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Abstract—Acquiring accurate channel state information (CSI) at
an access point (AP) is challenging for wideband millimeter wave
(mmWave) ultra-massive multiple-input and multiple-output (UM-
MIMO) systems, due to the high-dimensional channel matrices,
hybrid near- and far- field channel feature, beam squint effects,
and imperfect hardware constraints, such as low-resolution analog-
to-digital converters, and in-phase and quadrature imbalance. To
overcome these challenges, this paper proposes an efficient downlink
channel estimation (CE) and CSI feedback approach based on
knowledge and data dual-driven deep learning (DL) networks.
Specifically, we first propose a data-driven residual neural network
de-quantizer (ResNet-DQ) to pre-process the received pilot signals at
user equipment (UEs), where the noise and distortion brought by im-
perfect hardware can be mitigated. A knowledge-driven generalized
multiple measurement vector learned approximate message passing
(GMMV-LAMP) network is then developed to jointly estimate the
channels by exploiting the approximately same physical angle shared
by different subcarriers. In particular, two wideband redundant
dictionaries (WRDs) are proposed such that the measurement
matrices of the GMMV-LAMP network can accommodate the far-
field and near-field beam squint effect, respectively. Finally, we
propose an encoder at the UEs and a decoder at the AP by a
data-driven CSI residual network (CSI-ResNet) to compress the CSI
matrix into a low-dimensional quantized bit vector for feedback,
thereby reducing the feedback overhead substantially. Simulation
results show that the proposed knowledge and data dual-driven
approach outperforms conventional downlink CE and CSI feedback
methods, especially in the case of low signal-to-noise ratios.

Index Terms—Ultra-massive multiple input multiple output (UM-
MIMO), hybrid near- and far- field channels, orthogonal frequency
division multiplexing (OFDM), channel estimation, knowledge and
data dual-driven, CSI feedback.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is a key tech-
nique to significantly improve spectral efficiency and energy
efficiency, owing to its good angular-domain resolution and
large array gains in the fifth generation (5G) cellular networks
[2], [3]. To provide seamless human-to-everything interactions,
the sixth generation (6G) communication system is expected to
achieve even higher spectral efficiency and energy efficiency for
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supporting reliable ultra-high-definition video delivery, extremely
low access latency, and real-time interaction with user equipment
(UEs) [4]. As one of the most disruptive evolution techniques in
6G, ultra-massive MIMO (UM-MIMO) is capable of providing
higher flexibility in degrees of freedom and communication
capacity. Moreover, by utilizing higher frequency bands, such as
millimeter-wave (mmWave) and Terahertz (THz), UM-MIMO is
envisioned to support larger transmission bandwidth and shorter
latency [5]–[7]. However, the massive number of antennas results
in extremely large array sizes, and the far-field electromagnetic
(EM) wave propagation assumption becomes inaccurate [8]–
[10]. Moreover, the ultra-wide bandwidth brings the beam squint
effects, which is non-negligible in UM-MIMO systems [11].
Thus, there is a new urgent need for signal processing algorithms
that are aware of and can cope with these challenges.

The acquisition of the downlink channel state information
(CSI) at an access point (AP) is particularly challenging for
UM-MIMO systems, since estimating the complete CSI at the
AP associated with a massive number of antennas at AP would
lead to excessive pilot overhead. In the literature, there have
been various downlink CSI acquisition schemes proposed for
massive MIMO systems [12]–[18]. In time division duplexing
(TDD) massive MIMO systems adopting the fully-digital array
and serving dozens of UEs, the AP can easily estimate the
uplink CSI at an affordable pilot overhead thanks to the rel-
atively limited number of antennas at the UEs as well as the
good channel reciprocity between uplink and downlink channels.
For conventional sub-6GHz frequency division duplexing (FDD)
massive MIMO systems adopting fully-digital arrays, since the
uplink and downlink channel reciprocity does not exist, the UEs
have to first estimate the downlink CSI based on pilot signals
transmitted by the AP and then feed them back to the AP [18].
However, since the radio frequency calibration in mmWave/THz
systems becomes difficult, the uplink and downlink reciprocity
in TDD mmWave/THz-based systems deteriorates [19]. More-
over, mmWave/THz MIMO systems usually adopt hybrid analog-
digital arrays, and the pilot overhead for uplink channels is also
proportional to the number of receiver antennas. By contrast, the
downlink channel estimation (CE) training time can be relatively
smaller, since multiple UEs can simultaneously perform CE
according to the downlink pilot signals broadcasted by the AP1.
Furthermore, the sparsity of mmWave/THz MIMO channels can
be utilized to substantially reduce CSI feedback overhead. Since
for TDD mmWave/THz MIMO systems, it becomes difficult to
directly acquire the downlink channels by using the estimated
uplink channels with affordable pilot overhead, APs have to ask
UEs to perform downlink CE and CSI feedback [20].

1Since the AP usually has sufficient transmit power, the downlink CE signal-
to-noise ratio (SNR) is sufficient to ensure the good estimation accuracy.
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A. Prior Work

There exists extensive work on the problem of acquiring
downlink CSI with affordable pilot overhead. By utilizing the
sparsity of mmWave/THz massive MIMO channels represented
in the delay domain and/or angle domain, various compressive
sensing (CS) based CE algorithms, including greedy and Bayesian
inference algorithms, were proposed [12]–[17], [21]. As typical
greedy algorithms, orthogonal matching pursuit (OMP)-type algo-
rithms construct the ‘best matching’ projection of the signal from
the redundant measurement matrix in a greedy manner [12]–[16].
For example, considering the spatio-temporal common sparsity
of delay-domain in FDD massive MIMO systems, the authors
in [13] proposed a structured CS-based CE scheme, where an
adaptive structured subspace pursuit algorithm was developed to
improve the CE accuracy. However, the near-field propagation
was not considered. To this end, in [15], a simultaneous OMP
algorithm was utilized to solve a purely near-field CE problem,
where a dedicated dictionary was designed. The CE scheme of
[15] was further extended to cater to the hybrid near- and far-
field channels of UM-MIMO systems in [16], where a variant
of OMP was proposed but the wideband communication was
not involved. On the other hand, Bayes-based algorithms can
utilize a priori distribution on sparse matrices to improve CE
performance. Specifically, the generalized multiple measurement
vector (GMMV) approximate message passing (AMP) algorithm
was proposed to realize both active user detection and CE in [17].
Considering the practical hardware constraints at the receiver, the
authors in [21] proposed two CE schemes with low-resolution
analog-to-digital converters (ADCs) based on the generalized
AMP (GAMP) and vector AMP, respectively. Bayes-based al-
gorithms are able to approach Bayesian optimal performance,
but the iterative convergence time is unaffordable in practical
implementation.

In addition to CS-based CE schemes, subspace-based CE
schemes exploiting multiple signal classification (MUSIC) or
estimation of signal parameters via rotational invariant techniques
(ESPRIT) algorithms can directly estimate the dominant channel
parameters such as angles of departure/arrival (AoDs/AoAs) and
path delays [22]–[24]. In [22], the authors proposed a beam
training strategy to measure the AoD and AoA by cooperatively
sweeping both wide beams and narrow beams. To deal with
the hardware imperfections of low-cost devices, the work [23]
used the root-MUSIC algorithm in AoD estimation for a receive
array with low-resolution ADCs and derived the corresponding
Cramér-Rao lower bound. The aforementioned research focuses
only on incident angle estimation, which neglects parameters
such as delay. To this end, in [24], a multi-dimensional unitary
ESPRIT algorithm was proposed to estimate AoAs, AoDs, and
the corresponding delays at different stages.

B. Motivation

Although wideband UM-MIMO systems can significantly im-
prove the system throughput to support future 6G networks,
several practical challenges beyond the capability of conventional
CE schemes need to be addressed.

1) Hardware imperfections: To support ubiquitous service
in future 6G networks, low-cost and energy-saving designs
will be widely considered for APs and UEs. Thus, flash
ADCs with high sampling speed but moderate resolution are

expected to be widely employed in wideband UM-MIMO
systems [25]. However, this will lead to the received signal
suffering from non-negligible information loss. Moreover,
in-phase and quadrature (IQ) imbalance will further deepen
the distortion of the received signals.

2) Hybrid near- and far- field effect: In conventional MIMO
systems, the planar-wave propagation approximation is
commonly assumed and the CSI exhibits sparsity in the
virtual angular domain. However, the hybrid near- and far-
field scenario where far-field and near-field scatterers co-
exist is commonly encountered in UM-MIMO systems.
Consequently, conventional CE algorithms based on the
virtual angular sparsity will work poorly.

3) Beam squint effects: In conventional wideband MIMO
systems, the incident virtual angles of EM waves are ap-
proximated to be the same across all subcarriers. However,
when the system bandwidth increases dramatically, virtual
angle offsets appear due to the significant difference in the
wavelengths across different subcarriers. If the frequency-
flat dictionaries of conventional CE algorithms are still
adopted, the virtual angle offsets across different subcarriers
will result in severe CE accuracy loss.

With dedicated mathematical modeling and accurate prior
knowledge, conventional algorithms have so far performed well in
various CE scenarios. However, the performance of conventional
algorithms will degrade considerably in envisioned 6G applica-
tions due to the environment mismatch and unaffordable time
overhead. Recently, deep learning (DL) has been considered as
a key enabling technology in various applications of commu-
nication systems [26], e.g., CE [20], [27]–[30], CSI feedback
[31]–[35], precoding [36], beam training and prediction [37]–[39],
scheduling [40], and detection [41], [42]. By training a neural
network model with a predefined objective function using DL,
it can learn features adapted to real-world data, and the trained
model can perform prediction in real-time with low complexity.
DL-based CE networks can be roughly categorized into data-
driven and knowledge-driven according to the adopted mecha-
nisms. In [27], a data-driven end-to-end deep neural network
(DNN) was proposed based on the angular sparsity in massive
MIMO channels. Further, DL networks have also shown promise
in addressing practical issues such as hardware imperfections.
For instance, in [28], the authors designed a data-driven CE
network to address pilot contamination, synchronization errors,
and channel aging. In [29], a conditional generative adversarial
network (cGAN) was designed to overcome the challenging
quantization noise in a sparse CE problem.

Beyond these results, and in order to circumvent the over-
whelming complexity in conventional iterative algorithms such
as sparse Bayesian learning (SBL) and AMP, extensive DL
algorithms have been proposed by replacing hyper-parameters
with learnable variables, which are known as knowledge-driven
algorithms [43]. In [44], LampResNet was proposed as a com-
bination of a learned AMP (LAMP) network and a residual
neural network (ResNet) to provide coarse and refined estimation
results, respectively. Furthermore, the authors in [20] unfolded a
multiple measurement vector AMP (MMV-AMP) algorithm and
designed a learnable phase shifter network at the receiver in an
orthogonal frequency domain multiplexing (OFDM) system. By
designing a specific shrinkage function, the network leverages the
exactly common support across different subcarriers effectively.
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TABLE I
COMPARISON OF EXISTING DEEP LEARNING-BASED CE SCHEMES AND PROPOSED WORK

Research
Literature

Contents
Estimation

Method
Drive Type

Transmission
Direction

Hardware
Imperfection

Hybrid-Field
Beam Squint Effect

Subspace
Compressed

sensing
Data

driven
Knowledge

driven
Dual

driven
Uplink Downlink

Low-bit
ADC

Other
Imperfections

Far
Field

Near
Field

Hybrid
Field

[20] ✓ ✓ ✓ ✓ ✓

[27] ✓ ✓ ✓

[28] ✓ ✓ ✓ ✓

[29] ✓ ✓ ✓ ✓

[30] ✓ ✓ ✓

[44] ✓ ✓ ✓

[45] ✓ ✓ ✓

[46] ✓ ✓ ✓ ✓ ✓

[51] ✓ ✓ ✓

[52] ✓ ✓ ✓

[53] ✓ ✓ ✓ ✓

Proposed work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

However, the algorithm requires an identical measurement matrix
on different subcarriers and works poorly in the case of hardware
imperfections. To address these issues, the authors of [45] pro-
posed a few-bit massive MIMO channel estimation network to
achieve CE and pilot training at the AP and UEs simultaneously,
but the network is limited to narrowband systems and cannot
be easily applied to wideband systems. To handle the beam
squint effects in mmWave wideband systems, the authors in [46]
proposed a learnable iterative shrinkage thresholding algorithm-
based channel estimator by transforming the beam-frequency
mmWave channels into sparse representations, but the impact of
near-field propagation was not considered.

In addition to performing the downlink CE, UEs are required
to feed the received pilot signal or estimated CSI back to the AP.
However, if the CSI matrix is quantized directly and fed back to
the AP, it will result in non-negligible quantization noise. To this
end, the authors of [31] utilized the virtual angular sparsity to
improve massive MIMO CSI compression. However, this early
work did not consider the impact of existing knowledge at the
AP. To this end, in [32], the time correlation of time-varying
massive MIMO channels was utilized by introducing a long short-
term memory structure, and the network was demonstrated to
outperform schemes not considering this effect. Besides, in [33],
the authors took advantage of the partial channel reciprocity
between uplink and downlink channels in FDD massive MIMO
systems. However, the input of the aforementioned schemes is
assumed to be noiseless, which is impossible to obtain in practical
transmission systems. For this reason, in [47] a two-module neural
network termed an anti-noise CSI compression network was
developed to achieve noisy CSI feedback compression, where the
first module removed the noise and the next module compressed
the CSI and eliminated the residual noise in the compression.
However, the training is not end-to-end in the CSI feedback and
training takes a long time. Moreover, the beam squint effects
make the essential information extraction more complicated and
degrades the performance of the aforementioned schemes.

In machine learning terminology, purely data-driven modeling
is known as black-box modeling, while pure knowledge-driven
modeling is referred to as white-box modeling. A fundamental
principle in data modeling is to incorporate available a priori in-
formation, i.e., a priori knowledge, regarding the underlying data-
generating mechanism into the modeling process. Knowledge-

and-data dual modeling, also known as grey-box modeling, is ca-
pable of incorporating prior knowledge and typically outperforms
purely data-driven modeling [48]–[50]. Thus, a knowledge and
data dual-driven approach should offer a much better method for
the CE and CSI feedback. However, few studies have considered
this approach in the present context. In [51], the authors proposed
a scheme that includes a data-driven noise level detecting network
to aid a knowledge-driven LAMP CE network, while the scheme
of [52] includes a knowledge-driven Gaussian mixture LAMP
CE network and a data-driven residual learning network for CSI-
denoising. However, the aforementioned research is limited to the
case of narrowband transmission. The authors in [53] proposed
a hybrid driven channel estimation scheme for a reconfigurable
intelligent surface aided wideband system, but the wideband beam
squint effect and near-field effect are not considered. Furthermore,
the scenarios with near-field propagation and hardware imperfec-
tions are not addressed in these schemes either.

C. Our Contributions

Against the above background, this paper proposes a novel
knowledge and data dual-driven downlink CE and uplink CSI
feedback approach for UM-MIMO systems, where an AP serves
multiple single-antenna UEs using wideband OFDM transmis-
sion. We assume that the scatterers between the UE and the AP
can be located in either the near or far field with respect to the
AP. The AP adopts hybrid beamforming and all UEs use low-bit
ADCs as a cost-effective solution for practical deployment. Our
main contributions are summarized as follows.

• A data-driven de-quantizer (DQ) module is proposed
to combat hardware imperfections. All UEs exploit the
oversampled received pilot signal to mitigate the signal
distortion caused by the low-bit ADCs. Specifically, a data-
driven ResNet DQ (ResNet-DQ) is developed to mitigate
signal distortion caused by quantization and additive white
Gaussian noise (AWGN). Simulation results demonstrate that
ResNet-DQ can eliminate both AWGN and quantization
noise effectively, especially in low-SNR regions. To the
best of our knowledge, this is the first attempt to achieve
time-domain OFDM signal de-quantization based on deep
learning, where the intrinsic correlation of oversampled
signals at a practical receiver is exploited.
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• Two wideband redundant dictionaries (WRDs) are pro-
posed to sparsify UM-MIMO channel matrices. Two
customized WRDs are designed for far-field and near-field,
respectively. The former is derived based on the discrete
Fourier transform (DFT) matrix, while the latter is obtained
by data-driven methods. Both dictionaries aim at compen-
sating for the virtual angle-domain support offsets under
beam squint effects, so that the almost identical physical
AoA/AoDs across different subcarriers can be exploited.

• A knowledge-driven network is utilized to estimate the
channels. By using the designed WRDs, the sparse angle-
domain vectors on different subcarriers exhibit exactly the
common sparse support. This enables us to formulate the
downlink wideband CE as a sparse signal recovery prob-
lem and develop a GMMV-LAMP network to estimate the
channels with low pilot overhead. As the de-quantization
procedure in ResNet-DQ is highly non-linear, the received
signals from different subcarriers suffer from different noise
levels and we derive a shrinkage function to deal with this.
Simulation results verify the excellent CE performance in a
wideband mmWave system with the beam squint effects.

• A data-driven module is proposed to efficiently perform
bit-vector CSI feedback. It consists of a CSI-ResNet auto-
encoder with encoding and decoding components deployed
at the UEs and AP, respectively. With dedicated designed
network structures, the encoder at a UE can compress CSI
and transform it into a compact bit-vector, then the AP
reconstructs the high-dimensional CSI once the feedback
vector is received by a decoder with a similar structure.
Simulation results verify this module’s effectiveness in CSI
feedback especially in low-SNR regions, which outperforms
the widely considered CSI-Net [31].

Notation: We use lower-case bold letters for vectors, e.g., a, and
capital bold letters for matrices, e.g., A. The conjugate, transpose
and conjugate transpose operators are denoted by (·)∗, (·)T and
(·)H, respectively. The ith element of a is given by [a]i and
the (i, j)th element of A is denoted as [A]i,j . For a diagonal
matrix Σ, Σ

1
2 denotes the diagonal matrix in which each diagonal

element is the square root of the corresponding element in Σ.
ℜ(a) (ℜ(A)) and ℑ(a) (ℑ(A)) denote the real part and imaginary
part of a (A), respectively. ⌈a⌉ rounds a to the nearest integer
greater than or equal to a. a ∼ CN (ā,V) denotes a random
vector a following the complex Gaussian distribution with mean
vector ā and covariance matrix V. U (a, b) denotes the uniform
distribution within the range of [a, b]. 0 and I denote the zero
vector and identity matrix of appropriate dimension, respectively.
∥a∥0 denotes the l0 norm of a. ∥A∥F denotes the Frobenius norm
of A.

∂[f(r)]j
∂x denotes the partial derivative of the jth element

of a vector-valued function f(r) with respect to variable x. E [·]
denotes the statistical expectation operator.

II. PRELIMINARIES

We first present the system model which consists of the
transmission model and entire neural network structure for CE.
Then, the mmWave wideband channel model that considers the
hybrid near- and far- field effect and beam squint effect is detailed.

A. System Model

We consider the downlink CE and CSI feedback problem in
a single-cell multi-user mmWave wideband UM-MIMO system.

The carrier frequency and the corresponding wavelength are
denoted by fc and λc, respectively. The AP adopts the hybrid
analog-digital MIMO architecture with NRF radio frequency (RF)
chains and an NAP-element uniform linear array (ULA). The
antenna spacing is half of the carrier wavelength, i.e., d = λc/2.
Without loss of generality, each UE is equipped with a single
antenna and a Q-bit ADC to reduce hardware cost and power
consumption. The center of AP is positioned at (0, 0), and
the coordinates of antennas are

(
0,−λc

4 + (i− NAP

2 )λc

2

)
,∀i ∈

{1, ..., NAP}. The number of scatterers L is assumed to be the
same for all UEs. OFDM modulation with K subcarriers is
adopted to combat the multipath channels.

We design a transmission frame that includes two stages: the
first G pilot slots with K subcarriers are utilized for CE, and
the rest (T − G) slots with Sd subcarriers are used for data
transmission. Note that the pilot symbol length is much smaller
than the data symbol length, and the CE overhead is relatively
small compared with the data transmission, in which the subcar-
rier spacing becomes larger. Assume that the maximum number
of delay taps is ⌈τmaxfs⌉, and the number of pilot subcarriers
satisfies K > ⌈τmaxfs⌉, where τmax denotes the maximum delay
of the wideband channels. At the CE stage, the AP broadcasts the
pilot signals to all UEs. After the received signal is quantized with
a low-bit ADC, it is inputted into the proposed network illustrated
in Fig. 1. Specifically, it is first de-quantized by ResNet-DQ.
Then, the recovered high-resolution signal is utilized for CE
using GMMV-LAMP. After the UE obtains the complete CSI
estimated by GMMV-LAMP, a dedicated encoder compresses the
CSI matrix into a low-dimensional bit vector which is then fed
back to the AP2. Finally, the AP reconstructs the CSI of UEs
with an identical decoder. It is worth noting that UEs’ propagation
environments are similar. Without loss of generality, we can focus
on the CE and CSI feedback of a single UE, and indices of UEs
can be omitted.

Denote the signal transmitted by the AP on the kth subcarrier
and the gth pilot slot by FRF[g]s[g, k] ∈ CNAP×1, where
FRF[g] = 1√

NAP
ejΞ[g] ∈ CNAP×NRF and s[g, k] ∈ CNRF×1

denote the analog precoder on the gth pilot slot and the base-
band pilot symbol on the kth subcarrier and the gth pilot slot,
respectively. The elements ξi,l[g] = [Ξ[g]]i,l for 1 ≤ i ≤ NAP and
1 ≤ l ≤ NRF are uniformly distributed in U(0, 2π) and the (i, l)th
element of the precoding matrix ejΞ[g] is ejξi,l[g]. Furthermore,
s[g, k] ∼ CN (0, I). To avoid the peak-to-average power ratio
issue, s[g, i] ̸= s[g, j],∀i, j ∈ {1, 2, ...,K} and i ̸= j. At the
UE, the received signal under the multipath channels on the kth
subcarrier and the gth pilot slot can be formulated as

y̌DL[g, k] = hT
DL[k]FRF[g]s[g, k] + ňDL[g, k], (1)

where hDL[k]∈CNAP×1 denotes the downlink channel on the kth
subcarrier, and the frequency-domain channel AWGN ňDL[g, k]∼
CN

(
0, σ̌2

n

)
, whose power σ̌2

n is frequency-independent and time
invariant. Collecting the signals on all subcarriers into y̌DL[g]=
[y̌DL[g, 1], . . . , y̌DL[g,K]]

T ∈ CK×1, the received time-domain
samples y̌tDL[g] ∈ CK×1 can be written as

y̌tDL[g] = FH
DFT,K y̌DL[g], (2)

where FDFT,K represents the K-dimensional DFT matrix.

2As different UEs have the same network structure, the time overhead of CE
and CSI compression for all UEs should be similar. Thus, we assume that all UEs
feed their own bit vectors back to the AP simultaneously for convenience.
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Fig. 1. Structure of the knowledge and data dual-driven network: the whole network is divided into data-driven de-quantization, knowledge-driven GMMV-LAMP,
and data-driven CSI feedback modules. Time-domain quantized oversampling samples are first inputted into the de-quantization module, and the output is utilized in
GMMV-LAMP for CE. Finally, the estimated CSI is compressed and reconstructed in the CSI feedback module.

However, in practical systems there exist several factors that
can cause the distortion of the received signal, e.g., IQ imbalance
and low-resolution ADC. Denote the gth perfect analog baseband
signal vector by y̌DL(g, t), which is generated by y̌tDL[g] with the
aid of shaping filters. As described in [54], the analog baseband
signal with IQ imbalance yDL,IQ(g, t) can be formulated as

yDL,IQ(g, t) =
(
cos
(
ζθ/2

)
+ jζA sin

(
ζθ/2

))
y̌DL(g, t)

+
(
ζA cos

(
ζθ/2

)
− j sin

(
ζθ/2

))
y̌∗
DL(g, t), (3)

where ζA and ζθ denote the gain and phase error factors, respec-
tively, yDL,IQ(g, t) is sent to an Q-bit ADC to obtain the Q-bit
quantized signal Yt

DL[g] ∈ CW×K with W -times oversampling:

Yt
DL[g] = Q (yDL,IQ (g, t) ;W,Q) , (4)

where Q(·;W,Q) denotes the complex-valued Q-bit quantization
function. As illustrated in the top and middle subfigures of Fig. 2,
the analog baseband signal is quantized by Q-bit with W times
oversampling. Specifically, each element of ℜ(yDL,IQ(g, t)) and
ℑ(yDL,IQ(g, t)) is approximated by the closest value within the
quantized set Cb, which consists of the 2Q candidates, given by

Cb :
{
−2Q−1

2
∆b,

(
− 2Q−1

2
+ 1

)
∆b, . . . ,

2Q−1

2
∆b

}
, (5)

where ∆b = 1
2Q

(Ymax − Ymin) with Ymax =

max
1≤i≤W,1≤l≤K

{
ℜ
([
YDL,IQ(g, t)

]
i,l

)
,ℑ
([
YDL,IQ(g, t)

]
i,l

)}
and

0 1 2 4 5 63

Time  (Seconds) 10-9

-10

-5

0

5

A
m

pl
itu

de

Before ResNet-DQ (Analog, w/o IQ imbalance/AWGN, w/o 2-bit quantization)
Before ResNet-DQ (Analog, w/   IQ imbalance/AWGN, w/o 2-bit quantization)

0 1 2 4 5 63

Time  (Seconds) 10-9

-10

-5

0

5

A
m

pl
itu

de

Before
Before

ResNet-DQ (4-time oversampling, w/ IQ imbalance/AWGN, w/o 2-bit quantization)
ResNet-DQ (4-time oversampling, w/ IQ imbalance/AWGN, w/   2-bit quantization)

0 1 2 4 5 63

Time  (Seconds) 10-9

-10

-5

0

5

A
m

pl
itu

de

Before
After

ResNet-DQ ( Analog                    ,
ResNet-DQ (4-time oversampling, 

w/o IQ imbalance/AWGN, w/  2-bit quantization) 
w/   IQ imbalance/AWGN, w/  2-bit quantization)

Fig. 2. Illustration of the de-quantization: the top subfigure depicts the analog
perfect received signal without noise or distortion and the analog distorted received
signal; the middle subfigure depicts the sampled distorted received signal and its
quantized version under 4-time oversampling; the bottom subfigure compares the
analog perfect received signal with the sampled signal after ResNet-DQ, which
demonstrates that most of the information has been recovered.

Ymin= min
1≤i≤W,1≤l≤K

{
ℜ
([
YDL,IQ(g, t)

]
i,l

)
,ℑ
([
YDL,IQ(g, t)

]
i,l

)}
.

B. Channel Model

In UM-MIMO systems, the large array aperture leads to a
significant increase in the Rayleigh distance, causing the trans-
mission region to be split into far-field and near-field regions,
as illustrated in Fig. 3. We first present the near-field channel
model and then introduce the far-field channel model. Next, the
impact of the hybrid near- and far- field scenario is discussed,
and the beam squint effects caused by a very large bandwidth are
considered.

1) Near-Field Channel Model: For the near-field scenario, the
channel model can be derived based on the accurate spherical-
wave propagation model. According to the mmWave multipath
Saleh-Valenzuela channel model [55], if there is no angle spread
and only one ray for each scatterer, the frequency-domain channel
between the ith antenna at the AP and the UE on the kth
subcarrier, hDL,i[k] =

[
hDL,i[k]

]
i
, can be written as

hDL,i[i] =

√
1

LNAP

L∑
l=1

βle
−j2πdl,i

λk , (6)

where βl ∼ CN (0, 1) is the channel gain of the lth path,
λk denotes the wavelength of the kth subcarrier, and dl,i =√
x2
l +

(
− λc

4 +
(
i− NAP

2

)
λc

2 − yl
)2

defines the distance of the
lth path between the UE and the ith antenna at the AP with
(xl, yl) denoting the Cartesian coordinate of the lth scatterer.
Collecting the channel response associated with all the antennas
of the AP, the channel vector on the kth subcarrier, hDL[k] =
[hDL,1[k], . . . , hDL,NAP

[k]]
T, can be written as

hDL[k] =

√
1

LNAP

L∑
l=1

βle
−j2πkfsτl

K a(xl,yl)[k], (7)

TX

Fresnel Zone

(Near Field)

Fraunhofer Zone

(Far Field)

Distance Increasing

Spherical wavefront Planar wavefront

Fig. 3. The transmission region can be split into far-field and near-field regions.

Page 48 of 59IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

Fig. 4. Far-field beam squint effect
for the case of 2 multipath compo-
nents.

Fig. 5. Near-field beam squint effect
for the case of 2 multipath compo-
nents.

where τl represents the delay of the lth path associated with
the reference antenna, and fs is the system bandwidth, while
a(xl,yl)[k] is the near-field array steering vector for the lth path
on the kth subcarrier, which can be written as

a(xl,yl)[k] =
[
e
−j

2πD1,l
λk , . . . , e

−j
2πDi,l

λk , . . . , e
−j

2πDNAP,l

λk

]T
, (8)

where Di,l = di,l − d1,l defines the relative distance of the lth
path between the ith antenna and the UE.

2) Far-Field Channel Model: The far-field channel model is
based on the planar-wave approximation. When the path distances
between the UE and AP are relatively large, the phase differences
across different antennas can be determined merely by AoDs. Let
the AoD of the lth far-field path be φl = arctan ( ylxl

). Then the
array steering vector (8) can be approximated by

asin (φl)[k]=
[
1, e

−j πλc sin (φl)

λk , . . . , e
−j (NAP−1)πλc sin (φl)

λk

]T
. (9)

When the path distances are larger than the Rayleigh distance,
the channel vector on the kth subcarrier hDL[k] can be regarded
as a function solely associated with the AoDs of all scatterers. In
this case, hDL[k] exhibits sparsity in the virtual angular domain,
which can be exploited in CE.

3) Hybrid Near- and Far- Field Channel Model: In UM-
MIMO systems, the Rayleigh distance can reach dozens or even
hundreds of meters, and scatters can be located in both the
near-field and far-field regions of the AP. Hence, both far-field
scatterers and near-field scatterers coexist, which is termed a
hybrid near- and far- field effect in channel modeling [16]. In
such a scenario, the channel vector on the kth subcarrier can
be expressed as (10) which is located at the top of the next
page, where Ln and L denote the number of near-field and all
scatterers, respectively. Lf = L−Ln denotes the number of far-
field scatterers. As the near-field scatterers are determined by the
Cartesian coordinates of scatterers rather than solely by AoDs,

3x

Fig. 6. Structure of ResNet-DQ.

the CE system that is based on the angular sparsity will suffer
severe performance loss. Note that the array steering vectors in (8)
are related to the Cartesian coordinates of scatterers, which can
be transformed into the AoD-distance pairs. This transformation
plays a crucial role in our data-driven dictionary design discussed
in the next section.

4) Beam Squint Effects: In narrowband systems, all the subcar-
riers have almost the same wavelength, and the antenna spacing
is designed to be the half wavelength of the center subcarrier.
Consequently, for both the near-field and far-field cases, the array
steering vector is regarded to be the same for all the subcarriers,
that is, a(xl,yl)[k] and aψm

[k] are identical for all the subcarrier
indices k. However, for very large wideband systems with a
bandwidth comparable to the carrier frequency, the array steering
vectors are frequency-selective in both the near-field and far-field
cases. This phenomenon is commonly known as the beam squint
effects, which is also called as beam split effect in [56]–[58].
When the frequency-flat dictionary is employed in MMV sparse
signal recovery algorithms, the virtual angular-domain support
shifts across different subcarriers as illustrated in Fig. 4 and Fig. 5,
respectively. Consequently, this phenomenon will lead to severe
performance loss.

III. KNOWLEDGE AND DATA DUAL-DRIVEN CE AND
FEEDBACK NETWORK

A. Data-Driven De-quantization Module
Recall that in most receivers with high-speed low-resolution

ADCs, multiple times of time-domain oversampling and phase-
locked loops are applied to identify the optimal sampling moment.
In this case, there is a correlation between different branches of
the oversampled signal, which is retained even after quantization.
Since it is difficult to design a knowledge-driven network for
utilizing the correlation above accurately, we propose a data-
driven de-quantization network called ResNet-DQ as depicted in
Fig. 6. ResNet-DQ is composed of three identical ResNet blocks
and a CNN dimension adjustment layer, in which we can take
advantage of the time-domain correlations across multiple sets
of quantized samples. Based on this feature, how to recover
the noiseless signal is equivalent to a classic super-resolution
problem, in which multiple sets of distorted copies are used to
reconstruct the target signal. For convenience, we use quadruple
oversampling, i.e., W = 4, as an illustrative example.

The UE first removes the cyclic prefix of each OFDM symbol.
Let the gth OFDM symbol be the input to ResNet-DQ. As DL
networks do better in real-valued computations, we stack the
real and imaginary parts of the quadruple samples of the gth
OFDM symbol, denoted by yDL,ov,g ∈ C4×K , as an 8-channel
input yDL,ov,re,g ∈ C8×K , and set the output channels of the
ResNet block to 8. For the CNN layer, the input and output
channels are 8 and 2, respectively, and its 2-channel output
signal yDL,re,g ∈ C2×K is recast as a complex-valued vector
ytDL,g ∈ CK×1. Finally, G OFDM symbols are collected and
reshaped as a matrix Yt

DL,g ∈ CG×K , which is then transformed
into the frequency domain signal YDL for wideband CE. To
make ResNet-DQ fulfill de-quantization well, we design a training
strategy which is detailed in Subsection III-D. As the bottom
subfigure of Fig. 2 shows, although there still exists some residual
noise in the time-domain signal after ResNet-DQ, most of the
essential information has been recovered, which significantly
contributes to the accuracy of CSI acquisition.
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hDL[k] =

√
1

LNAP

(
Ln∑
l=1

βle
−j2πkfsτl

K a(xl,yl)[k]︸ ︷︷ ︸
near−field part

+
L∑

l=Ln+1

βle
−j2πkfsτl

K asin (φl)[k]︸ ︷︷ ︸
far−field part

)
. (10)

B. Knowledge-Driven CE Module

By considering quantization and de-quantization, the transmis-
sion model (1) for 1 ≤ g ≤ G can be collected together as

yDL[k] = S[k]hDL[k] + nDL[k], (11)

where S[k] = [FRF[1]s[1, k], . . . ,FRF[G]s[G, k]]
T ∈ CG×NAP

denotes the pilot signals transmitted from the AP, and yDL[k] =
[yDL[1, k], . . . , yDL[G, k]]

T ∈ CG×1 denotes the noisy received
signal vector on the kth subcarrier after ResNet-DQ. Note that
the effects of quantization and non-linear de-quantization on
the channel output are all considered in the noise nDL[k] =[
nDL[1, k], . . . , nDL[G, k]

]T ∈ CG×1. As the procedure of
ResNet-DQ is highly complex, we posit that the noise on dif-
ferent subcarriers k follows an AWGN distribution with differ-
ent power σ2

n[k], i.e., nDL[k] ∼ CN (0, σ2
n[k]I). If there is no

quantization and de-quantization process, nDL[g, k] = ňDL[g, k]
and yDL[1, k] = y̌DL[g, k], ∀g, k. In order to harness the spar-
sity features of UM-MIMO channels illustrated in Section II-
B, while simultaneously avoiding the prohibitive computational
burden caused by an excessively high number of iterations in the
conventional iterative channel estimation algorithms, we propose
a generic knowledge-driven deep learning network. Specifically,
under the beam squint effect, the conventional frequency-flat DFT
dictionary widely used in massive MIMO systems would cause
the severe virtual angle-domain support shift across different
subcarriers. To solve this problem, we firstly propose two WRDs.
The DFT-based WRD is tailored to the case of only far-field
scatterers, and the data-driven WRD can be used for all cases
including near-field scatterers. In this way, we can rewrite the
channel estimation problem as a unified GMMV-CS problem,
and the only difference is that the two dictionaries result in
different measurement matrices. Secondly, we propose a generic
GMMV-LAMP network by integrating trainable modules in the
conventional GMMV-AMP algorithm to achieve acceleration and
performance improvement.

1) DFT-based WRD: The utilization of the DFT dictionary for
sparse representation is effective when all scatterers are far-field
for the AP as it uniformly divides the virtual angular domain
into NAP grids. However, there are two issues when the DFT
dictionary is used directly across all subcarriers in wideband UM-
MIMO systems. First, the virtual angular resolution of the DFT
dictionary is limited to NAP, which may result in insufficient
precision for off-grid scatterers. Second, the DFT dictionary
works based on the assumption that the antenna spacing is
approximately half of the wavelength for all subcarriers. However,
when the bandwidth becomes ultra-wide and the beam squint
effects appear, the frequency-flat DFT dictionary is not suitable.
To address these issues, a frequency-dependent DFT-based WRD
is proposed to accommodate the redundant virtual angle offsets
on different subcarriers. In this way, (11) can be rewritten as

yDL[k] = S[k]DAD,ρ[k]hsparse[k] + nDL[k], (12)

where hsparse[k] ∈ CρNAP×1 denotes the sparse channel vector in
the virtual angular domain on the kth subcarrier. The DFT-based

WRD DAD,ρ[k] ∈ CNAP×ρNAP is composed of several columns
determined by the redundant factor ρ and subcarrier index k,
which can be written as

DAD,ρ[k]=

[
a0[k],a 1

ρNAP

[k] , . . . ,a ρNAP−1

ρNAP

[k]

]
, (13)

where a i
ρNAP

[k] can be computed by (9). In this way, the virtual
angular domain is uniformly divided into ρNAP grids.

2) Data-Driven WRD: Although the above DFT-based WRD
fits the purely far-field scenario well, utilizing this DFT-based
WRD in the hybrid near- and far- field scenario still leads to
the degraded sparsity result. We further propose a data-driven
frequency-dependent WRD to adaptively capture the sparsity
characteristics of the near-field scattering propagation environ-
ment. Recall that the near-field array steering vectors (8) are
defined by Cartesian coordinates, which can be transformed
into the AoD-distance pairs. Specifically, given the Cartesian
coordinate (xl, yl) of the lth scatterer, the corresponding AoD-
distance pair can be calculated as (dl, φl) where dl =

√
x2
l + y2l

and φl = arctan ( ylxl
). Correspondingly, xl and yl are given by

xl = dl cos(φl) and yl = dl sin(φl). In light of this, we propose
to introduce the trainable parameters cd =

[
d0, d1, . . . , dV−1

]T ∈
RV×1 and cφ =

[
φ0, φ1, . . . , φV−1

]T ∈ RV×1 as the AoD-
distance pairs to generate the corresponding columns in the data-
driven WRD. The CE problem is then formulated as follows:

min
Dlearn,(cd,cφ)[k]

∥∥hsparse[k]
∥∥
0
,

s.t. yDL[k] = S[k]Dlearn,(cd,cφ)[k]hsparse[k]
+nDL[k],

(14)

where the data-driven WRD Dlearn,(cd,cφ) [k] is given by

Dlearn,(cd,cφ)[k] =
[
a(d0 cos(φ0),d0 sin(φ0))[k], . . . ,

a(dV −1 cos(φV −1),dV −1 sin(φV −1))[k]
]
∈ CNAP×V . (15)

The vth column a(dv−1 cos(φv−1),dv−1 sin(φv−1))[k] is computed
by (8). It should be noted that as the degrees of freedom of the
data-driven WRD increases, the number of columns V necessarily
increases to V ≫ ρNAP.

3) GMMV-LAMP: In (11), measurement matrices A[k] =
S[k]D[k] vary with k when the frequency-dependent pilot signals
and WRDs are employed, where D[k] is either DAD,ρ[k] or
Dlearn,(cd,cφ) [k]. To take advantage of the exactly common
support across all subcarriers, our GMMV-LAMP algorithm is
proposed. The structure of the tth layer of this neural network is
depicted in Fig. 7, where YDL=[yDL[1], . . . ,yDL[K]]∈CG×K ,
while Ĥsparse,t =

[
ĥsparse,t[1], . . . , ĥsparse,t[K]

]
∈ CV×K and

Vt=[vt[1], . . . ,vt[K]]∈CG×K denote the estimate and residual
after the tth layer, respectively.

To describe our development of the GMMV-LAMP algorithm,
we begin by offering an overview of the single measurement
vector (SMV)-AMP algorithm. Specifically, we first ignore the
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Fig. 7. The tth iteration/layer architecture of the proposed GMMV-LAMP network with trainable parameters.

common support feature and focus on an SMV CE problem on
the kth subcarrier, which is formulated as

min
hsparse[k]

∥∥hsparse[k]
∥∥
0
,

s.t. y[k] = A[k]hsparse[k] + n[k].
(16)

With the initialization ĥsparse,0[k] = 0 and v0[k] = yDL[k], ∀k,
the tth iteration of SMV-AMP for t = 1, 2, . . . is as follows:

h̃sparse,t[k] =ĥsparse,t−1[k] +AH[k]vt−1[k], (17)

σ2
t [k] =

1

G
∥vt−1[k]∥22 , (18)

ĥsparse,t[k] =η
(
h̃sparse,t[k];θt, σt[k]

)
, (19)

bt[k] =
1

G

V∑
v=1

∂
[
η
(
h̃sparse,t[k];θt, σt[k]

)]
v

∂[h̃sparse,t[k]]v
, (20)

vt[k] =y[k]−A[k]ĥsparse,t[k] + bt[k]vt−1[k], (21)

where η(·;θt, σt[k]) is the shrinkage function with the parameter
set θt that is designed according to the chosen shrinkage func-
tion3. The SMV-AMP algorithm consists of two main operations,
the shrinkage function of (19) and ‘Onsager correction’ of (21).
With the aid of the Onsager correction term bt[k]vt−1[k] in (21),
the input to the shrinkage function can be modeled as an AWGN-
corrupted signal vector4 In addition, (19) achieves denoising
based on the prior assumption of the noiseless signal.

Since there exists the common support characteristic across
all the subcarriers, conventional AMP-type algorithms require a
large number of iterations to converge. We propose the GMMV-
LAMP network, which is summarized in Algorithm 1, to utilize
the common support across all the subcarriers in a knowledge-
driven DL manner. Compared with the conventional GMMV-
AMP algorithm which takes tens or even hundreds of iterations to
converge, our GMMV-LAMP utilizes a very small number of T
iterations/layers5 We now explain our GMMV-LAMP algorithm
in detail.

From Fig. 7, it can be seen that there are three inputs to the
tth layer of the GMMV-LAMP: the estimated sparse channel
matrix Ĥsparse,t−1 and the updated residual Vt−1 from the
previous layer, and the received signal YDL which is common
to all the layers. We initialize Ĥsparse,0 = 0 and V0 = YDL

in line 1, which is similar to the SMV-AMP algorithm. In the
tth layer for 1 ≤ t ≤ T , we design a shrinkage function

3In the common AMP-l1 algorithm, η (·;θt, σt[k]) represents the ‘soft-
thresholding’ shrinkage and θt = α is a preset constant value [59]. But θt can
also be designed as layer-aware according to different shrinkage functions [60].

4In the 1st iteration, h̃sparse,1[k] can also be regarded as corrupted by AWGN,
as we can imagine that there exists the 0th iteration with v−1[k] = 0.

5This will be demonstrated in the simulation results section. to achieve CE by
combining neural networks and expert knowledge of transmission functions.

Algorithm 1 Proposed GMMV-LAMP algorithm
Input: De-quantized signal YDL, measurement matrices A[k], ∀k ∈
{1, 2, ...,K}, number of layers T ;

Output: Estimated sparse matrix Ĥsparse,T ;
1: Initialize Ĥsparse,0 = 0 and V0 = YDL;
2: for t = 1 to T do
3: for k = 1 to K do
4: h̃sparse,t[k]← ĥsparse,t−1[k] +BH

t [k]vt−1[k];
5: σ2

t [k]← 1
G
∥vt−1[k]∥22;

6: end for
7: Σt ← diag

(
σ2
t [1], σ

2
t [2], . . . , σ

2
t [K]

)
;

8: for v = 1 to V do
9: h̃s,t,v ←

[
h̃v,t[1], . . . , h̃v,t[K]

]T
;

10: ĥs,t,v ← ηCS

(
h̃s,t,v; γ, ϵ,Σt

)
;

11: end for
12: for k = 1 to K do
13: ĥsparse,t[k]←

[
ĥ1,t[k], . . . , ĥV,t[k]

]T
;

14: b̄t[k]← 1
G

∑V
v=1

∂[ηCS(h̃s,t,v ;γ,ϵ,Σt)]k
∂[h̃s,t,v]k

;

15: end for
16: b̄t ←

[
b̄t[1], . . . , b̄t[K]

]T;
17: bt = [bt[1], . . . , bt[K]]T ← gt

(
b̄t

)
, where gt(·) denotes an FC;

18: for k = 1 to K do
19: v̄t[k]← y[k]−A[k]ĥsparse,t[k] + bt[k]vt−1[k];
20: end for
21: V̄t ← [v̄t[1], . . . , v̄t[K]];
22: Vt ← V̄t + ft (Vt−1), where ft(·) denotes an FC;
23: Ĥsparse,t ←

[
ĥsparse,t[1], . . . , ĥsparse,t[K]

]
;

24: end for
25: Return sparse matrix Ĥsparse,T .

to leverage the exactly common support feature across all the
subcarriers. Specifically, for each subcarrier, the corresponding

h̃sparse,t[k] =
[
h̃1,t[k], . . . , h̃V,t[k]

]T
∈ CV×1 is computed in

line 4. Motivated by [60], we introduce a trainable matrix set
Bt[k] ∈ CG×V , ∀k ∈ {1, . . . ,K} and ∀t ∈ {1, . . . , T} in which
Bt[k],∀k are initialized as A[k] for all layers at the beginning of
training.

Inspired by the SMV-AMP algorithm, we view h̃sparse,t[k]
as an AWGN-corrupted sparse vector, and consider a denoising
problem for the vth element of h̃sparse,t[k], ∀k. In line 9,
we collect the vth elements of h̃sparse,t[k], ∀k, into h̃s,t,v =[
h̃v,t[1], . . . , h̃v,t[K]

]T
∈ CK×1, which can be modeled as

h̃s,t,v = h̄s,v +Σ
1
2
t nt,v, (22)

where h̄s,v =
[
h̄v[1], . . . , h̄v[K]

]T ∈CK×1 denotes the noiseless
sparse vector, i.e., h̄v[k] is the noiseless version of h̃v,t[k],
and nt,v ∈ CK×1 ∼ CN (0, I). As aforementioned, owing to
the nonlinear quantization and de-quantization process in ob-
taining YDL, the noise power on different subcarriers should
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be different. In this way, we use the diagonal matrix Σt =
diag

(
σ2
t [1], σ

2
t [2], . . . , σ

2
t [K]

)
∈ CK×K to represent the equiva-

lent frequency-dependent noise power, where σ2
t [k] are computed

in line 5, and typically σ2
t [i] ̸= σ2

t [j], ∀i, j ∈ {1, . . . ,K} and
i ̸= j.

To recover h̄s,v from h̃s,t,v, we design a minimum mean
square error (MMSE)-based denoiser. According to the common
support property, h̄v[k] occupies the identical sparsity for arbitrary
subcarrier index k. Assume that h̄s,v follows the Bernoulli-
Gaussian distribution, the prior of h̄s,v can be modeled as

p
(
h̄s,v; γ, ϵ

)
=

{
1− γ, if h̄s,v = 0,
γ, if h̄s,v ∼ CN (0, ϵI),

(23)

where γ is the probability that h̄v[k] ̸= 0, ∀k, and ϵ is the variance
of h̄v[k] when h̄v[k] ̸= 0, ∀k. The shrinkage function based on
the MMSE denoiser ηCS

(
h̃s,t,v; γ, ϵ,Σt

)
: CK×1 → CK×1 is

given by

ĥs,t,v =
[
ĥv,t[1], . . . , ĥv,t[k]

]T
= ηCS

(
h̃s,t,v; γ, ϵ,Σt

)
(24)

= ϕ
(
h̃s,t,v

)
diag

( ϵ

ϵ+ σ2
t [1]

, . . . ,
ϵ

ϵ+ σ2
t [K]

)
h̃s,t,v, (25)

where ϕ(h̃s,t,v) is detailed in Appendix based on [61]. In line 10,
we compute ĥs,t,v ∈ CK×1 for 1 ≤ v ≤ V . It should be noted
that γ and ϵ are independent of the indices k and v due to the
random distribution of scatterers. Besides, in a relatively stable
environment, γ and ϵ tend to remain invariant for a long period,
i.e., these two hyper-parameters can be regarded as independent
of t. Therefore, γ and ϵ are set as global trainable parameters, and
they are learned from the existing datasets. It should be noted that
we initialize γ and ϵ to γ0 = 0 and ϵ0 = 1 at the beginning of
training, and all the layers utilize the same γ and ϵ in the shrinkage
function ηCS

(
h̃s,t,v; γ, ϵ,Σt

)
, ∀t. After computing ĥs,t,v , ∀v,

we reshape all the vectors to obtain the updated sparse channel

estimate ĥsparse,t[k] =
[
ĥ1,t[k], . . . , ĥV,t[k]

]T
, ∀k, in line 13.

In line 14, lines 16 and 17, we employ DL networks to compute
bt = [bt[1], . . . , bt[K]]

T. Specifically, b̄t[k] for all the subcarriers
are first calculated by utilizing the partial derivatives of the
shrinkage function in line 14, which is similar to (20) in the SMV-
AMP, and they are collected together as b̄t =

[
b̄t[1], . . . , b̄t[K]

]T
in line 16. In line 17, b̄t is utilized as the input of an FC layer
gt(·) : CK×1 → CK×1 to obtain a refined result bt = gt

(
b̄t
)
.

In line 19, we update a coarse residual v̄t[k] with the aid of the
Onsager correction term bt[k]vt−1[k] for each subcarrier, which is
the same as (21) in the SMV-AMP. Here, inspired by the concept
of momentum in DL, we utilize the residual Vt−1 from the
(t−1)th layer to assist in accelerating convergence in the tth layer.
Specifically, we collect v̄t[k], ∀k, into V̄t=[v̄t[1], . . . , v̄t[K]]∈
CG×K , and utilize an FC layer ft(·) : CG×K→CG×K to obtain
Vt=[vt[1], . . . ,vt[K]]=V̄t + ft (Vt−1).
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Fig. 8. Structure of CSI-ResNet: a CSI-ResNet encoder compresses CSI to a bit
vector and a CSI-ResNet decoder reconstructs the CSI matrix.
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+Mish

24 channels
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Channel 

Attention
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+Mish
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Multiplication

E-ResNet block D-ResNet block

Fig. 9. Structures of E-ResNet block and D-ResNet block.

After T iterations/layers, the GMMV-LAMP network
outputs the final estimated sparse matrix Ĥsparse,T =[
ĥsparse,T [1], . . . , ĥsparse,T [K]

]
∈ CV×K , and the CSI

in the spatial-frequency domain can be computed as
ĤDL=

[
D[1]ĥsparse,T [1], . . . ,D[K]ĥsparse,T [K]

]
∈CNAP×K .

C. Data-Driven CSI Feedback Module

After the UE has estimated ĤDL, the CSI matrix is fed back to
the AP for downlink beamforming. However, if the CSI matrix is
fed back to the AP without compression, the feedback overhead is
unaffordable. For example, assume that a system with NAP = 64
and K = 64 is achieving CSI feedback and 32-bits accuracy
of floating-point numbers is considered. Then, the total feedback
overhead are 2 × 64 × 64 × 32 = 264144 bits, where the factor
2 is owing to the fact that each channel coefficient has real and
imaginary parts. One feasible CSI feedback method is to compress
the floating-point numbers into low-bit types, such as 3 or 2 bits,
but this results in significant quantization noise.

The autoencoder is a widely utilized deep neural network
structure [42], [62] to perform feature extraction for CSI feedback
[31], [32]. The autoencoder is designed to be an end-to-end
system, with the goal of reconstructing a noiseless version of
the target. In this paper, we propose a data-driven autoencoder
called CSI-ResNet which consists of a CSI-ResNet encoder and
a CSI-ResNet decoder as depicted in Fig. 8.

1) CSI-ResNet Encoder: The estimated CSI ĤDL is divided
into ℜ

(
ĤDL

)
and ℑ

(
ĤDL

)
, and then stacked as the input to the

CSI-ResNet encoder. Two ‘E-ResNet’ blocks are utilized for fea-
ture extraction. The structure of E-ResNet, as illustrated in Fig. 9,
is inspired by ResNet-DQ but with a higher kernel size and more
channels. It includes three subblocks, each consisting of a ‘Conv’
layer, a ‘BatchNorm’ layer, and a ‘Mish’ activation layer. The first
subblock increases the number of channels from 16 to 32, and
the second subblock reduces the number of channels to 24. Then
a ‘Channel Attention’ layer is used to find the correlation across
different channels. In the third subblock, the input is convolved to
generate a 16-channel output for the final skip connection. After
the two E-ResNet blocks, a ‘Convbn’ block which includes a
‘Conv’ layer and a ‘BatchNorm’ layer performs further feature
extraction. Although most of the information has been retained,
the dimension of output is reduced for CSI compression. The
‘Linear’ block then compresses the CSI as a floating-point vector.
Finally, the floating-point vector is quantized into a bit vector
using the ‘Sigmoid+Quantization’ block. Specifically, the sigmoid
function limits the value range of the floating-point number to
[0, 1], and the floating-point vector is quantized into a bit stream.
For example, if the number of quantization bits is set to 2,
the output range of each element in the floating-point vector is
divided into [0, 0.25), [0.25, 0.5), [0.5, 0.75) and [0.75, 1], and
the corresponding bit vectors are ‘00’, ‘01’, ‘10’ and ‘11’.
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2) CSI-ResNet Decoder: The ‘De-quantization’ block trans-
forms the bit vector into a floating-point vector with 32 channels.
Subsequently, a ‘Linear’ block and three ‘D-ResNet’ blocks are
utilized. The D-ResNet block, shown in Fig. 9, has a similar
structure to the E-ResNet block but with different dimensions
in its subblocks. The output after the three D-ResNet blocks is
real-valued and contains both real and imaginary parts. With the
aid of the ‘Tanh’ activation layer and an amplitude adjustment
operation, the 2-channel real-valued tensor is then recast as the
complex-valued CSI matrix Ĥ′

DL.

D. Training Strategy

Due to large fluctuations in the multipath component gains, we
consider the normalized mean square error (NMSE) as the cost
function, which is written as

Loss = NMSE
(
X̂;X

)
= E


∥∥∥X̂−X

∥∥∥2
F

∥X∥2F

 , (26)

where X̂ and X denote the estimated signal and the true sig-
nal, respectively. There are three distinct modules in the whole
network. Specifically, ResNet-DQ is data-driven, GMMV-LAMP
is knowledge-driven, and CSI-ResNet is data-driven, and they
have different designs and training targets. Therefore, an end-
to-end training approach may not be appropriate. Therefore, we
apply separate training procedures for the ResNet-DQ, GMMV-
LAMP and CSI-ResNet modules, and train them in sequence with
different loss functions.

First, the loss function of ResNet-DQ is the NMSE between the
output YDL = [yDL[1], . . . ,yDL[K]] and the infinite-resolution
noiseless signal ȲDL =

[
ȳDL[1], . . . , ȳDL[K]

]
in the frequency

domain, i.e.,

LossResNet−DQ = NMSE
(
YDL; ȲDL

)
. (27)

After ResNet-DQ is trained, it is set to the evaluation mode,
and the GMMV-LAMP network is trained with the cost function
chosen to be the NMSE between the estimated CSI ĤDL and the
perfect CSI H̄DL, namely,

LossGMMV−LAMP = NMSE
(
ĤDL; H̄DL

)
. (28)

The parameters in our GMMV-LAMP network are divided into
global parameters, such as γ, ϵ, and layer-level parameters, such
as Bt[k]. The training of the GMMV-LAMP network is in an
all-layer manner. Specifically, when the tth layer is trained, the
layer-level parameters in all t′th (1 ≤ t′ ≤ t) layers and global
parameters are trained. Note that when the data-driven WRD is
trained, Cd and Cφ are only activated for training the first and
second layers. Once the second layer has been trained, Cd and Cφ
remain fixed.

After the GMMV-LAMP is trained, we generate the estimated
CSI in the training and validation sets based on the trained
ResNet-DQ and GMMV-LAMP for CSI feedback. For the CSI-
ResNet, which is composed of both the encoder and decoder, an
end-to-end training strategy is employed, and the cost function is
defined as the NMSE between the reconstructed CSI Ĥ′

DL and
the perfect CSI H̄DL, i.e.,

LossCSI−ResNet = NMSE
(
Ĥ′

DL; H̄DL

)
. (29)

IV. SIMULATION RESULTS

This section provides simulation results to verify the effective-
ness of the proposed approach in a typical mmWave wideband
UM-MIMO system. There are NAP = 128, 256 and 512 antennas
at the AP with NRF = 2 RF chains6, and the number of pilot
symbols is set as G = 32, 64. The IQ gain and phase error
factors are set as ζA = 0.1 ζθ = 5◦, respectively. The carrier
frequency is 70 GHz, the bandwidth is 10 GHz while there are
K = 64 subcarriers at the CE stage. For purely far-field, purely
near-field, and hybrid near- and far- field scenarios, we generate
different datasets for training. Each sample of the aforementioned
datasets is composed of several near-field or far-field or hybrid
multipath components that are generated with different policies.
Specifically, each far-field path is generated with a random AoD
within [−π

3 ,
π
3 ] and path delay within 6.4× 10−9 seconds. Based

on the effective Rayleigh distance [15], we generate near-field
paths within the effective Rayleigh distance area. More specifi-
cally, a random AoD is selected and the corresponding effective
Rayleigh distance is calculated, and one distance is generated
within the effective Rayleigh distance so that one AoD-distance
pair can be obtained.

Unless stated otherwise, the number of scatterers in one sample
is L = 6, and each CSI sample in the hybrid near- and far-
field dataset is composed of 3 far-field scatterers and 3 near-field
scatterers, while the CSI samples in the purely far-field dataset
and the purely near-field dataset include 6 far-field scatterers
and 6 near-field scatterers, respectively. In all simulations, the
CSI samples in the training sets and the validation sets have
identical features. Moreover, the number of antennas at the AP
is NAP = 128, and the number of pilot symbols is G = 32. In
the rest figures, the x-axis represents the SNR level of AWGN
which ranges over -10 dB to 10 dB, that is, the power ratio of
the perfectly received signals to AWGN. For different modules,
we choose the NMSE of different outputs as the metric for per-
formance evaluation. Specifically, we utilize NMSE

(
YDL; ȲDL

)
,

NMSE
(
ĤDL; H̄DL

)
and NMSE

(
Ĥ′

DL; H̄DL

)
as the metrics of

the de-quantization NMSE, estimation NMSE and reconstruction
NMSE, respectively. The number of training samples and test
samples are 150000 and 30000, respectively. In the training stage,
there are 20, 10, and 80 epochs for Res-DQ, GMMV-LAMP, and
CSI-ResNet, respectively. The batchsize is set as 180, and the
Adam optimizer with a learning rate of 0.001 is employed. The
experiments are performed in Visual Studio Code (Python 3.9.7
and pytorch 1.10) on a computer with Nvidia TITAN RTX.

A. Data-Driven ResNet-DQ

Figure. 10 depicts the performance of ResNet-DQ as the
function of SNR. The y-axis denotes the NMSE between the
de-quantized signal matrix YDL and the perfectly received
frequency-domain signal ȲDL, which is a measure of the equiv-
alent noise in the received signal. When there is no quantiza-
tion as shown in Fig. 10 (a), ResNet-DQ achieves the NMSE
improvements of 10 dB and 4 dB at the SNRs of −10 dB and
10 dB, respectively. Compared to infinite-bit ADCs, the presence
of quantization noise from 2-bit ADCs greatly impacts the quality

6The Rayleigh distance of the 128-element and 256-element ULAs in such
a parameter setup is respectively around 8.8 meters and 35 meters, whose
array aperture can be regarded to be extra-large for most indoor communication
scenarios [64].
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Fig. 10. De-quantization NMSE with different resolutions of ADCs: (a) infinite-resolution ADCs, (b) 2-bit ADCs, (c) 1-bit ADCs.

of the output signal, especially at high SNRs. Specifically, there
exists a large NMSE loss when no de-quantizer is utilized, even
at the SNR of 10 dB. However, once ResNet-DQ is employed,
the NMSE can be reduced to -9 dB at the SNR of 10 dB, and
moreover ResNet-DQ achieves the NMSE improvements of 13 dB
and 5 dB at the SNRs of −10 dB and 10 dB, respectively, as
shown in Fig. 10 (b). When 1-bit quantization is considered, as
depicted in Fig. 10 (c), the NMSE can be reduced to -7 dB at
the SNR of 10 dB with the aid of ResNet-DQ, and the NMSE
improvements of 15 dB and 7 dB are achieved at the SNRs of
−10 dB and 10 dB, respectively. The results of Fig. 10 clearly
demonstrate the effectiveness of our ResNet-DQ. Additionally, in
the presence of IQ imbalance, the neural network shows negligible
performance loss in all the cases, which can be attributed to the
robustness of our design to detect the correlation between the
real and imaginary parts of the signal in the time domain. In the
following simulations (e.g., Fig. 12-22, Table II, and Table III),
the IQ imbalance and 2-bit quantization are considered.

To verify the performance gain of utilizing multiple sets
of time-domain oversampling samples, Fig. 11 shows the de-
quantization performance of ResNet-DQ given different numbers
W of input sets of samples when 2-bit ADCs are employed.
The results clearly demonstrate that as the number of input sets
W increases, the de-quantization effect becomes better and the
NMSE decreases significantly. In particular, the NMSE reduction
between the W = 4 input sets and the W = 2 input sets is
considerably larger than that between the W =2 input sets and the
W = 1 input set. Considering this de-quantization performance,
the number of input sets is set to W =4 in the rest simulations.
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Fig. 11. De-quantization NMSE given different sets of time-domain oversampling
samples.

B. Knowledge-Driven GMMV-LAMP

1) Purely Far-Field Scenario: The NMSE performance of
different CE approaches is compared in Fig. 12. It should be
mentioned that for all methods the redundant factor is set as
ρ = 4. The abbreviations ’F/d codebook’ and ’F/i codebook’
in the legend denote the frequency-dependent DFT WRD and
the frequency-flat DFT WRD, respectively, while ’w/ ResNet-
DQ’ and ’w/o ResNet-DQ’ represents that the input signal is
the de-quantized signal by ResNet-DQ and the raw signal, re-
spectively. The benchmark MMV-LAMP network [20] assumes
that the identical pilot matrices and frequency-flat DFT WRD
are utilized, that is, the network is designed based on the same
measurement matrices for all subcarriers. It can be seen that
the MMV-LAMP network fails to work. As aforementioned,
the GMMV-AMP [17] suffers from slow convergence and has
difficulty effectively coping with hardware imperfections, which
is self-evident in the results of Fig. 12. Clearly, the proposed
GMMV-LAMP network (F/d codebook, 5-iterations, w/ ResNet-
DQ) outperforms the above two candidate approaches, in terms of
CE accuracy and convergence speed. Additionally, the results of
Fig. 12 also confirm that it is important to utilize the frequency-
dependent DFT WRD and perform ResNet-DQ in the GMMV-
LAMP network.

With the identical system setup to Fig. 12, the convergence
performance of the proposed GMMV-LAMP network with the
frequency-dependent DFT WRD is investigated in Fig. 13. It
is observed that the CE accuracy improves most in the first
iteration/layer, and this can be attributed to the fact that the
learnable parameters accelerate the convergence in the GMMV-
LAMP network. It can also be seen that the GMMV-LAMP
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Fig. 12. Comparison of the estimation NMSE for different CE schemes in the
purely far-field scenario.
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Fig. 13. Estimation NMSE as the function of number of iterations/layers given
different SNRs.

network converges after T = 5 iterations. Since our GMMV-
LAMP network can converge in just a few iterations, its time
complexity is very low.

We next investigate the impacts of the number of pilot symbols
G and the number of AP antennas NAP on the achievable CE
performance in Fig. 14 for our GMMV-LAMP, with the redundant
factor of DAD fixed to ρ=4. Given G=32, the NMSE for the
case of 128 AP antennas is slightly better than that of 256 AP
antennas. This is due to the fact that although the dimension
of CSI with 256 antennas is doubled compared to that with
128 antennas, the virtual angular sparsity also improves as NAP

increases. Additionally, it can be seen that by doubling the pilot
symbols from 32 to 64, significant performance improvement
can be achieved. This is because more pilot symbols provide
more information with the same prior distribution. In the rest
simulations, the number of antennas at the AP and the number of
pilot symbols are set to NAP = 128 and G = 32, respectively.

In Table II, the influence of NAP and the system bandwidth is
systematically presented. Moreover, we also provide the results
of simultaneous OMP (SOMP) mentioned in [17], where the
pilot symbols are set to be the same across all subcarriers for
convenience. We set the damping factor in GMMV-AMP with
frequency-dependent WRDs to 0.9 to prevent the algorithm’s
divergence, and the number of iterations is set to 80. It should also
be noted that the redundant factors ρ are set to 4 for all candidate
values of NAPs, and the training and testing SNRs are both set to
10 dB. Firstly, we can observe that utilizing frequency-dependent
WRDs guarantees the effectiveness of GMMV-LAMP under all
settings compared with the frequency-flat dictionaries. It should
be noted that the simulation results with frequency-dependent
WRDs will be an essential assessment of the beam squint effect.
We can find a discernible exacerbation of the beam squint effect
concurrent with the escalations in both the system bandwidth and
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Fig. 14. Estimation NMSE as the function of the number of antennas at the AP
NAP and pilot symbols G.

the number of antennas. On the one hand, by fixing the system
bandwidth and other parameters, an increment in NAP results in
a larger gap between utilizing frequency-dependent WRDs and
frequency-flat dictionaries in GMMV-LAMP. For example, when
NAP = 128, G = 32 and the system bandwidth is 1 GHz, the
estimation NMSE gap between two kinds of dictionaries is around
1.4 dB, while the gap reaches around 3.3 dB when NAP increases
to 256. Even if the number of pilot symbols G becomes 64,
the estimation NMSE gap is still larger than 2 dB. Furthermore,
for almost all candidate values of NAP and G, the estimation
NMSE gap increases with the growth of bandwidth from 1 GHz
to 10 GHz. Specifically, when NAP = 256 and G = 64, the
estimation NMSE gap increases from 2.4 dB to 8.2 dB. However,
the estimation NMSE gap is around 10 dB when NAP = 512
and G = 32 in both 5 GHz and 10 GHz. On the other hand,
it can also be observed that the estimation NMSE of the SOMP
algorithm degrades and the gap between SOMP and GMMV-AMP
becomes larger with the increase of NAP and bandwidth. The
aforementioned analysis demonstrates that both the increase of
NAP and system bandwidth can intensify the beam squint effect,
which can be eliminated well by the proposed approach.

We further investigate the computational complexity. In the
case of offline training, the computational complexity is not a
major concern. Therefore, we focus on the computational com-
plexity in the testing stage. The computational complexity of all
candidate channel estimation approaches is compared in Table III.
The GMMV-AMP and MMV-AMP algorithms share similar
complexity under identical numbers of iterations. Moreover, when
T0 = T , MMV-LAMP, GMMV-AMP, and MMV-AMP have
similar complexity as the operations in one layer/iteration are
similar. The extra computational complexity of the proposed
GMMV-LAMP compared with other candidates comes from the
fully-connected layers in each layer. Since GV ≫ K, the

TABLE II
ESTIMATION NMSE (DB) VERSUS BANDWIDTH, THE NUMBER OF AP ANTENNAS NAP AND THE NUMBER OF PILOT SYMBOLS G.

NAP &G
1 GHz 5 GHz 10 GHz

Proposed GMMV-AMP SOMP Proposed GMMV-AMP SOMP Proposed GMMV-AMP SOMPWRD Flat WRD Flat WRD Flat
NAP = 128, G = 32 -12.7182 -11.3321 -8.7002 -8.2498 -12.5793 -9.2145 -8.5594 -3.7001 -12.6653 -8.2210 -8.5961 -2.0672
NAP = 256, G = 32 -11.2955 -7.9770 -4.8413 -5.8990 -10.4080 -2.4824 -5.2741 -1.2284 -11.3075 -0.9361 -5.2918 -0.6148
NAP = 256, G = 64 -13.3765 -10.8847 -10.1446 -6.6207 -13.0043 -7.5848 -9.9922 -1.9813 -13.2604 -5.0731 -10.1782 -1.0638
NAP = 512, G = 32 -10.1422 -1.6620 -5.5594 -2.2167 -10.0240 -0.0261 -5.7251 -0.1122 -10.1653 -0.1053 -5.6037 0.2998
NAP = 512, G = 64 -12.1427 -9.2477 -6.1474 -4.0434 -11.8233 -1.5348 -6.0643 -1.0466 -12.6653 -0.9088 -6.0502 -0.2407
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TABLE III
COMPUTATIONAL COMPLEXITY OF DIFFERENT CHANNEL ESTIMATION

SCHEMES.
Schemes Complexity

O(GVKI + 1
4
I2(I + 1)2

SOMP with I layers + 1
3
GI(I + 1)(2I + 1)

1
2
GKI(I + 1) + V KI)

MMV-AMP with T0 iterations O(GVKT0 +GNAPK)
MMV-LAMP with T layers O(GVKT +GNAPK)

GMMV-AMP with T0 iterations O(GVKT0 +GNAPK)
Proposed GMMV-LAMP with T layers O((GVK +K2)T +GNAPK)

computational complexity of the GMMV-LAMP is dominated by
GVKT . Based on the discussion above and the fact that T0 is
typically much larger than T , we can conclude that the proposed
GMMV-LAMP network has much lower computational complex-
ity than the conventional GMMV-AMP algorithm. Finally, the
SOMP algorithm requires several operations such as correlation,
project subspace and update residual operations. Therefore, the
proposed network outperforms the SOMP algorithm since the
complexity of SOMP increases with the fourth power of I .

The influence of the redundant factor ρ of DAD on the
achievable CE performance for the GMMV-LAMP is illustrated
in Fig. 15. Compared with the non-redundancy DFT WRD of
ρ = 1, utilizing the redundant DFT WRDs of ρ = 2 significantly
improves the CE accuracy, in particular achieving more than
4 dB reduction in the NMSE at the SNR of 10 dB. Utilizing the
redundant DFT WRDs of ρ = 4 further brings about a 2 dB
reduction in the NMSE over the case of ρ = 2. However, a larger
ρ also indicates that there are more trainable parameters, e.g.,
the dimension of Bt[k] is proportional to ρ. Therefore, when the
number of AP antennas NAP is small, we can employ a larger ρ
such as ρ = 4. Nevertheless, if the number of antennas equipped
at the AP further increases, the spatial resolution of the array
has also been improved, so we can utilize a smaller ρ to obtain
satisfactory estimation accuracy.

2) Hybrid Near- and Far- Field Scenario: Fig. 16 illustrates
the influence of different datasets on the achievable CE accuracy
of the proposed GMMV-LAMP network in the hybrid near-
and far- field scenario, where V = 1280 data-driven WRD is
considered. The legend ‘Training sample purely far-field’ means
the purely far-field dataset. ‘Training sample far-near hybrid-field’
means that the CSI samples in the utilized dataset are composed
of 3 far-field and 3 near-field scatterers, and ‘Training sample
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Fig. 15. Estimation NMSE given three different dictionary redundant factors ρ.
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Fig. 16. Estimation NMSE given different training datasets.

purely near-field and purely far-field’ means that a mixed dataset
is utilized, where the CSI samples are randomly selected from the
purely far-field dataset and purely near-field dataset. As expected,
the GMMV-LAMP achieves its best performance when the hybrid
near- and far- field dataset is employed, since the real system is
a hybrid near- and far- field one. The performance losses for the
other two cases are clearly attributed to the model mismatch of
the purely far-field and purely near-field CSI.

To evaluate the effectiveness of the data-driven WRD, Fig. 17
illustrates the locations of columns in the data-driven WRD
when V = 1280 and the hybrid near- and far- field dataset
are utilized. Recall that the columns in a data-driven WRD
represent the steering vectors determined by the distance/AoD
pairs or Cartesian coordinates. Therefore, it is natural that a WRD
performs better when its coordinates of the columns are closer to
the scatterers’ locations, since the sparsity of support is enhanced
in this case. The left subfigure depicts the Cartesian coordinates
of the columns in the untrained data-driven WRD, while the
right subfigure shows the Cartesian coordinates’ distribution of
the data-driven WRD after training. It can be observed that the
trained WRD converges to a conical area within the AoDs of[
−π

3 ,
π
3

]
, where the red and yellow lines correspond to the AoDs

of −π
3 and π

3 , respectively. This demonstrates that the data-driven
WRDs can learn a better sparse representation from the training
dataset adaptively.

The impact of the number of columns V in the data-driven
WRD on the achievable CE performance is investigated in Fig. 18.
It can be seen that the CE accuracy improves as V increases,
because a larger WRD can learn the sparse representation of CSI
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Fig. 17. Locations of the columns in the data-driven WRD: (a) the untrained
WRD, and (b) the WRD after training.
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Fig. 18. Estimation NMSE with different numbers of the columns V in the data-
driven WRD.

with more degrees of freedom. However, the performance gain
by increasing V from 640 to 1280 is not as pronounced as that
obtained by increasing V from 256 to 640. This can be attributed
to the leakage issue of the off-grid scatterers, similar to increasing
the redundant factor ρ in Fig. 15. In this case, the value of V
for data-driven WRDs should be carefully selected according to
the tradeoff between complexity and performance. Based on the
analysis above, taking the value of V between 4NAP and 10NAP

can guarantee a good estimation performance without bringing
excessive computational complexity.

To evaluate the robustness of the proposed data-driven WRD
in the hybrid near- and far- field scenario, Fig. 19 shows the CE
NMSE when the proportion of far-field scatterers and near-field
scatterers varies while fixing the number of all the scatterers to
L = 5 and using the V =768 data-driven WRD. As the number
of far-field scatterers Lf increases, the CE accuracy improves.
Specifically, for the case of Lf = 4 far-field scatterers and Ln = 1
near-field scatterer, the CE accuracy is the best and the NMSE is
smaller than -10 dB at the SNR of 10 dB. By contrast, when only
1 scatterer is located in the far-field region but there are 4 near-
field scatterers in the near-field area, the NMSE is around 2 dB
worse than the best case, but the CE accuracy is still acceptable
in this worst case. The aforementioned results demonstrate that
the proposed approach can handle different hybrid near- and far-
field scenarios.

3) Purely Near-Field Scenario: The CE performance obtained
using different WRDs in a purely near-field scenario is shown in
Fig. 20. The DFT WRD attains the worst CE performance because
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Fig. 19. Estimation NMSE with different numbers of far-field scatterers Lf in
the hybrid near- and far- field scenario.
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Fig. 20. Estimation NMSE with different WRDs in the purely near-field scenario.

there exists severe sparsity loss when the near-field scatterers
are transformed into the virtual angular domain. The simulation
results indicate that the proposed data-driven WRD can achieve
comparable performance with the polar-domain WRD [63], which
demonstrates the effectiveness of our data-driven WRD. It is also
worth noting that even when V of the polar-domain WRD is
doubled, there is no noticeable performance enhancement.

C. Bit-vector CSI Feedback

The results of Fig. 21 verify the effectiveness of the proposed
CSI-ResNet in the hybrid near- and far- field scenario where the
V = 1280 data-driven WRD is used in CE. The legend ‘float-
number feedback’ means that the output is directly compressed as
a floating-point-number vector, and ‘bit-vector feedback’ means
that the output is first compressed as a floating-point-number
vector with a larger dimension and then quantized as a bit vector.
It can be seen that with Nf = 1600 feedback bits, when the
benchmark CSI-Net [31] outputs floating-point-number vectors,
the reconstruction NMSE is much worse than that of the bit-
vector feedback policy, which demonstrates the effectiveness of
the bit-vector CSI feedback approach. Moreover, our proposed
CSI-ResNet with Nf = 1000 feedback bits achieves significantly
better reconstruction accuracy than CSI-Net with Nf = 1600
feedback bits. Around 1 dB further reduction in the NMSE can
be attained by our CSI-ResNet with Nf = 1400 feedback bits.

Figure. 22 evaluates the CSI feedback performance of CSI-
ResNet in the purely far-field and purely near-field scenarios,
respectively. It should be noted that the ρ = 4 DFT WRD and
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Fig. 21. Reconstruction NMSE for CSI-Net [31] and our CSI-ResNet in the
hybrid near- and far- field scenario.
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Fig. 22. Reconstruction NMSE for our CSI-ResNet in purely far-field scenario
and purely near-field scenario.

V = 2560 data-driven WRD are used in CE for the aforemen-
tioned scenarios, respectively. It can be observed that at the high
SNR range of 3 to 10 dB, there exists the reconstruction NMSE
loss in the far-field region due to the information loss during
compression. However, at low SNR regions, the reconstruction
NMSE presents better performance than the estimation NMSE
because of the denoising effect of CSI-ResNet. In the purely
near-field scenario, the denoising effect of CSI-ResNet is even
more pronounced, and the reconstruction NMSE is lower than
the estimation NMSE at all SNRs. In terms of the impact
of feedback bits, when Nf = 1000 is used, the performance
degrades compared with Nf = 1400, due to discarding more
information.

V. CONCLUSIONS

In this paper, we have proposed a novel knowledge and
data dual-driven CE and CSI feedback approach for downlink
mmWave wideband UM-MIMO systems considering hardware
imperfections. To mitigate the distortions caused by imperfect
hardware, a data-driven ResNet-DQ has been proposed which
is inspired by the time-domain correlation of multiple sets of
oversampling samples. After de-quantization, we have proposed
a DFT WRD and data-driven WRD. The former can eliminate
the far-field beam squint effect and the latter can deal with both
the near-field propagation effect and beam squint effects. In this
way, we can obtain the exact common support across all the
subcarriers in different propagation scenarios. Then, we have
proposed a knowledge-driven GMMV-LAMP network based on
a carefully designed shrinkage function to leverage the common
support feature. Finally, we have designed a data-driven CSI feed-
back module called CSI-ResNet to achieve low-cost bit-vector
feedback. Simulation results have indicated that the proposed
approach achieves effective, accurate, and low-cost downlink CE
and CSI feedback in mmWave wideband UM-MIMO systems,
under a wide variety of propagation scenarios.

APPENDIX
DERIVATION OF THE MMSE DENOISER

Consider the denoising problem for the signal model given by

x̃ = x̄+Σ
1
2n, (30)

where x̃ and x̄ ∈ CK×1 denote the noisy and noiseless signals, re-
spectively, n ∈ CK×1 ∼ CN (0, I) is an AWGN vector, and Σ =
diag

([
σ2[1], σ2[2], . . . , σ2[K]

])
is the diagonal matrix depicting

the noise power with σ2[k] ≥ 0,∀k ∈ {1, 2, . . . ,K}. Because
the support across different subcarriers appears or disappears at
the same time, x̄ follows a Bernoulli-Gaussian distribution as

(1 − γ)δ0 + γphϵ
. Here, δ0 denotes the point mass measure at

zero and phϵ denotes the distribution of hϵ ∼ CN (0, ϵI).
In this way, the probability when x̃ = x′ = hϵ+Σ

1
2n is γ, and

the probability is 1 − γ when x̃ = Σ
1
2n. According to standard

estimation theory, defining Θ = diag

(
1

ϵ+σ2[1] , . . . ,
1

ϵ+σ2[K]

)
the

mean and covariance matrix of hϵ can be computed respectively
as

E[hϵ|x′ = x] =ϵΘx, (31)

E[hϵhH
ϵ |x′ = x] =ϵI− ϵ2Θ+ ϵ2ΘxxHΘ. (32)

Furthermore, we can compute the mean of x̄ as

E[x̄|x̂ = x̂′] =

∫
x̄px|x̂(x̄ = x|x̂ = x̂′)dx

=
1

px̂

∫
px|x̂(x̄ = x|x̂ = x̂′)(γphϵ(hϵ = x) + (1− γ)δ0(x))dx

=
γpx′(x′ = x̂′)

px̂(x̂ = x̂′)px′(x′ = x̂′)
E[hϵ|x′ = x̂′], (33)

By defining ϕ(x̂) = 1

1+ 1−γ
γ e−x̂HPx̂

∏K
k=1(1+

ϵ
σ2[k]

)
and P =

diag
(

ϵ
σ2[1](σ2[1]+ϵ) , . . . ,

ϵ
σ2[K](σ2[K]+ϵ)

)
, the shrinkage function

ηCS(x̂
′; γ, ϵ,Σ) can be rewritten as

ηCS(x̂
′; γ, ϵ,Σ) = E[x|x̂ = x̂′] = ϕ(x̂′)Θx̂′. (34)

It should be noted that when taking the derivative of (34), we
can approximate ϕ(x̂) as a constant since the dimension of x̂ is
quite large, and the derivative becomes ϵϕ(x̂)

ϵ+σ2[k] .
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