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A B S T R A C T   

In the contemporary world, natural fibers reinforced polymer composite (NFRPC) materials are of great interest 
owing to their eco-friendly nature, lightweight, life-cycle superiority, biodegradability, low cost, noble me-
chanical properties. NFRPCs are widely applied in various engineering applications and this research field is 
continuously developing. However, the researchers are facing numerous challenges regarding the developments 
and applications of NFPRCs due to the inherent characteristics of natural fibers (NFs). These challenges include 
quality of the fiber, thermal stability, water absorption capacity, and incompatibility with the polymer matrices. 
Ecological and economic concerns are animating new research in the field of NFRPCs. Furthermore, considerable 
research is carried out to improve the performance of NFRPCs in recent years. This review highlights some of the 
important breakthroughs associated with the NFRPCs in terms of sustainability, eco-friendliness, and economic 
perspective. It also includes hybridization of NFs with synthetic fibers which is a highly effective way of 
improving the mechanical properties of NFRPCs along with some chemical treatment procedures. This review 
also elucidates the significance of using numerical models for NFRPCs. Finally, conclusions and recommenda-
tions are drawn to assist the researchers with future research directions.   

1. Introduction 

Fundamentally, a material that constitutes at least two different 
materials is a composite. Bricks, concrete, wood, bone, and manufac-
tured composites such as fiber-reinforced plastics (FRP) would be 
incorporated in this definition [1,2]. Nowadays, FRPs are applied for the 
fabrication of different structures, owing to high strength, high stiffness, 
and the combination of low weight. Usually, they are made of epoxy 
resin and synthetic fibers [3–5]. These materials are customarily known 
as high-performance composite materials [6]. The addition of natural 
fibers (NFs) especially as a reinforcement in composite materials is 
considered a popular technique for different applications [7], especially 
in view of sustainable materials. These NFs offer several benefits, for 
instance, their potential to substitute different synthetic fibers [8–11]. 
These NFs have also been utilized to produce bio-composites. Fig. 1 
depicts the advancements in composite materials. Natural Fibers Rein-
forced Polymer Composites (NFRPCs) possess different advantages like 
low weight, biodegradable, less expensive, and exhibit excellent 

mechanical properties [12–15]. These properties made NFRPCs unique 
materials for many transportation applications, e.g., aircraft, motor 
vehicles, construction, and trains [16,17]. The most imperative parts of 
physical foundations for construction are steel, cement, and timber, 
which leads to high development costs [18,19]. Oil-based fiber [20] 
reinforced polymer composites are attractive compared to traditional 
development materials [21] in the last few years. These NFRPCs are also 
called bio-composites and further categorized into complete or partial 
green composites [22–24]. 

Nowadays, bio-composites of superior characteristics are fabricated 
as a result of continuous research devoted to the field of NFs in the last 
decade [25–28]. Plant fibers, especially bast and leaf, discover appli-
cations in auto enterprises. However, a large portion of different NFs 
[29] are investigated only at laboratory scales and they have not yet 
proved their ability to be used in engineering applications [30–32]. It is 
important to consider different types of NFs. The three major types 
which produced NFs are:  

1. Animal-based fibers 
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2. Mineral fibers  
3. Natural lignocellulosic fibers (NLF) 

Plant fibers contain cellulose as their primary component, whereas, 
protein is the essential constituent of the animal fibers. Both mineral- 
based fibers and animal-based fibers are seldomly applied as reinforce-
ment medias in NFRPCs as compared to plant-based fibers due to their 
unavailability and high price. Animal-based fibers include wool, silk, 
feather, and hair. On the other hand, mineral fibers are acquired from 
the minerals and the most abundantly occurring mineral-based fibers 
are asbestos and basalt [13,33]. Plant-based fibers are largely obtained 
from topical areas and agricultural crops. These fibers like sisal, flax, 
ramie, cotton, banana, and hemp have found their applications in the 
building and automotive industries due to their low cost, lightweight, 
superior mechanical properties, and abundance [34–36]. These fibers 
are of eco-friendly and biodegradable nature that have a positive effect 
on the environment. Furthermore, these fibers possess superior stiffness 
and tensile strength than animal fibers and these properties are com-
parable with the characteristics of synthetic glass fibers. Moreover, an-
imal fibers exhibit inferior hydrophilic properties than plant fibers, 
highly sensitive to some alkalis and bad conductors of heat. The 

reinforcement of the synthetic polymers with these fibers produces 
high-quality composites in terms of their mechanical properties [37]. 
Few researchers observed that the starting temperature of the degra-
dation of plant-based fibers is 240 ◦C. Furthermore, cellulosic materials 
degrade in between 260 ◦C to 350 ◦C. Whereas, hemicellulose de-
composes within the temperature range 200 ◦C–260 ◦C that produces 
more non-flammable gases. The decomposition of lignin (constituent of 
plant fibers) starts from 160 ◦C to 400 ◦C [8,33]. 

Moreover, the fiber source, extraction process, accessibility, fiber 
type, and synthesis method are some of the important features which 
influence the mechanical properties of NFRPCs. Moisture absorption is 
also an important parameter that critically affects the overall mechan-
ical properties of NFRPCs [38–41]. Fig. 2 shows the moisture contents at 
equilibrium in different NFs. Ahmad et al. [42] studied the mechanical 
properties of hemp/polyethylene terephthalate hybrid composites 
under different water immersion rates. The results of this study showed 
tensile and flexural strength continuously decreasing with increasing the 
moisture rate. Thus, lowering the mechanical properties of the hybrid 
composites, as depicted in Fig. 3. 

It has been perceived that the NFRPCs have gone through critical 
changes in the last decade. As result of this, these materials are now 
considered for various engineering and material science applications 
due to a lot of research devoted to this field of NFRPCs that ought to be 
updated for comprehending the performance and different attributes 
associated to the NFRPCs. Thus, this review tries to cover the following 
important questions related to the performance and selections of 
NFRPCs (1) Are NFRPCs are environmentally and economically superior 

Acronyms 

FRP Fiber-reinforced plastics 
NFs Natural fiber 
NFRPCs Natural fibers reinforced polymer composites 
NLF Natural lignocellulosic fibers 
PP Polypropylene 
LDPE Low-density polyethylene 
PEEK Polyether ether ketone 
HDPE High-density polyethylene 
UV Ultraviolet 
GER Global energy requirements 
LCA Life cycle assessment 
DMA Dynamic mechanical analysis 
FEM Finite element method 
DRM Dynamic relaxation method 
MAS Multilayers armor system 
PALF Pineapple leaves 
RoHM Rule of hybrid mixture 
GO Graphene oxide 
NIJ National institute of justice  

Fig. 1. Advancements in composite materials.  

Fig. 2. Moisture content in natural fibers at equilibrium condition.  
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to synthetic fibers reinforced composites? (2) Do NFRPCs have higher 
fiber content for equivalent performance? Thus, reducing pollute-based 
polymer content; (3) Does the performance of NFRPCs improves through 
hybridization and chemical treatment techniques? (4) What are the 
emerging applications of the NFRPCs? To address these challenging 
questions, an up-to-date review is needed for the better understanding of 
NFRPCs. 

2. Natural fiber reinforced composites 

There are two phases of fiber-reinforced composites; one is the ma-
trix, and the other is reinforcement. Wielage et al. [43], Abu Bakar et al. 
[44], Velde et al. [45], and Bledzki et al. [46] categorized polypropylene 
(PP), low-density polyethylene (LDPE), polyether ether ketone (PEEK), 
and high-density polyethylene (HDPE) as the polymer plastic matrices. 
Paul et al. [47] and Rouison et al. [48] listed some conventional syn-
thetic fibers [49] that include glass and carbon fibers. Generally, plastics 
exhibit inferior mechanical properties, and their mechanical perfor-
mance can be improved by the introduction of high-strength materials 
[50] (fibers) as reinforcement media [51,52]. 

Historically composite materials are used in many commercial ap-
plications. For example, the particles of bamboo shoots were used by 
ancient people in the mud walls and laminated glued wood by Egyptians 
in 1500 BCE [19]. The metals were laminated in the making of swords 
(1800 AD) [53]. Composite materials design, manufacturing processes, 
and modern technology are increasing rapidly due to high demand, high 
strength, and environment-friendly nature [54]. 

Natural fiber-reinforced polymeric materials are captivating the in-
terest of researchers and engineers to be used instead of conventional 
fibers. It is due to many advantages associated with NFs, which include 
ease of decomposability, environment friendly, low cost, and low weight 
[4,55–57]. Based on their usage, the plants that produce NFs, are 
divided into primary and secondary plants. In primary or essential 
plants, jute [58], sisal, and kenaf [59] are grown for their fiber content. 
In contrast, auxiliary or secondary plants (coir, oil palm, and pineapple) 
are those in which the fibers/strands are created [60–63]. 

To reduce the material cost, weight and to provide sustainable so-
lutions, natural fiber-reinforced composites have many attractive fea-
tures, particularly beneficial in plastics, electronics, packaging [64], and 
automotive industry [65–67]. For consumer applications, the natural 
fiber reinforced hybrid composites are utilized for interior paneling, 
household tables, window panels, and chairs [67,68]. These materials 

can also be a sustainable option in the automobiles and interior paneling 
of airplanes. Some of the essential properties of NFs found in the liter-
ature are presented in Table 1. 

Several studies can be found in the literature verifying the excellent 
mechanical properties of these materials as well as the limitations in 
their applicability. Venkateshwaran et al. [70] found that NFs reduced 
the considerable weight of composites. Bisaria et al. [71] studied me-
chanical properties by changing the fiber length and found that com-
posites of 15 mm length possessed maximum flexural and tensile 
properties. Ashish et al. [72] found that NFs chosen as reinforcement, 
can decrease the tool wear and tear during the machining process. A few 
materials (flour of the wood and shell) are being used in the polymer as a 
filler to confer the positive benefits in the composites, such as removal of 
shrinkage and creep resistance in the materials after molding. 

3. Sustainability of NFRPCs 

NFRPCs are considered one of the emerging materials of the present 
time and the “green” term is often associated with these NFRPCs [24,30, 
73]. It is due to the biodegradability of the NFRPCs happens with the 
breakdown of the individual constituents in composite materials [74]. 
Biodegradability, recyclability, and sustainability can have a significant 
effect on the both future as well as present climate [75–78]. Ecofriendly 
materials are gaining attention throughout the world for continually 
raising guidelines and enactments against harmful materials. In this 
context, the researchers are encouraging the production of green ma-
terials especially NFRPCs [36]. NFs contribute a huge role in the pro-
duction of NFRPCs. The production of NFRPCs also consumes lower 
energy 9.55 MJ/kg as compared to the traditional fiber-reinforced 
composites e.g., glass 54.7 MJ/kg [79]. The NFRPCs have lower envi-
ronmental impacts than synthetic fiber reinforced composites. These 
products equipped with economical qualities like biodegradability, and 
renewability are raising the market volume especially due to their lower 
climate effects [80]. Fig. 4 illustrates different parameters associated 
with sustainable products. 

Furthermore, the significant benefit associated with NFs is revenue 
that comes from their manufacturing. Moreover, the land for NF crea-
tion can be continuously cultivated many times. For example, the 
manufacturing of flax and hemp fibers further yields seeds, substances 
and oils with numerous important uses, including that of healthful 
supplements for individuals [81]. The mass created is also biodegrad-
able toward the finish of its life cycle. For instance, coir strands are 

Fig. 3. Tensile and flexural response of hemp/polyethylene terephthalate composites [42] (Images reproduced with permission from Elsevier).  
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already a byproduct of an industry that produces 64.3 billion nuts per 
year [82]. 

These NFRPCs mostly contain 60–70 % of NFs and the remaining 
portion is the adhesive and matrix. In an open climate, the degradation 
of NFs is affected by environmental dampness, temperature, ultraviolet 
(UV) light, and the presence of different microorganisms [60,83]. The 
degradation happens by the breakdown of hemicelluloses, lignin, and 
cellulose of the fibers. In this way, the complete failure in the mechan-
ical properties of the NFRPCs was observed [84]. The kenaf/POM 
composites were exposed to dampness, water shower, and UV light in a 
chamber and the materials exhibited lower tensile strength. This 
outcome was attributed to the degradation of the cellulose, hemi-
celluloses, and lignin of kenaf filaments [85]. The impact of the atmo-
spheric condition on the biodegradability of jute/phenolic composites 

was studied [86]. The reported results showed that almost one-half of 
elastic properties were reduced after their exposure to the UV for two 
years. Furthermore, pitch breaking, swelling, fibrillation, and dark spots 
were also observed due to the UV exposure. Some of the general attri-
butes associated with sustainable NFRPCs materials are presented in 
Fig. 5. 

3.1. Economic perspective 

NFRPCs are often known as sustainable materials because the most 
used materials in NFRPCs are obtained from living plants and sometimes 
animal’s skin. The United States (US) market shares the facts that the 
composite market was 2.7 billion pounds sterling in 2006 and it is 
assessed to reach 3.3 billion pounds real by 2012 with a 3.3 % yearly 

Table 1 
Properties of different natural fibers [8,27,69].  

Fibers Cellulose (wt%) Density (g/cm3)  Moisture 
Content (wt %) 

Microfibrillar angle (degrees) Young’s 
Modulus (GPa) 

Tensile strength (MPa) Elongation at break (%) 

Abaca 55–62 1.5 14 – 10–12 400 3–10 
Coir 31–42 1.1 10 30–40 4–6 106–175 17–47 
Cotton 84–91 1.5–1.6 8 – 6–12 290–800 7–8 
Banana 17 1.3 7 10 7–20 54–754 10.35 
Ramie 67–75 1.5 8 – 61–127 400–900 1–4 
Sisal 64–70 1.45 10 10–22 9–15 568–640 3–7 
Jute 60–70 1.3 11 – 12–25 393–770 7–9 
Pineapple Leaf 20–80 1.44 12 8–14 34–82 413–1627 0.8–1 
Hemp 67 1.48 10 – 60–70 690 1.6  

Fig. 4. Different attributes associated with sustainability.  
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Fig. 5. General attributes associated with the NFRPCs.  

Fig. 6. GER of some selected natural fibers (MJ/kg of field plant).  
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development. Furthermore, NFRPCs market in the US encountered a 13 
% development rate (275 million kilograms) between 1994 and 2004 
[87]. Furthermore, the interest in NFRPCs continues to rise. The average 
worldwide yearly market development for NFRPCs was 38 % from 2003 
to 2007, while Europe saw the most noteworthy yearly development at a 
pace of 48 %. This market was assessed at 0.36 million metric tons in 
2007 and it is reached 3.45 million metric tons in 2020. Composite 
materials-based industries are proved to be successful businesses all over 
the world, nowadays NFRPCs are effectively contributing to these 
industries. 

3.2. Environmental perspective 

The ecological benefits of composite materials over the conventional 
aluminum structures in airplanes have been proved and investigated 
through different life cycle assessment (LCA) based research. The 
worldwide progress of the airplane industry with composite design is 
estimated to contribute 15 %–20 % decrease in CO2 contents till 2050. 
NFRPCs are more eco-friendlier than traditional composites due to the 
major contribution of cellulose, hemicellulose, and lignin in their 
structures. 

Cellulose is an abundantly available molecule that decomposes 
naturally. Furthermore, after serving their valuable life the NFRPCs can 
be decayed along with different polymers. For instance, the energy- 
related to burning for China reed strands is assessed to be 14 MJ/kg. 
Furthermore, this incineration results in no emissions of CO2 in the at-
mosphere. Thus, the burning of NF composites results in positive carbon 
credits and lower danger to the atmospheric impact. The global energy 
requirements (GER) [87,88] in the form of some NFs and residues used 
for generating energy at the end of their LCA are shown in Fig. 6. 

4. Chemical treatments 

Different chemical treatments can be adopted for improving the 
mechanical and surface properties of both metal matrix composites [89] 
and fiber-reinforced composites due to the fundamental problem asso-
ciated with NFs known as hydrophilic nature. The NF composites exhibit 
poor mechanical properties even in hybridization with synthetic fibers 
[5]. NFs are comparatively more moisture absorbent and exhibit lower 
strength than synthetic fibers [90]. Researchers are aiming to develop 
pre-treatment processes to improve the compatibility of NFs with 
polymer matrices [91] and to enhance the mechanical characteristics of 
the composites. 

The alkali treatment approach is one of the least complex, econom-
ical and powerful techniques applied for enhancing the attachment of 
NFs with epoxy resin. The impact of coupling agent NaOH in alkali 
treatment had been studied by different researchers [90,92,93]. The 
results revealed that NaOH concentration (1, 5, and 10 %) and length to 
submerge the filaments (0, 24, and 48 h) had different consequences on 
the fiber surface morphology. Mukhtar et al. [94] compared the 
different chemical treatment procedures on sugar palm fibers. The re-
ported results showed that alkali and sodium bicarbonates treated fiber 
possessed an increase in crystallinity, thermal stability, and surface 
roughness compared to the untreated jute fibers. 

Silane coupling agents composed of bifunctional structures. These 
agents are usually employed as chemical enhancers and can make 
chemical platforms between the fiber and the matrix. Silanes are addi-
tionally adhesion promoters in numerous applications and are utilized 
as substrate primers [95–97]. Maleated coupling agent’s treatment is 
applied to strengthen the composites containing different NFs. The setup 
job of these agents (MaPOs) is to produce two fundamental elements, 
practical assembling and the efficient collaboration of maleic anhydride 
with the useful surface of fiber reinforcements [8]. 

Acetylation treatment is known as the esterification strategy for 
strengthening regular or natural filaments. Acetyl gathering (CH3CO) 
responds with the hydrophilic hydroxyl gatherings (OH) of the fiber and 

removes the moisture content from the fibers [94]. The different 
chemical treatments, along with their agents or functional groups are 
summarized in Table 2. 

NLFs have been used as cost-effective and promising reinforcements 
media in composites [99]. Their effectiveness can further be increased 
through chemical treatment or coating with any functionalized mate-
rials. For example, Filho et al. [100] studied the novel piassava fiber 
with and without graphene oxide (GO) functionalized, epoxy compos-
ites. Thermogravimetric investigation results showed maximum thermal 
stability at around 200 ◦C for the perfect piassava fiber. Furthermore, 
the hemicellulose and lignin degradation occur at moderately higher 
temperatures for the GO-coated piassava strands. The differential 
scanning calorimetry examination revealed that molecular breakage 
occured at an endothermic peak at around 125 ◦C for the perfect pias-
sava fiber which was not found for the GO-covered strands inside the 
most extreme time frame investigated. The dynamic mechanical analysis 
(DMA) testing showed that outstanding changes associated with GO 
coatings on the piassava fibers with regard to the viscous stiffness and 
damping limit of the epoxy composite. In a similar study, Costa et al. 
[101] evaluated the mechanical properties of composites with and 
without the functionalization of GO curaua fibers. The results revealed 
64 % increase in yield strength, 40 % better tensile strength, and 28 % 
rise in toughness for GO curaua fibers composites. 

5. Hybrid natural fibers reinforced composite materials 

The reinforcement of more than one type of material in the matrix 
forms a hybrid composite that is moderately cheap [102]. There is a 
possibility that fiber-reinforced polymer hybrid composites have:  

• Two types of phases, one is consisting of a matrix and the other is 
consisting of more than one reinforcing phase.  

• Two types of phases, one is consisting of a reinforcing phase and the 
other is consisting of more than one matrix phase.  

• Manifold matrix phases with more than one reinforcing phase. 

Previously in many studies, it has been observed that hybridization 
with any synthetic fibers improves many structural properties of 
NFRPCs. Venkateshwaran et al. [70] concluded that mostly glass fiber 
and carbon fiber are responsible for enhancing hybridization’s me-
chanical properties. By adding the volume fraction of glass, tensile 
strength and Young’s modulus were improved due to the better 
compatibility of the glass fibers with the polystyrene matrix. Ajith et al. 
[103] found that the polyester composite reinforced with jute fibers 
exhibited inferior properties than the jute reinforced with epoxy 

Table 2 
Different chemical treatments and their effects [31,41,98].  

Chemical Treatments Functional Groups/ 
Coupling Agent 

Specific Effects on Natural 
Fibers 

Benzoylation 
treatment 

Benzoyl chloride Makes fibers hydrophobic 

Peroxide treatment Polyethylene Improve the adhesion of fibers 
with a matrix 

Sodium Chlorite 
treatment 

Sodium Chlorite 
(NaClO2) 

Remove moisture from fiber 

Acrylation and 
acrylonitrile 
grafting 

Acrylic Acid 
(CH2––CHCOOH) 

Bonding capacity and stress 
transfer of the interface 
increases 

Oleoyl Chloride 
treatment 

Oleoyl Chloride Improves wettability and 
adhesion properties 

Triazine treatment Triazine (C3H3N3) Improves the adhesion of the 
fibers 

Permanganate 
treatment 

Potassium 
Permanganate 
(KMnO4) 

Improves the thermal stability 
of the fibers 

Fungal treatment Specific Enzymes Enhance the linking/meshing 
of fibers in the matrix  

M.Y. Khalid et al.                                                                                                                                                                                                                               



Results in Engineering 11 (2021) 100263

7

composites. In another study, Sanjay et al. [104] observed that by hybrid 
reinforcement of jute and glass fiber, the properties of the composites 
can be enhanced as compared to individual jute or glass fiber reinforced 
composites. 

Khalid et al. [105], Ali et al. [106], and Haneefa et al. [107]observed 
the combination of different NFs in thermoset plastics. Kiran et al. [108] 
discovered that banana fiber reinforced with polyester had a tensile 
strength of about 59 MPa for a fiber length of 3 cm and weight of 51 %. 
Hybridization is typically categorized into interlaminate and intra-
laminate. Interlaminate, or basically overlay, obtains by depositing 
layers made of various strands. Whereas, in intralaminates, the two fil-
aments are entrapped inside a single layer [109]. 

Sanjay and Yoghesha studied the hybridization effects of different 
laminate layers consisting of various jute/kenaf/E-Glass woven fabric 
layers. These laminates were manufactured utilizing the vacuum 
bagging method. The excellent hybridization results were observed in 
these laminates in terms of their mechanical properties [110]. Further-
more, the consequences of hybridization for improving the structural, 
thermal, and mechanical properties of many NFRPCs were reported in 
many studies [111–113]. 

Hybridization by adding the laminates of the synthetic fiber [32,96, 
112,114] can provide NFRPCs of better moisture absorption property 
along with nobler mechanical properties. For instance, glass or carbon 
filaments are impervious to moisture absorption and have relatively 
higher mechanical strength than those of NFs [115–118]. Thus, hy-
bridization through the synthetic fibers accomplishes an agreement 
between predominant mechanical properties and the cost of the com-
posites. For half-breed fiber composites, the Rule of Hybrid Mixture 
(RoHM) is a broadly utilized technique that can anticipate Young’s 
modulus of these hybrid NFRPCs [113,119–121]. Nonetheless, the im-
pacts of hybridization on the mechanical degradation instigated by 
dampness and moisture remain vague [122,123]. Table 3 summarizes 
the different synthetic fibers and NFs were studied by many researchers 
through hybridization technique [123–127]. 

6. Emerging applications 

Threats related to guns have significantly affected the human life, in 
particular to the warriors and public soldiers. Multilayers Armor System 
(MAS) provides effective protection against these threats. Convention-
ally different synthetic materials like aluminum and Kevlar fibers 
(Dyneema) were utilized in the MAS. NFRPCs are now considered as one 
of the most emerging materials for many engineering applications, 
especially in MAS. These NFRPCs are considered as the second MAS 
layer [133]. For example, Luz et al. [134] performed a comprehensive 
study using both NFRPCs and conventional materials (Dyneema plate) in 

hard armor. These NFRPCs are produced by utilizing pineapple leaves 
(PALF). The purpose of this hard armor system is to provide extra pro-
tection in normal level IIIA ballistic protective layer vests, made with 
Kevlar. By incorporating the NFRPCs along with the ceramic front panel, 
results in ballistic protection of level III. The results of this study show 
that this degree of ballistic protection proved to be effective against 7.62 
mm type rifle ammo for the National Institute of Justice (NIJ) global 
standard for level III security which is equivalent to the Dyneema plate, 
generally utilized in protective layer vests. 

Pereira et al. [135] performed a similar study on polyester com-
posites produced from fique fibers for ballistics testing. Different volume 
fractions of fique fibers were tested. The results showed that the poly-
ester composites having 30 % volume fractions of fibers are ideal can-
didates for MAS and can also replace Kevlar due to their high energy 
absorption and integrity after the impact. Fig. 7 shows the schematic 
diagram of the hard armor system for ballistics protection. 

Filho et al. [136] evaluated the ballistics performance of NFRPCs 
utilizing piassava fiber. The composites were produced with 10–50 % 
volume fractions. Ballistics testing was done using 7.62 mm ammuni-
tion. The assessment of the ballistic testing system was estimated by the 
depth of penetration, which triggers the consistency with the human 
body, in understanding certain necessities of the NIJ standard 0101.06. 
The cracked materials were breaking down after the ballistic tests. 
Finally, these testing results showed that MASs utilizing piassava fiber 
composites as a subsequent layer provides effective protection. This 
demonstrates that piassava fiber which is a green material can also be 
used in armor systems effectively. 

Nowadays, a new class of NFs is under extensive considerations. 
Neuba et al. [137] explored relatively a new class of NF named as 
“Cyperus malaccensis (CM)”, a type of sedge fiber, which is already 
consumed in ropes, furniture, and paper. 

7. Numerical techniques 

Numerical methods can be utilized to model and simulate the me-
chanical behavior of composite materials, yet the primary ones are 
Dynamic Relaxation (DR) coupled with Finite Difference Method and 
Finite Element Method (FEM). 

7.1. Dynamic relaxation method (DRM) 

DRM was first introduced by Rushton [138] and Cassell and Hobbs 
[139] in 1960. In the dynamic relaxation method, the equilibrium 
equation is converted into the dynamic equation. The damping term is 
expressed in the finite difference, and the solution is obtained through 
the iteration process. The time increment and the optimum damping 
coefficient are used to stabilize the solution. The specimen’s stiffness 
matrix, applied load, boundary conditions, and mesh size are the main 
variables that affect the solution. 

7.2. Finite Element Method (FEM) 

Nowadays, FEM is the most widely used numerical method [140]. 
Many engineering analysis problems are solved by this numerical pro-
cedure [115,141]. It is divided into two primary subdivisions:  

• In the first subdivision, discrete elements are used to acquire the 
member forces and joint displacements of a structural framework. 
This formulation is known as matrix analysis of structures, and the 
results obtained are identical to the classical analysis of structural 
framework. 

• In the second subdivision, continuum elements are utilized to ac-
quire estimated solutions to thermal, mechanics of fluid, and the 
mechanics of solid problems. This approach is an accurate FEM, and 
calculated results of the required constraints at exact points (nodes) 
are obtained. 

Table 3 
Hybridization of NFs with synthetic fibers.  

Natural 
Fibers 

Synthetic 
Fibers 

Advantages Achieved Ref. 

Jute Glass Optimum mechanical properties were 
achieved by utilizing jute fibers. 

[128, 
129] 

Sisal Glass A good tensile strength was achieved by 
incorporating jute fibers. 

[130] 

Sugar Palm 
Fiber 

Carbon Experimental results revealed that hybrid 
composite containing 60% of sugar palm 
fibers and 40 % carbon fibers possess 
highest flexural strength. 

[131] 

Banana Glass Banana fiber has shown the optimum 
flexural strength when used with glass 
fiber. These NFRPCs have found its usage 
in sports industry. 

[132] 

Jute Carbon Impact and flexural strength were found 
to be increasing with increasing the jute 
fiber percentage in carbon/jute hybrid 
composites. 

[106]  
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Both types of problems can be solved in a general finite element. The 
distinct part and the array element interpretations are denoted by the 
‘Finite Element Method’. Unarguably, the most accurate numerical 
method, FEM is used as a computational method for solving the prob-
lems that arise in many engineering and material science fields. It is 
grounded on the concept of replacing any continuum with an accumu-
lation of finite elements with definite force, displacement, and material 
relationships. Whereas it may not be possible to derive a closed-form 
solution for the continuum, approximate solutions can be derived for 
the element accumulation to replace it. Using ideas from interpolation 
theory, estimation functions or estimated solutions are made, and 
therefore, they are referred to as Interpolation Functions. Previously 
adopted numerical techniques on NFs with their accuracy are reported 
in Table 4. 

7.3. Comparison between FEM and DR 

Aalami et al. [145] discovered time requirement by the computer for 

the DR analysis is approximately eight times lesser than for the FEM, 
whereas the DR analysis storage capacity, is less than for FEM. Putcha 
et al. [146] and Turvey et al. [147] noticed that FEM demands large 
storage capacity and computer time. FEM is more efficient than the DR 
Method because of the large computations. Aalami et al. [145] discov-
ered that FEM is 15 % more accurate than DR. Therefore, FEM is 
considered acceptable accuracy. Whereas, DR method is applicable for 
limited geometries only. On the other hand, FEM can be applied to 
different complicated geometries and shapes. 

8. Conclusion 

For lowering the harmful effects of advanced materials on the 
environment the complete degradation of the materials is necessary and 
quite challenging at the same time. For this purpose, researchers should 
consistently search for those materials which are completely combus-
tible or biodegradable. We conclude that these NFRPCs are superior to 
the synthetic fiber reinforced composites due to the following attributes: 
(1) These NFs are present abundantly in nature which makes them cheap 
and sustainable materials (2) There are different techniques like chem-
ical treatments, coating of different materials on NFs and hybridization 
technique which enhance the mechanical and physical properties of 
NFRPCs. (3) NFRPCs are best suited to ballistics applications due to their 
high-impact properties. (4) The environmental effects of NFRPCs are 
quite low which makes them suitable for various sustainable engineer-
ing applications (5) Numerical tools could be a useful tool for the me-
chanical characterization of composite materials. Prediction of 
mechanical behavior of materials using numerical tools could allow the 
design of innovative and novel materials. These numerical techniques 
proved to be both times saving and environmentally friendly. 

9. Future perspective and challenges 

From the above review, it is clear that the use of NFRPCs in engi-
neering applications is justified owing to their comparable mechanical 
strength with synthetic fibers and lower environmental effects. But there 
are huge challenges involved in controlling and improving the me-
chanical properties of NFRPCs. Further exploration is also required from 
the research community to support and encourage the utilization of 
novel NFs as well as novel chemical techniques in advancements of 

Fig. 7. Schematic diagram of the hard armor system for ballistics protection [134].  

Table 4 
Accuracy of some recently adopted numerical models for mechanical properties 
characterization of NFRPCs.  

Natural 
Fibers 

Hybridization 
with any 
synthetic fibers 

Testing type Maximum Accuracy 
of Numerical 
Method 

Ref. 

Jute Carbon fiber Tensile ∼ 92 %   
Basalt No Compressive, 

splitting tensile, 
and bending 

A very high 
correlation 
coefficient was 
found between 
experimental and 
numerical results. 

[142] 

Banana Glass fiber Flexural ∼ 88 %  [132] 
Hemp No – Curing behavior and 

was successfully 
predicted through 
numerical 
techniques. 

[143] 

Jute Carbon Fiber Flexural ∼ 84 %  [106] 
Flax Glass fiber Impact ∼ 94 %  [144] 
Jute Carbon fiber Impact ∼ 96 %  [106]  
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NFRPCs. Finally, we can infer that the development of NFRPCs is quickly 
expanding and envisaged into a future sustainable material for emerging 
applications. 

Currently, a good growth in the utilization of NFRPCs is seen, 
especially in automotive industries. Bast fiber, hemp, kenaf, and flax are 
now considered in automobile parts. Simultaneously, wood plastics in 
composites make them ideal for construction enterprises. Europe is 
anticipated to stay as the biggest market for NFRPCs due to their huge 
contributions towards the less polluted environment through eco- 
friendly materials consumption in different sectors. With the signifi-
cant progress in materials sciences, it is assumed that in future these 
advancements will lead us towards the improved properties of NFRPCs 
for particularly new applications. NFs composites are now being utilized 
effectively in electrical gadgets, and sports equipment which means that 
they can catch a great market share in the future. 

Future research is needed to overcome the impediments like mois-
ture absorption for long-term stability in outdoor applications. Specif-
ically in extreme weather conditions like temperature, humidity, and UV 
radiation all affect the service life of the NFRPCs. 
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