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Glioblastoma, an area of urgent unmet clinical need, is the most common intrinsic brain 

cancer and frequently contains extrachromosomal DNA (ecDNA). EcDNA is increasingly 

recognized as a driver of cancer evolution and a mediator of therapy resistance1,2. Recent 

studies have implicated ecDNA as a prognostic marker across many cancer types, and a driver 

of glioblastoma, with emerging clinical trials aiming to leverage knowledge of ecDNA status or 

therapeutically target ecDNA directly3. 

 

Current methods to detect copy number amplifications for oncogenes in clinical practice do 

not distinguish between intrachromosomal and extrachromosomal DNA. Although ecDNA is 

known to carry oncogenic drivers of glioblastomas (many including EGFR are direct targets of 

drugs in clinical trials) and cause drug resistance by increasing intratumoural heterogeneity, 

identification of ecDNA is seldom performed for stratification of patients into trials4 due to 

lack of clinically accessible detection tools.  

 

EcDNA has a unique and highly variable circular structure, reaching megabase-pair size. 

Targeted inhibition of intrachromosomal EGFR amplification is more effective than that of 

EGFR ecDNA in preclinical models, highlighting the importance of understanding the nature 

of oncogene amplifications5. The lack of optimal molecular stratification has been identified 
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as a reason for clinical trial failure6, prompting the need for improved methods of ecDNA 

detection at clinical scale. One barrier to achieving this is the frequent lack of fresh frozen 

tumor material as a source of DNA for whole genome sequencing (WGS) which, in addition to 

the time and costs associated with WGS, limits widespread adoption of WGS for ecDNA 

identification and patient stratification in the clinic and hampers research efforts by precluding 

use of vast archival tissue banks. Moreover, DNA from formalin-fixed, paraffin-embedded 

(FFPE) tissue is generally of lower quality than from frozen tissue, given the detrimental effects 

of formalin fixation on DNA quality and quantity. The current gold standard for detecting focal 

copy number amplification is DNA fluorescence in-situ hybridization (FISH); however, routine 

assessment of FISH analyses of clinical tumour samples, in which cells are primarily in 

interphase, cannot always distinguish between intrachromosomal amplifications or 

amplifications on ecDNA, or determine genomic contents of focal amplifications in detail.  

 

Here, we demonstrate that low coverage whole genome sequencing enables characterisation 

of the copy number, content and structure of oncogenic ecDNA from DNA extracted from FFPE 

samples routinely collected in clinical practice. We investigated IDH1-wildtype glioblastoma 

FFPE tissues obtained from surgical resections in 5 newly-diagnosed patients, Figure 1A. The 

EGFR amplification is diagnostic of IDH1-wildtype glioblastoma, yet its ecDNA status is not yet 

determined in practice. We performed DNA interphase FISH with probes for EGFR and 

centromere of chromosome 7, and confirmed high-level EGFR amplification, with a pattern of 

EGFR foci consistent with ecDNA in three glioblastoma patients’ samples, Figure 1B. To 

elucidate the structures of these amplifications, we performed whole-genome sequencing 

using 15X coverage, 150 base-pair length, paired end reads on an Illumina platform. A single 

FFPE 20m section was used for DNA extraction using a commercially available kit (yielding > 
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400ng of DNA). We analysed the WGS data and performed copy number calling with the tool 

CNVkit to identify seed regions of focal amplifications7. We then applied the 

AmpliconArchitect8 method to these seed regions for identifying ecDNA and other complex 

focal amplifications. This confirmed the presence of ecDNA, the size of the ecDNA amplicons 

(0.49Mb, 1.04Mb and 1.92Mb), and identified the presence of oncogenic EGFR on circular 

ecDNA at high copy number (CN) in these three glioblastomas (median CN = 185.6, 35.0, 

131.0), Figure 1C. In glioblastoma from patient 2, high-copy ecDNA containing the EGFRvIII 

variant (a clinically relevant activating mutation) was detected by identifying structural 

variants between EGFR introns 1 and 7 in the circular amplicon; notably, this glioblastoma 

harboured a mixed population of EGFR wt and EGFRvIII ecDNAs (total CN > 200), suggesting 

multiple EGFR driver events, Figure 1D. 

 

Figure 1. Oncogenic extrachromosomal DNA identification from routinely collected clinical 

glioblastoma samples. A. Outline of the workflow showing WGS analysis from FFPE tissues. 
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B. DNA FISH from a glioblastoma showing high-level focal amplification of EGFR, consistent 

with ecDNA. C. Left: The circular structure and gene contents of the ecDNA from the same 

glioblastoma in B. Right: The structure of this ecDNA from sample shown in panel B, 

identifying EGFR within the ecDNA and showing the breakpoints on chromosome 7. Left y-axis 

represents sequencing coverage, and right y-axis shows copy number, CN. D. Circular and 

breakpoint structure of ecDNA from glioblastoma of patient 2, showing copy number loss at 

exons 2-7 of EGFR, consistent with subclonal EGFRvIII ecDNAs; right-most panel shows the 

EGFR structural variants within this ecDNA. 

 

This method can identify whether the amplification is derived from an intrachromosomal or 

extrachromosomal mechanism. For example, glioblastoma WGS data from patient 4 identified 

an intrachromosomal non-ecDNA amplification of PDGFRA and KIT oncogenes on 

chromosome 4 (CN = 3.4). WGS analysis of glioblastoma from patient 5 revealed an ecDNA-

amplification containing the oncogene MET (CN = 8.4). Given ongoing clinical trials with MET 

inhibitors9 such as tepotinib, this method should prove useful for stratifying patients based on 

the presence and structure of MET-amplifications. 

 

We have demonstrated the feasibility of identifying ecDNA, a driver of treatment resistance, 

using WGS from FFPE tumour specimens collected in routine clinical practice. This approach 

may be particularly useful in cases where small biopsies are performed and frozen tissue is 

lacking. The low-depth of WGS also ensures reduced costs and can be performed with 

commercial sequencing services in under two weeks. Recent efforts have demonstrated FFPE-

DNA can be used for mutational signature analysis10. We anticipate that copy number 

alteration, structural variant and ecDNA characterization with WGS of DNA from clinical 
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samples can be readily deployed to other cancer types, which is important given that 

oncogenic ecDNA is present across many solid tumours. This may open avenues for use of 

large archival tissue banks for cancer research, as well as for rapid molecular profiling of 

patients’ tumours for optimal trial stratification based on copy number amplification with and 

without ecDNA. 
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