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Direct numerical simulations (DNS) are conducted of turbulent flow passing an
infinitely thin trailing edge. The objective is to investigate the turbulent flow field in
the vicinity of the trailing edge and the associated broadband noise generation. To
generate a turbulent boundary layer a short distance from the inflow boundary, high-
amplitude lifted streaks and disturbances that can be associated with coherent outer-
layer vortices are introduced at the inflow boundary. A rapid increase in skin friction
and a decrease in boundary layer thickness and pressure fluctuations is observed
at the trailing edge. It is demonstrated that the behaviour of the hydrodynamic
field in the vicinity of the trailing edge can be predicted with reasonable accuracy
using triple-deck theory if the eddy viscosity is accounted for. Point spectra of
surface pressure difference are shown to vary considerably towards the trailing edge,
with a significant reduction of amplitude occurring in the low-frequency range. The
acoustic pressure obtained from the DNS is compared with predictions from two- and
three-dimensional acoustic analogies and the classical trailing-edge theory of Amiet.
For low frequencies, two-dimensional theory succeeds in predicting the acoustic
pressure in the far field with reasonable accuracy due to a significant spanwise
coherence of the surface pressure difference and predominantly two-dimensional
sound radiation. For higher frequencies, however, the full three-dimensional theory
is required for an accurate prediction of the acoustic far field. DNS data are used
to test some of the key assumptions invoked by Amiet for the derivation of the
classical trailing-edge theory. Even though most of the approximations are shown
to be reasonable, they collectively lead to a deviation from the DNS results, in
particular for higher frequencies. Moreover, because the three-dimensional acoustic
analogy does not provide significantly improved results, it is suggested that some of
the discrepancies can be attributed to the approach of evaluating the far-field sound
using a Kirchhoff-type integration of the surface pressure difference.

1. Introduction
For modern aircraft in approach, fan noise and airframe noise are important

contributors to the perceived sound on the ground. Ffowcs Williams & Hall (1970)
demonstrated that turbulent fluctuations subject to a scattering process at a sharp edge
of a solid body radiate three orders of magnitude stronger (u5-scaling) than turbulent
fluctuations in free space (u8-scaling) (Lighthill 1952a , b). For this reason, trailing
edges are one of the main sources of airframe noise and fan noise, in particular for
lower Mach numbers. Therefore, a detailed understanding of the underlying physical
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mechanisms in the generation of trailing-edge noise would be beneficial for the design
of quieter aircraft and propulsion systems.

Because of the importance of trailing-edge noise, several theories have been
developed, relying on various degrees on empiricism. An exhaustive review of trailing-
edge theories was conducted by Howe (1978). He identified three categories, namely
theories based on Lighthill’s acoustic analogy, theories based on the solution of
special problems approximated by linearized equations, and ad hoc models. Howe
concluded that all these methods, when interpreted properly, essentially gave the same
results at vanishingly small Mach numbers. The theoretical results were supported by
trailing-edge noise experiments on a NACA–0012 airfoil (Brooks & Hodgson 1981).
From the second category, the theory of Amiet (1976b) appears to be an attractive
approach as the far-field noise can be predicted with the convecting surface pressure
spectrum upstream of the trailing edge being the required input rather than having
to provide the turbulence quadrupole sources in full.

With the recent dramatic growth in computing power, conducting numerical
simulations in order to compute aerodynamically generated sound has become
increasingly feasible. Nevertheless, directly computing aerodynamic sound remains
challenging for several reasons. First, the extent of the acoustic field is considerably
larger than the relevant flow field. The need for a large computational domain in
combination with the requirement of resolving small scales in the hydrodynamic
field and all relevant acoustic waves in the radiation field demands significant
computational resources. Secondly, the energy of the acoustic field is considerably
smaller than that of the hydrodynamic field, requiring numerical schemes with minimal
amounts of artificial dissipation. Finally, special care needs to be taken for free-
space boundary conditions so that no spurious pressure reflections contaminate
the region of interest (Colonius, Lele & Moin 1993). Because of these difficulties,
many computations of trailing-edge noise have used hybrid approaches, where a
hydrodynamic simulation of the relevant flow field is coupled with an acoustic
solver for the far field. Typically, to further reduce computational cost, large-eddy
simulations (LES) are conducted of the flow field (see Wang & Moin 2000; Oberai,
Roknaldin & Hughes 2002; Marsden, Bogey & Bailly 2006a).

Nevertheless, solving the full unsteady Navier–Stokes equations to directly compute
both the far field sound and the near-field hydrodynamics would be desirable. Using
direct numerical simulations (DNS), difficulties with hybrid approaches, such as the
coupling of different numerical methods, storage of intermediate data (e.g. Manoha
et al. 2002), and the sensitivity to the position of integration surfaces (see Singer et al.
2000) can be avoided. Also, uncertainties in subgrid-stress models for the small-scale
structures in LES (see Seror et al. 2001; Bodony & Lele 2002) and problems with
predicting the laminar-turbulent transition (Marsden, Bogey & Bailly 2006b) are
eliminated.

Thus, for the present investigation, DNS are employed to investigate the
hydrodynamic field in the vicinity of the trailing edge and the associated broadband
trailing-edge noise. To reduce the computational cost of the simulations, a thin flat
plate is considered as a generic example of a sharp trailing edge (TE). A turbulent
inflow generation technique that exploits the dynamical features of the outer and
inner part of the boundary layer is employed on the top side of the flat plate to
produce a turbulent boundary layer that convects over the TE. On the bottom side
of the plate, a laminar compressible boundary layer is prescribed. The set-up of
the simulation exhibits two key advantages for the acoustic investigation. First, the
classical theory of Amiet (1976b) considers compressible turbulent flow over a flat
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plate, making direct comparison of the DNS data with the inviscid theory viable.
Moreover, by introducing a turbulent boundary layer on one side of the plate only,
the trailing-edge noise can easily be separated from other sources of sound. On the
bottom side of the plate, only the scattered pressure field can be observed while on
the top side the scattered pressure field is superposed with the incident pressure field.

In addition to investigating the noise generation mechanisms and performing a
comparison with the classical theory of Amiet, the DNS data can also be used
to analyse the behaviour of the turbulent boundary layer in the vicinity of the
trailing edge. It is well known that classical boundary-layer theory breaks down when
streamwise gradients occur on a length scale similar to the boundary layer thickness.
The sudden change from a no-slip boundary condition for the velocity components
on the surface to non-zero values in the developing wake induces a streamwise
pressure gradient in the vicinity of the trailing edge. Stewartson (1968) showed that
the boundary layer approximation fails within a distance O(lRe3/4

l ) of the trailing
edge, where l denotes the length of the plate and the Reynolds number is based on
the free-stream velocity and the plate length. Stewartson (1968) and Messiter (1970)
demonstrated that the appropriate equations for the vicinity of the trailing edge are
the full Navier–Stokes equations. They derived asymptotic expansions of the flow
variables in the neighbourhood of the trailing edge and found a disturbance structure
known as the triple-deck structure (for a comprehensive review of triple-deck theory,
see e.g. Smith 1982). Subsequently, the triple-deck approach has frequently been
employed to investigate the flow behaviour close to trailing edges (see Daniels 1977;
Gajjar & Türkyilmazog̃lu 2000), although the analyses have almost exclusively been
restricted to laminar flows. In addition, the asymptotic approach inherently assumes
that the Reynolds number tends to infinity. However, even though in most applications
the flow is turbulent by the time the trailing edge is reached, the Reynolds numbers
frequently are moderate. Thus, the behaviour of a turbulent flow in the vicinity of a
trailing edge at moderate Reynolds number remains unclear and will be investigated
in the present paper.

The paper is structured as follows. In § 2 the governing equations for the direct
numerical simulations and the prediction of the acoustic pressure both in two and
three dimensions are presented. Amiet’s classical trailing edge theory (Amiet 1976b)
and the key assumptions made in its derivation are highlighted. Section 3 describes the
numerical tools employed to solve the governing equations. The technique employed
for the generation of a turbulent boundary layer is introduced in § 4. In § 5, first
the hydrodynamic field is scrutinized, focusing on the behaviour of the turbulent
boundary layer as it approaches the trailing edge, and a comparison is made with
the asymptotic theories of Stewartson (1968) and Messiter (1970). Then, the acoustic
pressure predicted by two- and three-dimensional acoustic analogies and Amiet’s
classical trailing-edge theory is compared with DNS data in the frequency domain.
The paper concludes with a discussion of the most important results in § 6.

2. Governing equations
2.1. Direct numerical simulations

The flow under consideration is governed by the full compressible Navier–Stokes
equations. The fluid is assumed to be an ideal gas with constant specific heat
coefficients. For simplicity, all equations in this section are presented in tensor
notation. All dimensional quantities, denoted by an asterisk, are made dimensionless
using the flow quantities at a reference location in the flow; here the free-stream/inflow
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location is used. The semi-chord b∗ was chosen as the reference length which here
is half the distance from the end of the inflow sponge to the trailing edge. The
non-dimensionalization results in the Reynolds number Re = ρ∗

∞u∗
∞b∗/µ∗

∞, the Mach
number M = u∗

∞/c∗
∞, and the Prandtl number Pr = µ∗

∞c∗
p/κ∗

∞. The non-dimensional
continuity, momentum and energy equations are

∂ρ

∂t
+

∂

∂xk

(ρuk) = 0, (2.1)

∂

∂t
(ρui) +

∂

∂xk

[ρuiuk + pδik − τik] = 0, (2.2)

∂

∂t
(ρE) +

∂

∂xk

[
ρuk

(
E +

p

ρ

)
+ qk − uiτik

]
= 0, (2.3)

where the total energy is defined as E = T/[γ (γ − 1)M2] + 1
2
uiui with γ = 1.4. The

molecular stress-tensor and the heat-flux vector are computed as

τik =
µ

Re

(
∂ui

∂xk

+
∂uk

∂xi

− 2

3

∂uj

∂xj

δik

)
, qk =

−µ

(γ − 1)M2PrRe

∂T

∂xk

, (2.4)

respectively, where the Prandtl number is assumed to be constant at Pr = 0.72. The
molecular viscosity µ is computed using Sutherland’s law (see White 1991), setting
the ratio of the Sutherland constant over free-stream temperature to 0.36867. To close
the system of equations, the pressure is obtained from the non-dimensional equation
of state p =(ρT )/(γM2).

2.2. Acoustic pressure prediction

The starting point is Goldstein’s formulation of the acoustic analogy (Goldstein 1976),
which represents the fundamental equation governing the generation of aerodynamic
sound in the presence of solid boundaries in a moving reference frame. The far field
and the surface coordinates xi and yi , respectively, are non-dimensionalized with
the semi-chord b∗. The streamwise, wall-normal and spanwise directions are denoted
by the subscripts i = 1, 2, 3, respectively. A plate with zero thickness is specified to
be semi-infinite, i.e. the leading edge is not considered. However, the integration of
sources along the plate surface is conducted over a finite length, namely −2 � y1 � 0.
It is assumed that the volume-quadrupole sources generated by the shear-stress
components in the boundary layer are negligible compared with the dipole sources
on the surface and that the surface is rigid. Performing a Fourier transform in time,
the acoustic pressure at a single frequency due to the surface pressure difference �pt

becomes

p(xi, ω) = −
∫ d

0

∫ 0

−2

�pt (yi, ω)
∂

∂y2

G(xi, yi, ω) dy1 dy3 , (2.5)

where ω is the frequency, G denotes the radiation Green’s function, and d is the
spanwise width of the surface, non-dimensionalized with the semi-chord.

2.2.1. Three-dimensional theory

When dealing with turbulent flows, statistical quantities need to be used, such as the
cross-power spectral density (Amiet 1975). Following Amiet (1975), the cross-power



Turbulent flow past a trailing edge and the associated noise generation 357

spectral density (PSD) is defined as

Spp(xi, ω) = lim
τ→∞

π

τ
E{p(xi, ω)p(xi, ω)}

= lim
τ→∞

π

τ

∫ d

0

∫ 0

−2

∫ d

0

∫ 0

−2

E{�pt (yi, ω)
∂

∂y2

G3D(xi, yi, ω)�pt (zi, ω)

× ∂

∂z2

G3D(xi, zi, ω)} dy1 dy3 dz1 dz3, (2.6)

where E{} is the expected value, or ensemble average (the numerical implementation is
discussed in § 5.2.1), an overlined quantity is the complex conjugate, τ is the sampling
interval, and it is assumed that the three-dimensional Green’s function G3D(xi, yi, ω)
is not time-dependent. The total surface pressure difference is the sum of the incident
pressure difference and the scattered pressure difference

�pt (yi, ω) = �pi(yi, ω) + �ps(yi, ω). (2.7)

The ‘incident’ pressure field refers to pressure fluctuations that convect over the plate
in the downstream direction and are scattered at the trailing edge. From compressible
DNS, the entire time-series of the total pressure difference on the surface is available
and equation (2.6) can be integrated directly to obtain the acoustic pressure field. This
method is denoted as using the three-dimensional acoustic analogy in the following.

Because of the limit of computational resources, the computational domain for
the trailing-edge simulations was truncated at a distance from the trailing edge that
does not satisfy the assumption of xi � yi . Therefore, no far-field assumption is made
in the current investigation and the wall-normal derivative of the radiation Green’s
function, adopted from (Amiet 1975), is retained as

∂G3D(xi, yi, ω)

∂y2

= −y2 − x2

4πR2
3D

[
β2

R3D

− iωM

]
exp(iµ0[M(y1 − x1) + R3D]), (2.8)

where R3D =
√

(y1 − x1)2 + β2[(y2 − x2)2 + (y3 − x3)2], and the reduced frequency is

µ0 = ω∗b∗/(c∗
∞β2) with β =

√
1 − M2.

2.2.2. Classical theory of Amiet

In Amiet’s classical theory a number of additional assumptions are made (beyond
using a Kirchoff-type integration of the surface pressure difference) to arrive at the
final expression for the far-field spectrum for an observer in the x3 = 0 plane.

First, it is assumed that only an incident pressure field is known. The total pressure
field at the trailing edge is determined from the incident pressure field through a
transfer function (Amiet 1976a). The scattered surface pressure difference is evaluated
through

�ps(y1, Kx) =HS(y1, Kx)pi(y1, Kx)

with

HS(y1, Kx) = {(1 + i)C[−(µ0(1 + M) + Kx)y1] − 1}, (2.9)

where C is a combination of Fresnel integrals and the streamwise wavenumber is
defined as Kx = ω∗b∗/U ∗

c with U ∗
c being the convection speed of the disturbance.

Adding the scattered pressure field to the incident pressure field, the total pressure
difference becomes

�pt (y1, Kx) = HD(y1, Kx)pi(y1, Kx) = [1 + HS(y1, Kx)]pi(y1, Kx). (2.10)
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The derivation of the surface pressure jump function HS assumes the unsteady Kutta
condition to hold. Note that the total surface pressure difference is also a function of
the convection speed when computed using the surface pressure jump function.

The validity of the surface pressure jump function HS can be investigated using
DNS data. In Sandberg, Sandham & Joseph (2007) the total surface pressure
difference obtained from two-dimensional trailing-edge simulations was compared
to �pt computed using (2.10), where the incident pressure was provided from an
additional DNS of a flat-plate boundary layer without a trailing edge. Here, owing
to the significant cost of performing DNS of turbulent flows, a different approach is
chosen. The incident pressure field pi is extracted from the trailing-edge DNS data.
Because the pressure signal of the top surface is composed of the incident and the
scattered pressure fields while the bottom surface only contains the scattered pressure
field, pi can be computed by subtracting the bottom surface pressure from the top
surface pressure. Equation (2.10) can then be used to compute the total surface
pressure difference �pt . It should be noted that for this approach to yield accurate
results for the incident pressure the scattered pressure field must not be substantially
modified by the turbulent boundary layer on the top side of the plate. Otherwise,
the difference between the scattered pressure field affected by the turbulence and the
scattered field from the laminar side would be added to the incident pressure field.

Amiet (1976b) goes a step further and assumes that the incident pressure can be
represented as pi(y1, Kx) = p0e

iω(t−y1/Uc), thus, the total pressure jump (normalized
with p0) is

g(y1, Kx) =HS(y1, Kx)e
−i(ωy1/Uc). (2.11)

By invoking the far-field assumption xi � yi the wall-normal derivative of the
radiation Green’s function can be written as

∂G3D(xi, yi, ω)

∂y2

=
iωMx2

4πσ 2
exp

(
iµ0

[
σ − x1y1 + β2x3y3

σ
+ M(y1 − x1)

])
, (2.12)

where σ =
√

x2
1 + β2(x2

2 + x2
3 ). The main benefit of this simplification is that σ is

independent of the surface coordinates yi and can therefore be factored out of the
integral when (2.12) is substituted into (2.6).

Amiet (1976b) defines

L(x1, Kx) =

∫ 0

−2

g(y1, Kx)exp

(
−iµ0y1

(
M − x1

σ

))
dy1 (2.13)

for which he derives a closed-form solution. However, only the scattered pressure
part was accounted for in the original paper and the contribution of the incident
pressure field to the total pressure jump is accounted for in the corrected solution
for L(x1, Kx) in Amiet (1978). Finally, assuming a large span d of the plate relative
to the relevant spanwise fluctuations and a frozen turbulence spectrum, the far-field
spectrum for an observer in the x3 = 0 plane becomes

Spp(x, ω) =

(
ωMx2

2πσ 2

)2

d|L(x1, Kx)|2lx3
(ω)Sqq(ω, 0). (2.14)

The frequency-dependent spanwise correlation length lx3
(ω) is defined as

lx3
(ω) =

1

Sqq(ω, 0)

∫ ∞

0

Sqq(ω, x3) dx3 (2.15)
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and is approximated in Amiet (1976b) by lx3
(ω) = 2.1Uc/ω. The non-dimensional

frozen power spectrum Sqq(ω, 0) of a turbulent boundary layer is approximated by
the empirical expression

Sqq(ω, 0) =
δ1

2
1 × 10−5/(1 + ω̃ + 0.217ω̃2 + 0.00562ω̃4), 0.1 < ω̃ < 20, (2.16)

with ω̃ = ωδ1. The displacement thickness is approximated by δ1 = 0.094Re−1/5
c where

Rec is the Reynolds number based on chord.

2.2.3. Two-dimensional single-frequency theory

In the current investigation, the turbulence may not be entirely random because
forcing (with specific frequencies) is employed to generate it. An attempt is therefore
made to use deterministic quantities such as point spectra. Another deviation from
Amiet’s classical theory is the fact that only a narrow spanwise domain was simulated
(owing to limitations in computational resources) using periodic boundary conditions.
The sound radiation is therefore expected to be predominantly two-dimensional, as in
Oberai et al. (2002). Hence, the previously presented modification of Amiet’s theory
accounting for two-dimensional sound radiation of single-frequency disturbances
(Sandberg et al. 2007) is employed.

The main modification to the original theory consisted of replacing the three-
dimensional Green’s function with a two-dimensional Green’s function to account
for radiation in two dimensions only. Inserting the two-dimensional Green’s function
(Sandberg et al. 2007) in (2.5) yields the acoustic pressure for a single frequency

p(xi, ω) =
ix2ωM

4β

∫ 0

−2

�pt (y1, ω)
1

R2D

H
(2)
1 {µ0[M(y1 − x1) + R2D]} dy1, (2.17)

where H
(2)
1 denotes a first-order Hankel function of the second kind. Note that,

in contrast to the original theory, no far-field approximation has been made for
the two-dimensional theory. In the two-dimensional case, the total surface pressure
difference is a function of frequency and the streamwise coordinate only. However,
the three-dimensional DNS provides pressure data over the entire surface. Here,
the spanwise average (the zeroth spanwise mode) is chosen to evaluate the surface
pressure difference. Using the time series of the surface pressure difference from
DNS and directly integrating equation (2.17) is denoted as using the two-dimensional
acoustic analogy in the following.

3. Numerical method
Several numerical codes are used: one solves the full compressible Navier–Stokes

equations while the others solve for the acoustic pressure as a function of the surface
pressure difference in either two or three dimensions.

3.1. Navier–Stokes code

The compressible Navier–Stokes equations are discretized using a high-order-
accurate numerical scheme applicable to general geometries. The extension to general
coordinates is achieved through metric terms pre-multiplying the derivatives of the
governing equations. No upwinding, artificial dissipation or explicit filtering are
employed. Stability is, rather, achieved through appropriate conditioning of the
governing equations, such as an entropy-splitting approach that splits the nonlinear
terms into conservative and non-conservative parts and a Laplacian formulation of the
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viscous and heat conduction terms. The latter is used to avoid odd–even decoupling
when using central finite-difference schemes. In addition, compatible spatial difference
operators for the interior and boundary points are employed. The Navier–Stokes
code has been thoroughly tested (see e.g. Sandberg et al. 2007). Further details on the
fundamental numerical approach are given in Sandham, Li & Yee (2002).

3.1.1. Numerical treatment of the trailing edge

The present paper is concerned with the turbulent flow field in the vicinity of a sharp
trailing edge and the associated broadband noise generation. Hence the numerical
treatment of the geometric singularity is of particular importance. The infinitely thin
flat plate is realized by specifying no-slip boundary conditions on a single grid line,
extending from the inflow boundary to y1 = 0. Because the thermodynamic variables
p, ρ and T are permitted to have different values on the top and bottom surfaces,
two values of each quantity are stored for each grid point representing the plate,
including the point at y1 = 0. For convenience, we refer to the point y1 = 0 as the
trailing edge. In practice, the change from the no-slip boundary condition to the first
free-space point will occur at a small �y1 downstream of y1 = 0. For the wall-normal
derivatives, a boundary finite-difference scheme according to Carpenter, Nordström &
Gottlieb (1999) is employed for the wall and wall-adjacent points along the plate.
Starting with the first grid point downstream of the trailing edge, central differences
are utilized to evaluate wall-normal derivatives. For streamwise derivatives on x2 = 0
three different approaches are necessary. From the inflow boundary to the trailing
edge, derivatives are computed for both the top and the bottom surface individually
using five-point central difference stencils, and stored separately. For the first two grid
points downstream of the trailing edge, the streamwise derivatives are determined
employing the same central finite-difference scheme, with the function values of the
upstream points being specified as the average of the top and bottom surface. All
streamwise derivatives downstream of these two special points are computed using
the same finite difference scheme as for the entire computational domain. One-sided
derivative schemes were also tested for the points up- and downstream of the TE, but
the above described approach was found to yield the smoothest results in the vicinity
of the trailing edge.

3.1.2. Free-space boundary conditions

At the inflow and free-stream boundaries, characteristic boundary conditions are
used in combination with traditional sponges. A non-reflecting zonal boundary
condition is used to avoid spurious pressure oscillations from the outflow boundary,
which is subject to the passage of nonlinear disturbances, i.e. vortical structures.
The method is based on commonly used characteristic boundary conditions. Here,
incoming characteristics are ramped to zero in a buffer zone as opposed to merely
setting them to zero at the boundary (see Sandberg & Sandham 2006). Crucially, in
contrast to most other zonal approaches, the method is free of coefficients that require
calibration and only the length of the fringe zone needs to be specified. The zonal
characteristic boundary condition has been shown to be highly effective for a variety of
two-dimensional flow simulations (cf. Sandberg & Sandham 2006; Sandberg, Jones &
Sandham 2006), but is applied to a three-dimensional simulation for the first time in
the present investigation.

3.2. Acoustic analogies

For the prediction of the acoustic pressure, equations (2.6) and (2.17) are solved
numerically using a fourth-order-accurate integration. The surface is discretized with
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a non-uniform grid, clustering most points in the vicinity of the trailing edge to reduce
computational cost. A thorough validation of the numerical codes was performed in
Sandberg et al. (2007). In addition, (2.14) was evaluated using the values provided in
Amiet (1976b) and the result shown in figure 1 of Amiet (1978) was reproduced.

4. Turbulent inflow generation
The surface of the infinitely thin plate extends upstream to the inflow boundary,

i.e. the leading edge is not included in the numerical simulations. Therefore, turbulent
inflow conditions need to be prescribed. In order to fully develop the turbulence a
short distance from the inflow boundary, the deterministic approach of Sandham,
Yao & Lawal (2003) is employed. An analytic turbulent mean flow profile according
to Spalding (1961) is prescribed at the inflow boundary. Inner- and outer-layer
disturbances, consisting of waves with specific spanwise wavelengths, frequencies and
phase information are then superposed onto the turbulent mean profile for each
Runge–Kutta step of the simulation. The inner disturbances represent low-speed,
high-amplitude lifted streaks while the outer disturbances can be associated with
coherent outer-layer vortices. The wall-normal shape of the disturbances is chosen
such that the superposition of all disturbances resembles turbulent intensity profiles
from a boundary layer. The disturbances take the form

uinner
1 = c1,0y

+
2 exp(−y+

2 /y+
2p,0

) sin (ω0t) cos (β0y3 + φ0), (4.1)

uinner
2 = c2,0(y

+
2 )2 exp(−(y+

2 /y+
2p,0

)2) sin (ω0t) cos (β0y3 + φ0), (4.2)

uouter
1 =

3∑
j=1

c1,j y2/y2p,j
exp(−y2/y2p,j

) sin (ωj t) cos (βjy3 + φj ), (4.3)

uouter
2 =

3∑
j=1

c2,j (y2/y2p,j
)2 exp(−(y2/y2p,j

)2) sin (ωj t) cos (βjy3 + φj ), (4.4)

where j denotes a mode, y+
2 is the wall-normal coordinate in wall units, ci,j

are constants, ωj are forcing frequencies, βj are spanwise wavenumbers, and φj

denote phase shifts. The spanwise velocity disturbances are obtained by applying
a divergence-free condition. Several precursor boundary layer simulations were
conducted employing the turbulent inflow generation technique with varying
parameters to establish the best choice of coefficients to obtain the desired
ReδT E

1
≈ 2000 at the trailing edge. For the DNS of turbulent trailing edge flow,

the original parameters (Sandham et al. 2003) were modified to the values given in
table 1. Moreover, in the current simulation no random noise was added to break
remaining symmetries in order to reduce the noise generated by the turbulent inflow
generation technique.

5. Results
Direct numerical simulations were conducted of compressible turbulent flow at

M = 0.6 over an infinitely thin plate with a trailing edge. The aim of these simulations
is to investigate the hydrodynamic near field in the vicinity of the trailing edge and
to examine the trailing edge broadband noise generation. The computational domain
has the dimensions −2.18 � x1 � 1.45, −2.91 � x2 � 2.91, and 0 � x3 � 0.145.
It is discretized using 2001 and 609 non-equidistantly spaced points in the x1- and



362 R. D. Sandberg and N. D. Sandham

j c1,j c2,j ωj βj φj y+
2p,j

y2p,j

inner 0 0.1 −0.0016 1.0 π 0.0 12 –
outer 1 0.3 −0.06 2.5 0.75π 0.0 – 0.016

2 0.3 −0.06 1.25 0.5π 0.1 – 0.025
3 0.3 −0.06 0.625 0.25π 0.15 – 0.044

Table 1. Parameters for turbulent inflow generation for a trailing-edge flow.

x2-directions, respectively, with the finest resolution at the trailing edge. 620 streamwise
points are used for the singular plate at y2 = 0 which extends from the inflow boundary
to the trailing edge at y1 = 0. Recall that xi denotes the radiation field coordinates
while yi is associated with the plate surface coordinate. In the spanwise direction, 87
equidistantly spaced points are used. This results in a total of 106 × 106 grid points.

5.1. Hydrodynamic field

The turbulent inflow generation method is applied to the top boundary layer, while the
bottom boundary layer is initialized using a compressible laminar similarity solution.
This setup was chosen to enable the separation of trailing-edge noise from sound
generated by other sources. On the top surface, the trailing-edge noise will inevitably
be superposed with noise from the turbulent boundary layer itself and possibly with
noise generated by the turbulent inflow generation. On the bottom side, on the other
hand, only acoustic pressure fluctuations due to the scattering at the trailing edge will
be present. A zonal characteristic boundary condition (Sandberg & Sandham 2006)
is used at the outflow boundary condition (for x1 � 1.09), and a traditional sponge
employing a dissipation term is used for the upper and lower free-stream boundaries
(|x2| � 2.18), and the inflow boundary (−2.18 � x1 � −2).

The application of the sponge at the inflow is not trivial. On the one hand,
reflections from upstream-travelling sound waves and acoustic disturbances produced
by the turbulent inflow generation need to be attenuated. On the other hand, the
disturbances specified at the inflow must not be fully damped so that a turbulent
boundary layer can develop. The approach currently taken is to ramp the sponge
in the wall-normal direction, i.e. no sponge is applied between the wall and δ1,
and the sponge is then ramped to full strength between δ1 and the boundary layer
thickness. In spite of being careful not to fully remove the inflow disturbances,
instantaneous iso-surfaces of the second invariant of the velocity gradient tensor on
the top surface (figure 1a) illustrate that the inflow sponge still considerably damps
the inflow fluctuations. In particular the disturbances introduced in the outer layer
are overly attenuated so that the turbulent breakdown of the high-amplitude streaks
is delayed, leading to a transition region clearly visible in figure 1(a).

This transition region extends over roughly one third of the plate length, which is
confirmed by a plot of skin friction, shown in figure 2(b). The skin friction decreases
drastically within the inflow sponge region and then increases steadily until the
flow has fully transitioned to turbulence at y1 ≈ −1.4. Within the inflow sponge,
the displacement thickness rises quickly and then approaches the 1/7 power-law
prediction (Schlichting 1979) in the transition region. The displacement thickness
increases over the plate and the Reynolds number based on displacement thickness
reaches ReδT E

1
= 2222, slightly higher than originally intended. On the laminar lower

surface, ReδT E
1

= 2133 at the trailing edge. Figure 1(b) shows instantaneous contours
of the spanwise vorticity component at y3 = 0.727 in the vicinity of the trailing edge.
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Figure 1. (a) Instantaneous iso-surfaces of the second invariant of the velocity gradient tensor
on the top surface of the singular plate, and (b) instantaneous contours in the range [−4; 4] of
the spanwise vorticity component at x3 = 0.0725 in the vicinity of the trailing edge; flow from
left to right, t = 96.
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Figure 2. (a) Time-averaged Reynolds number based on displacement thickness and (b) skin
friction, on the top surface; the dotted lines denote values deduced from the 1/7th power
velocity distribution law (Schlichting 1979) with the virtual origin at y1 = −6.98.

The boundary layer on the top side appears to be fully turbulent while the bottom
boundary layer is laminar. The two boundary layers separate at the trailing edge and
a turbulent wake develops downstream.

In order to evaluate whether the turbulent boundary layer is adequately resolved by
the grid, the grid spacing is expressed in wall units. The first grid point away from the
wall is located at y+

2 � 0.8, resulting in twelve points being clustered within the first
y+

2 = 10, and approximately 115 points resolving the boundary layer at the trailing
edge. The spanwise grid spacing varies between 7 � �y+

3 � 7.5 over the plate. In
the streamwise direction, the grid is strongly stretched. At y1 = −0.727, �y+

1 = 14.95
while at the trailing edge, �y+

1 = 3.25. In the streamwise and wall-normal directions,
the grid resolution is finer than that employed in simulations of turbulent plane
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Simulation �y+
1 y+

2 < 10 �y+
3

Current 3.25 12 7.5
Sandham et al. (2002) 15 10 7.5

Table 2. Grid resolution in wall units at the trailing edge.
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Figure 3. Power spectra of turbulent kinetic energy. (a) Spanwise spectrum, and
(b) frequency spectrum: ——, y+
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2 = 200; · · ·, y+
2 = 600.

channel flow with the same numerical method (Sandham et al. 2002) as illustrated
in table 2. Nevertheless, the spanwise direction with a grid spacing of �y+

3 ≈ 7.5 is
presumably the least well-resolved direction. For that reason, spectra of turbulent
kinetic energy (TKE) in the boundary layer were scrutinized. Spanwise power point
spectra of TKE were generated for several wall-normal distances from the DNS data,
shown in figure 3(a). The spectra show a decay of at least one decade, depending
on the distance from the wall. It should be noted however, that the time-dependent
data used to generate the spectra were only written to file for every second spanwise
point; hence the drop in energy will be greater than that illustrated. In addition,
the frequency power spectra of TKE are presented in figure 3(b), showing a drop of
at least ten decades for all locations in the wall-normal direction, implying that the
temporal resolution is sufficient.

To assess the quality of the turbulent boundary layer, figure 4 shows the streamwise
velocity and turbulent intensities 〈u′

iu
′
j 〉 in wall units, compared to benchmark data of

an incompressible turbulent boundary layer over a flat plate at Reδ1
= 2000 (Spalart

1988). At two locations upstream of the trailing edge, the streamwise velocity profiles
in wall units agree well with the reference solution up to y+

2 ≈ 200. In the outer layer,
the profiles show a significant wake region and the maximum value of u+

1 is higher
than that of the reference data, which cannot be solely attributed to the higher Reδ1

.
The profile is reminiscent of a turbulent boundary layer subject to a weak adverse
pressure gradient although no significant adverse pressure gradient is present in the
streamwise direction.

Looking at the turbulent intensities, it can be observed that at both upstream
positions, the turbulent boundary layer is not as ‘full’ as the reference case, although
it should be noted that this was not the case when scaling the profiles with boundary
layer thickness and not in wall coordinates. The amplitude of the streamwise velocity
fluctuations and the shear stress component agree well with the reference data.
However, the peak levels of the spanwise velocity fluctuations were significantly lower
than in the DNS of Spalart. To investigate the reasons for the discrepancies with the
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Figure 4. (a) Streamwise velocity profiles and (b) turbulent intensities 〈u′
iu

′
j 〉, in wall units;

in (a) circles denote data from incompressible reference DNS (Spalart 1988), thin lines
represent u+

1 = y+
2 and u+

1 = (1/0.41) log y+
2 + 5.24; · · ·, DNS at y1 = −0.727, - - -, DNS at

y1 = −0.363; thick solid line represents DNS at trailing edge; in (b) symbols denote results from
incompressible reference DNS (Spalart 1988), thin lines denote DNS results at y1 = −0.363;
thick lines denote DNS results at the trailing edge, with �, –, 〈u′

1u
′
1〉; �, - - -, 〈u′

2u
′
2〉; �, · · ·,

〈u′
3u

′
3〉; +, − · −, 〈u′

1u
′
2〉.

reference data, additional simulations of turbulent boundary layers (without trailing
edge) were conducted using large-eddy simulations to reduce the computational cost.
When omitting the inflow sponge, which led to unacceptable levels of noise caused
by the turbulent inflow generation, the maximum u+

1 was reduced and approached
the value of the reference data. The profiles also became significantly fuller and the
amplitude of 〈u′

3u
′
3〉 was increased.

Therefore, it appears that the long transition region (see figures 1 and 4), due to
the inflow sponge, is responsible for the differences between the current DNS and
the reference data. The turbulent boundary layer requires a long streamwise distance
to fully develop. This is confirmed by looking at the profiles at the trailing edge.
The turbulent intensity profiles are fuller than further upstream. As will be discussed
below, the skin friction increases significantly towards the trailing edge, leading to a
smaller maximum value of u+

1 and peak levels of the turbulent intensities.
Another measure for determining whether the turbulence is developed is to look at

the spanwise correlation coefficient Rp of the disturbance pressure on the top surface,
computed as

Rp(y1, �3) =

〈
p(y1, y3, t)p(y1, y3 + �3, t)

p2(y1, y3, t)

〉
, (5.1)

where the overbar denotes a time average and 〈〉 is the spanwise average. The
distribution of Rp for several streamwise locations is shown in figure 5. Within the
sponge region (not shown) a high spanwise correlation can be observed, gradually
decreasing in the downstream direction. At the trailing edge, Rp drops to values of
less than 0.1 for all but very small and large spanwise distances �3. The high level
of spanwise correlation for the smallest and largest values of �3 is due to the use of
periodic boundary conditions.

Even though the turbulence might not be fully developed upstream of the trailing
edge, it is probably representative of the flow over the trailing edge of an airfoil at
moderate Reynolds number. In that case, laminar–turbulent transition takes place a
considerable distance from the leading edge and therefore the turbulent boundary
layer convecting past the trailing edge most likely is also not fully developed. Overall,
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Figure 5. Spanwise correlation of pressure on the top surface in the time domain: · · ·,
y1 = −0.727; - - -, y1 = −0.363; ——, trailing edge.

in spite of some differences from the benchmark data, the simulation succeeds in
producing a turbulent boundary layer passing over an infinitely thin trailing edge.
Thus, the DNS data will be used to investigate the behaviour of a turbulent boundary
layer in the vicinity of a trailing edge in the following section.

As could be seen from figure 2, on approaching the trailing edge the displacement
thickness decreases and the skin friction rises sharply, consistent with analytic
predictions using triple-deck theory (cf. Stewartson 1968; Messiter 1970; Daniels
1977; Gajjar & Türkyilmazog̃lu 2000). However, the asymptotic solutions provided
in the literature are derived for laminar boundary layers. Here, the applicability of
the results of Stewartson (1968) and Messiter (1970) for turbulent flow is evaluated.
According to the triple-deck structure, for a flat plate of length l the boundary layer
solutions (where the boundary layer thickness scales with lRe−1/2

l ) lose their validity

within a distance of O(lRe−3/4
l ) from the trailing edge. Stewartson (1968) derived

analytic expressions for the skin friction in the immediate vicinity of the trailing edge

cf (y1) =
4λ

1.06513/4Re1/2
l

⎡
⎣

(
2l

−πλ1/2Re3/4
l y1

)1/2

+ 0.39

(
−λ1/2Re3/4

l y1

π2l

)1/2
⎤
⎦ , (5.2)

and at a greater distance from the trailing edge

cf (y1) =
2λ

Re1/2
l

⎡
⎣1 +

0.8966Γ (−1/3)
√

3

2π

(
2l

−λ1/2Re3/4
l y1

)2/3
⎤
⎦ , (5.3)

where λ= 0.332. Equations (5.2) and (5.3) are referred to as the ‘inner’ and ‘outer’
solution, respectively, in the following. As seen in figure 2 the theoretical prediction
of skin friction for a flat-plate boundary layer without trailing edge produces larger
values than found in the current DNS. This is most likely due to the influence of
the inflow sponge layer, effectively moving the virtual origin farther upstream. To
account for the difference, the skin friction coefficients computed from (5.2) and (5.3)
are shifted by a small correction factor compared with the DNS data. Also, a curve
fit of the DNS data in the interval −1.2 � y1 � −0.3 is generated that is assumed to
be the skin friction if no trailing edge were present.

In figure 6 the skin friction coefficient obtained from DNS is compared to the
analytic prediction of Stewartson (1968). The outer solution predicts an increase in cf
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Figure 6. Time averaged skin friction coefficient cf on top surface for (a) the outer and (b)
inner region: ——, DNS; − · − · −, curve fit of DNS data excluding data for y1 > −0.3; - - -,
solution according to Stewartson (1968); �, solution according to Stewartson (1968) but using
the eddy viscosity.

when approaching the trailing edge. However, the agreement with DNS data is poor in
terms of the onset of the increase and the amplitude reached at the trailing edge. This
is not surprising as (5.2) only strictly should apply to laminar flows. To account for
the turbulent nature of the present boundary layer, a simple correction is made. The
eddy viscosity νT of the turbulent boundary layer is estimated using Prandtl’s mixing
length theory (see Schlichting 1979). For the logarithmic region the eddy viscosity can
be estimated as νT = κy2uτ , with κ = 0.41. As the triple-deck solution is only valid
very close to the wall, the eddy viscosity was evaluated at y+

2 = 20 and assumed to be
constant in the wall-normal direction. To account for the turbulent viscosity in (5.2)
and (5.3), the Reynolds number based on chord Rel is divided by the ratio of eddy
viscosity over molecular viscosity, which was 8 for the present case. Using the reduced
effective Reynolds number, (5.2) and (5.3) are used again to compute the skin friction
for the turbulent boundary layer. Good agreement with the DNS data is achieved
for the outer solution for both the onset of the departure from the ‘no trailing edge’
skin friction, and for the initial slope. The slope obtained from the inner solution in
the immediate vicinity of the trailing edge also compares favourably with the DNS
data. The reduced effective Reynolds number leads to the inner region following the
DNS data for a larger streamwise extent, suggesting that the numerical resolution of
this region is just sufficient. The inner solution of the triple-deck analysis for laminar
flow, on the other hand, would not have been captured in the streamwise direction
with the current DNS grid because the sharp increase in skin friction would have
been confined to a considerably smaller streamwise extent.

Stewartson (1968) also provides analytic solutions for the streamwise mean
velocity downstream of the trailing edge on the centreline, y2 = 0. For the
region within lRe−3/4

l of the trailing edge, the streamwise velocity component

scales as u(y1) =Re1/8
l (y1/2)1/2 while for y1 > lRe−3/4

l the asymptotic solution is

u(y1) = (y1/2)1/3[1−Re−1/2
l (y1/2)−2/3]+c. The resulting streamwise velocity distribution

on the centreline is shown in figure 7 and compared with the DNS data. The dashed
line represents the asymptotic solutions if the eddy viscosity is neglected. When the
turbulent viscosity is accounted for using the same scaling factor as for the evaluation
of the skin friction, the inner solution follows the DNS data up to a streamwise
position of y1 = 0.005 and the outer solution approaches the DNS data for y1 > 0.12.
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Figure 7. Streamwise mean velocity downstream of the trailing edge on the centreline, y2 = 0:
——, DNS; - - -, laminar solutions according to Stewartson (1968); �, �, inner and outer
solution, respectively, according to Stewartson (1968) but using the eddy viscosity.

Good agreement over a wider range of y1 can be achieved by increasing the ratio
between eddy and molecular viscosity to 40, indicating that using the eddy viscosity
evaluated at a single point in the turbulent boundary layer might not be appropriate.
For the current case, the wake velocity constitutes a difficult problem, as it depends
on both the turbulent and laminar streams on the top and bottom side of the plate,
respectively; thus the choice of the correct length scale is not clear. Therefore, further
refinement of the current approach is necessary.

The behaviour of the streamwise velocity component downstream of the trailing
edge also provides an intuitive explanation for the behaviour of the skin friction
and the displacement thickness upstream of the trailing edge. The velocity increases
monotonically in the streamwise direction, thus a positive streamwise gradient of the
streamwise velocity component is present. Therefore, from the continuity equation,
when neglecting the small variation in density and spanwise velocity, the wall-normal
gradient of the wall-normal velocity component needs to be negative, implying a
negative wall-normal velocity component for y2 > 0 due to the no-penetration
condition on the surface. This inevitably causes a thinning of the boundary layer
and a subsequent increase in the wall shear stress. Note that for many airfoil flows,
a small recirculation region exists downstream of the trailing edge, resulting in the
opposite behaviour in the vicinity of the trailing edge, i.e. an increase in displacement
thickness associated with a decrease in skin friction. This is confirmed in Gajjar &
Türkyilmazog̃lu (2000) who solved the triple-deck equations for airfoils with wedged
trailing edges.

According to Messiter (1970) the pressure in the vicinity of the trailing edge can
be approximated as

p(y1) =

⎧⎪⎪⎨
⎪⎪⎩

1

γM2

(
1 − c1

3
√

3
√

0.332
Re−1/2

l (−y1/2)−2/3

)
, y1 < 0

1

γM2

(
1 − c1

3
√

3
√

0.332
Re−1/2

l (y1/2)−2/3

)
, y1 > 0,

(5.4)

Figure 8(a) shows the asymptotic solution of the mean pressure compared with the
DNS result. Note that the Reynolds number was scaled with the same factor as used
for the analysis of the skin friction coefficient to account for the turbulent viscosity.
The mean pressure decays towards the trailing edge, resulting in a favourable pressure
gradient on the surface. The behaviour of the pressure fluctuations in the vicinity
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Figure 9. (a) Time-averaged Reynolds number based on displacement thickness and (b) skin
friction coefficient cf : ——, DNS; − · − · −, laminar solutions from Schlichting (1979); �,
laminar solution according to Stewartson (1968) (b only); virtual origin at y1 = −16.

of the trailing edge is of great interest because the sound radiation is proportional
to the disturbance pressure amplitudes in that region. The value of prms is shown in
figure 8(b) for the top and bottom surfaces. On the top surface, prms decays rapidly
towards the trailing edge whereas the converse occurs on the bottom surface. This
is due to the fact that no disturbances were introduced on the lower side and all
surface pressure fluctuations are due to the scattered pressure field, which decays
in the upstream direction. The mean pressure value (1/γM2) in (5.4) was replaced
by the mean value of prms upstream of the trailing edge in an attempt to determine
whether the asymptotic solution also applies to the pressure fluctuations. The solution
obtained shows very good agreement with the DNS data, as shown in figure 8(b).

Conducting the simulation with a turbulent boundary layer on the top side only also
provides the opportunity to investigate the behaviour of the lower-surface laminar
boundary layer in the vicinity of a trailing edge. Figure 9 shows the Reynolds number
based on displacement thickness and the skin friction obtained from DNS compared
with laminar solutions from Schlichting (1979) and Stewartson (1968). The Reynolds
number based on displacement thickness starts to deviate from the laminar solution
for a boundary layer without a trailing edge starting at y1 = −1, in contrast to the
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Figure 10. Time-averaged skin friction coefficient from two-dimensional laminar resolution
study for (a) outer and (b) inner region; ——, DNS; −·−·−, laminar solution from Schlichting
(1979); �, laminar solution according to Stewartson (1968); virtual origin at y1 = −16.

turbulent case (figure 2a), where the first deviation from the approximation for a
turbulent boundary layer by Schlichting (1979) occurs at y1 = −0.5. The skin friction
coefficient departs the laminar solution at y1 = −0.6, while in the turbulent case,
shown in figure 6a), cf follows the ‘no trailing edge’ solution up to approximately
y1 = −0.2. The analytic result of Stewartson (1968), however, predicts a sharp rise
in skin friction confined to the immediate neighbourhood of the trailing edge. The
disagreement between the DNS data and the theory is due to the pressure field being
strongly modified by the Reynolds stress components of the turbulent boundary layer
on the top side.

In order to verify that the discrepancy between the laminar side of the DNS and
the analytic solution is due to the effect of the top-side turbulent boundary layer on
the pressure field, the data from a precursor resolution study were also compared
with the triple-deck solution of Stewartson (1968). In the two-dimensional laminar
simulations, the boundary layers were specified to be equal on the top and bottom
side, thus yielding a symmetric solution. Figure 10 shows the time-averaged skin
friction coefficient obtained from the two-dimensional laminar simulations compared
with the analytic solutions of Stewartson (1968) for both large and small distances
from the trailing edge. The solution for large y1 agrees with the DNS data up to
y1 = −0.08, while the slope determined from the triple-deck theory for small y1 is
similar to the slope obtained from DNS for y1 > −2 × 10−4. Thus the behaviour of
the laminar flow in the vicinity of the trailing edge can be predicted fairly accurately,
confirming that the differences found between the lower-side boundary layer of the
three-dimensional simulation and the theory are due to the influence of the top-side
turbulent boundary layer.

Overall, the above results imply that the scalings derived by Stewartson (1968)
and Messiter (1970) produce results with reasonable accuracy for turbulent boundary
layers when the eddy viscosity of the turbulence is accounted for. Furthermore, good
agreement can be achieved using a crude approximation for νT , although the results
are sensitive to the value of νT .

5.2. Acoustic field

The acoustic pressure can be obtained directly from the DNS. In addition, the two-
and three-dimensional acoustic analogies can be used to predict the acoustic pressure
as a function of the total surface pressure difference computed using DNS. Finally,
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Figure 11. (a) Instantaneous contours of dilatation [2 × 10−3; 2 × 10−3], (b) contours of prms
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onset of the zonal characteristic boundary condition; x3 = 0.0725.

the classical theory of Amiet is employed to predict the far-field pressure and the
assumptions invoked in the theory are scrutinized using the DNS data.

5.2.1. DNS results

One of the main objectives of the current research is to investigate the broadband
trailing-edge noise generation. It is therefore essential that noise generated at the
trailing edge is represented accurately by the simulation. Specifically, reflections from
the boundaries and noise generated by the turbulent inflow generation technique
must not interfere with, or even be larger than, the trailing-edge noise. Instantaneous
contours of dilatation for y3 = 0.725, shown in figure 11(a), illustrate that the trailing
edge is the main source of noise. The inflow sponge appears to be successful in
attenuating most of the noise generated by the turbulent inflow generation and the
zonal characteristic boundary condition is able to sufficiently reduce reflections due to
the wake structures passing the outflow boundary. The vertical dashed line marks the
onset of the zonal characteristic boundary condition. The turbulent boundary layer
itself appears to be a source of noise, with the resulting acoustic waves interacting
with the trailing-edge noise. On the bottom side, only the acoustic waves generated at
the trailing edge are present and can therefore be observed clearly, a key advantage
of conducting DNS with a turbulent boundary layer on one side of the surface only.

This becomes even clearer when scrutinizing contours of prms (figure 11b) at
y3 = 0.725 obtained by averaging over more than two flow-through times. It is evident
that the top side is composed of more than one noise source while trailing-edge noise
is the dominant component on the bottom side. Another observation that can be
made when examining the contours of prms is the presence of an additional ‘lobe’ on
the bottom side that does not have its origin at the trailing edge but some distance
into the wake. This additional lobe is an indication that the nonlinear wake source
mechanism described in Sandberg et al. (2007) might also apply to the fully turbulent
case. As it contains radiation for all frequencies prms is therefore not very useful for
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Figure 12. (a–c) Point spectra of surface pressure difference: ——, data at the lateral plane
y3 = 0.0725; - - -, span-averaged data; and (d) point spectra of pressure in the radiation field
from DNS: ——, bottom side; - - -, top side; spectra were obtained using Hanning windows
and averaging over seven segments. (a, b)y1 = 0, (c, d)y1 = −0.363.

further analysis. Instead, the DNS data are Fourier transformed in time to further
investigate the trailing-edge noise in frequency space.

The record length of the original time series is τ =40 with a sampling interval of
�t = 0.008. To obtain smoother spectra, the procedure suggested by Hu, Morfey &
Sandham (2006) was adopted. The time record is split into seven segments with a
50% overlap. The time average of each segment is subtracted from the signal before
applying a Hanning window. The modified data are then Fourier transformed in time
and an average over all segments and spanwise locations is taken. The frequency
spectrum Sp is then obtained by multiplying the point spectrum with its complex
conjugate, dividing by the record length τ , and applying the factor 8/3 to account
for the windowing. Figure 12(a–c) shows point spectra of surface pressure difference
obtained from data at y3 = 0.0725 and span-averaged data. The spectra at the trailing
edge (figure 12a) exhibit a fairly broad band of frequencies up to µ0 ≈ 200 with large
amplitudes. For higher frequencies, the amplitudes decrease by nearly six decades,
implying that the temporal resolution of the DNS is sufficient to capture the smallest
time scales. Only the low-frequency region of the spectra at the trailing edge and
upstream of the trailing edge are shown in figures 12b) and 12c), respectively. When
the data from the lateral plane at y3 = 0.725 were analysed, distinct peaks at several
frequencies could be observed. When using the spanwise-averaged data, the spectra
were significantly smoother and no dominant frequencies were present, except at
very low frequencies. It is important to note that the amplitudes of the spectra at
the trailing edge are considerably lower than at the upstream location, in particular
for very low frequencies, a phenomenon not observed in preliminary simulations of
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Inflow forcing frequencies Frequencies not forced

µ0 3.2 6.4 16.2 26.3 40.5 85.0
Periods available 4 8 20 32 50 105

Table 3. Selected reduced frequencies appearing in all spectra.

airfoil trailing edges and the experiments by Brooks & Hodgson (1981). It is therefore
suggested that this is due to the rapid increase in the skin friction coefficient and the
thinning of the boundary layer. As mentioned before, the thinning of the boundary
layer towards the separation point and the resulting increase in skin friction is only
observed in the case of a flat-plate trailing edge. The associated reduction of the
surface pressure difference amplitude at lower frequencies is therefore most likely
restricted to this particular geometry. This circumstance suggests that trailing edge
noise reduction might be achieved on the basis of modifying the airfoil trailing-edge
geometry. It should also be noted that a streamwise change of the spectra is in
contradiction with Amiet’s assumption of ‘frozen turbulence’.

In figure 12(d) point spectra of pressure are shown for points on the top and bottom
side of the radiation field obtained from data of the lateral plane at y3 = 0.725. At
lower frequencies, the spectra are very similar, showing roughly the same amplitudes
and peaks for the same frequencies. For higher frequencies the peak locations remain
similar but the spectrum computed from data on the top side of the radiation field
exhibits larger amplitudes. This is most likely due to the trailing edge noise being
superposed with noise produced by the boundary layer and the inflow turbulence
generation.

In order to decide at which frequencies to investigate the trailing edge noise, spectra
of surface pressure difference and in the radiation field were studied (figure 12b–d).
A selection of reduced frequencies found to appear in all spectra is given in table 3,
distinguishing between frequencies that were introduced through the turbulent inflow
generation technique and frequencies that were not forced. In addition, the number
of periods available for each frequency is given. The very low frequencies appearing
in the spectra can be associated with the inflow forcing, and data were only available
for a small number of periods. However, for all non-forced frequencies that were
selected, data were available for a sufficient number of periods.

Because of the large number of points required for the DNS, it was impractical to
store the entire time series of the full three-dimensional data. Instead, a significant
number of two-dimensional surfaces was selected for which the entire time series was
written to file. These surfaces include the lateral plane at y3 = 0.725, planes parallel
to the surface of the plate and several streamwise planes.

In figure 13, contours of the real part of pressure, with an inset of the spanwise
vorticity component, are shown for several frequencies for the plane at y3 = 0.725.
The top two plots, (a) and (b), show the two lowest frequencies investigated, which
are associated with the turbulence inflow generation. For both frequencies, on the
bottom side sound waves originating from the trailing edge can be observed, whereas
the origin of the sound waves on the top side is not evident, leading to asymmetric
sound radiation. For all non-forced frequencies investigated, shown in figures 13(c)
and 13(d) (and later in figure 15), the sound radiation clearly originates from the
trailing edge and the top and bottom sides are nearly symmetric. This suggests that
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Figure 13. Real part of pressure and spanwise vorticity (inset) in the frequency domain for
the lateral plane at y3 = 0.725; range of vorticity [−0.2; 0.2], range of the real part of pressure
given for each individual frequency.

in spite of the presence of a sponge at the inflow, acoustic waves from the turbulent
inflow generation propagate into the region of interest.

For the non-forced frequency µ0 = 26.3 an additional source of sound can be
identified on the top surface at x1 ≈ −1.8 It is conjectured that a vortex breakdown
mechanism in the laminar–turbulent transition process of the boundary layer is
responsible for this additional source. In general, the wavelength of the sound waves
decreases considerably with increasing frequency, and the directivity changes. Looking
at the spanwise vorticity component in frequency space, it can be observed that the
streamwise spacing of oppositely signed vorticity for each frequency corresponds
to half the acoustic wavelength. From figure 13 it is apparent that for the lowest
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Figure 14. Magnitude of acoustic pressure in dB at the lateral plane y3 = 0.725; ——, |p|
using the three-dimensional acoustic analogy; - - -, |p| using the two-dimensional acoustic
analogy; − · −, |p| DNS;Rd = 1.75. (a) µ0 = 3.2, (b) µ0 = 16.2, (c) µ0 = 26.3, (d) µ0 = 40.5.

frequencies investigated, a larger computational domain would have been beneficial
in order to capture more than just one or two acoustic wavelengths. However, for the
non-forced frequencies, which are of more interest, the size of the domain appears
sufficient.

5.2.2. Acoustic analogies

The acoustic pressure is computed using the three-dimensional and two-dimensional
acoustic analogies (equations (2.6) and (2.17)). The magnitude of the acoustic pressure
evaluated using both methods is shown in directivity plots on figure 14 and compared
to the acoustic pressure directly obtained from DNS at the radius Rd = 1.75 from
the trailing edge. Note that the DNS data are truncated for angles smaller than
±30◦ because the computational domain only extends to x1 = 1.45. Nevertheless, this
relatively large radius was chosen because it was found that near-field effects were
significantly reduced compared to radii closer to the trailing edge. Furthermore, the
grid at this radius is sufficiently fine that acoustic waves with the highest reduced
frequency investigated here are resolved with 32, 8, and 64 points per wavelength in
the streamwise, wall-normal, and spanwise directions, respectively.
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For both forcing frequencies and for µ0 = 26.3, where sound radiation originating
from close to the inflow boundary on the top surface was observed in figure 13, noise
sources on the top side in addition to the trailing edge noise lead to an asymmetric
sound field as evidenced by the directivity patterns obtained directly from DNS. This
cannot be accounted for by either form of the theory because the acoustic pressure
is evaluated as a function of surface pressure difference and therefore inevitably
produces a symmetric directivity distribution with respect to x2 = 0. Nevertheless,
on the bottom side of the plate only trailing edge noise is present and therefore
a comparison between theoretical predictions and DNS data is still meaningful for
frequencies with significantly asymmetric acoustic radiation fields.

Comparing the amplitudes obtained from both theories to the DNS data, the
agreement is not as good as in the case of strictly two-dimensional simulations
of disturbances over a trailing edge (Sandberg et al. 2007). This can probably be
attributed to two factors. First, for the DNS, periodic boundary conditions in the
spanwise direction are used, which is not accounted for in either theory. Each source
on the surface of the plate radiates spherically, i.e. sound waves will eventually reach a
lateral boundary. Instead of leaving the domain, the sound waves pass the boundary
on one side and enter the domain on the other side, thus remaining within the
computational domain. They can therefore interfere with the sound waves directly
radiated. Depending on the phase information of the additional sound waves, the
amplitude of the DNS data from the lateral plane at y3 = 0.725 might decrease or
increase. Secondly, in the present simulation the flow is turbulent and the turbulent
viscosity is considerably larger than the molecular viscosity. Therefore, it can be
conjectured that viscous effects, which did not appear to play a significant role in the
two-dimensional laminar simulations, might be important.

For the lowest frequency investigated, µ0 = 3.2, it can be observed that the two- and
three-dimensional acoustic analogy yield a similar directivity pattern. However, the
amplitude predicted by the single-frequency two-dimensional theory is significantly
higher and roughly corresponds to that obtained directly from DNS. This was also
the case for the other forced frequency, µ0 = 6.4. The reason is not the fact that the
frequencies are forced but rather that they are very low. In fact, for all frequencies with
µ0 < 11, the acoustic wavelength exceeds the spanwise width of the simulation, which
might be a reason for the significant underprediction of the acoustic pressure using
the three-dimensional acoustic analogy. The two-dimensional theory is independent
of the spanwise width because it only uses the information from the lateral plane at
y3 = 0.725. For frequencies sufficiently high to be accommodated by the integration
domain, the amplitudes predicted by the three-dimensional acoustic analogy appear
to be more useful, as shown in figure 14(b–d). For µ0 = 16.2 the amplitude from
both the two- and three-dimensional acoustic analogy are comparable and are within
5 dB of the DNS data. Also, the directivity pattern is very similar. For even higher
frequencies, the three-dimensional theory yields amplitudes considerably larger than
the two-dimensional predictions, which leads to a superior comparison with the
DNS data. In addition to a better prediction of amplitudes, the directivity pattern
obtained from the three-dimensional theory agrees better with the DNS data for
higher frequencies.

Overall, for low frequencies the single-frequency two-dimensional theory produces
nearly the same directivity patterns as the computationally more intensive three-
dimensional theory. For higher frequencies, however, reasonable agreement with
DNS data, i.e. the number and angles of lobes, can only be obtained when using the
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Figure 15. Real part of pressure in the frequency domain at planes parallel to the plate, the
single plane at y3 = 0.725 is shifted to x3 = 0 for better visibility; the grey shaded surface shows
the plate.

three-dimensional acoustic analogy. A possible explanation for this behaviour is
explored in the following.

In the two-dimensional single-frequency theory, the spanwise-averaged surface
pressure difference, i.e. the zeroth spanwise mode, of a particular frequency is used
as input data to calculate the acoustic pressure. One can expect that this is only a
good approximation when the surface pressure is highly correlated in the spanwise
direction. It was shown in figure 5 that this is not the case when averaging over all
frequencies. However, when computing Rp for an individual frequency as

Rp(x1, �3, ω) =

〈
p(x1, x3, ω)p(x1, x3 + �3, ω)

p2(x1, x3, ω)

〉
(5.5)

the picture changes. For µ0 = 16.2, the surface pressure distribution is highly correlated
in the spanwise direction, with values of Rp larger than 0.7 over the entire surface.
Hence, the streamwise distribution of the surface pressure difference for this frequency
at individual spanwise locations is close to the spanwise average. In addition, to
evaluate the sound radiation in the far field, contours of the real part of pressure for
two frequencies are shown in figure 15 for planes parallel to the surface at x2 = ±1, 2.
For the lower frequency shown, µ0 = 16.2, the sound field shows no spanwise variation,
suggesting predominantly two-dimensional sound radiation. The significant level of
spanwise correlation of the surface pressure and the quasi-two-dimensional sound
radiation suggest that the acoustic pressure in the far field can be obtained with
reasonable accuracy by employing the simplified two-dimensional theory. That this
is indeed the case is demonstrated by the similar predictions of the acoustic pressure
obtained using either the two- or three-dimensional theory shown in figure 14(b).

For increasing frequencies, the surface pressure field becomes less correlated in
the spanwise direction, as illustrated in figure 16. Moreover, a significant spanwise
variation of the sound field can be observed, as shown for µ0 = 85.0 in figure 15(b),
implying that the strictly two-dimensional theory is not applicable to higher
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Figure 16. Spanwise correlation of pressure on the top surface in the frequency domain.
(a) µ0 = 16.2, (b) µ0 = 40.5.

frequencies. This is confirmed by the inability of the two-dimensional acoustic analogy
to obtain an acoustic pressure prediction that agrees with the DNS data, shown in
figure 14(c, d). In conclusion, for low frequencies, the surface pressure is strongly
correlated in the spanwise direction andthe sound radiation is predominantly two-
dimensional, allowing the use of the significantly more cost-effective single-frequency
two-dimensional acoustic analogy. For higher frequencies, the spanwise coherence of
the surface pressure decreases and the acoustic radiation becomes three-dimensional,
demanding the use of the full three-dimensional acoustic analogy.

5.2.3. Classical theory of Amiet

In the classical trailing edge noise theory of Amiet (1976b) the far-field sound
spectrum is solved according to (2.14). In the derivation of this expression several
profound assumptions were made, presented in § 2.2.2. In this section, the accuracy of
each of these assumptions is tested using DNS data.

Amiet’s theory assumes that the far-field sound can be evaluated as a function
of the total surface pressure difference. Therefore, it is essential that an accurate
representation of �pt be available. Amiet’s theory relies on the surface pressure jump
transfer function HS to determine �pt as a function of the incident pressure pi . As
described earlier, the current set-up featuring turbulent and laminar boundary layers
on the top and bottom surfaces, respectively, allows the computation of the incident
pressure field pi . Equation (2.10) is then used to compute the total surface pressure
difference �pt from pi , which can be compared to the total surface pressure diff-
erence directly obtained from the DNS data, �pt =ptop − pbot . Hence, the surface
pressure difference transfer function of Amiet (1976a), which is one of the key
elements of the classical trailing-edge theory, can be evaluated. A comparison between
the predicted and the directly computed total surface pressure difference is shown in
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Figure 17. Total surface pressure difference �pt : �, span average of �pt = ptop − pbot from
DNS; ——, using Amiet’s theory with HD = (1 + HS). (a) µ0 = 16.2, (b) µ0 = 40.5.

figure 17 over the length of the plate for two frequencies. It appears that the agreement
between the predicted value of �pt and the DNS data improves for increasing
frequency, although the predicted surface pressure difference is satisfactory even at
lower frequencies. The good agreement with DNS data implies that obtaining the
incident pressure field by subtracting the bottom surface pressure from the top surface
pressure is a useful approach. The results are also particularly encouraging because
one of the assumptions made when deriving the surface pressure jump function is
the validity of the unsteady Kutta condition. As in the two-dimensional trailing-edge
simulations conducted by Sandberg et al. (2007), the pressure difference at the trailing
edge is non-zero for the turbulent case, although the amplitudes are small. Therefore,
the unsteady Kutta condition appears to be a reasonable approximation even for the
turbulent flow under consideration.

Another simplification used in the derivation of (2.14) is to treat the turbulence
as ‘frozen’, i.e. the turbulent velocity field is unaffected by the trailing edge and
convects past the trailing edge in an unmodified way. As discussed in § 5.1, the flow
changes significantly in the vicinity of the trailing edge. In addition, point spectra
of surface pressure difference shown in figure 12(b, c) demonstrate that the shape
of the spectrum changes over the chord, invalidating the assumption of a frozen
spectrum. Amiet’s empirical approximation of the surface pressure spectrum (2.16)
is shown in figure 18 and compared with the spectra obtained from DNS at the
trailing edge and two locations upstream of the TE. Note that (2.16) was multiplied
by 2 to convert to a one-sided spectrum. The virtual origin for the calculation of
the displacement thickness was specified as y1 = −6.98 resulting in a trailing-edge
displacement thickness equal to the DNS result. The spectra from the simulation
change significantly from the upstream positions to the trailing edge, in particular for
frequencies lower than µ0 = 100. However, the shape of the spectra is approximated
with reasonable accuracy for the low-frequency range. Overall, the agreement with
the DNS data is fair considering that the turbulent boundary layer computed here
is at a significantly lower Reynolds number and that the turbulent boundary layer is
subject to a pressure gradient close to the trailing edge.

The spanwise correlation length used in (2.14) is approximated as ly3
(ω) = 2.1Uc/ω.

The DNS data can be used to verify this relation by computing ly3
from the definition

given in (2.15). Figure 19 shows the spanwise correlation length obtained using
(2.15) at three streamwise positions compared with the empirical approximation.
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For frequencies µ0 > 15 the approximation suggested by Amiet agrees fairly well
with the DNS data and therefore appears to be a reasonable representation of the
spanwise correlation length. However, for lower frequencies, the spanwise correlation
length obtained from DNS is limited by the spanwise domain width and therefore
cannot increase to the large values obtained from the empirical approximation.
Therefore, considerable differences in amplitude are expected when comparing the
sound pressure level obtained from Amiet’s theory with DNS data. It should be
mentioned that when computing ly3

from the DNS data, the solution varied slightly
depending on the number of segments used for the ensemble average. The larger
the number of segments used, the better the agreement with Amiet’s approximation
became, although the low frequencies could not be captured.

A further assumption in the derivation of (2.14) is the far-field approximation
xi � yi . In order to evaluate the near-field effects, the acoustic pressure was evaluated



Turbulent flow past a trailing edge and the associated noise generation 381

30 40 50 60 dB

90°
60°

30°

0°180°

–150°

–120°
–90°

–60°

–30°

150°

120°

30 40 50 60 dB

27 34 41 48 55 dB 30 40 50 dB

90°
60°

30°

0°180°

–150°

–120°
–90°

–60°

–30°

150°

120°

90°
60°

30°

0°180°

–150°

–120°
–90°

–60°

–30°

150°

120°

90°
60°

30°

0°180°

–150°

–120°
–90°

–60°

–30°

150°

120°

(a)

(c) (d )

(b)

Figure 20. Magnitude of acoustic pressure in dB at the lateral plane with y3 = 0.725: − · −,
|p| DNS; �, full theory of Amiet; Rd = 1.75. (a) µ0 = 3.2, (b) µ0 = 16.2, (c) µ0 = 26.3,
(d) µ0 = 40.5.

at various radii from the trailing edge using the two-dimensional acoustic analogy,
which does not invoke the far-field approximation. The directivity shape did not
significantly change for Rd > 1.75, implying that near-field effects are reasonably
small for the radius chosen.

Having scrutinized the main assumptions made in the derivation of the classical
trailing-edge theory, it now remains to compare the prediction of the acoustic pressure
using (2.14) with the DNS results, shown in figure 20. Note that (2.14) was multiplied
by 4π to account for a one-sided spectrum and the conversion to a 1 Hz bandwidth.
For the lowest frequency investigated good agreement with the DNS data is achieved
on the lower side, both in terms of directivity and amplitude. For all higher frequencies
the amplitude is overpredicted by the DNS. This can be explained as follows. As
already mentioned, the periodic boundary conditions employed in the DNS prevent
the acoustic waves from leaving the computational domain. Even though this can be
interpreted as conducting a simulation with an infinite spanwise extent, a fundamental
difference to the infinite span assumption made by Amiet should be pointed out. For
the case of a plate with infinite span the turbulence is only correlated over a small
spanwise extent. Figure 19 confirms that the spanwise correlation length is smaller
than the spanwise extent of the simulation for frequencies greater than µ0 = 12. All
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Figure 21. Magnitude of acoustic pressure |p| in dB at y3 = 0.0725 obtained using the
three-dimensional acoustic analogy: ——, using sources in the computational domain; −·−·−,
using sources in the computational domain and two additional mirror images; Rd = 1.75.
(a) µ0 = 16.2, (b) µ0 = 40.5.

sources located at a distance greater than the correlation length from the lateral
plane at y3 = 0.725 will therefore not be correlated with the turbulence at that plane
and hence no significant interference is expected. In contrast, the periodic boundary
conditions used for the DNS result in a spanwise array of mirror images which
are perfectly correlated. This produces a significant amount of interference that will
increase the sound level at y3 = 0.0725. To illustrate this phenomenon, the acoustic
pressure was computed with the three-dimensional acoustic analogy, accounting for
the sound radiation of the sources of two mirror images, one placed on each side
of the computational domain, i.e. (2.6) was integrated from −3/2d to 3/2d in the
spanwise direction. Figure 21 illustrates the difference between the two cases for two
frequencies, showing an increase of up to 10 dB when using the additional mirror
images. The number of mirror images contributing significantly to the sound level
at y3 = 0.0725 will be frequency dependent; nevertheless it can be concluded that
the interference of the sound waves remaining within the computational domain
considerably increases the sound level of the DNS data.

For higher frequencies the directivity shape also deviates from the DNS results in
the upstream direction, i.e. 120◦ � |θ | � 180◦. The differences are more significant
than when using the three-dimensional acoustic analogy, shown in figure 14. This
indicates that, although the individual approximations made by Amiet were shown to
be reasonable, they collectively produce a noise prediction that significantly deviates
from the DNS data, in particular in the upstream direction at higher frequencies.

Nevertheless, overall the classical theory of Amiet is able to predict the acoustic
pressure with reasonable accuracy, despite the considerable number of assumptions
and simplifications. The differences in directivity and amplitude compared with
DNS are most likely not due to the assumptions made in the derivation of the
classical theory. On the contrary, comparison with DNS data revealed that Amiet’s
assumptions, even though not satisfied exactly, can be considered to be good ones.
Only at higher frequencies does the interaction of all assumptions result in differences
between the predicted acoustic pressure and the DNS data in the upstream direction.
More generally, the origin of the differences between the prediction of Amiet’s
classical theory and the DNS data can therefore most likely be attributed to a more
fundamental level of the theory, namely relating the sources on the surface to the
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far-field sound using a Kirchhoff-type integration. This is confirmed by the
fact that results obtained with the three-dimensional acoustic analogy do not
provide significantly improved results. Some of the observed differences between
the predictions and DNS data might be attributed to the fact that individual
frequencies were scrutinized. In a theoretical study of airfoil noise, Evers & Peake
(2002) found that the airfoil geometry can have a significant effect on individual
frequency components, while the broadband noise is relatively unaffected due to
cancellation effects when integrating over the entire spectrum. The authors suspect
that this cancellation effect might also occur for the flat plate. Furthermore, it was
discussed above that the use of periodic boundary conditions in the simulations, not
accounted for in any theory, is responsible for differences in amplitude.

6. Conclusion
Direct numerical simulations were conducted of turbulent flow past a trailing edge in

order to investigate the hydrodynamic near field and the trailing edge noise generation.
A turbulent inflow generation technique was employed on the top side of the flat
plate to produce a turbulent boundary layer that convects downstream and reaches
Reδ∗

TE
= 2222 at the trailing edge. It is demonstrated that the turbulent boundary layer

is well resolved by the numerical simulation; however, some discrepancies between
the DNS data and an incompressible reference DNS exist. These are mostly due to
the inflow sponge zone required to reduce acoustic contamination of the region of
interest by the turbulent inflow forcing. In the vicinity of the trailing edge, the skin
friction increases significantly and the displacement thickness and pressure fluctuations
decrease. It is demonstrated that the behaviour of the flow in the neighbourhood of the
trailing edge can be computed with reasonable accuracy with analytical predictions
using triple-deck theory when the turbulent eddy viscosity is taken into account. The
behaviour of the lower-surface laminar boundary layer at the trailing edge does not
compare well with analytic predictions because the pressure field is strongly modified
by the turbulent boundary layer on the top side.

The DNS data were Fourier transformed in time and point spectra of surface
pressure difference and pressure in the radiation field were scrutinized. The amplitudes
of the spectra at the trailing edge are considerably lower than farther upstream, in
particular for low frequencies. It is suggested that this is due to the thinning of
the boundary layer and the associated increase in the skin friction coefficient at
the trailing edge. Composite visualizations of the real part of the spanwise vorticity
component and pressure in frequency space illustrate that the wavelength of the
vorticity corresponds to the acoustic wavelength. For several frequencies, additional
noise sources on the top side lead to an asymmetric sound field. In those cases, the
acoustic analogies and Amiet’s theory fail to reproduce the DNS data on both sides
of the trailing edge because they are based on the surface pressure difference and
therefore inherently predict a symmetric radiation pattern.

It is demonstrated that for low frequencies, the single-frequency two-dimensional
acoustic analogy produces reasonable agreement with both DNS and the computa-
tionally more expensive three-dimensional theory. This can be attributed to the fact
that the surface pressure is strongly correlated in the spanwise direction and the sound
radiation is predominantly two-dimensional. Once the level of spanwise coherence
decreases, the sound radiation becomes three-dimensional and acoustic pressure
predictions by strictly two-dimensional variants of theory deteriorate, necessitating
the use of the full three-dimensional theory.
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The accuracy of the assumptions made by Amiet for the derivation of the classical
trailing-edge theory were tested using DNS data. Amiet’s surface pressure jump
transfer function is found to provide a good prediction of the total surface pressure
difference when using the spanwise average of the surface pressure data. It was shown
that pressure spectra change significantly in the streamwise direction, contradicting
Amiet’s assumption of frozen turbulence. However, Amiet’s empirical approximation
of the surface pressure spectrum approaches the shape of the spectra from DNS
with adequate accuracy for the low-frequency range. Amiet’s expression for the
spanwise correlation length was found to be a good approximation when compared
with DNS data of turbulent flow in the vicinity of a trailing edge. Overall, despite
several profound assumptions, the classical trailing-edge theory of Amiet predicts the
acoustic pressure with reasonable accuracy. Only at higher frequencies do Amiet’s
assumptions collectively lead to a mismatch between the predicted acoustic pressure
and the DNS data in the upstream direction. Differences in amplitude of 5–10 dB
between the results obtained with the classical theory and the DNS data are mainly
attributed to the periodic boundary conditions in the spanwise direction used for
the simulations. The discrepancies in directivity, in particular for higher frequencies,
suggest that future work should investigate approaches based on integration surfaces
placed outside the boundary layer that might potentially yield more accurate noise
predictions.
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