model is not identifiable in that we have eight parameters but seven observable cell

counts. The implication of considering only hierarchical models, is that the highest order interaction,

the three-way term λ
(123)
cps , is set to zero, and in practice the ‘saturated model’ becomes

logµcps = λ+ λ(1)
c + λ(2)

p + λ(3)
s + λ(12)

cp + λ(13)
cs + λ(23)

ps . (2)

Given λ
(123)
cps = 0, each of the two-factor effects (i.e. λ

(12)
cp , λ

(13)
cs , and λ

(23)
ps ) is unaffected by the level

of the third variable, such that

µ̂001µ̂010µ̂100µ̂111

µ̂000µ̂011µ̂101µ̂110
= 1 (3)
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where µ̂cps = ncps (e.g., Bartlett 1935; Fienberg 1972; Baffour et al. 2021), from which µ̂000 follows.

It can be seen that the effect of the no-three-way interaction assumption for the TSE is analogous to

the independence assumption for the DSE.

Moreover, it now becomes possible to define various unsaturated hierarchical models by setting

some of the rest λ-terms to be equal to zero. The restriction for all models under consideration to be

hierarchical implies that when a particular λ-term is set to zero then all of the higher-order relatives

are also zero. Closed form solutions, and their variances, exist for all models, apart from when all

three lists are independent for which case the iterative proportional fitting algorithm can be used.

We refer to Baffour (2009) for the details including the variance estimators.

3 Methods

For this study MuSE preconditions involving the Spine are initially unsatisfied. Below we describe

how to deal with this, as well as the models for the TSE without the Spine-PES linkage.

3.1 Trimming the Spine

The PES and Census collect information on whether a person is a resident, so as to exclude non-

residents from official resident counts. However, the Spine does not have residency status for all the

records and so will include nonresidents. For example, a person may have emigrated from Australia

a year before Census but, for various administrative reasons, their migration record was not linked to

the Spine to reflect this. An easy way to trim the erroneous records on the Spine is to apply common

sense rules (e.g., must have had at least 2 signs of administrative activity in the last 6 months). We

apply a more refined scoring approach described below.

Let r = 1 if a Spine record belongs to a resident and r = 0 otherwise. Ideally, we would trim

the records if r = 0. But r is unknown. Define u = E(r|A) to be the probability that a record on

the Spine belongs to a resident conditional on A, which is a vector of covariates that are related to

resident status. Here A includes covariates for the recency of interactions with the Social Security,

Medicare and Personal Income Tax systems (e.g., was there an interaction within 1, 6, or 12 months

on the Medicare system), death status, migration status, age, sex and state.

As r is not observed we cannot fit a model to r to get û, which is the estimate of u for each Spine

record. However, we can approximate it by r∗, where r∗ = 1 if a Spine record is linked to a Census

record and r∗ = 0 otherwise, and fit the model to r∗ conditional on A to get û∗ as an estimate of

u∗ = E(r∗|A). Because of linkage error and because Census is not a complete list, u∗ 6= u generally.

Nevertheless, we do not need unbiased predictions in order to trim the records with the largest u.

Trimming is useful in reducing bias of MuSEs as long as û∗ is reasonably correlated with û.

We scale û∗, where the scaling factor varies by age, sex and state, such that the scaled û∗s sum

to the projected resident population estimates from the previous Census. The scaling is simply for

convenience so that we may use a single threshold, ε, for trimming across all age, sex and states.
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Having prepared the scores û∗, we then trim records from the Spine if

û∗ < 1− ε

where ε is a chosen positive number close to 0. For the applications in Section 4, trimming was

applied with ε = 0.001. This strict cutoff (i.e., 1 − ε = 99.9%) means that only a negligible number

of nonresidents would remain after trimming.

Notice that by using a model estimated from the Spine-Census linkage, as described above, one

is introducing a dependence between the trimmed Spine and the Census via the model parameters.

That is, for any target population unit, its inclusion indicators in the two lists will no longer be

exactly independent, assuming they were independent without trimming. However, by and large this

dependence can be ignored since the trimming induced covariance of the two indicators is of the order

O(p/m), asymptotically as m tends to infinity while p is held fixed, where p is the number of model

parameters and m is the number of linked Spine-Census records.

We shall refer to the trimmed version of the Spine as SpineSure when describing the estimates to

be evaluated in Section 4. Whereas, the term Spine is used in the rest of this Section for simplicity,

where by stipulation all the lists are free of erroneous enumeration, such as when next describing the

models for 3-list capture-recapture data.

3.2 TSE models without Spine-PES linkage

Let c = 1, 0 denote whether a resident is captured by the Census or not; similarly,let p = 1, 0 for the

PES and s = 1, 0 for the Spine. Consider modelling (c, p, s) in the presence of linkage problem (i) –

Section 1.2, assuming the other preconditions are satisfied. Adjustment for the linkage problem (ii)

is given in Section 3.3 next.

Given the Census-Spine linkage and the Census-PES linkage, but not the linkage between Spine

and PES, the counts ncps of the cross-classified list domains and the relationships between them are

given in Table 3, similarly to Table 2, where the counts in parentheses are unobserved in addition to

n000 that is missing in any case.

Table 3: Cross-classified counts without Spine-PES linkage, all counts in parentheses are unobserved

c = 0 c = 1
s = 0 s = 1 s = + s = 0 s = 1 s = +

p = 0 (n000) (n001) (n00+) p = 0 n100 n101 n10+

p = 1 (n010) (n011) n01+ p = 1 n110 n111 n11+

p = + (n0+0) n0+1 (n0++) p = + n1+0 n1+1 n1++

Let qcps = E(ncps) to emphasise the distinction to µcps in the usual setting. Denote by [CP ][CS][PS]

the basic model (without 3-way interaction), under which we have

q000 =
(q111q100
q110q101

)q010q001
q011

=
(q111q010
q110q011

)q100q001
q101

=
(q111q001
q101q011

)q100q010
q110

(4)
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Note that each term in the parentheses above corresponds to an odds ratio conditional on c = 1,

p = 1 or s = 1, respectively, denoted by ρC1 , ρP1 or ρS1 . In other words, the equation (4) can equally

be obtained from one of the following assumptions:

ρC1 = ρC0 or ρP1 = ρP0 or ρS1 = ρS0

Now that this basic model cannot be identified given the linkage problem (i), we shall consider the

models given by any of the independence assumptions below:

[C][PS] or [P ][CS] or [S][CP ]

Notice that any of these is a stronger assumption than the corresponding constant-odds-ratio as-

sumption, such that the equation (4) still holds under any of them. Once the missing cell counts

(n001, n010, n011) due to the lack of complete three-way linkage have been estimated, one can plug

them into (4) to estimate n000 and N .

Model [C][PS] Under this model, we have

Pr(s = 1|p = 1, c = 0) =
q011
q01+

=
q111
q11+

= Pr(s = 1|p = 1, c = 1)

as well as

Pr(p = 1|s = 1, c = 0) =
q011
q0+1

=
q111
q1+1

= Pr(p = 1|s = 1, c = 1).

Either of them yields an estimator of n011 directly. One can also consider a combination of the two

estimators. However, since the Census is much larger than the PES in size, we would simply use the

estimator

n̂011 = n111n01+/n11+

given which we obtain n̂010 = n01+ − n̂011 and n̂001 = n0+1 − n̂011.

Model [P ][CS] This model allows the Census and Spine captures to be correlated, which is an

added value compared to the Census-PES DSE otherwise. We have

qc0s
q+0+

=
qc1s
q+1+

such that

q011
q+1+

=
q001
q+0+

=
q0+1 − q011

q+0+
⇔ q+0+

q+1+
=
q0+1 − q011

q011
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as well as

q+0+ = q10+ + q00+ = q10+ + q001 + q000 = q10+ + (q0+1 − q011) +
q010
q+1+

q+0+

= (q10+ + q0+1 − q011) +
q+0+

q+1+
(q01+ − q011)

⇔ q+0+

q+1+
=

q10+ + q0+1 − q011
(q+1+ − q01+) + q011

=
q10+ + q0+1 − q011

q11+ + q011
.

Thus, we obtain

q10+ + q0+1 − q011
q11+ + q011

=
q0+1 − q011

q011

⇔ (q10+ + q0+1)q011 − q2011 = q0+1q11+ + (q0+1 − q11+)q011 − q2011

⇔ (q10+ + q11+)q011 = q0+1q11+ ⇔ q1++q011 = q0+1q11+.

An estimator of n011 follows as

n̂011 = n0+1n11+/n1++

given which we obtain n̂010 = n01+ − n̂011 and n̂001 = n0+1 − n̂011.

Model [S][CP ] Under this model, we have

qcp1
q++1

=
qcp0
q++0

such that

q011
q++1

=
q010
q++0

=
q01+ − q011

q++0
⇔ q++0q011 = q++1q01+ − q++1q011.

Moreover, we have (4) since ρS1 = ρS0 . Rewriting (4) as q000 = ρC1 q010q001/q011, where ρ̂C1 =

(n111n100)/(n110n101) is available, we have

q++0 = q1+0 + q0+0 = q1+0 + q010 + q000

= q1+0 + (q01+ − q011) + ρC1 (q01+ − q011)(q0+1 − q011)/q011

⇔ q++0q011 = (q1+0 + q01+)q011 − q2011 + ρC1
(
q01+q0+1 − (q01+ + q0+1)q011 + q2011

)
.

Thus, we obtain

a2q
2
011 + a1q011 + a0 = 0

where 
a2 = 1− ρC1

a1 = −(q++1 + q1+0 + q01+) + ρC1 (q01+ + q0+1)

a0 = q++1q01+ − ρC1 q01+q0+1.

An estimator of n011 follows, provided the equation of q011 has at least one positive root, on replacing

the q-totals by their observed values and ρC1 by ρ̂C1 .
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Goodness-of-fit Given each possible model above, one can check the goodness-of-fit against the

corresponding assumption. For instance, given the model [C][PS], we have

n̂+ps = n1ps + n̂0ps

for p, s = 0, 1. This yields 8 cell-specific discrepancies depending on c = 0 or 1, i.e.

n̂cps/n̂c++ − n̂+ps/n̂+++

where some of the estimates are observed directly. One can obtain the Pearson or Kullback-Leibler

divergence measure to choose between model specifications. Similarly for the other two models.

However, model selection cannot be entirely based on the principle of parsimony, although it is

justified to disregard those models that fit badly to the observed data.

Finally, given the missing cell counts caused by the lack of complete three-way linkage, it is unclear

to us whether any standard software packages for fitting log-linear models can be used to calculate

the non-standard estimates discussed above or if the associated variance estimation procedure can

account for the missing information (a referee mentioned the R-package CAT for the ’Analysis and

Imputation of Categorical-Variable Datasets with Missing Values’). In any case the estimators can

easily be computed by writing one’s own code. For an estimator that has a closed form, the Delta

method for variance estimation is quite straightforward. Otherwise, or generally, bootstrap under the

estimated multinomial distribution would seem most convenient in practice.

3.3 Adjusting for false negative of Census-Spine linkage

The linkage problem (ii) is such that about 5% of Census records were False Negatives (FN) in its

linkage to the Spine. Here we discuss how this was estimates and handled in MuSE.

Let l = 1, 0 indicate whether a Census record is linked to its matching Spine record. Let z be

a vector of indicator variables for whether or not the linking variables (name, age, date-of-birth,

address) are missing on the Census file. Let y be age and sex. Let a = 1, 0 indicate whether a person

is born in Australia. For any resident i in the Census list, we assume

w−1
i = Ec(li | zi, yi) = Ec(li | zi, yi, ai = 1) (5)

with respect to the linkage error distribution. That is, the false-negative probability, conditional on

(z, y), does not depend upon whether a resident is Australian born. (By definition wi is the weight

that is used below to correct for the effects of false negatives.) If we also assume that all Australian

born people, denoted by a = 1, have a Spine record (assuming that a birth would, with certainty,

generate a Medicare record that will appear on the Spine), then (5) is identifiable. We found that

the false-negative rates are higher for Aboriginal and Torres Strait Islander Peoples and people living

in remote or rural areas, which is plausible.
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Regarding the model (5), we notice that it is reasonable to assume all the native born persons

(a = 1) have a Spine record provided a country (like Australia) has universal birth registration, school

and health services. We also notice that although there may be other factors for false negative linkage

beyond (z, y), there is a reason why these are not actually used as the key variables for record linkage,

such as non-negligible missing-ness or measurement errors, which would need to be handled if such

variables were included as additional covariates for l.

Let n11s be the number of links between Census and Spine, where s = 1, 0. We estimate the

corresponding number of Census-Spine matches, denoted by m11s, based on

Ec(n11s) = m11sw̄1+s

where w̄1+s is the mean of wi among the Census records that are linked to the PES if s = 1, or those

unlinked if s = 0. This yields the estimated match counts, denoted by ñ111, ñ110 and ñ11+, and then

ñ101 = n1+1− ñ111 and ñ100 = n1+0− ñ110. Together with the other observed counts, these estimated

counts can be plugged into the TSE models (Section 3.2) and a relevant DSE involving the Spine.

3.4 Subpopulation size estimation

Let X = 1, 0 be a subpopulation classifier. Denote the subpopulation size of X = x by Nx =

n11x +n10x +n01x +n00x in the two-list case, with the corresponding subpopulation cell counts. The

DSE of n00x is n̂00x = n10xn01x/n11x and that of Nx is N̂x = n1+xn+1x/n11x, provided the DSE

assumptions hold conditional on X = 1, 0.

Now, suppose X is unavailable in the second list, so that n1+x is directly observed but not n+1x.

Instead, let X∗ be a predicted value of X which is available. Let n∗
+1x be predicted subpopulation

count on the second list according to X∗, where n∗
+1x = n∗

01x +n∗
11x. It is easy to show that, provided

E(X∗ − X) = 0 in all the 4 cells, then we can obtain a face-value DSE of Nx simply by treating

X∗ = X. That is, substituting n∗
01x for n01x yields the estimator

N̂∗
x = n11x + n10x + n∗

01x + n̂∗
00x = n11x + n10x + n∗

01x + n10xn
∗
01x/n

∗
11x.

Moreover, the idea extends to the TSE, where X is not available on one of the lists. Provided the

relevant assumption E(X∗−X|c, p, s) = 0, we can replace the unobserved ncpsx by n∗
cpsx in the TSE.

In our study, X is Indigenous status and X∗ is the predicted Indigenous status on the Spine. We

derive X∗ by a model, where Census Indigenous status is the dependent variable and the independent

variables are taken from the Spine. Here we have ignored any uncertainty in MuSEs due to the

prediction of Indigenous status. Notice that Zwane and Van der Heijden (2006) and Van der Heijden

et al (2021) use other methods for dealing with such missing classification variables in the context

of MuSE, albeit without the other problems also present here such as false negative linkage and

erroneous Spine records.
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4 Case study: Australian population 2016

4.1 Set-up

The Australian Census counts people who are present on Census night, are referred to as the Present

Population. For our purpose the 2016 Census counted 21.2 million residents, defined by Census as a

person who lives or intends to live in Australia for at least 6 months. Shortly after the 2016 Census,

the PES counted 110,000 people who were present. The PES was linked to the Census in a high-

quality clerical and automatic process which is assumed to be without error. ABS strives to maintain

independence of Census and PES counting processes so as to justify the independence assumption.

The official estimate of the Present Population size is 23.6 million using an Instrumental Variable

Regression estimator (Chipperfield et al, 2017). To this is added an administrative count of 0.6

million Residents Temporarily Overseas (RTO) to get the Final Census Night Resident Population

(24.2 million). RTOs are defined by a ’12/16 month rule’. For a person to have immigrated or

emigrated, they must have stayed in, or were absent from, Australia for a period of 12 out of 16

months. After further minor demographic adjustments and smoothing to reduce sample errors at fine

levels we arrive at the Official Estimated Resident Population (ERP).

For the purpose of this study, the Spine includes about 33 million administrative records for people

who were ‘ever resident’ in Australia from 2006 to 2020, including people who have died and who

have temporarily or permanently left Australia. After trimming the Spine (Section 3.1), there are

14.5m records on SpineSure.

Now that conceptually the Census and PES do not enumerate the RTOs, we did not remove the

RTOs from SpineSure, in order to see whether MuSE involving SpineSure can potentially target the

ERP directly. For example, holding the Census as fixed despite its non-coverage of the RTOs, the

Census-SpineSure DSE is unbiased for the Resident Population provided SpineSure has a constant

capture probability of the Resident Population, across RTOs and non-RTOs. Although the RTOs

can appear on SpineSure, the probability is likely to be lower than that for the non-RTOs, given that

trimming (Section 3.1) is based on an estimated probability of being counted in the Census. Also,

on average the more recent immigrants are likely to have a somewhat lower probability to appear on

SpineSure due to having less time to interact with government services.

Regarding the FN adjustment using the method of Section 3.3, the Census-SpineSure linkage is

estimated to have about 5% FN errors overall, which vary significantly across the different states

(e.g., up to 30% in Northern Territory) or other breakdowns of the population.

The results to be presented include:

• Official estimate, or simply ERP in what follows;

• DSE based on Census and PES, or simply Census-PES DSE;

• Census-SpineSure DSE similarly, with FN adjustment as in Section 3.3;

• PES-SpineLink DSE, where SpineLink contains the SpineSure records that are linked to the
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Census, and the links between PES and SpineLink are identified given the links between PES

and Census. No adjustment for FN is required;

• TSE under the model [C][PS] (Section 3.2) with FN adjustment (Section 3.3). We do not present

results for TSE under the other models in Section 3.2 because, as will become clear below, they

make little differences in this study.

The following details are worth noting. First, the RTOs will be added to the Census-PES and

PES-SpineLink DSE, in order to make the presented estimates comparable (i.e. include RTOs).

Second, all MuSEs stratify by state, age and Indigenous status, where we use predicted Indigenous

status (Section 3.4) for SpineSure. Predicted status is used for illustrative purposes here- all official

estimates based on administrative status would require extensive consultation with Aboriginal and

Torres Strait Islander peoples as the ABS places high importance on reporting statistics by Indigenous

status in a culturally sensitive manner.

Third, if a person is counted by multiple lists and there is inconsistency in lists’ post-strata, then

post-strata is assigned according to the PES, Census and Spine (in that order of preference). For

example, if a person’s PES state and Census state are different, the person would be assigned to a

strata based on the PES state. Finally, although the PES sampling design weights are not accessible

for the purpose of this project, we know they depend on state and whether an area is expected to

contain a high proportion of Aboriginal and Torres Strait Islander Peoples. Hence, we proceed with

the PES source under the working assumption that its sampling design is ignorable when state and

Indigenous Status are used in post-stratification.

Fourthly, we do not explore here in detail the stability of MuSEs with respect to the cut-off applied

when trimming the Spine, although this has been exercised for the equivalent 2021 versions of the

Census, Spine and PES. For example, in 2021 the trimmed Spine had 17.3 million Spine records

(instead of the 14.5 million in 2016), and changing the cut-off to allow 8% more Spine records (17.3

to 18.7 million) only resulted in an increase of 0.4% in the Census-Spine DSE. This suggests that the

MUSEs are stable around the chosen cut-off threshold for trimming.

4.2 National and State Estimates

Table 4 gives the different estimates at the National and State levels, in comparison with the Official

ERP and its associated standard error (SE). Now that the ERP and the Census-PES DSE are based on

the same sources, the difference between them quantifies the combined impact of methods, including

demographic adjustments, smoothing and the tailored estimator (Chipperfield et al, 2017). Whereas

the differences among the various DSEs and the TSE reflect chiefly the effect of different sources.

First, it can be seen that the TSE and the Census-SpineSure DSE are very close to each other.

The main reason is that the PES is a much smaller list and contains little extra information in this

setting. To illustrate, Table 5 gives the national cross-classified counts in the TSE setting, where

about 0.869 million people are missed from all three lists and only 4 thousand people were captured
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Table 4: National and State ERP and MuSE (×103) given post-stratification by 5-year age, state and
Indigenous status. TSE using Census, PES and SpineSure; DSE otherwise.

Census- Census- PES-
Level ERP ± 2 SE PES SpineSure TSE SpineLink

National 24 180 ± 96 24 082 23 959 23 956 23 420
NSW 7 730 ± 62 7 566 7 679 7 676 7 387

Victoria 6 170 ± 50 6 011 6 083 6 082 5 950
Queensland 4 840 ± 45 4 802 4 799 4 804 4 690

South Australia 1 670 ± 17 1 678 1 710 1 710 1 688
Western Australia 2 560 ± 28 2 475 2 526 2 524 2 551

Tasmania 520 ± 7 520 515 515 504
Northern Territory 250 ± 7 238 237 235 244

Australian Capital Territory 400 ± 10 397 407 407 400

by the PES but missed by both the Census and SpineSure. Notice that post-stratification is only by

state and single-year age for Table 5, and the estimated total population size (2.36 × 106) differs to

the TSE in Table 4 by about 300 thousand. In other words, the choice of post-stratification has a

much greater effect than dropping the PES and only using Census and SpineSure.

Table 5: Cross-classified counts (×103) of Census (c), SpineSure (p) and PES (s), either known (in italics)
or estimated (given post-stratification by state and single-year age)

c = 0 c = 1
p = 0 p = 1 p = + p = 0 p = 1 p = +

s = 0 869 1 539 2 408 s = 0 8 173 12 945 21 119
s = 1 4 7 11 s = 1 36 59 97
s = + 873 1 546 2 419 s = + 8 210 13 005 21 215

Next, from Table 4, the PES-SpineLink DSE is noticeably lower (and significantly different) than

the other two DSEs nationally as well as in the three largest states. We shall return to the main

reason for this later, but concentrate on the other two DSEs here, which are reasonably aligned with

each other. Comparing the differences between the DSEs by Census-SpineSure and Census-PES to

the Standard Error (SE) of latter, we note that the national estimate and 4 of the 8 state estimates

are marginally outside the 95% confidence interval. Of those 4 outside the confidence interval, 3 of

the Census-SpineSure DSE estimates are closer to the ERP than Census-PES DSE.

Notice that we do not present any variance estimates for the MuSEs above, due to the complexity

caused by false negative linkages, inconsistent stratification variables in different lists and the complex

design of the PES. An appropriate treatment of all these effects for variance estimation is beyond

this paper. However, while we do not present them here, the standard errors of the Census-SpineSure

DSE or TSE when ignoring the above mentioned complexities are over 10 times smaller than those

of the ERP, because the Spine is much larger than the PES sample (which largely determines the

variance of ERP). Thus, more accurate variance estimation is unlikely to change the main conclusions

we draw from scoping the alternative MuSEs.

The fact that nationally the Census-SpineSure DSE is lower than the Census-PES DSE (and

15



the ERP) suggests that the erroneous enumeration problem of the Spine can be largely removed by

trimming. Although the FN adjustment we applied might not fully account for the heterogenous FN

probability, we can be quite confident about the total of FN links, such that the main cause for the

difference in these two national estimates is likely due to the treatment of RTOs. Whereas the RTOs

are added to the Census-PES DSEs to yield the estimates presented here, no such direct addition of

RTOs is performed for the Census-SpineSure DSE. However, as mentioned before, SpineSure is likely

to have a lower capture probability among certain groups of individuals, such as the RTOs and the

recent immigrants. It is possible SpineSure nearly fails to cover certain Residential Population groups

below the post-stratum level, for which adding the RTOs outside SpineSure would be the only viable

adjustment.

Table 6: National and State ERP and MuSE (×103) of Aboriginal and Torres Strait Islander Peoples
(same setting as Table 4)

Level ERP ± 2 SE Census-PES Census-SpineSure TSE
National 798 ± 40 757 751 749

NSW 266 ± 22 252 246 246
Victoria 58 ± 13 55 56 56

Queensland 221 ± 22 207 215 215
South Australia 42 ± 8 42 40 40

Western Australia 101 ± 18 96 92 91
Tasmania 28 ± 4 28 26 26

Northern Territory 75 ± 4 69 68 67
Australian Capital Territory 7.5 ± 1.5 6.5 7.4 7.3

Finally, Table 6 shows the estimates for the Aboriginal and Torres Strait Islanders population

by state and at the national level, except for the PES-SpineLink DSE. The differences between the

Census-SpineSure and Census-PES DSEs are well within the 95% confidence intervals derived from

the ERP. In terms of absolute values, the two DSEs agree better with each other than in Table 4

although, relatively speaking, the DSEs differ more to the ERP here than in Table 4, which is not

unexpected given the observed level of inconsistency between a person’s PES and Census’ Indigenous

status, which the ERP accounts for but the DSEs here do not. Nevertheless, it is seen that using the

predicted Indigenous status on SpineSure in cases where it is missing from the PES and Census does

not create major problems for estimates at these levels.

4.3 State and Age Distributions

We now consider some more disaggregated results. First, by age group, Figure 1 shows MuSEs against

the 95% confidence interval derived from the ERP. We note that

• The Census-PES DSE tracks the ERP equally well in all the age groups. The Census-SpineSure

DSE also performs about equally well in all the age groups, perhaps with the exception of 20–35-

year-olds, possibly because SpineSure ‘over-trims’ 20–35-year-old RTOs, as mentioned before.

There is little difference between the Census-SpineSure DSE and the TSE, except in the two
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oldest age groups, where the PES enumeration is relatively too small to support the three-way

cross-classification.

• The PES-SpineLink DSE is biased downward as noted before. Though not presented here this

downward bias disappears at the national level if state is removed from post-stratification. This

suggests that disagreement between state on Spine and that observed in PES may be the most

important cause for the bias.

Figure 1: By age group, MuSE against 95% confidence interval derived from ERP

Legend:
• Multi-system Estimator

95% Confidence about Official Estimated Resident Population

Next, Figure 2 gives the state by age-group breakdowns of the Census-SpineSure DSE. All the

DSEs are within (or just outside) the 95% confidence interval derived from the ERP, except in

NT where many fall outside the confidence intervals. The main reason is likely to be inadequate

adjustment of heterogenous false negatives, the probability of which in NT is estimated to be among

the highest across the country.

Finally, Figure 3 shows that the Census-SpineSure DSE of the Aboriginal and Torres Strait

Islanders population is smooth and tracks the ERP well. The official ERP for the Aboriginal and

Torres Strait Islanders Population is smoothed to reduce volatility due to the small PES sample size.

In any case, using the predicted Indigenous status on SpineSure in cases where it is missing otherwise
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does not seem to be a major statistical cause of concern at such disaggregated levels either.

5 Final remarks

Historically, many nations have used a population census as a basis to count their resident population

and used a coverage survey to correct for census counting errors. Currently, many of them are planning

to reduce reliance or phase out census collections given pressures to reduce costs and response burden.

This paper presents findings of a study conducted by the Australian Bureau of Statistics into the

role that administrative data, here the so-called Spine, could play to count residents in the presence

or absence of a Census or PES. This study was conducted within the Multi-System Estimation

framework.

Despite the lack of preconditions, our approach enables us to study the Census-Spine DSE that

simulates population estimates without a coverage survey. The Census-Spine DSE achieves compa-

rable estimates to the Census-PES DSE. Even though further research is required, this evidence may

be useful in considering future directions for ABS Census transformation.
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error: estimating the size of the Māori population in New Zealand”. Journal of the Royal

Statistics Association Series A 185 (1): 156-177. DOI: https://doi.org/10.1111/rssa.12731

[26] Wolter, K. 1986. ”Some Coverage Error Models for Census Data”. Journal of the American

Statistical Association 81(394): 338-346. DOI: https://doi.org/10.2307/2289222

[27] Zaslavsky, A., and Wolfgang, G. 1993. ”Triple-System Modelling of Census, Post-Enumeration

Survey, and Administrative-List Data”. Journal of Business and Economic Statistics 11(3):

279-288. DOI:https://doi.org/10.2307/1391952

[28] Zhang, L.C. (2022). ”Complementarities of Survey and Population Registers”. Statistics

Reference Online, Wiley. https://onlinelibrary.wiley.com/doi/10.1002/9781118445112.

stat08352

[29] Zhang L. and Dunne J. 2018. ”Trimmed dual system estimation” in Bohning, D. (Ed.), van

der Heijden, P. (Ed.), Bunge, J. (Ed.). (2018) Capture-Recapture Methods for the Social and

Medical Sciences. New York: Chapman and Hall/CRC

20

https://onlinelibrary.wiley.com/doi/10.1002/9781118445112.stat08352
https://onlinelibrary.wiley.com/doi/10.1002/9781118445112.stat08352


[30] Zhang, L.-C. 2015. ”On modelling register coverage errors”. Journal of Official Statistics 31 (3)

381-396. DOI: https://doi.org/10.1515/jos-2015-0023

[31] Zhang, L.-C. and Dunne, J. 2017. ”Trimmed Dual System Estimation”. In Capture-Recapture

Methods for the Social and Medical Sciences, eds. D. Böhning, J. Bunge and P. v. d. Heijden,
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Figure 2: Census-SpineSure DSE against 95% confidence interval derived from ERP
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Figure 3: Census-SpineSure DSE and ERP of Aboriginal and Torres Strait Islanders Population
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Legend:
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