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Doctor of Philosophy 

HYDROTHERMAL PLUMES AND PROCESSES IN THE INDIAN OCEAN 

by Carla Marie Sands 

 
The predicted cycling of the whole ocean through hydrothermal plumes is comparable to 
the mixing time of the oceans (few thousand years).  Hence, understanding hydrothermal 
plume processes is crucial if their impact on the global geochemical cycles of elements is 
to be assessed.  One of the most important processes that has been demonstrated to 
modify the gross chemical flux from venting to the oceans is the oxidative precipitation 
of dissolved Fe (II).  It has been hypothesised that this might vary significantly from one 
ocean basin to another along the path of thermohaline circulation.  To test that 
hypothesis, hydrothermal plume samples were collected from the first confirmed 
hydrothermal vent fields in the Indian Ocean, at Kairei and Edmond, close to the 
Rodriguez Triple Junction, during the RRS Charles Darwin cruise CD128 in 2001.  The 
samples were analysed to determine the concentrations of dissolved iron and manganese 
and particulate Fe, Mn, Al, Ca, Mg, Cu, Zn, P, V, As, Y and the rare earth elements.  For 
a subset of the samples, the concentrations of Fe, Mn, Cu and P in different size fractions 
of the particulate phase were also measured.   
  Dissolved Fe and Mn concentrations are high in the Kairei and Edmond hydrothermal 
plumes compared to Atlantic and Pacific hydrothermal plumes previously studied.  
Particulate Fe concentrations are also high while particulate Mn concentrations remain 
low throughout the plume.  Of the total (i.e. particulate plus dissolved) Fe which emerges 
from the vents, approximately 20-30% is lost from the plume via the removal of Fe-
sulfide phases formed early in the buoyant plume.  Further loss of Fe due to the oxidation 
and formation of particulate Fe-oxide phases results in a total Fe loss of 50-70%.  For the 
very young non-buoyant plume samples, there is very little in situ particulate Fe present. 
  The behaviour of the chalcophile elements (Cu, Zn, Cd and Pb), elements which exist as 
oxyanions in seawater (P, V and As), as well as the rare earth elements and Y are 
consistent with previous studies of elemental behaviours in hydrothermal plumes in the 
Atlantic and Pacific Oceans.  The observed behaviours of these elements with respect to 
particulate Fe suggests that the differing Fe (II) oxidation rates between ocean basins do 
not impact the processes taking place within hydrothermal plumes.  In addition, 
fractionation of Fe, Mn, Cu and P in the Edmond hydrothermal plume between the 
dissolved, colloidal and fine and coarse particulate phases shows consistency with 
previous conclusions based on only one of these phases.   
  The P/Fe and V/Fe ratios of the hydrothermal particulate samples are intermediate to 
those of particulate samples from the Atlantic and Pacific Oceans suggesting that as 
previously hypothesised, these ratios are dependent on dissolved ambient phosphate 
concentrations.  Hence, there remains the potential to use these ratios from sediment 
cores as paleo-proxies for dissolved phosphate concentrations.  
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1 Chapter 1   Introduction 
 
1.1 Background 

 

The existence of hydrothermal vents was suspected some time before the first 

observations of the phenomena in the late 1970s (Corliss et al., 1979; Spiess et al., 1980).  

Prior to their discovery, metal-rich sediments had been found along many parts of the 

mid-ocean ridge system (see Fig. 1) including the East Pacific Rise (Bostrom & Peterson, 

1969), the mid-Atlantic Ridge (Scott et al., 1974) and the Indian Ridge (e.g. Bonatti, 

1975).  Metal-rich sediments were also discovered in the Red Sea (Degens & Ross, 1969) 

which is a young ocean.  In addition, many cores taken at sites in the Atlantic, Pacific 

and Indian Oceans by the Deep Sea Drilling Project were found to have metalliferous 

sediments at the base of the sediment column, just above the basaltic basement.  This 

suggests that the metal-rich sediments were originally formed close to the ridge axis. The 

sediments were also similar in composition to those found at the mid-ocean ridges (e.g. 

Dymond et al., 1973).  Some authors suggested that the origin of these sediments were 

hydrothermal solutions formed from the interaction of seawater with newly formed basalt 

(e g. Corliss, 1971; Dymond et al., 1973; Piper, 1973).  Other explanations such as 

authigenic metal-rich phases (formed by slow precipitation of metals from seawater) 

being undiluted by terrigenous or biogenic sediments (e.g. Bender et al., 1971; Bonatti, 

1975) or simply the deposition of fine terrigenous sediment with high transition metal to 

aluminium ratios (Turekian & Imbrie, 1966) were also put forward.  However, further 

evidence of hydrothermal activity was provided through the detection of excess 3He in 

the deep oceans, both in the Pacific Ocean, in the south and above the East Pacific Rise 

(Clarke et al., 1969; Craig et al., 1975; Lupton & Craig, 1975) and in the Atlantic Ocean, 

above the mid-Atlantic Ridge (Jenkins et al., 1972; Jenkins & Clarke, 1976) as well as in 

Red Sea brines (Lupton et al., 1977).  The only source of 3He in the deep ocean is 

degassing from the earth’s mantle (3He from tritium decay is generally not significant at 

mid-ocean ridge depths;  Lupton, 2001), hence some form of hydrothermal circulation 

was most likely to be responsible. 
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Figure 1  Map showing distribution of metal-rich sediments in the oceans.  Higher 
(Al +Fe +Mn)/Al ratios represent the most metal-rich sediments and are focused 
along the mid-ocean ridges (after Bostrom et al., 1969)   
 

The first sites of hydrothermal venting were actually discovered in the East Pacific Ocean 

(Corliss et al., 1979; Edmond et al., 1979, 1982; Spiess et al., 1980) and it was initially 

suggested that the phenomenon was only associated with fast spreading mid-ocean 

ridges.  Since then, sites of hydrothermal venting have been discovered throughout the 

worlds oceans along ridges of all spreading rates.  It has been hypothesised that the 

incidence of hydrothermal activity has a linear relationship with spreading rate (i.e. 

magmatic supply), hydrothermal plume incidence increasing with increased spreading 

rate/magmatic supply (Baker & Hammond, 1992; Baker et al., 1996).  However German 

& Parson (1998) found evidence that tectonic segmentation can also be a controlling 

factor, particularly along slow spreading ridges.  A recent study based on the most up to 

date information on hydrothermal activity (both actual vent locations and hydrothermal 

plumes where the vent has not yet been located) found that for 50% of the mid-ocean 

ridge system which has been surveyed for hydrothermal activity (in total ~20% of the 

global ridge system), where the spreading rate is 10-150mm/yr there is a loose linear 
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correlation between the magmatic budget and hydrothermal activity (Baker & German, 

2004).  

 

The most widely studied vents are those in the Pacific (particularly those on the East 

Pacific Rise) and North Atlantic representing the two extremes of global thermohaline 

circulation.  Comparatively little research has taken place in the Indian Ocean and 

confirmation of the suspected existence of hydrothermal vents on the Central Indian 

Ridge occurred only relatively recently (Gamo et al., 2001; Gallant & Von Damm, 

2006). 

  

Hydrothermal vents are the result of the penetration of seawater downwards through the 

permeable ocean crust where it is heated and then reacts with the underlying substrate.  

In the majority of cases this substrate is basalt but in some instances the hydrothermal 

system may be hosted in ultramafic rocks.  This is the case at the Rainbow and 

Logatchev hydrothermal vent sites in the Atlantic Ocean (Bogdanov et al., 1996; 

Douville et al., 2002).  With increasing heat and pressure the fluids become buoyant, rise 

up and are injected back into the ocean.  These fluids are hot (up to 405°C), acidic (pH = 

2.5 – 5.9, Von Damm, 1995), reducing and have a composition greatly altered compared 

to seawater.  They are completely depleted in Mg due to its fixation in basalts, depleted 

in sulfate due to precipitation as anhydrite and reduction to hydrogen sulfide (Von 

Damm, 1995) and highly enriched in Li, K, Rb and Cs due to leaching from basalts.  Fe 

and Mn are enriched to millimolar levels (Von Damm, 1995) compared to their 

nanomolar levels in seawater (Bruland, 1983).  Silicon is also enriched to millimolar 

levels compared to micromolar levels in seawater and a number of dissolved gases are 

present in high concentrations within the fluids including hydrogen sulfide, carbon 

dioxide, methane, helium-3 and hydrogen. 

  

On emerging from the vents the hot, acidic, reducing fluids rapidly mix with the 

surrounding seawater which is cold, mildly alkaline and well oxygenated; a dilution of 

1000:1 is reached in around 5 minutes (McDuff, 1995).  Many chemical reactions occur; 

initially metal sulfides are formed followed by iron oxide precipitation.  The buoyant 

fluids rise as a turbulent plume continuing to entrain and mix with the ambient seawater.  

The incorporation of colder, denser seawater into the plume increases the density of the 
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plume as it rises until typically between 150 and 400m above the vent (Cowen & 

German, 2001) at a dilution of 104:1 (Lupton, 1995) and after approximately an hour 

(Speer & Rona, 1989) neutral buoyancy is reached.  At this stage the non-buoyant plume 

is dispersed laterally.  The exact pattern of dispersal depends on ocean currents (Edmond 

et al., 1982) and local topography (German et al., 1998b).  Using numerical simulations 

of ocean circulation, Speer et al. (2002) have shown that in all oceans, dispersion may be 

constrained by, and follow the ridges for great distances.  In the Atlantic, the deep rift 

valley of the Mid Atlantic Ridge constrains the plume dispersion as the height of the non-

buoyant plume is usually less than that of the valley walls (Baker et al., 1995), whereas 

in the Pacific there are no such constraints and plumes have been observed thousands of 

kilometres from their origin (Lupton & Craig, 1981; Edmond et al., 1982).  Consequently 

hydrothermal plumes have a major role in influencing global ocean chemistry. 

 

The chemical and physical anomalies present in hydrothermal plumes and the spatial 

extent of plumes allow detection of hydrothermal activity without knowing the precise 

seafloor location of vent sites.  The physical properties used to locate hydrothermal 

plumes are temperature and light transmission anomalies (either light attenuation or light 

scattering).  The temperature anomaly can be positive or negative depending on the 

ambient deepwater salinity gradient.  In the deep Pacific where salinity increases with 

depth, the non-buoyant plume is warmer and more saline than ambient seawater, whereas 

in the deep Atlantic the salinity decreases with depth and the non-buoyant plume is 

cooler and fresher than ambient seawater (Speer & Rona, 1989).  Light transmission 

anomalies arise from the precipitation of particles within the plumes and it has been 

shown, for example, that there is a strong relationship between nephelometer values and 

one of the commonly used chemical tracers of hydrothermal activity which is total 

dissolvable manganese (Nelsen et al., 1986).  As well as manganese, other chemical 

anomalies that are most often used to trace plumes are methane and 3He which are all 

enriched ~106-fold in hydrothermal fluids (Von Damm, 1990).  Mn and CH4 have been 

used because they can be measured precisely while at sea (Baker et al., 1995), however 

discrete samples only provide coarse resolution of a dynamic feature.  The development 

of in situ continuous chemical analysers (e.g. Chin et al., 1994) for Fe and Mn has led to 

higher resolution data which can be directly correlated with temperature and light 

transmission data.  Detection limits were initially quite high (>20nmol/l) and although 
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this does not prevent their use in hydrothermal plumes due to the high concentrations of 

dissolved Fe and Mn which are present, newer analysers are reducing detection limits 

considerably to less than 2nmol/l (Connelly et al., 2005; Prien et al., in prep.), thus 

allowing tracking of plumes over greater distances. 

 

 

1.2 Hydrothermal influence on global geochemical cycles 

 

A fundamental concept in the study of ocean chemistry is that of ‘mass balance’.  

Assuming an element is at ‘steady state’, then the sources of any element (e.g. river run 

off or atmospheric deposition) to the ocean must be matched by the sinks for that element 

(e.g. burial in sediments).  Hydrothermal activity can act as a source or a sink for various 

elements and for some elements it is a significant fraction of the overall geochemical 

balance.  Magnesium, for example, is completely removed from seawater during 

hydrothermal circulation (Von Damm, 1990).  Prior to the discovery of hydrothermal 

venting the known sinks for Mg could only account for ~50% of the river flux of 

dissolved Mg (Drever, 1974).  Edmond et al. (1979) made some of the first flux estimates 

based on data from the Galapagos hot springs, concluding that such sites are a major sink 

for Mg and SO4 and a source for Li and Rb. 

 

The influence of hydrothermal activity on global geochemical cycles is not confined to 

the circulation of water through the ocean crust.  In fact the time taken for the entire 

ocean volume to circulate through the ocean crust is on a timescale of millions of years 

(Mottl, 1983).  This is much greater than the residence time of water with respect to 

riverine input in the ocean of ~4 x 104 years (Broecker & Peng, 1982).  Hence, only the 

geochemical cycles of those elements that are highly enriched or depleted in vent fluids 

will be impacted by hydrothermal circulation.  However, the hydrothermal plumes 

resulting from this circulation also have an influence due to their scavenging behaviour 

and potential long-range dispersal.  The predicted cycling of the entire ocean through 

hydrothermal plumes via entrainment of ambient seawater has been estimated at ~2 x 105 

years by Kadko (1993) from measurements of 210Pb scavenging and 3He fluxes.  An 

alternative estimate can be made from the global high temperature axial water flux 

estimated by Schultz & Elderfield (1997) of 2.4-3.5 x 1013kg/yr and the assumption that 



Chapter 1                                                                                                           Introduction 

  6 

entrainment of seawater into the non-buoyant plume occurs at a factor of 104 (Lupton, 

1995).  The high temperature axial water flux consists of focused and diffuse flow, 

therefore an estimate of the proportion of this flux which occurs as focused flow must be 

made.  Recent measurements of heat flux at 9°50’N on East Pacific Rise suggest that 

focused venting is an order of magnitude less than diffuse venting (Ramondenc et al., 

2006) which would give a cycling time through hydrothermal plumes of ~4-6 x 104 years 

(assuming 10% focused flow and 90% diffuse flow as an approximation).  However, this 

estimate of diffuse versus focused flow was obtained using discrete measurements, i.e. at 

several individual sites, in a similar manner to earlier estimates from other authors who 

came to the same broad conclusions (Rona & Trivett, 1992; Schultz et al., 1992).  In 

contrast, Viers et al. (2006) used a more innovative technique where they intercepted and 

surveyed entire plumes from both focused and diffuse sources at the Endeavour 

hydrothermal site.  From their measurements of heat flux they concluded that the high 

temperature axial water flux is divided equally between focused and diffuse flow, which 

would reduce the estimate to ~8-11 x 103 years.  The key point is that any element which 

is scavenged and has an oceanic residence time of this order or less will have its 

geochemical cycle affected by this process.  For example, the rare earth elements (REEs) 

which are enriched in hydrothermal vent fluids are scavenged in sufficient quantities 

from seawater by Fe-oxyhydroxide particles for this hydrothermal activity to act as a net 

sink of these elements (German et al., 1990), in many cases balancing the riverine input 

of individual REEs (Rudnicki & Elderfield, 1993). 

 

Quantification of global hydrothermal fluxes is not a straightforward task.  Vent fluid 

composition is highly variable (Von Damm, 1990; 1995) and an estimate of the total flux 

of hydrothermal fluids to the oceans is required.  Various methods have been employed 

by different authors, Edmond et al. (1979) estimated a hydrothermal Si flux to the oceans 

of 3.1 x 1012 mol yr-1 based on a global ridge axis heat flux estimate derived from the 3He 

flux from the ocean, the heat to 3He ratio of vent fluids (Jenkins et al., 1978) and the 

temperature/concentration relationship of Si in the vent fluids.  A similar estimate is 

obtained using the Palmer & Edmond (1989) estimate of global hydrothermal flux from 

the Sr isotope budget of the oceans (Treguer et al., 1995).  In contrast, Mortlock et al., 

(1993) estimated a Si flux of 0.1–0.4 x 1012 mol yr-1 from Ge/Si ratios which is only 10% 

of the earlier estimates, but is in agreement with the estimate of 0.2-0.4 x 1012 mol yr-1 
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which is obtained if using the hydrothermal water flux from Li isotope data estimated by 

Elderfield and Schultz (1996).  Presently we can only estimate fluxes of elements from 

hydrothermal vents to ~one order of magnitude. 

 

The estimates of global hydrothermal fluxes like that for Si detailed above, are only gross 

fluxes, providing no insights into the fate of the elements once they have entered the 

oceans.  Flux estimates of elements to the ocean associated with hydrothermal plume 

processes can also be made in a number of ways and have proved equally variable.  Early 

estimates of the removal of phosphorus via adsorption onto Fe particles were based on 

the P content of metalliferous sediments on the East Pacific Rise and gave values of 4 to 

5 x 109 mol yr-1 (Froelich et al., 1977).  Rudnicki & Elderfield (1993) used scavenging 

rates from modelling and an estimate of the Fe flux based on vent fluid concentration and 

hydrothermal water flux to give a figure of 1.1 x 1010 mol yr-1.  Wheat et al. (1996) based 

their estimate on an average P/Fe ratio for hydrothermal Fe-oxyhydroxide particles and 

an Fe flux calculated from heat loss estimates to give 7.7 x 109 mol yr-1.  Each author 

uses a different river flux estimate for comparison to show the percentage impact of this 

flux but taking an Fe river flux estimate of 3.3 x 1010 mol yr-1 (Elderfield & Schultz, 

1996), the hydrothermal phosphorus sink associated with plume scavenging varies 

between 12 and 33% which is a significant fraction of the overall sink.  An estimate by 

Kadko et al. (1993) which compares the P oceanic residence time with scavenging 

residence times also falls within this range at 20%. 

 

The examples of silicon and phosphorus demonstrate the uncertainties associated with 

hydrothermal flux estimates and highlight that there is still much to be learnt. 

 

 

1.3 Processes in hydrothermal plumes 

 

1.3.1 Dissolved constituents as tracers 

 
As previously described, a number of dissolved constituents within hydrothermal plumes 

are employed as tracers of hydrothermal plume activity, most commonly manganese, 

methane and helium-3.  Mn is enriched ~106 fold in vent fluids compared to seawater and 

is usually the most abundant transition metal after iron (Bruland, 1983; Von Damm, 
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1995).  Although it has been shown that Mn (II) may behave conservatively in 

hydrothermal plumes near to the vent source (Cowen et al., 1990; Mottl & McConachy, 

1990; Chin et al., 1994), its overall behaviour within plumes is non conservative (Lilley 

et al., 1995).  Whereas iron is rapidly oxidised (see ‘1.3.2 Particle formation’), Mn 

remains in solution.  Although Mn (II) is thermodynamically unstable with respect to 

oxidation in oxygenated seawater, the kinetics of the reaction are much slower than that 

of Fe (II).  The oxidation of Mn and its removal onto particles is a microbially catalysed 

process (Cowen et al., 1986) occurring in the non-buoyant plume.  The residence time of 

Mn within a plume varies from weeks (e.g. Kadko et al., 1990) to several years (Lavelle 

et al., 1992).  Dissolved Mn measurements have been used to provide an estimate of the 

mixing ratio between the hydrothermal fluids and ambient seawater (James & Elderfield, 

1996).  Also, the percentage of total Mn in particulate form can be used as an indicator of 

plume age (Klinkhammer et al., 1985). 

 

Methane is enriched by a factor of ~105 over ambient deep ocean levels (Welhan & 

Craig, 1983) and also behaves non-conservatively within hydrothermal plumes.  Like 

manganese, it is removed by microbial activity in the non-buoyant plume (Lilley et al., 

1995).  A number of processes are responsible for the presence of CH4 within vent fluids 

including outgassing from the mantle, direct leaching from basalt and microbial 

production (Welhan & Craig, 1983; Welhan, 1988). 

  

Primordial helium from the earth’s mantle has a distinct isotopic ratio which enables its 

use as a tracer in the deep ocean (Lupton & Craig, 1981).  Due to its chemical inertness 

(and therefore conservative behaviour) helium-3 can be used to measure plume dilution 

more accurately than manganese.  Additionally, measurements of 222Rn which is also 

enriched in vent fluids can be combined with those of 3He to estimate plume age (Kadko 

et al., 1990).  Like 3He, 222Rn is chemically inert.  However, it is also radioactive with a 

half-life of 3.83 days.  This means that any variation in the 222Rn/3He ratio within a 

hydrothermal plume is purely a function of 222Rn decay and therefore the age of the 

plume can be derived from measurements of this ratio.  Radon-222 measurements have 

also been combined with those of Mn (Rudnicki & Elderfield, 1992; Gendron et al., 

1994) to provide plume age measurements, again employing the conservative nature of 
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Mn.  Rudnicki & Elderfield found similar ages for hydrothermal plume samples using 

either 222Rn/3He or 222Rn/Mn ratios. 

  

The value of Mn, CH4 and 3He measurements becomes more powerful when they are 

combined.  CH4 anomalies alone may not be indicative of hydrothermal activity but the 

presence of 3He and Mn can help to confirm it.  CH4/Mn ratios within plumes can be 

used to provide information regarding the underlying nature of the associated 

hydrothermal system.  Lupton et al. (1993) used these ratios to infer whether plumes 

along the East Pacific Rise were derived from young evolving hydrothermal systems or 

older, more stable systems.  This is based on the premise that the relative concentration 

of volatiles such as CH4 decreases as the system reaches a more stable state.  

 

Although H2S and H2 are enriched in vent fluids, they have not generally been employed 

as tracers.  This is because although elevated concentrations of both have been measured 

in hydrothermal plumes (Kadko et al., 1990; McLaughlin-West et al., 1999; Radford-

Knoery et al., 2001), they tend to decrease relatively rapidly due to microbial oxidation 

(H2) and precipitation/oxidation (H2S);  Kadko et al. (1990) calculated a residence time 

of ~10hrs for H2 in the Endeavour plume in the Pacific while Radford-Knoery et al. 

(2001) calculated H2S would decrease below detection limits within 4-5hrs of release 

from the vent at the Rainbow hydrothermal plume in the Atlantic.   

 

 

1.3.2 Particle formation 

 
In the first few seconds after the hydrothermal fluids emerge from the vents, metal 

sulfides rapidly precipitate.  Up to 50% of the iron (II) which is present at millimolar 

concentrations precipitates in this manner (Mottl & McConachy, 1990; Rudnicki & 

Elderfield, 1993).  The proportion of Fe (II) which precipitates as sulfides is dependent 

on the H2S/Fe ratio of the vent fluid (Field & Sherrell, 2000); a higher ratio resulting in 

greater sulfide formation.  Within the buoyant plume this is followed by precipitation of 

the Fe (II) as iron oxyhydroxides and the co-precipitation of elements that exist as 

oxyanions in seawater; V, P, As and Cr (German et al., 1991a; Feely et al., 1992).  Once 

the Fe-oxyhydroxide particles reach the non-buoyant plume co-precipitation of the 

oxyanions ceases (German et al., 1991; Feely et al., 1992).  Scavenging of elements such 
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as yttrium, thorium, beryllium and the rare earth elements which began in the buoyant 

plume continues in the non-buoyant plume and is the dominant process (German et al., 

1991a; 1991b).    

 

It has been suggested that this change in co-precipitation/scavenging behaviour may be 

due to the increase in pH as the plume is diluted by seawater (Ludford et al., 1996).  The 

surface charge of FeOOH particles is affected by pH (Stumm & Morgan, 1996).  At a pH 

of <6.7 the particles have a positive surface charge whereas at pH >6.7 they have a 

negative surface charge.  Hence, the FeOOH particles should initially scavenge anions 

but once the vent fluids become sufficiently diluted they should start to scavenge cations. 

 

The extent to which each reaction occurs is controlled by the rate at which dissolved Fe 

(II) is oxidised hence iron plays a major role in the chemical evolution of hydrothermal 

plumes.  In fact iron (II) oxidation is one of the main controls on the chemical processes 

within plumes.  

 

Redox behaviour of iron in hydrothermal plumes 

 
The rate of oxidation of Fe (II) exerts a major control on the formation of the Fe-

oxyhydroxide particles and therefore the rates of other reactions within hydrothermal 

plumes.  Several authors have calculated Fe (II) oxidation half times based on the pseudo 

first order rate law (Millero et al., 1987); 

 

                                 )]([)]([
1 IIFek

dt
IIFed

=−  

 

where k1 = k[OH-]2 [O2] and t½ = ln2 / k1. 

 

The half time can be calculated either from measured Fe data or from measurements of 

O2 and pH (temperature and salinity measurements are also required for this calculation).  

 

In the Atlantic the half-life is rapid with a timescale of minutes.  Rudnicki and Elderfield 

(1993) calculated a half time of 2.1mins based on particulate Fe data (from nephelometry 

correlations) obtained at the TAG site combined with modelling of time and plume 
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heights.  In contrast half time estimates for the Pacific vary from 12 hours based on pH 

and O2 data (Massoth et al., 1998) to 42 hours based on experimental Fe observations 

(Massoth et al., 1994; 1998).  Taking into account the path of global thermohaline 

circulation, the half time for the Indian Ocean was expected to be intermediate to that of 

the Atlantic and Pacific.  Field and Sherrell (2000) used pH and O2 data for ambient 

seawater to calculate expected half times for Fe (II) oxidation in the Atlantic, Pacific and 

Indian oceans, giving values of 17-27 mins for the Atlantic, 1.3 hrs for the Indian and 

3.3-6.4 hrs for the Pacific.   

 

The time scale for a buoyant plume to reach neutral buoyancy (τ) is of the order of one 

hour (Lupton, 1995; Speer & Helfrich, 1995).  This is given by the equation: 

τ = πN-1 

where N = the background buoyancy frequency.  In other words, this timescale is a 

function of the surrounding ocean, not the nature of the individual plume.  Given that the 

buoyancy frequency will not vary widely between oceans (since N is a function of 

density and density gradient), the time to reach neutral buoyancy will be reasonably 

constant, whereas the Fe (II) oxidation half times vary by an order of magnitude between 

the Atlantic and Pacific oceans.  This means that the proportion of dissolved Fe (II) 

emitted from a vent that is delivered to the non-buoyant plume will vary systematically 

along the path of the global thermohaline circulation.  Rudnicki & Elderfield (1993) 

estimated that all of the Fe (II) remaining after sulfide precipitation would be removed 

from solution ~150m above Atlantic vents which is well before neutral buoyancy will be 

reached.  However, based on their calculated longer half times for the Atlantic, Field & 

Sherrell (2000) suggest that up to half of the total Fe present at the top of the buoyant 

plume will still be Fe (II).  In the Pacific, slower oxidation rates mean that most of the 

oxidation probably takes place in the non-buoyant plume (Field & Sherrell, 2000).  For 

the Indian Ocean, if the half time for Fe (II) oxidation is 1.3hrs, then, assuming 100% 

oxidation after 5 half times (6.5hrs) and current speeds of 2cm/s, dissolved Fe (II) would 

be completely precipitated and dispersed no further than 1km from the vent site.   

 

Field & Sherrell (2000) adjusted the parameters within their model to assess the 

sensitivity of Fe oxidation to different conditions.  They found that Fe (II) oxidation rates 

were most sensitive to ambient pH and to a lesser extent, ambient O2 concentrations.  
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This is to be expected as the rate constant k1 has a second order dependence on [OH-] but 

only first order dependence on [O2].  Variability in vent fluid chemistry exerted only a 

minor influence.   

 

Although vent fluid chemistry may not greatly affect the Fe (II) oxidation rates, it does 

affect the amount of iron that reaches the non-buoyant plume.  Hence, vent fluid 

composition plays a role in the resulting fluxes because it is the iron oxyhydroxide 

particles that are involved in the scavenging and co-precipitation of other elements from 

the surrounding seawater.  The quantity of Fe reaching the non-buoyant plume depends 

on the initial losses due to sulfide formation and fallout (Field & Sherrell, 2000) which is 

dependent on the Fe/H2S ratio of the vent fluid.  Ratios vary from <0.1 at, for example, 

17.5°S on the East Pacific Rise in the Pacific Ocean (Charlou et al., 1996) where 

elemental sulfur has been observed in plume particle samples (Feely et al., 1996), to 24 at 

the Rainbow hydrothermal site in the Atlantic (Douville et al., 2002).  Low Fe/H2S ratios 

favour sulfide formation which will minimise the proportion of total Fe delivered to the 

non-buoyant plume whereas high Fe/ H2S ratios will result in less sulfide formation and a 

greater proportion of the initial Fe being delivered to the non-buoyant plume.  Hence the 

global budgets of elements that are co-precipitated or scavenged by Fe are affected not 

just by ambient conditions at hydrothermal vent sites but also the vent fluid composition.  

 

 

1.3.3 Metals 

 
The behaviour of many metals within the hydrothermal plume are intimately linked to 

that of iron.  The chalcophile elements  (e.g. Cu, Cd, Ag) present in the vent fluids are 

precipitated as sulfides along with iron in the initial buoyant plume (Mottl & 

McConachy, 1990).  Once the non-buoyant plume is reached these elements show a 

decreasing ratio with Fe in the particulate phase suggesting that they have either 

undergone oxidative dissolution or settled out of the plume (Lilley et al., 1995).  

 

Co-precipitation of the oxyanions including P, V and As with the Fe-oxyhydroxide 

particles takes place within the buoyant plume and ceases once neutral buoyancy is 

reached.  This is apparent from the constant oxyanion/Fe ratio of particles in the non-

buoyant plume.  German et al. (1991a) found constant ratios up to 1200m from the 
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source of the TAG hydrothermal plume while Metz & Trefry (1993) have shown that 

V/Fe ratios remain constant in plume particles for at least 80 days.  These particles 

eventually settle out, forming metal rich sediments.  

 

From observations of Pacific and Atlantic Ocean hydrothermal plumes Feely et al. 

(1991) found a direct correlation between the P/Fe ratios in hydrothermal plume particles 

and the ambient dissolved P concentration.  Hence in the Pacific where the dissolved P 

concentration is higher than in the Atlantic, the P/Fe ratio is also higher.  For As which 

has similar dissolved concentrations in both oceans they found that the As/Fe ratio was 

also similar in both oceans.  However V, which also has similar dissolved concentrations 

throughout the oceans (Middelburg et al., 1988) has a higher V/Fe ratio in the Atlantic 

than in the Pacific (Metz & Trefry, 1993; Feely et al., 1994a).  Feely et al. (1998) further 

investigated the V/Fe ratios at several sites in the Atlantic and Pacific and demonstrated 

that there is an inverse correlation between the V/Fe ratio in hydrothermal plumes and 

ambient dissolved phosphate levels.  A suggested reason for this relationship is that P 

competes more effectively for the sites on the Fe-oxyhydroxide particles and therefore 

where dissolved P concentrations are high, V/Fe ratios will be low and vice versa (Metz 

& Trefry, 1993; Feely et al., 1994a).  Dissolved P concentrations in the Indian Ocean are 

intermediate to that of the Atlantic and Pacific Oceans (CLIVAR).  Based on the above 

observations both the V/Fe and P/Fe ratios should also be intermediate to those measured 

in the Atlantic and Pacific.  

 

Once the non-buoyant plume has been reached, uptake of oxyanions evidently ceases 

whereas scavenging of a number of other particle reactive species (e.g. REEs, Th and Be) 

onto the Fe-oxyhydroxide particles continues.  Particles in the non-buoyant plume at the 

TAG hydrothermal site (Atlantic) show an increasing REE/Fe ratio with decreasing iron 

content, suggesting that scavenging continues as the plume is further diluted and the 

particles settle out (German et al., 1990).  The REE distribution patterns show that their 

origin is both from the hydrothermal vent fluids and seawater.  Sherrell et al. (1999) 

examined REE data from the East Pacific Rise.  Here the picture is complicated by the 

slower Fe (II) oxidation rates in the Pacific which mean that particulate Fe initially 

increases with distance from the vent site in the non-buoyant plume despite increasing 

dilution with ambient seawater.  The REE/Fe ratio however, still increases with 
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decreasing Fe content.  Sherrell et al. interpret this to be the result of simple mixing 

between fresh FeOOH particles and background material re-suspended from the 

sediments.  They suggest that the trends seen in the TAG data result from the drawdown 

of dissolved REE at high particulate Fe concentrations, however the data of Sherrell et al. 

does not extend beyond the initial particulate Fe maximum in the non-buoyant plume, 

therefore it is impossible to discount the possibility that continued adsorption of REEs 

takes place in this Pacific plume in the same manner as at TAG in the Atlantic.  The fact 

that, in the Pacific, the REE/Fe ratio continues to increase once the particles reach the 

underlying sediments and that the REE/Fe ratio in the sediments increases with distance 

off axis from the ridge crest (Owen & Olivarez, 1988; Olivarez & Owen, 1989) also 

suggests continued adsorption would occur within the plume.   

 

Although hydrothermal vent fluids are enriched in the REEs, this scavenging and 

subsequent settling of the Fe-oxyhydroxide particles to form metalliferous sediments 

means that hydrothermal systems are in fact a net sink for the rare earth elements 

(German et al., 1990).  

 

 
1.4 This study 

 
The vast majority of studies of hydrothermal activity have been concentrated in the 

Atlantic and Pacific Oceans which lie at the two extremes of global thermohaline 

circulation; in effect much of the mid-ocean ridge system remains unexplored.  Figure 2 

shows the location of known vent sites and sites where the detection of plumes indicate 

hydrothermal activity but the existence of vents is yet to be confirmed.  Further sites have 

been discovered since the publication of this map; two new vent fields on the southern 

Mid-Atlantic Ridge (German et al., 2005) and four new vent fields in the Lau Basin in 

the Pacific (Tivey et al., 2005).  The Indian Ocean is an important link between the 

Atlantic and Pacific ridge systems, both in terms of understanding the evolution of vent 

fauna throughout the oceans (Tyler et al., 2002; Van Dover et al., 2002) and the impact 

of variability in hydrothermal chemistry.  The effect of the ambient seawater conditions 

on hydrothermal plume particle formation, especially through iron oxidation, and 

scavenging is a key component to a better quantification of global hydrothermal chemical 

fluxes.  
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This study focuses on the Kairei and Edmond vent sites located at 25°19’S, 70°02’E and 

23°53’S, 69°36’E respectively, on the Central Indian Ridge, north of the Rodriguez 

Triple Junction (Fig. 3).  The Rodriguez Triple Junction is the convergence point of the 

three Indian Ocean spreading ridges that separate the Indian, African and Antarctic 

plates.  The Central Indian Ridge (CIR) lies to the North of the triple junction, separates 

the African and Indian plates and has a full spreading rate of ~50 mm yr-1.  The Southeast 

Indian Ridge (SEIR) separates the Indian and Antarctic plates and has a spreading rate of 

~60 mm yr-1 while the Southwest Indian Ridge (SWIR) which separates the Antarctic 

and African plates has a much slower spreading rate of  ~16 mm yr-1 (Tapscott et al., 

1980; Munschy & Schlich, 1989; DeMets et al., 1990; Sempere & Klein, 1995).  

 

 

 

Figure 2  Known sites of hydrothermal venting confirmed from actual 
observations (red) of the vent site, or inferred from water column anomalies 
(orange), for example 3He or dissolved Mn (from German & Von Damm, 2004).  
As indicated in the text, this status is constantly evolving as new sites are discovered. 
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Figure 3  The location of the Kairei and Edmond hydrothermal vent sites near the 
Rodriguez Triple Junction in the Indian Ocean.  Also shown are the paths of the 
Circumpolar Deep Water (dashed arrow) and the boundary current (solid arrow) 
mentioned below. (SWIR = South West Indian Ridge, CIR = Central Indian Ridge) 

 

Deepwater circulation near the two vent sites is dominated by the transport of 

Circumpolar Deep Water (CDW) which is formed predominantly from North Atlantic  

Deep Water (e.g. van Aken et al., 2004).  The majority of the CDW flow is transported 

east along the southern boundary of the Ocean.  Fractures in the SEIR allow this water to 

flow through to the Eastern Indian Ocean where they form a “reverse flow” western 

boundary current that passes north-west along the eastern flank of the SEIR and then 

north along the eastern flank of the CIR (Toole & Warren, 1993).  Some of this CDW 

flows northwards along the eastern flank of the SWIR where fractures allow the water to 

enter the CIR rift valley (Pollard & Read, 2001). 

  

Hydrothermal plumes were first detected on the Central Indian Ridge in the late 1980’s 

(Pluger et al., 1990; Jean-Baptiste et al., 1992) and in the region of the Rodriguez Triple 

Junction in 1993 (Gamo et al., 1996) but actual observation of a hydrothermal vent field 
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did not occur until 2000 at the Kairei site (Gamo et al., 2001).  The Edmond vent field 

was discovered a year later in 2001 (Van Dover et al., 2001).  In addition to the Kairei 

and Edmond vent fields, five more plumes were detected on the Central Indian Ridge 

between 17°and 20°S in 2001 (German et al., 2001).   Hydrothermal plumes have also 

been detected on the Southeast Indian Ridge (Scheirer et al., 1998) and the Southwest 

Indian Ridge (German et al., 1998a; Bach et al., 2002). 

 

Results of this study, which is primarily concerned with the hydrothermal plumes at the 

Kairei and Edmond sites, complement the vent fluid studies of Gamo et al. (2001) at 

Kairei and those of Gallant & Von Damm (2006) at both Kairei and Edmond.  The vent 

fluids from the Kairei hydrothermal vent were found to have similar physical 

characteristics and composition to fluids from other basaltic hosted hydrothermal vents 

along mid-ocean ridges in the Pacific and Atlantic.  The main vent fluid characteristics at 

Kaire and Edmond are detailed in Table 12.  The vent fluid temperatures are as high as 

365°C at Kairei and 380°C at Edmond, which are at the upper end of the global range of 

temperatures observed in vent fluids (up to 405°C, see e.g. German & Von Damm, 

2004).  

 

The pH of the vent fluids are 3.5 and 3.1 at Kairei and Edmond  which are within the 

range usually observed in fluids from basaltic hosted hydrothermal systems.  The 

alkalinities are also within this range being -0.46 and -0.5 meq/kg respectively (German 

& Von Damm, 2004; Gallant & Von Damm, 2006).  The chlorinities are 640mmol/kg at 

Kairei and 930mmol/kg at Edmond which are both higher than seawater and at the higher 

end of the globally observed range (Butterfield et al., 2003).  A chlorinity higher than 

seawater shows that the vent fluids are dominated by the liquid phase from the phase-

separated seawater (the temperatures and pressures encountered by the circulating 

hydrothermal fluids are sufficient to enable phase separation to occur).  Consistent with 

this, are the relatively low H2S concentrations of 4.0 (Kairei) and 4.7mmol/kg (Edmond) 

because dissolved gases tend to be concentrated in the vapour phase rather than the liquid 

phase.  Concentrations of H2S in vent fluids can reach up to 110mmol/kg as at one vent 

at 9-10°N on the East Pacific Rise (Von Damm, 1995). 
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At Kairei the Fe and Mn concentrations of 5.4mmol/kg and 840µmol/kg respectively 

(Gamo et al., 2001) are within the ranges observed for similar hydrothermal vent sites: 

<0.1 to 18mmol/kg for Fe and 20 to 4500µmol/kg for Mn (Von Damm, 1995; Butterfield 

et al., 2003).  The Fe/H2S ratio of 1.4 is at the lower end of the overall range of <0.1 to 

24 observed in various vent fluids in these environments (Von Damm, 1995; Butterfield 

et al., 2003), however it is similar to many vent systems such as TAG and MARK in the 

Atlantic and those on the East Pacific Rise.  The Edmond vent fluids have Fe and Mn 

concentrations higher than those at Kairei; 12.8mmol/kg and 1430µmol/kg respectively 

(Gallant & Von Damm, 2006).  These are also within the range of those previously 

recorded at other hydrothermal sites with the Fe concentration being at the higher end of 

the observed range.  The Fe/ H2S ratio of 3.2 is higher than Kairei but is still within the 

globally observed range.  Copper concentrations are high at both vent sites, in fact at 

Kairei the concentration of 210µmol/kg exceeds the range of 0-162µmol/kg observed to 

date for all known types of vent and the concentration at Edmond (160µmol/kg) is at the 

top of this range (German & Von Damm, 2004).  Zinc concentrations however are within 

the range observed (0-740µmol/kg) for basaltic hosted hydrothermal systems.  These 

values are consistent with our existing knowledge of vent fluids: temperature is known to 

affect the Cu concentrations in vent fluids, generally significant quantities are only 

observed where the exit temperature of the fluids are ≥ 350°C whereas Zn is less 

sensitive to temperature (Von Damm, 1990; Von Damm, 1995). 

 

As already discussed the Fe (II) oxidation rates are reported to differ significantly 

between the Pacific and the Atlantic (Rudnicki & Elderfield, 1993; Massoth et al., 1994; 

Field & Sherrell, 2000), being much shorter in the Atlantic (half time of 2 to 27 minutes) 

than the Pacific (half time of 4 to 42 hours).  In the Indian Ocean which lies midway on 

the path of the global thermohaline circulation, redox conditions indicated, prior to this 

study that the Fe (II) oxidation rate should be intermediate to that of the Atlantic and 

Pacific Oceans, with a predicted half time of 1.3 hrs (Field & Sherrell, 2000).  
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1.4.1 Specific objectives 

 
The main issues to be addressed by this study are: 
 
1) Ascertain whether the different Fe (II) oxidation rate in the Indian Ocean 

fundamentally affects the processes taking place within the hydrothermal 

plume, or if we see the same patterns of behaviour previously observed in 

Atlantic and Pacific Ocean hydrothermal plumes.  This is done by measuring the 

concentration of particulate elements in hydrothermal plume samples.  As discussed 

in ‘1.3.3. Metals’, three broad patterns of behaviour with respect to Fe have been 

observed for elements in the particulate phase in Atlantic and Pacific hydrothermal 

plumes.  Briefly, the chalcophile elements (e.g. Cu, Zn, Cd, Pb) show a decreasing 

ratio with Fe as the plume is diluted suggesting these elements are lost from the 

plume relative to Fe and that the elements reside in a different phase to Fe (i.e. 

sulfides), the oxyanions (P, V, As, Cr) exhibit a fixed ratio with Fe throughout plume 

dilution which implies there is no loss or gain of these elements relative to Fe, while 

particle reactive elements (REEs, Y, Th, Be) show an increasing ratio with Fe as the 

plume is diluted suggesting they are scavenged from the surrounding seawater.            

2) Elucidate further the processes taking place in the plume from information on 

complementary particulate, colloidal and dissolved fractions. Previous studies of 

hydrothermal plume processes have mainly focussed on one phase within the plume, 

either the dissolved phase or the particulate phase.  The exceptions to this are James 

& Elderfield (1996) who measured both particulate and dissolved Fe, Mn, Cu and Cd 

at the TAG and Snakepit hydrothermal sites in the Atlantic, James et al. (1995) who 

measured dissolved and particulate Fe and Mn along with a number of other elements 

in the particulate phase at the Broken Spur site in the Atlantic and Massoth et al. 

(1994) who measured dissolved and particulate Fe and Mn only, at the Cleft Segment 

on the Juan de Fuca Ridge in the Pacific Ocean.  More specifically this study will: 

 

a) Measure particulate and dissolved Fe, to allow the calculation of total Fe in the 

plume samples.  In conjunction with the vent fluid concentrations and the dilution 

factor of the samples, the amount of Fe which has been lost from the plume can 
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be estimated and compared with the predictions of previous authors (Mottl & 

McConachy, 1990; Rudnicki & Elderfield, 1993).  

 

b) Measure particulate and dissolved Cu, P and Mn.  Although inferences about the 

behaviour of elements within hydrothermal plumes can be made from the study of 

just one phase, in some cases, study of the complementary phase is required to 

confirm the suggested behaviour.  For example, it is known that Cu, which 

precipitates as sulfides soon after emerging from the vent, is lost from the 

hydrothermal plume as it is diluted.  This has been attributed to either the 

preferential settling of sulfides and/or their oxidative dissolution (German et al., 

1991a).  If oxidative dissolution is occurring then some enrichment of Cu in the 

dissolved phase might be expected.  As this cannot be determined from the 

particulate data alone, complementary dissolved phase data are also required.   

 

c) Study the colloidal phase for Fe, Mn and Cu to assess if there are separate 

processes taking place in this phase.   Where the particulate phase has been 

investigated, either the >1.0µm or >0.4µm fraction has been studied, and for the 

dissolved phase, it has been the >0.4µm fraction.  No attempt has yet been made 

to study the colloidal phase. As Fe (II) forms Fe (III) colloids (e.g. Honeyman & 

Santschi, 1989; Wu & Luther III, 1994) when it is initially oxidised, if we are to 

fully understand the processes taking place within hydrothermal plumes then it is 

crucial that the colloidal phase is also studied.  For this study, ‘particulate’ 

samples in the >1.0µm, >0.4µm and >0.1µm size fractions were collected along 

with complementary ‘dissolved’ samples in the <0.4µm and <0.1µm size 

fractions.  The purpose of the 0.1µm samples was to enable the first study of the 

colloidal phase within hydrothermal plumes. 

 

3) Test the hypothesis that there is a linear relationship between P/Fe or V/Fe in 

hydrothermal plume particles and ambient dissolved phosphate in the oceans, 

by measuring these ratios in the Indian Ocean hydrothermal plume samples.  

Existing data from Atlantic and Pacific hydrothermal plumes suggests that there is a 

linear relationship.    If this relationship holds true for the Indian Ocean, do these 
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ratios therefore still have potential as paleo-proxies for past seawater phosphate 

concentrations?  

 

 

1.4.2 Thesis structure 

 

In this opening chapter an overview of hydrothermal venting and the current state of 

research in this field has been presented.  The processes known to occur within 

hydrothermal plumes have been discussed, as well as the background to this study and 

the issues to be addressed.  The contents of the remainder of the thesis are outlined 

below. 

 

Chapter 2 explains the sampling methods and shows the sampling locations as well as 

providing details of the analytical methods used. 

 

Chapter 3 focuses on Fe and Mn data only.  The depth profiles of light scattering data in 

conjunction with the dissolved (<0.4µm) and particulate (>0.4µm fraction only) Fe and 

Mn data as well as other data from the cruise where the samples were collected are used 

to characterise the hydrothermal plumes at Kairei and Edmond.  Losses of Fe from the 

plume due to sulfide precipitation are estimated using the complementary dissolved and 

particulate data.  Fe (II) oxidation is discussed, again in conjunction with other data 

arising from the cruise which also allows plume age and in situ particulate Fe estimates. 

 

Chapter 4 discusses the >1.0µm particulate samples which were collected via in situ 

filtration.  The results are compared with earlier studies of similar hydrothermal plume 

samples in order to determine whether Fe (II) oxidation appears to be affecting the 

processes within the plume. 

 

In Chapter 5 the main theme is the >0.4µm particulate samples which were filtered once 

the hydrothermal plume water samples were back on board the ship.  These are also 

compared to earlier studies of hydrothermal plume samples of the same size fraction.  

Also discussed in this chapter are the findings arising from the different size fractions 
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which were sampled, as well as the relationship of the P/Fe and V/Fe ratios with ambient 

dissolved phosphate in the Indian Ocean.  

 

Chapter 6 synthesizes the conclusions of this study and gives recommendations for future 

work to advance research in this field. 
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2 Chapter 2   Sampling and Methods 
 
2.1 Sampling 

 
Sampling took place during the RRS Charles Darwin cruise CD128 to the Indian Ocean 

in May/June 2001.  Samples were collected from hydrothermal plumes overlying both 

the Kairei and Edmond vent sites in the region of the Rodriguez Triple Junction (Fig. 4), 

with particular focus on the Kairei site.  At Kairei, samples were taken at locations 

ranging from 100m to 4km away from the actual vent site and at Edmond, between 20 

and 500m from the vent field location.  Background profile samples were also taken from 

the ridge flanks and the rift valley.  Details of each sampling station are shown in Table 1 

and the locations of the main CTD stations are illustrated in Figs. 6 and 7.  

 

Figure 4  The location of the Kairei (K) and Edmond (E) hydrothermal vent sites at 
depths of ~2450m and 3300m respectively, near the Rodriguez Triple Junction in 
the Indian Ocean.  The inset diagram shows the topography of the region where red 
is the shallowest and blue is the deepest topography.  
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SAPs samples (>1.0µm) 
if applicable 

Station 
Latitude 

(S) 
Longitude 

(E) 

Approximate
distance 

from vent  
site (km) Depth  (m) 

Additional 
sample 

identifier 
Kairei 25°19.17' 70°02.40'  
CTD 02 25°19.63' 70°02.80' 1.09 2248 
CTD 04 25°18.59' 70°01.92' 1.34 n/a 
CTD 05 25°19.28' 10°02.56' 0.34 n/a 
CTD 06 25°18.43' 70°01.82' 1.68 n/a 
CTD 07 25°19.33' 70°02.50' 0.34 2354 
CTD 10 25°17.77' 70°00.69' 3.87 n/a 
CTD 11 25°17.82' 70°00.32' 4.29 2400 
CTD 17 25°19.30' 70°02.59' 0.40 2293 
CTD 18 25°19.10' 70°02.10' 0.52 2342 
CTD 19 25°18.77' 70°01.89' 1.13 2323 
CTD 20 25°19.29' 70°02.46' 0.24 2273 
CTD 21 25°19.20' 70°02.45' 0.10 2298 

    
Edmond 23°52.69' 69°35.83'  

CTD 01 23°52.63' 69°36.11' 0.49 2900  
CTD 23 23°52.72' 69°35.86' 0.08 2799  
SAP01 23°52.70' 69°35.86' 0.02 2600 s/n001 

    2800 s/n002 
    2850 cosap02 
    2900 s/n003 
    2950 cosap04 

SAP02 23°52.63' 69°35.79' 0.13 2800 s/n001 
   2900 s/n002 
   3000 cosap02 
   3100 s/n003 
   3200 cosap04 
   

Background    
CTD 16 24°41.40' 71°07.89' Ridge flank background profile 
CTD 22 25°25.97' 70°03.03' Rift valley background profile 

   
Table 1.  CTD stations where samples were collected.  Locations including distance 
from vent sites are shown.  Where stand alone pumps (SAPs) were deployed their 
depths are shown, ‘n/a’ are CTDs where the SAPs were not deployed. 
 
 
 
Seawater samples were collected in 10 litre Niskin bottles; sample depths were chosen 

based on real time light scattering anomalies recorded by the Seatech Light Scattering 

Sensor mounted on the CTD rosette.  One litre of seawater from each Niskin bottle 

sample was filtered under nitrogen pressure of about 0.8 atmospheres, through an in-line 

mounted 47mm Whatman Cyclopore 0.4µm filter. At sampling stations CTD 7 and CTD 
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23, another 1 litre of seawater from each Niskin bottle was also filtered through a 47mm 

Whatman Cyclopore 0.1µm filter.  The seawater samples were acidified with 1ml of 14M 

sub-boiled distilled HNO3 while the filters were placed in sealable plastic petri dishes in 

re-sealable plastic bags and frozen.    

 

   

Figure 5  CTD rosette showing deployment of 3 stand alone pumps (SAPs) mounted 
at the top of the frame. 
 

Additionally, at some CTD stations, stand alone pumps (SAPs) were deployed on the 

CTD rosette to collect large volume particulate samples by in-situ filtration through 

293mm Nucleopore polycarbonate 1.0µm filters (see Fig. 5 above).  Deployment on the 

CTD rosette allowed optimum sampling within the plume using the real time CTD data.  

Stand alone pumps were also used at two locations close to the Edmond site without the 

CTD; at these locations five pumps were deployed simultaneously from the stern of the 

ship on a plastic coated wire to collect large volume particulate samples through the 

plume.   
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Figure 6  Contour map of the Edmond hydrothermal vent site area showing the 
locations of the vent (red circle) and the CTD stations and stand alone pump (SAP) 
deployments (blue diamonds). 

 

 
 

Figure 7  Contour map of the Kairei hydrothermal vent site area showing the 
location of the vent (red circle) and the locations of the main CTD stations (blue 
diamonds). 
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2.2 Determination of dissolved Fe, Mn and Cu in filtered hydrothermal plume 

samples 

 

A number of methods have been used to determine the concentration of dissolved iron, 

manganese and copper in seawater for both shipboard and laboratory analysis.  Due to 

the low concentrations (nanomolar) of these elements in seawater, most methods involve 

a pre-concentration step followed by analysis; there are also methods for the direct 

analysis of trace metals in seawater.  The main pre-concentration methods involve either 

complexation with a chelating agent, followed by solvent extraction (Danielsson et al., 

1978; Bruland et al., 1979; Statham, 1985) or the use of a chelating ion exchange resin 

such as Chelex-100 (Kingston et al., 1978; Bruland et al., 1979) or 8-hydroxyquinoline 

(Obata et al., 1993). 

  

The method used here was complexation with ammonium pyrrolidine dithiocarbamate 

(APDC) and diethylammonium diethyl dithiocarbamate (DDDC) followed by solvent 

extraction with chloroform after Bruland et al. (1979) and Statham (1985).  This method 

is well established at Southampton, having been used successfully for many years.  The 

efficiency of recovery for each element is dependent on the pH at which the extraction is 

performed (Kinrade & Van Loon, 1974; Danielsson et al., 1978; Statham, 1985).  Iron 

and manganese can be successfully co-extracted by adjusting to a pH of 6.5-7.5 (D. P. 

Connelly, pers. comm.), however copper must be extracted at a lower pH of 4.5–5.0.  

 

 
2.2.1 Cleaning Procedures 

 

Teflon separatory funnels 

 
The funnels were initially acid cleaned by immersing in 50% (v/v) HCl for one week, 

rinsing in Milli-Q water, then immersing for a further week in 50% (v/v) HNO3 before 

rinsing in sub boiled distilled (SBD) water.   

 

Prior to each batch of extractions, the funnels were further cleaned by adding 3ml each of 

complexant and chloroform, shaking for 30mins and discarding the complexant and 
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chloroform.  A 10% HNO3 solution was placed in the funnels during storage between 

processing batches of samples. 

 

Teflon screw cap vials 

 
The vials (Savillex, 15ml capacity) were initially cleaned by washing with micro 

detergent, rinsing in Milli-Q water and soaking for one week at room temperature in a 

50% HCl solution.  They were then rinsed in SBD water, soaked for a further week at 

room temperature in a 50% HNO3 solution, rinsed in SBD water and dried in a Class 100 

laminar flow cabinet (after Kremling et al., 1999).  

 

Plastic ware 

 
Pipette tips, sample storage vials and sample cups (for atomic absorption spectroscopy 

analysis) were cleaned by soaking in a 25% HNO3 solution for one week at room 

temperature, rinsed in SBD water and dried in a Class 100 laminar flow cabinet. 

  

Teflon bottles used for reagent storage were soaked for one week at room temperature in 

a 50% HCl solution, rinsed in Milli-Q water, soaked for a further week at room 

temperature in a 50% HNO3 solution, rinsed in SBD water and dried in a Class 100 

laminar flow cabinet (Moody & Lindstrom, 1977). 

 

 

2.2.2 Preparation of reagents 

 

Sub boiling distilled water  

 
Milli-Q water was further purified by sub boiling distillation in a quartz still.  In this 

method, the water is radiatively heated without boiling.  The vapour condenses on a 

quartz finger cooled by circulating water and is collected via a tube into a clean Teflon 

bottle.  Radiative heating prevents aerosol formation that can lead to unpurified water 

being carried over in conventional distillation.  
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Ammonia solution 

 
Purified ammonia solution was prepared by isothermal distillation.  A Teflon bottle 

containing SBD water was placed in an airtight container containing analytical reagent 

grade ammonia solution.  The ammonia equilibrates between the two solutions leading to 

an ultra pure ammonia solution.  

 

Chloroform 

 
Primar trace metal analysis grade chloroform (Fisher Scientific) was certifiably pure 

enough (Fe concentration <0.05ppm, Mn <0.005ppm and Cu <0.01ppm) to be used 

without further purification.  Analytical blanks confirmed these low metal concentrations 

in the chloroform.   

 

Complexant 

 
The complexant was prepared using 2% (w/v) ammonium pyrrolidine dithiocarbamate 

and 2% (w/v) diethylammonium diethyl dithiocarbamate in SBD water.  The solution 

was filtered through a Whatman No1 filter, placed in a Teflon separatory funnel and 

purified of metals by extraction with Primar chloroform.  The extraction was done using 

3ml of chloroform, shaking for 6 minutes and then discarding the chloroform.  This 

procedure was repeated 10 times.  The complexant solution was stored in a Teflon bottle 

in the refrigerator and used within 48 hours, after this time the complexant solution 

becomes unstable and extraction efficiency is unpredictable (Kremling et al., 1999). 

 

Sub boiling distilled nitric acid 

 
Analytical reagent grade concentrated nitric acid was further purified by sub boiling 

distillation in a quartz still as previously described for sub boiling distilled water. 
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2.2.3 Pre-concentration and extraction of trace metals from seawater 

 

All procedures were carried out in a clean wet station within a class 100 clean room.  The 

Teflon separatory funnels were cleaned using the procedure described in ‘2.2.1 Cleaning 

Procedures’.  Samples were extracted in batches of ~30.  At the start and end of each 

batch of samples, four blanks were run using ~100ml of SBDW, 3ml of complexant and 

3ml of chloroform (ammonia solution blanks were determined separately).  It was only 

necessary to make up one batch of complexant for each set of samples since the samples 

could be processed within the 48hrs in which it is necessary to use the complexant. 

  

For each seawater sample, 100ml was placed in a separatory funnel.  The appropriate 

amount of ammonia solution required to bring the acidified samples back into the 

required pH range (~6.5-7.5 for Fe and Mn, 4.5-5.0 for Cu) for trace metal extraction was 

added (this was determined by taking a 20ml sub-sample and adding NH3 solution until 

the required pH was reached and calculating the amount required for 100ml) and the 

samples then shaken.  Chloroform (3ml) and complexant solution (3ml) were added and 

the samples mixed on a rotating device for 6 minutes.  The CHCl3 and seawater phases 

were allowed to separate and the CHCl3 layer drained into a 15ml Teflon screw cap pot.  

Next, 2ml each of chloroform and complexant was added to the aqueous fraction and the 

samples mixed for another 6 minutes before allowing separation and draining of the new 

chloroform layer, combining it with the first.  This last step was repeated once more.  

The funnels were then taken through a cleaning step using 2ml each of complexant and 

CHCl3, shaking for 6mins, then discarding the complexant and CHCl3. 

 

The extracted samples were acidified with 100µl of SBD conc. HNO3 and dried down on 

a hotplate at ~75°C, a further 50µl of SBD conc. HNO3 was added to re-dissolve the 

sample and again dried down.  This step oxidises any organic residue and breaks down 

the dithiocarbamates (Bruland et al., 1979).  The sample was then re-dissolved in 100µl 

of SBD conc. HNO3 and diluted to a total volume of 1ml with 900µl of SBD H2O and 

transferred to a sample vial.  Sample vials were placed in racks, in re-sealable polythene 

bags and stored in a refrigerator to reduce evaporative losses.  The whole process 

provides a concentration factor of 100 times.  
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2.2.4 Determination of iron, manganese and copper in pre-concentrated samples 

using Graphite Furnace Atomic Absorption Spectroscopy 

  

All samples were measured on a Varian SpectrAA 300 Zeeman Atomic Absorption 

Spectrometer with Varian Zeeman Graphite Furnace Atomiser and all analyses were 

carried out using pyrolytically coated partitioned graphite tubes.  The manufacturer’s 

recommended furnace operating conditions were followed for copper but for iron and 

manganese, the cleaning step and atomisation stage were adjusted slightly from the 

manufacturers recommended settings.  Varian recommend a 2 second step at 2300°C for 

Fe and 2400°C for Mn, which is the same temperature as the atomisation stage for each 

element.  However, this did not clean the tube successfully as carry over effects were 

observed.  A 2 second step at a higher temperature of 2600°C for both Fe and Mn 

resolved the problem.  For the atomisation stage, Varian recommend that the gas flow is 

turned off.  However, the absorbances recorded for Fe and Mn over the chosen 

calibration range (up to 100µg/l for Fe and 50µg/l for Mn) without gas flow were too 

high, i.e. they exceeded the absorbance at which the concentration versus absorbance 

relationship remains linear, hence some gas flow was introduced at the atomisation stage 

to bring the absorbance back into a linear range. The resulting absorbances were still 

found to be consistent.   

  

A mixed Fe, Mn and Cu 1000µg/l stock standard solution was prepared from 

commercially available standards (Z-tek) and working standards were freshly prepared 

from this stock solution for each batch of measurements.  Four replicate measurements 

were made for each sample; where the relative standard deviation of the mean of the 

measurements exceeded 5% and there was no obvious outlier, the measurement was 

repeated. 

 

As previously mentioned, blanks were determined by extraction of SBD water.  For Fe, 

the blanks varied from 0.2 to 0.5nmol/l between batches while the detection limits (3σ of 

the blank) were 0.2 to 1.1nmol/l.  For Mn, blanks were from <0.01nmol/l to 0.04nmol/l, 

detection limits were 0.15nmol/l or less.  Cu blanks varied from 0.04nmol/l to 0.35nmol/l 

while the detection limit varied from 0.08nmol/l to 0.7nmol/l.  These figures are 
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summarised in Table 2 along with the precision of the analyses and the extraction 

efficiencies which are discussed below. 

 

Precision was determined by replicate extractions of a laboratory low metal seawater 

(LMSW) standard.  For each batch of ~30 samples, between 4 and 6 LMSW extractions 

were carried out.  The Fe, Mn and Cu concentrations of the LMSW were 81.1 ± 

3.7nmol/l, 4.3 ± 1.1nmol/l and 1.4 ± 0.3nmol/l respectively.  For Fe, the precision varied 

from 4.1% to 13.4% between batches. For Mn, precision varied between 3 and 5.5% 

except for one batch, which was 13.7%.  The precision for the Cu LMSW measurements 

varied between 9 and 25%. 

 

Extraction efficiency was determined by extraction of NASS 5 certified seawater 

reference material for trace metals (National Research Council Canada); for Fe it was 

106 ± 12%, for Mn, 119 ± 12% and for Cu, 104 ± 12% when all data except outliers are 

considered.  Although the Mn extraction efficiency could be cause for concern, results 

for some samples which had previously being extracted in batches where the NASS 5 

extraction efficiency was 100 ± 5% for Mn were compared to results from batches where 

the efficiency was higher than 100% and were found to be consistent.  A number of 

contributory factors could account for the higher than expected Mn recoveries, e.g. the 

prolonged use of Teflon separatory funnels with dithiocarbamates can lead to 

degradation of the funnel walls which leads to carry over of trace metals from one 

extraction to the next (Muller et al., 1991).  This may also explain the poor precision of 

the Cu measurements which were the final extractions to be carried out after the funnels 

had been used for many other extractions.   

 

Element Blanks 
(nmol/l) 

Detection 
Limit (3σ) Precision (%) Extraction 

efficiency (%) 

Fe 0.2 – 0.5 0.2 – 1.1 4.1 – 13.4 106 ± 12 

Mn <0.01 – 0.04 ≤ 0.15 3 – 5.5  (13.7) 119 ± 12 

Cu 0.04 – 0.35 0.08 – 0.7 8 - 25 104 ± 12 

Table 2  Analytical performance of method for trace metals in filtered 
hydrothermal plume samples. Precision is the relative standard deviation of the 
replicate LMSW measurements where n = 4 to 6 (n = number of samples)   
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2.3 Stand Alone Pump (SAP) >1.0µm Particulate Samples 

 
The SAP particulate samples were collected and digested by Hedy Edmonds (University 

of Texas Marine Science Institute) who then provided a 5ml aliquot of the digested filters 

for further analysis at Southampton.  The 293mm Nucleopore filters were digested by 

placing them in 30ml acid cleaned Savillex Teflon vials and refluxing for 72 hrs with 

20ml of hot concentrated Seastar grade nitric acid.  

 

 

2.3.1 Major element analysis by ICP/AES 

  

The following elements were determined by Inductively Coupled Plasma Atomic 

Emission Spectroscopy (ICP/AES): Fe, Mn, Al, Mg, Ca, P, V, As, Cu, Zn, Y and Na.  

La, Ce and Pb were also attempted but although the concentration of the elements within 

the samples was well above detection limits, the calibrations were unsuccessful (data 

were very scattered).  These elements were later measured using ICP/MS (Inductively 

Coupled Plasma Mass Spectrometry). 

 

Sample preparation 

 

The expected concentrations of the minor elements (Y, La, Ce, Pb) meant that the 

digested samples needed to be measured without dilution.  However, the ICP/AES 

procedure requires samples to be in dilute acid (0.6M HCl or 0.8M HNO3) whereas the 

digested samples were still in concentrated nitric acid.  Therefore, a 2ml sub-sample of 

each sample digest was taken using a hand pipette and placed in a 15ml Savillex Teflon 

screw cap vial (the Savillex Teflon vials had previously been acid cleaned by immersing 

in 50% nitric acid at a temperature of 50-60°C for ~48hrs, rinsing in SBD water and 

allowing to dry in a Class 100 laminar flow cabinet).  The vials containing the sub-

samples were placed on a hotplate at moderate temperature and allowed to gently 

evaporate to dryness.  The resulting residue was re-dissolved in 200µl 8M HNO3, made 

up to a total volume of 2ml with 1.8ml H20 and transferred to an acid cleaned sample vial 

(see ‘2.2.1 Cleaning Procedures’ under ‘Plastic ware’).   
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Several blanks were processed and measured.  At one CTD station during sample 

collection, the stand alone pumps were deployed on the CTD rosette but not switched on, 

these filters serve as complete sample processing blanks (referred to as ‘dip blanks’).  

When the sample filters were digested, new filters straight from the box were also 

processed.  Finally, when the 2ml sub-samples were dried down and re-dissolved, blanks 

of 2ml conc. HNO3 were processed (referred to as ‘procedural blanks’). 

 

Analysis of samples by ICP/AES 

 
The samples were measured on a Perkin Elmer Optima 4300DV Optical Emission 

Spectrometer with a dedicated AS 93plus Autosampler.  A glass concentric nebuliser 

(manufactured by Glass Expansion pty) was used, the sample uptake rate was set to 

0.95ml/min and the carrier gas (Argon) flow rate to 0.85l/min.  A glass cyclonic spray 

chamber was used as these have high solution transport rates, good stability and good 

matrix effect characteristics (Green et al., 2003).  Five multi-element standards were 

prepared from commercially available standards (Fisher Scientific and VWR Aristar), the 

proportions of the major elements within each standard were varied to enable 

identification of any interference issues.  The majority of the elements were measured 

using axial plasma view with the exception of Ca, Mg, Mn and Fe which were viewed 

radially.  Axial orientation generally has a higher sensitivity than the radial orientation 

but this does vary as a function of wavelength.   Results are the mean of three replicate 

measurements.  

 

External precision for the ICP/AES analysis was calculated from 10 replicate 

measurements of one of the standard solutions and found to be better than 1.5% for all 

elements except As which was 9.7%.  Unfortunately the nature of the sampling means 

that there are no replicate samples and therefore it is not possible to calculate precision 

for the whole analysis.  Limits of detection (calculated as 3 times the standard deviation 

of 10 replicate blanks) were less than 1.3µg/l for Al, Mn, Mg, V and Y.  For Cu and Fe, 

they were less than 2.7µg/l, while for Ca, P, Zn and As they varied from 8.3 to 14.3µg/l.  

Although some of these limits of detections (those for Al, Mn, Mg, Cu, Fe and Zn) are 

higher than typically observed for this technique and the instrument used (D. Green, pers. 

comm.) the concentrations recorded in the samples were well above these limits (see 

Appendix 1 for full details of limits of detection and precision). 
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2.3.2 Rare earth and minor element analysis by ICP/MS 

 

The rare earth elements (La, Ce, Nd, Dy, Pr, Sm, Gd, Er, Yb, Eu, Tb, Ho, Tm, Lu) and 

Pb and Cd were measured using Inductively Coupled Plasma Mass Spectrometry 

(ICP/MS). 

 

Sample preparation 

 
A 1ml sub-sample of each sample digest was taken using a hand pipette, placed in a 15ml 

Savillex Teflon screw cap vial (which had been acid cleaned using the same procedure 

described under ‘Sample preparation’ in ‘2.3.1 Major element analysis by ICP/AES’) and 

placed on a hotplate at moderate temperature to slowly evaporate to dryness.  The 

resulting residue was then re-dissolved in 2ml of 2% HNO3 which had been spiked with 

10µg/l In, Re, Ga and Bi to act as an internal drift monitor for the ICP/MS 

measurements.  In some cases the sample residue proved resistant to dissolution and it 

was necessary to place the sample vials in an ultrasonic bath to aid their dissolution.   

Blanks were also processed in this manner. 

 

Analysis of samples by ICP/MS 

 

The samples were measured on a VG PlasmaQuad PQ2+ ICP/MS by external calibration 

using rock standards BIR-1 and BRR-1 (US Geological Society) and JB-3 and JB-1 

(Geological Survey of Japan standards) which were spiked with 10ppb of In, Re, Ga and 

Bi to act as an internal drift monitor.  Four multi-element standards were also prepared 

from commercially available standards (Fisher Scientific and VWR Aristar) to be used as 

an independent check, these were also spiked with 10µg/l of In, Re, Ga and Bi.  Before 

the sample run the ICP/MS was tuned for optimum sensitivity and stability using a multi-

element tuning solution containing Co, Y, In, La, Re, Bi, and U.  Once tuned, the 

instrument was then left for a further 30 minutes to fully stabilise. During this time a 

random order sampling procedure for the samples, standards and various blanks (with a 

drift monitor solution run every 6 samples) was entered in to the ICP/MS software. Data 

was then acquired in peak-jumping mode, for a total of 2 minutes per 

sample/standard/blank analysis (4 x 30 second repeats). After each analysis, a wash 
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solution containing 2% HNO3 was run until background levels were achieved (3 

minutes). The data quality was monitored throughout the run by examination of the 

statistics produced after each analysis. Any anomalous results were noted and re-run at 

the end of the procedure. Following completion of the run, the raw integrated count per 

second data was exported from the ICP/MS processing software by spreadsheet.  The 

data processing procedure applies a blank, interference, drift and internal (matrix) 

correction to the raw data and then performs a multi-standard calibration based on the 

recommended values (Govindaraju, 1994) of the rock standards that were also run during 

the procedure. 

 

Internal precision of the 4 x 30 second repeat measurements was better than 4.1% for all 

elements except Cd which was 12.1%.  External precision, which was calculated from 

repeated measurements of the same standards over several runs, varied from 2.9 to 8.5% 

and accuracy (i.e. comparison of the reference values of the rock standards to the 

measured value) varied from 1.4 to 7.8%.  Limits of detection were 2-5ng/l for La 

through to Sm, except for Ce which was 9ng/l and ≤1ng/l for Eu through to Lu, for Pb it 

was 0.5µg/l and for Cd it was 10ng/l.  Concentrations for all samples for all elements 

were above the limits of detection (see Appendix 1 for full details of limits of detection, 

precision and accuracy). 

 

 

2.4 Niskin >0.4µm Particulate Samples 

 
2.4.1 Filter Digest Method 

 
The following procedure was carried out in a laminar flow hood in a Class 1000 clean 

room.  The method for leaching the particulate matter from the filters follows that of 

German et al. (1991a) which is suitable for the digestion of hydrothermal sulfide and 

oxide phases.  Each 47mm filter was placed in 20ml of concentrated sub-boiling distilled 

(SBD) nitric acid in a 30ml Savillex Teflon screw cap vial (which had been acid cleaned 

using the same procedure described under ‘Sample preparation’ in ‘2.3.1 Major element 

analysis by ICP/AES’).  The vials were then heated to reflux on a Teflon hotplate for 

between 36 and 48 hours at which point the filters were brittle and just beginning to 

disintegrate. 
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To analyse the samples using ICP/AES they were required to be in a 0.8M HNO3 

solution.  The predicted concentrations of the elements of interest were too low to allow a 

straightforward dilution of an aliquot of the conc. HNO3 digest, hence, the resulting 

solutions were carefully pipetted into 15ml Savillex Teflon screw cap vials (acid clean as 

described previously) and placed on a Teflon hotplate to evaporate.  Each filter was also 

washed by adding two separate aliquots of 20ml of SBD water to the 30ml vials.  The 

water from each wash was added to the leach solution (again by carefully pipetting from 

the 30ml vials) as it evaporated.  Eventually the whole solution was evaporated to 

dryness.  The resulting residue was re-dissolved in 1ml of 8M HNO3, made up to 10ml 

using 9ml of SBD water to give a 0.8M HNO3 solution and transferred to an acid cleaned 

sample vial.  

 

 

2.4.2 Major Element Analysis by ICP/AES 

 
Concentrations of the following elements within the leach solutions from the 47mm 

filters were determined by Inductively Coupled Plasma Atomic Emission Spectroscopy 

(ICP/AES): Fe, Mn, Al, Mg, Ca, P, Cu, Zn and Na. 

 

The samples were measured on a Perkin Elmer Optima 4300DV Optical Emission 

Spectrometer with a dedicated AS 93plus Autosampler.  Five multi-element standards 

were prepared from commercially available standards (Fisher Scientific and VWR 

Aristar), the proportions of the major elements within each standard were varied to 

enable identification of any interference issues.  Results are the mean of three replicate 

measurements.  

 

External precision for the ICP/AES analysis was calculated from 10 replicate 

measurements of one of the standard solutions and found to better than 1.0% for all 

elements except Al (4.0%).  Precision for the whole analysis cannot be calculated as the 

nature of the sampling means there are no replicate samples.  The limits of detection 

were less than 0.5µg/l for all elements except P, which was 1.8µg/l; this is still well 

below the concentrations measured in the samples (see Appendix 1 for full details of 

limits of detection and precision). 
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3 Chapter 3   Iron and manganese CTD profiles and iron oxidation 
 
3.1 Introduction 

 
Because of their elevated concentrations in hydrothermal vent fluids, iron (Fe) and 

manganese (Mn) serve as important tracers of hydrothermal plume extent and nature.  In 

this chapter, dissolved (<0.4µm) Fe and Mn data for a number of CTD profiles from the 

Edmond and Kairei hydrothermal plumes are presented, together with complementary 

particulate (>0.4µm) Fe and Mn data for selected CTD profiles.  All such data are 

presented in combination with light scattering sensor data (which is also an important 

tool in hydrothermal plume characterisation) in order provide the context and setting of 

these hydrothermal plumes. 

 

The availability of both dissolved and particulate data allows the total Fe within the 

plume to be calculated, which, in conjunction with the dissolved Mn data, allows 

estimates of Fe loss from the plume to be obtained.  In combination with Fe (II) 

oxidation data for the Kairei and Edmond hydrothermal plumes, as determined by 

Statham et al. (2005), in situ particulate Fe is also estimated, together with the plume 

ages of particular samples.   

 

Hydrothermal plume samples were collected in Niskin bottles mounted on a CTD rosette.  

Upon recovery aboard ship these samples were filtered through 0.4µm filters in a trace 

metal free environment.  A full description of sampling and analytical methods was given 

in Chapter 2. 

 

 

3.2 Results 

 

3.2.1 CTD profiles and dissolved (<0.4µm) Fe and Mn 

 
Dissolved (<0.4µm) iron and manganese data from the filtered hydrothermal plume 

samples collected at the Kairei and Edmond sites are shown in Table 3.  CTD locations at 

Edmond and Kairei are shown in Figures 6 and 7 (Chapter 2) and the location of the 
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dissolved samples relative to the vent and plume for the Kairei site are shown in Figure 8 

below.  Concentrations for Fe range from 3.9nmol/l to a maximum of 370nmol/l for the 

Kairei samples and from 7.3nmol/l to 350nmol/l at Edmond.  For Mn, the concentrations 

range from 1.0nmol/l to a maximum of 120nmol/l near Kairei and from 2.9nmol/l to 

130nmol/l for the Edmond samples.  These values are high compared to Mid-Atlantic 

Ridge hydrothermal plumes; both the Fe and Mn values at Kairei and Edmond are higher 

than the maximum concentrations of 100nmol/l and 40nmol/l respectively, reported from 

the TAG hydrothermal plume (James & Elderfield, 1996).  Other hydrothermal plumes in 

the Atlantic have even lower reported maximum dissolved Fe and Mn concentrations, 

e.g. at Snakepit the values are 85nmol/l and 32nmol/l respectively (James & Elderfield, 

1996), at Broken Spur they are lower still, 32nmol/l and 14nmol/l respectively (James et 

al., 1995).  The Kairei and Edmond concentrations are also higher than those observed at 

the Cleft segment on the Juan de Fuca Ridge in the Pacific Ocean (130nmol/l and 

110nmol/l respectively (Massoth et al., 1994)) and also on the Gorda Ridge (70nmol/l 

and 40nmol/l respectively (Massoth et al., 1998)) but are comparable to values observed 

on the East Pacific Rise where the maximum [Fe] was 320nmol/l and the maximum [Mn] 

was 190nmol/l (Field & Sherrell, 2000).  

 

Figure 8  Contoured NW-SE cross-section of optical backscatter signals obtained 
by CTD tow-yo through the Kairei hydrothermal plume (red trace).  Hottest 
colours indicate location of buoyant plume interception.  Vertical black lines and 
circles show locations of 8 further vertical CTD casts with Niskin bottle sampling 
depths projected onto this tow-yo section for context.  
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CTD # 

Depth 
(m) 

Dissolved 
(<0.4µm) 

 Fe (nmol/l)

Dissolved 
(<0.4µm)  

Mn (nmol/l)
CTD # Depth 

(m) 

Dissolved 
(<0.4µm)  

Fe (nmol/l) 

Dissolved 
(<0.4µm)  

Mn (nmol/l)
    Kairei     

CTD 4 2076 18.4 1.4 CTD 18 2076 6.3 1.2 

 2175 31.2 10.0  2272 15.4 3.5 

 2224 27.8 9.3  2322 18.4 5.2 

 2273 36.3 9.3  2345 20.4 6.9 

 2322 26.1 8.0  2371 9.6 2.6 

 2383 27.5 8.4  2420 7.2 2.2 

CTD 5 2076 7.5 2.7 CTD 20 1980 31.3 1.0 

 2150 110 32.1  2273 12.2 2.2 

 2175 332 123  2298 77.4 21.9 

 2199 290 77.5  2307 51.3 12.9 

 2224 368 107  2322 33.1 8.1 

 2248 302 94.6  2347 20.6 7.9 

 2273 254 94.3  2371 14.9 5.3 

 2295 58.8 17.9 CTD 21 2026 26.4 1.2 

 2322 54.6 18.0  2120 310 99.7 

 2347 19.5 6.3  2199 316 76.6 

 2373 21.3 6.1  2220 275 94.0 

 2435 16.1 6.5  2273 291 84.3 

CTD 6 2076 3.9 1.4  2298 300 104 

 2174 7.1 2.5  2320 89.7 23.6 

 2224 15.1 4.1  2372 52.8 13.8 

 2273 18.6 4.6 

 2321 41.9 11.7 Edmond 

 2357 37.5 8.1 CTD 23 2469 8.5 2.9 

CTD 7 2176 41.8 80.7  2781 321 132 

 2232 21.4 7.2  2819 350 55.4 

 2268 75.4 24.1  2960 7.3 2.9 

 2273 43.0 11.5  3008 131 56.4 

 2320 26.2 6.7  3019 130 63.5 

 2322 50.9 15.2  3057 174 37.1 

 2347 11.9 5.0  3107 161 50.6 

 2371 191 63.7  3156 50.6 11.3 

CTD 10 1978 8.9 0.7 

 2175 23.1 9.5 Background 

 2224 19.9 2.2 CTD 16 1978 15.1 0.6 

 2273 28.9 7.0  2076 16.0 2.7 

 2297 29.9 8.3  2174 2.7 1.4 

 2322 26.3 7.8  2273 14.5 1.7 

 2347 26.2 7.2  2371 7.4 2.6 

 2371 13.1 4.1  2469 3.5 2.6 

    CTD 22 1978 18.0 1.4 

     2076 5.0 1.4 

     2175 13.9 1.7 

     2273 7.3 2.2 

     2371  2.5 

     2469 4.7 1.7 

Table 3.  Concentrations of dissolved (<0.4µm) Fe and Mn in filtered hydrothermal 
plume samples from the Kairei and Edmond sites (for standard deviations associated 
with the measurements, please see Appendix 2) 
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Profiles of dissolved Mn and Fe together with the light scattering sensor (LSS) output for 

eight CTD stations from Kairei are shown in Figs. 9 to 12 (note changes of scale for Fe, 

Mn and LSS between CTDs 5, 7, 21 and the remaining CTD profiles).  The equivalent 

set of profiles for CTD station 23 at the Edmond hydrothermal field are shown in Fig. 6 

(same scales as for CTDs 5, 7, and 21 at Kairei).  CTDs 5, 7 and 21 (Figs. 9 and 10) were 

occupied closest to the Kairei vent (100-300m from USBL (ultra short baseline) 

navigation), CTDs 4 and 6 (Fig. 11) were approximately 1.5 km from the vent and CTD 

10 (Fig. 12) was the furthest away at a distance of ~4 km.  CTD station 23 (Fig. 13) was 

occupied close (<100m) to the Edmond vent site while CTD 16 and CTD 22 (Fig. 14) 

represent background profiles from the eastern ridge-flank and within the rift-valley 

respectively.  Both were occupied ~180km from the Edmond vent site with CTD 16 lying 

~130km due East of Kairei and CTD 22 situated within the rift-valley, ca.12km 

“upstream” away from the Kairei plume.  Increases in dissolved Fe and Mn 

concentrations are generally coincident with increases in the LSS signal.  Of the Kairei 

profiles, the maximum LSS anomalies were recorded at CTD casts 5, 7 and 21. 

  

The maximum LSS anomaly for CTD 5 of 0.08-0.12 volts (Fig. 9) occurs over a depth 

range of ~150m from 2130 to 2280m.  There is also a smaller anomaly of ~0.02 volts 

from 2280m to 2320m.  The LSS anomalies coincide with increases in the dissolved Fe 

and Mn concentrations.  Dissolved Fe reaches the maximum measured for the Kairei 

samples of 370nmol/l while dissolved Mn reaches a maximum concentration of 

120nmol/l.  CTD 21 has a similar maximum LSS anomaly of 0.08-0.15 volts over a 

similar depth range to CTD 5.  Maximum dissolved Fe and Mn concentrations are also 

similar, being 320nmol/l and 105nmol/l respectively.  
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Figure 9  ‘Near field’ Kairei CTD stations 5 and 21: profiles of optical 
backscattering (Seatech LSS) and dissolved (<0.4µm) Fe and Mn concentrations. 
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CTD 7 also has maximum LSS anomalies of 0.08-0.12 volts (Fig. 10).  However, both 

the dissolved Fe and Mn concentrations are generally an order of magnitude lower than 

those of CTDs 5 and 21.  The reason for this is apparent when the LSS profiles for CTDs 

5 and 21 are compared with that of CTD 7.  Whereas CTDs 5 and 21 have high LSS 

anomalies which persist throughout the plume depth, CTD 7 consists of multiple discrete 

layers where the LSS signal is elevated, interspersed with background seawater (where 

the LSS signal returns to the levels measured above the plume).  Sampling these layers to 

ensure that the hydrothermal plume is intercepted is a challenge and it appears that the 

majority of samples, although enriched in dissolved Fe and Mn, still represent significant 

dilution compared to the plume signals in CTDs 5 and 21.  
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Figure 10  ‘Near field’ Kairei CTD station 7: profiles of optical backscattering 
(Seatech LSS) and dissolved (<0.4µm) Fe and Mn concentrations. 

 

CTDs 5, 7 and 21 all have common features which are the sharp gradients in the LSS 

signal, unlike the remaining CTDs which have smoother gradients.  This is a feature 

which is characteristic of near field plumes (Chin et al., 1998) consistent with all these 

CTDs being less than 400m from the vent source. 
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Figure 11  ‘Mid field’ Kairei CTD stations 4 and 6: profiles of optical 
backscattering (Seatech LSS) and dissolved (<0.4µm) Fe and Mn concentrations. 
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CTDs 4 and 6 (mid field stations, Fig. 11) have maximum LSS anomalies of 0.02 volts 

which are almost an order of magnitude smaller than CTDs 5 and 21.  The depth range of 

the elevated LSS signal is much narrower than observed for CTDs 5 and 21; this can also 

be seen in Fig. 9 where the plume is much thicker at CTD stations 5 and 21 compared to 

CTDs 4 and 6.  Unlike e.g. CTD 5 where the LSS signal returns to background levels 

below the plume, at CTD 4 the LSS signal never returns to the level recorded above the 

plume.  The maximum LSS signal for CTD 4 is much shallower than for CTD 6.      

Maximum dissolved Fe concentrations are 42nmol/l and 31nmol/l and maximum 

dissolved Mn concentrations are 12nmol/l and 10nmol/l.  These are also an order of 

magnitude smaller than at the near field sites, CTD 5 and 21.  

 

For CTD 10 (far field station, Fig. 7), the maximum LSS anomaly is 0.01 volts over a 

depth range of ~130m.  Maximum dissolved Fe and Mn concentrations are 30nmol/l and 

8nmol/l, which are similar to, but lower than those at CTDs 4 and 6.   
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Figure 12  ‘Far field’ Kairei CTD station 10: profiles of optical backscattering 
(Seatech LSS) and dissolved (<0.4µm) Fe and Mn concentrations. 
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The Edmond profile, CTD 23, has two distinct LSS anomalies (Fig. 13).  The first, 

between 2760m and 2890m, has a maximum LSS anomaly of ~0.1 volts and the second 

from 2980m to 3160m, has a maximum LSS anomaly of 0.05 volts.  Maximum dissolved 

Fe and Mn concentrations are 350nmol/l and 130nmol/l.  Like the near field Kairei 

profiles, the gradients of the LSS signal are very sharp, consistent with the close 

proximity of this CTD station to the vent (<100m). Although it is not unusual to see more 

than one distinct LSS anomaly in a profile (compare, for example, CTD 5 from the 

Kairei hydrothermal plume) the two anomalies here are separated by a depth of 90m 

where, not only the LSS signal returns to background levels but the dissolved Fe and Mn 

concentrations also return to background levels.  This suggests that there could be two 

distinct vent sources contributing towards the overall profile but it is not conclusive 

evidence.  Rudnicki et al. (1994) recorded a similar feature in a profile from the TAG 

hydrothermal field for a common source.  
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Figure 13  Edmond CTD station 23: profiles of optical backscattering (Seatech LSS) 
and dissolved (<0.4µm) Fe and Mn concentrations (note that although it is not 
necessarily valid to connect the dissolved Fe and Mn data points, it has been done for 
clarity in this and previous figures).  
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For both of the background profiles, CTD 16 and CTD 22, the LSS signal of ~0.03 volts 

remains constant, as would be expected (Fig. 14).  Dissolved Fe varies from 3nmol/l to 

16nmol/l while dissolved Mn varies between 1.4nmol/l and 2.7nmol/l.  These 

concentrations are higher than the background levels in the deep Indian ocean of 

~1.0nmol/l for Fe (Saager et al., 1989) and 0.14nmol/l for Mn (Morley et al., 1993).  For 

CTD 22 which was inside the rift valley, this could be due to a general elevation of Mn 

and Fe levels as a consequence of multiple hydrothermal inputs, similar to that found by 

Aballea et al. (1998) throughout the axial valley of the Mid Atlantic Ridge in the region 

of the Azores Triple Junction.  However this would not explain the concentrations 

recorded for CTD 16 which was ~130km off-axis.  The most likely explanation, 

therefore, is that this is due to the limitations of sampling using a steel framed CTD 

rosette and standard cabling as opposed to a titanium framed CTD rosette and Kevlar 

coated CTD.  There may also have been some contamination of the Niskin bottles which 

had already been used earlier in the cruise to sample in the hydrothermal plumes.  

Despite this, the key point is that when the  ‘background’ concentrations are compared to 

those measured for CTD 5 and CTD 4, it is apparent that they are still 1-2 orders of 

magnitude lower than the elevated levels seen in the plume. 
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Figure 14 ‘Background’ CTD stations 16 (ridge flank) and 22 (ridge axis): profiles 
of optical backscattering (Seatech LSS) and dissolved (<0.4µm) Fe and Mn 
concentrations. 
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3.3 CTD Profiles and particulate (>0.4µm) Fe and Mn 

 
Particulate (>0.4µm) Fe and Mn data from CTD Niskin bottle samples are shown in 

Table 17/Appendix 6 and are also summarised below in Table 4.  Concentrations of 

particulate Fe range from 8nmol/l up to 350nmol/l for the Kairei samples, with the 

exception of the CTD 7 sample at 2176m, which will be discussed further below.  For the 

Edmond samples they range from 10nmol/l up to 440nmol/l.  The maximum 

concentrations observed are comparable to those measured in particulate samples from 

both the Pacific (e.g. Feely et al., 1996) and the Atlantic (Edmonds & German, 2004).  

Particulate manganese concentrations vary from 0.1nmol/l to 3.1nmol/l at Kairei but all 

fall between 0.2nmol/l and 0.3nmol/l in the Edmond hydrothermal plume.  These values 

are also comparable to those reported for Atlantic and Pacific hydrothermal plume 

particles (Feely et al., 1996; Edmonds & German, 2004) and fall below 10% of the total 

Mn concentration for all samples, except those where dissolved Mn is low (<3nmol/l). 

 

For CTD 7, separate aliquots from the Niskin samples were also filtered through 0.1µm 

filters, as well as 0.4µm (i.e. non-sequentially).  The particulate Fe concentrations from 

the 0.1µm filter should either be similar or higher than for the 0.4µm filter of the same 

sample.  For the CTD 7 2176m sample the particulate [Fe] for the >0.1µm sample is only 

220nmol/l compared to 1040nmol/l for the >0.4µm sample (see Table 17 for data).  In 

conjunction with the LSS profile which does not exhibit any unusual features at this 

depth, it suggests that there may have been a problem with the collection or processing of 

this particular >0.4µm sample.  For the purposes of further discussion, this sample will 

be excluded.  The deepest sample for CTD 7 at 2371m is anomalous when compared to 

the remaining samples, however this is most probably due to the incorporation of re-

suspended sediment as the CTD rosette frame did in fact make contact with the sea floor 

on this cast (Tyler & CD128 Science Party, 2001). Particulate Fe is enriched in this 

sample whereas particulate Mn is similar to other samples, this would be consistent with 

incorporation of re-suspended metalliferous sediments, which are rich in Fe and poor in 

Mn, close to the vent source.  There is also evidence for re-suspended sediment in the 

LSS profile for CTD 7 where there is an increased signal below 2350m, which is not 

seen in the other LSS profiles at Kairei.  This sample will also be excluded from any 

further discussion. 
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CTD # Depth (m) 

Particulate 
(>0.4µm) 

Fe (nmol/l) 

Particulate 
(>0.4µm) 

Mn (nmol/l) 

Kairei 

CTD 5 2076 8.2 1.8 
 2150 51.6 1.1 
 2175 183 0.2 
 2199 280 3.1 
 2224 254 1.4 
 2273 344 1.8 
 2295 31.9 0.6 
 2347 18.4 1.4 
 2373 7.8 0.5 
 2435 9.9 0.2 
    

CTD 7 2176 1040 0.4 
 2232 41.5 0.7 
 2268 34.6 0.3 
 2273 21.8 0.3 
 2320 13.8 0.2 
 2347 10.5 0.2 
 2371 170 0.6 
    

CTD 21 2026 17.5 0.7 
 2120 220 0.2 
 2199 98.1 0.1 
 2220 96.3 0.1 
 2273 118 0.1 
 2298 288 0.2 
 2320 54.6 0.2 
 2372 21.5 0.2 

Edmond 

CTD 23 2469 12.9 0.3 
 2781 440 0.2 
 2819 103 0.2 
 2960 10.3 0.3 
 3008 177 0.2 
 3019 264 0.3 
 3057 57.4 0.3 
 3107 117 0.3 
    

Table 4.  Concentrations of particulate (>0.4µm) Fe 
and Mn in hydrothermal plume samples from the 
Kairei and Edmond sites. (complementary dissolved data 
were presented in Table 3 and particulate data for other 
elements is presented in Table 17) 
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Depth profiles of the particulate data and associated light scattering sensor data are 

shown in Figs. 15 and 16.  CTDs 5, 21 (Kairei) and 23 (Edmond) all show elevated 

concentrations of particulate Fe co-incident with increased light scattering sensor signals, 

compared to the ‘background’ concentrations seen above and below the plume where the 

LSS signal is at background levels.  The particulate Fe profile for CTD 7 shows that 

these samples generally have lower Fe concentrations than samples from CTDs 5 and 21 

with equivalent LSS signals.  Particulate Mn concentrations vary very little for either the 

Kairei or Edmond samples (less than 1.0nmol/l except for CTD 5) and any variation 

which is present does not show a strong correlation with the LSS signal.  

 
The most noticeable feature of the profiles is that, although the maximum LSS anomalies 

for CTD 7 are similar to those for CTD 5 and 21, the LSS trace for CTDs 5 and 21 stays 

high throughout the ~200m plume depth whereas CTD 7 has narrow (~10s of metres 

thick) layers of high LSS signal with almost completely clear background water in 

between.  This may explain the much lower particulate Fe concentrations recorded at 

CTD 7 compared to CTDs 5 and 21 despite the similar maximum LSS signal; the 

‘flushing length’ for a Niskin bottle is ~8-10m, hence it is possible that when the bottle 

was fired based on the LSS signal, the water within the Niskin could have been relatively 

‘clean’ water from a layer just below the high LSS signal layer.  

 

It is worth noting that the light scattering signal does not depend solely on the 

concentration of particles present, the size and composition of the particles are also 

relevant (Baker et al., 2001).  Larger particles can in fact result in a lower light scattering 

signal, so for example if part of the hydrothermal plume is dominated by larger sulfides 

the LSS signal may be lower, even if the concentration is similar to other parts of the 

plume which are dominated by finer grained sulfides and/or Fe-oxyhydroxide particles.  
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Figure 15  ‘Near field’ Kairei CTD stations 5 and 21: profiles of optical 
backscattering (Seatech LSS) and particulate (>0.4µm) Fe and Mn concentrations. 
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Figure 16  ‘Near field’ Kairei CTD station 7 and Edmond CTD station 23: profiles 
of optical backscattering (Seatech LSS) and particulate (>0.4µm) Fe and Mn 
concentrations. 
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3.4 Discussion 

 
3.4.1 CTD Profiles 

 

CTDs 5 and 21 were the closest in proximity to the Kairei vent site; the stations were 

occupied 13 days apart.  Although the fine detail in the two profiles illustrates the 

inherent variability due to currents and tidal variation that would be expected in the open 

ocean, the overall trend is very similar, i.e. the depth and height of the plume and the 

concentrations of dissolved Fe and Mn are all comparable.  This consistency in the 

properties of the hydrothermal plume is an important factor if plume data are to be used 

to assess their impact on the geochemical cycles of certain elements. 

 

  

 

CTDs 4 and 6 were recorded ~32 hours apart, both at a similar distance (~1.5km) from 

the Kairei vent site.  The lower concentrations of dissolved Fe and Mn and the lower LSS 

anomaly compared to CTDs 5 and 21 demonstrate that the plume is being diluted as it 

moves further away from its source.  The shape and magnitude of the two profiles are 

very similar except that the LSS maxima, which vary from 2175m to 2360m are offset by 

200m.  This is consistent with the findings of Rudnicki & German (2002) where a 12.5 

hour monitoring profile of the Kairei non-buoyant plume found that the plume particle 

maximum varied between 2150m to >2350m.  This variability is demonstrated in the 

time profile of LSS versus depth in Fig. 17.  

Figure 17  Variation of the Kairei hydrothermal plume height over time as shown 
by optical backscatter (Seatech LSS) data.  (Red lines show the continuous CTD 
profiling through the plume, figure from Rudnicki & German, 2002). 
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3.4.2 Mixing Ratios 

 
Dissolved Mn can be used to estimate the mixing ratio of vent fluid to seawater in a 

hydrothermal plume (James & Elderfield, 1996).  This assumes that no dissolved Mn is 

lost from the plume via oxidation.  We know that dissolved Mn does undergo oxidation, 

however it occurs on much longer timescales than iron and therefore mainly in the far 

field plume; the residence time of Mn within a plume varies from weeks (Kadko et al., 

1990) to several years (Lavelle et al., 1992).  Close to the vent, Mn has been shown to 

behave conservatively (e.g. Cowen et al., 1990; Kadko et al., 1990).  The mixing ratio 

(MR) can be calculated from: 

 

swhp

swvf

]Mn[]Mn[
]Mn[]Mn[MR

−
−

=  

 

where: [Mn]vf = the concentration of dissolved Mn in the vent fluid = 840µM at Kairei 

(Gamo et al., 2001) and 1430µM at Edmond (Gallant & Von Damm, 2006); [Mn]sw = the 

concentration of dissolved Mn in the surrounding seawater = 0.14nM (Morley et al., 

1993); [Mn]hp = the concentration of dissolved Mn in the hydrothermal plume sample. 

 

Mixing ratios for samples from CTDs 5 and 21 near the Kairei vent field are shown in 

Table 5.  The least dilute samples have a mixing ratio of 7 to 9 x 103.  Lupton et al. 

(1995) predicted that a hydrothermal plume is diluted by a factor of ~104 by the time it 

reaches neutral buoyancy.  If this is the case then it is possible that the least dilute 

samples collected at Kairei intercepted the buoyant plume.  However the distances of 

CTDs 5 and 21 from the vent source (~340m and ~100m respectively, see Chapter 2) 

would also have to be consistent with this possibility.  Knowing that the depth of the 

plume is 2100-2300m, from the light scattering profiles presented earlier in the chapter 

and the depth of the vent source is 2450m (Gamo et al., 2001), we know that the height 

of rise of the plume is 150-350m.  If we assume an inverted cone with a vertical angle of 

30° for the buoyant plume (Turner, 1973) then the radius of the buoyant plume at the 

level of neutral buoyancy will be from 90-200m.  This means samples from CTD 21 

could feasibly be within the buoyant plume area.  
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If the buoyant plume was intercepted then potential temperature and potential density 

anomalies should be evident in the CTD profiles.  The mixing ratios for samples from 

CTD 23 at Edmond show that despite being a similar distance from the vent as CTDs 5 

and 21 are from the Kairei vent, these samples are an order of magnitude more dilute.   

 

 

Sample Measured dissolved 
Mn (nmol/l) 

Mixing 
ratio 

Kairei   
CTD 5 2175m 123 6800 
CTD 5 2199m 78 11000 
CTD 5 2224m 107 7900 
CTD 5 2248m 95 8900 
CTD 5 2273m 94 8900 
   
CTD 21 2120m 100 8400 
CTD 21 2199m 77 11000 
CTD 21 2220m 94 8900 
CTD 21 2273m 84 10000 
CTD 21 2298m 104 8100 
   
Edmond   
CTD 23 2781 132 10900 
CTD 23 2819 50 29000 
CTD 23 2960 3 520000 
CTD 23 3008 56 25000 
CTD 23 3019 64 23000 
CTD 23 3057 37 39000 
   
Table 5.  Mixing ratios for samples from CTDs 
5, 21 and 23 calculated from dissolved Mn 
concentrations for the vent fluids and the 
samples (see text for vent fluid figures). 
 

 

 

Inspection of the potential temperature and sigma-2 (potential density normalised to 2000 

decibars pressure) for CTD 5 in relation to the light scattering sensor data (Fig. 18) 

reveals that there are small increases in temperature (<0.02°C) and decreases in density 

(<0.005kg/m3) co-incident with increases in the LSS signal in the depth range of the least 

dilute samples.  Resolution of the CTD instrument deployed (Seabird 911plus) is 

~0.0002°C for temperature and better than 0.0001kg/m3 for density hence the anomalies 
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are true observations rather than signal noise.  For CTD 21, the relationship between 

increased temperature, decreased density and an increased LSS signal is less clear (Fig. 

18), although comparison with the temperature and density profiles of the ridge axis 

background profile, CTD 22, in Fig. 18 shows that the background water column profile 

is smoother with none of the stepwise changes in temperature and density which are seen 

in CTDs 5 and 21.  

 

Rudnicki & German (2002) presented CTD casts from a time-series profile of the Kairei 

hydrothermal plume and found temperature anomalies of approximately +0.1°C for the 

buoyant portion of the plume and light scattering sensor anomalies of >300mV.  The LSS 

anomalies seen in CTDs 5 and 21 and the associated temperature changes are more in 

line with data for the non-buoyant portion of the plume where they recorded temperature 

anomalies of +0.02°C and LSS anomalies of 70-80mV. 

 

Direct comparison of CTDs 5 and 21 with that of the background profile CTD 22 are also 

inconclusive.  The plot of CTD21 and 22 (Fig. 19) shows there is a positive temperature 

deviation from that of the background water column between 2210m and 2340m of ~0.02 

to 0.03°C (shown by the shaded area in the plot in Fig. 19).  However comparison of 

CTD 5 with CTD 22 (also Fig. 19) shows very different profiles, this is most likely a 

consequence of the two profiles being conducted 12 days apart.  Tidal variations 

observed at the site of the Kairei hydrothermal plume result in the height of the plume 

varying by ~200m (Rudnicki & German, 2002) so the tidal state may have been very 

different during the two CTD casts.  This is consistent with both the strong boundary 

current that flows along the ridge axis of the Central Indian Ridge (Toole & Warren, 

1993) and findings that vertical mixing is stronger above rougher topography such as 

mid-ocean ridges (Polzin et al., 1997). 

 

From the available data it is only really possible to conclude that the least dilute samples 

from CTDs 5 and 21 may be from the very dilute portion of the buoyant plume but it is 

more likely that they represent very young “zero age” non-buoyant plume samples. 
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Figure 18  Potential temperature and density profiles of Kairei ‘near field’ CTD 
stations 5 and 21 and ‘background’ station CTD 22 (rift-valley). Sigma-2 is the 
potential density normalised to 2000 decibars pressure. 
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Figure 19  Comparison of potential temperature and density profiles for Kairei 
‘near field’ CTD stations 5 and ‘background’ station CTD 22 (rift-valley) and also 
for  Kairei ‘near field’ CTD stations 21 and ‘background’ station CTD 22 (The 
shaded area shows the small positive temperature anomaly of CTD 21 compared to the 
background water column represented by CTD 22) 
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3.4.3 Total Fe calculations 

  

The measured particulate Fe and dissolved Fe concentrations of the hydrothermal plume 

samples can be combined to give us the total Fe concentration in the samples.  

Combining the mixing ratio calculations of vent fluid to seawater in the hydrothermal 

plume samples (Table 5) with the vent fluid Fe concentration allows us to estimate the 

maximum Fe concentration we could expect to find in the samples if we assume a simple 

dilution model (i.e. conservative behaviour).  Table 6 shows the measured total Fe in 

those samples for which both particulate and dissolved data are available, as well as the 

theoretical maximum Fe possible based on the mixing ratios calculated from the 

dissolved Mn data.  

 

All the samples except one from Edmond and one from Kairei have a measured total Fe 

concentration which is lower than the maximum theoretical Fe concentration.  If the only 

process occurring within the plume is straightforward dilution with ambient seawater 

then the measured and theoretical total Fe concentrations should be the same.  However 

we already know that Fe is lost from the plume as the large grained sulfides which form 

in the early buoyant plume settle out (e.g. Mottl & McConachy, 1990).  Therefore it is to 

be expected that the measured total [Fe] would be less than the theoretical total [Fe] and 

this is indeed the case.  The fraction of Fe in the particulate phase compared to the 

dissolved phase varies between 23% and 67% of the total, but there does not appear to be 

any correlation with, for example, total Fe.   

 

For the Edmond sample (CTD 23 2819m) where the measured total Fe exceeds the 

theoretical maximum total Fe, the difference is less than 3% which is within error limits 

(see Appendices 1 and 2).  For the Kairei sample (CTD 5 2199m), the measured total Fe 

concentration exceeds the theoretical maximum total Fe by 15% which exceeds the error 

limits.  The combined error for the total Fe measurement is 570±15nmol/l although this is 

a conservative estimate as the particulate measurements are based on one sample only.  

However it is possible that close to the vent site, settling particles can be recycled back 

into the plume as reported at the TAG hydrothermal plume in the Atlantic (German & 

Sparks, 1993) which may lead to an ‘excess’ of particulate material. 
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Sample 

Dissolved  
Fe 0.4µm 
(nmol/l) 

Particulate 
Fe 0.4µm 
(nmol/l) 

Mixing 
ratio1 

Total Fe 
 (Dissolved + 
Particulate)2 

 (nmol/l) 

Theoretical 
 maximum 

total Fe 
(nmol/l)3 

Total Fe as 
a % of 

theoretical 
maximum 

Kairei       
CTD 5 2150m 110 51.6 26000 162 205 79 
CTD 5 2175m 332 183 6900 515 789 65 
CTD 5 2199m 290 280 11000 570 497 115 
CTD 5 2224m 368 254 7900 622 686 91 
CTD 5 2273m 254 344 8900 598 605 99 
CTD 5 2295m 58.8 31.9 47000 90.7 114 79 

       
CTD 7 2268m 75.4 34.6 35000 110 154 71 
CTD 7 2273m 43.0 21.8 74000 64.8 73 88 

       
CTD21 2120m 310 220 8400 530 640 83 
CTD21 2199m 316 98.1 11000 414 491 84 
CTD21 2220m 275 96.3 8900 371 603 61 
CTD21 2273m 291 118 10000 409 541 76 
CTD21 2298m 300 288 8100 588 665 88 
CTD21 2320m 89.7 54.6 36000 144 151 96 
CTD21 2372m 52.8 21.5 62000 74.3 88 85 

       
Edmond       

CTD 23 2781m 321 440 11000 761 1178 65 
CTD 23 2819m 350 103 29000 453 442 103 
CTD 23 3008m 131 177 25000 308 504 61 
CTD 23 3019m 130 264 23000 394 568 69 
CTD 23 3057m 174 57.4 39000 231 332 70 
CTD 23 3107m 161 117 28000 278 452 62 

       
Table 6.  Actual and theoretical total Fe measurements for Kairei (CTDs 5, 7 and 
21) and Edmond (CTD 23) samples. 
 
1The mixing ratio is based on the dissolved Mn concentrations and vent fluid 
concentrations of 840µmol/l for Kairei (Gamo et al., 2001) and 1430µmol/l for Edmond 
(Gallant & Von Damm, 2006).   
2This is the measured total Fe from summing the measured dissolved and particulate 
0.4µm fractions. 
3Assuming that dissolved Mn behaves conservatively (see text) and vent fluid [Fe] is 
5400µmol/l for Kairei (Gamo et al., 2001) and 12800µmol/l for Edmond (Gallant & Von 
Damm, 2006). 
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Estimates of Fe loss  

 
A plot of total Fe (measured dissolved [<0.4µm] Fe plus measured particulate [>0.4µm] 

Fe) versus dissolved Mn for the Kairei samples is shown in Fig. 20.  Total Fe and 

dissolved Mn are positively correlated; as the dissolved Mn concentration decreases (i.e. 

as the plume is progressively diluted by mixing with ambient seawater), the total Fe 

concentration also decreases.  The vent fluid ratio at Kairei (Gamo et al., 2001) is also 

shown on the plot.  If there were no loss of Fe from the plume as it is progressively 

diluted then the data points should coincide with the vent fluid line.  However the data 

points predominantly lie beneath the vent fluid ratio suggesting that some Fe has been 

lost from the plume.  Comparison of the vent fluid ratio with the linear regression 

through the total Fe content of the samples allows an estimate of the quantity of Fe which 

has been lost from the plume: approximately 20% of the original vent fluid Fe is missing.  

We already know that in the first few seconds after hydrothermal fluids emerge from a 

vent, Fe sulfides (as well as other metal sulfides) rapidly precipitate.  Previously, 

estimates have suggested that up to 50% of the total Fe (II) in vent fluids is precipitated 

in this manner (Mottl & McConachy, 1990; Rudnicki & Elderfield, 1993) and that many 

of these heavy sulfides settle out of the buoyant plume.  Later estimates by James & 

Elderfield (1996) for the TAG and Snakepit hydrothermal plumes which were also based 

on complementary dissolved and particulate data, as in this study, suggested up to ~26% 

of vent fluid Fe was lost as sulfides.  This is in good agreement with the data from Kairei.   
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Figure 20  Total Fe (measured dissolved [<0.4µm] Fe plus measured particulate 
[>0.4µm] Fe) versus dissolved (<0.4µm) Mn for Kairei hydrothermal plume 
samples.  Regression is through all data.  Vent fluid ratio and vent fluid ratios with 
possible Fe losses are shown for comparison. 

 

A similar plot of total Fe versus dissolved Mn is shown for the Edmond samples in Fig. 

21.  Again, total Fe and dissolved Mn are positively correlated with the total Fe 

concentration decreasing as the dissolved Mn concentration decreases.  The vent fluid 

ratio at Edmond (Gallant & Von Damm, 2006) is also illustrated and as for Kairei, the 

total Fe data points lie predominantly below the vent fluid ratio suggesting that Fe has 

been lost from the plume.  Comparison with the linear regression through the total Fe 

data suggests that ~30% of the original vent fluid Fe has been lost.  As for Kairei, this is 

in good agreement with the estimate of James & Elderfield (1996) and suggests that a 
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loss of 20-30% for vent fluid Fe due to sulfide precipitation and settling is a more 

accurate estimate than the earlier ~50% estimates which were based on particulate data 

alone (Mottl & McConachy, 1990; Rudnicki & Elderfield, 1993). 
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Figure 21  Total Fe (measured dissolved [<0.4µm] Fe plus measured particulate 
[>0.4µm] Fe) versus dissolved (<0.4µm) Mn for Edmond hydrothermal plume 
samples.  Regression is through all data.  Vent fluid ratio and vent fluid ratios with 
possible Fe losses are shown for comparison. 

 

As vent fluid concentrations of Fe, Cu, Zn and H2S are available for the Kairei and 

Edmond sites, we can check whether the 20% and 30% losses of Fe suggested above are 

feasible.  The primary sulfide minerals formed in the early buoyant plume are pyrite 

(FeS2), pyrrhotite (Fe(1-x)S where x=0.2 to 1.0), chalcopyrite (CuFeS2) and sphalerite 
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(ZnS, can also be ZnFeS), the exact stoichiometry of the sulfides can vary and the 

proportions of each sulfide phase varies between sites (Feely et al., 1987; Mottl & 

McConachy, 1990).  For the purposes of this estimate, it is assumed that the sulfides are 

of a simple composition, that all vent fluid Cu is removed as CuFeS2, all vent fluid Zn is 

removed as ZnS and any ‘excess’ Fe is removed as FeS.   

 

 Kaireia Edmonda Snakepitb 
Vent fluid [Fe] (mmol/kg) 5.4 12.8 2.6 
Vent fluid [H2S] (mmol/kg) 4 4 6 
Vent fluid [Cu] (µmol/kg) 210 220 20 
Vent fluid [Zn] (µmol/kg) 80 130 50 
Estimated loss of Fe (%) 20 30 25 
Estimated loss of Fe (mmol/kg) 1.1 3.8 1.3 
H2S required for Cu and Zn 
removal as CuFeS2 and ZnS 
(mmol/kg) 

0.5 0.5 0.1 

H2S required for removal of 
estimated Fe loss as FeS (in 
addition to Fe removed as CuFeS2) 

0.8 3.6 1.3 

Total H2S required 1.3 4.1 1.4 
Table 7.  Calculations showing feasibility of estimated Fe loss due to sulfide 
formation 
a Kairei and Edmond vent fluid data are from Gamo et al., 2001 and Gallant & Von 
Damm, 2006. 
b Snakepit vent fluid data from Edmond et al., 1995 and estimate of Fe loss from James 
& Elderfield, 1996   
    

Table 7 above shows the concentrations of Fe, Cu , Zn and H2S in the vent fluids and the 

figures demonstrating that the suggested losses of Fe from the Kairei and Edmond sites 

appear to be feasible based on this simple estimate.  The figures above also suggest that 

only one third of the vent fluid H2S is removed as sulfides at Kairei whereas at Edmond 

all the H2S is taken up as sulfides.  The estimate for Snakepit is shown for comparison to 

show that this simple calculation works for data from another hydrothermal site.   

 

Figure 22 shows a plot of just the dissolved (<0.4µm) Fe versus dissolved (<0.4µm) Mn 

for the Kairei samples.  The linear regression through the dissolved Fe data when 

compared with the vent fluid ratio suggests that ~50% of Fe has been lost from the 

dissolved phase.  We would expect to see loss of Fe from the dissolved phase because as 

already discussed, Fe sulfides rapidly precipitate as the hydrothermal fluids emerge from 
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the vents.  This is followed by further oxidation and precipitation of dissolved Fe (II) as 

Fe (III) oxyhydroxides (Mottl & McConachy, 1990; Rudnicki & Elderfield, 1993).  From 

the total Fe versus dissolved Mn plot for the Kairei samples (Fig. 20) it is already 

apparent that ~20% of the vent fluid Fe has been completely lost from the plume.  In 

conjunction with the dissolved Fe plot in Fig. 22, this suggests that a further 30% of the 

original vent fluid dissolved Fe (II) has either precipitated in the plume as fine grained 

sulfides (which have not subsequently settled out of the plume) or been oxidised to form 

particulate Fe (III) oxyhydroxides.  Initially colloidal Fe (III) is formed which then 

aggregates to form particulate Fe, however the colloidal Fe (III) would be measured in 

the <0.4µm fraction so it can be assumed that the loss is due to particulate Fe formation. 

 

As dissolved Mn essentially behaves conservatively close to its vent source (e.g. Cowen 

et al., 1990; Kadko et al., 1990) the dissolved Mn concentration should be a function of 

dilution of the plume, but, some evidence of dissolved Fe loss relative to dissolved Mn 

(i.e. negative departure from linearity in Fig. 22) would be expected, rather than the 

essentially linear relationship exhibited.  However, as the dissolved Fe and Mn 

concentrations in the vent fluids are 5400µM and 840µM respectively (Gamo et al., 

2001) whereas the maximum concentrations in these samples are 370nM and 120nM 

respectively, the resulting plot is in fact only the very lowest portion (<<1% of the 

whole) of a much larger curve and therefore will appear linear.  A linear relationship for 

dissolved Fe and Mn at these lower concentrations has also been observed at the TAG, 

Snake Pit and Broken Spur hydrothermal sites in the Atlantic Ocean (James et al., 1995; 

James & Elderfield, 1996)  
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Figure 22  Dissolved (<0.4µm) Fe versus dissolved (<0.4µm) Mn for Kairei 
hydrothermal plume samples.  Regression is through all data.  Vent fluid ratio and vent 
fluid ratios with possible Fe losses are shown for comparison. 

 

A plot of the dissolved (<0.4µm) Fe and Mn data for the Edmond samples is shown in 

Fig. 23.  The linear regression through the data has a lower correlation coefficient than 

the Kairei data, which is mainly due to the smaller number of samples collected at 

Edmond.  Only one sample has [Mn] >70nmol/l which means the high-endmember is 

poorly constrained compared to Kairei.  The vent fluid concentrations of Fe and Mn are 

higher than at Kairei, being 12800µmol/l and 1430µmol/l respectively (Gallant & Von 

Damm, 2006), therefore as at Kairei, we are observing a very small proportion of the 

overall trend.  Although the linear regression for the dissolved Fe data is not as robust as 
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that for Kairei, comparison with the vent fluid ratio suggests that ~70% of the dissolved 

Fe (II) present in the vent fluids is missing.  From the total Fe plot (Fig. 21) it was 

estimated that ~30% of Fe has been completely lost from the plume leaving ~40% in the 

particulate phase either as fine grained sulfides or oxyhydroxides.  Although the 

proportion of dissolved Fe (II) either lost completely from the plume or transformed to 

the particulate phase appears to be higher at Edmond than at Kairei, the scatter in the 

Edmond data should be noted.  However the figures here serve as a first estimate of Fe 

losses from the plume.    
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Figure 23  Dissolved (<0.4µm) Fe versus dissolved (<0.4µm) Mn for Edmond 
hydrothermal plume samples.  Regression is through all data.  Vent fluid ratio and vent 
fluid ratios with possible Fe losses are shown for comparison. 
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Overall, the data from the Kairei and Edmond hydrothermal plume samples suggest that 

70-80% of the total dissolved Fe (II) emerging from the vents is still present in the plume 

at the time of sample collection, either as dissolved or particulate Fe.  The 20-30% that 

has been lost is consistent with rapid precipitation of sulfides in the early stages of plume 

formation followed by deposition to the seafloor.  Of the total Fe remaining in the plume, 

approximately 50% is present in the dissolved (<0.4µm) phase in the ‘youngest’ least 

dilute samples which, dissolved Mn concentrations suggest are very young non-buoyant 

plume samples.  As the time taken for the non-buoyant plume to be reached is ~1 hour 

(Speer & Rona, 1989) and t½ for Fe (II) oxidation at these stations of 2.3hrs (Statham et 

al., 2005) this makes sense, there should be at least 50% of any Fe (II) not precipitated as 

sulfides, still in solution.  This contrasts with the North Atlantic where t½ for Fe (II) 

oxidation is ~20mins so there is no dissolved Fe found in non-buoyant plume samples 

and the Pacific where t½ is up to ~6.4hrs (Field & Sherrell, 2000) so little particulate Fe is 

precipitated prior to reaching the non-buoyant plume.  If we assume that the dissolved Fe 

(II) remaining in the Indian Ocean plumes will be quantitatively oxidised and 

precipitated within 5 half times, i.e. ~12 hours and assume a deep ocean current of 2cm/s 

then there should be no dissolved Fe remaining further than ~1km from the vent site.  

Clearly the results from CTDs 4 and 6 which are 1.3km and 1.7km from the vent 

respectively, show that there are significant concentrations of dissolved Fe (up to 

40nmol/l, see Table 3) which may suggest higher current speeds in this area.  The 

dissolved Fe concentrations at CTDs 4 and 6 represent ~50% of the original vent fluid 

Fe, i.e. effectively only one half-life (2.3hrs) has elapsed.  For a distance of 1.5km this 

suggests a current speed of 18cm/s.  Current speeds as high as this have been recorded at 

e.g. the Rainbow hydrothermal site in the non-buoyant plume (Khripounoff et al., 2001). 

 

 

3.4.4 In situ particulate Fe calculations 

 

Although we have data on the total Fe in the samples, the particulate Fe will not be 

representative of the in situ particulate Fe in the plume at the time of sample collection 

because the time taken to get the sample back on board ship and processed is longer (2-5 

hours) than the oxidation half time for dissolved Fe at this location, i.e. this delay will 

have allowed further Fe (II) oxidation and particulate Fe to form, after the Niskin bottles 
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were closed and the samples taken.  By recording the time of the CTD rosette sampling 

and the time of subsequent sample processing on board ship, however, then - knowing 

the Fe (II) oxidation rate, the in situ Fe (II) data was calculated (Statham et al., 2005) for 

some of the most Fe-rich samples from CTD stations 23 at Edmond and 21 at Kairei.  

The difference in total Fe and in situ Fe (II) can then tell us how much particulate Fe 

there was in the sample in the non-buoyant plume at the time of collection.  Table 8 

shows the data. 

 

Sample  
Total Fe 
(nmol/l) 

In situ Fe II 
(nmol/l) 

In situ 
particulate 

Fe 

% In situ 
particulate to 

total Fe 
Kairei     

CTD 21 2120m 530 465 65 12 
CTD 21 2220m 371 397   
CTD 21 2273m 409 151 258 63 
CTD 21 2320m 144 72 72 50 
CTD 21 2372m 74.3 44.1 30 41 

     
Edmond     

CTD 23 2960m 17.6 41.3   
CTD 23 3008m 308 339   
CTD 23 3019m 394 366 28 7 
CTD 23 3057m 232 228 4 2 
CTD 23 3107m 278 281   

Table 8.  In situ particulate Fe for Kairei and Edmond samples calculated from 
total Fe (dissolved [<0.4µm] Fe plus particulate [>0.4µm] Fe) and in situ Fe II data 
(Statham et al., 2005)  

  

  

The data suggests that for the samples collected at Edmond, there was very little or no 

particulate Fe present in the non-buoyant plume at the time of collection.  This correlates 

with the relatively low maximum concentrations of Fe (~50nmo/l) collected by in situ 

filtration of these samples, as retained on SAP filters (see Chapter 4 for full details) 

compared to previous studies at the TAG and Rainbow hydrothermal sites (~200nmol/l at 

TAG, ~400nmol/l at Rainbow (German et al., 1991a; Edmonds & German, 2004)).  For 

the Kairei samples, the data suggests that there was a significant fraction of particulate Fe 

present in the plume, unlike the Edmond samples.  This initially seems odd as CTDs 21 

and 23 are both very close to their respective vents (~0.1km), however comparison with 

the LSS profiles shown earlier for each CTD (Figs. 9 and 13) reveals that the samples 
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shown in Table 8 for CTD 23 generally have much lower LSS signals than the samples 

for CTD 21.  This is consistent with a lower in situ particulate loading for the CTD 23 

samples. 

 

These calculations give us some information on the processes occurring within 

hydrothermal plumes.  However the uncertainties in the calculations (for example, the 

fact that four of the ten samples have an in situ Fe (II) concentration which exceeds the 

total Fe) serve to highlight the importance of future hydrothermal plume studies 

focussing on in situ measurements, as well as collecting samples which are processed on 

board ship and analysed later in the laboratory.   

 

 

3.4.5 Plume Age Calculations 

 
Assuming Fe (II) follows first order kinetics then: 

tk
t 1

0 eFeFe −
== ][][  

 
This means that if we know the Fe (II) concentration at the time of sample collection (in 

situ Fe (II) in Table 8 above) and plume dilution (estimated from dissolved Mn data, 

figures are in Table 6), the initial Fe concentration and the rate constant k1 for Fe (II) 

oxidation (0.303hr-1 (Statham et al., 2005)) we can calculate the age of the plume from: 

 

0t1 Fe
Fe

k
1t

=
−=

][
][ln  

 

The initial concentration of Fe (II) is the vent fluid concentration, however some of the 

vent fluid Fe (II) will have precipitated as sulfides.  This must be estimated to give an 

initial Fe (II) concentration before any dilution of the plume.  For this calculation, we 

will use the percentage Fe loss estimated earlier in the section ‘Estimates of Fe Loss’ 

(20% for Kairei and 30% for Edmond) which gives an initial ‘available’ Fe (II) 

concentration (after sulfide precipitation) of 4.3mmol/l at Kairei and 9.0mmol/l at 

Edmond.  
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Results of the plume age calculations are shown in Table 9 below.  Using the plume 

dilution factor from the dissolved Mn data, the original Fe (II) concentration that the 

samples would have had before dilution can be estimated.  From this, the plume age can 

be calculated. 

 

 

Sample  
In situ Fe II 

(nmol/l) 

Dilution 
factor (based 
on Mn data) 

Original Fe 
II concn 
(mmol/l) 

Plume age 
(hrs) 

Kairei     
CTD 21 2120m 465 8400 3.9 0.3 
CTD 21 2220m 397 8900 3.5 0.7 
CTD 21 2273m 151 10000 1.5 3.4 
CTD 21 2320m 71.5 36000 2.6 1.7 
CTD 21 2372m 44.1 61000 2.7 1.5 

     
Edmond        

CTD 23 2960m 41.3 520000 22 * 
CTD 23 3008m 339 25000 8.5 0.2 
CTD 23 3019m 366 23000 8.4 0.2 
CTD 23 3057m 228 39000 8.9 0.1 
CTD 23 3107m 281 28000 7.9 0.4 

         
Table 9.  Plume age calculations for Kairei and Edmond samples where in situ Fe 
(II) data are available. 
* not valid as concentration exceeds the initial calculated Fe concn after taking account 
of sulfide formation 

 
 

The plume ages for the Edmond samples are very low when considering that it takes ~1 

hr to reach the non-buoyant plume (Lupton, 1995).  This suggests that either the estimate 

of Fe loss to sulfides is too high or the dilution factor calculated from the dissolved Mn 

data is too high.  If the dilution factor were too high this could suggest that Mn is not 

behaving conservatively and there has been loss of Mn from the plume resulting in a 

higher estimated dilution.  However there is no evidence from the relationship of total Fe 

and dissolved Mn for Edmond in Fig. 21 which is essentially linear (if Mn were being 

lost from the plume then some negative curvature may be expected) and the particulate 

Mn throughout all plume samples is uniformly low compared to all the dissolved Mn 

data.  It is more likely that the Fe loss estimate is high; a plume age for the youngest 

samples of ~1hr requires only a 10% loss due to sulfide formation (giving an initial 

‘available’ Fe (II) concentration of 11.5mmol/l).      
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For Kairei, the plume ages appear more realistic (although the two shallowest samples 

have ages <1hr).  CTD 21 was located ~0.1km from the vent; assuming a current of 

~2cm/s it would take ~1.5hrs to travel 0.1km.  Taking into account the elapsed time for 

the initial vent fluids to reach the non-buoyant plume, the ages of 1.5 to 3.4 hrs seem 

reasonable.  Comparison with literature data is difficult because other estimates of plume 

age have been for samples much further away from the vent (e.g. Rudnicki & Elderfield, 

1992; Chin et al., 1994).  However plume age estimates using Fe (II) measurements and 

the Fe (II) oxidation half time by Chin et al. (1994) showed good agreement with 

estimates for the same samples made using 222Rn and Mn measurements by Gendron et 

al. (1994).  

 

 

3.4.6 Calculation of rate constant k1 for Fe (II) oxidation 

 

The first prediction of Fe (II) oxidation rates in the Indian Ocean was by Field & Sherrell 

(2000) which gave a value of 1.3hrs based on WOCE data from a station at ~29°S 55°E.  

This is lower than the experimental value calculated by Statham et al. (2005) of 2.3hrs, in 

the Kairei and Edmond hydrothermal plumes.  As we have data from the Kairei and 

Edmond areas, we can calculate the rate constant k1 to see how this compares to both the 

Statham et al. and Field and Sherrell values. 

 

The equation for the rate of oxidation of Fe (II) is given by (Millero et al., 1987): 

 

                                 )]([)]([
1 IIFek

dt
IIFed

=−  

                

where:  k1 = k[OH-]2 [O2] and t½ = ln2 / k1. 

 log  1.52II293
T

15465621k ½ +−−= ..  

 I = 0.0199S 

and T = temperature, I = ionic strength, S = salinity 
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Temperature, salinity and dissolved oxygen concentrations were measured at each CTD 

station, the ridge flank profile at CTD 16 at a depth of 2298m was chosen for this 

calculation.  [OH] can be calculated from pH which was not measured and is also not 

available in the WOCE dataset.  However pH can be calculated using the CO2SYS 

program (Lewis & Wallace, 1998), this requires total carbon and total alkalinity data as 

well as phosphate and Si concentrations.  These data are available from the WOCE 

datasets, Station 514 on the IO3 transect at 20°00’S 70°45’E was chosen as it is the 

closest available station to CTD 16.  Data from a depth of 2294m was selected.  Data 

used for the calculation of k1 and the results are shown in Table 10 below. 

 

 Position Depth (m)     

   
Temperature 

(°C) Salinity 

Dissolved 
O2

a 
(µmol/kg)  

CTD 16 24°41’S 
71°08’E 2298 1.872 34.713 184.3  

   
Alkalinity 
(µmol/kg) 

Total 
Carbon 

(µmol/kg) 
PO4

3- 
(µmol/kg) 

Si 
(µmol/kg) 

IO3 Stn  
514 

20°00’S 
70°45’E 2294 2376 2271 2.28 106.11 

  
pHsws pKw pOHb  Data from 

CO2SYS   7.857 14.133 6.276  

Calculated values 
Rate 

Constant k1 
Half time 
t½ (mins) 

Half time 
t½ (hrs)  

   0.00936 74.04 1.23  
Table 10.  Half time for Fe (II) oxidation calculated from background data in the 
vicinity of the Kairei and Edmond hydrothermal sites. 
a Mean of four measurements taken at plume depths 
b pOH = pKw-pHsws 

 

The half time for Fe oxidation calculated from Kairei and Edmond data of 1.2hrs is much 

lower than the experimental value of Statham et al. of 2.3hrs.  However the calculated 

value is based on the temperature, salinity, pH and [O2] of the ambient water at Kairei 

and Edmond; conditions right in the plume where oxidation is taking place will be 

slightly different but are they sufficient to account for the difference in calculated and 

experimental half times?  For example there may be a small increase in temperature and a 

coincident decrease in salinity (see e.g. Fig. 18 for CTDs 5 and 21).  A 0.1°C increase in 
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temperature however (which although possible in a buoyant plume (e.g. Rudnicki & 

German, 2002) is unlikely in a non-buoyant plume, CTDs 5 and 21 show temperature 

anomalies of ~0.02°C in the plume) would lower the half time by only 2 minutes.  

Likewise, a 0.1 increase in salinity (again unlikely in the non-buoyant plume as the 

buoyant plume at Kairei only shows an increase of 0.0005 (Rudnicki & German, 2002)) 

would only increase the half time by ~1 minute.  

 

Dissolved O2 concentrations from the Kairei hydrothermal plume samples are lower than 

those of the background ridge flank samples, 179.3±2.3µmol/kg compared to 

184.3±0.6µmol/kg.  A lower dissolved O2 concentration will increase the half time, but a 

5.0µmol/kg reduction will only increase it by ~3mins.  Although total alkalinity and total 

carbon have not been measured in hydrothermal plumes, they have been measured in 

vent fluids (Von Damm, 1990; 1995).  Total alkalinity is generally zero while total 

carbon ranges from 4 to 290mmol/kg, i.e. it is elevated above that of seawater 

(~2300µmol/kg).  If we assume therefore that alkalinity may be slightly lower in the 

plume while total carbon may be elevated, we can estimate the affect that this may have 

on the half life: for example either a reduction in alkalinity of 20µmol/kg or an increase 

in total carbon of 20µmol/kg would increase t½ to 1.6hrs.      

 

None of the above parameters are able to account for the whole difference between the 

calculated and experimental half times; the remaining parameter which affects the half 

time is pH.  Is there sufficient change in pH within a hydrothermal plume to account for 

the increased experimental half time?  The pH required to give a half time of 2.3hrs can 

be calculated, it is 7.721, i.e. a decrease in pH of 0.14 would be necessary.  There is little 

data on the pH variations within hydrothermal plumes, however pH measurements of a 

buoyant hydrothermal plume in the Lau Basin showed a maximum decrease in pH of 

0.05 (Edmonds, Pers. Comm.) so it is unlikely that a change of 0.14 would be seen in a 

non-buoyant plume. 

 

The experimental results of Statham et al. (2005) suggested Fe (II) oxidation does not 

strictly follow first order kinetics and that there may be other processes at play.  These 

may include interactions of Fe (II) with dissolved organic matter/organic binding ligands 

(e.g. Johnson et al., 1997; Santana-Casiano et al., 2000), the oxidation of sulfides 
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producing Fe (II) in solution (Rimstidt & Vaughan, 2003) or the reduction of Fe (III) 

back to Fe (II) by the superoxide radical O2
- which is produced during Fe (II) oxidation 

(King et al., 1995).  The above calculations seem to corroborate that there are some 

additional factors, as adjusting the parameters to the conditions that may be found in a 

non-buoyant plume does not alter the half time sufficiently.  To assess the affect that 

other processes may be having on the Fe (II) oxidation rate, it would be necessary to 

measure all the required parameters within the non-buoyant plume and calculate the half 

time, then compare this to the experimental value.  Massoth et al. (1998) did exactly that 

for plumes on the Gorda Ridge in the Pacific Ocean and calculated a half time of ~12hrs 

based on conditions in the plume.  This is longer than that of 6.4hrs predicted by Field & 

Sherrell (2000) for the Gorda Ridge using ambient seawater data from a WOCE station, 

which indicates that conditions within the plume seem to extend the Fe (II) oxidation half 

time.  The experimental half time measured by Massoth et al. was 42hrs which like the 

experimental value for the Indian Ocean is higher than the calculated value.  This again 

suggests that other processes may be at play.  Massoth et al. did also fit their results to 

second order kinetics; although this reduced the experimental half time to 39hrs, it still 

does not account for the whole difference between the experimental and theoretical 

values.  Table 11 summarises the different Fe (II) oxidation half times, discussed above, 

which have been calculated and reported for the Indian Ocean and Gorda Ridge in the 

Pacific Ocean.   

 

These calculations of the rate constant for Fe (II) oxidation show, that while such 

exercises are useful and have their place, experimental data are crucial to properly 

determine what is going on in natural systems. 
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Method used to obtain Fe (II) Oxidation Half Time Fe (II) Oxidation Half 
Time (Hrs) 

Indian Ocean  
Calculated from ambient data from WOCE Transect IO7C 
Station 6821  

1.3 

Calculated from ambient data close to Kairei and Edmond (pH 
calculated from data at WOCE Transect IO3 Station 514)  

1.2 

Experimental observation2 - assuming 1st order kinetics 2.3 
  
Pacific Ocean – Gorda Ridge  
Calculated from ambient data from WOCE Transect P17N 
Station 451 

6.4 

Calculated from ‘in-plume’ data3 12 
Experimental observation3 - assuming 1st order kinetics 
                                           - assuming 2nd order kinetics 

42 
39 

Table 11.  Fe (II) Oxidation half times from published literature and this study for 
the Indian Ocean and Gorda Ridge in the Pacific Ocean.  Values for Gorda Ridge 
are shown to illustrate the difference between various methods used to derive the Fe 
(II) oxidation half time.  While calculations from ambient data provide an estimate of 
the Fe (II) oxidation rate in the surrounding ocean, they cannot account for the conditions 
in the plume which will be slightly different.  The ‘in-plume’ result uses data measured 
within the plume which should be more accurate.  Experimental observation (where 
samples are taken from the plume and oxidation rate determined from measuring Fe back 
on board ship) replicates plume conditions including any additional influencing factors 
such as e.g. microbial interaction, although it does not reflect in situ pressure which may 
affect the oxidation rate.  For further details, see main text. 
  
1 Field & Sherrell (2000) 
2 Statham et al. (2005) 
3 Massoth et al. (1998) 
 

 

3.4.7 Summary 

 
Dissolved and particulate Fe and dissolved Mn are all high in the Kairei and Edmond 

hydrothermal plumes but particulate Mn is always low, consistent with the slow 

oxidation of Mn which behaves pseudo-conservatively over the distances away from a 

vent which are discussed here.  The maximum dissolved concentrations in the Indian 

Ocean, measured in this study are high compared to Atlantic and most Pacific 

hydrothermal plumes reported previously.  Comparison with the vent-fluid Mn data 

reveals why this is, the strongest plume signals represent <104 fold dilution, i.e. these are 

very young, concentrated plume signals indicative of fluids recently emplaced at plume-
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height at the top of the buoyant plume.  This is consistent with USBL navigation records 

from the CTD which show that samples were taken within 100m of the vents, which is 

within the area of buoyant plume lateral spread as calculated from the height of rise of 

the plume 

 

The total Fe versus dissolved Mn data enables us to see how much Fe has been removed 

(20-30%) even in the youngest samples which have recently reached non-buoyant plume 

height.  This is consistent with the removal of that Fe, along with all available Cu and Zn 

in the vent fluids via the formation of poly-metallic sulfides with the available H2S in 

those vent fluids.  The dissolved Fe versus dissolved Mn data suggests that there is 

further dissolved Fe loss via in situ oxidation and removal into the particulate phase.  

This is consistent with oxidation times which are not significantly longer than plume 

emplacement times.  

 

From the measured total Fe we can subtract the calculated in situ Fe(II) to obtain the 

proportion of Fe that was in the particulate phase at time of plume sampling, these are 

generally small numbers confirming that the samples were ‘fresh’.  Using the known Fe 

oxidation rate, and assuming that we accurately know how much Fe has been removed as 

sulfides, we can calculate the age of the samples from when they initially emerged from 

the vents.  Those calculations yield unreasonably young ages for the Edmond samples, 

which suggests the estimates of the proportion of Fe removed as sulfides should be 

revised downwards to ~10%.  This remains consistent with available Cu, Zn and H2S 

vent fluid concentrations. 

 

A limitation to the work to date (Statham et al, 2005) is that the calculation of oxidation 

rates requires a linear fix, however it is probably more complex than that.  To progress 

that, however, requires a more comprehensive data-set of additional parameters as well 

as a better understanding of the processes related to Fe (II) oxidation.  Any future study 

of Fe cycling in hydrothermal plumes should at least measure concentrations of organic 

matter, in situ pH, in situ dissolved [O2], in situ temperature and in situ salinity.  
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4 Chapter 4   Particulate (>1.0µm) samples: Inter-comparison with 

earlier studies. 
 
4.1 Introduction 

 
Previous studies of hydrothermal plumes in the Atlantic and Pacific Oceans have found 

that although there are similarities in the reactions taking place within plumes, the rate of 

iron (II) oxidation varies significantly (Field & Sherrell, 2000; Statham et al., 2005).  

This is important because it is iron oxidation and the precipitation of iron oxyhydroxide 

particles, which serves to modify the gross fluxes of dissolved metals to the oceans at all 

vent sites (e.g. German et al., 1991a).  The aim of this chapter is to determine whether the 

plume processes identified previously in the Atlantic and Pacific Oceans are also broadly 

applicable to the Indian Ocean.   

 

As described in Chapter 2, stand alone pump samples (SAPs) were deployed on a CTD 

rosette to collect large volume particulate samples by in-situ filtration through 293mm 

Nucleopore 1.0µm filters.  This chapter will focus solely on these >1.0µm SAP samples, 

enabling a direct comparison with the data of German et al. (1991a) from the TAG 

hydrothermal site in the Atlantic, and the data of Edmonds & German (2004) from the 

Rainbow hydrothermal site in the Atlantic, which were also obtained using SAPs and 

1.0µm filters.  

 

For reference, vent fluid characteristics from the Kairei and Edmond sites which were the 

subject of this study as well as those of the TAG and Rainbow sites are shown in Table 

12.  The filtered seawater samples collected from Niskin bottles were discussed in 

Chapter 3 while the associated particulate samples (>0.4µm and >0.1µm) will be 

discussed in Chapter 5.      
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 Kairei1 Edmond1 TAG2 Rainbow3 
Temperature (°C) 360 380 360 365 

pH 3.5 3.1 3.4 2.8 
Alkalinity (meq/kg -0.46 -0.53 -0.45 - 

Chlorinity (mmol/kg) 640 930 640 750 
H2S (mmol/kg) 4.0 4.7 3.0 1.2 
Fe (µmol/kg) 5400 13900 5600 24000 
Mn (µmol/kg) 840 1430 680 2250 
Cu (µmol/kg) 210 160 135 140 
Zn (µmol/kg) 80 130 46 160 

Table 12.  Vent fluid characteristics of  the Kairei and Edmond study sites in the 
Indian Ocean and the TAG and Rainbow sites in the Atlantic Ocean 
1 Data from Gamo et al. (2001) and Gallant & Von Damm (2006)  
2 Data from Edmond et al (1995) and Edmonds et al (1996) 
3 Data from Douville et al. (2002) and Charlou et al. (2002) 
 
 
 
4.2 Results 

 

The concentrations of particulate Fe, Al, Mn, Mg, Ca, P, V, As, Cu, Zn, Cd, Pb and Y for 

the stand alone pump samples (>1.0µm) are shown in Table 13.  Particulate rare earth 

element concentrations for these samples are in Table 14.  Na concentrations were also 

measured and assuming that all Na present is derived from sea salt then for the majority 

of samples only ~0.5ml of seawater was retained on the filters after rinsing.  Two 

samples had retained ~1ml and one sample ~2.3ml of seawater, however these volumes 

are still insufficient to cause more than 0.05% difference in concentration between sea 

salt corrected and non sea salt corrected results for all other elements considered here.  

The presented results have been corrected for sea salt.   

 

Iron concentrations range from 5 to 55nmol/l and maximum concentrations of 45 to 

55nmol/l are observed at the CTD stations in closest proximity (<0.1km) to the vent sites.  

These concentrations are lower than the maximum of 212nmol/l and 420nmol/l observed 

in the TAG and Rainbow non-buoyant hydrothermal plumes, respectively, in the Atlantic 

(German et al., 1991a; Edmonds & German, 2004), also using SAPs.  This is despite the 

fact that the use of real time nephelometry data (as described in Chapter 2) ensured that 

the SAPs were definitely suspended in the hydrothermal plume.  A plot of percentage 

Fe/(Fe+Mn+Al) against Fe for both the Kairei and Edmond SAPs data are shown in Fig. 
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24.  The ratio of Al to (Fe+Mn+Al) can be used as an indicator of the hydrothermal 

versus detrital contribution to sediments (Bostrom et al., 1969), where a low value (~less 

than 10%) indicates very low detrital input.  Similarly, a high value for the ratio of Fe to 

(Fe+Mn+Al) indicates low detrital input and therefore a high hydrothermal input.  Here 

the percentage Fe/(Fe+Mn+Al) are all greater than 80% except for one sample, which 

suggests that these samples are definitely hydrothermal in origin rather than, for example, 

re-suspended sediment with a terrigenous origin.  The much lower percentage of one 

sample from the Edmond site is due to an anomalously high manganese concentration, 

compared to the rest of the samples, of 6.8nmol/l.  
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Figure 24  Percentage particulate Fe/(Fe+Al+Mn) versus particulate Fe for Kairei 
and Edmond hydrothermal plume SAP (>1.0µm) samples 
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  Fe Al Mn Fe Mg Ca P V As Cu Zn Cd Pb Y 
  nmol/l nmol/l nmol/l (Fe+Mn+Al) nmol/l nmol/l nmol/l pmol/l pmol/l nmol/l nmol/l pmol/l pmol/l pmol/l
 Kairei               
 CTD 2 sap003 6.3 0.18 0.58 0.89 24.3 18.1 0.89 15.2 1.1 0.36 0.08 0.11 2.99 0.9 
 CTD 7 sawp001 15.3 0.28 0.18 0.97 64.5 34.9 2.29 32.1 17.5 1.26 0.28 8.38 5.52 1.4 
 CTD 7 sap003 10.3 0.20 0.61 0.93 24.5 20.2 1.33 27.8 13.0 0.88 0.17   1.0 
 CTD 11 sap003 6.6 0.29 0.95 0.84 60.5 31.6 0.97 22.9 10.2 0.12 0.11 0.15  1.2 
 CTD 17 sap001 2.9 0.27 0.22 0.85 46.8 27.5 0.47  5.3 0.06 0.07 0.06 3.08 0.8 
 CTD 18 sap003 7.4 0.29 0.25 0.93 46.6 30.6 1.17 24.8 11.4 0.27 0.04 0.15 3.80 1.2 
 CTD 19 sap001 7.5 0.45 0.24 0.92 35.0 29.0 1.22 16.5 7.5 0.39 0.20   1.1 
 CTD 20 sap003 9.8 0.26 0.22 0.95 30.8 27.5 1.44 28.6 15.9 0.70 0.18 0.33 2.29 1.1 
 CTD 21 sap001 55.2 0.23 0.17 0.99 42.4 27.2 6.59 109 60.4 5.84 1.84 107 16.8 2.0 
 Edmond               
 CTD 01 sap003 12.6 0.16 0.90 0.92 13.3 8.4 1.97 39.9 21.0 0.28 0.20 2.93 10.1 0.9 
 CTD 23 sap002 47.9 0.42 0.15 0.99 32.5 30.9 6.65 130.2 59.0 3.72 2.68   2.3 
 CTD 23 sap003 44.6 0.56 0.63 0.97 102 42.1 6.05 100 60.0 3.18 2.05 135 47.8 2.4 
 SAP01 s/n001 4.7 0.20 0.98 0.80 35.9 24.9 0.75 13.8  0.04 0.02 0.11 3.41 1.0 
 SAP01 s/n002 4.8 0.26 0.22 0.91 14.0 21.1 0.70 17.1 7.9 0.03 0.01   1.0 
 SAP01 cosap02 5.7 0.51 0.90 0.80 43.4 28.2 0.79 21.6 9.5 0.07 0.02 0.10 5.15 1.1 
 SAP01 s/n003 6.7 0.54 6.82 0.48 52.1 33.9 1.11 19.4 16.0 0.05 0.05   1.6 
 SAP01 cosap04 5.7 0.65 0.39 0.84 223 65.6 1.45 21.6 9.4 0.11 0.15   1.0 
 SAP02 s/n001 10.2 0.41 1.48 0.84 44.6 35.9 1.53 38.9 16.5 0.07 0.03   1.7 
 SAP02 s/n002 7.6 0.36 0.28 0.92 12.0 26.0 1.13 26.1 12.4 0.04 0.02 0.04 1.63 1.4 
 SAP02 cosap02 14.4 0.49 0.37 0.94 40.4 33.8 1.99 36.9 28.3 0.93 0.42   1.6 
 SAP02 s/n003 25.0 0.51 1.52 0.93 67.5 35.9 3.94 80.5 42.2 0.93 0.40 20.6 10.9 2.2 
 SAP02 cosap04 9.3 0.64 0.34 0.91 27.5 32.2 1.28 28.7 6.4 0.09 0.12   1.6 

 Table 13.  Particulate concentrations for Stand Alone Pump (>1.0µm) samples: Molar concentrations (either nmol/l or 
pmol/l) which have been blank corrected. See Appendix 3 for raw data. 
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 Fe La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 
 nmol pmol pmol/ pmol/ pmol/ pmol/ pmol/ pmol/ pmol/ pmol/ pmol/ pmol/ pmol/ pmol/ pmol/
 Kairei   
 CTD 2 sap003 6.3 0.57 1.23 0.137 0.541 0.121 0.039 0.120 0.019 0.113 0.023 0.067 0.009 0.055 0.009 
 CTD 7 sap001 15.4 1.14 2.11 0.265 1.025 0.215 0.069 0.245 0.039 0.238 0.052 0.139 0.020 0.110 0.018 
 CTD 11 sap003 6.7 0.82 1.82 0.200 0.769 0.164 0.051 0.159 0.025 0.157 0.031 0.089 0.013 0.077 0.012 
 CTD 17 sap001 2.9 0.62 1.88 0.145 0.577 0.121 0.037 0.129 0.020 0.119 0.025 0.068 0.010 0.056 0.009 
 CTD 18 sap003 7.4 0.90 2.11 0.210 0.816 0.173 0.046 0.179 0.028 0.173 0.034 0.097 0.014 0.081 0.014 
 CTD 20 sap003 9.8 0.74 1.72 0.183 0.718 0.153 0.042 0.156 0.025 0.150 0.030 0.085 0.013 0.072 0.012 
 CTD 21 sap002 55.2 1.23 1.94 0.265 1.044 0.225 0.078 0.258 0.039 0.254 0.052 0.145 0.022 0.126 0.020 
 Edmond                
 CTD 1 sap003 12.6 0.52 0.43 0.126 0.497 0.112 0.035 0.124 0.020 0.126 0.027 0.074 0.011 0.063 0.010 
 CTD 23 sap003 44.6 1.51 2.11 0.357 1.404 0.307 0.103 0.341 0.055 0.339 0.086 0.202 0.029 0.165 0.029 
 SAP01 s/n001 4.7 0.75 1.48 0.187 0.716 0.152 0.041 0.151 0.023 0.146 0.029 0.084 0.012 0.071 0.011 
 SAP01 cosap02 5.7 0.80 1.58 0.199 0.765 0.163 0.044 0.162 0.025 0.157 0.031 0.089 0.013 0.075 0.012 
 SAP01 cosap04 5.7 0.88 1.80 0.204 0.788 0.203 0.048 0.172 0.028 0.165 0.043 0.103 0.016 0.081 0.015 
 SAP02 s/n002 7.6 0.98 1.92 0.242 0.952 0.196 0.054 0.204 0.032 0.196 0.041 0.111 0.016 0.096 0.015 
 SAP02 s/n003 25.1 1.35 1.93 0.337 1.323 0.269 0.087 0.315 0.049 0.295 0.066 0.179 0.025 0.144 0.024 
    
 Table 14.  Particulate Rare Earth Element molar concentrations for Stand Alone Pump (>1.0µm) samples Molar  

concentrations (pmol/l except Fe which is shown for reference in nmol/l) which have been blank corrected  (see Appendix 4 for 
raw data) 
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Figure 25 shows the same data as Fig. 24 but presented as a ternary plot.  This illustrates 

that the non-hydrothermal component is dominated by a purely Mn-rich phase (most 

likely Mn oxides) rather than an Al-rich phase (aluminosilicates).  This contrasts with the 

data of Edmonds & German (2004) also shown in Fig. 25, from the Rainbow 

hydrothermal site in the Atlantic Ocean which were also collected using stand alone 

pumps.  The non-hydrothermal component here is dominated by a mixed Al-rich phase 

and Mn-rich phase rather than a purely Mn-rich end-member.  The presence of high 

concentrations of Al is usually indicative of re-suspended sediment or detrital aeolian 

input (e.g. Dymond & Roth, 1988; Sherrell & Boyle, 1992).  

 

Particulate aluminium (pAl) concentrations of 0.2-0.7nmol/l (Table 13) are comparable 

to those seen in previous particulate samples from hydrothermal plumes in both the 

Pacific and Atlantic Oceans at similar particulate Fe concentrations (Trocine & Trefry, 

1988; German et al., 1991a; Feely et al., 1994a; Edmonds & German, 2004).  For 

comparison, Fig. 26a  shows the Edmond and Kairei data plotted together with the TAG 

hydrothermal plume data of German et al. (1991a) from the Atlantic as these TAG 

samples were also collected using stand alone pumps and the same pore size filters.  The 

higher pAl concentrations in the TAG samples are most probably a consequence of the 

higher dust input in the Atlantic from the African continent; similar concentrations of 

pAl  have also been observed at the Rainbow hydrothermal site in the Atlantic (Edmonds 

& German, 2004).  Between 5°N and 30°N in the Atlantic (note the TAG hydrothermal 

site is at 26°N and the Rainbow hydrothermal site is at 36°N) the dust loadings range 

between 1 and 700µg/m3 of air (Chester et al., 1984) whereas in the Southern Indian 

Ocean where the Kairei and Edmond hydrothermal vents are located, the dust loadings 

are 2 to 4 orders of magnitude lower (0.01 to 0.25µg/m3 of air; Chester et al., 1991). 

 

The particulate manganese (pMn) concentrations of 0.2 to 1.5nmol/l are higher than 

those observed at either TAG (Fig. 26b) or Rainbow (Edmonds & German, 2004) in the 

Atlantic where the concentrations are all less than 0.4nmol/l,  However they are within 

the range of up to 3nmol/l observed in hydrothermal plumes in the Pacific (Feely et al., 

1994a; 1994b) 
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Figure 25  Ternary plots of Fe, Mn, Al composition of hydrothermal particulate 
SAPs (>1.0µm) samples from (a) Kairei and Edmond (b) Rainbow1. 

1 Data from Edmonds & German (2004) 
 

 

Particulate calcium (pCa) and particulate magnesium (pMg) data from Edmond and 

Kairei and TAG are also shown in Fig. 26 plotted versus pFe.  The concentrations from 
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the Indian Ocean hydrothermal plumes have a much wider range but are comparable to 

the TAG data except for two samples which have much higher pCa and pMg 

concentrations.  It is also noticeable that pCa and pMg have a good positive correlation 

with pFe in the TAG hydrothermal plume (German et al., 1991a), although the 

correlation is much looser for Mg at [pFe] <100nmol/l, but exhibit no apparent 

correlation in the Kairei and Edmond plumes.    
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Figure 26  Particulate aluminium, manganese, calcium and magnesium versus 
particulate iron for SAP (>1.0µm) samples from Indian and Atlantic Ocean 
hydrothermal plumes.  TAG data from German et al., (1991). 
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4.2.1 Oxyanions 

 
The relationships between particulate phosphorus (pP), particulate vanadium (pV), 

particulate arsenic (pAs) and particulate iron (pFe) for the SAPs samples are shown in 

Fig. 27.  Particulate P, V and As are all positively correlated to pFe with a linear trend.  P 

concentrations range from 1-7nmol/l, V concentrations range from 20-130pmol/l and As 

has concentrations up to 70pmol/l, all of which are comparable to previous results in 

Atlantic and Pacific Ocean hydrothermal plumes when compared to measurements at 

similar pFe concentrations (German et al., 1991a; Feely et al., 1994a; 1994b; Edmonds & 

German, 2004).  
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Figure 27  Particulate phosphorus, vanadium and arsenic versus particulate iron 
for the SAP (>1.0µm) samples from the Kairei and Edmond hydrothermal plumes.  
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4.2.2 Chalcophile Elements 

 
Figure 28 shows the particulate copper (pCu), particulate zinc (pZn), particulate 

cadmium (pCd) and particulate lead (pPb) relationships with particulate iron (pFe) for the 

SAPs samples.  In all cases there is a positive correlation with pFe; pCu, pZn, pCd and 

pPb, concentrations increasing as pFe concentrations increase.  The maximum pCu 

concentrations seen at the Kairei and Edmond sites are 5.8 and 3.7nmol/l respectively 

which correspond to the maximum pFe concentrations at those sites.  These 

concentrations are comparable to the maximum of 3.3 nmol/l in the Rainbow non-

buoyant plume in the Atlantic (Edmonds & German, 2004) and that of 3.0 nmol/l at TAG 

(German et al., 1991a), also in the Atlantic.  Pacific Ocean plume samples at North Cleft 

on the Juan De Fuca Ridge and the East Pacific Rise (EPR) have lower maximum pCu 

values of 0.9 and 0.7 nmol/l respectively (Feely et al., 1994a; 1994b).  However, overall 

the Indian Ocean values are in the same range as those from other particulate 

hydrothermal plume samples. 

 

Zinc concentrations at Kairei and Edmond have a maximum value of 1.8 and 2.7nmol/l 

respectively but are generally less than 1nmol/l.  These values are comparable with 

particulate plume samples from the Atlantic at both TAG and Rainbow (German et al., 

1991a; Edmonds & German, 2004) where Zn concentrations are 1nmol/l or less.  Pacific 

Ocean plume samples are also generally less than 1nmol/l, although there is a maximum 

[Zn] of 4nmol/l in the North Cleft samples (Feely et al., 1994a; 1994b; 1996).         

 

Particulate Cd concentrations range from less then 1 pmol/l up to 135pmol/l.  For similar 

pFe concentrations, previous results from Atlantic hydrothermal plumes for the >1.0µm 

size fraction have generally shown pCd concentrations of less than 10pmol/l (German et 

al., 1991a; Edmonds & German, 2004).  The highest [pCd] of 31pmol/l was recorded at 

the Rainbow hydrothermal site but at a pFe concentration of more than 600nmol/l.   

 

The particulate Pb concentrations reach a maximum of 17pmol/l in the Kairei 

hydrothermal plume and 47pmol/l in the Edmond plume.  These concentrations are 

comparable to those seen in both the TAG and Rainbow hydrothermal plumes in the 

Atlantic, where the maximum concentrations are 38 and 29pmol/l respectively.  There 

are no Pb data for Pacific Ocean hydrothermal plumes for comparison. 
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Figure 28  Particulate copper, zinc, cadmium and lead versus particulate iron for 
the SAP (>1.0µm) samples from the Kairei and Edmond hydrothermal plumes.  
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4.2.3 Yttrium and Rare Earth Elements 

 
Figure 29 shows the particulate rare earth element (REE) and particulate yttrium (pY) 

relationships with pFe for the SAP samples.  In all cases, there is a positive but non-

linear correlation with pFe.  The range of concentrations observed for each rare earth 

element are similar to previous results from the TAG and Rainbow hydrothermal plumes 

in the Atlantic Ocean (German et al., 1990; Edmonds & German, 2004) and from a 

hydrothermal plume at 9°45’N on the East Pacific Rise (Sherrell et al., 1999).  Particulate 

Y concentrations vary from 1.1 to 2.4pM and are comparable to values at the Rainbow 

site in the Atlantic at similar PFe concentrations (Edmonds & German, 2004).  Currently 

there is no Y data available for hydrothermal plumes in the Pacific to enable comparison. 

 

Figure 30 shows the rare earth element patterns for Kairei and Edmond normalised to 

PAAS (post Archaean Australian Shale, Taylor & McLennan, 1985).  Normalisation to 

PAAS was chosen rather than chondrite or black smoker fluids because our interest is in 

the impact of hydrothermal activity on oceanic cycles rather than investigating sub-

seafloor processes and PAAS normalisation is standard in the literature for deep ocean 

water column REE data, therefore this enables easier comparison with other datasets.  All 

the samples exhibit a positive europium anomaly and with the exception of one Kairei 

sample (CTD 17 sap001), a negative cerium anomaly.   
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Figure 29  Particulate rare earth elements versus particulate iron for the SAP 
(>1.0µm) samples from the Kairei and Edmond hydrothermal plumes. 
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Figure 29 (cont)  Particulate rare earth elements versus particulate iron for the SAP 
(>1.0µm) samples from the Kairei and Edmond hydrothermal plumes. 
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Figure 29 (cont)  Particulate rare earth elements and yttrium versus particulate 
iron for the SAP (>1.0µm) samples from the Kairei and Edmond hydrothermal 
plumes. 
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Figure 30  PAAS (post archaean Australian shale) normalised rare earth element 
patterns for the SAP (>1.0µm) samples from the Kairei and Edmond hydrothermal 
plumes. 
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4.3 Discussion 

 
4.3.1 Iron 

 
The concentrations of particulate Fe recorded for these Indian Ocean SAPs samples are 

much lower than previously recorded at TAG or Rainbow in the Atlantic (see ‘4.2 

Results’).  This is not due to poor sampling, the CTD stations were well located, the 

closest being within 100m of the vent sites and in situ light scattering data was used to 

make sure that the SAPs were within the non-buoyant plume while they were operating.  

However from the Fe (II) oxidation rates we know that much of the Fe (II) emerging 

from the vents, if not already precipitated as sulfides, will still be in solution at plume 

height directly above the vents.  This will continue to precipitate over approximately the 

next 12 hrs (i.e. ~5 half times for Fe (II) oxidation).  Therefore, all dissolved Fe (II) will 

have been quantitatively removed from solution over a distance of ~7-8km (assuming a 

current speed of 18cm/s as discussed in ‘3.4.3 Total Fe Calculations’), unlike the Atlantic 

where the rapid Fe (II) oxidation rate means that all dissolved Fe (II) will have been 

removed within less than 100m of the vent source.   

 

The precipitation of particulate Fe-oxyhydroxides in the Indian Ocean plumes will occur 

as the plume is laterally dispersed away from the vent site plume and progressively 

diluted, hence high concentrations of particulate Fe-oxyhydroxides will not be found 

directly above the vent site.  Consequently, the particulate Fe phases that are collected 

may be proportionately richer in sulfides than oxides than comparable samples collected 

from Atlantic hydrothermal plumes. 

 

 
4.3.2 Oxyanions 

 

A number of elements exist as oxyanions in seawater, e.g. phosphorus, vanadium, 

chromium, molybdenum and arsenic, and several of these elements have been shown to 

behave in a linear fashion with Fe in hydrothermal plumes in both Atlantic and Pacific 

Ocean hydrothermal plumes (Feely et al., 1991; German et al., 1991a; Edmonds & 

German, 2004). 
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Figure 31  Particulate phosphorus, vanadium and arsenic versus particulate iron 
for the SAP (>1.0µm) samples from the Kairei and Edmond hydrothermal plumes 
with linear regressions through all data. Equations of regression line and correlation 
coefficients are shown on the graphs. 

 
 
Figure 31 shows the same plots as Fig. 27, but with the addition of regression lines 

through all data.  Particulate P exhibits a very good linear correlation (r2 = 0.98) with pFe 

at the Edmond site, in keeping with the behaviour of particulate P in both Atlantic and 

Pacific hydrothermal plumes (Feely et al., 1991).  Although the Kairei data are biased 

towards low (<20nmol/l) Fe concentrations with only one other data point at a high [Fe] 

of 55nmol/l, the data clearly lies along the same trend line as the Edmond data, defining 
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the same linear trend.  Previously this linear behaviour has been attributed to the 

scavenging and/or co-precipitation of P by/with Fe-oxyhydroxides being restricted to the 

buoyant plume and ceasing on reaching the non-buoyant plume (German et al., 1991a; 

Feely et al., 1992).  This is possibly due to the change in the surface charge of the 

FeOOH particles which might be expected to occur as the pH of the plume increases 

(Ludford et al., 1996).  At low pH the surface charge of the FeOOH particles will be 

positive so the negatively charged oxyanions would be adsorbed but once the pH reaches 

7 to 8 the surface charge of the particles becomes negative (Stumm & Morgan, 1996), 

hence the oxyanions would no longer be attracted to the FeOOH particles  The same 

linear trend observed in all non-buoyant hydrothermal plumes also implies that no P is 

released from the FeOOH particles as the plume is diluted.  It has previously been 

suggested that the uptake of P onto Fe-oxyhydroxide particles is dependent on the 

ambient dissolved phosphate concentration (Feely et al., 1998).  In that case, it is entirely 

reasonable that the Kairei and Edmond results co-incide on the same trend line because 

the deep ocean dissolved phosphate concentrations will not vary significantly over the 

distance between the two vent sites; at plume height the dissolved phosphate 

concentrations at Edmond and Kairei will be ~2.2µmol/kg (CLIVAR & Carbon 

Hydrographic Data Office). 

  

Particulate V and particulate As also exhibit linear relationships with pFe in Atlantic and 

Pacific hydrothermal plumes (Trefry & Metz, 1989; German et al., 1991a; Feely et al., 

1994a).  The Edmond and Kairei SAPs data are consistent with these prior observations, 

pV and pAs having good linear correlations with pFe of r2 = 0.94 and 0.91 respectively 

(Fig. 31).  Again the Kairei and Edmond data co-incide which is consistent with 

scavenging of V or As from ambient seawater where the concentrations will be very 

similar at the two locations (Middelburg et al., 1988).  As for P, the implication of this 

linear trend is that no further uptake or release of V or As from the FeOOH particles 

occurs by the time the non-buoyant plume has been reached.  For vanadium, this theory 

is substantiated by the work of Metz and Trefry (1993) where they found that 

hydrothermal precipitates maintained a constant V/Fe ratio over seven days despite there 

being sufficient dissolved V in solution to enable further adsorption by the Fe oxide 

particles. 
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4.3.3 Chalcophile Elements 

 
The graph of particulate Cu against pFe (Fig. 28) clearly demonstrates a negative 

departure from linearity for the Edmond site, a trend which is consistent with 

observations in Atlantic Ocean hydrothermal plumes (Trocine & Trefry, 1988; German et 

al., 1991a).  Although data are available for hydrothermal plume particles from the East 

Pacific Rise in the Pacific Ocean (Feely et al., 1994a; 1996), the relationship between Cu 

and Fe for those plumes does not show a clear trend.  The negative departure from 

linearity in the Edmond plume, by contrast, indicates that Cu is being preferentially 

removed from the particulate phase in the non-buoyant plume relative to Fe.  Cu is 

believed to be present in the particulate phase as sulfides which precipitate in the early 

phase of buoyant plume formation (Mottl & McConachy, 1990) and the negative 

curvature has been attributed to either the preferential settling of denser Cu-rich sulfides 

relative to fine grained Fe-oxyhydroxide particles or, to the oxidation of the sulfides and 

their subsequent dissolution (Trocine & Trefry, 1988; German et al., 1991a).  The same 

trend, i.e. negative curvature, should be expected for the Kairei samples based on our 

existing knowledge.  However the absence of data between [pFe] of 20 and 50nmol/l 

does not allow us to confirm this. 

 

The highest [Fe] samples at Kairei and Edmond have Cu:Fe ratios of 0.094 ± 0.017 and 

0.075 ± 0.005 respectively.  These values as well as the mean Cu:Fe ratios and ranges for 

the Kairei and Edmond samples and the vent fluid ratios are shown in Table 15.  The 

ratios of hydrothermal particles from the non-buoyant plumes at the TAG and Rainbow 

sites in the Atlantic which were also collected using 1.0µm filters in stand alone pumps 

are also shown for comparison.    

 

The Cu:Fe ratios of the high [Fe] samples (i.e. the ‘youngest’ samples, closest to the 

vent) at both Kairei and Edmond are higher than the Cu:Fe ratios in the vent fluids 

(illustrated in Fig. 32) which is consistent with preferential fractionation of the Cu 

(relative to Fe) into sulfides in the early phases of plume formation.  At TAG, the high 

[Fe] samples do not have such a high Cu:Fe ratio.  Although one of those samples did 

have a ratio of 0.08, that sample was anomalous compared to the others collected at the 

time in that it was more sulfidic than the others.  This ratio, of 0.08, is also higher than 



Chapter 4                   Particulate (>1.0µm) samples: Inter-comparison with earlier studies 

 99

the vent fluid Cu:Fe ratio, once again consistent with fractionation of the Cu into 

sulfides. 
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Figure 32  Cu:Fe ratios in vent fluids and non-buoyant plume particles [SAP 
(>1.0µm) samples] for the two highest [Fe] samples at each site. 

 

At the Rainbow vent site the sample and vent fluid Cu:Fe ratios are the same.  This is to 

be expected because not only is the Fe/H2S vent fluid ratio of 24 unusually high 

(Douville et al., 2002), but the Fe:Mn ratio in the plume is almost the same as the vent 

fluid Fe:Mn ratio suggesting Fe is behaving conservatively (Severmann et al., 2004), i.e. 

there is little sulfide formation.  However there is evidence for some sulfide formation 

from the three buoyant plume samples collected at Rainbow which have a higher Cu:Fe 

ratio of 0.016±0.004 compared to the vent fluid ratio of 0.006 (Douville et al., 2002; 

Edmonds & German, 2004).  Again this is consistent with fractionation of Cu into 

sulfides but obviously the effect is limited at Rainbow by the low H2S concentration in 

the vent fluids. 

 

In the Pacific Ocean, although vent fluid data are available for many of the hydrothermal 

sites (see e.g. Von Damm, 1995) and there are also data for plume particle samples from 

a number of hydrothermal sites (e.g. Feely et al., 1987; 1990a; Mottl & McConachy, 

1990; Feely et al., 1994b), there are few instances where both data are available for the 
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same location, particularly for non-buoyant plume particle samples.  However there are 

two sites where buoyant plume particle data and the corresponding vent fluid data are 

available, the OBS vent at 21°N on the East Pacific Rise and the Endeavour site on the 

Juan de Fuca Ridge.  At OBS the vent fluid Cu:Fe ratio is 0.021 (Von Damm, 1995) and 

the buoyant plume particle Cu:Fe ratio is 0.354±0.065 (Mottl & McConachy, 1990) 

while at Endeavour, the average vent fluid Cu:Fe ratio for six vents is 0.015±0.007 (Von 

Damm, 1995) and the buoyant plume particle Cu:Fe ratio is 0.263±0.101 (Feely et al., 

1987).  These figures are again consistent with fractionation of Cu into sulfides relative 

to Fe, during early-stage plume formation. 

 

 Kairei1 Edmond1 TAG2 Rainbow3 
Mean Cu:Fe ratio 0.060±0.029 0.027±0.027 0.016±0.018 0.006±0.003 

High [Fe] Cu:Fe ratio 0.094±0.017 0.075±0.005 0.035±0.039 0.008±0.001 

Range Cu:Fe ratios 0.019-0.106 0.006–0.078 0.006–0.080 0.003–0.015 

Vent fluid Cu:Fe ratio 0.050±0.029 0.016±0.010 0.024 0.006 

  
Mean Zn:Fe ratio 0.030±0.028 0.019±0.017 0.003±0.002 0.019±0.022 

High [Fe] Zn:Fe ratio 0.027±0.011 0.051±0.007 0.003±0.001 0.001±0.000 

Range Zn:Fe ratios 0.007-0.106 0.003-0.056 0.001-0.008 0.001-0.066 

Vent fluid Zn:Fe ratio 0.017±0.003 0.010±0.001 0.008 0.007 

Table 15.  Cu and Zn to Fe ratios for hydrothermal plume particles and vent fluids
1 Vent fluid data from Gallant & Von Damm (2006) 
2 Data from German et al. (1991) and Edmond et al. (1995) 
3 Data from Edmonds & German (2004) and Douville et al. (2002) 

 

 

 Zinc has been shown to behave in a similar manner to Cu with respect to particulate Fe 

in hydrothermal plumes (e.g. German et al., 1991a) and for the Edmond plume, negative 

curvature is suggested in the Zn versus Fe plot (Fig 28b) similar to that observed for Cu 

(Fig 28a).  For Kairei, unlike the Cu data where it is not possible to determine whether 

the trend is linear or curved, the Zn versus Fe plot does show a negative departure from 

linearity and the Kairei and Edmond data are more similar at lower particulate Fe 

concentrations than the Cu data. 
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The Zn:Fe ratios for the highest [Fe] samples at Kairei and Edmond as well as mean 

ratios, range in ratios and vent fluid ratios are shown in Table 15, along with those for the 

TAG and Rainbow hydrothermal plume particle samples.  As for Cu, the Zn:Fe ratios of 

the highest [Fe] samples at Kairei and Edmond, which represent the ‘youngest’ samples 

are higher than the vent fluid Zn:Fe ratios.  This is illustrated in Fig. 33 and is consistent 

with fractionation of the Zn into sulfides. 
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Figure 33  Zn:Fe ratios in vent fluids and non-buoyant plume particles [SAP 
(>1.0µm) samples] for the two highest [Fe] samples at each site. 

 
  

At TAG the high [Fe] samples have a lower Zn:Fe ratio than the vent fluid (Table 15), 

including the anomalous sample mentioned in relation to the Cu:Fe ratios which has a 

Zn:Fe ratio of 0.005.  This is also the case at Rainbow where the Zn:Fe ratio of the high 

[Fe] samples is 0.001 while the vent fluid has a ratio of 0.007.  It is worth noting that the 

higher overall Zn:Fe ratio at Rainbow is a consequence of very high Zn:Fe ratios in some 

of the low [Fe] (<10nmol/l) samples.  The buoyant plume samples from Rainbow have a 

ratio of 0.008±0.004 which is very similar to the vent fluid ratio of 0.007 (Douville et al., 

2002; Edmonds & German, 2004).  This data contrasts with that of Cu where 

fractionation of Cu into sulfides is clearly illustrated by plume particle Cu:Fe ratios 
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which are higher than the vent fluid ratios.  However, we know that Zn does form 

sulfides (mainly as sphalerite) in hydrothermal plumes from previous mineralogical 

studies of hydrothermal plume particles (e.g. Feely et al., 1987; 1990a; Mottl & 

McConachy, 1990).  In addition, samples from the OBS vent and Endeavour site in the 

Pacific Ocean, like those from Kairei and Edmond also show evidence of fractionation of 

Zn into sulfides.  The vent fluid Zn:Fe ratios for OBS and Endeavour (average for six 

vents) are 0.064 and 0.034±0.20 respectively (Von Damm, 1995) and the buoyant plume 

particle ratios are 0.174±0.078 and 0.073±0.033 respectively (Feely et al., 1987; Mottl & 

McConachy, 1990).  Hence it is interesting that the TAG and Rainbow samples do not 

illustrate this fractionation so clearly for Zn.  It could be a consequence of the rapid Fe 

oxidation (t1/2 of ~20mins) at these sites, resulting in a much higher proportion of 

particulate Fe-oxyhydroxides in even the youngest (including buoyant plume) Atlantic 

samples, which would lower overall Zn:Fe ratios, when compared to more sulfide 

dominated plume particles directly above vent sites in the Indian and Pacific Oceans 

where Fe oxidation rates are slower.  However, it should be expected that this same 

process would affect Cu:Fe ratios in the same manner.  At TAG, a previous study by 

Trocine and Trefry (1988) found that Zn did not persist in the plume as long as Cu, 

which, could account for the different trend in the Cu:Fe and Zn:Fe ratios.  If oxidative 

dissolution is one of the reasons we observe loss of Cu and Zn from hydrothermal 

plumes then it is possible that the rates of Zn sulfide dissolution are faster than those for 

Cu (e.g. although Metz and Trefry (1993) didn’t study Zn, they showed faster release 

rates for Cd than Cu from hydrothermal particles).  Further, it may also be possible that, 

as for Fe oxidation, the rates of oxidative dissolution for the Zn bearing phase are much 

faster in the Atlantic than the Indian or Pacific Oceans.  This could explain why 

fractionation into sulfides is not so easily illustrated by the Zn:Fe ratios in the Atlantic as 

it is in Indian and Pacific Ocean samples.  

 

As another of the chalcophile elements, Pb could be expected to behave in a similar way 

to Cu and Zn in showing a negative departure from linearity in its relationship with Fe.  

However previous results based on the Pb vs. Fe relationship have been inconclusive.  At 

TAG the Pb vs. Fe relationship could be interpreted as either linear or having negative 

curvature and at Rainbow the relationship is also unclear.  The results from Kairei and 

Edmond are equally inconclusive (Fig. 28d).  However Pb is known to be a particle 
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reactive element and studies based on Pb isotopes in hydrothermal systems have 

provided evidence that Pb in the surrounding seawater is scavenged by hydrothermal 

particles, based upon both stable lead and Pb-210 isotopes (German et al., 1991b; Kadko, 

1993; Godfrey et al., 1994).  Hence the scatter seen in the Pb:Fe relationships in Fig. 28d 

could easily be a consequence of two processes; (i) the preferential settling/oxidative 

dissolution of Pb sulfides and (ii) the scavenging of Pb from ambient seawater by Fe-

oxyhydroxide particles.   

 

In contrast to the relationship between particulate Pb and Fe in the Kairei and Edmond 

hydrothermal plumes, that of pCd and pFe appears to be much clearer (Fig. 28c).  There 

is negative curvature in the Cd vs. Fe plots for both plumes suggesting preferential loss 

of Cd compared to Fe.  This trend is much clearer than the observations of German et al. 

(1991a) at TAG in the Atlantic where the relationship between pCd and pFe was inferred 

to show such curvature but could not be confirmed.  The Cd:Fe ratios are also higher in 

the plume particles (0.00033±0.00067 for Kairei, 0.00066±0.00121 for Edmond) than the 

vent fluids (0.00002 for both Kairei and Edmond, (Gallant & Von Damm, 2006) which is 

consistent with preferential fractionation of Cd into sulfides relative to Fe.  Other results 

from the TAG and Snakepit hydrothermal sites in the Atlantic however, have suggested 

that Cd may also be involved in scavenging reactions in a similar manner to Pb (Trocine 

& Trefry, 1988; James & Elderfield, 1996); measurements of dissolved Cd showed a 

depletion of Cd compared to ambient seawater for the highest Fe samples.   

 

As already mentioned in the results section the maximum Cd concentration of 135pmol/l 

in the Kairei and Edmond hydrothermal plume particles is higher than that recorded in 

any Atlantic hydrothermal plume particles for the >1.0µm size fraction.  They are 

generally less than 10pmol/l except for one very high [Fe] sample (600nmol/l) from 

Rainbow where [Cd] was 31pmol/l.  If, as suggested by the data from TAG and Snakepit, 

Cd is indeed scavenged by the FeOOH particles then these Cd concentrations may be a 

consequence of the oceanic variations in ambient dissolved [Cd].  Dissolved Cd 

concentrations are correlated with those of dissolved phosphate (Boyle et al., 1976), i.e. 

they increase progressively along the pathway of global thermohaline circulation.  Hence 

higher dissolved Cd concentrations are observed in the deep Indian Ocean (640pmol/l, 

Morley et al., 1993) compared to the deep Atlantic Ocean (290pmol/l, Bruland & Franks, 
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1983).  Certainly, this trend is consistent with the higher [Cd] of the hydrothermal 

particles from the Kairei and Edmond plumes. Unfortunately, there are no Cd data 

available for Pacific Ocean hydrothermal plume particles to enable a full comparison 

between ocean basins (dissolved [Cd] in the deep Pacific is 940pmol/l; Bruland, 1980).  

 

Once pFe concentrations drop below 10nmol/l in the Kairei and Edmond samples, the 

pCd concentrations very quickly reach concentrations of less than a picomole/litre which 

is comparable to background particulate Cd concentrations in the deep Atlantic and 

Pacific Oceans (Trocine & Trefry, 1988; Sherrell, 1989; German et al., 1991a).  This 

contrasts with the Cu data which does not decrease so rapidly (particularly in the case of 

Kairei) or to concentrations as low as background.  This is consistent with the data of 

Trocine & Trefry (1988) from the TAG plume in the Atlantic Ocean where they found 

that particles enriched in Cu persisted in the plume longer than those enriched in Cd, 

Edmonds & German (2004) reported similar findings in the Rainbow hydrothermal 

plume.  Work by Metz & Trefry (1993) on the uptake and release of metals by 

hydrothermal precipitates showed that Cd is released more quickly and completely than 

Cu: over a four day period 99% of Cd was released from hydrothermal precipitates from 

the TAG hydrothermal plume compared to 44% of Cu over a six day period.  Hence it is 

not unreasonable to expect the Cd to Fe relationship to show a more pronounced negative 

curvature than that of Cu to Fe if preferential uptake into sulfide precipitates followed by 

oxidative dissolution is dominating the Cd budget within the Kairei and Edmond 

hydrothermal plumes. 

 

Trocine & Trefry suggested that Cu may persist in the plume longer than Cd not only due 

to a possible greater abundance of Cu bearing sulfides which may settle more slowly than 

the Cd sulfides, but that Cu may also be scavenged by Fe-oxyhydroxide particles.  

Evidence for scavenging of Cu from seawater in the more dilute plume was also found 

by Ludford et al. (1996) at the Broken Spur site in the Atlantic where they found positive 

curvature in the relationship between Cu and Fe at concentrations of Fe <50nmol/l.  

Scavenging by Fe-oxyhydroxide particles would explain the more linear but scattered 

trend seen for the Cu data since the plot would be a result of two processes, loss from the 

plume as sulfides on the one hand, and enrichment in the plume by scavenging of Cu 

from ambient seawater on the other, as discussed for Pb.  However as also discussed, 
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previous observations have suggested that Cd is scavenged by plume particles and 

cadmium is known to be adsorbed onto Fe-oxyhydroxide surfaces (e.g. Benjamin & 

Leckie, 1981) which leads to the question, if Cu is involved in adsorption reactions with 

Fe-oxyhydroxide particles and hence not showing a clear trend with Fe, why does Cd 

display very distinct curvature in its relationship with Fe?  Either Cd is more 

preferentially fractionated into sulfides relative to Fe than Cu at these sites or there is 

more extensive scavenging of Cu rather than Cd onto the Fe-oxyhydroxide particles (or a 

combination of both).  Balistrieri & Murray (1982) showed in experiments with  

synthetic seawater and goethite that Cu is more effectively adsorbed than Cd, and that the 

adsorption efficiency of Cd is also reduced in the presence of Cu.  In fact, in experiments 

carried out in a sodium nitrate solutions, Cu actually displaces Cd from the goethite 

surface (Christophi & Axe, 2000)  However this was at micromolar Cu and Cd 

concentrations.  The vent fluid concentration of Cu at Kairei and Edmond is ~200µmol/l 

and the concentration of Cd is 100-250nmol/l (Gallant & Von Damm, 2006) so in the 

non-buoyant plume where the mixing ratio with ambient seawater is >1 x 104 the [Cu] 

will soon reach ambient nanomolar concentrations and [Cd] will reach ambient 

picomolar concentrations, hence competition for adsorption may not be relevant. 

 

 

4.3.4 Yttrium and rare earths 

 
The relationships between particulate Fe and Y and the rare earth elements at the 

Edmond and Kairei sites (Fig. 29) show a positive departure from linearity as previously 

observed in the Atlantic TAG and Rainbow hydrothermal plumes (German et al., 1990; 

German et al., 1991a; Edmonds & German, 2004).  Y is chemically and physically very 

similar to the rare earth elements and is involved in similar scavenging reactions to the 

REEs throughout the water column (Zhang et al., 1994).  Although Bau & Dulski (1999) 

found that Y has a lower particle reactivity than the REEs (in fact, at close proximity of 

<1m to the vent at the Broken Spur site in the Atlantic, Y behaves conservatively 

whereas the REEs are already being scavenged by FeOOH particles), it can be 

considered as a proxy for general REE behaviour in this environment.  Hence it is 

entirely reasonable that the same trend with Fe would be observed for both the REEs and 

Y.  Other particle reactive elements known to be involved in scavenging by Fe-



Chapter 4                   Particulate (>1.0µm) samples: Inter-comparison with earlier studies 

 106

oxyhydroxide particles in hydrothermal plumes include Be and Th (German et al., 1991b, 

19901b, 1997, 2001; Kadko et al., 1994).    

 

For yttrium, the Kairei and Edmond data broadly coincide but for the REEs although the 

two sites have similar trends, the data are offset.  REE concentrations in the hydrothermal 

particles at Kairei are consistently lower than those at Edmond.  One possibility is a 

difference in the REE concentrations of the ambient seawater surrounding each vent site, 

however, although REE concentrations vary noticeably between different ocean basins 

(Elderfield & Greaves, 1982; de Baar et al., 1985a; German & Elderfield, 1990; Bertram 

& Elderfield, 1993), the difference between the two vent sites which are only ~2° apart is 

unlikely to be significant enough to account for the offset in the Kairei and Edmond 

datasets. This is illustrated by the Indian Ocean data of Bertram & Elderfield (1993) 

where data from sites ~9° apart varies by less than 10% at equivalent depths.  However, 

the Kairei and Edmond hydrothermal plumes are located at different depths in the water 

column (centred around ~2200m and ~2900m respectively).  Fig. 34 shows how Nd and 

Er vary at these depths in this region of the Indian Ocean.  Although the concentrations 

increase with depth, the change is not sufficient to account for the offset in the Edmond 

and Kairei data, e.g. for an [Fe] of 25-45nmol/l, [Nd ]in the Edmond particles is 

1.2pmol/l compared to 0.6pmol/l for the Kairei particles at the same [Fe], i.e. the 

concentration in the Edmond particles is twice that of the Kairei particles compared to a 

difference in the ambient concentrations of only ~20%. 
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Figure 34  Nd and Er concentrations from 27°00.50'S 56°58.00'E in the Indian 
Ocean, at the depths of the Kairei and Edmond hydrothermal plumes.  Data from 
Bertram & Elderfield, 1993 

 

  

The most likely explanation is the extent to which the Kairei and Edmond samples have 

been diluted.  The vent fluid [Fe] at Edmond is more than twice that at Kairei; 

12800µmol/kg compared to 5400µmol/kg (Gamo et al., 2001; Gallant & Von Damm, 

2006), hence at equivalent [Fe], the Edmond samples are in fact more dilute than the 

Kairei samples.  For example, at an Fe concentration of 50nmol/l the Edmond vent fluid 

has been diluted by a factor of 2.6 x 105 whereas the Kairei vent fluid has only been 

diluted by a factor of 1.1 x 105.  So the Edmond particles have been exposed to more sea 

water and have had more opportunity to scavenge the REEs from the ambient sea water. 

 

The positive deviation from linearity observed in the REE and Y versus Fe plots has been 

interpreted in two ways.  Sherrell et al. (1999) suggest that the curvature in the REE 
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versus Fe plot is caused by a local depletion of dissolved REEs at high Fe concentrations 

(>100nM) due to scavenging and that this is then followed by re-equilibration of the 

dissolved and particulate REEs as the plume is diluted and the concentration of Fe 

decreases.  German et al. (1990) and Edmonds & German (2004) suggest that it indicates 

that the REEs and Y are continuously scavenged by the FeOOH particles as the plume is 

diluted.  This interpretation is supported by results from analysis of  hydrothermal flank 

sediments from the East Pacific Rise and Juan de Fuca Ridge in the Pacific Ocean by 

both Olivarez & Owen (1989) and German et al. (1997) which had increasing REE/Fe 

ratios at increasing distances from the ridge axis.   

 

However a further insight into which mechanism may be dominant can be gained by 

comparing the REE/Fe in particles from different plumes at similar Fe concentrations.  

Concentrations of the REEs generally increase with depth in each particular ocean (see 

Table 16 below), hence if equilibration is the dominant mechanism then the REE/Fe 

ratios should be higher at TAG than at Rainbow and also higher at Edmond than at Kairei 

for similar Fe concentrations. 

 

 La (pmol/l) Nd (pmol/l) Gd (pmol/l) 
1Kairei @2200m 30 19 5.3 
1Edmond @3000m 39 23 6.6 
2Rainbow @2300m 35 - 6.0 
2TAG @3500m 50 - 7.5 

Table 16.  Concentrations of selected Rare Earth Elements in the Atlantic and 
Indian Ocean at the depths of the relevant vent locations. 
 1Data from Bertram & Elderfield (1993)  
2Data from de Baar et al. (1983; 1985b) 
 

Table 17 shows the REE/Fe ratios for three rare earth elements, La, Nd and Gd.  The 

ratios for Edmond are generally higher than those at Kairei (except for the samples with 

[Fe] of 12-15nmol/l).  This is what would be expected if the equilibration mechanism 

which Sherrell et al. (1999) suggest is dominant.  However for Rainbow and TAG where 

the ratios at TAG should be higher than those at Rainbow if equilibration is the key 

process, in fact they are very similar, if slightly lower.  Based on the dissolved REE 

concentrations detailed in Table 14, it might also be expected that ratios at TAG would 

be higher than Edmond and that the ratios at Rainbow would be higher than at Kairei.  
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Although there are only limited data with similar [Fe] to compare in this case, the values 

are all very similar.  The lack of consistent trends in the REE/Fe values suggests that it is 

not equilibration which is the dominant process causing negative curvature in the REE 

versus Fe plots but the continuous scavenging of the REEs by the FeOOH particles as 

suggested by German et al. (1990). 

 

 Fe (nmol/l) La:Fe (x1000) Nd:Fe (x1000) Gd:Fe (x1000) 
Kairei 6.3 0.091 0.086 0.019 
 55.2 0.022 0.019 0.005 
 7.4 0.121 0.110 0.024 
 9.8 0.076 0.073 0.016 
 15.4 0.074 0.067 0.016 
 8.2 0.102 0.097 0.021 

Edmond 7.6 0.129 0.125 0.027 
 5.7 0.140 0.134 0.028 
 5.7 0.154 0.138 0.030 
 44.6 0.034 0.032 0.008 
 25.1 0.054 0.053 0.013 
 12.6 0.042 0.040 0.010 

Rainbow1 9.3 0.126 0.132 0.019 
 8.1 0.126 0.152 0.024 
 26.4 0.045 0.042 0.008 
 35.3 0.059 0.058 0.009 
 18 0.086 0.087 0.013 
 7.9 0.118 0.132 0.029 

TAG2 56 0.034 0.033 0.007 
 49 0.041 0.041 0.008 
 45 0.038 0.038 0.007 
 38 0.039 0.043 0.008 
 17 0.058 0.060 0.011 

Table 17.  REE/Fe ratios for hydrothermal plume particle samples from Kairei and 
Edmond in the Indian Ocean and TAG and Rainbow in the Atlantic Ocean.  Only 
relevant data are shown i.e. for samples with similar Fe concentrations.  
1Data from Edmonds & German (2004) 
2Data from German et al. (1990) 
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Figure 35  PAAS (post archaean Australian shale) normalised rare earth element 
patterns for TAG and East Pacific Rise (17-19°S) vent fluids, Indian Ocean 
background seawater and Indian Ocean background particulate material. TAG and 
EPR vent fluids chosen for illustration as their properties are closest to the Kairei and 
Edmond vent fluids respectively (data sources listed in legend).  

 

 

The REE patterns (Fig. 30) of the hydrothermal particles are influenced by both the REE 

content of ambient seawater and that of the hydrothermal vent fluids which are highly 

enriched compared to seawater concentrations (can be greater than a 1000 times that of 

seawater, e.g. Mitra et al., 1994; Klinkhammer et al., 1994).  Figure 35 shows the 

dissolved REE patterns, normalised to PAAS, for Indian Ocean background seawater 

samples collected 13° to the west and 2-4° to the south of the Kairei and Edmond sites 

(Bertram & Elderfield, 1993).  The filtered seawater samples shown are from depths of 
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2250m and 3249m, i.e. comparable to the Kairei and Edmond plume depths respectively.  

The most striking feature of the seawater REE pattern is the negative cerium anomaly.  

Also shown is the REE pattern for particulate material collected from the same Indian 

Ocean location.  REE concentrations for the Kairei and Edmond vent fluids are not 

available, so the REE pattern for vent fluids (again normalised to PAAS) from the TAG 

hydrothermal site in the Atlantic and from the Akorta hydrothermal vent at 17-19°S EPR 

in the Pacific are shown (Douville et al., 1999).  Vent fluid REE data are available for a 

number of hydrothermal sites, the TAG data was chosen as the vent fluid temperature, 

chlorinity, alkalinity, pH and concentrations of Fe and H2S are similar to those of the 

Kairei vent fluids (Gamo et al., 2001) and the 17-19°S EPR data was chosen as the 

properties of the vent fluid are similar to those of the Edmond vent fluids (Gallant & Von 

Damm, 2006).  Although the REE concentrations vary between vent fluids, REE data for 

all vent fluids are similar in one respect, which is that they all exhibit a positive europium 

anomaly as illustrated in Fig. 35 and in most cases also exhibit an enrichment of the light 

REEs (LREE) over the heavy REEs (HREE) when compared to HREE enriched seawater 

(Douville et al., 1999).   

 

Assuming that the rare earth elements are continuously scavenged by Fe-oxyhydroxide 

particles, then it might be expected that as vent fluids are diluted in the plume by ambient 

seawater, the REE pattern associated with aging/dispersing Fe-oxyhydroxide particles 

would evolve from a vent fluid like pattern to a more seawater like pattern.  If this were 

the case, an increasing Ce anomaly and decreasing Eu anomaly would be seen.  This is 

not necessarily the case and will be discussed further, later in this section.  Also, although 

an increasing HREE enrichment might be expected in the particles as they are dispersed, 

because seawater is HREE enriched, in fact the LREEs are preferentially scavenged so 

the particles may become more LREE enriched as the plume is diluted. 

 

The Eu and Ce anomalies are defined as follows and are shown in Table 18, an anomaly 

of less than one indicates a negative anomaly and greater than one, a positive anomaly. 
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Particulate 
[Fe] nmol/l Ce anomaly Eu anomaly Ersh/Ndsh 

Kairei     
CTD 2 sap003 6.3 0.81 1.30 1.65 
CTD 7 sap001 15.4 0.65 1.11 1.87 
CTD 17 sap001 2.9 1.13 1.28 1.38 
CTD 18 sap003 7.4 0.84 1.19 1.50 
CTD 20 sap003 9.8 0.86 1.13 1.59 
CTD 21 sap001 55.2 0.53 1.36 2.31 
Edmond     
CTD 23 sap003 44.6 0.47 1.32 1.86 
SAP01 s/n001 4.7 0.70 1.14 1.63 
SAP01 cosap02 5.7 0.68 1.15 1.65 
SAP01 cosap04 5.7 0.68 1.16 1.63 
SAP02 s/n002 7.6 0.70 1.08 1.60 
SAP02 s/n003 25.1 0.48 1.15 1.73 
     
Indian Ocean Seawater*  Note 1 0.93 4.35 
Table 18.  Ce and Eu anomalies and Ersh/Ndsh ratios 
* Data from Bertram & Elderfield, 1993 
Note 1 – no Pr data available to calculate Ce anomaly 

 

 

Figure 36 shows the Eu anomalies plotted versus Fe concentration for the Kairei and 

Edmond hydrothermal particle samples.  Also shown are the Eu anomalies for samples 

from hydrothermal plumes from TAG and Rainbow in the Atlantic Ocean and 9°45’N on 

the East Pacific Rise (EPR) in the Pacific Ocean (see Appendix 5 for values).  In the 

Kairei and Edmond plot, it can be seen that initially, as the Fe concentration decreases so 

does the Eu anomaly.  This is consistent with decreasing influence of the vent fluid rare 

earth elements.  However as the Fe concentration continues to decrease below 10nmol/l, 

there no longer appears to be a clear relationship with the Eu anomaly.  This is most 

probably due to the influence of background particulate matter as the plume becomes 

increasingly dilute.  The data from the other hydrothermal plumes shown in Fig 36 is in 

broad agreement with this; in Fig. 36b for TAG where higher Fe concentrations were 

recorded there is a general overall trend of decreasing Eu anomaly with decreasing [Fe] 

while at the EPR in Fig. 36d where the Fe concentrations were all very low it is difficult 

to detect a clear trend.  The Rainbow plot (Fig. 36c) which has data with much higher 
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[Fe] also has much higher Eu anomalies while the lower [Fe] data points have anomalies 

in a similar range to equivalent [Fe] at the other sites, so again this is consistent with the 

greater influence of the vent fluid REEs at higher Fe concentrations. 
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Figure 36  Eu anomalies for particulate hydrothermal plume samples from the 
Kairei and Edmond sites, TAG1 and Rainbow2 in the Atlantic and 9°45’N East 
Pacific Rise3 in the Pacific (note that scales vary). 
1 German et al., 1990  2 Edmonds & German, 2004  3 Sherrell et al., 1999 

 

 

In Figure 37 Ce anomalies for the Kairei and Edmond samples and the TAG, Rainbow 

and EPR samples from the Atlantic and Pacific Oceans are shown plotted versus the Fe 
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concentration.  In all cases there is a correlation between the Ce anomaly and the Fe 

concentration, the Ce anomaly becoming less pronounced (i.e. less negative) as the Fe 

concentration decreases.  This may seem counter-intuitive; as the plume is diluted and 

the FeOOH particles are exposed to an increasing concentration of REEs with a seawater 

pattern (i.e. with a negative Ce anomaly) then it might be expected that the Ce anomaly 

will become more negative, rather than more positive.  However, positive Ce anomalies 

have been observed in Mn-oxide rich oceanic particulate material (e.g. Masuzawa, 1989; 

Sholkovitz et al., 1994; Tachikawa et al., 1997)] suggesting that Ce may be preferentially 

scavenged compared to the other REEs.  This is also suggested by the fact that the 

fraction of REEs residing in the particulate phase rather than the dissolved phase for all 

the REEs except Ce is up to 5%, but for Ce, more than 33% is associated with the 

particulate phase (Nozaki, 2001).  This suggests two possibilities which may be 

contributing to the Ce anomaly becoming less negative as the Fe concentration decreases, 

not only may preferential scavenging of the Ce be taking place in association with 

proportionally higher Mn-oxide concentrations, but as the plume becomes increasingly 

dilute, the incorporation of background material with a positive Ce anomaly may occur 

e.g. at TAG, the average Ce anomaly for three background samples collected was 1.06.   
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Figure 37  Ce anomalies for particulate hydrothermal particle samples from the 
Kairei and Edmond sites, TAG and Rainbow in the Atlantic and 9°45'N on the East 
Pacific Rise in the Pacific (note that scales vary, sources of data are as for Figure 36). 

 

An indication of the extent of HREE enrichment over that of the LREEs can be gained 

from the PAAS normalised Er/Nd ratio (Ersh/Ndsh); the higher the value, the greater the 

HREE enrichment.  Hence the mean Indian Ocean seawater Ersh/Ndsh value is 4.35 

(Bertram & Elderfield, 1993) whereas for the TAG vent fluid and 17-19°S EPR vent 

fluid data used here the Ersh/Ndsh values are 0.80 and 1.00 respectively (see Appendix 5).  

Figure 38 shows the Ersh/Ndsh values plotted versus the Fe concentration for the 

particulate samples from Kairei and Edmond, as well as those of samples from TAG, 

Rainbow and EPR hydrothermal plumes in the Atlantic and Pacific Oceans (Ersh/Ndsh 

values for Kairei and Edmond are also shown in Table 16, values for the other sites are 

shown in Appendix 5).  In Fig. 38a both the Kairei and Edmond samples show a 
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decreasing Ersh/Ndsh with decreasing [Fe], i.e. as the plume is diluted, the FeOOH 

particles are becoming enriched in the lighter rare earth elements.  This is due to two 

reasons.  Firstly the LREEs are being preferentially scavenged compared to the HREEs; 

this behaviour had previously been observed for the REEs in association with particulate 

matter (Elderfield, 1988; Sholkovitz et al., 1994).  Secondly, the HREEs are better 

stabilised by carbonate complexation in solution (Byrne & Kim, 1990) which means they 

are ‘less available’ for scavenging.  The trend is also seen for the samples from other 

hydrothermal plumes in the Atlantic and Pacific Oceans.       
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Figure 38  PAAS normalised Er/Nd values for particulate hydrothermal plume 
samples from the Kairei and Edmond sites, TAG and Rainbow in the Atlantic and 
9°45’N East Pacific Rise in the Pacific relative to particulate Fe (note that scales vary, 
sources of data are as for Figure 36). 
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4.3.5 Summary 

 
The rate of iron (II) oxidation varies considerably between the three major oceans and 

changes systematically along the path of thermohaline circulation such that the rate in the 

Indian Ocean is intermediate to that in the Atlantic and Pacific Oceans (Field & Sherrell, 

2000; Statham et al., 2005).  Because of this, the absolute concentrations of particulate Fe 

available to be collected by filtration, in situ, in Indian Ocean plumes are lower than the 

comparable particulate [Fe] reported from similarly occupied sampling stations within 

100m of active vent sites on the mid-Atlantic ridge at TAG and Rainbow.  Despite this, 

the patterns of behaviour observed for elements within the Kairei & Edmond 

hydrothermal plumes in the Indian Ocean are broadly similar to those already observed 

in Atlantic and Pacific Ocean hydrothermal plumes.   

 

Hence, the oxyanions such as P, V and As exhibit a linear relationship with Fe 

suggesting initial co-precipitation and/or scavenging by the Fe-oxyhydroxide particles 

but no further uptake once the non-buoyant hydrothermal plume is reached.  Of the   

chalcophile elements, Zn and Cd exhibit negative curvature in their relationship with Fe, 

as does Cu in the Edmond hydrothermal plume.  This is consistent with initial 

precipitation of chalcophile sulfides followed by loss of the sulfides, either by 

preferential settling out or their oxidative dissolution.  However, Cu in the Kairei plume 

and Pb at both sites do not exhibit clear negative curvature in their relationships with Fe 

suggesting that other processes may be involved such as adsorption onto the Fe-

oxyhydroxide particles.  The rare earth elements and yttrium show positive curvature in 

their relationship with Fe, consistent with the theories that either, there is depletion of the 

REEs at [Fe]>100nmol/l followed by re-equilibration or, based on evidence from 

sediments, that they are continuously scavenged as the plume is diluted. 

  

These results suggests that while the differing rates of iron (II) oxidation may impact the 

dispersal distance of the dissolved iron (II), the fundamental processes occurring within 

plumes do not change significantly between hydrothermal plumes in different ocean 

basins. 
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5 Chapter 5   Comparison of particulate, colloidal and dissolved 

phases 
 
5.1 Introduction 

 

Previous studies of hydrothermal plumes, with the exception of James & Elderfield 

(1996), James et al. (1995) and Massoth et al. (1994) have focussed on either the 

dissolved or particulate phases, and where the particulate phase has been studied, only 

one size fraction had been considered.  In Chapters 3 and 4, results were presented from 

the dissolved phase and coarse particulate (>1.0µm) fraction as collected from SAPs.  In 

this chapter, complementary results from the >0.4µm and >0.1µm phases are presented.   

 

The aim of studying the dissolved and various particulate fractions was to establish if 

there are any additional processes taking place in the smaller size fractions (e.g. in the 

colloidal Fe-oxide phase) other than those already observed and/or to provide evidence 

for previously proposed processes such as oxidative dissolution of sulfides formed in the 

buoyant plume.  It is also possible that the >1.0µm SAP samples are biased towards 

coarse grained particles and may contain a higher proportion of sulfides (Feely et al., 

1987) than the >0.4µm Niskin samples.  

 

Seawater was collected in 10l Niskin bottles deployed on a CTD rosette as detailed in 

Chapter 2.  Approximately 1 litre of seawater was filtered through a 47mm Whatman 

Cyclopore 0.4µm or 0.1µm filter to provide the particulate samples.  This is in contrast to 

the >1.0µm SAP samples which were collected via in situ filtration.  The differences in 

the two sampling methods and the consequences that this may have for the results are 

briefly discussed. 

 

 

5.2 Results 

 
Table 19 shows the major element concentrations (Mg, Al, P, Ca, Mn, Fe, Cu and Zn) for 

the >0.4µm and >0.1µm particulate samples which were collected using Niskin bottles. 
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Na concentrations were also measured and assuming that all Na present in the samples is 

due to sea salt then less than 100µl of seawater was retained on each filter.  As discussed 

in reference to the SAPs samples, any contribution from sea salt to the concentrations of 

the particulate elements in these results is insignificant from such a small volume of 

seawater for the elements considered here.  Discussion of the 0.1µm samples will be 

confined to the section on size fractionation in the Edmond plume later in this chapter 

(5.3.3).  In the preceding sections the discussion relates to the 0.4µm samples only.        

 

The maximum concentrations observed for these samples are an order of magnitude 

higher than those seen for the SAPs samples.  Particulate Fe reaches 440nmol/l in the 

Edmond samples and 350nmol/l at Kairei, compared to the SAPs samples which have a 

maximum pFe concentration of 55nmol/l.  Although slightly higher values may be 

expected due to the different filter pore sizes, it is mainly a function of the differing 

sampling methods and the Fe (II) oxidation rate.  The SAPs are suspended in the 

hydrothermal plume for ~2 hours while 100’s of litres of the surrounding plume are 

pumped through them whereas, the 0.4µm samples are taken from Niskin bottles which 

collect instantaneous plume samples.  Although the SAPs are likely to move in and out of 

the plume, thus filtering both particle rich plume waters and ambient seawater (and hence 

diluting the actual plume particle concentrations in the samples), Fig. 39 which is a plot 

of the Seatech LSS signal for CTD 21 over the time period that the SAPs were operating, 

shows that the SAPs were suspended in the densest part of the plume for ~75% of the 

operational period.  Despite this well positioned sampling, the slower Fe (II) oxidation 

rate in the Indian Ocean (compared to the Atlantic) means that, as discussed in Chapter 3 

(‘3.4.4. In situ particulate Fe calculations’) there will have been very little particulate Fe 

present in the non-buoyant plume for the SAPs filters to collect anyway.   

 
In contrast, for the Niskin bottle samples, there is the elapsed time between the Niskin 

bottle being fired and the sample being filtered back on board ship to take into 

consideration, unlike the SAP samples where the filtration occurs in situ.  While the 

Niskin sample is being returned to the ship and waiting to be processed (the elapsed time 

for this was between 2 and 5 hours), further Fe oxidation is taking place within the 

Niskin bottle.  As the half time for Fe (II) oxidation in the Indian Ocean is 2.3 hours 

(Statham et al., 2005) there will still be >50% of Fe (II) in solution >1hr after reaching  
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  Fe Mn Al Fe Mg Ca P Cu 
  nmol/l nmol/l nmol/l (Fe+Mn+Al) nmol/l nmol/l nmol/l nmol/l 
 Kairei         
 CTD5 2076m 0.4µm 8.2 0.23 1.12 0.87 357 46.0 2.0 0.12 
 CTD5 2150m 0.4µm 51.6 0.23 1.04 0.98 461 120 9.3 11.7 
 CTD5 2175m 0.4µm 183 0.16 1.63 0.99 1605 338 29.3 14.8 
 CTD5 2199m 0.4µm 280 0.22 1.19 1.00 87.0 48.7 46.3 13.6 
 CTD5 2224m 0.4µm 254 0.12 0.83 1.00 1260 216 43.2 12.1 
 CTD5 2273m 0.4µm 344 0.23 1.27 1.00 214 95.3 58.2 14.4 
 CTD5 2295m 0.4µm 31.9 0.15 0.79 0.97 532 108 5.4 3.27 
 CTD5 2350m 0.4µm 18.4 0.34 1.08 0.93 114 42.4 3.2 0.43 
 CTD5 2373m 0.4µm 7.8 0.13 0.71 0.91 663 141 1.9 0.21 
 CTD5 2435m 0.4µm 9.9 0.19 0.77 0.93 66.3 18.0 2.5 0.25 
          
 CTD7 2176m 0.1µm 224 0.10 2.00 0.99 223 65.6 38.5 6.90 
 CTD7 2232m 0.1µm 19.2 0.16 2.16 0.93 839 159 4.24 0.77 
 CTD7 2268m 0.1µm 39.9 0.21 1.96 0.96 260 75.3 7.49 4.05 
 CTD7 2273m 0.1µm 39.9 0.22 4.92 0.90 5354 1015 7.63 1.80 
 CTD7 2320m 0.1µm 25.2 0.26 4.40 0.86 467 119 3.64 0.99 
 CTD7 2322m 0.1µm 27.1 0.11 2.34 0.94 5043 405 4.78 9.91 
 CTD7 2347m 0.1µm 19.5 0.26 3.28 0.87 515 118 5.18 0.82 
 CTD7 2371m 0.1µm 121 0.16 1.53 0.99 1639 303 22.3 2.95 
 CTD7 2176m 0.4µm 1034 0.43 4.45 1.00 1346 330 169 35.6 
 CTD7 2232m 0.4µm 41.5 0.67 3.32 0.92 941 252 8.72 1.33 
 CTD7 2268m 0.4µm 34.6 0.27 2.06 0.95 726 159 6.33 4.01 
 CTD7 2273m 0.4µm 21.8 0.29 2.46 0.90 419 103 4.50 1.15 
 CTD7 2320m 0.4µm 13.8 0.22 2.11 0.88 722 85.6 2.62 0.67 
 CTD7 2347m 0.4µm 10.5 0.19 1.82 0.87 848 73.7 2.69 0.41 
 CTD7 2371m 0.4µm 170 0.58 3.51 0.98 641 190 26.7 6.40 
          
 Table 19.  Particulate concentrations for Niskin bottle (>0.4µm) samples: Molar concentrations (nmol/l) which have been 

blank corrected.  See Appendix 6 for raw data 
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  Fe Mn Al Fe Mg Ca P Cu 
  nmol/l nmol/l nmol/l (Fe+Mn+Al) nmol/l nmol/l nmol/l nmol/l 
 Kairei (cont)         
 CTD21 2026m 0.4µm 17.5 0.65 3.43 0.82 370 86.8 5.08 0.68 
 CTD21 2120m 0.4µm 220 0.15 1.89 0.99 305 101 33.8 15.0 
 CTD21 2199m 0.4µm 98.1 0.06 1.54 0.99 1180 231 13.7 8.12 
 CTD21 2220m 0.4µm 96.3 0.06 1.40 0.99 368 105 16.3 5.15 
 CTD21 2273m 0.4µm 118 0.14 1.79 0.99 1353 293 18.5 9.38 
 CTD21 2298m 0.4µm 288 0.17 3.66 0.99 702 174 45.8 16.3 
 CTD21 2320m 0.4µm 54.6 0.22 2.20 0.97 578 153 9.77 3.48 
 CTD21 2372m 0.4µm 21.5 0.21 2.15 0.92 748 179 5.33 1.51 
 Edmond         
 CTD23 2469m 0.1µm 14.2 0.30 2.50 0.87 1203 245 4.09 0.40 
 CTD23 2781m 0.1µm 559 0.24 3.62 0.99 1795 425 103.5 6.61 
 CTD23 2819m 0.1µm 252 0.19 2.98 0.99 1137 264 46.1 4.35 
 CTD23 2960m 0.1µm 13.4 0.26 1.87 0.90 1211 247 3.92 0.79 
 CTD23 3008m 0.1µm 329 0.24 2.58 0.99 1757 393 60.4 4.05 
 CTD23 3019m 0.1µm 312 0.18 1.90 1.00 288 86.9 55.8 2.61 
 CTD23 3057m 0.1µm 184 0.30 3.58 0.98 2225 470 34.4 2.39 
 CTD23 3107m 0.1µm 256 0.28 5.12 0.98 376 105 45.4 2.50 
 CTD23 3156m 0.1µm 28.3 0.36 5.45 0.84 1604 348 7.92 1.23 
 CTD23 2469m 0.4µm 12.9 0.33 1.99 0.87 416 60.9 4.19 0.13 
 CTD23 2781m 0.4µm 440 0.19 1.33 1.00 1742 352 79.3 5.91 
 CTD23 2819m 0.4µm 103 0.21 2.78 0.98 831 185 17.6 4.03 
 CTD23 2960m 0.4µm 10.3 0.29 2.10 0.83 808 103 3.43 0.12 
 CTD23 3008m 0.4µm 177 0.16 2.22 0.99 302 86.5 31.7 1.85 
 CTD23 3019m 0.4µm 264 0.32 2.76 0.99 399 135 44.4 3.72 
 CTD23 3057m 0.4µm 57.4 0.31 2.90 0.95 381 114 11.6 1.34 
 CTD23 3107m 0.4µm 117 0.28 2.68 0.98 443 125 21.7 1.58 
          
 Table 19 (cont.).  Particulate concentrations for Niskin bottle (>0.4µm) samples 
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Figure 39  Seatech light scattering sensor profile for CTD 21 at Kairiei, during the 
time period that the stand alone pumps were operating. 

 

the non-buoyant plume which will be available for oxidation.  This will result in higher 

particulate Fe in the Niskin samples than the SAP samples.  This is in contrast to the  

Atlantic Ocean where more rapid Fe (II) oxidation rates [half time of 20-30mins (Field & 

Sherrell, 2000)] mean that by the time the non-buoyant plume is reached at TAG, all the 

Fe (II) has precipitated, hence samples collected by SAPs (German et al., 1991a) or 

Niskin (Trocine & Trefry, 1988) have similar maximum Fe concentrations (212nmol/l 

and 276nmol/l respectively).   

 

As already discussed in Chapter 3, the elapsed time between the Niskin bottle being fired 

and the sample being filtered back on board ship will have allowed time for further Fe 

(II) oxidation. However this does not mean that the resulting analyses are 

unrepresentative of the hydrothermal plume particles.  The average time between firing 

the Niskin bottle and filtering the samples was 2.5hrs; assuming as in previous 

calculations, a mean current speed of 2cm/s, then, in 2.5hrs, the plume will have been 
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advected ~200m.  We can estimate the dilution that will have occurred if we utilise the 

maximum dissolved Mn concentrations in samples from CTD 5 and CTD 21 which were 

~240m apart.  These give dilutions of 6800 and 8100 respectively (Table 6), i.e. the 

plume will have been diluted by only a further ~20%.  It is also possible that the Fe (II) 

oxidation rate of the sample in the Niskin bottle may be affected by a change in 

temperature.  The change in temperature is difficult to estimate, a large heat input would 

be required to change the temperature of the seawater in the bottle significantly.  The 

ambient plume temperature was ~2.0°C while the clean room temperature was ~20°C.  If 

we assume a worst case scenario that the temperature of the sample increased to 10°C, 

then the Fe (II) oxidation half time would be decreased from 2.3 to 1.6 hrs.  This would 

mean in 2.5hrs ~13% more Fe (II) would be oxidised (but note that the sample would not 

be at 10°C for the whole of that time anyway).  These calculations illustrate that there is 

probably very little difference between particles which would precipitate in a further 2.5 

hrs while dispersing in the plume compared to those precipitating in the Niskin bottle. 
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Figure 40  Percentage particulate Fe/(Fe+Mn+Al) versus particulate Fe for Kairei 
and Edmond hydrothermal plume Niskin (>0.4µm) samples 
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Figure 40 shows a plot of percentage Fe/(Fe+Mn+Al) versus [Fe] for the 0.4µm samples.  

As detailed in Chapter 4 this ratio can be used as an indication of detrital versus 

hydrothermal input, a high value (as is the case here, all percentages are >80%) 

indicating that the samples are predominantly hydrothermal in origin. 

 
The data are shown again in Fig. 41 but as a ternary plot which contrasts with the ternary 

plot for the SAP samples in Chapter 4 (Fig. 25) where it shows the non-hydrothermal 

component is dominated by a Mn-rich phase.  Here the plot suggests that the non-

hydrothermal component is dominated by an Al-rich phase and that there is linear mixing 

between an Fe rich endmember (i.e. the hydrothermal component) and the Al-rich phase 

(which is most likely to be suspended sediment).  This is like the 2-endmember mixing 

plot presented by Sherrell et al. (1999) for hydrothermal plume particles at 9°45’N on the 

East Pacific Rise. 
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Figure 41  Ternary plot of Fe, Mn, Al composition of hydrothermal particle Niskin 
(>0.4µm) samples (closed circles) from the Kairei and Edmond plumes. Data for the 
SAPs (>1.0µm) samples (previously shown in Fig. 25) are also included (open 
circles) for comparison. 

 

The most notable feature of the 0.4µm data shown in Table 17 are the high particulate Ca 

and Mg concentrations; pCa reaches a maximum concentration of 340-350nmol/l in both 

plumes and pMg has a maximum concentration of 1600-1700nmol/l.  Figures 42a and 

42b show the pCa and pMg data plotted against pFe together with the >1.0µm particulate 

data already presented in the previous chapter for comparison.  The pCa concentrations 

are ~ 4 fold higher for the >0.4µm samples than for the >1.0µm samples while pMg 

concentrations are almost an order of magnitude higher.  The pCa concentrations are also 

an order of magnitude higher than observed in either the TAG hydrothermal plume in the 

Atlantic Ocean (Trocine & Trefry, 1988; German et al., 1991a) or hydrothermal plumes 

on the East Pacific Rise and Juan de Fuca Ridge in the Pacific Ocean (Feely et al., 1994a; 

Feely et al., 1994b) while the pMg concentrations are two orders of magnitude higher 
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than those recorded at TAG in the Atlantic (pMg data for hydrothermal plumes in the 

Pacific are not available).   

 

Also in Fig. 42, particulate Al and Mn are shown plotted against pFe for both the >0.4µm 

and >1.0µm data.  Although the pAl data for the >0.4µm samples also show a similar 

increase to pCa over that of the >1.0µm samples (~ 4-fold), the pAl concentrations are in 

the same range as those measured in the TAG hydrothermal plume >0.4µm particulate 

samples of Trocine & Trefry (1988).  The >0.4µm particulate Mn concentrations are 

slightly lower than those of the >1.0µm samples but again are in the same range as those 

measured by Trocine & Trefry (1988) for similar samples from the TAG hydrothermal 

plume.          
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Figure 42  Particulate calcium, magnesium, aluminium and manganese versus 
particulate iron for the Edmond and Kairei >1.0µm SAPS and  >0.4µm Niskin 
samples. 

 

 
 
5.2.1 Oxyanions 

 
The relationship between particulate phosphorus and iron for the >0.4µm fraction is 

shown in Fig. 43.  They are positively correlated with a linear relationship.   Phosphorus 

concentrations range from 2-60nmol/l for Kairei and 4-80nmol/l for Edmond.  The 

highest concentrations are an order of magnitude greater than for the >1.0µm samples 
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(Table 13 and 19) but are associated with Fe concentrations which, as previously 

mentioned are also an order of magnitude greater.  
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Figure 43  Phosphorus versus iron relationship for the >0.4µm particulate fractions 
in the Edmond and Kairei hydrothermal plumes. 

 
 
 
5.2.2 Chalcophile Elements 

 

A graph of particulate Cu versus particulate Fe is shown in Fig. 44.  As for the 1.0µm 

SAPs samples, pCu and pFe are positively correlated (Fig. 28), the pCu concentrations 

decreasing as the pFe concentrations decrease.  Although there is some possibility of 

negative curvature in the Edmond data, it is not as obvious as for the SAPs and in fact, 

linear or quadratic regressions give the same correlation coefficient of 0.78.  The Kairei 

data are more scattered than for the SAPs samples and again, just as for the SAPs data, 

there is no clear specific Cu vs. Fe trend in the data.   
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Figure 44  Copper versus iron relationship for the >0.4µm particulate fractions in 
the Edmond and Kairei hydrothermal plumes. 
 

The maximum pCu concentration at Edmond is 5.9nmol/l which is comparable to the 

maximum concentrations of ~3.0nmol/l seen at TAG and Rainbow in the Atlantic 

(German et al., 1991a; Edmonds & German, 2004).  At Kairei however, the maximum 

pCu concentration is 16nmol/l.  This is higher than any previous measurements of 

hydrothermal plume particles in either the Atlantic or Pacific Oceans (Trocine & Trefry, 

1988; Feely et al., 1990a, 1992, 1994a; German et al., 1991a).   

 

Although Zn data are presented in Appendix 6, it is not presented in Table 19 or used in 

the discussion of particulate element behaviour due to the high and variable blank 

concentrations recorded for these samples (this problem was not encountered for the SAP 

samples). 
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5.3 Discussion 

 

5.3.1 Calcium and Magnesium 

 
Possible reasons for the presence of high concentrations of  particulate Ca and Mg in the 

Kairei and Edmond samples could include biogenic input of Ca (i.e. as CaCO3 which 

would also have some associated Mg), aeolian dust input, incorporation of basaltic 

seafloor material into the hydrothermal plume or inclusion of black smoker chimney 

material into the plume.  Another possibility for the high [pMg] is adsorption of Mg onto 

Fe-oxyhydroxide particles (Trocine & Trefry, 1988).  Figure 45 shows a plot of pCa 

versus pMg for the >0.4µm samples, the correlation between pCa and pMg (a linear fit 

gives an r2 value of 0.80) suggests that it is most probably one source that is responsible 

for both the pCa and pMg concentrations rather than two distinct sources.  This implies 

that the high [pMg] is probably not a result of adsorption onto FeOOH particles and the 

lack of clear correlation between pMg and pFe (Fig. 42b) in these samples unlike those 

of Trocine & Trefry (Fig. 46) also suggests this.  This source of the pCa and pMg must 

also be richer in pMg than pCa.  The data of Trocine & Trefry (1988) from the TAG 

hydrothermal plume in the Atlantic also shows a correlation between  pCa and pMg, with 

a correlation coefficient of 0.82 (Fig. 46).  Correlations between Ca and Mg for the 

Rainbow site in the Atlantic are not as tight (r2 of 0.53) but in both cases the 

concentration of particulate calcium exceeds that of particulate magnesium.  There are no 

magnesium data from any of the Pacific hydrothermal sites to allow comparison in that 

ocean. 
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Figure 45  Relationship between particulate Ca and Mg in the Kairei and Edmond 
hydrothermal plumes for >0.4µm fraction. 
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Figure 46  Data from Trocine & Trefry (1988) for the TAG hydrothermal plume 
showing relationship between particulate Mg and Fe and between particulate Ca 
and Mg. 
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The ternary plot presented earlier in Fig. 41 suggests that, unlike the SAP samples where 

the non-hydrothermal component is dominated by an Mn-rich phase, there is an 

aluminosilicate phase mixing with the hydrothermal particles.  As the Ca and Mg 

concentrations are much higher in these Niskin samples than the >1.0µm SAP samples 

then this suggests that it could possibly be this aluminosilicate phase, not evident in the 

>1.0µm SAP samples which is responsible for the Ca and Mg present in the Niskin 

samples.  The most likely Ca and Mg rich aluminosilicate which could be a possible 

source in the vicinity would be basalt.   

 
A suite of eleven whole rock samples collected from the Rodriguez Triple Junction had 

an average composition of 16.0% by weight of aluminium oxide, 11.0% by weight of 

calcium oxide and 8.4% by weight of magnesium oxide (Price et al., 1986).  Although 

the composition of basalts varies by a few percent, these values are sufficient for the 

purposes of illustrating whether incorporation of this material into the particulate samples 

could account for the concentrations of pCa and pMg.    The maximum [Al] in the 

>0.4µm samples is 3.7nmol/l; if the basalt contains 16.0% Al203 by weight then ~1.3µg/l 

of basalt would be required to account for all the Al in the samples.  Although total 

suspended matter (TSM) concentrations are not available for these samples, an estimate 

can be made from the available data and literature data in order to assess whether 1.3µg/l 

of basaltic material is a feasible quantity.  The estimate of TSM for these samples is 

shown in Table 20 below; compared to available literature data for TSM in hydrothermal 

particle samples, e.g. Feely et al. (1994b) recorded a maximum TSM of 90µg/l in non-

buoyant plume samples from the Juan de Fuca Ridge in the Pacific, some of these values 

are high but they still serve to illustrate that inclusion of 1.3µg/l of basalt would be 

reasonable.  However this quantity of basalt would only result in 2.5nmol/l of Ca and 

2.7nmol/l of Mg which is 2-3 orders of magnitude lower than the concentrations recorded 

in the samples and still leaves the majority of Ca and Mg unaccounted for. 

 
 
 
 
 
 
 
 
 
 



Chapter 5                                   Comparison of particulate, colloidal and dissolved phases 

 133

 
[Fe+Mn+Al+Ca+P+Cu] 

(µg/l) 

Calculated Total 
Suspended 

Matter (µg/l) 

Measured 
[Mg] 

nmol/l 

Measured 
[Ca] 

nmol/l 
CTD5 2076m 0.4µm 2.0 14 357 46.0 
CTD5 2150m 0.4µm 8.1 58 461 120 
CTD5 2175m 0.4µm 24.0 172 1600 338 
CTD5 2199m 0.4µm 19.7 141 87.0 48.7 
CTD5 2224m 0.4µm 24.7 176 1260 216 
CTD5 2273m 0.4µm 25.4 181 214 95.3 
CTD5 2295m 0.4µm 6.1 44 532 108 
CTD5 2350m 0.4µm 2.5 18 114 42.4 
CTD5 2373m 0.4µm 5.8 41 663 141 
CTD5 2435m 0.4µm 0.8 5 66.3 18.0 
CTD7 2232m 0.4µm 11.3 81 941 252 
CTD7 2268m 0.4µm 4.0 29 726 159 
CTD7 2273m 0.4µm 7.2 52 419 103 
CTD7 2320m 0.4µm 2.8 20 722 85.6 
CTD7 2347m 0.4µm 2.1 15 848 73.7 
CTD7 2371m 0.4µm 16.8 120 641 190 
CTD21 2026m 0.4µm 3.2 23 370 86.8 
CTD21 2120m 0.4µm 16.8 120 305 101 
CTD21 2199m 0.4µm 14.1 101 1180 231 
CTD21 2220m 0.4µm 8.9 63 368 105 
CTD21 2273m 0.4µm 17.9 128 1350 293 
CTD21 2298m 0.4µm 24.0 171 702 174 
CTD21 2320m 0.4µm 8.2 58 578 153 
CTD21 2372m 0.4µm 7.1 51 748 179 
CTD23 2469m 0.4µm 1.8 13 416 60.9 
CTD23 2781m 0.4µm 39.9 285 1740 352 
CTD23 2819m 0.4µm 12.4 89 831 185 
CTD23 2960m 0.4µm 3.3 23 808 103 
CTD23 3008m 0.4µm 12.9 92 302 86.5 
CTD23 3019m 0.4µm 20.2 145 399 135 
CTD23 3057m 0.4µm 6.7 48 381 114 
CTD23 3107m 0.4µm 10.8 77 443 125 
     
Table 20.  Calculated total suspended matter for Niskin (>0.4µm) samples. 
Calculation based on composition of hydrothermal plume particles from Feely et al. (1994): comparison 
of the total suspended matter and total [Fe+Mn+Al+Ca+P+Cu] of their samples shows that 
[Fe+Mn+Al+Ca+P+Cu] varies from 3 to 30% of the overall TSM with an average of 14%.  This average 
is used to calculate the likely TSM of these samples from the measured [Fe+Mn+Al+Ca+P+Cu] 
(individual values are in Appendix 6).  The molar Mg and Ca concentrations are shown for reference. 

    

Open ocean particulate measurements of Ca are not available for the Indian Ocean in the 

region of the Rodriguez Triple Junction.  Instead data are only available for much more 

biologically productive areas such as the Arabian Sea and Bay of Bengal which would 

not be an appropriate comparison.  Therefore the next best comparison is data from low 

productivity areas in either the Pacific or Atlantic Oceans.  Particulate pCa 

concentrations in the North East Pacific are less than 10nmol/l (Sherrell, 1989),and 

background data from the TAG area in the Atlantic are less than 30nmol/l which  
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suggests that biogenic input could not account for the pCa concentrations recorded in 

these hydrothermal plume particles.  Also, although Mg is found within biogenic calcite, 

it is only a small percentage (up to 4% by molar ratio, Hardy & Tucker, 1988) therefore 

input of biogenic calcite could certainly not account for the Mg concentrations recorded 

in these samples where pMg and pCa are so closely correlated but with pMg > pCa..      

 

Aeolian dust inputs to the northern Indian Ocean, particularly in the region of the 

Arabian Sea are known to contain a significant proportion of dolomite which is a calcium 

magnesium carbonate, aerosol samples from the region can contain up to 25%  of 

dolomite (Sirocko et al., 1991).  This originates in the Persian Gulf region where it 

precipitates from the shallow Mg rich brines which occur (Reichart et al., 1997).  

Although it is unlikely the aeolian input as far south as the Kairei and Edmond 

hydrothermal sites would still contain 25% dolomite, lets assume this is the case for the 

purposes of an estimate.  Estimates of total aeolian flux in the Southern/Equatorial Indian 

Ocean are 0.27µg/m3 of air (Savoie et al., 1987) and 0.16µg/m3of air (Chester et al., 

1991).  If we take 0.2µg/m3 of air as an estimate, this gives 0.05µg dolomite /m3 of air 

which equals 0.05 x 10-6µg/cm3. 

 

Assuming dry deposition only (this is the dominant deposition mechanism in this area, 

accounting for 75-85% of total deposition (Ginoux et al., 2004)) which is given by: 

 
Fp = (Cp)airVd  (where Cp = concentration and Vd = depositional velocity) 

 
and a settling velocity of 1cm/s based on dolomite being ‘crustal’ material in the size 

range of 1-3µm (e.g. Chester et al., 1991), this gives a flux to the surface ocean of: 

 
 (0.05 x 10-6µg/cm3)(1cm/s) = 0.05 x 10-6µg/cm2 
 
If we then assume a settling velocity in the ocean of 0.04m/d1 which is the approximate 

settling velocity of a 1µm particle and equals 4.6 x 10-7 cm/s then, assuming 

concentration = flux/settling velocity: 

                                                 
1 Settling velocity is given by Stokes Law: Vo = 2gr2(d1-d2)/9µ where 
 g = gravitational constant (9.8m/s2) 
 r = radius of particle (assume an average for 1-3µm diameter crustal material of 1µm)  
 d1 = density of particle (assume dolomite for the purposes of this illustration = 2840kg/m3) 
 d2 = density of medium (1025kg/m3) 
 µ = viscosity of fluid (0.00905kg/ms) 
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Concentration of dolomite = (0.05 x 10-6µg/cm2) / (4.6 x 10-7 cm/s)  

         which = 0.01µg/cm3 = 10µg/l of dolomite 

 

Assuming the most extreme case, that this is all transported to the deep ocean then 10µg/l 

of dolomite would give 41nmol/l of Mg (and also Ca) which is still not sufficient to 

account for the concentrations measured in the Kairei and Edmond samples. 

 

Hydrothermal black smoker chimneys consist primarily of sulfides (e.g. Von Damm, 

1990), however the initial formation of the chimney begins with the precipitation of 

anhydrite (Haymon, 1983).  Anhydrite (calcium sulphate) has previously been observed 

in plume particles in samples from the TAG hydrothermal plume in the Atlantic 

(Godfrey et al., 1994) and also in samples from the Endeavour hydrothermal plume on 

the Juan de Fuca Ridge in the Pacific Ocean (Feely et al., 1987).  In order to produce a 

[pCa] of 350nmol/l, ~50µg/l of anhydrite would need to be incorporated within the 

particulate material.  Based on the TSM calculations above, this means approximately a 

fifth of the particulate sample would need to be anhydrite.  Quantitative data regarding 

the mineralogy of hydrothermal plume particle samples is not available, although Feely 

et al. (1990a) detailed the anhydrite component of plume particle samples and sediment 

trap samples from the ASHES hydrothermal vent field  as being ‘very abundant’.  

However these samples were from the buoyant plume and sediment traps <18m from the 

vent and their data indicated that the larger grained sulphate minerals (i.e. including 

anhydrite) settled out of the plume very quickly.  Dissolution studies of hydrothermal 

minerals also showed that anyhydrite undergoes rapid dissolution such that large 

quantities are unlikely to persist into the non-buoyant plume (e.g. Feely et al., 1987).  

Hence, it is unlikely that incorporation of black smoker chimney debris into the 

hydrothermal plume could account for the presence of higher concentrations of pCa.  

Also the presence of anhydrite certainly would not explain the high pMg concentrations 

observed. 

 

Other minerals have also been found in black smoker chimney structures, e.g. caminite 

(Haymon & Kastner, 1981; Haymon & Kastner, 1986) which is a magnesium 

hydroxysulphate hydrate and starkeyite (Brett et al., 1987) which is a magnesium 

sulphate hydrate.  Also, chimney structures in the Lost City hydrothermal field, which is 
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hosted on older oceanic crust away from the mid-ocean ridge in the Atlantic are 

composed of brucite (Mg(OH)2) and calcium carbonate minerals (Kelley et al., 2001).  

Caminite with a formula of Mg7(SO4)5(OH)10.H20 was found in the exterior of active 

black smoker chimneys on the East Pacific Rise at 21°N in association with anhydrite.  

To produce a [pMg] of 1700nmol/l would require ~200µg/l of caminite.  There are no 

data on the percentage of caminite which is incorporated within the anhydrite, partly 

because caminite readily undergoes hydration and/or dissolution, however the anhydrite 

is more abundant (Haymon & Kastner, 1986) so it is unlikely that 50µg/l of anhydrite 

(the quantity required to give 300nmol/l of pCa) would have 200µg/l of caminite (the 

quantity required to give 1700nmol/l of pMg) associated with it.  

 
Another possible source for the Mg and Ca is seawater itself, however a pMg 

concentration of 1700nmol/l would require the retention and evaporation on the filters of 

~30ml of seawater.  As mentioned at the start of ‘5.2 Results’, the Na concentrations 

indicate that <100µl was retained on the filters meaning that seawater cannot be the 

source of the Mg and Ca. 

  
In order to determine the origin of the high concentrations of particulate Ca and Mg 

observed in the Kairei and Edmond samples, it would be necessary to investigate the 

mineralogy of the samples.  Identifying the Ca and Mg bearing phases within the samples 

should allow a more accurate assessment of their origin. 

 

 

5.3.2 Chalcophile Elements 

 
The most noticeable feature of the Cu versus Fe plot for the >0.4µm particulate fraction 

(Fig. 42) is that the Edmond and Kairei 0.4µm datasets do not co-incide, the Kairei data 

having a steeper gradient than the Edmond data.  In fact this is also the case for the 

>1.0µm SAPs data although it is not so immediately obvious (Fig. 28) but is apparent 

from the Cu:Fe ratios of the samples (Table 15).  The difference between the two data 

sets is probably a reflection of the differing vent fluid Cu:Fe ratios (see Table 21 below).  

The mean Cu:Fe ratios for the >0.4µm samples (shown in Table 21, together with the 

ratios for hydrothermal plume particles from the TAG site in the Atlantic which were 

also collected using Niskin bottles and 0.4µm filters) are the same as that of the >1.0µm 
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SAP samples for Kairei whereas for the Edmond samples the mean Cu:Fe ratio is slightly 

lower than for the >1.0µm samples (0.014 compared to 0.027).   

 

 Kairei1 Edmond1 TAG2  

Mean Cu:Fe ratio 0.060±0.044 0.014±0.012 0.009±0.007  

[Fe] >100nmol/l Cu:Fe ratio 0.057±0.017 0.018±0.012 0.015±0.009  

Range Cu:Fe ratios 0.015-0.227 0.010–0.038 0.002–0.029  

Vent fluid Cu:Fe ratio 0.050±0.029 0.016±0.010 0.024  

Table 21.  Cu to Fe ratios for hydrothermal plume particles and vent fluids
1 Vent fluid data from Gallant & Von Damm (2006) 
2 Data from Trocine & Trefry (1988) and Edmond et al. (1995) 

 

 

Also shown in Table 21 are the mean Cu:Fe ratios for the highest [Fe] samples (where 

[Fe] exceeds 100nmol/l).  In Chapter 4 the high [Fe] >1.0µm SAP samples showed 

evidence for the fractionation of Cu into sulfides in the early stages of plume formation, 

the Cu:Fe ratios being higher than the overall mean Cu:Fe ratio and higher than the vent 

fluid ratios.  This is not the case for the >0.4µm samples where the ratios are for the high 

[Fe] samples are similar to the vent fluid ratio and the overall mean Cu:Fe ratio (see also 

Fig. 47 below). However this is entirely reasonable when the differing sampling methods 

are considered.  As discussed earlier in this chapter, the >1.0µm SAP samples are 

collected in situ and therefore represent the true particulate [Fe] in the plume.  However 

for the >0.4µm Niskin samples, there is time between sample collection and processing 

for further Fe (II) oxidation to take place so the actual Cu:Fe ratio at the time of 

collection will be reduced due to the increasing particulate Fe-oxyhydroxide 

concentration that will not be as Cu-rich as the initially precipitated sulphide phases..    
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Figure 47  Copper to iron ratios for >0.4µm hydrothermal plume samples and vent 
fluids at Kairei and Edmond. High Fe ratios are the average ratios for samples where 
[Fe] is greater then 100nmol/l.  See Table 19 for figures. 

 

The high particulate Cu concentrations seen in the Kairei samples (maximum of 

16nmol/l) could be a consequence of the vent fluid Cu concentrations which at 

~210µmol/kg for Kairei (Gallant & Von Damm, 2006) are higher than any other 

published data for vent fluids [see for example, compilations in Butterfield (2003) and 

Von Damm (1995)].  The Edmond vent fluids also have a similar Cu concentration of 

~220µmol/kg but the highest [pCu] measured is 6nmol/l.  However we also know from 

the dissolved Mn measurements that the Edmond samples have a higher dilution factor 

than the Kairei samples (Table 5) so it would be expected that the Edmond [pCu] would 

be lower than at Kairei; if there were no removal of Cu from the plume, i.e. just 

straightforward dilution (as calculated from dissolved Mn) then the maximum [Cu] in the 

Edmond samples would be 20nmol/l whereas for the Kairei samples it would be 

30nmol/l. 
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5.3.3 Size fractionation of metals in the Edmond hydrothermal plume 

 

Previous studies of hydrothermal plume processes have typically focused on either the 

particulate or dissolved fraction of the hydrothermal plume material and, in the case of 

the particulate fraction, on just one size fraction (generally either >1.0µm or >0.4µm).  It 

is already known that in the open ocean, dissolved Fe (II) initially forms fine colloids 

(<0.4µm) when it is oxidised.  These colloids then aggregate to form particulate (i.e. 

>0.4µm) Fe (III) (Honeyman & Santschi, 1989; Wu & Luther III, 1994).  If this same 

process is occurring in hydrothermal plumes, then analysis of just one size fraction may 

be insufficient to determine the processes which are taking place.  Consequently, for this 

study, particulate samples, both >1.0µm (SAPs) and >0.4µm, as well as colloidal 

(defined for this study as between 0.1µm and 0.4µm) and dissolved (<0.1µm) samples 

were collected from the Edmond hydrothermal plume.  This enables an investigation of 

the distribution of trace metals between the dissolved, colloidal and particulate phases 

within the hydrothermal plume.  Data are presented in Table 22 below.  Detailed 

discussion of the >1.0µm SAPs samples was presented in Chapter 4 and the 0.4µm 

samples have been discussed in this chapter, while the dissolved sample data were 

presented in Chapter 3.  As described in Chapter 2, the >0.1µm fraction was collected by 

filtering approximately 1 litre of seawater from the Niskin bottle samples through a 

0.1µm filter, i.e. the samples were not pre-filtered through a 0.4µm filter.  Therefore the 

>0.1µm particulate sample will contain particles in the >0.4µm size fraction in addition 

to any ‘particles’ in the 0.1µm to 0.4µm colloidal phase.  The colloidal fraction can 

therefore be calculated by either subtracting the >0.4µm [pFe] (or other element) from 

the >0.1µm [pFe] or subtracting the <0.1µm [dFe] from the <0.4µm [dFe].  Here it has 

been calculated from the particulate data for consistency throughout the elemental 

comparisons as there is only particulate data available for phosphorus.     

 

Four elements were chosen for this more detailed analysis; iron, due to its abundance in 

vent fluids and the significant influence it has on chemical processes taking place within 

hydrothermal plumes, manganese as it is one of the most abundant elements in vent 

fluids and persists in the plume even at very high dilution, copper, as being representative 

of chalcophile element behaviour and phosphorus, as being representative of oxyanion 

behaviour.  In the previous chapter it was shown that in the Indian Ocean, for coarse 
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particles (>1.0µm fraction), these elements show broadly similar behaviour with respect 

to iron to that observed previously in the Atlantic Ocean.  This is despite the systematic 

decrease in the rate of dissolved Fe (II) oxidation from the Atlantic to the Indian and 

Pacific Oceans (Statham et al., 2005) 

 

Edmond CTD 23 
Depth  2469m 2781m 2819m 2960m 3008m 3019m 3057m 3107m 3156m 

Iron          
Total  22.5 705 458 19.9 336 367 237 285 40.2 
>0.4µm 12.9 440 103 10.3 177 264 57.4 117  
>0.1µm 14.2 559 252 13.4 329 312 184 256 28.3 
<0.1µm 9.5 91.4 210 8.9 35.7 28.1 58.5 35.6 52.1 
Colloidal 1.3 119 149 3.1 152 48 126 139  
          
Manganese          
Total  3.4 108 55 3.4 52 58 37 51 14 
>0.4µm 0.3 0.2 0.2 0.3 0.2 0.3 0.3 4.9  
>0.1µm 0.3 0.2 0.2 0.3 0.2 0.2 0.3 6.5 5.3 
<0.1µm 3.2 83.7 54.3 3.4 46.9 51.8 35.6 39.9 11.6 
Colloidal 0 0 0 0 0 - 0 1.6 0 
          
Copper          
Total  4.1 9.4 7.2 4.2 10.7 3.1 5.3 5.5 4.4 
>0.4µm 0.1 5.9 4.0 0.1 1.9 3.7 1.3 1.6  
>0.1µm 0.4 6.6 4.4 0.8 4.1 2.6 2.4 2.5 1.2 
<0.1µm 3.8 3.1 3 3.8 7.4 2.9 3.4 3 3.4 
Colloidal 0.3 0.7 0.4 0.7 2.2 - 1.1 0.9  
          
Phosphorus          
>0.4µm 4.2 79.3 17.6 3.4 31.7 44.4 11.6 21.7  
>0.1µm 4.1 104 46.1 3.9 60.4 55.8 34.4 45.4 7.9 
Colloidal - 24.2 28.5 0.5 28.7 11.4 22.8 23.7 
         

Table 22.  Size fractions for Fe, Mn, Cu and P in the Edmond hydrothermal plume 
(all concentrations are nmol/l) 
 
‘Total’ fraction is the dissolved plus the particulate fraction.  This can be calculated from either the 
particulate >0.4µm fraction plus the dissolved <0.4µm fraction (presented in Chapter 4) or the particulate 
>0.1µm fraction plus the dissolved <0.1µm fraction; figures presented are an average of those two 
calculations (difference between the two figures varies from 3 to 20%). 
 
 

 

Manganese  

 
Figure 48 shows plots of dissolved Mn, dissolved plus colloidal Mn and particulate Mn 

(>0.4µm) versus total Fe (i.e. dissolved plus particulate Fe).  Dissolved Mn (<0.1µm) 

shows a good positive correlation with total Fe. The dissolved plus colloidal Mn 
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(i.e.<0.4µm) is also positively correlated with Fe.  The dashed line represents the 

regression line from the dissolved Mn (<0.1µm) plot and this shows that there is some 

evidence for the presence of Mn in the colloidal phase; up to 20%. The highest [Fe] 

sample suggests up to a third of the Mn may be in the colloidal phase; however it is 

likely that this data point is anomalous.  The plot is based on the dissolved data, whereas 

the colloidal data in Table 22 (which is based on the particulate data) suggests little 

evidence of Mn in the colloidal phase.  There are no analytical reasons to doubt the 

validity of the dissolved Mn data, however data from three depths at CTD 7 where both 

0.1µm and 0.4µm samples were collected also show little or no Mn in the colloidal phase 

whether calculating the value from particulate or dissolved data (see Table 23 below). 

 

                                Kairei CTD 7 
Depth  2268m 2273m 2320m 

Manganese    
Particulate  > 0.4µm 0.3 0.3 0.2 
Particulate  > 0.1µm 0.2 0.2 0.2 
Dissolved  < 0.4µm 24.1 11.5 6.7 
Dissolved  < 0.1µm 20.8 11.4 6.8 
Colloidal calculated from particulate data 0 0 0 
Colloidal calculated from dissolved data 3.3 0.1 0.1 
    

Table 23.  Size fractions for Mn in the Kairei hydrothermal plume (all 
concentrations are nmol/l) 
 
(CTD 7 data are not presented in detail in this chapter due to large inconsistencies in the two 
values for total Fe data calculated from either the 0.1µm or 0.4µm data and also because in 
some cases the >0.1µm particulate [Fe] which should be higher than the >0.4µm particulate 
[Fe] was much lower, suggesting a possible filtration problem.  The three samples used here 
had valid Fe data)   
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Figure 48  Size fractions of Mn versus total Fe. (a) shows the dissolved (<0.1µm) Mn 
fraction versus total Fe (i.e. dissolved plus particulate) with regression through all data, 
(b) shows the dissolved (<0.4µm) Mn fraction versus total Fe. The dashed line is the 
regression line from (a) for comparison and (c) shows the particulate (>0.4µm) Mn 
fraction versus total Fe. 

 
 
 
 
The particulate Mn versus total Fe plot is consistent with existing knowledge of the 

behaviour of Mn within hydrothermal plumes in that there is very little Mn in this phase, 

Mn is present almost entirely in the dissolved and/or colloidal phase.  Dissolved Mn (II) 

has been shown to behave conservatively within hydrothermal plumes close to the vent 

source, persisting for at least two weeks in, for example, the Endeavour Ridge 
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hydrothermal plume (Kadko et al., 1990).  The oxidation and/or scavenging of dissolved 

Mn (II) is microbially mediated (Cowen et al., 1986) and has been observed as far as 

20km from the vent source (Cowen et al., 1990).   

 

 

Copper 

 
Figure 49 shows particulate Cu, both the >1.0µm and >0.4µm fraction, colloidal Cu 

(<0.4µm, > 0.1µm) and dissolved Cu (<0.1µm) plotted against their corresponding Fe 

fractions.  The strong positive correlation already seen for the >1.0µm SAP Edmond 

samples (shown again in Fig. 49a) is also evident in the 0.4µm particulate fraction (Fig. 

49b).  In the colloidal phase (Fig. 49c) there is very little Cu (generally less than 2nmol/l) 

despite the colloidal Fe concentration reaching >100nmol/l and there is no apparent 

correlation.   

 

Also shown in the plots in Fig. 49 is the Edmond Cu:Fe vent fluid ratio (Gallant & Von 

Damm, 2006).  The coarse >1.0µm particles have Cu:Fe ratios higher than the vent fluid, 

the >0.4µm particles have Cu:Fe ratios similar to the vent fluids, while the colloidal 

fraction has Cu:Fe ratios which are lower than the vent fluids.  This is consistent with 

fractionation of the Cu into coarser grained sulfides, and little or no association of the Cu 

with the fine colloidal fraction.  This helps to explain why the >1.0µm samples show 

some evidence of loss of Cu relative to Fe (i.e. negative curvature in the Cu vs. Fe 

relationship) while the >0.4µm samples appear more linear, it is because the sulfides are 

concentrated in the coarser fraction.  These observations are also consistent with those of 

James & Elderfield (1996), one of the few other studies to look at dissolved and 

particulate samples.  They found that the Cu:Fe ratios in samples from the Snakepit site 

in the Atlantic were greater than the vent fluid Cu:Fe ratio for the >0.4µm fraction but 

slightly lower than the vent fluid for the <0.4µm fraction.  However they could not 

determine from their data whether the Cu in the <0.4µm fraction was truly dissolved or 

associated with the colloidal phase, this data confirms that Cu resides in the truly 

dissolved phase.    
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Figure 49  Size fractions of Cu versus Fe. (a) shows the particulate (>1.0µm) fractions 
(i.e. the SAP samples), (b) shows the particulate (>0.4µm) fractions, (c) shows the 
colloidal (between 0.1 and 0.4µm) fractions and (d) shows the dissolved (<0.1µm) 
fraction.  The dashed line in all plots represents the Edmond vent fluid Cu:Fe ratio 
(Gallant & Von Damm, 2006). 
 

The dissolved phase (Fig. 49d) shows no correlation between Cu and Fe, in fact the 

dissolved Cu concentrations measured in the Edmond hydrothermal plume are very 

similar to those measured previously for the open Indian Ocean (Morley et al., 1993) 

except for one value which looks to be abnormally high.  One of the suggested 

mechanisms for loss of Cu from hydrothermal plumes relative to Fe is that the Cu 

sulfides formed early in the buoyant plume phase are oxidised and return to solution, if 
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this were the case then it could be argued that there should be some evidence of increased 

[Cu] in the dissolved phase.  This is not apparent in the dissolved Cu data (Fig. 49d).  

However if we look at the >1.0µm plot where negative curvature is apparent, the 

maximum loss from the particulate phase which results in the curvature is ~1nmol/l.  

This loss will be partly accounted for by the settling of sulfides, hence the Cu enrichment 

which might be observed in the dissolved phase could be considerably less than 1nmol/l.  

This may be difficult to detect against the background dissolved Cu concentration of 

2.8nmol/l (Morley et al., 1993). 

 

The coarser (>1.0µm) fraction has an average Cu:Fe ratio of 0.027±0.027 which exceeds 

the vent fluid ratio (as illustrated in Fig. 49a).  It is also higher than the average Cu:Fe 

ratio of the >0.4µm fraction which is 0.014±0.012.  This suggests that the particulate Cu 

resides predominantly in the coarser (>1.0µm) fraction, i.e. that Cu is dominated by 

coarse sulfide phases rather than finer grained and/or colloidal Fe-oxyhydroxides. 

 

 
Phosphorus 

  

For particulate phosphorus (>0.4µm) there is a strong positive correlation with total Fe 

(Fig. 50a).  However colloidal P is not correlated with total Fe although there is a 

significant component of P (between 10 and 30 nmol/l) associated with the colloidal 

phase (Fig. 50b).  Comparison of P fractions to the corresponding Fe fractions rather than 

total Fe reveals much tighter correlations as illustrated in Fig. 50c and 50d.  This is 

similar to the correlations observed in Atlantic and Pacific Ocean hydrothermal plumes 

for particulate fractions (Feely et al., 1998) as well as for the SAPs (>1.0µm) samples 

from this study (Fig. 27) 



Chapter 5                                   Comparison of particulate, colloidal and dissolved phases 

 146

Total Fe (nmol/l)

0 200 400 600 800

Pa
rt

ic
ul

at
e 

P 
> 

0.
4µ

m
 (n

m
ol

/l)

0

20

40

60

80

100

Particulate Fe > 0.4µm (nmol/l)

0 100 200 300 400 500

Pa
rt

ic
ul

at
e 

P 
> 

0.
4µ

m
 (n

m
ol

/l)

0

20

40

60

80

100

0.1µm < Fe < 0.4µm (nmol/l)

0 50 100 150 200

0.
1µ

m
 <

 P
 <

 0
.4

µm
 (n

m
ol

/l)

0

10

20

30

40

y = 0.179x + 1.157
r2 = 0.98

y = 0.174x + 1.033
r2 = 0.99

Total Fe (nmol/l)

0 200 400 600 800

0.
1µ

m
 <

 P
 <

 0
.4

µm
 (n

m
ol

/l)

0

20

40

60

80

100
a b

c d

 
 

Figure 50  Size fractions of P versus total Fe and Fe size fractions. (a) shows the 
particulate (>0.4µm) P fraction versus total Fe and (b) shows the colloidal (between 0.1 
and 0.4µm) P fraction versus total Fe while (c) shows P versus Fe for the particulate 
(>0.4µm) fraction and (d) shows P versus Fe for the colloidal (between 0.1 and 0.4µm) 
fraction. 

 
 
 

Note that the correlations for the >0.4µm and colloidal fractions in Figs. 50c and d are 

almost identical.  Fig. 51 shows the P and Fe data from these fractions plus the >1.0µm 

data plotted together along with the regression through all data.  The tight correlation 

between all the fractions for phosphorus indicates that all three size fractions of the Fe-

oxyhydroxide material have a common origin, i.e. initial precipitation of the dissolved Fe 
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(II) as colloids with associated co-precipitation or scavenging of the P, followed by 

aggregation into larger particles.  This is consistent with scanning electron microscopy 

analysis of  P-enriched particles by Feely et al. (1990b) which found the particles ranged 

in size from 0.1µm to aggregates of 2.0µm.  The similarity between the fractions 

suggests that there is little further scavenging taking place as the particles aggregate and 

increase in size, otherwise we would expect to see some divergence of the correlations 

for each fraction.  This is in direct contrast to the copper to iron relationships shown in 

Fig. 49 which are not the same for all the size fractions.                            
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Figure 51  Phosphorus versus iron relationship for particulate (>1.0µm and 
>0.4µm) and colloidal size fractions with regression through all data. 
 

 

5.3.4 P/Fe and V/Fe Ratios 

 

From observations of Pacific and Atlantic Ocean hydrothermal plumes Feely et al. 

(1991) found a direct correlation between the P/Fe ratios in hydrothermal plume particles 

and the ambient dissolved P concentration.  Hence in the Pacific Ocean where the 
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dissolved P concentration is higher than in the Atlantic (Table 24), the P/Fe ratio is also 

higher.  However V, which has less variable dissolved concentrations than P throughout 

the deep oceans (Middelburg et al., 1988) has a higher V/Fe ratio in the Atlantic than in 

the Pacific (Metz & Trefry, 1993; Feely et al., 1994a).  Feely et al. (1998) further 

investigated the V/Fe ratios at several sites in the Pacific and Atlantic and demonstrated 

that there is an inverse correlation between the V/Fe ratio in hydrothermal plumes and 

ambient dissolved phosphate concentrations.  A suggested reason for this relationship is 

that P competes more effectively for the sites on the Fe-oxyhydroxide particles, hence 

where dissolved P concentrations are high, V/Fe ratios will be low and vice versa (Metz 

& Trefry, 1993; Feely et al., 1994a).  Like V, As has similar concentrations throughout 

the deep oceans (Table 24), however in contrast to V, it exhibits a more constant ratio 

with Fe.  At TAG in the Atlantic the molar As:Fe ratio of hydrothermal plume particles is 

0.0017 while at North Cleft on the Juan de Fuca Ridge in the Pacific it is 0.0018 (Feely et 

al., 1991).  For the Kairei and Edmond >1.0µm SAP samples it is 0.0016. 

 

 

 Phosphorus1 
(nmol/l) 

Vanadium2 
(nmol/l) 

Arsenic2 
(nmol/l) 

Pacific Ocean 2840 36.4 24.0 

Indian Ocean 2380 35.6 22.5 

Atlantic Ocean 1490 32.6 19.0 

Table 24.  Dissolved concentrations of P, V and As in the deep oceans. 
1WOCE data (CLIVAR & Carbon Hydrographic Data Office)) 
2Middleburg (1988) 
 

 

Dissolved P concentrations in the Indian Ocean are intermediate to that of the Atlantic 

and Pacific Oceans (Fig. 52 and Table 24). Therefore, based on the above observations, 

both the V/Fe and P/Fe ratios should also be intermediate to those measured in the 

Atlantic and Pacific 
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Figure 52  Phosphate depth profiles in the world oceans, data from World Ocean 
Circulation Experiment (CLIVAR & Carbon Hydrographic Data Office) 

 

 
Figure 53 shows the average molar P/Fe and V/Fe ratios for the Kairei and Edmond 

1.0µm SAPs samples plotted alongside the data from Feely et al. (1998).  Dissolved 

phosphate data from the nearest GEOSECS station at the appropriate depth range has 

been used in place of actual data from cruise CD128 which is unavailable.  The graphs 

show that data from both Edmond  and Kairei are indeed intermediate to that of the 

Pacific and the Atlantic, consistent with the arguments of Feely et al. (1998).     
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Figure 53  Molar P/Fe and V/Fe ratios for the SAP (>1.0µm) samples versus 
ambient dissolved phosphate.  Atlantic and Pacific data (circles) from Feely et al. 
(1998), linear regression through all data. 

 

If data from the >0.4µm Niskin samples are added to the plot for P/Fe ratios in Fig. 53 

the result is higher ratios for Kairei and Edmond (~0.18 compared to ~0.16) with larger 

errors as illustrated in Fig. 54.  This is unexpected as it has already been established from 

the size fractionation study that all the P fractions come from a single source and show 

extremely good co-variation between P and Fe in all size fractions (see Fig. 51) 

. 
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Figure 54  Molar P/Fe ratios for the SAP (>1.0µm) and Niskin (>0.4µm) samples 
versus ambient dissolved phosphate.  Atlantic & Pacific data as for Fig. 53, linear 
regression through all data. 

 

Plotting the P/Fe ratios versus dissolved manganese (as a tracer of plume dilution) for the 

>0.4µm Niskin samples as shown in Fig.55 gives an indication of why this may be the 

case.  The plot shows that P/Fe ratios remain constant until dissolved [Mn] reaches 

<15nmol/l where they then rise exponentially.  The most likely explanation is that, at 

these dilutions (a dissolved [Mn] of <15nmol/l represents a vent fluid dilution of  

>60,000 fold based on the vent fluid [Mn] (Gamo et al., 2001; Gallant & Von Damm, 

2006)), input of non-hydrothermal particles is becoming influential.  This is similar to the 

rare earth elements in the SAP samples in Chapter 4 where the relationship between the 

Ce and Eu anomalies and particulate Fe start to break down at low pFe concentrations as 

incorporation of background material becomes influential.  If we look at the 

Fe/(Fe+Mn+Al) ratios of the particles, where dissolved [Mn] is greater than 15nmol/l the 

ratio is 0.98±0.02 but below dissolved [Mn] of 15nmol/l the ratio is 0.88±0.03 which is 

consistent with the influence of background material.  Although background open ocean 

particulate P and particulate Fe values are not available, Feely et al. (1990a; 1996; 1998) 

collected background samples along with their hydrothermal plume particle samples 

from various sites in the Pacific Ocean.  The background P/Fe ratios vary between 

0.23±0.06 at the ASHES site on the Juan de Fuca Ridge, 0.74±0.82 on the Southern East 

Pacific Rise (SEPR) from 13°30’S to 18°40’S and 0.092±0.008 on the Gorda Ridge.  
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These values exhibit a variation both above and below the P/Fe ratio of the hydrothermal 

plume particles.  However, it does illustrate the point that if background P/Fe ratios in the 

vicinity of the Kairei and Edmond hydrothermal sites are high like those on the SEPR, 

then incorporation of 10-20% of background material (see plot of percentage 

Fe/(Fe+Mn+Al) versus Fe in Fig. 40 earlier in this chapter) with a P/Fe ratio of 0.74 in 

combination with 80-90% of hydrothermal material with a P/Fe ratio of 0.16  would 

result in a P/Fe ratio of 0.22 to 0.28 which is not dissimilar to the ratios observed in Fig. 

55 as higher plume dilutions are reached.    
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Figure 55  Molar P/Fe ratio versus dissolved Mn for the Niskin (>0.4µm) samples. 
 

If we assume that the P/Fe ratios at low dissolved Mn concentrations are being affected 

by other inputs of non-hydrothermal particles and calculate the average P/Fe ratio based 

on just the 0.4µm samples where [Mn] >15nmol/l and the 1.0µm samples, (dissolved Mn 

measurements are not available for the SAPs samples so are all included), i.e. only the 

hydrothermal particles, then the average P/Fe for Kairei and Edmond is ~0.16 with a 

smaller associated error (see Fig. 56 below).   
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Figure 56  Molar P/Fe ratios for SAPs (>1.0µm) and Niskin (>0.4µm) samples 
versus ambient dissolved phosphate where dissolved [Mn] > 15nmol/l.  Atlantic & 
Pacific data as for Fig. 53, linear regression through all data. 
   

 

Feely et al. (1998) suggested that the correlation between the P/Fe ratios and dissolved 

phosphate and also between V/Fe ratios and dissolved phosphate was linear in nature.  

The addition of data from the Indian Ocean gives linear regression correlation 

coefficients of 0.90 and 0.93 respectively for P/Fe and V/Fe versus dissolved phosphate.  

However a quadratic fit gives slightly better correlation coefficients of 0.92 and 0.89 and 

as can be seen in Fig. 57 produces an improved fit to the data.  For the relationship to be 

truly linear, the dissolved phosphate concentration at these locations would need to be in 

the range of 2.5-2.8µmol/l.  Although dissolved phosphate concentrations are not 

reported from this study, comparison with available dissolved phosphate data for all 

oceans available from both the Geochemical Ocean Section Study (GEOSECS) and the 

World Ocean Circulation Experiment (WOCE) shows that concentrations in this range 

are only recorded at comparable depths considerably further north in the Indian Ocean, 

both at the most northern end of the Ninety East Ridge in the Bay of Bengal2 and in the 

Arabian Sea in the proximity of the most north western end of the Carlsberg Ridge3 

(CLIVAR).  Elsewhere these phosphate concentrations are not observed any closer than 

                                                 
2 WOCE, Line I09, Station 234, 10°00’N 90°44E 
3 WOCE, Line I01E, Stations 893, 10°48’N 53°22’E and 889, 14°30’N 50°50’E 
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the Southern Pacific Ocean at 9-11°S 125-103°W4 (CLIVAR, ; Broecker et al., 1982).  

This additional Indian Ocean data shows that as Feely et al. (1998) predicted, there is 

indeed a progressive change in P/Fe and V/Fe ratios along the global thermohaline 

circulation.  However, in order to confirm the exact nature of the P/Fe and V/Fe 

relationship with ambient dissolved phosphate, additional data are required from 

hydrothermal plumes at locations intermediate to the Indian Ocean sites studied here and 

the Atlantic Ocean sites cited by Feely et al. (1998) at dissolved phosphate 

concentrations of  ~1.8-1.9µmol/l.  The most promising locations to conduct such future 

study, based on GEOSECS and WOCE dissolved phosphate data would be along the Mid 

Atlantic Ridge at 34-42°S5 (CLIVAR, ; Broecker et al., 1982) an area as yet unexplored 

with respect to hydrothermal activity. 
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Figure 57  Molar P/Fe and V/Fe ratios versus dissolved ambient phosphate with 
quadratic fit.  (P/Fe values are those from Fig. 56, V/Fe values from Fig. 54) 

 

 

It has been suggested that if P/Fe and V/Fe ratios are preserved in the sediments, then 

they could be used as indicators of past seawater phosphate concentrations (Feely et al., 

1998).  The ratios are only like to be maintained if the sediments remain oxic, otherwise 

P and V may be remobilised and although they may still ultimately remain in, or return to 

the sediments (e.g. Fillippelli & Delaney, 1996), they will no longer be in association 

                                                 
4 e.g. GEOSECS, Station 328, 9°16’S 125°32’W or WOCE, Line P18, Station 115, 11°60’S 103°00’W 
5 e.g. GEOSECS, Station 93, 41°46’S 18°27’E or  WOCE, Line A14, Stations 84, 34°00’S 9°00’W and  
95, 39°30’S 9°00’W 
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with the hydrothermal component.  The hydrothermal P/Fe ratio in sediments may be 

difficult to determine due to other variable inputs of P to the sediments (e.g. in 

association with organic matter), in fact as mentioned earlier the hydrothermal P/Fe ratio 

in mature plume particles may already be affected by other processes before they even 

reach the sediments.  Despite this, at the Rainbow hydrothermal site in the Atlantic, 

Edmonds & German (2004) found the P/Fe ratio in the plume particles (0.100 ± 0.002) 

matched the ratio in Rainbow surface sediments (0.08-0.10, Cave et al.,2002).   However, 

on the Southern East Pacific Rise (EPR) at 14°S, even under oxic conditions, Dunk & 

Mills (2004) found that the P/Fe ratio in the sediments was both variable and lower than 

the corresponding plume particles.  

 

Preservation of the V/Fe ratios is also an unresolved issue.  In the same samples from the 

Southern EPR, Dunk & Mills (2004) found that the V/Fe ratios were directly comparable 

to plume particles. The average V/Fe ratio (0.0027 ± 0.0003) in a core from the Cleft 

Segment on the Juan de Fuca Ridge analysed by German et al. (1997) also compares very 

well with the average V/Fe ratio (0.0026 ± 0.0001) found by Feely et al. (1998) in plume 

particles from the same location.  However, Schaller et al. (2000) who studied a core 

from the Southern EPR at 11°S found lower V/Fe ratios in the sediments (0.0024) than in 

corresponding plume particles (0.0030) and this is also the case for V/Fe ratios in 

sediments at the TAG hydrothermal mound (0.0010 to 0.0018 in the hydrothermal 

portion of the sediment (Metz et al., 1988)) compared to TAG plume particles (0.0045 ± 

0.0003 (German et al., 1991a)).  To add further complication, V/Fe ratios in the Rainbow 

hydrothermal surface sediments from the Atlantic where the P/Fe ratios correspond well 

to the plume particle ratios are actually higher than the V/Fe ratios in the plume particles; 

0.007-0.008 compared to 0.0043 ± 0.0002 (Cave et al., 2002; Edmonds & German, 

2004).  

 

The conflicting results for P/Fe and V/Fe ratios in the sediments and in plume particles at 

different locations means that their use as paleo-proxies for phosphate concentrations in 

seawater is still an unresolved issue.  However, all paleo-proxies have their weaknesses 

and results from even the most robust proxies often need to be treated with care.  If the 

use of these ratios as a proxy is to be further explored then firstly, it is important to 

establish whether the P/Fe and V/Fe versus dissolved phosphate relationships are linear 
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or follow some more complex trend, as well as determining how well the ratios are 

preserved in the sediments through investigation of further sites.  Careful consideration 

should be given to the selection of sediment core sites to ensure that they have been 

predominantly hydrothermally influenced over time and that the sediments are, and have 

been oxic. 

 

5.3.5 Flux Calculations 

 
As discussed in Chapter 1, hydrothermal activity, either by circulation of seawater 

through the hydrothermal systems or by reactions in hydrothermal plumes may act as a 

source or a sink for some elements.  The global cycle of phosphorus is affected by the 

scavenging of this element onto the FeOOH particles which are then deposited in the 

sediments.  Vanadium is also affected in the same manner.  Previous estimates of this 

sink for both P and V along with estimates from this study are show in Table 25 below.  

For the estimates from this study a global Fe flux has been calculated by using the best 

estimate of global high temperature hydrothermal water flux from Schultz & Elderfield 

(1997) of 3.0 x 1013kg/yr and a median value of 12400µmol/kg for the vent fluid Fe 

concentration from the global range of 750-24000µmol/kg (Von Damm, 1995).  

Assuming that 20-30% of this Fe is lost as sulphides (see Chapter 3), this means there is 

9300µmol/kg available for Fe-oxide formation and scavenging giving a global Fe flux of 

2.8 x 1011mol/yr.  For the P/Fe and V/Fe ratios, median values from the observed global 

ranges of 0.06-0.21 and 0.023-0.045 respectively have been used (this study having 

confirmed that values for these ratios are dependent on ambient dissolved phosphate 

concentrations and therefore should all be within these ranges). 

 

The values from this study are consistent with estimates from previous authors, however 

in effect the values are little better constrained than the previous estimates.  To improve 

the estimates further, initially a better constrained Fe flux is required.  Although this 

study has provided a much better estimate of the Fe loss due to sulphides and therefore 

the Fe that is available for Fe-oxide formation, the main uncertainty lies in determining 

an average value across all vent fluids (aside from the associated uncertainties in 

estimating a global high temperature hydrothermal water flux). 
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 Global P removal 
flux (1010 mol/yr) 

Notes 

This study 3.9 Based on P/Fe ratio of 0.14 (see text for 
further details) 

Wheat et al. (1996) 0.8 Based on Fe flux estimated from Fe/heat 
ratios and 3He flux data from the Juan de Fuca 
Ridge and using a P/Fe ratio of 0.18 

Kadko et al. (1994) 0.2 Based on Juan de Fuca Ridge data – used 
similar method to Feely et al. (1990b) i.e. 
determining uptake rate per km of ridge 
segment but using 234Th and P/234Th ratios. 

Rudnicki & 
Elderfield (1993) 

1.1 Same principle as this study but using TAG 
data only for available Fe estimate and P/Fe 
ratio. 

Feely et al. (1990b) 0.4 Based on Juan de Fuca Ridge data – used flux 
of hydrothermal suspended matter from ridge 
crest with its P and Fe content to determine an 
uptake rate per km of ridge segment – then 
multiplied by estimated length of active 
venting sites. 

 Global V removal 
flux (108 mol/yr) 

Notes 

This study 9.5 Based on V/Fe ratio of 0.0034 (see text for 
further details) 

Rudnicki & 
Elderfield (1993) 

4.3 As for P, i.e. same method as this study but 
using TAG data as basis. 

Trefry & Metz 
(1989) 

1.4 Same method as this study but with different 
values as best estimated of Fe flux and V/Fe 
ratios 

Table 25.  Global P and V hydrothermal removal flux estimates. 
Compare to riverine flux of these elements which are 3-10 x 1010mol/yr for P (Delaney, 
1998) and 5.0 x 108mol/yr for V (Trefry & Metz, 1989), hence the hydrothermal 
removal fluxes represent a significant fraction of the riverine input.  
 

 

The rare earth elements are also subject to removal to the sediments via scavenging by 

the FeOOH particles, however unlike P and V the REE/Fe ratios are highly variable 

within each plume.  Hence although a maximum removal rate could be estimated using 

the highest REE/Fe ratios this would not be a significant improvement on the estimate of 

Rudnicki & Elderfield (1993) where they constructed a scavenging model from TAG 

data and estimated scavenging constants for the REEs. 

 

For the other elements discussed in this study, Cu, Zn and Mn, there is limited 

information which can be extracted from the new data in this study to enable better 
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estimates than those in existing literature.  This is because the main dependencies for 

estimates of the hydrothermal fluxes are the vent fluid concentrations and the global 

water flux.  

 

 

5.3.6 Summary 

 

While much of the data obtained for the particulate (>0.4µm) Niskin samples relates 

predominantly to particles that will have formed in the Niskin bottle during the elapsed 

time from bottle firing to sample filtration, the samples are comparable to those that 

would have formed during the same time period (~2.5hrs) during gentle dispersion in the 

non-turbulent non-buoyant plumes at Kairei and Edmond.  Direct evidence for this is 

seen in the P/Fe ratios which are consistent with the ratios in the SAP (>1.0µm) samples.  

Hence the Niskin samples can be confidently interpreted as being representative of 

processes active within these non-buoyant hydrothermal plumes.  

 

The patterns of behaviour observed for P and Cu with respect to Fe for the >0.4µm 

particulate fraction in the Kairei and Edmond hydrothermal plumes are consistent with 

those observed for the >1.0µm SAPs samples described in Chapter 4.  The samples have 

unusually high concentrations of particulate Ca and Mg but this does not appear to 

impact the behaviour of the other elements which are in agreement with previous studies 

of hydrothermal plume particle behaviour. 

 

The distribution of the trace elements, Mn, Cu and P between the different size fractions 

in the Edmond hydrothermal plume generally follows what would be predicted from the 

observations of the particulate phases providing supporting evidence for the proposed 

models of behaviour of these elements, i.e. the persistence of Mn in the 

dissolved/colloidal phase even at high plume dilution, the loss of buoyant plume formed 

Cu sulfides as the plume is diluted and the adsorption/co-precipitation of P in association 

with the early forming Fe-oxyhydroxides. 

 

The consistency of the P/Fe relationship between the size fractions and the fact that the 

P/Fe and V/Fe ratios are, as predicted, intermediate to those in the Pacific and Atlantic 
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Oceans are positive results in light of their suggested use as paleo-proxies for dissolved 

phosphate concentrations, assuming that these ratios are preserved in the sediments.  

However more detailed investigation is required of both the exact nature of the inter-

relationship and inter-dependency between dissolved phosphate, P/Fe and V/Fe ratios 

(which can be best achieved through investigation of further hydrothermal plumes 

situated in ocean waters with dissolved phosphate intermediate between Central Indian 

Ocean and North Atlantic water, e.g. the southern mid-Atlantic Ridge) and the 

preservation of these ratios once the hydrothermal plume particles have been deposited in 

the sediments is required (which is best achieved through the analysis of cores from sites 

that have remained oxic and have been predominantly hydrothermally influenced). 
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6 Chapter 6   Conclusions and Future Work 
 
6.1 Conclusions 

 

The main questions that this first study of hydrothermal plumes in the Indian Ocean set 

out to address were: 

 
1 Does the Fe (II) oxidation rate in the Indian Ocean affect the fundamental 

processes taking place within the plume or do we see the same patterns of 

behaviour previously observed in Atlantic and Pacific hydrothermal plumes? 

2 Can we elucidate the processes occurring in the plume from the complementary 

particulate, colloidal and dissolved fraction data? 

3 Does the linear relationship for P/Fe and V/Fe versus ambient dissolved 

phosphate hold true in the Indian Ocean so that they still have potential as paleo-

proxies for past seawater phosphate concentrations? 

 
The Fe (II) oxidation rate in the Indian Ocean, with a half-life of 2.3hrs is intermediate to 

that of the Atlantic and Pacific Oceans.  This does have an effect on the concentration of 

particulate Fe present in the collected samples; the SAP (>1.0µm) samples which were 

collected in situ have much lower concentrations of particulate Fe than observed in 

Atlantic Ocean hydrothermal plume samples also collected using SAPs and >1.0µm 

filters.  Although the measured particulate Fe concentrations in the Niskin (>0.4µm) 

samples are higher,  the in situ concentrations calculated using the Fe (II) oxidation rate 

suggest there is very little particulate Fe in the early non-buoyant plume (as inferred from 

the dissolved Mn measurements) consistent with a slower Fe (II) oxidation rate than for 

the Atlantic Ocean.  Conversely the dissolved Fe concentrations measured are higher 

than those in similar samples from Atlantic hydrothermal plumes. 

 

The measurement of complementary dissolved and particulate Fe and Mn in the samples 

has allowed a more accurate estimate of the loss of Fe (II) from the plume than was 

previously possible in studies where just one phase was measured.  Loss of Fe (II) 

initially occurs due to the formation and subsequent settling of Fe sulfides.  At both the 

Kairei and Edmond sites the estimated loss due to sulfide formation is ~20-30%, lower 
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than previous estimates of ~50% based on the particulate phase alone.  Further loss of Fe 

(II) then occurs via oxidation and formation of Fe-oxyhydroxide particles.  Knowing the 

Fe (II) oxidation rate has made it possible to ascertain that there was most likely very 

little or no in situ particulate Fe in samples collected in close proximity to the vent 

sources.  However we are still able to estimate that ~2.5hrs beyond the time the samples 

were collected, that the loss of dissolved Fe (II) due to oxidation equates to a further 20-

40% of the total Fe (II) which emerged from the vent. 

  

Although the Fe (II) oxidation rate in the Indian Ocean does affect the concentrations of 

particulate and dissolved Fe found within samples of similar age compared to those from 

different oceans, apparently it does not fundamentally affect the particle formation 

processes which have previously been observed in hydrothermal plumes in other oceans.  

The chalcophile elements are known to precipitate as poly-metallic sulfides in the early 

stages of the buoyant plume, and these sulfides subsequently settle out of the plume, or 

may return to solution via oxidative dissolution.  Consequently a positive correlation 

between particulate Fe and the particulate chalcophile elements in hydrothermal plume 

samples, but with negative curvature due to the loss of the chalcophile elements relative 

to particulate Fe, has been observed in Atlantic hydrothermal plumes.  At Kairei and 

Edmond the relationships of particulate Zn and Cd with that of particulate Fe in the 

hydrothermal plumes also show negative curvature, consistent with these previous 

observations.  Particulate copper at the Edmond site also exhibits this trend and 

additional measurements of Cu and Fe in the dissolved, colloidal, fine particulate and 

coarse particulate fractions have allowed us to confirm that Cu resides predominantly in 

the coarse particulate phase.  Measurements of these fractions also suggest that if 

oxidative dissolution of the sulfides is taking place, then it does not have a significant 

impact on the Cu chemistry within the plume.  In contrast to Zn and Cd, particulate Pb 

exhibits a positive correlation with particulate Fe but with no clear trend at either Kairei 

or Edmond.  This is not surprising as Pb is known to be a particle reactive element, and 

hence it is likely to be involved in scavenging reactions with the Fe-oxyhydroxide 

particles.  Once again these Indian Ocean results are consistent with previous 

observations in the Atlantic Ocean and, as the chalcophile element behaviour is 

dominated by poly-metallic sulfide precipitation which is independent of Fe (II) 
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oxidation kinetics, the behaviour therefore appears to be unaffected by the differing Fe 

(II) oxidation rates.    

 

Particle reactive elements such as the rare earth elements and yttrium are known to be 

involved in scavenging reactions with the Fe-oxyhydroxide particles.  They exhibit a 

positive correlation with particulate Fe, which has positive curvature, indicating the 

uptake of the REEs and Y relative to particulate Fe.  This behaviour has previously been 

observed in Atlantic and Pacific hydrothermal plumes and is also seen here in the Indian 

Ocean at both the Kairei and Edmond sites.  Hence the differing Fe (II) oxidation rates 

do not have an influence on the scavenging reactions which occur. 

 

The particulate oxyanion species such as P, V and As have been shown to exhibit linear 

correlations with particulate Fe in both Atlantic and Pacific hydrothermal plumes.  A 

strong linear relationship is also apparent in both the Kairei and Edmond hydrothermal 

plume samples which suggests that the interaction of the oxyanion species with the Fe-

oxyhydroxide particles is also unaffected by the Fe (II) oxidation rate.  The measurement 

of phosphorus and iron in the colloidal, fine particulate and coarse particulate fractions 

gives a further insight into this relationship; the same tight linear relationship is observed 

in all the fractions.  This implies that the P/Fe ratio in the particles is set on formation of 

the colloidal Fe (III) and that no further uptake of phosphorus occurs as the colloids 

aggregate to form larger particles. 

 

Comparison of the P/Fe ratios of the hydrothermal plume particles with ambient 

dissolved phosphate in the Indian Ocean, in conjunction with similar data from the 

Atlantic and Pacific suggests that it is the ambient dissolved phosphate concentration 

which controls the P/Fe ratio in the colloids; where the ambient dissolved phosphate is 

higher, the P/Fe ratio is higher.  Likewise the V/Fe ratios also have a dependency on the 

ambient dissolved phosphate, however this is an inverse correlation; higher dissolved 

phosphate results in a lower V/Fe ratio.  The Indian Ocean has ambient dissolved deep 

water phosphate concentrations which are intermediate to that of the Atlantic and Pacific 

Oceans and the P/Fe and V/Fe ratios are also intermediate to those found in Atlantic and 

Pacific hydrothermal plumes.  This is positive news in light of their potential use a paleo-

proxies for past seawater phosphate concentrations.  However it is not clear from the new 
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data obtained in this study whether the relationship between the ratios and dissolved 

phosphate is strictly linear or more complex relationship applies.  The validity of using 

P/Fe ratios in hydrothermal sediments as paleo-proxies will also critically depend on 

possible diagenetic changes in the sediment core.     

 

  

6.2 Future work 

 

The collection of samples using Niskin bottles mounted on a CTD rosette, which are then 

later processed back on board ship and analysed in the laboratory, as well as the use of 

stand alone pumps (SAPs) to carry out in situ filtration to provide particulate samples for 

subsequent processing, has provided significant advances in our understanding of 

processes in hydrothermal plumes.  However, if we are to further advance our 

understanding of these processes, it would be advantageous to focus on gathering further 

in situ measurements.  Take, for example, the calculation of in situ particulate Fe.  There 

are uncertainties in back-calculating the in situ concentrations; e.g. making sure the 

elapsed time from the firing of the Niskin bottle to the processing of the samples is 

recorded accurately, as well as determining an accurate Fe (II) oxidation half-life.  The 

differences in calculated and experimental values for the Fe (II) oxidation rates, both in 

this study and others, show that ideally this would need to be done experimentally for 

each individual plume, at least until the reasons for the discrepancy between the two 

values are fully understood.  Even then, it is apparent that there are other factors affecting 

the Fe (II) oxidation kinetics (not strictly first order) which mean determining the Fe (II) 

oxidation half time experimentally is not straightforward.   

 

Although direct in situ particulate concentration measurements (i.e. rather than, for 

example, correlations with nephelometry data) may not be feasible in the immediate 

future, combining in situ dissolved measurements with the types of measurements made 

in this study would still provide further insights into the plume processes.  In situ 

analysers for dissolved Fe and Mn are available and have been proven for use in 

hydrothermal plume research.  Detection limits of these systems are continuously 

improving, thus enabling the mapping of plumes to greater distances from their source.  
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This does not mean that the collection of samples for subsequent processing either on 

board ship or later in the laboratory is redundant, in fact there is information that can 

only be gained in this way, such as the mineralogy of the hydrothermal plume particles.  

This is crucial to fully understanding, for example, the processes of Fe removal and 

equilibration within hydrothermal plumes which is fundamental to predicting the 

potential of hydrothermal Fe as a source of Fe to the oceans.  A study of the mineralogy 

of the samples using for example, Scanning Electron Microscopy (SEM) or thin film x-

ray diffraction (XRD), in conjunction with the elemental analyses such as those made in 

this study would allow us an even greater understanding of the particle processes in the 

plume.  We already know that poly-metallic sulfides are formed early in the buoyant 

plume and subsequently settle out of the plume or undergo oxidative dissolution. 

However we assume that some of these sulfides reach the non-buoyant plume as we find 

elevated (compared to background) concentrations of, for example, Cu and Zn in 

hydrothermal plume particles.  Mineralogy studies would give us an indication of how 

far these sulfides (including the Fe-sulfides) persist in the non-buoyant plume.  This may 

be important as the oxidation of Fe-sulfides could be an ‘in situ’ source of dissolved Fe 

(II) and we currently know nothing about the rates of sulfide oxidation within plumes. 

There is also the possibility that some of the chalcophile elements are involved in 

scavenging reactions with the Fe-oxyhydroxide particles, and examination of the 

mineralogy would confirm if, for example, Cd is found in association with the Fe-

oxyhydroxide particles.  Studying the mineralogy of the samples would also provide 

information on the particle size spectrum in hydrothermal plumes.  This is important to 

help us understand the formation of larger particles which eventually settle out, leading 

to the loss of elements from the plume and deposition into underlying sediments.    

 

In addition to improved sampling and measurements that could be employed in the 

future, there are also new locations for future hydrothermal research to be considered.  

Determining the exact relationship between P/Fe and V/Fe ratios in hydrothermal plumes 

and ambient dissolved phosphate (linear or more complex) requires data from sites which 

have dissolved ambient phosphate concentrations intermediate to that of the Indian 

Ocean and the North Atlantic, the most suitable being the southern Mid-Atlantic ridge 

around 34-42°S, an area as yet unexplored in terms of hydrothermal activity. 
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Appendix 1 Analytical data for ICP/AES and ICP/MS measurements 
 
For ICP/AES and ICP/MS measurements the limits of detection are calculated from 3 x 
standard deviation of the blank measurements.  External precision is calculated from the 
relative standard deviation of repeated measurements of a standard.  For the ICP/MS 
measurements, internal precision is calculated from the 4 replicate measurements of each 
sample. Accuracy is calculated from comparison with a reference standard. 
 

 

External 
Precision 

(%) 

Limit of 
detection 

(µg/l) 
Mg 0.7 1.3 
Al 1.0 0.8 
P 1.0 14.3 

Ca 0.8 13.3 
V 1.9 1.1 

Mn 0.9 0.9 
Fe 1.0 2.7 
Cu 0.6 2.1 
Zn 1.1 8.6 
As 9.7 8.9 
Y 1.9 0.0 

Analytical performance of ICP/AES 
method for measurement of trace metals 
in stand alone pump (>1.0µm) 
hydrothermal plume particle samples 

 
 
 

   

 

External 
Precision 

(%) 

Limit of 
detection 

(µg/l) 
Mg 0.8 0.2 
Al 4.0 0.3 
P 0.8 1.8 

Ca 0.6 0.5 
Mn 0.8 0.1 
Fe 0.6 0.1 
Cu 0.8 0.1 
Zn 0.8 0.3 

Analytical performance of ICP/AES 
method for measurement of trace metals 
in Niskin bottle (>0.4µm) hydrothermal 
plume particle samples    
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Limit of 
detection 

(ng/l except 
Pb, µg/l) 

Internal 
precision 

(%) 

External 
precision 

(%) 
Accuracy 

(%) 
La 5.5 2.2 8.3 7.2 
Ce 9.0 3.4 8.5 4.8 
Pr 2.2 2.5 3.8 4.8 
Nd 5.0 2.6 5.0 5.1 
Sm 1.7 2.8 3.6 2.3 
Eu 0.7 3.1 4.3 6.5 
Gd 1.3 2.3 4.8 4.4 
Tb 0.2 3.7 4.1 4.0 
Dy 1.3 3.1 3.9 5.7 
Ho 0.2 3.1 5.7 5.0 
Er 0.4 3.7 3.2 7.8 
Tm 0.2 4.1 6.5 6.3 
Yb 1.1 3.4 6.1 6.7 
Lu 0.3 3.9 4.9 6.9 
Cd 9.8 12.1  3.1 
Pb 0.5 3.1 2.9 1.4 

Analytical performance of ICP/MS method for measurement of trace 
metals in stand alone pump (>1.0µm) hydrothermal plume particle 
samples 
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Appendix 2 Dissolved (<0.1µm and <0.4µm) Fe and Mn concentrations  
 

CTD # 
Depth 

(m) 

Dissolved 
(<0.4µm) 

Fe (nmol/l) 
Standard 
Deviation 

Dissolved 
(<0.4µm) 

Mn (nmol/l) 
Standard 
Deviation 

Dissolved 
(<0.1µm) 

Fe (nmol/l) 
Standard 
Deviation 

Dissolved 
(<0.1µm) 

Mn (nmol/l) 
Standard 
Deviation 

     
 Kairei     

CTD 4 2076 18.4 0.9 1.4 0.0     
 2175 31.2 3.0 10.0 1.3     
 2224 27.8 2.8 9.3 0.1     
 2273 36.3 5.4 9.3 0.5     
 2322 26.1 2.2 8.0 0.7     
 2383 28.4 1.7 8.4 0.5     
          

CTD 5 2076 7.5 0.2 2.7 0.2     
 2150 110 16.9 32.1 3.6     
 2175 332 31.2 123 4.5     
 2199 290 15.1 77.5 1.5     
 2224 368 12.2 107 6.5     
 2248 302 2.9 94.6 10.4     
 2273 254 13.6 94.3 4.8     
 2295 58.8 2.1 17.9 1.2     
 2322 54.6 5.1 18.0 2.6     
 2347 19.5 3.0 6.3 0.8     
 2373 21.3 5.3 6.1 0.3     
 2435 16.1 2.3 6.5 0.3     
          

Dissolved Fe and Mn concentrations for Niskin bottle (>0.4µm and >0.1µm) samples.  Results are mean of two or three 
analyses except where no standard deviation is shown, where the result is from one analysis.  >0.4µM results are also 
summarized in Chapter 3 Table 3.  >0.1µm results are used in Chapter 5 in discussion of size fractionation in the Edmond 
hydrothermal plume.   
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CTD # 
Depth 

(m) 

Dissolved 
(<0.4µm) 

Fe (nmol/l) 
Standard 
Deviation 

Dissolved 
(<0.4µm) 

Mn (nmol/l) 
Standard 
Deviation 

Dissolved 
(<0.1µm) 

Fe (nmol/l) 
Standard 
Deviation 

Dissolved 
(<0.1µm) 

Mn (nmol/l) 
Standard 
Deviation 

     
 Kairei     

CTD 6 2076 3.9 0.1 1.4 0.0     
 2174 7.1 0.4 2.5 0.6     
 2224 15.1 1.4 4.1 0.4     
 2273 18.6 6.4 4.6 0.0     
 2321 41.9 0.5 11.7 0.2     
 2357 37.5 3.7 8.1 0.0     
          

CTD 7 2175 41.8 0.2 80.7 7.4 199 8.8 85.4 4.1 
 2232 21.5 0.2 7.2 1.2 32.0 2.1 8.9 0.5 
 2268 75.4 8.7 24.1 0.4 71.6 3.8 20.8 0.9 
 2273 43.0 0.2 11.5 1.7 26.6 0.1 11.7 0.4 
 2320 26.2 6.0 6.7 1.1 20.9 1.6 6.8 1.2 
 2322 50.9 0.6 15.2 0.4 54.7 6.5 17.9 0.7 
 2346 11.9 0.6 5.0 0.2 13.5 3.3 5.6 0.9 
 2371 191 7.4 63.7 6.1 76.9 12.1 70.7 0.6 
   

CTD 10 1978 8.9 0.3 0.7 0.2     
 2175 23.1 2.1 9.5 0.6     
 2224 19.8 2.3 2.2 0.1     
 2273 28.9 6.0 7.0 1.0     
 2297 29.9 0.6 8.3 0.5     
 2322 26.3 2.1 7.8 0.6     
 2347 26.2  7.2      
 2371 13.1 2.8 4.1 0.0     
   

Dissolved Fe and Mn concentrations for Niskin bottle (>0.4µm and >0.1µm) samples (cont.) 
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CTD # 
Depth 

(m) 

Dissolved 
(<0.4µm) 

Fe (nmol/l) 
Standard 
Deviation 

Dissolved 
(<0.4µm) 

Mn (nmol/l) 
Standard 
Deviation 

Dissolved 
(<0.1µm) 

Fe (nmol/l) 
Standard 
Deviation 

Dissolved 
(<0.1µm) 

Mn (nmol/l) 
Standard 
Deviation 

     
 Kairei     

CTD 11 2076 5.0 0.4 1.9 0.3     
 2175 4.0 1.2 1.9 0.3     
 2224 3.6 0.1 1.6 0.1     
 2273 27.2 24.2 3.6 0.8     
 2371 21.1 0.8 6.3 0.8     
   

CTD 18 2076 6.3 1.0 1.2 0.1     
 2272 15.4 1.7 3.5 0.0     
 2322 18.4 4.4 5.2 1.4     
 2345 20.4 1.1 6.9 1.3     
 2371 9.6 4.7 2.6 0.1     
 2420 7.2 0.3 2.2 0.0     
          

CTD 20 1980 31.3 1.7 1.0 0.2     
 2273 12.2 3.7 2.2 0.0     
 2298 77.4 6.4 21.9 1.6     
 2307 51.3 9.0 12.9 0.3     
 2322 33.1 1.5 8.1 1.0     
 2347 20.6 1.0 7.9 0.0     
 2371 14.9 7.4 5.3 1.7     
 2298 300 5.4 104 13.7     
 2320 89.7 4.1 23.6 4.3     
 2372 52.8 4.4 13.8 0.9     
          

Dissolved Fe and Mn concentrations for Niskin bottle (>0.4µm and >0.1µm) samples (cont.) 
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CTD # 
Depth 

(m) 

Dissolved 
(<0.4µm) 

Fe (nmol/l) 
Standard 
Deviation 

Dissolved 
(<0.4µm) 

Mn (nmol/l) 
Standard 
Deviation 

Dissolved 
(<0.1µm) 

Fe (nmol/l) 
Standard 
Deviation 

Dissolved 
(<0.1µm) 

Mn (nmol/l) 
Standard 
Deviation 

     
 Kairei     

CTD 21 2026 26.4 1.2 1.2 0.0     
 2120 310 9.1 99.7 4.0     
 2199 316 3.0 76.6 3.7     
 2220 275 1.3 94.0 1.4     
 2273 291 5.7 84.3 2.4     
 2298 300 5.4 104 13.7     
 2320 89.7 4.1 23.6 4.3     
 2372 52.8 4.4 13.8 0.9     
          
          
     
 Edmond     

CTD 23 2469 8.5 2.3 2.9 0.1 9.5 0.1 3.2 0.3 
 2781 321 7.2 132 10.4 91.4 17.6 83.7 11.6 
 2819 350 29.0 55.4 11.1 210 17.9 54.3 5.0 
 2960 7.3 1.6 2.9 0.4 8.9 0.1 3.4 0.2 
 3008 131 8.4 56.4 5.6 35.7 5.0 46.9 3.6 
 3009       74.6 8.4 
 3019 130 2.2 63.5 4.5 28.1 15.8 51.8 0.4 
 3057 174 20.9 37.1 3.0 58.5 12.7 35.6 1.6 
 3107 161 1.2 50.6 3.1 35.6 6.2 39.9 2.3 
 3156 50.6 10.6 11.3 0.1 52.1 7.0 11.6 0.6 
          

Dissolved Fe and Mn concentrations for Niskin bottle (>0.4µm and >0.1µm) samples (cont.) 
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CTD # 
Depth 

(m) 

Dissolved 
(<0.4µm) 

Fe (nmol/l) 
Standard 
Deviation 

Dissolved 
(<0.4µm) 

Mn (nmol/l) 
Standard 
Deviation 

Dissolved 
(<0.1µm) 

Fe (nmol/l) 
Standard 
Deviation 

Dissolved 
(<0.1µm) 

Mn (nmol/l) 
Standard 
Deviation 

     

 Background     

CTD 16 1978 15.1 0.6 0.6 0.2     
 2076 16.0  2.7 0.4     
 2174 2.7 0.5 1.4 0.2     
 2273 14.5 1.5 1.7 0.2     
 2371 7.4 0.1 2.6 0.7     
 2469 3.5 0.8 2.6 0.0     
          

CTD 22 1978 18.0 5.6 1.4 0.4     
 2076 5.0 0.3 1.4 0.4     
 2175 13.9  1.7      
 2273 7.3 4.4 2.2 0.4     
 2371   2.5 0.9     
 2469 4.7  1.7      
          

Dissolved Fe and Mn concentrations for Niskin bottle (>0.4µm and >0.1µm) samples (cont.) 
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Appendix 3 Stand alone pump (>1.0µm) particulate data  
 
 

 
Volume of 
seawater Fe Al Mn Mg Ca P V As Cu Zn Y 

  filtered (litres) mg/l mg/l mg/l mg/l mg/l mg/l µg/l µg/l mg/l mg/l µg/l 
 Batch 1             
 Kairei             
 CTD 2 sap003 1006.2 17.8 0.29 1.62 29.8 37.3 1.42 38.9 5.48 1.17 0.31 4.05 
 CTD 7 sap001 988.9 42.4 0.42 0.50 77.6 69.9 3.53 80.9 66.3 3.97 0.96 6.00 
 CTD 17 sap001 741.7 6.07 0.31 0.45 42.3 41.8 0.57 -2.5 16.0 0.13 0.21 2.59 
 CTD 19 sap001 768.5 16.3 0.51 0.50 32.8 45.6 1.48 32.4 23.0 0.95 0.56 3.80 
 Edmond             
 CTD 23 sap002 600.4 80.5 0.38 0.25 23.8 38.0 6.21 199 134 7.10 5.32 6.17 
 SAP01 s/n001 728 9.61 0.24 1.97 31.8 37.2 0.87 25.6 -18.4 0.09 0.09 3.24 
 SAP01 s/n003 740.3 14.0 0.58 13.9 47.0 51.2 1.30 36.7 45.7 0.11 0.18 5.22 
 SAP02 cosap02 641.1 25.8 0.47 0.65 31.6 44.3 2.00 60.2 69.2 1.90 0.94 4.69 
 SAP02 cosap04 530.1 13.9 0.50 0.49 17.8 35.1 1.08 38.8 14.1 0.15 0.26 3.83 
 Blanks             
 Dip blank  0.52 0.07 0.41 2.62 0.98 7.47 -0.45 0.18 0.03 0.01 0.02 
 Blank γ counted  0.20 0.04 0.00 0.01 0.12 4.87 -0.53 0.52 0.00 0.08 0.00 
 Procedural blank  0.01 0.03 0.00 0.00 0.05 0.88 -0.50 2.21 0.01 0.02 0.00 
              

 Particulate concentrations for Stand Alone Pump (>1.0µm) samples: Results of analyses of samples are shown in mg/l  
or µg/l for comparison with blank measurements. Final results in nmol/l or pmol/l after taking the volume of seawater 
filtered into account are shown in Chapter 4, Table 11.  Samples were processed in two separate batches, each with a set of 
blanks.  Blank correction was done using the filter blanks and procedural blanks, dip blanks were ignored as it is possible 
to filter a significant quantity of water if the SAPs are pulled through the water too quickly and the high concentrations for 
the dip blanks suggest this may have been the case 
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Volume of 
seawater Fe Al Mn Mg Ca P V As Cu Zn Y 

  filtered (litres) mg/l mg/l mg/l mg/l mg/l mg/l µg/l µg/l mg/l mg/l µg/l 
 Batch 2             
 Kairei             
 CTD 7 sap003 981.5 28.2 0.28 1.64 29.3 40.0 2.04 70.1 52.0 2.76 0.58 4.43 
 CTD 11 sap003 619.4 11.5 0.26 1.62 45.6 39.5 0.95 36.7 28.0 0.24 0.26 3.21 
 CTD 18 sap003 802.3 16.7 0.33 0.54 45.5 49.5 1.47 51.3 38.5 0.70 0.14 4.28 
 CTD 20 sap003 634.3 17.4 0.24 0.39 23.8 35.2 1.43 46.8 42.0 1.42 0.41 2.99 
 CTD 21 sap001 753.1 116 0.24 0.36 38.9 41.3 7.70 210 174 14.0 4.57 6.53 
 Edmond             
 CTD 01 sap003 2447.0 86.0 0.54 6.03 39.6 41.3 7.47 249 196 2.21 1.60 10.3 
 CTD 23 sap003 605.8 75.4 0.46 1.06 74.9 51.2 5.68 156 130 6.12 4.07 6.39 
 SAP01 s/n002 2077.2 27.7 0.75 1.24 35.3 88.1 2.27 90.9 65.3 0.19 0.10 9.39 
 SAP01 cosap02 537.3 8.58 0.38 1.32 28.4 30.6 0.68 30.2 23.4 0.12 0.08 2.66 
 SAP01 cosap04 554.6 8.86 0.50 0.60 150 73.1 1.26 31.2 23.7 0.19 0.31 2.56 
 SAP02 s/n001 654.2 18.7 0.37 2.66 35.5 47.2 1.57 65.4 44.5 0.15 0.12 5.03 
 SAP02 s/n002 2050.2 43.5 1.01 1.56 30.0 107 3.60 137 99.7 0.29 0.17 12.4 
 SAP02 s/n003 671.5 47.0 0.47 2.80 55.1 48.5 4.11 138 110 2.00 0.91 6.46 
 Blanks             
 Dip blank  0.65 0.06 1.06 37.5 12.9 0.06 3.52 6.84 0.06 0.12 0.22 
 Filter out of box  0.09 0.02 0.00 0.06 0.36 0.02 0.99 6.95 0.01 0.06 0.00 
 Procedural blank  0.01 0.00 0.00 0.01 0.09 0.01 0.25 1.44 0.00 0.02 -0.02 
              

 Particulate concentrations for Stand Alone Pump samples (cont.) 
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Appendix 4 Stand alone pump (>1.0µm) REE particulate data  
 Cd Pb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 
 ng/g ng/g ng/g ng/g ng/g ng/g ng/g ng/g ng/g ng/g ng/g ng/g ng/g ng/g ng/g ng/g 
Kairei                 
CTD 2 sap003 0.31 15.6 0.97 1.66 0.23 0.97 0.24 0.07 0.26 0.04 0.24 0.05 0.14 0.02 0.12 0.02 
CTD 7 sap001 23.3 28.3 1.63 2.22 0.38 1.79 0.41 0.11 0.48 0.08 0.51 0.11 0.30 0.04 0.24 0.04 
CTD 11 sap003 0.17                
CTD 17 sap001 0.12 11.9 0.76 1.90 0.19 0.83 0.17 0.05 0.19 0.03 0.19 0.04 0.10 0.02 0.08 0.01 
CTD 18 sap003 0.34 15.8 1.55 2.76 0.36 1.57 0.37 0.09 0.36 0.08 0.39 0.08 0.21 0.03 0.18 0.06 
CTD 20 sap003 0.58 7.51 0.81 1.48 0.19 0.85 0.21 0.05 0.21 0.04 0.21 0.05 0.12 0.02 0.11 0.02 
CTD 21 sap002 226 65.6 1.94 2.19 0.47 1.75 0.49 0.15 0.51 0.09 0.55 0.09 0.37 0.04 0.27 0.04 
Edmond                 
CTD 1 sap003 20.1 128 2.64 1.57 0.62 2.71 0.69 0.21 0.78 0.13 0.82 0.16 0.46 0.06 0.37 0.06 
CTD 23 sap003 154 99.9 1.79 1.76 0.41 1.82 0.44 0.13 0.48 0.08 0.50 0.10 0.30 0.04 0.25 0.04 
SAP01 s/n001 0.15 8.57 0.97 1.44 0.23 1.02 0.24 0.06 0.25 0.04 0.25 0.05 0.15 0.02 0.13 0.02 
SAP01 cosap02 0.10 9.56 0.78 1.17 0.20 0.84 0.21 0.05 0.22 0.04 0.22 0.05 0.13 0.02 0.11 0.02 
SAP01 cosap04 0.24 6.07 0.90 1.28 0.21 0.92 0.22 0.05 0.22 0.04 0.23 0.05 0.14 0.02 0.12 0.02 
SAP02 s/n002 0.22 17.3 4.03 6.07 0.99 4.29 1.04 0.24 1.02 0.17 1.05 0.23 0.62 0.08 0.51 0.08 
SAP02 s/n003 25.9 25.2 1.86 1.88 0.44 1.95 0.50 0.13 0.51 0.09 0.55 0.11 0.31 0.04 0.28 0.04 
Blanks                 
Dip blank 0.07 1.38 0.03 0.033 0.004 0.026 0.009 0.005 0.012 0.002 0.011 0.002 0.007 0.001 0.005 0.001 
Filter blank 0.01 1.34 0.01 0.032 0.004 0.012 0.002 0.001 0.001 0.000 0.002 0.000 0.002 0.000 0.001 0.000 
Procedural blank 0.00 0.05 0.00 0.001 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
                 
Cd, Pb and Rare Earth Element particulate concentrations as measured for Stand Alone Pump Samples (i.e. prior to 
processing to take account of volumes of seawater filtered) so that blank concentrations can be compared.  Final results are 
shown in Chapter 4, Table 12. 
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Appendix 5 Ce and Eu anomalies in hydrothermal plume particles 
 

 
Particulate 
[Fe] nmol/l Ce anomaly Eu anomaly Ersh/Ndsh 

TAG, Atlantic1     
TAG:14 56 0.45 1.20 1.33 
TAG:18 87 0.34 1.27 1.37 
TAG:19 67 0.37 1.26 1.34 
TAG:22 192 0.26 1.49 1.47 
TAG:32T 212 0.28 1.35 1.32 
TAG:32B 49 0.44 1.30 1.17 
TAG:35T 133 0.26 1.33 1.40 
TAG:35B 45 0.48 1.20 1.30 
TAG:39T 150 0.25 1.32 1.47 
TAG:39B 38 0.51 1.27 1.26 
TAG:43T 124 0.30 1.44 1.39 
TAG:43B 17 0.74 1.26 1.17 
TAG:53B 167 0.30 1.51 1.43 

Rainbow, Atlantic2     
SAP01_1 11.0 0.73 1.35 0.93 
SAP01_3 10.7 0.73 1.40 0.91 
SAP03_1 9.3 0.80 1.49 0.86 
SAP03_3 8.1 0.80 1.38 0.93 
SAP05_1 279 0.28 1.97 1.34 
SAP05_3 421 0.27 2.01 1.37 
SAP06_1 26.4 0.52 1.55 1.24 
SAP06_3 35.3 0.50 1.47 1.01 
SAP07_1 18.0 0.70 1.49 0.99 
SAP07_3 8.3 0.78 1.36 0.92 
SAP08_1 22.4 0.60 1.34 1.25 
SAP08_3 20.9 0.61 1.45 1.04 
SAP10_3 7.9 0.84 1.27 1.20 

9°45’N EPR Pacific3     
2B 24.8 0.38 1.16 1.91 
2T 14.0 0.42 1.16 1.82 
4B 22.2 0.34 1.17 1.95 
4T 25.6 0.35 1.17 1.94 
5B 11.3 0.48 1.15 1.72 
5T 10.3 0.48 1.16 1.74 
6B 13.2 0.47 1.17 1.73 
6T 10.8 0.48 1.16 1.74 
7B 10.8 0.46 1.16 1.73 
7T 12.2 0.49 1.18 1.75 
10B 13.6 0.45 1.16 1.77 
10T 11.5 0.48 1.16 1.75 
11B 19.0 0.42 1.17 1.80 
11T 18.0 0.43 1.16 1.80 

Ce and Eu anomalies and HREE/LREE enrichment ratios 
1 Data from German et al. 1990 
2 Data from Edmonds and German, 2004 
3 Data from Sherrell et al. 1999 
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Appendix 6 Niskin bottle (>0.4µm) particulate data  
  Fe Al Mn Mg Ca P Cu Zn 
  mg/l µg/l µg/l mg/l mg/l µg/l µg/l µg/l 
 15 June batch         
 CTD7 2175m 0.1µm 0.71 3.05 0.30 0.31 0.15 67.4 24.8 36.6 
 CTD7 2232m 0.1µm 0.06 3.19 0.47 1.12 0.35 7.19 2.67 15.5 
 CTD7 2268m 0.1µm 0.23 5.56 1.19 0.66 0.32 24.4 27.0 34.0 
 CTD7 2273m 0.1µm 0.11 6.57 0.60 6.45 2.02 11.7 5.66 31.4 
 CTD7 2320m 0.1µm 0.08 6.95 0.83 0.67 0.28 6.62 3.67 94.5 
 CTD7 2322m 0.1µm 0.10 4.00 0.39 7.76 1.03 9.38 39.9 26.2 
 CTD7 2346m 0.1µm 0.06 5.08 0.83 0.72 0.27 9.22 2.98 17.3 
 CTD7 2371m 0.1µm 0.47 2.89 0.63 2.79 0.85 48.4 13.1 28.0 
 CTD7 2175m 0.4µm 5.78 12.0 2.36 3.27 1.32 523 226 72.8 
 CTD7 2232m 0.4µm 0.23 8.95 3.71 2.29 1.01 27.0 8.42 36.8 
 CTD7 2273m 0.4µm 0.12 6.64 1.58 1.02 0.41 13.9 7.29 22.6 
 CTD21 2120m 0.4µm 1.23 5.11 0.82 0.74 0.40 105 95.2 49.9 
 CTD21 2273m 0.4µm 0.66 4.83 0.78 3.29 1.17 57.4 59.6 52.7 
 CTD21 2298m 0.4µm 1.61 9.89 0.92 1.71 0.70 142 104 46.0 
 CTD21 2320m 0.4µm 0.30 5.92 1.18 1.41 0.61 30.3 22.1 34.8 
 CTD21 2372m 0.4µm 0.12 5.80 1.14 1.82 0.72 16.5 9.62 37.7 
 Filter out of box blank 0.01 4.71 0.11 0.04 0.24 4.24 0.74 32.9 
 Filter out of box blank 0.01 3.43 0.08 0.04 0.21 0.20 0.65 14.7 
 Procedural blank 0.00 1.51 0.02 0.00 0.01 2.19 -0.09 4.07 
 Procedural blank 0.00 0.94 0.01 0.00 0.01 2.75 2.92 6.12 
 16 July batch         
 CTD7 2268m 0.4µm 0.19 5.55 1.46 1.77 0.64 19.6 25.5 26.1 
 CTD7 2320m 0.4µm 0.08 5.70 1.21 1.76 0.34 8.11 4.26 34.2 
 CTD7 2346m 0.4µm 0.06 4.92 1.03 2.06 0.30 8.34 2.61 13.8 
 Particulate concentrations for Niskin bottle (>0.4µm) samples:  Results of analyses of samples are shown in mg/l or µg/l 

for comparison with blanks measurements. Final results in nmol/l or pmol/l are in Chapter 5, Table 16.  Samples were 
processed in three batches.  Blank corrections were done using the procedural and acid washed filter blanks. 
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  Fe Al Mn Mg Ca P Cu Zn 
  mg/l µg/l µg/l mg/l mg/l µg/l µg/l µg/l 
 16 July batch (cont)         
 CTD7 2471m 0.4µm 0.95 9.46 3.19 1.56 0.76 82.8 40.6 60.2 
 CTD21 2026m 0.4µm 0.10 9.25 3.54 0.90 0.35 15.7 4.30 79.9 
 CTD21 2199m 0.4µm 0.55 4.16 0.33 2.87 0.93 42.3 51.6 42.5 
 CTD21 2220m 0.4µm 0.54 3.77 0.35 0.89 0.42 50.5 32.8 50.2 
 CTD23 2469m 0.1µm 0.04 3.57 0.86 1.55 0.52 6.69 1.33 15.6 
 CTD23 2781m 0.1µm 1.65 5.18 0.71 2.31 0.90 170 22.3 64.8 
 CTD23 2819m 0.1µm 0.85 4.85 0.63 1.67 0.64 86.0 16.7 30.7 
 CTD23 2960m 0.1µm 0.05 3.04 0.86 1.78 0.60 7.32 3.04 12.6 
 CTD23 3008m 0.1µm 1.05 3.99 0.75 2.45 0.90 107 14.8 25.2 
 CTD23 3019m 0.1µm 0.98 2.88 0.56 0.39 0.20 97.0 9.29 23.4 
  

CTD23 3057m 0.1µm 0.49 4.58 0.77 2.56 0.89 50.4 7.19 17.4 
 CTD23 3107m 0.1µm 0.73 7.00 0.77 0.46 0.21 71.3 8.04 21.5 
 CTD23 3156m 0.1µm 0.10 8.92 1.19 2.37 0.85 14.9 4.74 20.9 
 CTD23 2469m 0.4µm 0.07 5.38 1.80 1.01 0.24 13.0 0.80 23.1 
 CTD23 2781m 0.4µm 2.46 3.58 1.05 4.23 1.41 246 37.6 40.1 
 CTD23 2819m 0.4µm 0.58 7.50 1.14 2.02 0.74 54.4 25.6 58.4 
 CTD23 2960m 0.4µm 0.06 5.66 1.61 1.96 0.41 10.6 0.77 43.6 
 CTD23 3008m 0.4µm 0.99 5.98 0.87 0.73 0.35 98.0 11.8 19.0 
 CTD23 3019m 0.4µm 1.48 7.44 1.76 0.97 0.54 138 23.6 44.9 
 CTD23 3057m 0.4µm 0.32 7.82 1.71 0.93 0.46 36.0 8.49 29.7 
 CTD23 3107m 0.4µm 0.65 7.24 1.51 1.08 0.50 67.3 10.0 32.0 
 Acid washed filter blank 0.01 3.17 0.08 0.00 0.13 4.02 0.27 98.2 
 Acid washed filter blank 0.01 1.60 0.07 0.00 0.04 0.52 0.22 32.7 
 Procedural blank 0.00 1.08 0.03 0.02 0.88 12.1 1.20 12.2 
          
 Particulate concentrations for Niskin bottle (>0.4µm) samples (cont.) 
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  Fe Al Mn Mg Ca P Cu Zn 
  mg/l µg/l µg/l mg/l mg/l µg/l µg/l µg/l 
 5th Aug Batch         
 CTD5 2150m 0.4µm 0.72 7.03 3.12 2.81 1.20 72.3 186 63.8 
 CTD5 2347m 0.4µm 0.41 11.9 7.47 1.11 0.68 39.8 10.9 44.7 
 CTD5 2295m 0.4µm 0.71 8.56 3.33 5.18 1.73 66.3 83.0 30.3 
 CTD5 2224m 0.4µm 8.51 13.4 3.97 18.4 5.19 803 462 189 
 CTD5 2175m 0.4µm 1.02 4.41 0.87 3.91 1.35 90.9 93.9 44.9 
 CTD5 2076m 0.4µm 0.18 12.1 5.00 3.47 0.74 25.0 3.11 41.4 
 CTD5 2435m 0.4µm 0.14 5.19 2.64 0.40 0.18 19.1 4.01 10.6 
 CTD5 2373m 0.4µm 0.17 7.69 2.82 6.46 2.27 23.8 5.46 25.0 
 CTD5 2199m 0.4µm 10.9 22.6 8.52 1.48 1.37 1004 605 228 
 CTD5 2273m 0.4µm 7.68 13.8 5.06 2.08 1.53 721 365 135 
 Procedural blank 0.00 0.17 0.01 0.00 0.00 0.69 -0.07 2.35 
 Procedural blank 0.00 0.29 0.00 0.00 0.00 0.09 0.04 4.49 
          
 Particulate concentrations for Niskin bottle (>0.4µm) samples (cont.) 
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