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Abstract 

Growth and developments in computing power, machine-learning algorithms and satellite imagery 

spatiotemporal resolution have led to rapid developments in automated feature-extraction. These 

methods have been applied to create geospatial datasets of features such as roads, trees and 

building footprints, at a range of spatial scales, with national and multi-country datasets now available 

as open data from multiple sources. Building footprint data is particularly useful in a range of 

applications including mapping population distributions, planning resource distribution campaigns and 

in humanitarian response. In settings with well-developed geospatial data systems, such datasets 

may complement existing authoritative sources, but in data-scarce settings, they may be the only 

source of data. However, knowledge on the degree to which building footprint data products are 

comparable and can be used interchangeably, and the impact of selecting a particular dataset on 

subsequent analyses remains limited. For all countries in Africa, we review the available multi-country 

building footprint data products and analyse their similarities and differences in terms of building area 

and count metrics. We explore the variation between building footprint data products across a range 

of spatial scales, including sub-national administrative units and different settlement types. Our results 

show that the available building footprint data products are not interchangeable. There are clear 

differences in counts and total area of building footprints between the assessed data products, as well 

as considerable spatial heterogeneity in building footprint coverage and completeness. 

 

Keywords: 

Building footprints, urban form, built environment, spatial, settlement 

 

1. Introduction 

Data on the locations and extents of buildings and settlements are essential for many applications, 

from monitoring urban development (Domingo et al., 2023) and contingency planning (Nirandjan et 

al., 2022), to humanitarian response efforts (Herfort et al., 2021, Ullah et al., 2023) and in conducting 

national population and housing censuses (Darin et al., 2022, Sanchez-Cespedes et al., 2023). Over 

the last decade, with the growth of new sources of data, there has been a shift away from spatially 

detailed data on settlement extents and building locations being limited to countries with well-

developed geospatial systems. In particular, the development of global, remotely-sensed settlement 

datasets at high spatial resolution (Esch et al., 2017, Corbane et al., 2019) and the growth of 
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volunteered geographic information (VGI) (Goodchild, 2007) have expanded the availability of data on 

settlements and the built environment. Most recently, highly-detailed data on buildings has become 

available with the publication of multi-country datasets of building footprints, providing data on the 

location, size and shape of individual buildings in both rural and urban settings.  

 

High-resolution maps of settlements, down to the level of individual buildings, were originally created 

using manual cartography from information collected through surveying. The development of remote 

sensing in the 20th Century, provided an additional perspective for mapping settlements. Aerial 

photographs provided a bird’s-eye view and an opportunity for manual identification of features such 

as buildings. Satellite remote sensing enabled regular data collection over larger areas, at spatial 

resolutions suitable for classification of land cover types (e.g. urban or water) (Barnsley and Barr, 

1996, Fugate et al., 2010). Over the past decades, the number of remote-sensing satellites has grown 

rapidly, and the spatial and temporal resolution of the imagery captured has increased (Donnay et al., 

2000, Jensen and Cowen, 1999). Alongside this there has been a massive growth in computing 

power, which together with the development of machine and deep learning algorithms have resulted 

in increasingly detailed datasets on settlements (Esch et al., 2017, Tiecke et al., 2017), providing data 

on individual buildings, with coverage spanning multiple countries and even continents (Sirko et al., 

2021). 

 

Building footprint datasets consist of 2-dimensional outlines of buildings, created by manual 

digitisation or through automated feature extraction. The 2D geometry of a building may also be 

accompanied by attributes, such as the building type, age or height/number of storeys. Outlines of 

individual buildings have long been included in large scale maps of urban areas, but the growth of GIS 

and spatial data, spawned the first digital building footprint datasets. Increasingly, the push for open 

data has meant that more building footprint datasets are becoming publicly available. In terms of the 

current data landscape of building footprint dataset providers, there are three main sources for such 

data: (1) authoritative datasets from government agencies, (2) data from VGI-initiatives and (3) 

datasets produced using automatic feature extraction methods by commercial companies.   

 

Authoritative building footprint datasets, developed by government authorities, have traditionally been 

the sole source of spatial data on buildings. The geographic coverage of these datasets spans from 

city-level to national, with mapping agencies as the main producer and maintainer of data for 

cadastral and topographic mapping purposes (Biljecki et al, 2021). In the mid-2010s, authoritative 

building footprint datasets were generally only openly available with complete coverage for individual 

cities in high-income countries, including cities in Canada, New Zealand, Australia and the USA (Rae, 

2015). In March 2015, Ordnance Survey (Britain’s national mapping agency) released their OS 
OpenMap Local product, which included building footprints for the whole of Great Britain 

(https://wiki.openstreetmap.org/wiki/Ordnance_Survey_OpenData). The number of authoritative 

building footprint datasets that are openly available has since grown considerably, particularly in 

Europe and North America, however no national datasets are openly available for African countries 

(Biljecki et al., 2021).  

 

In contrast, VGI-initiatives, such as OpenStreetMap (OSM), can provide highly detailed spatial data on 

buildings and other features, that are independent of national mapping agencies or other authoritative 

sources. Features, such as buildings, are primarily added to OSM through manual digitisation from 

high resolution satellite imagery, with contributions from a global community of thousands of mappers 

and organisations (Anderson et al., 2019). OSM has developed rapidly over the past decade and now 

contains data on billions of features globally. In particular, the addition of buildings in OSM started 

increasing notably in 2015 (Herfort et al., 2021) with over half a billion buildings now in OSM (Biljecki 

et al., 2021). Over the last decade, following the establishment of the Humanitarian OpenStreetMap 

Team and the Missing Maps Project, there has been a particular growth in mapping to support 

https://wiki.openstreetmap.org/wiki/Ordnance_Survey_OpenData
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humanitarian activities, initially for disaster response and increasingly in terms of preparedness 

(Herfort et al., 2021).  

 

A relatively new and rapidly developing source of building footprints are those published by 

commercial companies, such as Microsoft, Google and Ecopia. These are predominantly created 

using feature extraction algorithms with large quantities of very high-resolution (VHR) satellite 

imagery. Microsoft, with Bing Maps, was the first, to release building footprint datasets at scale, 

initially for the USA (Microsoft, 2018), followed by national datasets for Canada (Microsoft, 2019a), 

Uganda and Tanzania (Microsoft, 2019b). Since then, Google, Ecopia and Microsoft have all released 

versions of building footprint data products with expanded geographic coverage, to include data for 

most countries in Africa. The specifics of these are described in more detail in Section 2.  

 

The growth in building footprint data has been accompanied by an expansion in their application to an 

increasingly diverse range of uses and contexts. In urban settings, building footprints are key for 

understanding building infrastructure and have been widely used, with increasing importance in the 

context of urban sustainability (Biljecki et al., 2021). The geometry of building footprints provides 

insights on urban morphology (Wang et al., 2022, Arribas-Bel and Fleischmann, 2022, Biljecki and 

Chow, 2022), enabling classification of settlement types (Jochem et al., 2021, Fleischmann and 

Arribas-Bel, 2022, Wang et al., 2023), characterisation of urban expansion, densification and changes 

in urban form and use (Domingo et al., 2023, Cao et al., 2023). With the addition of attributes related 

to 3-dimensional building form, building footprints can be used to develop digital twins (Park and 

Guldmann, 2019, Dukai et al., 2019). The development of new building footprint data products has 

increased the sources of data available for urban areas, but also expanded data availability for rural 

areas and other data-sparse settings, such as informal settlements (Wang et al., 2022). These 

developments have led to data on building footprints being increasingly used in contexts relevant to 

humanitarian response, including for population estimation (Checchi et al., 2013, Boo et al., 2022, 

Wardrop et al., 2018, Leasure et al., 2020), post-disaster damage assessment (Robinson et al., 

2023), disaster preparedness (Huang and Wang, 2020, Lazarus et al., 2018), survey sample design 

(Boo et al., 2020) and identification of vulnerable populations (Buchanan et al., 2020, Gibson et al., 

2022, Chamberlain et al., 2022).  

 

With a growing number of building footprint datasets becoming available globally, data users need to 

understand the extent to which seemingly similar datasets are interchangeable and their potential 

advantages, disadvantages and limitations. In this paper, we address this knowledge gap by 

reviewing available building footprint datasets. We focus on countries in Africa, where previously 

building footprint data has been very limited, with no national datasets from authoritative sources 

having been openly released (Biljecki et al., 2021). We review the available building footprint datasets 

in terms of their spatial and temporal coverage, the methods used in producing the datasets, the input 

data sources, as well as the licensing terms, file formats and data accessibility. We then compare and 

contrast simple metrics calculated for each dataset at a range of spatial scales and across the rural-

urban continuum.  
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2. Data 

Building footprint datasets that covered the majority of countries in Africa at the time of writing were 

included in this review. These datasets came from Google, Microsoft, OpenStreetMap and Ecopia 

(Table 1). Each dataset provides polygons representing building locations and extents which have 

been digitised or automatically extracted from satellite imagery. Building footprints from Google 

(https://sites.research.google/open-buildings), Microsoft (https://www.microsoft.com/en-

us/maps/building-footprints) and Ecopia (https://www.ecopiatech.com/global-feature-extraction) have 

all been produced using automated feature extraction algorithms with high-resolution satellite 

imagery. In contrast, OSM building footprints have been primarily created through manual 

interpretation and digitisation from satellite imagery by OSM contributors. In some cases, manual 

interpretation may also have been supported by automated feature-detection algorithms, as is 

possible using RapiD (Facebook, 2019). Given the lack of openly available authoritative datasets with 

national coverage for countries in Africa (Biljecki et al., 2021), no such datasets could provide a 

benchmark or be included in this review. 

 

Since Microsoft published their initial building footprint dataset for the USA in 2018, there has been 

significant expansion in terms of the geographic coverage of their building footprints. After publishing 

open, national datasets for Canada, Uganda and Tanzania in 2019, datasets for Australia followed in 

2020, with Kenya and Nigeria published in 2021 (Microsoft, 2021a). Also in 2021, Microsoft published 

building footprint data for South America (Microsoft, 2021b), but with coverage limited to major cities. 

In 2022, Microsoft further scaled up their building footprint data, making available an additional 856 

million building footprints for countries worldwide (Microsoft, 2022), although the coverage was not 

global.  

 

After developing national building footprint datasets for Australia and the USA, Ecopia partnered with 

Maxar (formerly Digital Globe) to produce their first multi-country data product under the Digitize 

Africa project, which was specifically intended for humanitarian purposes. This consisted of building 

footprints for 51 countries in sub-Saharan Africa (Price and Hallas, 2019), published first in 2019. 

Google’s Open Buildings data product was also initially focussed on Africa, with development led by 

the AI Research Center in Accra, Ghana (Sirko et al., 2021). At the time of writing, two versions of 

Google’s Open Buildings dataset have been released with v1 published in 2021 and v2 in 2022. The 

Open Buildings v2 data product expanded the coverage to include data for countries in south/south-

east Asia also.  



5 

 

 Data product 
Geographic coverage /  
Release date 

Method / Source satellite 
imagery 

Data format 
Availability / 
licensing 

Notes 
E

c
o

p
ia

 DigitizeAfrica 
building 
footprints 
(year 1) 

- 51 countries/ territories/ 
dependencies in sub-Saharan 
Africa 

- Release date: 2019  

- Automated feature extraction 
from satellite imagery 

- Maxar 30-50cm imagery 
(2005 - 2020; imagery date is 
provided for each b. footprint) 

- Polygons (not 
rectilinear), no overlaps. 
Shapefile format. 
- Local UTM zone 
projections  

Custom, 
commercial license 
which restricts 
usage 
predominantly to 
humanitarian 
applications 

- A later release (termed 
"year 2") also exists, 
which has updated 
imagery for some 
locations (See further 
details in section 2.4 
‘Updates and versioning’) 

G
o

o
g

le
 

 
Open 
Buildings v2 

- Africa and south/south-east Asia 
- Release date: 2022  

- Automated feature extraction 
from satellite imagery 

- Google Maps imagery, 50cm 
resolution (years of imagery 
not stated) 

- Polygons (mostly 
rectilinear) with geometry 
as WKT, stored in CSV. 
- Overlap between 
polygons possible 
- EPSG 4326 (WGS84)  

CC BY-4.0 license  
ODbL v1.0 license 

- Includes data at building 
level on precision 
confidence score. 
- Has greater coverage 
and more recent imagery 
than Open Buildings v1 

M
ic

ro
s
o

ft
 

Kenya & 
Nigeria 
building 
footprints 

- Kenya and Nigeria only 
- Release date: 2021  

- Automated feature extraction 
from satellite imagery 

- Maxar imagery (2020-2021) 

- Polygons (mostly 
rectilinear), geoJSON. 
- Overlap between 
polygons possible 
- EPSG 4326 (WGS84) 

ODbL 

- Some geographic 
overlap with Microsoft 
“global” building footprint 
dataset Uganda & 

Tanzania 
building 
footprints 

- Uganda and Tanzania only 
- Release date: 2019 

- Automated feature extraction 
from satellite imagery 

- Maxar imagery (years of 
imagery not stated) 

- Polygons (mostly 
rectilinear), geoJSON. 
- Overlap between 
polygons possible 
- EPSG 4326 (WGS84) 

ODbL 

“Global” 
building 
footprints 

- The "global" dataset includes 
countries across all populated 
continents but is not global. No 
coverage for Cabo Verde or 
Nigeria, with very limited data for 
Kenya, Tanzania and Uganda 

- Release date: 2022 

- Automated feature extraction 
from satellite imagery 

- Bing Maps imagery (including 
Maxar and Airbus) dating 
from 2014-2022 

- Polygons (mostly 
rectilinear), geoJSON. 
- Overlap between 
polygons possible 
- EPSG 4326 (WGS84) 

ODbL 
- Microsoft provide an 
accompanying file to 
show extent of coverage 

O
S

M
 OSM features 

tagged 
building=* 

- Global, but sub-national 
coverage varies 

- Data extracted from OSM on 03 
January 2023  

- Predominantly manual 
digitization from satellite 
imagery, aided by some 
automated feature detection 

- Imagery from various sources 

- Polygons (mostly 
rectilinear) 
- Overlap between 
polygons possible 
- Extracted from OSM 

ODbL 
- Constantly being 
updated given VGI-
natures of OSM 

Table 1: Details of the four multi-country building footprint data products covering the African continent as of January 2023. 
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2.1 Data attributes 

Whilst the building footprint data products from Google, Microsoft, OpenStreetMap and Ecopia for 

countries in Africa all consist of 2-dimensional outlines of buildings, they differ in terms of their 

attribute information. Ecopia includes attributes on the date of the satellite imagery from which the 

building footprints were extracted. Google provide a confidence score for each building footprint and 

the location of its centroid. The confidence score reflects the certainty of a detected feature being a 

building, with only features with confidence scores exceeding 0.60 included in the dataset (Sirko et al., 

2021). No attribute information is provided for Microsoft building footprints. None of the Google, 

Microsoft or Ecopia building footprints include attributes on building height or number of storeys.  

 

OSM’s tagging system enables attributes to easily be added to OSM features such as buildings. 

However, apart from the tag specifying a feature’s type (e.g. building), additional tag values 

(attributes) are optional and hence vary considerably in their prevalence and quality. Biljecki et al. 

(2023) explored the completeness and quality of OSM building attributes globally, and found that 

building type, number of storeys and height were the most common attributes, available for 10.5%, 

4.6% and 2.9% of buildings respectively. Similarly, Biljecki et al. (2021) investigated attribute 

information in openly available building footprint datasets from authoritative sources and found that 

over half of datasets had no building attributes included. For the remaining datasets, the most 

common attribute to be included was the type of building. Although no openly available national 

building footprint datasets from authoritative sources are available for countries in Africa (Biljecki et 

al., 2021), a few other building footprint datasets with attribute information have been published, 

although with very limited geographic extents. For example, a building footprint dataset for the city of 

Lusaka, Zambia (Chiwele et al., 2022) includes information on settlement types.  

 

2.2 Dataset production – methods 

For building footprint products from Ecopia, Google and Microsoft, the geometry of building polygons 

is determined by the feature extraction algorithms, model training datasets and post-processing 

methods. These data products have been developed using similar approaches insofar that they use 

deep learning models for semantic segmentation of VHR satellite imagery, and then apply post-

processing methods to convert clusters of grid cells into building polygons. Methods for detection of 

buildings from VHR imagery have been reviewed by Li et al. (2022). Each of the data producers 

provide varying details of their methods, and none of their models have been published. Microsoft 

describe using deep convolutional neural networks for semantic segmentation and then applying a 

polygonization method (Microsoft, 2022). Google state they use a convolutional neural network based 

on the U-Net architecture, followed by a contouring algorithm to create building polygons (Sirko et al., 

2021). The post-processing methods largely determine the geometry of building polygons (e.g. if 

polygons are coerced to be rectilinear), and implement any constraints in regards to polygon overlaps, 

minimum area thresholds and the delineation of courtyards within buildings. Model performance 

statistics (as provided by the data producers) are summarised in Supplementary Table B.2 and Figure 

B.1. 

 

2.3 Source satellite imagery 

As all the building footprint datasets are extracted or digitised from satellite imagery, details of the 

imagery, and in particular its recency, are important for data users to know. Ecopia’s Digitize Africa 

building footprints are extracted from 30-50cm Maxar imagery and include an imagery date attribute 

for each individual building footprint (Supplementary Figure A.1). Very limited information on the 

recency of satellite imagery is provided by the other data producers (Table 1). As of January 2023, the 

“global” Microsoft building footprints were extracted from Bing Maps imagery (sources included 
Maxar, Airbus and IGN France) dating from 2014-2022 (Microsoft, 2022). The earlier country-specific 
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datasets for Kenya/Nigeria and Uganda/Tanzania were based on Maxar satellite imagery. The 

imagery for Kenya/Nigeria dated from 2020/21, however Microsoft provide no information on the 

Uganda/Tanzania imagery (although must predate 2020 as the dataset was released in January 

2020). The spatial resolution of the imagery used for Google Open Buildings was 50cm (Sirko et al., 

2021). The documentation for Google Open Buildings v2 states that v2 is based on more recent 

imagery than v1, but no information on the imagery dates or sources are provided. Users are advised 

to utilise the Historical Imagery tool in Google Earth Pro to find imagery dates for a particular location, 

however this is not feasible for reviewing more than a small area.  

 

2.4 Updates and versioning 

As time elapses and data products are updated, documentation of datasets and versioning becomes 

increasingly important. At the time of writing, Google has released two versions of their Open 

Buildings data product, named as v1 and v2. Microsoft has released building footprints for various 

countries at different times, with updates for some locations also. The Microsoft country-specific 

datasets are distinct from the “global” dataset insofar that they are in separate GitHub repositories, but 
any plans for versioning or naming such datasets, particularly if further updated, are unclear. The 

nature of Ecopia’s building footprints for sub-Saharan Africa being produced through the Digitize 

Africa project, resulted in an initial dataset for each country and then an update for a subset of areas 

in each country. Given the project timeframe, these versions have been referred to as “year 1” and 
“year 2” respectively, with no further updates expected. Unlike the other three sources of building 
footprints, OSM is constantly being edited and updated. The date when features are created or 

modified forms the basis of the OSM versioning system. In this work, we utilise the following versions 

of data products: Google Open Buildings v2 and Ecopia year 1 building footprints. Microsoft country 

specific datasets are used where these are available (Kenya, Nigeria, Tanzania and Uganda) and 

supplemented by Microsoft’s “global” product in the version that was available in January 2023. 
Building footprints were extracted from OSM in January 2023. 

 

2.5 Geographic coverage 

Focussing specifically on the countries in Africa (as defined by the UN Africa region), the spatial 

coverage and extent of the building footprint datasets varies considerably across the region. At the 

time of writing, none of the data products has complete coverage for all African countries 

(Supplementary Table A1 and Figure 1). For the data products that are created using automatic 

feature extraction techniques, the geographic coverage is largely determined by the extent of the 

satellite imagery (assuming sufficient spatial resolution and quality). Ecopia’s Digitize Africa building 
footprints are available for 51 countries/territories in sub-Saharan Africa. Google Open Buildings v2 

dataset includes building footprints for most countries in Africa, although no documentation is 

provided on exactly which. Exploration of data coverage (Figure 1 and Supplementary Figures A.2-

A.5) indicates that data has been excluded for several countries and areas, often in areas 

experiencing conflict. Building footprints from Microsoft are available for all countries/territories in 

Africa, except for Cabo Verde. Microsoft’s country specific datasets provide data for Tanzania, Kenya, 

Uganda and Nigeria, while the rest of Africa (and some parts of these four countries) is included in 

Microsoft’s more-recent “global” building footprints (Microsoft, 2022). The coverage of Microsoft’s 
building footprints is somewhat variable; areas with missing buildings can occur due to satellite 

imagery being too old (prior to 2014) or if it was considered that the area had a low-probability of 

detection (broadly based on distance to roads and population centres) (Microsoft, 2022). Following 

the publication of their “global” building footprint dataset, Microsoft released an accompanying file 

indicating geographic coverage and thus enabling users to identify gaps. However, as such gaps can 

be quite extensive, the utility of the building footprints for users is potentially somewhat compromised. 

Critically at the time of downloading the building footprint data products, none of the data producers 
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provided their national boundary definition, resulting in potentially different geographic extents for 

national datasets from different producers.  

 

Unlike the other data products, OSM building features are predominantly created through digitisation 

by a community of contributors. Therefore, inevitably the geographic coverage of OSM features is 

spatially heterogeneous. Nevertheless, as an open, widely used data source with permissive licensing 

terms, we deemed it important to include in this paper given our focus on reviewing available building 

footprint datasets for African countries. The coverage and completeness of building features in OSM 

has been the subject of numerous studies (e.g. Hecht et al. (2013), Ullah et al. (2023), Zhang et al. 

(2022)). Most studies assessing OSM building completeness are however limited to relatively small 

areas, with few studies focused on countries in Africa. Recent studies have assessed completeness 

of OSM building footprints for cities globally, finding that overall, completeness was generally low in 

most cities but with considerable spatial heterogeneity (Herfort et al., 2023 and Zhou et al., 2022). 

Specifically, for cities in sub-Saharan Africa, Herfort et al. (2023) estimated completeness of OSM 

buildings to be 30%, with more than 50% of edits coming from humanitarian-related activities. 

 

2.6 Dataset availability and licensing 

Differences also exist between the four building footprint data products (as of January 2023) in terms 

of their availability and licensing (Table 1). Microsoft’s building footprints are made openly available 

with an Open Data Commons Open Database License (OdbL), and are available to download from 

GitHub, with separate repositories for country-specific and “global” datasetst. Google building 

footprints are similarly made openly available with either OdbL or Creative Commons Attribution (CC 

BY-4.0) licenses. Users can download the data in several different ways: as individual tiles (level 4 S2 

cells), by specifying a region based on coordinates or a supplied boundary in a Google Colab 

Notebook, or using the gsutil tool. Ecopia building footprints for sub-Saharan African countries have 

licensing terms that restrict their use but are available for humanitarian purposes. To access the data, 

users are required to submit a request describing the intended data use, for review. OSM building 

footprint data can be downloaded using the various available OSM download tools, in particular 

specifying features that have the tag building=*. OSM buildings are included in Shapefile format in the 

free OSM data extract from Geofabrik (http://download.geofabrik.de/). As with all features from OSM, 

the license is OdbL.  

http://download.geofabrik.de/
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3. Methods 

The methods section is structured in two parts. The first (Section 3.1) describes the pre-processing of 

building footprint datasets and the subsequent steps taken to calculate metrics related to building 

footprint size and area, resulting in gridded building datasets, The second part (Section 3.2) outlines 

the steps taken to calculate summary statistics from the building metrics, and the comparative 

analysis of these.  

 

 Metric Description 

C
o
re

 m
e
tr

ic
s
 Count of building 

footprints (centroid-
based) 

The number of building footprints in a grid cell, where the building 
footprint location is determined by its centroid. 

Count of building 
footprints (any part) 

The number of building footprints in a grid cell, where any part of a 
building footprint that intersects with any part of the grid cell is included 
in the count. 

Total building 
footprint area [m2] 

The summed area of all building footprints/parts of building footprints in 
a grid cell. 

 

Table 2: Core metrics related to building footprint count and total area, calculated for each data 

product.  

 

3.1 Creation of gridded building datasets 

All building footprint datasets were downloaded, either in country-specific zipped files or tiles. Those 

that were in a projected coordinate system were reprojected such that all datasets were in WGS 1984 

coordinate system (EPSG 4326). Each country or tile of building footprint data was processed to 

produce gridded (raster) datasets of metrics related to the count and area of building footprints. A 

common spatial resolution (3 arc seconds, 0.00083333 decimal degrees, approximately 100m at the 

Equator) and grid cell alignment was used for the gridded outputs. We adopted the approach of 

creating gridded outputs at this resolution to provide flexibility in terms of comparing values at different 

geographic scales, ranging from individual grid cells to national or continental comparisons. In 

addition, the output gridded datasets themselves can have further utility for other data users.  

 

For each building footprint source, gridded outputs were calculated for six metrics that provide insights 

into the coverage, similarities and differences in the building footprint datasets. Three core metrics 

were calculated: two related to building counts and one for total building area (Table 2). Metrics of 

building counts were calculated based on both building footprint centroids and any part of a building 

polygon intersecting a grid cell. The primary metric related to building area was the total area of all 

footprints in a grid cell. Three additional metrics related to building footprint area were also calculated: 

the minimum, maximum and mean of all building footprints in a grid cell. All metrics were calculated 

using open-source Python code, adapted from Foks et al. (2020) and Heris et al. (2020). The input 

building footprint data products did not utilise a common set of national boundaries, resulting in the 

processed gridded metrics having different spatial extents for the same country. These gridded 

building metrics for each data source and country/tile were then mosaiced together to produce Africa-

wide raster datasets. Further details of the data processing and mosaicing process are provided in 

Appendix C. Similar gridded outputs for the Ecopia year 1 building footprints are openly available to 

download (Dooley et al., 2020). Our subsequent comparative analysis focusses on the three core 

metrics (Table 2). 
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3.2 Calculation of summary statistics 

For each of the sources of building footprint data, summary statistics were calculated for a range of 

spatial scales, including national and subnational administrative units and with stratification into rural 

and urban classes. For national and administrative level 1 (AL1) units, the count and total area of 

building footprints for each source of building footprints were calculated. The counts of building 

footprints (Figure 1 and Supplementary Table A.1) were calculated from the centroid-based count of 

building footprints rasters, while the total areas of building footprints (Supplementary Figure A.6 and 

Supplementary Table A.1) were calculated from the total area of building footprints rasters. In 

addition, the count of grid cells with one or more building footprints was calculated (Figure 2). The 

national and AL1 boundaries used in all comparative analyses, were sourced from GADM (Global 

Administrative Areas) database (GADM, 2022).  

 

At national level also, the mean count of building footprints (Figure 3) and the mean value of total area 

of building footprints per grid cell (Supplementary Figure A.10) were calculated, with stratification by 

rural and urban settings. Urban and rural stratification was based on the GHS-SMOD dataset 

(Pesaresi et al., 2019). The SMOD L1 classification (3 classes: “urban centre”, “urban cluster”, “rural”) 
was predominantly used, with the more detailed L2 classification (7 classes) utilised when a more 

granular stratification of urban/rural types was beneficial (e.g. Supplementary Figures A.8 and A.11). 

For analyses at the national level, results were also grouped geographically based on the five UN 

Regions of Africa (Northern Africa, Eastern Africa, Western Africa, Middle Africa and Southern Africa). 

 

The remaining analyses focussed still on count and total area, but with consideration also for the 

spatial similarity of building footprint datasets. The Jaccard Coefficient was calculated to assess 

spatial similarity of datasets on a pairwise basis. For each dataset a binary raster was produced, 

where grid cells with 1 or more building footprints had a value of 1, and all grid cells without building 

footprints had a value of 0. Identification of grid cells with 1 or more building footprints was based on 

any part of a building footprint intersecting with any part of the grid cell (not centroid-based). The 

Jaccard Coefficient (𝐽𝐶 = |А ∩  В| / |А ∪  В|) is calculated as the area of intersection between two 

datasets (A and B), divided by the area of union in the two datasets. When applied in a pairwise 

fashion to our binary rasters, this is calculated as the area of common grid cells with a value of 1 in 

both raster A and raster B, divided by the area of all grid cells with a value of 1 in raster A and/or 

raster B. 

 

Jaccard coefficient values were calculated for each pairwise combination of datasets, and 

summarised at national level (Figure 4), with stratification by GHS-SMOD classes at regional level 

(Figure 5 and Supplementary Figure A.11). Based on the same binary classification, the various 

combinations of building footprint datasets were mapped (Figure 6) and summarised on a national 

scale (Figure 7). Finally for the subset of grid cells with 1 or more building footprints from all four 

source datasets, the values for building footprint count and total area in each grid cell were extracted 

and plotted for each pair of datasets (Supplementary Figure A.12).  
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4. Results 

The four building footprint data products are available for most countries in Africa, although several 

countries, particularly in north Africa, have no building footprint data in one or more sources (Figure 

1). Subnational mapping of building footprint counts per administrative level 1 (AL1) unit shows 

considerable heterogeneity between the four different data products.  

 

 

 
Figure 1: Sub-national variation in building footprint counts between data products (Ecopia year 1, 

Google v2, Microsoft and OSM as available in January 2023), shown for administrative level 1 units 

(n=879) for all countries in Africa 

 

The highest subnational counts (greater than 2 million building footprints per AL1 unit) are observed 

for the Google and Ecopia data products (Figure 1). The highest count of building footprints for 

Google and Ecopia datasets are found for the state of Oromia, Ethiopia (n=14,838,851 and 

n=13,218,707 respectively). Counts of Microsoft building footprints in excess of 2 million occur in just 

a few AL1 units in South Africa and Nigeria; with only 2,203,691 building footprints in Oromia state, 



12 

 

Ethiopia in comparison. OSM building footprint counts per AL1 unit are generally lower than for other 

data products. The highest counts of OSM building footprints are found in Fianarantsoa, Madagascar 

(n=1,879,313), Ituri, DRC (n=1,873,858) and Bauchi, Nigeria (n=1,772,727). Counts of building 

footprints for OSM exceeded counts for Ecopia, Google and Microsoft in 33, 88 and 264 AL1 units 

respectively (excluding countries with no building footprints published). Most AL1 units have relatively 

low counts of OSM building footprints with 622 units (71%) having fewer than 100,000 building 

footprints. The proportion of units with fewer than 100,000 Microsoft building footprints is lower at 43% 

(380/879), with even lower proportions for Ecopia (24%) and Google (32% of AL1 units). The mean 

count of building footprints per AL1 unit for Ecopia, Google, Microsoft and OSM was 556,615, 

534,676, 241,978 and 110,616 respectively. Similar sub-national patterns are observed in terms of 

total area of building footprints (Supplementary Figure A.6).  

 

 
Figure 2: The count of grid cells with building footprints (a), the count of building footprints (b) and the 

total area of building footprints (c) across all countries in the African region, for each building footprint 

data product (E=Ecopia year 1, G=Google v2, M=Microsoft and O=OSM), with stratification by GHS-

SMOD L1 classes. Counts of grid cells are shown in millions (M), counts of building footprints are 

shown in billions (B), and total area in thousands (K) of km2. 

 

The comparison of building counts and total building area is complicated by gaps in coverage in the 

building footprint data. For Ecopia building footprints, the geographic extent is clearly defined as all 

countries in sub-Saharan Africa. The coverage of the Google building footprints is not documented, 

but their interactive data viewer shows clear gaps in coverage for some countries (e.g. Chad, Libya, 

Mali, Morocco and South Sudan), and for some subnational units. In Figure 1 this can be clearly seen 

in terms of differences in counts between Google v2 and Ecopia in the provinces of Cabo Delgado in 

northern Mozambique and North Kivu in eastern DRC (Supplementary Figures A.2-A.5). Since 

publishing their “global” building footprints, Microsoft has provided a coverage file, which indicates 

quite extensive gaps in coverage. This can be clearly seen in Figure 2a, as the total number of grid 

cells with building footprints for Microsoft is considerably lower than total number for Ecopia and 

Google, although still more than double the count of grid cells with OSM building footprints. When 

stratified by Region and GHS-SMOD classes (Supplementary Figures A.7-A.9), the disparity in count 

of grid cells with building footprints generally increases for rural settings and is reduced in urban 

classes. For OSM buildings, for which incomplete coverage is expected, the number of grid cells with 

building footprints is the lowest of any data product (Figure 2a), accompanied by the lowest counts 

(Figure 2b) and total area of building footprints (Figure 2c) across the whole of the UN Africa region. 

 

As Figure 1 shows, there is considerable national and subnational variation in the count and total area 

of building footprints between the four data products, in part at least due to differences in 
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completeness of coverage. To help understand what else may be driving such differences, the mean 

count of building footprints and the mean summed area of building footprints per grid cell (3 arc 

seconds resolution) are summarised for each country in Figure 3 and Supplementary Figure A.10 

respectively. Grid cells with no building footprints were excluded in the calculation of mean values. In 

these figures, mean building footprint count and summed area are stratified by rural/urban types, as 

defined by the GHS-SMOD L1 classification (Pesaresi et al., 2019). In addition, the total count or area 

of building footprints for each dataset, country and SMOD class are represented by the point size.  

 

Figure 3 shows that for urban centres in countries for which both Google and Ecopia building 

footprints are available, generally Google has the highest mean grid cell count, followed most often by 

Ecopia. For locations which are similar in terms of their rural/urban classification, there is much 

variation between countries in the mean value of building footprint counts per grid cell. This variation 

is most pronounced in urban centres with the mean count per grid cell varying by over 20 building 

footprints per grid cell between datasets in some countries, such as Sudan and Burkina Faso. 

Potentially this may reflect differences between data products in the definition and representation of 

individual buildings. The proportion of building footprints that are in rural or urban settings also varies 

between datasets and countries (Figure 3), reflecting differences in the distribution of settlements and 

possible spatial biases in the building footprint datasets. Considering the proportion of building 

footprints per SMOD class in each dataset and country, Ecopia had the greatest proportion of building 

footprints in rural settings (median national value of 50.8%). In comparison, the median value was 

42.6% for Google, 37.6% for Microsoft and 34.3% for OSM. Conversely, for urban centres, the 

greatest proportion of building footprints in such settings was for OSM, with a median national value of 

27.1%. Median national values for Ecopia, Google and Microsoft were 17.4%, 24.4% and 26.0% 

respectively.  

 

Our comparative analysis has so far been limited to relatively coarse geographic scales (national and 

AL1 units, with stratification by GHS-SMOD classes), and has not assessed spatial similarity in data 

products at higher spatial resolutions. Figure 4 shows Jaccard coefficient values, per dataset and 

country in a pairwise-fashion, considering all grid cells with one or more building footprints. Jaccard 

coefficient values range from 0.0 (no similarity) to 1.0 (spatially identical), with higher values indicating 

greater spatial similarity in terms of grid cells (3 arc second spatial resolution) with building footprints. 



14 

 

Figure 3: Mean count of building footprint per grid cell, shown for each country and dataset, stratified 

by rural/urban settings based on the GHS-SMOD L1 classification. The total count of building 

footprints per strata, dataset and country is represented by the point size (M = million). 
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Figure 4: Jaccard coefficient values for pairwise comparison of building footprint dataset spatial 

similarity (E=Ecopia year 1, G=Google v2, M=Microsoft and O=OSM), comparing grid cells with 1 or 

more building footprints, summarised for each country. Higher Jaccard coefficient values indicate 

greater spatial similarity. For countries with no building footprints in a particular data product (see 

Supplementary Tables A.1 and B.1), coefficient values will be 0.00. 

 

For most countries, Jaccard coefficient values are generally highest for the comparison of Ecopia and 

Google building footprints (median=0.60), excluding countries where Ecopia building footprints are not 

available (Northern Africa region and Mayotte). The lowest Jaccard coefficient values for most 

countries are typically found in pairwise comparisons with OSM (median=0.208), as would be 

expected given the limited coverage of OSM building footprints (Figures 1, 2 and Supplementary 

Figure A.1 and Supplementary Table A.1). A limited number of countries have higher Jaccard 

coefficient values for pairwise comparisons with OSM building footprints, with values exceeding 0.65 

for Reunion, Lesotho, Seychelles and the Gambia. Pairwise comparisons with Microsoft building 

footprints show considerable variation between countries (range=0.00-0.89, median=0.33). For the 

four countries with national Microsoft datasets (Kenya, Nigeria, Tanzania and Uganda), Jaccard 
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coefficient values for pairwise comparisons with Microsoft building footprints tend to be higher 

(median=0.54).  

 

In Figure 5, Jaccard coefficient values are calculated across each region with stratification by GHS-

SMOD L1 classes. The highest coefficient values are found for urban centres in Southern Africa. 

Coefficient values in this region are particularly high for the pairwise comparison of Google-Ecopia, 

Microsoft-Ecopia and Google-Microsoft, with coefficient values increasing in the move from rural 

(median=0.65), through urban clusters (median=0.91) to urban centres (median=0.94). In contrast, 

pairwise comparisons involving OSM data in this region have low Jaccard coefficient values 

(median=0.18), although the highest values are associated with urban centres (median=0.25). The 

trend of increasing Jaccard coefficient values with increasing urbanicity is maintained when the more 

granular GHS-SMOD L2 classification is applied (Supplementary Figure A.11). The lowest Jaccard 

coefficient values in each GHS-SMOD class and region, are found for pairwise comparisons involving 

OSM buildings. For each SMOD class, the 

highest Jaccard coefficient values for 

pairwise comparisons with OSM are for the 

Eastern Africa region, which is logical given 

less disparity in OSM building counts in this 

region (Figure 1). 

 

The Jaccard coefficients shown in Figure 4 

and Figure 5 provide insights into the spatial 

similarity of building footprint datasets on a 

pairwise basis. Using the same binary 

classification of grid cells (a grid cell with 

one or more building footprints is classified 

as settled), this comparison is further 

expanded in Figures 6 and 7. For each grid 

cell, the number of data products (n=1-4) 

with one or more building footprints is 

calculated, and the building footprint 

product(s) identified. Examples of these 

counts and dataset combinations are 

mapped for three of the largest cities in 

Africa (Cairo, Kinshasa and Lagos) in Figure 

6, and summarised for all countries in Figure 

7.  

 

Figure 5: For each region and GHS-SMOD 

L1 class, Jaccard coefficient values are 

shown for pairwise combinations of building 

footprint datasets (E=Ecopia yr1, G=Google 

v2, M=Microsoft and O=OSM). Jaccard 

coefficient values were calculated based on 

grid cells with one or more building 

footprints.  
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Figure 6: The count of building footprint datasets (upper row) and combination of datasets (lower row) 

for each grid cell with 1 or more building footprints (E=Ecopia yr1, G=Google v2, M=Microsoft and 

O=OSM), mapped for (a) Cairo, (b) Lagos and (c) Kinshasa/Brazzaville. 

 

In Figure 6a, the upper map shows that the majority of Cairo has building footprints from 2 data 

products (n=2) and the lower map shows a combination of Google and Microsoft (“GM”). In central 

Cairo, the upper map shows a dataset count of 3 and the lower map shows the combination of GMO, 

indicating the addition of OSM building footprints. For Lagos (Figure 6b), the count of data products is 

3 or 4 for most areas, predominantly corresponding to dataset combinations of EGM (Ecopia, Google 

and Microsoft) or EGMO (all four data products). Figure 6c shows a different picture for Kinshasa and 

Brazzaville, with building footprints from all data products limited to the north and east of Brazzaville, 

and a clear “edge” to this area suggesting a data tiling effect. The remainder of Brazzaville has a data 

product count of 3, primarily corresponding to Ecopia, Google and OSM (EGO). Similarly for 

Kinshasa, we find 2 (EG) or 3 (EGO) data products for most grid cells, indicating that building 

footprints for Kinshasa are missing from the Microsoft building footprint data product. In Brazzaville, 

Microsoft building footprints (EGMO) are limited to the north and far east of the city, along the Congo 

River.  

 

Figure 7 summarises the count and combination of building footprint data products for all countries, 

showing the proportion of grid cells per country with each combination. A blank (white) value indicates 

that no building footprints are available for a particular data product (e.g. no Microsoft building 

footprints are available for Cabo Verde). Where 4 data products are available, grid cells with building 
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footprints can have 1 of 15 possible combinations of data products (x-axis). Grid cells with building 

footprints from all 4 (EGMO), are the greatest proportion of any combination only for a minority of 

countries (The Gambia, Comoros, Reunion, Tanzania, Seychelles, Zambia, Botswana, Lesotho and 

Eswatini). For all other countries, the most common combination of 3 data products per grid cell is 

Ecopia, Google and Microsoft (EGM), followed by Ecopia, Google and OpenStreetMap (EGO). The 

most common combination of 2 data products per grid cell is Ecopia and Google (EG). For grid cells 

with building footprints from only 1 data product, most commonly these are either from Ecopia (E) or 

Google (G). 

 

As a result of the limited coverage of building footprint data products in Northern Africa, combinations 

of data products for grid cells in this region are limited. For Algeria, Egypt and Tunisia, the greatest 

proportion of grid cells with building footprints is for the combination of Google and Microsoft. For 

Western Sahara, Libya and Morocco, the greatest proportion of grid cells are associated with building 

footprints from a single source, which for Western Sahara is Ecopia and for Libya and Morocco is 

Microsoft. In contrast, countries in Southern African have high proportions of grid cells with building 

footprints from 3 or 4 data products (median value of 69.8% for all countries in the region). There is 

also a very low proportion of grid cells in countries in the Southern African region with a single building 

footprint dataset (median value of 18.9%). For the subset of grid cells with building footprints from all 4 

data products, the relationships between count and total area of building footprints are further 

explored in Supplementary Figure A.12.   
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Figure 7: For each country, every 

grid cell with one or more building 

footprints (from any dataset) is 

classified in terms of the number of 

datasets with one or more building 

footprints (n=1-4). These are further 

classified in terms of the 

combinations of source building 

footprint datasets (E=Ecopia year 1, 

G=Google v2, M=Microsoft and 

O=OSM), where EG represents grid 

cells with 1 or more building 

footprints from both Ecopia and 

Google and no building footprints 

from Microsoft or OSM. For each 

country, the proportion of all grid 

cells with one of more building 

footprints in each class is shown. 
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5. Discussion 

The growth in the availability of building footprint datasets has provided new opportunities for research 

and data-informed planning and decision making related to settlements and the built environment 

(e.g. Buchanan et al. (2020), Huang and Wang (2020), Jochem et al., (2021), Domingo et al. (2023)). 

The effectiveness of such work however is largely dependent on the accurate mapping of buildings 

and built infrastructure. Assessing the accuracy of building footprints for countries in Africa though is 

difficult, given the lack of definitive reference dataset(s). However, understanding how currently 

available building footprint datasets are similar, how they differ and the extent to which they are 

comparable is the first step in understanding how such datasets can be used effectively in research 

and decision-making. In our comparative analysis of building footprint data from four sources (Ecopia, 

Google, Microsoft and OSM), we have utilised a range of approaches to compare data products in the 

absence of definitive reference datasets. Our results show that substantial differences exist between 

data products, and therefore consideration is needed by data users in terms of the suitability of a 

building footprint dataset for their intended application and geographic context. 

 

Our results show that considerable variations exist between available building footprint data products 

across countries in Africa. In general, for most locations, Ecopia and Google building footprints 

consistently have the greatest counts and total area of building footprints when assessed at the 

national (Table A.1) and subnational level (Figure 1 and Supplementary Figure A.6). There are 

however multiple African countries for which Ecopia and/or Google building footprints are not 

available (Figure 1). If locations are stratified in terms of urban/rural settings (Figure 3), then for urban 

centres and urban clusters, the mean count of building footprints per grid cell is generally highest for 

Google, followed most often by Ecopia. In rural clusters, there is less variability between data 

products in terms of mean count per grid cell. As well as consistently having the highest counts and 

total area of building footprints, Google and Ecopia have the greatest spatial similarity, both in terms 

of grid cells with at least one building footprint (Figures 3-7) and the correlation between counts and 

total area of building footprints per grid cell (Supplementary Figure A.12). 

 

Building footprints from OSM and Microsoft generally have lower values in terms of total area and 

counts (Figure 1, Figure 2, Supplementary Table A.1 and Figure A.6). Comparing counts and total 

areas nationally, or for AL1 units, shows clear differences compared to Ecopia and Google, however 

these spatially aggregated values may hide further spatial variation, particularly associated with 

heterogeneity in the coverage and completeness of Microsoft and OSM building footprint datasets 

(Figure 2 and Supplementary Figures A.7-A.9). This spatial heterogeneity in coverage means that for 

some locations, it may be that OSM or Microsoft building footprints are the most accurate and 

comprehensive data. However, this will depend on the location, context and spatial extent of the area 

of interest, and for an end user to identify this necessitates a time-intensive manual review of the 

available building footprint datasets, potentially including comparisons against recent satellite 

imagery. In general, Microsoft building footprints appear to have better coverage in urban areas than 

in rural areas (Supplementary Figure A.8), but this is by no means universal, with some major cities 

and urban areas having no Microsoft building footprints (e.g. Kinshasa, DRC – Figure 6c).  

 

Differences between the four data products could be due to multiple factors, including differences in 

feature extraction algorithms, differences in what is considered as a building and differences in post-

processing. There can also be differences related to the satellite imagery used in feature extraction, 

such as differences in the age of satellite imagery, imagery resolution, presence of cloud cover or 

haze, and the spatial extents for which imagery were available/included. The spatial heterogeneity in 

coverage of Microsoft and OSM building footprint is influenced by several of these factors associated 

with the methods used in producing the datasets. For example, the tiling effect (and missing tiles) of 

mosaiced satellite imagery used by Microsoft, and the limited spatial extent of feature digitisation 

activity by OSM contributors (often through spatially targeted mapping campaigns), are both visible in 

Figure 6, most clearly for Kinshasa.  
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For building footprint data products that are created through automated feature extraction, if an area 

has incomplete coverage with suitable satellite imagery, then the resulting extracted building footprints 

will also have incomplete coverage. For data users that are interested in using building footprint 

datasets across large areas, any incompleteness is a potential problem, particularly if it is widespread. 

This issue is particularly prevalent for Microsoft building footprints where there are seemingly large 

gaps in satellite imagery coverage, including for some major cities (Figure 6c). For the Microsoft 

“global” dataset, users can consult the accompanying coverage extent file to identify if a lack of 

building footprints is due to (i) no processing of satellite imagery in an area (as presumably occurred 

in the Microsoft building footprints in Kinshasa) or (ii) no buildings detected. However even with this 

knowledge, the widespread nature of the coverage gaps in the Microsoft data may render the data 

unusable in some applications. Neither Ecopia nor Google provide coverage extent information but 

doing so would be beneficial to users.  

 

In contrast to feature-extracted building footprints, the nature of OSM as a VGI data product results in 

inevitable heterogeneity in coverage and completeness – a topic of ongoing research. Our analysis 

shows that for all regions in Africa, the count of grid cells with OSM building footprints, along with the 

count and total area of OSM building footprints is the lowest of any data product (Supplementary 

Figure A.7). Calculated across all urban centres in sub-Saharan Africa, the count/total area of OSM 

buildings as a percentage of Ecopia (27%/24%) and Google (22%/26%) is somewhat similar to recent 

estimates of OSM building completeness for this region (Herfort et al., 2023). In major cities, where it 

might be assumed that OSM building footprints have reasonable coverage even if not all buildings are 

digitised, coverage is still very patchy even when all grid cells with one or more building footprints are 

considered (Figure 6). 

 

Somewhat confusingly, efforts to integrate OSM data with other data sources are not always clearly 

distinguished and labelled as such. For example, the Daylight Map Distribution 

(https://daylightmap.org/) integrates Microsoft building footprints and is provided as a basemap in 

ESRI’s ArcGIS software. Arguably, as this basemap is labelled as OpenStreetMap, ESRI users could 

gain a false impression of OSM building completeness. This is also relevant when considering 

sources of training data for use with feature extraction algorithms, particularly given limited existing 

building training datasets for African countries (Wang et al., 2022). If OSM buildings (in locations with 

comprehensive coverage) are used as training data, considerations around circularity may be needed, 

especially with a growing number of feature-extracted building footprint datasets that potentially may 

be integrated into OSM in some way. In addition, recent initiatives to develop open-source algorithms 

and training datasets are lowering barriers to entry for new building footprint datasets to be 

developed, particularly in previously data-sparse settings. For example, the Replicable AI for 

Microplanning (Ramp) open-source deep learning model (Hallas et al., 2022) has been developed 

specifically for use in low- and middle-income countries. Similarly, BEAM (Building and Establishment 

Automated Mapper) is an open-source tool for mapping building footprints from drone imagery 

(UNITAC, 2022). 

 

When building footprints are extracted or digitised from satellite imagery, the building footprint 

features inherently represent building locations, shapes and extents at the time that the imagery was 

captured. Without information on imagery dates, data users are unable to assess the time point that 

the building footprints represent, which for some uses renders the data unusable (e.g. change 

detection). For some building footprint data products, the satellite imagery time period spans a few 

years, but for others this can extend to over a decade (Table 1). Ecopia is the only data producer to 

provide detailed information on the temporal coverage of satellite imagery, with imagery date included 

as an attribute (Supplementary Figure A.1). In the context of our comparative analysis of data 

products, the lack of information on imagery dates is therefore a caveat in the interpretation of results. 

https://daylightmap.org/
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The inclusion of satellite imagery dates in all building footprint datasets would considerably expand 

their utility. 

 

Our comparative analysis of four data products has assessed counts and total areas of building 

footprints at a range of spatial scales, but inevitably has several limitations. Firstly, there are likely 

differences between the building footprint datasets in terms of what is considered as a building and 

how individual buildings are delineated. For datasets produced by automated feature extraction, this is 

determined by the feature extraction and post-processing algorithms, but limited information on this is 

released by data producers. Some building footprint products permit overlaps between polygons 

(Google, Microsoft and OSM) while Ecopia doesn’t. We have summarised overlaps in the input data 
files (Supplementary Tables B.3-B.5) but have not accounted for these in calculating gridded metrics 

of total building area, since the overall impact is most likely small. Secondly, the temporal coverage of 

satellite imagery likely also varies between datasets and the lack of information on imagery dates 

means there is potentially large temporal mismatches between datasets, but the extent to which this 

influences our analysis results is not possible to identify without knowing the imagery dates. 

 

Additionally, confidence scores are only provided for Google building footprints. Given the subjective 

nature of selecting a confidence threshold value and the fact that confidence scores were only 

available for a single data product, we opted to not use the confidence score and included all Google 

v2 building footprints. If a confidence threshold had been applied, then building footprint counts and 

total area would be reduced. In assessing spatial similarity of building footprint datasets, we utilised a 

single threshold of building footprint counts and considered all grid cells with 1 or more building 

footprints, but further work should explore a range of threshold values. Our comparisons between 

data products focussed on building footprint count and area metrics. Further work should explore 

calculating geometry and morphology measures, such as those relevant to characterising urban 

morphology (Jochem and Tatem (2021), Fleischmann et al. (2022)). Furthermore, to understand the 

impact of utilising different building footprint datasets in a variety of applications, and the extent to 

which the choice of datasets affects outcomes and results, further work is needed to explore the use 

of existing building footprint datasets in a range of contexts.  

 

Finally, the lack of definitive reference datasets for buildings across the African continent means that 

our analysis is limited to comparisons solely between available building footprint data products, all of 

which have largely been digitised or extracted from satellite imagery. With the growing geographic 

coverage of building footprint data products, further work should expand this comparison to include 

building footprints from authoritative sources, with care taken in maximising temporal alignment 

between datasets. Such comparisons are needed across a diverse range of settlement typologies, as 

previous comparative work has tended to focus on specific locations (single city or single country and 

US/Europe-centric) with a typically narrow typology of settlements and urban form.  

 

The currently available building footprint data products provide a snapshot of the built environment, 

not for a single timepoint, but mosaiced together from many single timepoints, often spanning multiple 

years. Looking to the future, with the launch of new satellites and sensors, the frequency with which 

sufficiently high-resolution imagery to map buildings is collected, should only improve. The 

establishment of a high-quality baseline dataset should enable coarser-resolution imagery to be 

regularly utilised for change detection, with focussed use of higher-resolution imagery. This provides 

potential opportunities to move away from a single snapshot and towards regular and dynamic 

mapping, such is already available for landcover data products (e.g. Google’s Dynamic World). 
Integration with new and additional data sources should also enable enhanced attribution of building 

footprints, with characteristics such as building use, heights, building materials and addressing. 
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6. Conclusion 

Whilst all building footprint datasets are conceptually trying to represent the same thing, our analysis 

shows that for African countries, the available building footprints differ considerably in their 

representation of buildings, with big differences in data products between countries and across urban-

rural contexts. This creates a situation where end users need to beware. Given the lack of a definitive 

reference source against which to assess each dataset, our comparative analysis of these four data 

products has focussed on highlighting similarities and differences. Ultimately, there is no conclusive 

best dataset. The four building footprint data products are not interchangeable, and users of these 

data need to assess the data for suitability in terms of the context, time period, spatial scale and use 

case that is of interest. There are several concrete steps that producers of building footprints can take 

to enhance the usability of their products. Firstly, data producers should provide information on the 

spatial extent of each dataset, including which (if any) areas have been excluded from processing to 

distinguish between true gaps in coverage and possible errors/omissions. Secondly, information on 

the date of satellite imagery used for extraction or digitisation should be included as an attribute in 

each building footprint feature to assess data currency. Finally, the documentation available for all 

datasets should be enhanced, including details of the data processing and methods. This 

documentation should include details on building footprint geometry (such as whether overlaps are 

permitted), details of rates of omission/commission and how that varies across countries and urban-

rural contexts. 
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