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Self-Driving Vehicle Systems
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Self-Driving Vehicles (SDVs) are seen as a significant advancement in the automotive
domain, hinting at a future where human drivers might be rendered obsolete. How-
ever, even with the advancements in SDV technology, the need for human drivers is
still recognised. The incorporation of human drivers into SDVs introduces unique and
significant challenges. The significance of human driver and SDV interactions cannot
be overstated, especially when the SDV relies on the human driver as a fallback option
during hazardous driving events. To address this critical aspect, this thesis presents a
methodology termed the Rigorous Analysis Template Process (RATP).

RATP establishes an analytical journey to develop a comprehensive framework ensur-
ing safety and optimal cooperation between human drivers and SDV systems. It rep-
resents an evolution in existing work on analysing system safety and provides a more
rigorous systematic strategy for SDV systems. It involves both systematic analysis and
formal methods to evaluate safety in SDV systems.

Drawing strength from a combination of both systematic analysis and formal methods,
RATP adeptly identifies high-level safety requirements and develops a rigorous model
to investigate issues and assumptions that may arise during the operations of SDV sys-
tems. One of the key benefits of RATP is its modularity, offering researchers and devel-
opers the ability to systematically analyse system behaviours from a high-abstraction
view down to a more detailed view. The conclusion of this research presents a robust
set of modelling patterns that act as a blueprint for the future development of SDV
systems.

RATP is demonstrated with a case study that explores the various functionalities of an
SDV system to evolve the methodology into a mature state. Finally, this thesis presents
a discussion on future improvements that could be undertaken to develop the method-
ology further.
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Chapter 1

Introduction

Advances in the field of Artificial Intelligence (AI) are a key source for the development
of Self-Driving Vehicles (SDVs). Being an Autonomous System (AS), an SDV involves
multiple subsystems communicating and working together to achieve its goal [50].
SDVs rely on AI to perceive the environment, demonstrate the operational conditions
and make driving decisions. At their basis, therefore, SDVs are intended to replace the
actions of human drivers. The main aim of SDVs is to reduce collisions and improve
passenger safety. According to the U.S. National Highway Traffic Safety Administra-
tion (NHTSA) [8], most road accidents are caused by driver behaviour. The NHTSA
reports that 94% of crashes involve driver errors, while in only a few cases, extra fac-
tors, such as weather, may lead the driver to have a collision.

Although the idea of SDVs brings new technology for commercialisation, SDVs are not
yet ready for consumers to operate them on public roads [132]. The main obstacle to
doing so is ensuring the safe operations of an SDV in its environment. According to
the Industrial Internet Consortium (IIC) [91], safety is defined as the optimal guaran-
tee for ensuring the operation of a system ‘without unacceptable risks either by physical
injury or damage to the health of people and public properties’. The concept of safety in SDVs
is complicated and dependent upon multiple factors, including social and technical.
According to a survey study of a thousand drivers conducted by the American Au-
tomobile Association (AAA) [45], nearly a quarter of participants would be fearful of
riding in an SDV. Therefore, the acceptance of SDV technology remains low.

Moreover, an SDV is a safety-critical system and may jeopardise the lives of passengers in
the vehicle and people in the street or damage public properties, such as transportation
infrastructure [8]. When investigating an Uber self-driving crash, the National Trans-
portation Safety Board (NTSB) [100] found that the accident was caused by internal
components of the SDV system when the AI module failed to detect a victim. The SDV
system was implemented to give a human driver control of the vehicle in unmanaged
areas. However, the driver was distracted and did not react at the appropriate time.
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Traditionally, automotive designers have built their safety strategy upon the concept
that the human driver is essentially responsible for safety [81]. According to Interna-
tional Organization for Standardization (ISO) 26262 (Road Vehicles – Functional Safety)
[72], the human driver is responsible for the safety at system level. In the same context,
ISO has been lately, released a safety standard called ISO 21448 (Road Vehicles – Safety
of the Intended Functionality), which aims to cover the safety hazards of a system with
no component failure, such as when a human driver does not react appropriately when
the SDV issues a request for intervention [73].

Human–machine interaction is a key issue in the design of intelligent systems such as
SDV systems, especially if the interactions are related to the safety of the systems. Ac-
cording to the automation levels standard of the International Society of Automotive
Engineers (SAE) [101], the design of SDVs is organised around human and machine
interactions in which the human driver may play a fallback role to take control of the
vehicle in hazardous events. Therefore, the SDV system is also responsible for engag-
ing with humans – the people inside the vehicle – in the dynamic driving tasks. The
interactions between the human driver and SDV system are considered to be critical
tasks in terms of operating SDVs.

In this thesis, we undertake an analysis of the behaviours of an SDV system using
both informal and formal methods. The integration of these methods could provide a
solution to examine complex systems. Informal methods play a pivotal role by system-
atically analysing the system to identify critical requirements. However, because these
approaches often lack formal aspects, formal methods are incorporated to improve the
quality of the analysis. This integration ensures that potentially dangerous events are
mitigated at the design level.

The following sections describe the challenges associated with the development and
assessment of SDVs (Section 1.1), the research aims and questions (Section 1.2), the
research plan (Section 1.3), the research contributions (Section 1.4) and the outline of
this thesis (Section 1.5).

1.1 Problem Statement

This section discusses the research concerns related to SDV systems explored in this
study. The primary challenge faced by SDV developers is the need to establish effective
techniques for analysing and ensuring safety. This challenge encompasses various as-
pects, including legal regulations, system capabilities, and human driver involvement
[32]. For example, notable SDV accidents highlight the limitations of system capabili-
ties, such as Waymo’s SDV experiencing a crash due to its inability to detect obstacles
during a lane change manoeuvre [33]. Conversely, Uber’s SDV faced criticism when
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a pedestrian fatality occurred due to the human driver’s delayed reaction when inter-
vention was necessary [100].

In summary, three key challenges arise in developing SDVs from a safety engineering
perspective: (1) the complexity of SDV systems; (2) interactions between SDV systems
and human drivers; and (3) unclear safety constraints. These challenges are interre-
lated, and are summarised in the following subsections.

1.1.1 Complexity of an SDV System

The complexity of Self-driving Vehicles (SDVs) is determined by the automation levels
and their features. According to the SAE [101], automation levels are classified from 0
to 5. Levels 1 to 3 (semi-automation) involve a human driver for driving tasks, while
levels 4 and 5 (high-level automation) do not require human involvement. Although
each level represents an increase in vehicle autonomy and a decrease in the required
human input, challenges persist, particularly regarding safety, regulatory compliance,
and technological capabilities [34]. For instance, human drivers may still need to inter-
vene to ensure safety when SDVs require assistance.

1.1.2 Sharing Mechanisms of an SDV Control

The collaboration between the human driver and the SDV system in handling dynamic
driving tasks varies depending on the level of automation. Hence, ensuring a seamless
transition of vehicle control between them is essential. The roles of both parties may
evolve based on the automation level. Initially, the human driver may play a passive
role in supervising the SDV system’s operation. However, if the SDV system fails to op-
erate safely, the autonomous controller may prompt the human driver to take an active
oversight role [16]. The necessity for investigating active oversight was underscored by
the 2018 Uber accident [100], where the human driver did not promptly respond when
the SDV requested intervention.

1.1.3 Insight into System Behaviours During Dynamic Driving Tasks

Lastly, developers of SDVs face a significant challenge in understanding safety con-
straints and requirements across various scenarios and potential faults [79]. Solving
this challenge requires a thorough comprehension of system behaviours during dy-
namic driving tasks, crucial for ensuring the safe operation of SDV systems and en-
hancing their reliability and security. Therefore, it is crucial to identify the precise re-
quirements and assumptions related to system capabilities, such as obstacle detection
and intervention requests. This challenge is evident in incidents like Waymo’s SDV
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accident [33], where limitations in obstacle detection led to a collision, and the Uber
accident, where a delayed human response highlighted the importance of timely inter-
vention when the SDV requires human driver intervention [100].

1.2 Research Aims and Questions

This section outlines the research aims and questions that are derived from the previ-
ously summarised research problems.

The main aim of this thesis is to develop a methodology to analyse the dynamic be-
haviours of SDV systems, particularly when an SDV system requires human interven-
tion.

The key objective is to augment safety in autonomous vehicles by emphasising the
roles of both human drivers and the SDV system during dynamic driving tasks. Sec-
ond, our methodology is based on a combination of informal and formal methods. The
application of informal methods is to identify the safety requirements that the develop-
ers of the SDV system should consider during development of the autopilot software.
Conversely, the formal method can verify the safe transition from an SDV system to a
human driver by proving the consistency of the safety requirements derived from the
informal method. The third objective is to expand a methodology for ensuring system
safety against identified hazardous driving events at various abstraction levels. This
strategy aims to systematically identify a set of safety requirements to guide the de-
velopment of a formal model, from the high-level abstraction view to a more detailed
concrete view. Last, the fourth objective is to employ the developed methodology on
cases of various sizes and complexities, ideally those involving SDV systems with mul-
tiple functionalities.

Specifically, in this study we mainly address the following Research Questions (RQs):

• RQ1: What are the critical features in SDVs that define the roles of human drivers
and autonomous systems in ensuring safety during autonomous operation?

• RQ2: How can an analytical framework be designed to systematically highlight
the roles of both a human driver and an SDV system during autonomous opera-
tion?

• RQ3: How can a methodology be developed to analyse the complexity of system
safety during autonomous operation?

• RQ4: To what extent does the proposed methodology demonstrate its utility
when applied to a case study of varying sizes and complexity, especially those
involving interaction between human drivers and an SDV system?

4
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Each research question is then further detailed in its own subsection.

1.2.1 Research Question 1

The research question, RQ1, prompts an exploration of the intricate interactions be-
tween human drivers and autonomous systems within SDVs during autonomous op-
eration. Two subquestions guide the investigation into relevant literature, enhancing
the depth of analysis as follows:

• RQ1.1: What are the key automation features in SDV systems to define the re-
sponsibilities of both the human driver and the SDV during autonomous opera-
tion?

• RQ1.2: What tools and methods are currently identified in the literature for analysing
safety in SDV systems?

Firstly, an exploration into the key automation features within SDV systems is essential.
The derived research question, RQ1.1, prompts an examination of the specific function-
alities and features employed in SDVs that outline the responsibilities between human
drivers and autonomous systems during autonomous operation. Understanding these
features is key in comprehending the division of tasks and decision-making processes
within the dynamic behaviours of SDV systems.

Secondly, the investigation encompasses an exploration of tools and methodologies
available in the literature for analysing safety in SDV systems. The derived research
question, RQ1.2, seeks to identify and evaluate the various approaches to assess the
safety performance of SDVs. It includes an exploration of how informal methods of
hazard identification contribute to determining safety requirements, and the role of
formal techniques in effectively documenting and defining these requirements.

1.2.2 Research Question 2

The research question, RQ2, aims to elucidate how specific techniques contribute to
systematically ensuring the dynamic behaviours of the SDV system. Key objectives
include identifying the specific functionalities and features that shape and emphasise
the interactions between human drivers and SDVs, as well as outlining processes for
comprehensive analysis of system component interactions. Additionally, it provides a
structured approach to understanding the automation aspects between an SDV and a
human driver during autonomous operation.
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1.2.3 Research Question 3

The research question, RQ3, prompts the development of methodology to analyse the
safety of SDV systems. Two subquestions guide this development:

• RQ3.1: How can a methodology be developed to systematically analyse the com-
plexity of system safety from high-abstraction behaviours down to more detailed
behaviours?

• RQ3.2: How can a methodology be developed to formally analyse human re-
sponses when the SDV may issue a request to intervene?

RQ3.1 aims to identify the development of a methodology for analysing the complex-
ity of system safety during autonomous operation in SDVs. This methodology studies
critical features arising from system component interactions between human drivers
and SDV systems, starting from a high abstraction level and descending to concrete de-
tailed features. The objective is to establish a structured approach for comprehensively
assessing safety within the SDV system.

On the other hand, RQ3.2 focuses on developing a methodology for formally analysing
human responses when SDVs request intervention. This involves capturing how hu-
man drivers react when prompted to take control of the SDV. The methodology seeks
to formalise and systematise these responses, providing insights into the dynamics of
human interaction with SDV systems during intervention scenarios. Addressing these
two research questions can establish a comprehensive framework for ensuring safety
and understanding human responses in SDV systems.

1.2.4 Research Question 4

RQ4 aims to evaluate the effectiveness of the proposed methodology through case stud-
ies of varying sizes and complexities, particularly those involving interactions between
human drivers and SDV systems. These case studies validate the findings from previ-
ous research questions and investigate how the methodology performs in real-world
scenarios. They range from high-level abstract behaviours to more concrete actions
where human drivers intervene in SDV systems. By examining the methodology’s ap-
plication across different contexts and complexities, its utility can be thoroughly as-
sessed. This validation process ensures the methodology’s robustness and modularity,
addressing the multifaceted challenges inherent in human-SDV interaction during au-
tonomous operation.
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1.3 Research Plan

This thesis addresses the proposed research questions by exploring current method-
ologies within the existing literature. Specifically, it focuses on highlighting the au-
tonomous features of SDVs and ensuring their safety. Following this, a suggested
methodology is proposed that seeks to combine existing methods with novel ideas,
aiming to address the previous research questions. Figure 1.1 illustrates three main
activities involved in this study:

FIGURE 1.1: Research plan activities

1. Literature review: Examines existing research on SDV autonomy, focusing on
safety measures and human intervention potential, to identify gaps and establish
foundational knowledge.

2. Solution development: Iteratively develops a methodology for examining au-
tonomy in SDV systems, considering scenarios requiring human intervention.

3. Case study design: Constructs real-world scenarios based on literature insights
to validate the methodology, particularly in critical situations requiring human
intervention, contributing to the advancement of SDV technology.

Overall, the research plan advances knowledge in the field of autonomy in SDV sys-
tems, facilitating a thorough investigation of the research problem and contributing to
the advancement of SDV technology.
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1.4 Contribution

The major contributions of this work can be summarised as follows:

1. The development of a Rigorous Analysis Template (RAT) framework that em-
phasises the automation aspects between an SDV and a human driver. This is
especially crucial when the SDV engages the human driver as a fallback during
hazardous scenarios.

2. The development of a step-by-step methodology called the Rigorous Analysis
Template Process (RATP). This methodology extends the RAT, allowing for sys-
tematic development of a formal template to aid in analysing the behaviours of
the SDV system at various levels of abstraction.

3. An intervention timing strategy, arising from the application of the RATP, has
been developed. This strategy investigates the critical properties associated with
moments when SDV systems might need to transfer control back to human drivers.

4. The validation and development of RATP were accomplished by a case study
involving various functionalities of SDV systems.

Parts of this thesis have been already published in the following papers:

• Alotaibi, F., 2020. Improving trustworthiness of self-driving systems. In Rig-
orous State-Based Methods: Proceedings of 7th International Conference, ABZ 2020,
Ulm, Germany, May 2020, 7 (pp. 405-408): Springer International Publishing [11].
This paper discusses the challenges, requirements and preliminary concepts for
analysing complex systems, particularly SDV systems.

• Alotaibi, F., Hoang, T.S. and Butler, M., 2022. High-level rigorous template for
analysing safety properties of self-driving vehicle systems. In IEEE 46th An-
nual Computers, Software, and Applications Conference (COMPSAC), June (pp. 1643-
1648): IEEE [12]. In this paper, we present a methodology called the Rigorous
Analysis Template (RAT) approach. It focuses on highlighting the automation
interactions that occur between the SDV and the human driver.

• Alotaibi, F., Hoang, T.S. and Butler, M., 2023. A rigorous iterative analysis ap-
proach for capturing the safety requirements of self-driving vehicle systems. In
2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMP-
SAC) (pp. 1697-1702), June: IEEE [13]. In this paper, we present a methodology
called the Rigorous Analysis Template Process (RATP) approach. It extends the
RAT, allowing for the systematic development of a formal template that aids in
analysing the behaviours of the SDV system at various levels of abstraction.
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Additionally, the author of this thesis has contributed to the following publication:

• Asieh Salehi Fathabadi, Colin Snook, Dana Dghaym, Thai Son Hoang, Fahad
Alotaibi and Michael Butler, 2023. Designing critical systems using hierarchical
STPA and Event-B. In Rigorous State-Based Methods - 9th International Conference,
ABZ 2023, Nancy, France, May -June (pp. 220–237) [116]. I contributed in the par-
ticular evaluation of the systematic analysis steps, focusing on their execution
within the suggested analysis framework.

1.5 Outline of Thesis

This thesis is organised into 10 chapters. Chapter 2 provides the background infor-
mation on SDV systems. Chapter 3 gives an overview of safety analysis methodolo-
gies, based on a variety of informal and formal analysis methods. Chapter 4 details a
case study that involves our approach in the context of validation. Chapter 5 presents
the RAT that highlights the automation aspects between an SDV and a human driver.
Chapter 6 describes the RATP approach to gradually investigate the behaviours of the
SDV system, from a high-level abstraction view to a more detailed concrete level. Chap-
ters 7 and 8 validate the RATP approach through a case study. Chapter 9 presents how
driver reactions can be involved in the RATP approach. Finally, Chapter 10 concludes
this thesis.
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Chapter 2

Overview: Self-Driving Vehicle
Systems

In this chapter, the objective is to determine the key aspects of automation in Self-
Driving Vehicle (SDV) systems. The Research Question (RQ) associated with this ob-
jective is RQ1.1, and is formulated as follows:

RQ1.1: What are the key automation features in SDV systems to define the responsibilities of
both the human driver and the SDV during autonomous operation?

Section 2.1 briefly discusses the design principles for autonomy, with a particular em-
phasis on human–machine interaction. Section 2.2 outlines the taxonomy requirements
of SDVs, classifying autonomy into levels. Section 2.3 describes the critical system
modules involved in developing SDV systems. Section 2.4 discusses automation fea-
tures between human drivers and SDV systems to address RQ1.1. Section 2.5 concludes
this chapter.

Parts of this chapter were published in ABZ 2020 [11], particularly the discussion on
automation in Section 2.4.

2.1 SDV Human and Machine Interactions

Autonomy has advanced cooperation between humans and machines. With the rapid
development of advanced tools and techniques, the interactions between humans and
autonomous machines are today becoming increasingly complex. Although automated
machines are expected to work without human intervention, determining what rules
and instructions are embedded into the automated system is challenging [79]. The
main aim of an automated system is to reduce human operation by creating a fully
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autonomous system [14]. Therefore, it is essential to understand what kind of opera-
tions can be applied by humans to understand how such a human behaviour can be
concretely interpreted by a machine.

Humans can obtain knowledge from the mental model [134], a concept proposed by
psychologist Craik [37], who states that the mental model constitutes ‘cognitive-emotional
representations’ of the environment, objects and the relationships among multiple ob-
jects in the environment. Cognitive psychology scientists [57, 134] have also indicated
that mental models are dynamic and can be achieved through three activities. In the
first activity, mental models work in the memory (mind) and allow people to simulate
potential actions and their consequences. In the second activity, the mental models
generate assumptions or causal understandings of how system functions may work. In
the last activity, mental models change over time due to experiences (e.g. systems are
capable of continuous learning). These psychology concepts can be adopted into the
technology field, especially when they shift from the theoretical to the practical level.

Considering the idea of SDVs from the perspective of the mental model, the machine
(autonomous controller) would not only replace the human driver in operating the
driving tasks but also cover the activities of a mental model in its design. Although the
taxonomy approaches of SDVs attempt to answer the question of how mental model
activities can be interpreted by SDVs, which is discussed in greater depth in Section
2.2 (Taxonomy Requirements), three design principles of autonomy were found in the
literature of automotive field. These are explained in the following points.

1. Semi-automation: The main design principle is known as ‘partial automation’ or
‘semi-automation’, where humans and machines engage together to achieve a sys-
tem goal [34]. Semi-automation architecture is often divided into levels that rep-
resent the sharing of the system’s features between the human operator and au-
tonomous controller.

2. Supervision: Automation shifts functional requirements from the human oper-
ator to technical systems. However, the human operator may play a new role
during the lifecycle of the automated system, that known as ‘supervisory control’
[96]. The idea of human supervision was introduced by Bainbridge et al. [16], and
can be summarised as follows: 1) expected and normal operations are performed au-
tonomously; and 2) critical and unexpected situations are operated manually. While the
system operates autonomously to prevent human errors, there may be instances
where it requires a human operator to be actively involved as a fallback in critical
situations.

3. A fallback option: One of the most crucial aspects of designing autonomous sys-
tems is to provide sufficient information to humans [79]. This principle is espe-
cially important if the system assumptions involve a human fallback component
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to handle emergency situations or malfunctions. For this reason the automated
system must send useful information to humans so that they understand the cur-
rent situation of the system, and the system must take into consideration their
reaction time before it can turn the system to manual control.

These three principles are developed mainly to improve the safety of the entire sys-
tem. In the literature, engagement between humans and machines is widely known
as the Human-In-The-Loop System (HITLS) [52]. A HITLS can add advanced qualifi-
cations to the autonomous system model to make it the top ‘safety pick’. According to
the Insurance Institute for Highway Safety [115], an SDV can become this when it is
integrated with technology to prevent crashes. One of these integrated systems is an
HITLS that aims to prevent collisions by creating a digital collaboration space between
human operators and machines [21].

Despite the many studies on HITLS, such as on enhancing the user experience [115],
few consider how to incorporate HITLS technology into autonomous systems even
though this is an essential component for improving levels of safety and reliability in
SDVs.

A technical report from Massachusetts Institute of Technology (MIT) [53] indicates that
the human fallback component of HITLS is an important factor in all aspects of a safe
driving mode. MIT’s researchers also believe that the answer to the safety problems
in driving manoeuvres can be solved through a variety of sensors, which focus on the
eyes, head and hands of the human driver to ensure the responsiveness of the human
fallback component. However, they point out that there are several challenges to im-
plementing a HITLS within an SDV, including the following:

• The inconsistency of human behaviours to handle all forms of social distractions
or problem-solving concerning in-road objects such as vehicles, pedestrians and
cyclists.

• The variety of human driving styles and human abilities to use automation from
either the user experience or usability perspective.

• The unknown limitations of the detection system and unreliable sensing devices
to ensure the responsiveness of the human fallback component.

• The difficulty of identifying when a system failure might occur and the ability of
the HITLS to notify a fallback driver about how to handle unpredictable driving
scenarios.

• The existence of machine and human errors.

The concept of HITLS has been adopted by autonomous vehicle companies, such as
Tesla and Volvo. According to both these companies [102, 131], their autopilot software
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uses a Driver Monitoring System (DMS) to ensure the responsiveness of the human
fallback component. The DMS can verify the awareness level of a human driver via two
features. Volvo’s autopilot software [131] is used as an active monitoring feature that
requires a human driver to keep their hands on the steering wheel to operate the auto-
driving mode. By contrast, Tesla’s autopilot software models 3 and Y [56, 102] employ
a sensitive monitoring feature that uses the in-car camera to detect and monitor human
drivers when the advanced driver assistance system is in operation. For instance, one
of the integrated systems for ensuring the intervention of a human driver is a Facial
Recognition Algorithm (FRA) [140]. FRA is a type of sensitive monitoring system that
can scan a human face to detect facial landmarks and recognise facial variable states,
namely whether the eyes are open or closes, based on monitoring changes in a sequence
of face images. However, Zhang and Yu [140] suggest that a single sensor camera might
not be enough for a face detection system. They found that developing a complex
Artificial Intelligence (AI) algorithm for identifying and classifying the massive amount
of data provided by a sensor system would still only detect 61.29% of driver faults.
While this is clearly not 100%, the FRA can still decrease the risk of vehicle crashes and
substantially prevent financial and personal losses.

To integrate with the HITLS, SDVs require an additional layer for monitoring the hu-
man fallback component. In a case study [52], Lex Fridman found that SDVs can be
designed around the human driver and, further, noted that the FRA can detect that a
driver is distracted after approximately three seconds of not looking at the road. There-
fore, he suggests that a new layer between a human driver and the SDVs is added
to ensure that a human driver can take control of the vehicle when critical situations
occur.

2.2 Taxonomy Requirements

The taxonomy requirements of SDVs are built on the idea that the human driver (hu-
man fallback component) and the SDV system (autonomous controller) can work to-
gether to achieve the driving tasks. Several well-known concepts are used to identify
the differences between operating a vehicle by the human fallback component and by
the autonomous controller. These concepts are explained as follows:

• Operational Design Domain (ODD): This determines under which conditions
the autonomous controller performs a specific driving task [124]. These condi-
tions are categorised into the following two groups: 1) environmental conditions,
such as weather; and 2) operational conditions, such as the speed limit.

• SDV system: This indicates the hardware and software components that combine
together to perform the DDT on either a limited or unlimited ODD [101, 34].
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• Dynamic Driving Task (DDT): This is defined as the operational and tactical
behaviours of the autonomous controller that are required to operate a vehicle in
road traffic [101].

In the operation of SDVs, the Operational Design Domain (ODD) plays a crucial role.
The ODD specifically outlines the conditions under which the autonomous controller
can operate safely. These conditions include various environmental and operational
factors, as well as geographical limitations [106, p. 8]. For instance, the ODD for cer-
tain SDVs may be confined to urban areas, function only during daylight, and require
clear weather conditions. By defining these parameters, the ODD establishes critical
boundaries, ensuring that the SDV makes dependable decisions for safe and efficient
operation.

The SDV system is a complex combination of sensors, processors, and actuators. This
system is designed to detect the driving environment using advanced technologies
such as LiDAR, radar, cameras, and GPS [70]. Once it collects this environmental data,
the system processes it to make decisions in real-time, subsequently controlling the
vehicle’s movements. In more detail, the autopilot software within the SDV system
interprets the data from the sensors and anticipates the behaviour of other road users.
This capability enables the SDV to respond suitably to various scenarios, encompass-
ing navigation, emergency management, and adaptation to evolving conditions. The
SDV system is in a state of continuous enhancement, integrating AI and advanced al-
gorithms to progressively refine its decision-making capabilities over time.

The Dynamic Driving Task (DDT) model plays a crucial role in demonstrating the tax-
onomy requirements of SDV systems. The DDT is developed from traditional driving
tasks or what operations are applied by humans in driving manoeuvres [95]. Both DDT
and traditional driving tasks aim to modify vehicle control variables and perform driv-
ing tasks [34]. Michon [95] observes that the DDT encompasses the following three
activities:

1. Operational behaviours: These allow SDV systems to make important obser-
vations about the actual driving task. These observations help to determine the
driving decision. However, due to the variety of dynamic driving scenarios, iden-
tifying the actual decision for a specific vehicle manoeuvre is difficult. Therefore,
the concept of Object and Event Detection and Response (OEDR) has been devel-
oped to represent the dynamism of driving tasks. According to an automotive
manufacturer consortium (CAMP AVR) [34], the OEDR involves the perception
and detection of any circumstances relevant to the actual driving task.

2. Strategic behaviours: The strategic behaviours refer to the planning strategy of
the SDV systems, which aims to determine the driving decision and accomplish
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a system goal. These behaviours include destination and route plans [95]. The
destination plan contains the start and final location of a mission. By contrast,
the route plans are updated during the mission due to the dynamics of the en-
vironment or the variety of driving scenarios. However, strategies for updating
plans rely mainly on the operational behaviours of observing the environment
and formulating the plan’s strategy.

3. Practical behaviours: These are related to the functionalities that apply to physi-
cal/electronic control variables [34]. These functions manipulate the control vari-
ables of the vehicle to apply a specific driving decision. The two main groups
of control variables are as follows: 1) lateral variables, which change the vehicle’s
position in a horizontal manner by using steer and orientation features; and 2)
longitudinal variables, which move the vehicle vertically by modifying various fea-
tures, such as speed, acceleration/deceleration and braking.

The activities of the DDT may explain how the autonomous controller makes driving
decisions and controls the automated vehicle. As mentioned earlier, in the context of
this chapter the autonomous controller is expected to replace the human driver. This
assumption leads us back to the concept of mental models and how the human driver
would perform traditional driving tasks. Therefore, we created the relationship dia-
gram in Figure 2.1 to compare the activities of the DDT and human mental model.

In the first step, the human driver relies on his/her eyes to monitor the environment
and identify the driving actions [57], while the autonomous controller attempts to do
the same using the Object and Event Detection and Response (OEDR) system [34]. In
the next step, before applying a driving action the human driver selects an action that
supports their goal, while the autonomous controller aims to choose a safe action that
supports the goal of a system. Finally, the last step for the human driver is to apply a
driving action, while the autonomous controller specifies the control vehicle variables
to apply a selected action.

DDT differs from traditional human driving tasks, and the changes in the driver’s role
can become the basis for establishing the taxonomy requirements of the driving au-
tomation system. According to the Society of Automotive Engineers (SAE) [101], gath-
ering the taxonomy requirements of DDT is related to the human fallback component
and can be explained in the following two main factors:

• Driver attention requirements: This relates to a human fallback driver who sits
behind the steering wheel inside the SDV. The taxonomy requirements involve
the required awareness level of the human fallback driver when the SDV systems
are operated. For instance, an SDV system might not work until a human fallback
component is aware of the performance of the DDTs.
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FIGURE 2.1: DDT vs traditional driving tasks

• Driver action requirements: This relates to the actions that are intended to be ap-
plied by the human fallback component. For instance, the human fallback driver
might control the vehicle’s speed, while the autonomous controller modifies the
vehicle’s steering angle. Therefore, the design of the autonomous operations af-
fects the actions that the human fallback driver might perform in the SDV sys-
tems.

The tasks that might be performed by an autonomous controller [101, 14, 34] to accom-
plish the DDT include the following:

• Lateral control – steering: This refers to the task of steering and moving laterally
on the road, such as turning right, left, going straight or taking a bend.

• Longitudinal control – braking, accelerating: These tasks relate to the position or
velocity of the SDV along the roadway, modified through actions such as braking
or acceleration.

17



CHAPTER 2. OVERVIEW: SELF-DRIVING VEHICLE SYSTEMS 18

• OEDR task: This demonstrates the ability of a system to detect and respond to
any environmental events that may affect the performance of the DDT. In general,
the OEDR works in conjunction with the specific ODD.

• Planning task: Although the immediate response is already part of OEDR, plan-
ning tasks include the goal of a system to be accomplished via long- and short-
term plans. The planning task also involves the selection of automation functions
(manoeuvres), such as lane changes and intersection crossings, as part of the plan-
ning strategies.

Considering the way the SDV system operates within its ODD to perform DDTs, well-
known approaches have been proposed to classify autonomy into levels. In the next
subsection, the automation levels and their approaches are outlined.

2.2.1 Automation Levels

In exploring the concept of autonomy, recognising its diverse classifications is crucial.
This section highlights two distinct approaches: traditional methodologies (Subsection
2.2.1.1) and specific classifications for SDV systems (Subsection 2.2.1.2). Each approach
offers a unique perspective, enhancing the overall understanding of how autonomy is
classified and applied in various contexts.

2.2.1.1 Traditional Classifications of Autonomy

The traditional approaches to defining automation levels are mainly extended from
the popular model of Sheridan and Verplank [119], which defines the responsibilities
of humans and machines at various levels. At low levels (1–5) the computer offers
assistance but the human makes decisions; at higher levels (7–10) the computer works
autonomously and ignores human interventions.

Based on Sheridan and Verplank’s approach, Parasuraman et al. [105] developed the
pipeline model of human decision-making. This aims to simplify autonomous func-
tions into four stages: sensory processing; perception; decision-making; and response selec-
tion. As the human operator/driver may ignore the action proposed by the automated
machine, Vagia and Rødseth [129] extend the four-stage model of Parasuraman et al.
[105] with a new step, execution. These stages can be clarified as follows:

1. Sensory processing: This refers to the sensing and registration of input data. For
instance, the SDV may use a camera to observe its environment.
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2. Perception: This refers to the algorithms that can be applied to incoming data.
For instance, the SDV may process an incoming image from a camera to identify
the lane lines in its environment.

3. Decision making: This refers to the selection of a particular action if specific
conditions exist. For instance, the SDV may attempt to change its position to be
in the middle of lane lines if the lane lines have already been detected in stage 2.

4. Response selection: This refers to the action implementation of the selection
made in stage 3. For instance, the SDV may actuate its selected action to con-
tinue in the middle of lane lines.

5. Execution: This function refers to the responsible actuator, whether a human or
a machine. For instance, the SDV may actuate its selected action manually or
autonomously.

A summary of Sheridan and Verplank’s approach with the various stages of autonomous
functions is shown in Figure 2.2 to indicate the possible human interaction with au-
tomation at various levels.

2.2.1.2 Classifications of Autonomy for SDV systems

There are two well-known classifications for SDV systems in the literature. Firstly,
according to the National Highway Traffic Safety Administration (NHTSA) [21], the
levels of autonomy demonstrated are based on the level of autonomous function versus
human control. The main goal of the NHTSA ’s approach is to generate a common
terminology across the fields of the autonomous vehicle industry [21]. In the second
approach, proposed by the SAE [101], automation levels are identified by the following
two factors: 1) degree of interactions between the human fallback driver and the SDV
systems; and 2) the pre-attentive level of the human fallback driver required by the
autonomous vehicle. A summary of the automation levels provided by the SAE is
outlined in Table 2.1. For instance, automation levels 1 to 3 rely on a human driver to
handle hazardous events that may happen in DDTs, while at automation levels 4 and
5 the SDVs are able to handle hazardous events in limited or unlimited environmental
conditions. These levels are defined as follows:

1. Level 0 – No Automation: The human driver is responsible for all aspects of DDT.

2. Level 1 – Driver Assistance: The SDV system can assist with limited functions
such as adaptive cruise control; however, the human driver is still responsible for
most aspects of DDT.
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FIGURE 2.2: Types of human interaction with autonomy, based on stage of autonomous
functions and Sheridan and Verplank’s taxonomy approach

3. Level 2 – Partial Automation: The SDV system can handle some DDTs, such
as steering, accelerating and braking, but the driver must still be ready to take
control at any time.

4. Level 3 – Conditional Automation: The SDV system can handle most DDTs;
however, the human driver must still be ready to take control when the system
requests it.

5. Level 4 – High Automation: The SDV system can handle all DDTs in certain
ODDs, such as on a highway, and the human driver is not required to take control.

6. Level 5 – Full Automation: The SDV system can handle all DDTs in all ODDs,
and no human driver is required.

Moreover, the NHTSA [21] and SAE [101] tackle the issue of taxonomy requirements for
autonomy from different perspectives, as shown in Figure 2.3. The NHTSA focuses on
the number of autonomous functions executed at each level, while the SAE highlights
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the responsibility of the human driver during operation of the SDV systems. However,
both approaches are limited by the OEDR system’s ability to handle critical situations
or unmanaged conditions, namely scenarios not covered by the ODD.

FIGURE 2.3: Comparison of NHTSA and SAE approaches to classification of autonomy levels

The SAE approach is similar to the early approach of Sheridan and Verplank [119]. Nev-
ertheless, Sheridan and Verplank’s approach involves more information about how hu-
mans and machines can work together to achieve a system goal, such as the possibility
that the machine informs the human before applying the autonomous functions.

However, while notifications sent from machines to humans might be useful to verify
the driving decision during the run time, the property of time for receiving and re-
sponding to a notification message is vital. As Badue et al. point out [14], SDV systems
work in decision-horizon time, which is a limited time and requires a quick response
from a human fallback component.

2.3 Generic System Architecture

Various studies, including the DARPA Challenges [128], Zong et al. [143] and Badue et
al. [14], have shown that the SDV systems require the following three modules to per-
form the DDT: perception; decision-making; and control modules. These are summarised
below; for more information, refer to [14, 128, 143].

• Perception module: This is intended to perform the OEDR task. It estimates, for
the internal components of SDV systems, the vehicle’s state (velocity and loca-
tion). It is also integrated with a variety of sensors whose purpose is to create
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an internal representation of the environment and its relevant objects, such as
street views and static/dynamic obstacles. The perception module involves mul-
tiple subsystems that are mainly developed to achieve the following two tasks:
1) to navigate a vehicle without any collisions in its environment; and 2) estimate
the vehicle’s ability to create a plan to accomplish the system’s goal using the
decision-making module.

• Decision-Making module: This is to accomplish the planning task. The module
is responsible for achieving the system’s goal. For instance, the goal might be to
navigate the automated vehicle from its current location to the destination loca-
tion, or to keep the automated vehicle between the lane lines. These kinds of goals
cannot be accomplished without the help of a perception module. Therefore, the
decision-making module relies primarily on the outputs of the perception mod-
ule to observe its target environment. However, unlike the perception module,
as well as the vehicle’s velocity and orientation the decision-making module pro-
duces a target path for a vehicle to follow.

• Control module: This is responsible for accomplishing the lateral and longitudi-
nal tasks that actuate the vehicle in its environment. It receives the outputs of the
decision-making module to specify the modifications to low-level physical/elec-
tronic vehicle components. For instance, the vehicle’s velocity becomes a signal to
the accelerator pedal, while the vehicle’s orientation guides the change in steering
wheel control.

The internal modules of SDVs work in a continuous iterative manner, based on the
time spent observing the environment, proposing a driving decision and applying that
proposed driving decision to its environment [14].

Based on the taxonomy requirements (SAE) [101], a human fallback component is also
a part of an SDV system. Although high automation (Levels 4 and 5) supposes that
SDVs work autonomously, without human intervention, the human fallback compo-
nent plays an important role in lower automation levels (Levels 1–3). In assistance
autopilot software (e.g. Tesla [102, 71], General Motors (GM) [98] and Volvo [131]), the
HITLS integrates with the internal components of SDVs to become a fallback option
when a system fails to operate as expected. Therefore, we created an abstract com-
ponent diagram to show the main components of the SDV systems, as in Figure 2.4.
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FIGURE 2.4: Abstract components of SDVs

2.4 Discussion

The main objective of this chapter is to review existing literature to identify the au-
tomation aspects of SDV systems relevant for addressing RQ1.1. The taxonomy ap-
proaches for SDV systems, such as the approaches proposed by the NHTSA [21] and
the SAE [101], seem to be universal definitions that give only a description of the DDTs
and their dynamic features, such as ODD, OEDR and fallback driver. These features
mainly demonstrate the operational tasks that are intended to be performed by the
autonomous controller.

However, autonomy creates a cooperation channel between humans and machines.
The role of the human driver has been misleading, in taxonomy approaches. The ad-
vanced human interaction features have been previously specified and explained by
Sheridan and Verplank [119] in a traditional approach to defining autonomy levels.
For instance, a machine might sound an alarm and inform the human driver of its de-
cision. The SDV systems are also responsible for monitoring the awareness level of the
human driver to ensure the responsiveness of the human fallback component. There-
fore, the SDV may also need to handle features such as alarms, notification messages
and human intervention requests.

As outlined above, the abstract representation of SDV modules can be organised into
perception, decision-making and control modules. However, to ensure the awareness
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level of the human fallback component, a HITLS may also be adopted. The HITLS
would add an advanced engagement channel for preventing autonomous vehicle crashes.
For instance, a DMS may be a part of the SDV systems to demonstrate the awareness
level of a driver. Finally, there is a need to include human fallback features in the taxon-
omy approaches, especially if an SDV assumes that the human driver is to be a fallback
option for managing a hazardous event.

2.5 Conclusion

This chapter aimed to provide a foundational understanding of SDVs, with a specific
focus on the aspect of autonomy. A fundamental concept of autonomy in SDVs in-
volves the dynamics of interaction between humans and machines. From a narrative
review of the literature, three key design principles emerged that enhance these inter-
actions: 1) semi-automation, 2) supervision and 3) the human fallback component, which are
used to improve engagement in human and machine interactions. These design prin-
ciples are widely known in the literature as the HITLS. Various safety methodologies
and techniques that could potentially assist in the analysis of SDVs are reviewed in the
next chapter.
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TABLE 2.1: Summary of automation levels, adapted from [101]

Automation levels DDT features
Environmental
conditions

Level Description Sustained
lateral and
longitudi-
nal

OEDR Fallback ODD

Level- 0:
No automation

A human driver performs all the DDT
features.

Human
driver

Human
driver

Human driver Limited

Level- 1: Driving assis-
tance

A system can control lateral or longitu-
dinal features but not both, and a hu-
man driver performs the remainder of the
DDT.

Human
driver and
system

Human
driver

Human driver Limited

Level- 2: Partial driving
automation

A system can control both lateral and lon-
gitudinal features, and a human driver
performs the remainder of the DDT.

System Human
driver

Human driver Limited

Level- 3: Conditional
driving automation

A system can control lateral, longitudi-
nal, and OEDR features. A human driver
becomes a fallback-ready user if a system
sends a request to intervene.

System System Fallback-ready
user (becomes
a human driver
if a system is-
sues a request to
intervene)

Limited

Level- 4: High driving
automation

A system can perform all DDTs; however,
a human driver is responsible for manag-
ing a system outside its ODD.

System System System Limited

Level- 5: Full driving
automation

A system can perform all DDT in any en-
vironmental conditions.

System System System Unlimited
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Chapter 3

Safety Analysis Methodologies

In this chapter the objective is to investigate both the informal and formal methods
found in the literature that could be employed to analyse safety in Self-Driving Ve-
hicle (SDV) systems. The Research Question (RQ) linked to this aim is RQ1.2, and is
formulated as follows:

RQ1.2: What tools and methods are currently identified in the literature for analysing safety
in SDV systems?

Section 3.1 explores the informal hazard identification methods used for studying sys-
tem safety. Section 3.2 investigates the safety standards and methodologies utilised
by autonomous vehicle companies. Section 3.3 reviews formal methodologies suitable
for addressing various tasks and properties of SDVs. Section 3.4 presents a research
discussion to address RQ1.2, and Section 3.5 provides a conclusion to this chapter.

3.1 Hazard Identification Methods

This section considers various hazard identification methods that are particularly rele-
vant to safety-critical systems, such as SDV systems.

3.1.1 Hazard and Operability Analysis

Hazard and Operability Analysis (HAZOP) [38] has been developed to identify system
hazards based on possible behaviour deviations at the system level. The deviations
are determined by analysing all processes and sub-processes through a set of specified
guidewords. The advantage of using guidewords is to explore the characteristics of the
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system under examination to create a consistent model. HAZOP has been adopted in a
wide range of domains, including the automotive field.

In SDV systems the use of HAZOP is mainly related to functional characteristics, where
the focus of analysis is on interpreting the guidewords to identify hazardous behaviours
[62]. Although the HAZOP method is applicable to the identification of hazardous be-
haviours, there are currently few guidelines on how to interpret the guidewords. For
instance, Bagschik et al. [15] define the keywords for groups of SDVs ’ modules, such as
perception, planning and control, to generate the possible malfunctions of each module
(keywords and corresponding guidewords are proposed in Table 3.1). However, due to
other, unknown guidewords for multiple driving scenarios, the discovered guidewords
should be considered only as a general guideline [62].

Moreover, the HAZOP method can be used at the functional level. For instance, ac-
cording to Becker et al. [18], HAZOP for Automated Lane Centring (ALC) is applied to
each of the 24 ALC sub-functions based on seven guidewords, including ‘loss of func-
tion’ and ‘more than intended’, to create a set of hazardous malfunctions (113, for ALC).
However, this usage of HAZOP is less focused on system level in terms of the interac-
tions between multiple system components.

McKelvey [92] finds that the application of HAZOP faces the following six primary
issues that might affect the validity of its results:

1. Lack of field experience, especially within the team undertaking HAZOP studies.

2. Lack of comprehensive documentation around the system under examination.

3. Top-management decisions that result in projects being developed too quickly or
spending insufficient time/money on the HAZOP process.

4. Failures resulting from repeating processes and procedures in similar projects but
requiring review during the new project.

5. Lack of technical documentation due to the complexity of the system’s character-
istics.

6. Human error due to insufficient investigation or an unqualified HAZOP team.

TABLE 3.1: Example of HAZOP keywords and guidewords, taken from [15]

Keyword Guidewords
Perception Too large, Too small, Non- existent, None
Planning Physically not possible, Conflicting, Not relevant
Action Too large, Too small, Wrong, Absent
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3.1.2 Failure Mode and Effects Analysis

Failure Mode and Effects Analysis (FMEA) is a similar technique to HAZOP and aims
to address the safety risks for systems on multiple scales. It is a bottom-up approach
that was developed by the United States military in the 1940s [108].

FMEA is considered to provide a deeper analysis than other hazard identification meth-
ods in this domain of the literature, as it focuses on the low and high components of
the system under examination. Although there are various methodologies for applying
FMEA [25], the main idea is to evaluate and minimise safety risks by identifying failure
modes in low-level processes [121]. The failure modes can be categorised by a specific
Risk Priority Number (RPN). The identification of an RPN is calculated as the product
function of a failure mode determined by the score of the following three properties
[108, 125]:

1. Severity of the effect of failure: This indicates the possible risk to the overall
operation of the system, from low-level to high-level components.

2. Probability of occurrence: This states the frequency number of failure modes.

3. Ease of detection for each failure mode: This determines the ability of the system
to detect whether a failure mode has been implemented or continuously involved
in the operation of the entire system.

FMEA has been adopted into the domain of SDV systems. For instance, Tokody et al.
[125] used an FMEA worksheet to discuss the future impacts of SDVs. Discovering
failure modes, such as ‘Turning off human intervention’, is linked to an appropriate RPN
depending on scores related to severity, detectability and occurrence.

However, Gilchrist [55] argues that, ‘though the model itself is of great use, the calculation
of the RPN lacks a proper model as a base and thus is internally inconsistent and potentially
misleading’. In other words, the calculation of an RPN is inaccurate due to an unclear
score of severity, detectability and occurrence, all of which may mislead any attempts
to reduce risks.

Despite being used across multiple applications, FMEA has several limitations, result-
ing in the following criticisms [121, 122].

1. FMEA is only capable of identifying known faults based on the previous field
experience of the development team.

2. The identification or removal of unwanted events is based on the exploration of
all paths and combinations of a complex system; therefore it is time-consuming,
and the exploration process itself may be misleading.
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3. FMEA can be adopted only in the later stages of development, when the design
of the system has been fixed.

3.1.3 Fault Tree Analysis

Fault Tree Analysis (FTA) is a reliability and hazard method that analyses the potential
failures of a system. It is based on Boolean logic to estimate the failure probability of a
single system component through a top-down exploration mechanism. The causes of
failure are investigated through a graphical/logical tree that involves a combination of
Boolean gates and events towards a single component of the system under examination
[47].

FTA has been used in many domains, including SDV systems. For instance, Duran et
al. [44] used the FTA method to analyse the impact of perception module failure on
overall system success rates. The following is a summary of the FTA approach:

1. The assumption of severity levels is categorised as Levels 1 to 4, where Level 1
indicates ‘no loss of anything’ and Level 4 indicates ‘either high loss of human lives or
environmental damage’.

2. The probabilities of failure are calculated using the Bayesian brief network that
shows conditional relationships between random variables in a directed graph.

3. The hazard identification process is based on the severity levels and probabilities
of failure. Each hazard is classified using a qualitative method known as Pre-
liminary Hazard Analysis (PHA). Like the RPN, the PHA is a qualitative method
that calculates the product function of the severity and probability of failure to
organise the risks into predefined arbitrary groups, such as minor, major, critical
and catastrophic.

The implementation of FTA, however, has shown some limitations in terms of flexibility
and applicability with regard to the domain of software-intensive systems [121, 17],
including the following:

1. The outcome of hazard analysis is highly dependent on the experience of the engi-
neers. Therefore, due to a lack of experience, the FTA method may be inapplicable
to new technologies, such as SDV systems.

2. Due to the unknown hazard states leading to component failure, the identification
of all possible trees may be inaccurate. For instance, in the top-level event (cause)
of ‘wrong lane lines detection’, FTAs need to consider all possible components that
fail, either in isolation or in combination with all other components.
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3.1.4 Systems Theoretic Process Analysis

Systems Theoretic Process Analysis (STPA) [84] is a hazard identification method that
analyses a system involving a control structure. STPA was based on the Systems The-
oretic Accident Model and Processes (STAMP) model, which is considered to be the
theoretical background of STPA. Although there have been many extended versions of
STPA, such as STPA-SafeSec [54] and STPA-Sec [138], the traditional STPA provided by
Leveson [86, 84] is reviewed. Overviews of the original STAMP and STPA are given in
the following subsections.

3.1.4.1 Theoretical Background of the STPA Method

STAMP is a set of assumptions about how accidents occur. An accident is defined as ‘an
unwanted and unplanned loss event’. A loss may include human injury or death; however,
it also involves events such as financial, information and equipment losses [86, p. 75].
According to Leveson [85], STAMP was based on the concept of a system theory that
focuses on all system components to study and examine the system’s behaviours. In
systems theory, safety is investigated as ‘the emergent properties’ that arise from system
component interactions. Therefore, safety becomes a ‘control problem’ for which the
main goal of control is to prevent or mitigate the occurrence of losses by enforcing the
safety constraints on the design of the system.

STAMP extends traditional causality models by preventing component failures and
identifying losses that result from interactions among system components. The losses
are not the result of interactions among components or events in a linear fashion, but
are instead viewed as occurring from ‘the inadequate enforcement of constraints on sys-
tem behaviours’ [86]. The major components of a general control structure in STAMP
are shown in Figure 3.1. The application of STAMP is divided into three concepts, as
follows:

1. Safety constraints: In systems theory, the controller sends certain control actions
based on its operational plans (control algorithms). In addition, the controller
may receive feedback about its actions. The main aim of STAMP is to investi-
gate the occurrence of losses (accidents) due to the safety constraints having not
been successfully enforced by the controller. However, to identify and enforce
the safety constraints in the design and operation of a complex system, techni-
cal knowledge of design concepts and implementation of hardware and software
may be required [86, p. 80].

2. Hierarchical safety control structure: In systems theory, systems are organised
into levels, each of which involves safety constraints in its activities. At each
level a controller is responsible for sending actions and receiving feedback. The
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controlled processes perform the following two main tasks: 1) providing a commu-
nication channel among different levels (feedback) ; and 2) enforcing safety constraints
for which a specific controller is responsible. Accidents may occur when these pro-
cesses establish inadequate control, resulting in the violation of safety constraints
in lower-level components. To understand and prevent the causes of accidents,
the adaptive feedback loops play an important role in identifying the three fol-
lowing faults:

• Missing constraint (unspecified responsibility for safety).

• Inadequate control command (commands are not applied correctly at a lower
level).

• Inadequate communicated feedback (feedback is missing regarding constraint
enforcement among different levels).

Therefore, it can be said that the hierarchical safety control structure captures
relationships and interactions by analysing the system as a set of feedback control
loops.

3. Process Models: The process model can be defined as ‘an adaptive feedback func-
tion’ that aims to examine the processes leading to the loss of a system. It also
demonstrates the beliefs of a controller on how to handle the current state of the
process and the information coming from feedback [86, p. 65].

FIGURE 3.1: Major components of an abstract control structure based on STAMP [86, p. 75]

3.1.4.2 Overview of the STPA Method

Based on STAMP, the STPA method was developed to control the potential cause of
losses (hazards) during the development of a target system, allowing the hazards to be
controlled or eliminated. In contrast with STAMP, the goal of analysis is not the exam-
ination of known accidents to detect inadequate enforcement constraints but, instead,
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the identification and prevention of new accidents/losses. However, key concepts of
STAMP, such as its safety constraints, a hierarchical safety control structure and a pro-
cess model, are used to accomplish STPA [86, p. 101].

According to the STPA handbook by Leveson and Thomas [84], the steps for applying
STPA are as demonstrated in Figure 3.2. They are represented in a horizontal structure
of four steps, involving the identification of the following:

1. Purpose of the analysis: This step aims to demonstrate high-level system losses
(accidents) and their relevant hazards and safety requirements. A hazard is a
system state illustrated by system loss and is defined as ‘environmental conditions
leading to unwanted events’ [84]. The safety requirements emphasise the enforce-
ment of safety constraints and mitigate or prevent a system transition into an
identified hazard state.

2. Inadequate safety control structure: This step considers events and interactions
leading to the violation of a behavioural constraint, then redesigns the control
structure as a more effective shield against known violations. This allows more
system hazards, such as component failure, inadequate component interactions and
software failure, to be examined [121].

3. Unsafe control actions in inadequate safety control structure: This step aims to
elucidate the dynamics of system behaviours to reveal the Unsafe Control Actions
(UCAs) of the system under examination. It is an exploration technique for which
the type of UCAs can be organised into the following categories:

(a) Not providing Control Action (CA) leads to hazard.

(b) Providing CA leads to hazard.

(c) Time of applying CA.

(d) Time of stopping CA.

4. Missing loss scenarios: This step identifies the reasons why UCAs may occur in
the system under examination. The scenarios are created to explain the following:

(a) How inadequate CA could cause UCAs and eventually lead to losses.

(b) How safe CA might be designed but not be executed properly.

Finally, once missing scenarios are identified, they can be considered to create
additional safety requirements.

Comparing STPA with other hazard identification methods, STPA identifies fault types
that will gain importance in future, such as inadequate component interactions [24]. By
contrast, traditional hazard analysis methods, such as FMEA and FTA, have mainly
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FIGURE 3.2: Overview of basic STPA steps, adapted from [84]

been based on the decomposition approach, which divides the system into components
and assumes that accidents (failures) are caused by component failure. In addition,
traditional methods focus on hardware errors, which are only caused by the occurrence
of component failures [51].

STPA has been implemented into SDV systems to analyse other failures that may have
ensued without the occurrences of component failures. Abdulkhaleq et al. [3] propose
a dependable architecture for SDV systems based on STPA. The main idea of this ap-
proach is that the functional and architectural design of SDVs can be organised into the
following three levels:

1. Vehicle level: This level considers SDV systems as a single control component
that obtains data from sensors and sends control commands to actuate the vehicle.

2. System level: This level involves the multiple interdependent software compo-
nents (e.g. planning system or control system).

3. Component level: This level is a low-level view of the SDV system that connects
system-level components to actual devices and software functions.

Abdulkhaleq and Wagner [1] applied STPA to the Adaptive Cruise Control (ACC) to
show that the result of STPA can be applied to identify potential accident scenarios,
such as human decision-making errors, software flaws and component interaction ac-
cidents. Moreover, Hanneet et al. [89] applied STPA to a Lane Keeping Assist (LKA)
system to derive safety constraints and requirements. However, they consider only the
LKA system, and the driven requirements did not cover the interactions of LKA with
the human fallback component or other autonomous functions, such as ACC.
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3.2 Industrial Safety Methodologies

The safety standards for designing SDV systems are presented in Section 3.2.1. The
following Sections (3.2.2 and 3.2.3) discuss the engineering methodologies of certain
autonomous vehicle companies, such as Waymo and the General Motors (GM).

3.2.1 Safety Standards

Investigating the industrial safety methodologies of automotive vehicle companies is
an ongoing concern. Automotive vehicle companies have developed safety methodolo-
gies on the basis of well-known safety protocols, one of which is the protocol proposed
by the National Highway Traffic Safety Administration (NHTSA) [8].

The NHTSA safety protocol [8] aims to assess the safety of autonomous vehicles on a
broad scale; it is a theoretical safety approach widely adopted in the industry. Specif-
ically, it contains 12 elements that can be categorised into the following two groups:
design and testing, as summarised in Table A.1 and Table A.2 in Appendix A. The main
interest of the current research is to emphasise the design elements that must be con-
sidered in SDVs. Some of these design concepts, such as Operational Design Domain
(ODD), Object and Event Detection and Response (OEDR), and the human fallback
component, were explained in the previous chapter.

To analyse the complicated design concepts of SDVs, the NHTSA encourages autonomous
companies to adopt and implement certain safety standards, such as ISO 26262 [67, 72]
and ISO 21448 [73]. The International Organization for Standardization (ISO) standards
are a comprehensive safety framework that includes safety management, product life-
cycle, analysis methods and safety guidelines. ISO standards, as hazard identification
methods, also play a major role in establishing analysis methods for meeting or pro-
ducing the safety requirements of a software-intensive system [24].

• ISO 26262: This is an automotive safety standard that aims to address and gener-
ate the functional safety of electrical/electronic systems (E/E) in road vehicles. It
defines functional safety as ‘the absence of unreasonable risk due to hazards caused by
malfunctioning behaviour of electrical/electronic systems’ [72]. It also tries to demon-
strate the occurrence of failures at component level. To establish the hazard iden-
tification techniques, ISO 26262 identifies several steps to be taken:

1. The identification of a system item: An item is considered a system compo-
nent or a sequence of multiple system components.

2. The identification of possible hazard states: With the help of hazard iden-
tification methods, possible hazard states are identified. A variety of hazard
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methods, such as FMEA, FTA and HAZOP, are suggested to provide an effi-
cient hazard identification strategy.

3. The classification of failures (hazard states): The measurement of failures
is specified through a quantitative method known as an Automotive Safety
Integrity Level (ASIL).

Although ISO 26262 has been designed to address the occurrence of failure at the
component level, the occurrence of hazard states at the system level remains a
significant concern [4]. Therefore, ISO 26262 suggests using techniques such as
brainstorming, checklists, FMEA and field studies to identify potential hazard
states at the system level.

However, the hazard identification methods of ISO 26262 are outdated for the
protection of software-intensive systems [51, 4]. New methods or a combination
of hazard analysis techniques are needed to examine the software-intensive sys-
tem and its dynamic features. A technical paper presented in the Society of Au-
tomotive Engineers (SAE) [24] suggests that STPA can be integrated within ISO
26262 to identify a variety of system failures, such as component failures, system
failures, inadequate component interactions, software failures and human error.

• ISO 21448: This is also a safety standard for driver assistance software, known
as the Safety of the Intended Functionality (SOTIF) standard’ [73]. Unlike ISO
26262, ISO 21448 is intended to cover the hazard states that might occur without
component failure. Therefore, ISO 21448 places emphasis on calculating the oper-
ational scenarios that SDVs can perform [78]. These scenarios can be categorised
as follows:

1. Ineffective actions of the awareness system to handle unexpected conditions,
namely conditions that have not been covered in the ODD.

2. The misuse of a fallback human component to handle unexpected operating
conditions, namely a fallback human component does not act appropriately.

3. The evaluation of an ambiguous requirement between a fallback human
component and an autonomous controller, namely clarifying what an au-
tonomous controller can do.

4. The identification of issues that can be observed within the operational en-
vironment, namely transportation infrastructure and weather.

3.2.2 Waymo: Safety Methodology

The Waymo safety report [133] involves a comprehensive safety technique for SDVs. It
covers all 12 elements of the NHTSA safety protocol, organising them into five levels
as follows:

36



37 CHAPTER 3. SAFETY ANALYSIS METHODOLOGIES

1. Behavioural level: This includes the decisions required to obey traffic rules. These
decisions rely on the OEDR system and its ODD for handling a range of scenarios.
However, the autopilot software has not yet reached automation Level 5.

2. Functional safety: This is related to the human fallback component to minimise
the severity of failures and return the SDV to a safe state. Therefore, when a
failure occurs, the Waymo vehicle tries to ensure that a system has a fallback
option.

3. Crash safety: The Waymo vehicle adopts crash safety strategies as recommended
by the NHTSA. These strategies involve designing a system that ensures mini-
mum damage to the people inside or outside an SDV in the event of a crash.

4. Operational safety: This is related to the Human-Machine Interfaces (HMIs) that
are usable, convenient and intuitive for passengers. The focus at this level is on
permitting passengers some level of control over the SDV in ways that do not
affect system safety.

5. Non-collision safety: This refers to the design of a strategy that minimises po-
tential hazards to people who may interact with the SDV. For instance, it may
involve the physical safety of the first responders (candidates who test a vehicle),
mechanics, hardware engineers, and so on.

The Waymo team also tried to identify as many hazard scenarios as possible before
testing and releasing their vehicle. The initial identification of hazards relied on the
hazard analysis techniques mentioned in ISO 26262. The Waymo team also designed
mitigation strategies to eliminate and reduce the effects of these hazards at system level.
However, the major concept of the Waymo safety approach relies heavily on an itera-
tive ‘build-test fix’1 approach to evaluate the correctness of the autopilot software. For
instance, the behaviours of autopilot software have been recorded and tested on both
private and public roads. These recorded behaviours/data were used to analyse and
extract unsafe behaviours of the autopilot software. The Waymo team then developed
several mitigation strategies for preventing these unsafe behaviours in the next itera-
tion of building a system.

3.2.3 GM: Safety Methodology

The GM safety strategy [97] closely follows the NHTSA safety protocol, individually
addressing each of the protocol’s 12 elements. It does not try to simplify or reorganise
the NHTSA guidance and focuses on its implementation strategies for accomplishing

1The ‘build-test-fix’ is an iterative software development process that is typically repeated multiple
times until the software meets the expected quality standards and requirements. The goal is to detect and
fix software errors/bugs in the iterative development process [36].
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the required safety assessments. Similar to the Waymo safety approach, the GM safety
strategy is built around an iterative ‘build-test-fix’ approach to estimate the correctness
of the autopilot software. The identification of its hazard techniques can be summarised
into the following three types of analysis:

1. Deductive analysis (Design and process FTA): This uses hazard methods to
identify a system component failure. The mitigation strategy handles the iden-
tified failure at component level. However, the outcome of the hazard analysis
relies mainly on the development team’s experience [51].

2. Inductive analysis (Design and process FMEA): This uses a hazard method to
identify all possible hazard states, from the highest- to the lowest-level compo-
nent. Thus, it ensures that the mitigation strategy handles the identified hazards
in both low- and high-level components. However, to be able to proceed induc-
tively, the design of the system must first be fully developed [24]. Therefore, the
systems must be described in great detail, and the changes required to the design
may be cost-intensive.

3. Exploratory analysis (HAZOP study): This also uses hazard analysis methods to
identify potential hazards or unsafe actions, based on the analysis of a system’s
functionality. The mitigation strategy addresses the identified hazards at system
level, based on the domain knowledge of the development team.

3.3 Formal Methodologies

An overview of formal methods is provided in Section 3.3.1. The use of various formal
techniques, as applied to analyse critical properties in critical systems, is presented in
Section 3.3.2.

3.3.1 Overview of Formal Methods: Definition, Advantages and Limitations

Definition: From a computer science perspective, formal methods are defined as the
mathematical models used to express the properties of a system using a systematic
approach. This form of representation can help to demonstrate the specification, design
and verification of software/hardware systems [63]. The mathematical background
for formal methods is represented in a formal specification language that contains the
syntactic (notation), semantic (models’ behaviours) and precise rules on how to meet
the behaviours of the models.

Advantages: There are many advantages to using formal modelling. The first is the cost
of fixing a software error at an early stage of a development lifecycle. For example, the
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cost of correcting a software error at the implementation and testing stage can be 100
times the cost of correcting errors at the requirement and design stage [22]. In addition,
misinterpreted requirements are a cause of errors in software systems; therefore, formal
methods interpret the informal requirements into formal specifications, playing a vital
role in reducing the costs of software errors or improving the understandability of the
entire system [135].

The second advantage is to use formal reasoning to establish the model’s properties
via Proof Obligations (POs) [5]. This can help to reveal design errors via the designed
models, rather than correct bugs at the testing phase. Consequently, these designed
models can be manipulated during the design phase to avoid the need to make signifi-
cant changes during the implementation phase. POs also enable designers to prove the
absence of bugs, whereas testing can only show bugs’ presence via the test scenarios.

Limitations: There are some limitations to using formal methods and proving the prop-
erties of a system, as demonstrated in the following points [60]:

• Representation of system properties: Often not all properties of a system can be
modelled. The non-functional requirements, such as performance, are challeng-
ing to model and measure on a large scale.

• Representation of a real-world environment: Converting the entire real-world
environment to a systematic approach or formal model is challenging due to the
modelling tools and formal language capabilities.

• Proving a complicated property: Some properties are generated from the con-
junction of multiple properties that cannot be demonstrated in a formal language
or may be impossible to prove.

• Proving is not always correct: Mistakes may have happened during modelling
and proving; however, the type of modelling tools and their automated theorem
provers may help reduce the number of times such mistakes are made.

3.3.2 Formal Specification Approaches

Many modelling approaches are provided in the literature. A recent survey article by
Luckcuck et al. [88] suggests that the formalisms for modelling robotics systems, such
as SDV systems, can mainly be organised into two approaches: system-based; and logic-
based.

In system-based approaches, the behaviours of a system are modelled by defining its
states and operations, which represent the entire system. Examples of this category
include formal languages like Z, B-Method, and Event-B. For more information on the
syntax and structure of these specification languages, refer to [87].
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In logic-based approaches, the behaviours of a system are modelled by defining certain
properties that can be expressed through logic. A variety of logics, such as Linear-Time
Temporal Logic (LTL), Computational Tree Logic (CTL), Metric Temporal Logic (MTL)
and Signal Temporal Logic (STL), specify the dynamic properties of a system over time
[88]. For more information on the syntax and structure of these specification languages,
refer to [127, 87].

Subsection 3.3.2.1 discusses the role of the Event-B modelling language in supporting
SDV systems and hazard identification through STPA. Subsection 3.3.2.2 presents an
exploration of the benefits of employing logic-based approaches to SDV systems. Fi-
nally, Subsection 3.3.2.3 addresses various other methods that could potentially prove
useful for SDV systems.

3.3.2.1 Event-B Modelling Method

Event-B [63] is a formal method commonly used for system development. The main
advantage of using it is to introduce the system specifications gradually into the for-
mal model through refinement techniques. A formal model in Event-B has two parts:
contexts and machines.

Contexts comprise the static parts of a model, and provide axiomatic characteristics. A
context involves definition of the following elements:

1. Carrier sets: Abstract types, and cannot be non-empty.

2. Constants: Logical variables whose values do not change.

3. Axioms: Logical predicates for constraining the properties of carrier sets and con-
stants.

4. Theorems: Properties that can be proven on the basis of axioms or other theo-
rems.

Machines describe the dynamic parts of a module. An Event-B machine can involve
the following clauses:

1. Refines: These are used to introduce more details to a concrete machine (e.g.
M0 indicates the abstract machine, and M1 refers to a concrete machine, which is
defined as ‘M1 refines M0’).

2. Variables: These describe the system states. Variables are defined on the basis of
mathematical formulae such as sets, relations and functions.

40



41 CHAPTER 3. SAFETY ANALYSIS METHODOLOGIES

3. Invariants: These describe the properties of a system. They also constrain vari-
ables and must always be true. For example, if I(V) represents an invariant for
variable (V), this invariant (I) is held to be true for any change to the value of (V).

4. Events: An event is ‘an atomic transition’ that changes the states of the system.
The transition state of an event is constrained by the guards and the actions.

5. Guards: These are referred to in the ‘where’ clause of an event. Guards are
predicates that describe the conditions that must be met for the event to occur.
For instance, if an event has more than one guard, for the event to be triggered
the conjunction of those guards should hold. If the guards of an event are not
met/satisfied, the execution of events stops. This causes deadlock in the system
model.

6. Parameters: An event may have parameters that cause the guard to maintain a
state. They describe how the variables of a machine change simultaneously to
preserve the atomic nature of the event.

For instance, for an event e with parameters t and variables v, the guard for the event
can be written as G (t, v), and the action for the event as S (t, v), as in Formula 3.1.

e ∼= any t where G(t,v) than S(t,v) end (3.1)

An event may include no parameters, and have only guards and actions to change its
variables directly. The following Formula (3.2) shows how a non-parameter event can
be written.

e ∼= where G(v) than S(v) end (3.2)

Also, an event may comprise no parameters and guards to initialise the machine vari-
ables, as shown in Formula 3.3.

e ∼= begin than S(v) end (3.3)

The actions of events may involve various assignments, expressed as follows:

v := Expression (t, v) (3.4)

v :∈ Expression (t, v) (3.5)
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v : ∥ Predicate (t, v) (3.6)

An assignment can be deterministic (e.g. Formula 3.4), where it specifies the value of
expression (t, v) to v. By contrast, an assignment can also be non-deterministic (e.g.
Formulae 3.5 and 3.6). Specifically, Formula 3.5 assigns any value from the set of ex-
pression (t, v) to v, while Formula 3.6 assigns any value fulfilled in predicate (t, v) to
v.

Moreover, as the invariants I(v) are inductive they must be maintained by all events.
This ensures that all events strictly obey the invariants when an event attempts to mod-
ify the state of variables. For this reason, Event-B machines use theorem-proving to ver-
ify the consistency of events. Moreover, the Event-B machines apply model-checking
techniques that aim to explore all reachable states of the system while transforming the
invariants as the safety properties of a system.

Some contributions of using Event-B within SDV systems and STPA are discussed in
the following points

• Constructing Event-B models for the system based on the system requirements
The details of this approach were inspired by the cookbook [26] for the modelling
and refinement of control systems, which consists of a plant (environment), con-
troller and, in some cases, the human operators who may interact with a system.
The modelling steps suggested in the cookbook are based on the four-variable
model by Parnas and Madey [107]. The guidelines in the cookbook suggest that
the phenomenon of a system can be divided into the following two categories:
1) variables that describe critical properties between environment and controller;
and 2) variables that may be used to represent the interaction between the human
operators and the environment.
Three contributions based upon the four-variable model of Parnas and Madey
[107] relate to this approach to modelling the functionality of the autonomous
controller: a Cruise Control System (CCS) [137]; Lane Departure Warning Sys-
tem (LDWS) [136]; and the Speed Control System (SCS) [90]. However, it can be
said that these autonomous functions have a low level of automation (Level-1) in
which advanced human fallback features, such as the awareness of the driver, are
completely ignored.

• Constructing Event-B models based on the safety constraints of an autonomous
function: The SDV must implement fail-safe mechanisms [80], often known as
the ‘policing function’ [23]. The concept of fail-safe mechanisms focuses on func-
tional requirements, and is part of the system requirements. The policing function
can check the output values of autonomous modules, such as a perception mod-
ule at runtime [23]. The essential steps in using a validation technique such as
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a policing function are to demonstrate the safety constraints on the autonomous
functions. These safety constraints are used either to validate the output of the
autonomous functions or to detect failures in the runtime. Hoang et al. [65] ob-
serve that the concept of metamorphic relationships, which aims to discover an
expected relationship between inputs and outputs, can be used to identify safety
constraints. Therefore, to adopt this approach, the safety constraints of an au-
tonomous function must be identified.

• Constructing Event-B models based on hazard identification methods: The Event-
B formal method was used with the hazard identification methods to ensure that
the identified hazards were prevented or mitigated at the early stage of design.
Colley and Butler [35] developed a method to demonstrate and formally analyse
the critical requirements (artefacts) generated by the method of STPA analysis.
The goal was to use modelling techniques, such as formal verification, by the use
of the Event-B formal method and its Rodin toolset. The model detects vulnerable
system states within the resultant model. Similarly, Howard et al. [68] adopted
STPA to generate a critical requirement, while formal models were constructed
in Event-B to verify that those security requirements completely mitigate against
vulnerable system states. However, Dghaym et al. [40] extended the work of
[35, 68] to develop a compositional approach to elicit the critical requirements for
autonomous functions and then formalise these critical requirements into Event-
B models.

3.3.2.2 Logic-based Approaches

The main idea of these logics is to identify events occurring either next, globally or
eventually on the basis of the nature of the properties under investigation [28]. Some
contributions of using logic-based approaches with SDV systems are discussed in the
following points:

• Verifying decisions of autonomous controller: The concept of a rational agent
is commonly used to focus on the autonomous controller, who is responsible for
making decisions, and to simplify the complexity of SDV systems. More specifi-
cally, a rational agent is a software that can perceive its environment via sensors
and explain its intentions [113]. In order to use the concept of the rational agent,
the logical requirements (rules) must be defined. Subsequently formal methods,
such as LTL, can be used to verify the beliefs of rational agent software.
Fisher et al. [50] proposed a methodology for autonomous systems based on the
concept of a rational agent. The main idea of this methodology is to divide an
autonomous system into the following three stages: 1) the environment stage,
which uses sensors to receive the real-world environment; 2) the continuous/-
dynamic functions, which apply Artificial Intelligence (AI) techniques to obtain
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knowledge from the environment stage; and 3) the rational agent level, which
involves the possible decisions of the autonomous system (rules) based on stages
2 and 3. Related to Fisher’s methodology are a variety of case studies [75, 76, 49]
that have used a GWENDOLEN programming language 2 to implement a ratio-
nal agent software to establish a module checker (Agent Java Pathfinder (AJPF))
and verify the safety properties of SDV systems at runtime. For instance, the case
study mentioned in [49] focused on high-level decisions in SDV systems, where
the rules of a rational agent are defined through the following steps: 1) vehicle
navigation; 2) obstacle avoidance; 3) obstacle selection; and 4) vehicle recovery.

• Verifying perception tasks of autonomous controller: The STL was used to cap-
ture the requirements of the perception module [127], for instance a requirement
R2 presented as ‘Sensor S should detect its visible/target obstacle within T1 time unit’.
Then, it interoperated into an STL formula to support the control design and test-
ing phase of the system under investigation. The driving simulation software
‘Sim-ATAV’ 3 was used to explore and test the proposed requirements. However,
in order to reason about the performance of the perception module, Time Qual-
ity Temporal Logic (TQTL) was introduced as a formal language to monitor the
outputs and awareness algorithms for SDV systems [42]. TQTL attempts to spec-
ify the minimum requirements that can be used to either test or verify the final
output of the perception module. For instance, a requirement TQTL-R1 may be
proposed as ‘at every time step, for all the objects (id1) that were observed and detected
by the perception module in the frame (vision), if the object class is pedestrian with of
probability of more than 0.7, then in the next 5 frames, the object id1 should still be
classified as pedestrian with a probability of more than 0.6’. Next, the temporal logic
formula was written to demonstrate a set of formal requirements.

3.3.2.3 Other Approaches

Finite-State Automata (FSA) is an approach used to specify system behaviours as a
state-transition system. It involves formalisms for discrete-system events, including
capturing time and probabilistic transition. For instance, Guidolini et al. [58] note
that FSAs have been used to handle pedestrians at pedestrian crossings for the Intel-
ligent Autonomous Robotic Automobile (IARA’s autonomous vehicle)4, as shown in
Figure 3.3. However, the case study by Guidolini et al. [58] handles only a single driv-
ing scenario, so Aeberhard et al. [9] proposed a hybrid deterministic model to illustrate
the processes of selecting a driving action. In their model, the vehicle control variables

2GWENDOLEN is a programming language for developing intelligent agents. It is primarily used to
specify the behaviour of an agent and its interactions with other agents [39].

3Sim-ATAV is a software platform for simulating SDV systems. It provides a virtual environment for
testing and evaluating the performance of SDVs and their algorithms [126].

4The Intelligent Autonomous Robotic Automobile (IARA) is an autonomous vehicle project developed
by the Federal University of Espı́rito Santo in Brazil [14].
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are divided into two classes. The first is a finite set of lateral control variables that
concern lane-keeping and lane change states. The second involves cruise control states
and their corresponding longitudinal control variables. The selection of behaviours
was established by evaluating the current vehicle state to specify the appropriate driv-
ing manoeuvres.

The ontology-based approach has also been used to describe the driving environment
and reason for the actions taken by a decision-making module. The main idea of on-
tologies is that the domain of knowledge of a target system can be used to provide
the “key concepts, properties, relationships and axioms of a given domain” [109]. For
instance, Zhao et al. [141] have used this approach to implement a decision-making
module based on knowledge obtained from traffic regulations (e.g. ‘Stop’, ‘To the right’
or ‘Give way’) and the location of a vehicle in its environment. Their focus was on the
traffic scenarios that appear at intersections and on narrow roads; therefore, the rules
were implemented into a decision-making module on the basis of the regulation signs
of a specific location in the environment. The main drawback of this approach is that
it is time-consuming to design an optimal world model composed of every traffic item,
such as the lanes at every locality or city [88].

FIGURE 3.3: Finite-state automata of IARA’s vehicle for handling pedestrians at pedestrian
crossings
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3.4 Discussion

The primary aim of this chapter is to review literature sources to identify both informal
and formal methods used for analysing safety-critical systems, including SDV systems.
This objective directly contributes to addressing RQ1.2.

Traditional informal hazard methods, such as FMEA and FTA, mainly rely on a proba-
bilistic approach to assess the severity and probability of risk (hazard) at the component
level, while the STPA method focuses on the dynamic control of a system and on causes
of hazards in the absence of component failure. STPA can be adopted at an early stage
of design to emphasise the safety requirements of a system [84]. By contrast, tradi-
tional hazard identification methods can be adopted after the design of a system has
been completed, which makes any changes to the design expensive [51].

Automotive vehicle companies rely on the NHTSA safety protocol for developing the
autopilot software. The NHTSA protocol is a comprehensive safety framework that in-
volves 12 elements for assessing SDVs. This protocol also encourages automotive com-
panies to implement certain safety standards, such as ISO 26262 [67] and ISO 21448 [73],
which involve a variety of hazard identification methods, such as FTA, FMEA and HA-
ZOP. However, these methods are outdated and were developed mainly to handle com-
ponent failure. There is a need for a new hazard method or a combined method of mul-
tiple hazard identification techniques to consider the dynamics of system behaviours.
According to the Society of Automotive Engineers (SAE) [24], STPA could be integrated
within ISO 26262 to identify other failures, such as inadequate component interactions,
which may occur either with or without component failure.

Formal methods have been used in many ways to emphasise and support a critical
property of the software under investigation. The system-based approach aims to spec-
ify the entire states and operations of a target system. However, gathering the system
requirements of a software-intensive system, such as SDV systems, may be challeng-
ing. Therefore, based on the safety constraints of the functional requirements, a runtime
monitoring function called ”policing functions” has been developed to emphasise criti-
cal properties of a target system at the runtime [65]. The logic-based approach attempts
to identify the critical properties of the system under investigation over time. However,
this means that the logical requirements (rules) must be identified to examine or ver-
ify the selected properties at runtime. Other approaches, such as FSAs and ontologies,
aim to identify the behaviours of a software-intensive system on the basis of modelling
the target environment of the system under investigation. These approaches attempt
to specify the actions that may be taken by the decision-making module. This way of
modelling, which involves creating and designing the optimal world model of a target
system, can be time-consuming.
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Finally, the existing literature highlights a clear gap concerning the need for new rigor-
ous and systematic methods or a combined approach of multiple techniques to account
for the dynamics of system behaviours. These methods should accurately identify
safety requirements and formally represent them with associated formal representa-
tions to ensure consistency and safety properties.

3.5 Conclusion

This chapter presents a review of both informal and formal methods for system safety
analysis in critical systems such as SDV systems. Informal hazard identification meth-
ods, such as FMEA, FTA, and STPA, are discussed, followed by an exploration of rigor-
ous analysis techniques. In the next chapter we investigate a case study conducted for
this research.
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Chapter 4

Case Study

This chapter provides a discussion of a case study that is relevant to the context of this
research. The selection of the case study is based on three main criteria:

1. Complexity: It must involve both the human driver and the autopilot software
to execute the Dynamic Driving Tasks (DDTs).

2. Control speed and steering features: It must explore how the autopilot software
autonomously sets the steering and speed of Self-Driving Vehicles (SDVs).

3. Capability for human intervention: It must consider the ability of a human
driver to assume control of an SDV when an intervention request is sent.

Considering these parameters, the Automated Lane Centring (ALC) case study was
chosen. The ALC system is a semi-automated system that collaborates with the hu-
man driver to accomplish DDTs. It is a sophisticated system encapsulating multiple
functionalities, including Lane Keeping Assist (LKA), Adaptive Cruise Control (ACC)
and Driver Monitoring System (DMS). Additionally, the human driver is required to
assume a fallback role during critical driving scenarios.

Section 4.1 investigates the characteristics and functionalities of the ALC system. Sec-
tion 4.2 summarises the ALC system as four main features, highlighting the complexity
of performing DDTs within the functionalities of LKA, ACC and DMS. Section 4.3 gives
a conclusion of this chapter.

4.1 Automated Lane Centring

The ALC system is a well-known feature of the Advanced Driver Assistance Systems
(ADAS) and is categorised as being at automation Level 2 and Level 3 [99, 104]. It uses
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sensors, cameras and other onboard technologies to detect and monitor the lane lines
on the road surface. If the Self-Driving Vehicle (SDV) begins to drift or deviate from the
centre of the lane, the ALC system autonomously makes minor steering corrections to
reposition the SDV in its target lane. The ALC system is designed to function at various
speeds and in various driving conditions, thereby enhancing comfort and reducing the
workload on the human driver of the SDV.

It is critical to note that the ALC system does not eliminate the need for a human driver.
Despite the assistance with lane centring, the human driver must remain engaged and
attentive, prepared to resume manual control when necessary. For this reason, the
ALC is often paired with a DMS to ensure driver attentiveness for safe driving opera-
tion [104].

Subsection 4.1.1 explores the features of an ALC system that help to keep the SDV
within its target lane. Subsection 4.1.2 examines the human monitoring features that
the DMS uses to ensure driver attentiveness, especially when the driver might need to
take control of the SDV. Subsection 4.1.3 provides further analysis of the ALC, specifi-
cally examining the real-world autopilot software known as OpenPilot1 which seeks to
achieve the ALC functionalities.

4.1.1 ALC Features for Lane Stability in SDV

The primary function of the ALC system is to maintain the SDV in the centre of its
desired/target lane, with the human driver responsible for performing lane change
manoeuvres [18, p. 3]. The ALC system operates in conjunction with other SDV com-
ponents, importantly alerting the human driver to its driving actions. Additionally, the
ALC system takes advantage of the lower-level physical components of an SDV. It uses
the braking and steering systems to keep control and ensure that the SDV stays within
the target lane even when navigating bends in the road [10].

The ALC system follows the same architecture that is outlined in Section 2.3 of Chapter
2. In practical terms, the decision-making module is also known as the planning mod-
ule. For example, the open-source driving assistance software, OpenPilot, structures
the ALC system into the following three main modules: perception, planning, and con-
trol. According to Jiao et al. [74], OpenPilot’s architectural design is similar to that of
Tesla’s autopilot software.

Both academic researchers and industry practitioners highlight the variety of features
in an ALC system. Some researchers emphasise that the objective of an ALC system is
to identify the desired path and adjust the steering of the SDV to remain centred within
a target lane [10, 71], while others identify additional ALC features, such as issuing

1OpenPilot, is an open-source driver assistance system with advanced Level 2 autonomous driving
features. It includes steering and speed control to keep an SDV inside its target lane [10].
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warnings to the human driver to undertake corrective action [41]. However, a tech-
nical report by Mei et al. [41] and feedback from an engineering expert from General
Motors (GM) suggest that the ALC includes the following three main functionalities
that describe its high-level system requirements:

1. Lane Departure Warning (LDW): This issues a warning to the human driver
when the SDV is about to depart its current lane. The human driver is then re-
sponsible for applying corrective action.

2. LKA: By making a slight adjustment to the lateral control feature (steering), this
prevents the SDV from drifting into another lane. However, due to the limitations
of the LKA in managing complex driving scenarios such as abrupt lane changes,
the human driver’s input continues to be essential for implementing required
corrections.

3. ALC: This function is integrated with several automated features, including LKA,
ACC, and DMS. This technology allows the system to qualify as a Level 2 or Level
3 automated driving system [18, p. 2]. First, the LKA maintains the SDV within
its target lane by continually adjusting its steering. Second, the ACC ensures a
safe distance from the vehicle ahead by regulating the SDV ’s speed. Last, when
the LKA or ACC features are active, the DMS monitors the driver’s awareness.

4.1.2 DMS Features for Safeguarding Driver Alertness in SDV

To compute the awareness of a human driver, the DMS can be considered to have either
active or sensitive features. For instance, an active human feature might be the touch
of hands on the steering wheel, while a sensitive feature might be the detection of
eye gaze by a camera inside the vehicle. The concept of active and sensitive features
has been adopted by the autopilot software currently on the market. According to
Volvo’s autopilot software [131], to activate the ALC function the human driver must
be hands-on at the steering wheel. In contrast, Tesla’s autopilot software [102] and the
OpenPilot software [10] police the human driver by a combination of both active and
sensitive monitoring features. For instance, Tesla’s autopilot software models 3 and Y
[102] employs a sensitive monitoring feature that uses an in-car camera to detect and
monitor the human driver when the advanced driver assistance system is in operation.

In OpenPilot [10], the DMS operates by tracking precisely various indicators to en-
sure the driver’s engagement and attentiveness during autonomous driving operation.
These indicators often involve parameters such as the driver’s hand position on the
steering wheel and their eye and head movements. If the DMS determines that the
driver is paying insufficient attention to the road, it immediately initiates an alert. This
can be manifested as either auditory signals or visual cues on the vehicle’s dashboard.
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If the driver fails to respond to these alerts or their level of attentiveness does not im-
prove, OpenPilot implements a risk mitigation plan. This plan involves slowing the
vehicle down to prevent an accident when there is no human driver ready to take con-
trol; if necessary, this brings it to a complete halt.

There are several notable advantages to incorporating a DMS within an ALC system [18,
46]. These benefits include:

1. Enhanced safety: The DMS continuously monitors the driver’s awareness level.
This ensures that the driver is ready to intervene and take control when either a
system signals the need for intervention or there is a system malfunction.

2. Supervisory control: Even with semi-automated systems such as ALC it is crucial
that the driver can intervene promptly during unexpected situations. The DMS
ensures that the driver’s attention remains on task, ready to take control of the
vehicle.

3. Supporting gradual transition to full autonomy: By allowing a combination of
human and automated control, the DMS facilitates a smoother and more gradual
transition towards fully autonomous vehicles (Levels 4 and 5).

4.1.3 Further Analysis of the ALC on the OpenPilot Platform

This subsection explains the exploration of the ALC on the open-source platform, Open-
Pilot. The OpenPilot platform [10] is well-known driver assistance software used in
automotive field research. It provides the same functionality as the existing driver as-
sistance systems of most new vehicles on the road. It employs a development method-
ology similar to Tesla’s autopilot software, known as ‘end-to-end’ learning method-
ology [94, 71]. This end-to-end learning methodology simplifies the complexity of
performing the Dynamic Driving Task (DDT) into a single Artificial Intelligence (AI)
framework, which involves perception, planning, control and DMS, as discussed in
Section 2.3 in Chapter 2.

In this exploration, two main objectives guide our study of OpenPilot. The first is to
discover which features of the ALC system keep the SDV in its target lane. The second
is to study how the software behaves in the CARLA driving simulator 2 [43] to identify
those situations where a driver may need to take control of the SDV. Details on setting
up the CARLA simulator are in Appendix B. The summary of the exploration process
in the ALC system provided by OpenPilot is detailed in the following subsections.

2CARLA (Car Learning to Act) [43] is an open-source autonomous driving simulator. It is a flexible,
versatile tool created to facilitate the development, training and validation of autonomous driving sys-
tems.
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4.1.3.1 Overview of OpenPilot Software with LKA, ACC and DMS Features

Figure 4.1 illustrates the interactions among OpenPilot’s internal modules. A summary
of these interactions is provided below:

• Human driver interactions: The in-car display system acts as a communication
channel between the ALC system and the human driver. This interface integrates
the DMS feature to evaluate the driver’s awareness. Furthermore, the ALC sys-
tem uses this display to alert and inform the driver about the operation of the
ACC and LKA features.

• Perception and functionality: The LKA and ACC features begin by estimating
the driving environment using sensors such as cameras and radar. Within the per-
ception module the ALC system recognises the lane position and calculates the
distance to the leading vehicle on the basis of sensor data. The planning module
then specifies the necessary changes to steering and speed to keep the SDV within
its target lane and at a safe distance from the vehicle ahead. The control module
then implements these changes, adjusting the SDV ’s position accordingly.

FIGURE 4.1: Relationships between OpenPilot’s internal modules
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4.1.3.2 LKA and ACC Control in OpenPilot

In controlling steering, OpenPilot uses computer vision-based algorithms to analyse
surrounding environmental features and make necessary adjustments. The function-
alities of both the LKA and the Lane Departure Warning (LDW) are enabled by an
end-to-end deep learning model. This model takes as its inputs both the SDV ’s current
state and the latest images from the SDV ’s front-facing camera [30].

Speed control in OpenPilot is managed through the ACC function. The ACC uses a
radar sensor to maintain a safe and consistent distance from the vehicle ahead. This
feature not only aids in maintaining a constant speed but contributes to system safety
by minimising the risk of rear-end collisions.

OpenPilot incorporates three main modules to control the speed and steering of an
SDV. First, the perception module helps the system to comprehend its driving envi-
ronment by using incoming images and radar readings to detect vital features such as
the position of a leading vehicle or lane lines. OpenPilot assesses the success of this
detection process by a detection score. This score, ranging from 0 to 100%, indicates
OpenPilot’s confidence in its perception capabilities. Based on this interpretation of the
incoming data, OpenPilot uses the incoming data to calculate a desired path. This path
is crucial to maintaining the SDV within its target lane. Additionally, it guarantees a
safe distance from any leading vehicle [10].

Second, the planning module uses the calculated desired path to decide on a target
position, with the necessary adjustments to speed and steering. The target position is
a location within the target lane that the SDV aims to reach, while the required speed
and steering adjustments aid the low-level physical components of the SDV in reaching
that target position.

Last, the control module implements changes in speed and steering to support the SDV
in reaching its target position. It uses Model Predictive Control (MPC) to determine the
most suitable steering angle and speed. This is done using three factors [48]:

1. System dynamics: This involves a continuous adjustment of speed and steering.
The adjustment aims to navigate the SDV to its target position.

2. Leading vehicle constraints: These help prevent the SDV from colliding with the
vehicle ahead.

3. Speed and steering angle constraints: These constraints prevent the SDV from
changing its steering or speed too quickly, ensuring that the human driver has
sufficient time to respond safely if the ALC system requests an intervention.
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4.1.3.3 DMS in OpenPilot

As OpenPilot software is classified as a system with Level 2 capabilities [30], the DMS
in OpenPilot is created to increase safety by ensuring that the driver stays alert and en-
gaged while driving, even when the ALC features are enabled. Thus, the human driver
is still responsible for the overall control of the SDV and must be ready to intervene
when necessary.

The DMS in OpenPilot uses a mix of active and sensitive monitoring features [10]. Sim-
ilar to Tesla autopilot software [102], these features make sure that the driver is aware
and can react if the ALC system issues a request to intervene. For instance, it may send
the driver one of two intervention/warning messages:

1. ‘Always keep hands on the steering wheel and eyes on the road’: This deter-
mines the awareness level of the driver required to activate the OpenPilot soft-
ware.

2. ‘Take control. Turn exceeds steering limit’: This indicates that the system is to
release control of the SDV and that the driver is to be responsible for navigating
the vehicle in its driving environment if the ALC system exceeds the range for the
steering angle.

Due to the unpredictable behaviour of human drivers, such warnings and intervention
requests may be ignored. Thus, it is crucial to define a limited time for an SDV to wait
for the human reaction. According to a study of the Crash Warning Interface Metrics
program (CWIM) about LDW notifications [82], after an auditory notification a human
driver may take approximately 700 milliseconds to override the system and provide a
steering response. Other studies suggest a longer interval time, with the human driver
taking approximately 10 seconds to refocus and pay attention to the road [93]. For this
reason automotive driving applications such as Tesla and OpenPilot have implemented
notification systems to maintain human drivers’ attentiveness. For instance, when an
intervention request is sent, OpenPilot [10] allows a driver 4 seconds to react. If the
driver disregards this request, OpenPilot issues an auditory notification and, after 6
seconds, reduces the speed of the vehicle until the SDV is brought to a complete halt.

4.2 DDT Features Derived from the ALC System

The ALC system can be broken down into several high-level features, as follows:

• Feature 1: This initial interpretation aims to understand how the ALC system
interacts with the driver.
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• Feature 2: This extension contains two crucial functionalities: the LKA and the
DMS. The LKA is responsible for controlling the SDV ’s steering angle to ensure
that the vehicle remains within its target lane. Concurrently, the DMS monitors
the driver’s attentiveness inside the SDV to ensure their awareness to take control
when necessary.

• Feature 3: This extension considers both LKA and ACC functions to control steer-
ing and speed to keep the SDV inside the target lane. The ACC manages the speed
of the vehicle, adapting it as needed to maintain a safe distance from a leading
vehicle on the basis of the driving conditions.

• Feature 4: This extension involves modelling the driver’s potential responses
when the ALC system prompts the driver to intervene. Various factors are taken
into consideration, such as the driver’s reactions, responsiveness and ability to
take corrective action.

Each of these aspects of the ALC system is summarised in its own subsection.

4.2.1 Feature 1: High-Level Interactions Between ALC System and Human
Drivers

This subsection details the key high-level interactions between the ALC system and the
human driver. These interactions illustrate how the ALC and the human driver engage
together to accomplish the DDTs, as follows:

1. The ALC system can control the SDV to reach a new position within the target
lane.

2. During the occurrence of critical driving scenarios, the ALC system relies upon
the human driver’s intervention to control the SDV.

3. The human driver is required to be ready to take control of the SDV, with the
purpose of performing the entire driving task.

4.2.2 Feature 2: The LKA and DMS Functions in the ALC System

This subsection offers an overview of the high-level operations of the ALC system for
the LKA. These operations are as follows:

1. The perception component of an ALC interprets sensing data, such as images, to
identify perceived environmental features such as lane markings and their detec-
tion score.
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2. The desired path to keep an SDV within its target lane is estimated on the basis of
how the perception component interprets the perceived environmental features.

3. The decision component uses the identified/desired path to specify the target
position and the adjustments to steering necessary to reach that position.

4. The control component is tasked with actuating the new steering to reach the
target position.

5. The ALC system can depend on the human driver of the SDV when a critical
driving scenario arises.

Furthermore, the ALC ensures the driver’s awareness through the DMS component.
The high-level operations of the DMS are as follows:

1. The DMS computes the driver’s awareness on the basis of both active and sensi-
tive monitoring features.

2. If the driver fails to provide the necessary level of human monitoring features,
the DMS deactivates the ALC system.

4.2.3 Feature 3: The LKA and ACC Functions in the ALC System

This subsection expands upon the previous ALC feature by incorporating both the LKA
and ACC for controlling the speed and steering of an SDV. The ALC ’s operations
within the DMS remain consistent; however, adjustments are made to the autonomous
determination of speed and steering by the ALC system, as follows:

1. The perception component of an ALC processes various sensing data, such as
images and radar points. This data is used to detect and understand key environ-
mental aspects, such as lane markings and the position of any potential leading
vehicle, along with a score that indicates confidence in these detections.

2. The perception component then uses this understanding to estimate the optimal
path to keep the SDV within its target lane. This estimate includes considerations
for potential leading vehicles.

3. Once the desired path is established, the decision component then specifies the
target position and determines the necessary adjustments to speed and steering
required to reach this target position.

4. Subsequently, the control component is responsible for actuating the modified
steering and speed parameters to reach the target position.

5. In a critical driving scenario the ALC system continues to rely on the human
driver of the SDV.
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4.2.4 Feature 4: Modelling the Driver Reactions in the ALC System

This subsection observes the temporal dynamics of the driver’s response when the ALC
system initiates a request for manual intervention:

1. The ALC system issues a request for intervention and initiates a pre-specified
time (countdown) for the driver’s response.

2. If the driver does not respond within the specified time, the ALC system triggers
an auditory alert to attract the driver’s attention.

3. From the moment of the auditory alert, the driver is given a further specific time
window in which to react.

4. If the driver still does not react within the specified time, the ALC system proac-
tively reduces the SDV ’s speed.

4.3 Conclusion

This chapter discussed a case study relating to the context of this thesis. The ALC case
study was selected because it represents the complexity of controlling various func-
tions in SDV systems along with the critical participation of human drivers in perform-
ing DDTs. In the following chapter we present the initial version of our methodology,
focusing on the development of a rigorous analysis template.
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Rigorous Analysis Template

This chapter introduces our first contribution, entitled the Rigorous Analysis Template
(RAT). Parts of this chapter were published in COMPSAC 2022 [12]. Specifically, that

material corresponds to the content in Section 5.2.

The Rigorous Analysis Template (RAT) highlights the interplay of automation by an
Self-Driving Vehicle (SDV) and a human driver, especially when the SDV considers the
human driver as a fallback mechanism to handle hazardous events. The development
of RAT represents a significant advancement in identifying automation aspects and
analysis processes for SDV systems. Its design aims to establish an analytical frame-
work that specifically addresses the main Research Question (RQ2) of this thesis.

RQ2: How can an analytical framework be designed to systematically highlight the roles of
both a human driver and an SDV system during autonomous operation?

RQ2 aims to design an analysis framework that emphasises the roles of a human driver
and an SDV system during autonomous operation. This includes identifying key au-
tomation features and explaining how the general scope of analysis might be per-
formed. Section 5.1 justifies the creation of a template for SDV systems and selection
of informal and formal methods. Section 5.2 provides an overview of our approach
and the processes involved. Section 5.3 explains how the RAT framework tackles RQ2.
Section 5.4 presents related work and Section 5.5 gives a conclusion to this chapter.

5.1 Justifications

This research develops an analytical framework to capture and analyse safety prop-
erties in SDV systems. Our aim is to identify unsafe or inadequate high-level system
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component interactions between drivers and SDV systems. The main idea is to provide
a universal methodology applicable to any semi-automated system (automation levels
1 to 3). To achieve this, we have divided our approach into three main aspects:

1. A template that identifies generic aspects of automation between drivers and
SDVs by explaining the system component interactions involved in SDV systems.

2. Selection of a suitable hazard identification method to identify inadequate or un-
safe system component interactions between drivers and SDV systems.

3. Integration of formal and hazard identification methods to enhance the quality
of the analysis by proving that the occurrence of hazardous events has been miti-
gated at the design level.

Each aspect is detailed in its own subsection below.

5.1.1 Motivation Behind Automation Aspects in Template

The Society of Automotive Engineers (SAE) (J3016) [101] affords SDVs ’ autonomy var-
ious levels, as mentioned in Table 2.1. These levels refer to Dynamic Driving Task
(DDT) aspects such as lateral and longitudinal control, Object and Event Detection and
Response (OEDR) and fallback on a human driver by autopilot software. According
to this standard, most manufacturers’ systems remain in semi-automation (Levels 1 to
3) due to the ambiguity of the collaborative requirements between the human driver
and the autopilot software. For instance, automation Levels 1 and 2 rely on the human
driver to handle any hazardous events that may arise in the driving environment, while
at automation Level 3 the human driver is merely the ‘fallback-ready user’. According
to the SAE [101], a ‘fallback-ready user’ refers to the assumption that the user (human
driver) is receptive to any requests to intervene and immediately become the driver.
Therefore, a system with Level 3 capabilities must first detect a hazardous event and
then inform the human driver to take control of the vehicle.

Due to the limited capabilities of systems to perform OEDR features, the key concern
about automation levels is the transition point from Level 2 to Level 3 [20]. The main
reason for this concern is that a system with Level 2 capabilities is limited in its ability
to observe and respond to all the relevant objects in its Operational Design Domain
(ODD). Therefore, the human driver is expected to supervise the driving environment
and immediately take control of the vehicle when a hazard arises. By contrast, the SAE
assumes that a system with Level 3 capabilities is able to detect and respond to the most
highly relevant objects; therefore, if a critical driving scenario unfolds, the system must
instruct the human driver to take control of the vehicle within an adequate timeframe.
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To perform their DDTs, SDVs involve a complex system of multiple components/mod-
ules. As seen in Figure 2.4 in Chapter 2, the complexity of a system can be simplified
into four components. However, there is a need to link DDT features such as OEDR,
ODD and fallback to the internal components that are involved in the SDV systems.
Therefore, our template aims to accomplish two main goals as follows:

1. Clarify and identify the automation aspects between human drivers and SDVs
during the performance of DDTs, especially if a system requires a human driver
to play a fallback role to ensure the safety of a system.

2. Link the automation aspects of DDTs with the internal components of SDV sys-
tems in order to specify the responsibility of either human drivers and SDV sys-
tems during the performance of DDTs.

5.1.2 Hazard Identification Methods

The choice of a hazard identification method depends on how it can be applied practi-
cally to analyse complex system component interactions, such as those between SDVs
and human fallback drivers. Based on our exploration of various methods in the cyber-
physical domain in Section 3.1, Systems Theoretic Process Analysis (STPA) was chosen
for the following reasons:

1. STPA focuses on the dynamic control of a system and identifies causes of hazards
even in the absence of component failure. Additionally, studies such as [19, 24]
suggest that STPA can investigate any inadequate or unsafe component interac-
tions that may occur, with or without component failures.

2. STPA can be applied in the early stages of design to emphasise the Safety Require-
ments (SRs) of a system [84]. This helps to guide the development of the system
and avoid costly changes after the architectural design of the target system has
been built.

3. STPA is an iterative analysis methodology that allows for gradual development
of the target system by iterating the design and re-performing the analysis.

Furthermore, STPA has been involved in various ongoing research projects at the home
institution. For example, Colley and Butler [35] developed a method to formally anal-
yse the critical requirements (artefacts) generated by the STPA analysis method. Simi-
larly, Howard et al. [68] adopted STPA to develop critical requirements for safety and
security, which formally mitigate against vulnerable system states. Dghaym et al. [40]
extended the work of [35, 68] to develop a compositional approach for eliciting critical
requirements for autonomous functions based on the STPA method. Therefore, we aim
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to extend these works to SDV systems. Moreover, the expertise of the research commu-
nity at the home institution can significantly enhance the quality of the research.

5.1.3 Formal Methods

The choice of a rigorous specification approach rests on how well it can capture the
driven-STPA requirements. Based on the exploration of various methods in the cyber-
physical domain in Section 3.3, the Event-B modelling approach was chosen for several
reasons:

1. Event-B supports modelling of design aspects at system level, rather than just at
software level.

2. Event-B introduces system specifications gradually into the formal model through
refinement techniques that enable traceability of critical requirements with asso-
ciated formal representation.

3. Event-B is supported by the Rodin toolset [7], which includes both theorem-
roving and model checking (ProB) [83].

The University of Southampton has a strong research track record in formal methods
and, as for the STPA method, has applied Event-B to develop several safety-critical
systems. Consequently, existing expertise within the research community at the home
institution facilitates the progress of this study to a superior level of quality.

5.2 Rigorous Analysis Template

This section presents the process of constructing and employing RAT framework. The
approach, as illustrated in Figure 5.11, consists of two primary phases. The aspect identi-
fication phase aims to identify the various considerations to be taken into account when
designing SDV systems. The second phase of analysis process applies the STPA and
Event-B to identify and ensure the mitigation of unwanted interactions between an
SDV and human drivers at system level. To validate our approach, we show how an
Automated Lane Centring (ALC) system encapsulates high-level system component
interactions between the autonomous and the human controllers in a process initially
summarised in Section 4.2.1 of Chapter 4.

Subsection 5.2.1 outlines the creation of a template for SDV systems, with a specific
focus on identifying automation aspects. Subsection 5.2.2 explains how we apply the
template to the ALC system. Subsection 5.2.3 discusses the application of STPA and
Event-B modelling techniques to the instantiated ALC template.
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FIGURE 5.1: Overview of processes in RAT

5.2.1 Development of a Template

Due to the complexity of component interactions of semi-automation systems, we clar-
ify the aspects of the SDV systems into two categories:

1. Autonomous controller aspects, determining the identification of a driving deci-
sion to actuate the SDV.

2. Human fallback aspects, establishing the engagement channel between the hu-
man fallback component and the autonomous controller.

In the following we present generic autonomous aspects of the SDVs then organise
them into the internal components of an SDV.

Generic autonomous controller aspects: Table 5.1 shows the generic autonomous
controller aspects of SDV systems. Various studies, such as the DARPA Challenges
[128], Badue et al. [14] and OpenPilot [10], have shown that SDVs require three mod-
ules to perform the DDT: the perception, decision-making and control modules. As a
result, our generic aspects of an autonomous controller are sensing data, the perceived
environmental features, driving decision and driving action (see Figure 5.2).

The perception module is intended to perform the OEDR task by observing the driving
environment via sensors. The perceived environmental features are considered as the

1The notation in Figure 5.1 is the standard notation to describe work processes known as ‘solution-
patterns’, (see https://vvpatterns.ait.ac.at/about-vv-patterns/ ).
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output values of the perception module. These features aim to demonstrate how the
autonomous controller achieves the OEDR task.

The decision-making module aims to accomplish the planning task, which involves a
system’s goal such as keeping a vehicle between the lane lines. These kinds of goals
cannot be accomplished without the help of a perception module; therefore the input
values of a decision-making module mainly rely on the output values of a perception
module. The driving decision can be considered as the output value of a decision-
making module in order to show how an autonomous controller interprets the per-
ceived environmental features and achieves a system’s goal.

Finally, the control module is responsible for accomplishing the lateral or longitudinal
tasks that actuate the SDV in its environment. It receives the outputs of the decision-
making module to specify modifications to low-level physical/electronic SDV compo-
nents. For instance, the SDV ’s velocity become a signal to the accelerator pedal, while
the SDV ’s orientation guides changes to steering wheel control.

TABLE 5.1: Generic autonomous controller aspects

Generic autonomous controller as-
pects

Description

Sensing data Sensing data refers to information that is collected
through sensors or other monitoring devices. Sen-
sors are devices that detect critical properties of the
environment.

Perceived environmental features These features explain the ability of a system to de-
tect and respond to any environmental events in a
specific ODD.

Driving decision This shows how an autonomous controller inter-
prets the perceived environmental features and
achieves a system’s goal.

Driving action This indicates the required manipulation of the
physical components of a vehicle. The vehicle con-
trol features can be represented as lateral and longi-
tudinal features.

Generic human fallback aspects: Table 5.2 shows the generic human fallback aspects
of SDV systems. Various automotive companies, such as Tesla [102, 56], Comma.ai [10]
and Volvo [131], have shown that Human-In-The-Loop System (HITLS) integrates with
the internal components of SDV to become a fallback option when a system fails to op-
erate as expected. According to these companies, their autopilot software uses a Driver
Monitoring System (DMS) to ensure the awareness level of a human driver in order
either to activate the SDV systems or to warn the human driver about the SDV ’s cur-
rent state. As a result, we find that the generic features of a human fallback driver are
the awareness level and the intervention request. The awareness level aims to measure the
awareness of the human driver and ensure a secure transition of the vehicle’s control,
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while the intervention request denotes the need for the human driver to take control of
the vehicle if the SDV system issues a request to intervene.

TABLE 5.2: Generic human fallback aspects

Generic human fallback aspects Description
Awareness level This feature indicates the status of a human driver

when the SDV system is operating. The status of a
human driver could be either aware or unaware.

Intervention request This indicates that a system needs the human driver
to intervene immediately.

Template for SDV systems: As a result of this phase the generic aspects of an au-
tonomous controller and a human fallback driver were organised into the generic tem-
plate prototype shown in Figure 5.2. This diagram contains the generic aspects of SDVs
and how these aspects interact inside the internal components to accomplish the DDTs.

FIGURE 5.2: Template for SDV systems

5.2.2 Template Instantiation Process for ALC system

This subsection presents how the generic automation aspects of the SDV system can be
used to instantiate the automation aspects of the ALC system discussed in Chapter 4.

Based on the general automation aspects of the SDV system, we categorised the in-
stantiation process into two main categories: 1) autonomous controller aspects and 2)
human fallback aspects. Figure 5.3 instantiates the generic autonomous aspects of an
autonomous controller and a human fallback component into the ALC system.
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First, the autonomous controller aspects focus on how the ALC system autonomously
determines the speed and steering angle of an SDV to meet either Lane Keeping Assist
(LKA) or Adaptive Cruise Control (ACC) functions. These autonomous aspects con-
tain three primary components: perception; decision; and control. Table 5.3 illustrates
the instantiation of these autonomous controller aspects, highlighting the advanced
features of the LKA and ACC functions.

The sensing data is categorised into camera images and radar reading points, obtained
respectively from the camera and radar sensors. The perception component receives
the camera images and radar reading points to detect the desired path. In more detail, it
estimates the identification of a desired path based on the interpretation of the images
and radar reading points to detect lane markings and any potential leading vehicle.
These interpretations are quantified by a confidence score (probabilities) that explicitly
estimates the detection confidence of the ALC system in maintaining an SDV in its
target lane. Therefore, the desired path, confidence score and any potential leading
vehicle are treated as the perceived environmental features.

The decision component uses the desired path to define the required speed and steer-
ing angle modification to adjust an SDV onto a new (target) position between the lane
lines. Hence, target position and required modification of speed and steering angle can be
considered the driving decision that an SDV aims to achieve. Last, the control compo-
nent outlines the driving action that manipulates the physical vehicle components to
apply the modified speed and steering angle to reach the target position.

TABLE 5.3: Autonomous controller aspects.

Generic Aspects ALC Specific Aspects

Sensing data
- Camera images
- Radar reading points

Perceived environmental features
- Desired path
- Confidence score
- Leading vehicle

Driving decision
- Target position
- Target speed
- Target steering

Driving action - Actuate the steering and speed autonomously

Second, the human fallback aspects aim to understand how the DMS component en-
sures the responsiveness of a human driver when the ALC system may request inter-
vention. Table 5.4 extends the generic human fallback aspects to include the advanced
features of the DMS.

The DMS can ensure the awareness level of a human driver via two monitoring fea-
tures, active and sensitive. For instance, an active monitoring feature could require a
driver to keep their hand on the steering wheel of the SDV while the ALC system is
in operation. Additionally, a sensitive monitoring feature employs the in-car camera
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to detect and monitor changes in the facial, eye and head movements of the human
drivers of the SDV. Therefore, we extended the awareness level of a human driver to
be either hands on the steering wheel or a sensitive-monitoring feature.

Furthermore, the ALC might alert a driver to assume control of an SDV. Therefore, we
expanded the intervention request to include warning messages, auditory notifications and
corrective actions. These messages might be sent when the ALC system requires driver
correction. If the driver does not respond to these warning messages, the ALC may
issue an auditory notification to inform the human driver that the ALC is to release
control of the SDV.

TABLE 5.4: Human fallback aspects

Generic Aspects DMS Specific Aspects

Awareness level
- Hands on steering wheel
- Sensitive monitoring feature

Intervention request
- Warning message
- Auditory notification
- Corrective action

5.2.3 Analysis Process

The analysis process was carried out on the basis of the instantiated template of the
ALC system. This phase was divided into two primary steps: the STPA method and
modelling in Event-B. These steps are detailed in the subsequent subsections.

5.2.3.1 Systems Theoretic Process Analysis

The main reason for using STPA was to identify the potential hazards of a semi-automated
system and to emphasise the safety requirements concerning the roles of a human
driver and the ALC system. We employed the STPA guidelines provided by Leve-
son and Thomas [84]. These guidelines can be summarised into four steps as discussed
in Subsection 3.1.4.2 of Chapter 3.

STEP 1: Define high-level losses, hazards and requirements

This step aims to identify the System Losses (SLs), System Hazards (SHs) and their
corresponding requirements. With the help of the advanced of autonomous aspects be-
tween the autonomous controller and the human fallback component mentioned ear-
lier in Figure 5.3, we defined the system as a semi-automation system that integrates
with the human driver and driving environment. There are two main sub-systems:
human fallback and autonomous controllers. The autonomous controller observes the
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FIGURE 5.3: Instantiating process, from generic template to ALC concrete template

autonomous aspects outside the SDV, while the human fallback controller polices the
changes inside the SDV. According to SAE [101], semi-automation systems assume that
the driver provides a corrective action if the autonomous controller fails to operate as
expected; therefore, a high-level system loss is SL1:

• SL1: ‘The autonomous controller drives the SDV to collide with other obstacles outside
its target lane’.

As the human driver plays a fallback option in dealing with hazardous events, a high-
level system hazard can be identified as SH1:

• SH1: ‘The human driver is unaware of autonomous operations’.
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The initial Safety Requirements (SRs) could be identified as follows:

• SR1: The human fallback controller must compute/ensure the awareness level of
the driver to activate the ALC system.

• SR2: If the driver does not provide hands on steering wheel, the human fallback
warns and alerts the driver.

• SR3: If the system raises the alarm, the driver is to be responsible for performing
the entire driving task.

STEP 2: Construct the hierarchical control structure

After identifying the system losses, hazards and initial requirements, the next step was
to create the control structure. This step captures the functional relationships and inter-
actions of the main system components as a set of Control Actions (CAs) and Feedback
loops (Fs).

Our hierarchical control structure is shown in Figure 5.4. It comprises four layers: hu-
man driver (inside the SDV); human fallback controller; autonomous controller; and
driving environment (outside the SDV). CA1 and F1 indicate the driver’s responsibil-
ity to monitor the changes in the driving environment or intervene by taking control
of the vehicle. CA2 indicates the driver’s responsibility to provide the hands on steer-
ing wheel to activate the system, while F2 shows the possible system-level interactions
between the human fallback controller and the human driver when the system sends a
feedback loop to alert the driver. CA3 and F3 demonstrate the responsibility of the au-
tonomous controller to perceive the driving environment and compute a target steering
into a new position. CA4 indicates a system interaction between the human fallback
controller and the autonomous controller when the awareness level is computed and
sent to the autonomous controller.

STEP3: Determine how new hazardous states may occur

This step aims to understand the dynamics of system behaviours in order to identify
new hazardous events. We organised the Unsafe Control Actions (UCAs) analysis into
three groups corresponding to CA1 to CA4, as discussed earlier in Figure 5.4. The first
group involves actuating the new steering variable (CA3). Table 5.5 illustrates UCAs
associated with the actuating steering variable in the ALC. Specifically, the autonomous
controller may propose a target steering angle in a manner that requires the physical
wheel to exceed its steering angle limit. For instance, assuming the maximum range
of the steering angle is 70 and the minimum range is -70, the autonomous controller
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FIGURE 5.4: Control structure of high-level system interactions for an ALC system

must consider these specifications when proposing its target steering angle. Therefore,
a new system hazard can be defined as SH2:

• SH2: ‘The autonomous controller may propose its target steering angle outside the steer-
ing angle range of the power steering system of the vehicle’.

TABLE 5.5: Unsafe control actions in steering variable of ALC system

Control
Action
(CA)

Not providing CA leads to
hazards

Providing CA leads to haz-
ards

CA applied
early, late, or
out of order

CA
stopped
too soon
or applied
too long

CA3

UCA1: Autonomous con-
troller does not consider a
steering limit of the vehicle’s
power steering system.

UCA2: Autonomous con-
troller may propose a target
steering angle that exceeds
the physical wheel’s steering
angle range.

N/A N/A

Causal Factor

Wrong adjustment of the actuating variables (steering).

The second group is associated with human drivers to provide such an active mon-
itoring feature (CA2) to activate the operation of the ALC system (CA3). Table 5.6
illustrates UCAs to the DMS operations. For example, the driver might be aware but
not react when the ALC issues an intervention request. Therefore, a new system hazard
can be defined as SH3:
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• SH3: ‘The human driver does not pay attention to the autonomous operations of an ALC
system’.

TABLE 5.6: Unsafe control actions in awareness level of driver

Control
Action
(CA)

Not providing CA leads to
hazards

Providing CA
leads to haz-
ards

CA applied early, late, or
out of order

CA
stopped
too soon
or applied
too long

CA2
and
CA3

UCA3: DMS verifies(CA2)
and shares(CA3) the aware-
ness level of a driver with
the ALC system, but a driver
does not react to a request to
intervene.

N/A UCA4: Driver is aware, but
does not react.

N/A

Causal Factor

A poor reaction of a driver when the ALC issued a request to intervene.

The third group aims to investigate the correction action from the human driver (CA1).
In fact, the human driver assumes the responsibility to provide the correction action
when the ALC system issues a request to intervene. Table 5.7 determines one UCA
when the ALC system may release control of an SDV where the driver correction action
is unknown. Therefore, a new system hazard can be defined as SH4:

• SH4: ‘The autonomous controller may release control of an SDV when driver correction
action is unknown’.

TABLE 5.7: Unsafe control actions in driver correction action

Control
Action
(CA)

Not provid-
ing CA leads
to hazards

Providing CA
leads to haz-
ards

CA applied
early, late, or
out of order

CA stopped too soon or applied
too long

CA1 N/A N/A N/A

UCA5: ALC system may release
a control of an SDV, but the
driver does not react.

Causal Factor

Unknown reactions of a driver when an ALC system releases a control of an SDV

STEP 4: Develop new requirements for the hazardous states identified in Step 3

This step aims to improve the proposed safety requirements based on the hazardous
events identified in Step 3. For instance, the possible safety requirements to prevent
system hazards (SH2 to SH4) are as follows:
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• SR4: If the autonomous controller attempts to exceed the maximum or minimum
steering angle, the human fallback controller warns and alerts the driver to take
control of a vehicle [SH2].

• SR5: If the target steering angle exceeds the minimum steering angle, then the ve-
hicle’s power steering system modifies the target steering angle to the minimum
steering angle [SH2].

• SR6: If the target steering angle exceeds the maximum steering angle, then the ve-
hicle’s power steering system modifies the target steering angle to the maximum
steering angle [SH2].

• SR7: If the driver does not provide the hands-on steering wheel and a sensitive
monitoring feature, the ALC system will be immediately deactivated [SH3].

• SR8: If the autonomous controller system issues a request to intervene (warning
messages), the driver will be responsible for performing the entire driving task
(manual driving) [SH3].

• SR9: When the ALC system issues an auditory notification to release control of
an SDV, the driver is expected to assume control [SH4].

5.2.3.2 Modelling in Event-B

The driven safety requirements of the STPA (SR1 to SR9) can be used as inputs of
this stage. The Event-B models are created to prove that the occurrence of losses and
their relevant hazards is eliminated or mitigated at system level. The Event-B elements
(actions, guards and invariants) are discussed to show how the formal models in Event-
B capture the safety requirements of the STPA. A full script of the formal models can
be seen in Appendix C. The refinement strategy of our Event-B model can be divided
into two categories: 1) Autonomous controller aspects of the system; and 2) Human fallback
aspects of the system.

In the subsequent points we summarise some aspects of our formal models.

1) Formalisation of the autonomous controller features

The main goal of an autonomous controller is to move an SDV to be within its target
lane, which corresponds to CA3 and F3, as shown earlier in Figure 5.4. We used a con-
stant, Lane, to specify all positions of vehicles in the lane, namely Lane ⊆ POSITION.
The position of the vehicle is modelled as a variable position, with a safety invariant
position ∈ Lane, namely the SDV most always be within the lane.

72



73 CHAPTER 5. RIGOROUS ANALYSIS TEMPLATE

Three events model the various stages of the system (for autonomous controller as-
pects), namely, perception, decision, control and environment as in Figure 5.3. The
relationship between the input and output of each stage is abstractly captured by con-
stant functions. For example, the decision event is modelled as follows.

event decision
when
@grd1: stage= Decision
then
@act1: stage := Control
@act2: target position := compute target position(desire path)
@act3: target steering angle := compute target steering angle(desire path)
end

Here, desire path is the output of the perception stage and is modelled as a set of po-
sitions, i.e., desire path ⊆ POSITION. The constant functions compute target position
and compute target steering angle represent the computation made by the autonomous
controller, and are defined accordingly

compute target position ∈ P(POSITION)→ POSITION
compute target steering angle ∈ P(POSITION)→ STEERING ANGLE

The position of the vehicle is updated in environment event according to the current
position and the steering angle.

event environment
when
@grd1: stage= Environment
then
@act1: stage := Perception
@act3: position :=move(position 7→ steering angle)
@act2: image := camera(move(position 7→ steering angle))
end

To ensure that environment maintains the safety of the system, i.e., position ∈ Lane, we
added the following invariant.

stage= Environment⇒move(position 7→ steering angle) ∈ Lane

We introduced an additional stage between control and environment to allow possible
interventions to correct the autonomous controller output. From the Intervention either
the steering angle is accepted or it needs to be corrected.

event accept
when
@grd1: stage= Intervention
@grd2:move(position 7→

steering angle) ∈ Lane
then
@act1: stage := Environment
end

event correct any anglewhen
@grd1: stage= Intervention
@grd2: angle ∈ STEERING ANGLE
@grd3:move(position 7→ angle) ∈ Lane
then
@act1: stage := Environment
@act2: steering angle := angle
end
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2) Formalisation of the human fallback aspects

We modelled the human fallback aspects, namely warning message, auditory notification,
hands on steering wheel, sensitive monitoring features detected using Booleans (SR1).
In particular, we required that the auditory notification is raised when the system is
missing either awareness aspects (SR2).

hands on steering wheel= FALSE⇒ auditory notification= TRUE
sensitive monitoring features detected= FALSE⇒ auditory notification= TRUE

An additional Boolean manual drive was introduced to indicate that the human driver
must be responsible (SR9) when the auditory notification is on (SR3).

auditory notification= TRUE⇒manual drive= TRUE

Several events model the awareness detection (SR1), for example hands on steering wheel
is detected as followed.

event hands on wheel
when
@grd1:hands on steering wheel=

FALSE
then
@act1:hands on steering wheel :=

TRUE
@act2:auditory notification := bool(
sensitive monitoring features detected

= FALSE)
end

event hands off wheel
when
@grd1:hands on steering wheel=

TRUE
then
@act1:hands on steering wheel :=

FALSE
@act2:auditory notification := TRUE
@act3:manual drive := TRUE
end

The original event accept was refined as follows:

event accept refines accept
when
@grd1: stage= Intervention
@grd2:warning message= FALSE
@grd3:manual drive= FALSE
then
@act1: stage := Environment
end

That is, acceptance only occurs when there are no warning messages or when the sys-
tem is in autonomous mode. This requires an additional invariant to ensure the consis-
tency of the refinement.

stage= Intervention ∧warning message= FALSE
⇒move(position 7→ steering angle) ∈ Lane
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The event correct is extended to assume that a driver has responded when the ALC
system may issue such intervention (SR8) as follows:

event correct extends correct
when
@grd4:manual drive= TRUE ∨warning message= TRUE
end

Table 5.8 details how the safety requirements (SR1 to SR9) has been satisfied in a formal
model. The majority of the proof obligations in these formalisations were verified either
automatically, using Rodin provers, or with the assistance of additional external prover
plug-ins such as SMT solvers.

TABLE 5.8: Safety requirements (SR1 to SR9) in formal model.

Safety requirements Event-B elements

SR1
Guards and actions in the detection of human monitoring features,
e.g, action in the event hands on wheel:
@act1:hands on steering wheel:=TRUE

SR2
An invariant,
hands on steering wheel = FALSE ⇒auditory notification =TRUE

SR3
An invariant,
auditory notification = TRUE ⇒ manual drive = TRUE

SR4
Guard in the event correct,
@grd4: manual drive = TRUE ∨ warning message = TRUE

SR5 & SR6
Action in the event correct,
@act2: steering angle:=angle

SR7
Actions in the detection of human monitoring features,
e.g, action in the event hands off wheel:
@act3: manual drive:= TRUE

SR8 & SR9
An invariant,
warning message = TRUE ∧ auditory notification = TRUE
⇒ manual drive = TRUE

5.3 Discussion

This chapter introduces the RAT framework as a response to RQ2. RAT comprises two
main stages. The first stage, aspect identification, identifies the autonomous aspects of
an SDV system and how it collaborates with human drivers. These aspects are then
categorised into autonomous controller and human fallback aspects, which are organ-
ised into a template. This template elucidates how the SDV system and human driver
cooperate to ensure safe autonomous operations. Specifically, the template shapes au-
tomation features by:
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• Clearly defining and identifying the automation aspects between human drivers
and SDVs during DDTs, particularly when a system relies on a human driver to
guarantee safety.

• Establishing links between the automation aspects of DDTs and the internal com-
ponents of SDV systems, specifying the responsibilities of human drivers or SDV
systems during their performance.

In the subsequent analysis stage, STPA and Event-B methodologies are applied. STPA
systematically identifies critical requirements that arise from interactions between the
SDV system and human drivers. Event-B then rigorously captures these driven STPA
requirements, ensuring consistency and enabling traceability with associated formal
representations.

To validate the RAT framework, the template instantiated into a concrete example, such
as the ALC system, illustrates how RAT is applied in practice. This demonstration pro-
vides a substantial understanding of how RAT effectively emphasises the responsibili-
ties of the ALC system and human drivers during SDV autonomous operations.

5.4 Related Work

The safety properties of SDVs were derived from the concept that the autonomous
controller is responsible for performing DDTs. The SAE [101] defines DDTs as contain-
ing various aspects, including lateral and longitudinal control, OEDR, human fallback
driver and the ODD. In our approach, these features are incorporated into the tem-
plate to illustrate how the human driver and SDV work together to achieve safe DDTs.
Several studies, such as the DARPA Challenges [128], Zong et al. [143] and Lex Frid-
man [52], have highlighted that SDV systems rely on four main modules: perception;
decision-making; control; and DMS. These modules are included in the template in
order to establish the links between them and the SAE ’s features

Traditionally, automotive designers have placed primary responsibility for safety on
the human fallback driver [81]. International Organization for Standardization (ISO)
26262 (Road Vehicles – Functional Safety) [67, 72] supports this concept by designating
the human fallback component as responsible for safety at system level. In addition,
ISO has introduced another safety standard known as ISO 21448 (Road Vehicles – Safety
of the Intended Functionality) [73], which aims to address safety hazards in a system
even without component failures, namely a human fallback component does not act
appropriately.

The ISO Standards are incorporated into the safety assessment approach, known as
the National Highway Traffic Safety Administration (NHTSA) – Safety framework [8].
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This framework is primarily designed for autonomous companies and has been used
by Google [133] to prioritise safety in SDVs. According to the SAE technical paper
presented by Rajiv [24] and the NHTSA [8], STPA can be integrated with ISO 26262
to identify other failures, such as inadequate component interactions, that may occur
either with or without component failures. Therefore, implementing STPA in SDVs en-
ables the analysis of failures that may arise even in the absence of component failure.
Moreover, Colley and Butler introduced an innovative integration of STPA and Event-
B [35]. This methodology leverages the Event-B formal method and its correspond-
ing tool, Rodin [7], to employ modelling techniques. The driven STPA requirements
are used as a framework to develop a rigorous model aiming proficiently to mitigate
potential hazards and vulnerable system states. In our approach, the emphasis is on
driven STPA requirements that guide modelling of the automation aspects of both au-
tonomous and human fallback controllers.

5.5 Conclusion

In this chapter we presented an RAT approach for SDV systems. The generic template
was organised into two main categories, autonomous controller and human fallback
component, to define precisely the automation aspects of the internal components of
SDV systems. The automation aspects of ALC system were presented to show how a
generic template was instantiated in a concrete case study. The STPA was chosen to
capture interactions in the high-level system components. The outcome of the STPA
was the safety requirements that aim to prevent unwanted interactions between a hu-
man fallback and an autonomous controller. The driven STPA requirements were used
to design formal models in Event-B. The creation of Event-B models helped to prove
that unwanted interactions obtained from the STPA were eliminated or mitigated at
system level.

In the following chapter a novel process embedded within the RAT approach is dis-
cussed. This process uses the proposed template to identify modelling patterns for
SDV systems.
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Chapter 6

Rigorous Analysis Template Process

This chapter describes our second contribution, entitled the Rigorous Analysis Template
Process (RATP). Parts of this chapter were published in COMPSAC 2023 [13].

Specifically, that material corresponds to the content in Section 6.1.

The Rigorous Analysis Template Process (RATP) extends the discussion on automation
aspects for Self-Driving Vehicle (SDV) systems presented in Chapter 5. Specifically, It
is crucial to recognise the limitations outlined in Chapter 5, including its non-iterative
nature and inability to scale with the complexity of the system. These identified limita-
tions are the inspirations behind the development of the RATP method.

RATP is an iterative approach that consists of five systematic steps. These steps are
inspired by the Systems Theoretic Process Analysis (STPA) and Event-B methodologies.
The key advantage of the RATP approach is to allow the system’s behaviour to be
analysed across varying levels of abstraction. The output of RATP is a set of safety
requirements that guide the development of a rigorous model to maintain the system’s
safety against identified hazardous states at various levels of refinement.

In line with the previous chapter, the RATP approach is developed to address the main
Research Question (RQ3.1) of this thesis.

RQ3.1 How can a methodology be developed to systematically analyse the complexity of
system safety from high-abstraction behaviours down to more detailed behaviours?

RQ3.1 aims to address the complexity of the SDV system by decomposing the analy-
sis into multiple analysis iterations. Each iteration examines the system’s behaviours,
starting from a high-level abstraction layer and progressively moving to a more de-
tailed, concrete layer. The analysis layers, referred to as modelling patterns, are thor-
oughly explained in this chapter.
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Section 6.1 provides an overview of the processes involved in the RATP approach. Sec-
tion 6.2 establishes the modelling patterns for SDV systems. Section 6.3 explains how
the RATP approach tackles RQ3.1. Section 6.4 discusses the advantages, limitations and
related work associated with the RATP approach. Section 6.5 provides a conclusion to
this chapter.

6.1 Systematic Analysis Steps of the RATP

The systematic process of the RATP approach is divided into five steps, as shown in
Figure 6.11. These steps will be used to develop modelling patterns in Section 6.2.
However, the focus of this section is dedicated to providing a more in-depth explana-
tion of each step.

Moreover, the RATP approach involves an iterative process for re-performing the anal-
ysis (from Step 1 to Step 5). There are several benefits of such an iterative analysis
methodology, as follows:

1. It allows the abstraction behaviours of a system to be analysed and modelled.

2. It supports a robust traceability of the system losses, hazards and their corre-
sponding safety requirements into associated formal representations.

3. It gives the safety requirements a precise syntax where the consistency of the
safety invariants can be formally verified.

Each step of the RATP approach is then further detailed in its own subsection.

6.1.1 Instantiating System Boundary Diagrams

This step aims to develop a series of hierarchical system boundary diagrams that sup-
port the development process at different levels of abstraction. The generic template of
SDV systems is employed as an input for this step. The creation of this generic template
was previously discussed in Section 5.2.1 of Chapter 5.

The idea for constructing such a boundary diagram is inspired by Step 1 in STPA. Leve-
son and Thomas [84, p. 17] recommend viewing the system as an abstraction represen-
tation based on the interactions involved in the main system components, which in-
cludes making decisions about what the system’s components and boundaries are. For

1The notation used in Figures 6.1, 6.5, 6.9, and 6.10 is the standard notation to describe work processes
known as ‘solution-patterns’, (see https://vvpatterns.ait.ac.at/about-vv-patterns/ ).
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FIGURE 6.1: Systematic process of RATP approach

example, they suggested a diagram in Figure 6.2 to separate a system from its environ-
ment. Therefore, the system under analysis is defined based on its system boundaries,
subsystems/components, and the interactions between those components.

FIGURE 6.2: System boundary diagram, adapted from [84, p. 17].

However, in contrast to Leveson and Thomas, the system boundary diagram in the
RATP approach is developed gradually through several iterations of the process, as
shown in Figure 6.3. At the most abstract level, the system boundary diagram is con-
structed in Figure 6.3a based on how a system interacts with its environment. In further
iterative processes, the system boundary diagram is refined in Figures 6.3b and 6.3c to
add further details about the subcomponents involved in the main system and how
those subcomponents explain the system component interactions. Therefore, the pri-
mary advantage of a system boundary diagram is defining a system under examination
and guiding the instantiating process during the iterative analysis processes.
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FIGURE 6.3: System boundary diagrams in RATP approach

6.1.2 Identifying the Purpose of Analysis

This step aims to identify the purpose of analysis in each iterative analysis process.
Based on Step 1 in STPA, the goal of the safety engineering process is to mitigate or
eliminate hazards in a system under investigation by specifying system conditions that
must be satisfied to prevent hazards (system constraints).

The identification of system hazards and constraints is associated with System Losses
(SLs), as illustrated in Figure 6.4. The SL may include human injury or death, but it
also involves other unwanted events, such as financial, information, and equipment
losses [86, p. 75]. The System Hazard (SH) is a system state illustrated by a system
loss and is defined as ‘environmental conditions leading to unwanted events’. The Safety
Constraint (SC) is a specific system condition considered to prevent or mitigate the
SH. To identify SLs and their associated SHs and SCs, Leveson and Thomas [84, p.
17] suggest defining relationships based on the following three factors: system, system
boundary and environment, as shown earlier in Figure 6.2.

FIGURE 6.4: Overview of defining the purpose of analysis, from [84, p. 16]
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In the RATP approach, this Step is similar to Step 1 in STPA. However, we introduce
the system losses and hazards gradually through several iterations of the process, as
shown in Figure 6.5. The identification of SLs and SHs can be illustrated based on how
the system boundary diagram is constructed in the previous Step. Therefore, the SLs
and their corresponding SHs and SCs are gradually identified based on how the system
boundary and system components interact with their environment at different levels of
abstraction.

FIGURE 6.5: Overview of defining the purpose of analysis in RATP approach

6.1.3 Creating/Refining Hierarchical Control Structure

After identifying the SHs and their SCs, the control structure is constructed. A control
structure is a system model that captures the functional relationships and interactions
of the main system components as a set of Control Actions (CAs) and Feedback Loops
(FLs). An effective control structure will enforce SCs on the behaviour of the overall
system [84]. In Step 2 of STPA, the generic control structure is shown in Figure 6.6. In a
broad sense, a control structure involves the following elements:

1. Controllers: Each controller in the control structure is responsible for ensuring
that the system operates safely and effectively. In general, a controller is an entity
that manages the behaviour of the system or its components. If the controller
fails, it can lead to hazardous states where the SCs might be violated.

2. Control Actions: The CAs in STPA are essential to ensure the safety and re-
liability of complex systems. These actions are designed to mitigate, detect, or
correct hazardous conditions. The actuators inside the controller are responsible
for implementing these actions in order to enforce the SCs in the behaviour of the
system or its component.

83



CHAPTER 6. RIGOROUS ANALYSIS TEMPLATE PROCESS 84

3. Feedback: In STPA, FLs ensure that the system output is constantly monitored
and adjusted to keep it within safe states. These feedback loops detect and re-
spond to the SHs by monitoring system outputs and adjusting system inputs.

4. Inputs and outputs from the system components: In STPA, the inputs and out-
puts of system components are analysed to identify potential hazards and deter-
mine appropriate CAs and FLs.

5. Controlled processes: In STPA, controlled processes refer to a process that has
some form of control mechanism. This control mechanism can be a physical con-
trol, such as a safety interlock.

FIGURE 6.6: Simple form of control structure, adapted from [84, p. 24]

The RATP approach develops a control structure similar to Step 2 in STPA. However,
it is constructed incrementally, taking into account the system components that were
included in the system boundary diagram instantiated earlier (see Figure 6.3). Hence,
the control structure is designed to encapsulate the interactions between system com-
ponents across various levels of abstraction, as demonstrated in Figure 6.7.

6.1.4 Identifying Unsafe Control Actions

After constructing the control structure, the analysis of Unsafe Control Actions (UCAs)
is performed in order to reveal the unsafe operations of the system under examina-
tion. According to Step 3 in STPA, the identification of UCAs could be summarised,
as shown in Figure 6.8. To perform the analysis of UCAs, the control structure and
SHs are inputs to this step. The UCAs are actions that could lead to SHs [84, p. 35].
New safety constraints/requirements would be proposed to mitigate or eliminate the
identified UCAs.

According to [84], using the UCAs is an exploration technique that can be organised
into the following categories:
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FIGURE 6.7: Overview of constructing the control structure in RATP approach

1. Not providing CA leads to SH: This indicates that a CA required for system
safety is not provided in the control structure.

2. Providing CA leads to SH: This denotes that an UCA is provided in the control
structure.

3. Time of applying CA: This investigates whether a safe CA required for system
safety is provided at the wrong time or in the wrong order.

4. Time of stopping CA: This examines whether a safe CA required for system
safety is applied too long or stopped too soon.

FIGURE 6.8: Overview of defining unsafe control actions, adapted from [84, p. 42].

Similar to Step 3 in STPA, we aim to identify the UCAs gradually through several it-
erations of the process, as shown in Figure 6.9. The identification of UCAs and their
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Safety Requirements (SRs) is gradually driven on the basis of how the control structure
is constructed in the previous step. The SRs can be defined as the functional require-
ments that mitigate the occurrence of SHs, where the causal factors or system actions
that contribute to the SHs are demonstrated.

FIGURE 6.9: Overview of defining unsafe control actions in RATP approach

6.1.5 Specifying/Refining the Event-B Model

The goal of this step is to model the behaviours of a system, with a primary focus
on ensuring the enforcement of SRs based on the UCAs identified in Step 4. In the
analysis of iterative processes, formal models are gradually built, as shown in Figure
6.10. In order to specify a formal model, the control structure and the SRs are inputs to
this step. In addition, the formal representations of SRs, as well as explanations of the
assumptions involved in a formal model, are the outputs of this step.

A formal model is built using the Event-B language and its support tool, Rodin plat-
form [7]. The guidance for developing a rigorous model in Event-B is summarised in
the following steps:

1. Each iterative analysis process corresponds to one machine in Event-B.

2. Constraints within the design are to be modelled in a static part of a formal model
through contexts.

3. The safety property of a system (the absence of hazards) is captured using invari-
ants.

4. Each control action in the control structure corresponds to one or more variables.

5. The restrictions on control actions can be modelled on guards of events.
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FIGURE 6.10: Overview of specifying formal models in RATP approach

6. The SRs are captured by invariants or guards within events.

7. The feedback loops can be modelled as combinations of invariants, constants,
variables, actions and guards.

6.2 Modelling Patterns of SDV Systems

This section presents the development of modelling patterns for SDV systems. In a
broad sense, a modelling pattern is a reusable solution that describes how to solve a
commonly occurring problem in various situations [6]. By following the systematic
steps of the RATP approach, the focus here is on developing a series of hierarchical pat-
terns gradually, starting from a high-level analysis layer and moving towards a more
detailed concrete layer. The aim of the analysis in each layer is as follows:

• Layer 0: Presents a high-level description of the interaction between the SDV
system and its driving environment. Specifically, it covers how the constraints
imposed by the driving environment can affect the movement of an SDV. This
includes situations where the SDV needs to change its position to accommodate
these restrictions.

• Layer 1: Shows in further detail how SDV systems modify their lateral and lon-
gitudinal variables to comply with environmental constraints and reach a new
position within the driving environment.
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• Layer 2: Models the autonomous operations of a system, including perception,
decision-making, and control, to demonstrate how the semi-automated system
autonomously identifies its lateral and longitudinal variables.

• Layer 3: Adds further details on how the awareness level of a driver can impact
autonomous operations. It specifically discusses how SDV systems ensure that
human drivers remain responsive when the system issues a request to intervene.

Each layer is then further detailed in its own subsection.

6.2.1 Abstraction Level (Layer 0)

Step 1. Instantiation: We start by defining the boundaries of what a semi-automated
system is designed to do and what it is not. The Operational Design Domain (ODD)
is an essential concept for automation levels because it specifies the conditions under
which the SDV system must function [124, 101]. For example, the ODD for semi-
automation levels (level 1 to level 3) is generally limited to specific driving scenarios,
such as highway driving or parking. Therefore, we define the SDV system as a semi-
automated system designed to move a physical vehicle (SDV) within a specific ODD.
The system’s boundary is determined by the limited ODD where the SDV system is
expected to operate. Based on these definitions, the system boundary diagram is con-
structed in Figure 6.11.

FIGURE 6.11: System boundary diagram in RATP Layer 0

Step 2. The purpose of analysis: Based on the previous system boundary diagram
in Step 1, the System Loss (SL) is identified to ensure that the SDV only operates in a
limited ODD. The main loss of a system (focusing on its purpose of moving the SDV in
its limited ODD), SL0:

• SL0: The SDV collides with an object outside its ODD.

A high-level SH associated with SL0 is SH0:
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• SH0: The SDV travels into a position outside its ODD.

A high-level SC that satisfies the system conditions to prevent SH0 is SC0:

• SC0: The SDV must always be located inside its limited ODD.

Step 3. Control structure: An abstract control structure is demonstrated in Figure
6.12. It involves two main components: 1) the SDV with a semi-automation system and
2) the driving environment with a limited ODD. The SDV with a semi-automation system
presents a high-level view of a system designed to move the SDV within its limited
ODD. The limited ODD is a driving environment that indicates a controlled process
where the SDV can interact within its defined boundaries.

To capture a high-level interaction between an SDV and its limited ODD, SC0 is trans-
lated as CA1 and F1. For instance, CA1 implies that an SDV may change its position
into a new position, while F1 indicates the monitoring of a change in an SDV’s position.

FIGURE 6.12: Control structure in RATP Layer 0

Step 4. Identifying unsafe control actions: The UCAs of CA1 is demonstrated in Ta-
ble 6.1. The UCA1.1 represents the possibility of the system traveling to a new position
outside the limited ODD. A contributing causal factor to SH0 is the unsafe movement
of a system. The identification of a safety requirement to mitigate its occurrence is:

• SR0.1: The SDV must travel into a new position inside the ODD [SH0].
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TABLE 6.1: Unsafe control actions in RATP Layer 0

Control Ac-
tion (CA)

Not providing
CA leads to
hazards

Providing CA leads to haz-
ards

CA applied
early, late, or
out of order

CA stopped too
soon or applied
too long

CA1 N/A

UCA1.1: The SDV may
travel from a position inside
the limited ODD to a new
position outside that ODD.

N/A N/A

Causal Factor

Unsafe movement of an SDV

TABLE 6.2: Control actions and feedback loops in formal model for RATP Layer 0

Control Ac-
tion & Feed-
back loop

Event-B elements

CA1 Variable, SDV POSITION env
F1 Action, SDV POSITION env := init position

Step 5. Event-B model: A full script of the initial machine (m0) can be seen in Sec-
tion D.1 in Appendix D. Mapping is provided in Table 6.2 to demonstrate how CA1
and F1 link with the representation of an abstract model (m0).

At the abstraction level (m0 machine), we use a constant ODD to specify the all posi-
tions of SDVs in the ODD, i.e., ODD ⊆ POSITION. The physical position of the SDV
(CA1) is modelled as a variable SDV POSITION env, with a safety invariant SDV POSIT
ION env ∈ ODD, i.e., the SDV must always be within the limited ODD (SC0). In ad-
dition, the initial position of an SDV (F1) is modelled as a constant init position, where
the initialisation position of SDV must be inside the limited ODD, i.e., init position ∈
ODD.

The initial machine (m0) involves four events. Firstly, the initialisation event sets a valid
default state of a physical position of the SDV as SDV POSITION env := init position.
Secondly, the move event abstractly captures a movement of an SDV into a new posi-
tion as follows:

eventmove
any new position
where
//SR0.1: travel into a position inside

ODD
@grd1: new position ∈ODD

then
//moved into a position inside ODD
@act1: SDV POSITION env :=

new position
end

Along with the move event, we added two additional events: system on and sys-
tem off. These events demonstrate the activation and deactivation of the autonomous
functions of the system. Specifically, the system on event indicates the initiation of
autonomous functions, while the system off event represents their deactivation.
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event system on
where
@grd1: Sys status= OFF
then
@act1: Sys status := ON
end

event system off
where
@grd1: Sys status= ON
then
@act1: Sys status := OFF
@reset−pos: SDV POSITION env :=

init position
end

Table 6.3 shows how a safety requirement (SR0.1) has been captured in a formal model.
At this level (machine m0), there is only one assumption (A) involved in a formal
model, as A0.1:

• A0.1: The current position of an SDV starts inside the limited ODD.

TABLE 6.3: Safety requirement (SR0.1) in formal model for RATP layer 0

Safety requirements Event-B elements

SR0.1
Guard (@grd1) in the move event,
@grd1: new position ∈ ODD

6.2.2 High-Level Analysis Process (Layer 1)

Step 1. Instantiation: A semi-automated driving system is a technology that can take
control of some driving tasks, such as managing lateral and longitudinal variables.
However, a human driver must be present and prepared to provide corrective action at
any time. The lateral variables in a semi-automated vehicle may include the vehicle’s
position within a lane and the necessary steering input to maintain the desired path.
Meanwhile, longitudinal variables could include the vehicle’s speed, acceleration, and
braking. These two variables together give a comprehensive view of the system’s be-
haviour, enabling it to move a SDV into a new position within its ODD.

To capture these high-level aspects, the system boundary diagram is refined in Figure
6.13. Specifically, the SDV with a semi-automated system is divided into two main
system components: 1) human fallback driver and 2) autonomous controller. The human
fallback driver can provide lateral and longitudinal variables manually, while the au-
tonomous controller can apply them autonomously.

Step 2. The purpose of analysis: This step aims to refine system losses, hazards, and
constraints based on the instantiated system boundary diagram in the previous Step.
Our main focus is on investigating how the lateral and longitudinal variables can be
modified to move an SDV into a new position within its limited ODD. Therefore, a
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FIGURE 6.13: System boundary diagram in RATP Layer 1

refined System Loss (SL1) is driven from the previously identified safety requirement
(SR0.1) as follows:

• SL1: A new lateral and longitudinal variable enables an SDV to reach a new
position outside its ODD.

As the lateral and longitudinal variables may be modified by either a human driver or
a semi-automated system, a new system hazard of SL1 is identified as SH1:

• SH1: The lateral and longitudinal variables of an SDV are actuated by either a
human driver or a semi-automated system to reach a new position outside the
limited ODD.

A high-level safety constraint associated with SH1 is defined as SC1:

• SC1: The lateral and longitudinal variables of an SDV must be modified to reach
a new position inside the ODD.

Step 3. Refining control structure: We have refined the control structure to demon-
strate how both the human driver and the semi-automated system can potentially
modify the lateral and longitudinal variables of an SDV, as illustrated in Figure 6.14.
To identify the lateral and longitudinal variables responsibly, the SDV with a semi-
automated system splits into two main controllers: the human fallback driver and the
autonomous controller. New Control Actions (CAs) and Feedback Loops (Fs) are added
based on the SC1. For instance, CA2 sets the lateral and longitudinal variables of an
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SDV autonomously, while F2 monitors any changes in the current lateral and longitu-
dinal variables. As a human driver might be responsible for setting new lateral and
longitudinal variables of an SDV, CA3 indicates a high-level interaction between the
human driver and the limited ODD. The driver may provide corrective action if the
semi-automated system fails to keep the SDV within its limited ODD.

FIGURE 6.14: Control structure in RATP Layer 1

Step 4. Identifying unsafe control actions: The identification of Safety Requirements
(SRs) is associated with the Unsafe Control Actions (UCAs) of CA2 and CA3, as shown
in Table 6.4. These UCAs explain a causal factor that leads to the SH1. For instance,
UCA2.2 and UCA2.3 indicate that the lateral and longitudinal variables of an SDV can
be modified to reach a position outside the limited ODD while the driver’s corrective
action is missing. Therefore, the new safety requirements associated with SH1 are as
follows:

• SR1.1: the semi-automated system must actuate a lateral and longitudinal vari-
able autonomously to reach a new position inside the limited ODD [SH1].

• SR1.2: the human driver can provide corrective action that actuates a lateral and
longitudinal variable manually to reach a new position inside the limited ODD
[SH1].

Step 5. Refining Event-B model: A full script of the refined machine (m1) can be seen
in Section D.2 in Appendix D. Mapping is provided in Table 6.5 to detail how CA2, CA3
and F2 are linked to the representation of a refined model (m1).

At this refinement level (m1 machine), we modelled the physical lateral variable of an
SDV as a variable called LATERAL VAR. This variable has two constants, max lat and
min lat, that specify the defined range of lateral variables. Similarly, we modelled the

93



CHAPTER 6. RIGOROUS ANALYSIS TEMPLATE PROCESS 94

TABLE 6.4: Unsafe control actions in RATP Layer 1

Control
Action
(CA)

Not providing CA leads to
hazards

Providing CA leads to
hazards

CA applied early,
late, or out of order

CA
stopped
too soon
or applied
too long

CA2
and
CA3

UCA 2.1: Semi-automation
system moves a vehicle
into a new position inside
the ODD (CA1), but the
specifications of lateral and
longitudinal control vari-
ables are missing.

UCA 2.2: actuates lateral
and longitudinal control
variables autonomously
(CA2) to reach a position
outside the ODD.

UCA 2.3: driver’s
corrective action is
missing (CA3) when
an SDV moves out-
side the ODD.

N/A

Causal Factor

Wrong adjustment of the control variables (lateral and longitudinal)

TABLE 6.5: Control actions and feedback loops in formal model for RATP Layer 1

Control Ac-
tion & Feed-
back loop

Event-B elements

CA2 Variables, LATERAL VAR and LONGITUDINAL VAR
CA3 Variables, LATERAL VAR and LONGITUDINAL VAR

F2 Actions in initialisation event, LATERAL VAR :∈ LATERAL and
LONGITUDINAL VAR :∈ LONGITUDINAL

physical longitudinal variable of an SDV as a variable called LONGITUDINAL VAR,
which also has two constants, max lon and min lon, that specify the defined range of
longitudinal variables. The movement of an SDV into a new position is modelled as
a constant move, where modifications of the lateral and longitudinal variables enable
the SDV to reach new positions. The definition of the move function is shown below.

move ∈ POSITION× LONGITUDINAL× LATERAL→ P1(POSITION)

Three events model the high-level cases of the system at this layer, i.e., auto actuating
(CA2), manual actuating (CA3), move (CA1) as shown earlier in Figure 6.14. The
auto actuating event abstractly specifies an autonomous identification of a new lateral
and longitudinal variable to reach a new position inside the limited ODD (SR1.1).

event auto actuating
any auto lat auto lon
where
/* System status is ON*/
@grd1: Sys status= ON
/* lateral definition */
@grd2: auto lat ∈ LATERAL

/* longitudinal definition */
@grd3: auto lon ∈ LONGITUDINAL
/*(SR1.1) movement leads to ODD*/
@grd4:move(SDV POSITION env 7→

auto lon 7→ auto lat )⊆ ODD
then
@act1: LATERAL VAR := auto lat
@act2: LONGITUDINAL VAR :=

auto lon
end
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In the same way, the manual actuating event describes how a human driver may pro-
vide a new lateral and longitudinal variable to reach a new position inside the limited
ODD (SR1.2).

eventmanual actuating
any
manual lat manual lon
where
@grd1:manual lat ∈ LATERAL
@grd2:manual lon ∈ LONGITUDINAL

//SR1.2: modification leads to ODD
@grd3:move(SDV POSITION env 7→

manual lon 7→manual lat)⊆ ODD
then
@act1: LATERAL VAR :=manual lat
@act2: LONGITUDINAL VAR :=

manual lon
end

Finally, the move event triggers either a manual or an autonomous adjustment of the
SDV’s lateral and longitudinal position, enabling it to relocate to a new position within
the limited ODD (SC1).

eventmove extendsmove
where
/* new (target) position must be within set of position inside the ODD*/
@grd2:new position∈move(SDV POSITION env 7→ LONGITUDINAL VAR 7→ LATERAL VAR)
end

Table 6.6 shows how the safety requirements (SR1.1 and SR1.2) have been captured in
a formal model. At this level ( machine m1), there is a new assumption (A) involved in
a formal model, as A1.1:

• A1.1: The human driver provides lateral and longitudinal variables manually to
keep an SDV inside the limited ODD.

TABLE 6.6: Safety requirements(SR1.1 and SR1.2) in formal model for RATP Layer 1

Safety requirements Event-B elements

SR1.1
Guard (@grd4) in the auto actuating event,
@grd4: move(SDV POSITION env 7→ auto lon 7→auto lat) ⊆ ODD

SR1.2
Guard (@grd3) in the manual actuating event,
@grd3: move(SDV POSITION env 7→ manual lon 7→manual lat) ⊆ ODD

6.2.3 Second Analysis Process (Layer 2)

Step 1. Instantiation: Based on the generic system component diagram (mentioned
earlier in Figure 5.2), the SDVs include three main components of perception, decision-
making and control for performing the autonomous operations. Therefore, we assume
that these operations are accomplished by the autonomous controller inside the SDV
with a semi-automated system. In Figure 6.15, we refine a previous system boundary
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diagram (mentioned earlier in Figure 6.13) to capture the autonomous operations of the
SDV with a semi-automated system.

SDVs use advanced sensor tools for the critical Object and Event Detection and Re-
sponse (OEDR) task, allowing the vehicle to perceive and navigate its limited ODD
safely. The perception component analyses the sensing data to identify the environ-
mental features and predict their detection scores. The decision-making component
uses the detected environmental features to determine appropriate driving actions,
while the control component transforms these decisions into physical vehicle move-
ments, using actuators connected to the SDV’s control systems.

FIGURE 6.15: System boundary diagram in RATP Layer 2

Step 2. The purpose of analysis: The purpose of the analysis is to study how the
semi-automated system accomplishes its autonomous operations. Based on the system
boundary diagram (mentioned earlier in Figure 6.15), a refined System Loss (SL2) can
be derived from the previously identified safety requirement SR1.1 as follows:

• SL2: The autonomous controller autonomously actuates lateral and longitudinal
variables to reach a new position outside the limited ODD.

As the autonomous controller of a semi-automated system involves three main com-
ponents (perception, decision-making module, and control), various system hazards
can be identified to ensure the safe identification of lateral and longitudinal variables.
These System Hazards (SHs) are as follows:
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• SH2.1: The perception component identifies the perceived environmental fea-
tures that may locate the SDV outside the limited ODD.

• SH2.2: The decision-making component identifies a target lateral and longitudi-
nal variable to reach a new position inside the limited ODD.

• SH2.3: The control component may actuate a target lateral and longitudinal vari-
able that violates the physical actuator component involved in the SDV systems.

A high-level safety constraint associated with these system hazards is SC2:

• SC2: The semi-automated system must perform its autonomous operations to
keep an SDV inside its limited ODD.

Step 3. Control structure: A refined control structure is constructed through a semi-
automated system that accomplishes its autonomous operations, as shown in Figure
6.16. The autonomous controller is divided into three components of perception, decision-
making and control. The interactions (input/output) between these components are
captured by using a set of Control Actions (CAs) and Feedback loops (Fs).

In the perception component, F3 indicates that the semi-automated system must obtain
incoming sensing data to identify perceived environmental features (CA4). F4 cov-
ers a feedback loop between the perception and decision components when the semi-
automated system may reason about identifying perceived environmental features.

In the decision component, CA5 implies the responsibility of a semi-automated system
to identify a target (new) position of an SDV. Additionally, CA6 indicates the responsi-
bility of a semi-automated system to identify the required change of lateral and longi-
tudinal variables to reach that new position with the limited ODD. F5 covers a feedback
loop between the decision and control components when the control component may
accept/reject, actuating a new lateral and longitudinal variable (CA2) leading to that
new position (CA1).

Step 4. Identifying unsafe control actions: At this layer, UCAs of autonomous oper-
ations are demonstrated in three categories. The first category involves unsafe opera-
tions in the perception component (SH2.1). These UCAs are presented in Table 6.7 and
explained as follows:

• The autonomous controller may identify environmental features without sensing
the limited ODD.

• The identified perceived environmental features might not match the current po-
sition of an SDV.
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FIGURE 6.16: Control structure in RATP Layer 2

• The sensing data used to identify the perceived environmental features may be
incorrect.

TABLE 6.7: Unsafe control actions of perception component in RATP Layer 2

Control
Action
(CA)

Not providing CA leads
to hazards

Providing CA leads to
hazards

CA applied early, late,
or out of order

CA stopped
too soon or
applied too
long

CA4

UCA3.1: autonomous
controller may identify
the perceived environ-
mental features with-
out sensing the limited
ODD (F3).

UCA3.2: Perceived en-
vironmental features do
not update according to
the SDV’s position (F1).

UCA3.3: Perceived en-
vironmental features
identified according
to wrong/late sensing
data (F4).

N/A

Causal Factor

Failure in the identification of the perceived environmental features.

Therefore, the potential safety requirements associated with the perception component
can be identified as follows:

• SR2.1: The perception component must update the sensing data according to the
current position of an SDV [SH2.1].
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• SR2.2: The perception component must use sensing data to identify the perceived
environmental features for keeping an SDV inside the ODD [SH2.1].

• SR2.3: The perception component can rely on the driver correction if the per-
ceived environmental features do not keep an SDV inside the ODD [SH2.1].

The second category involves the unsafe operations associated with the decision com-
ponent (SH2.2). These UCAs are presented in Table 6.8 and are explained below:

• The autonomous controller may identify a target position based on incorrectly
perceived environmental features, which require the SDV to move to a new posi-
tion outside the limited ODD.

• The target lateral and longitudinal variables lead to a new position outside the
limited ODD.

TABLE 6.8: Unsafe control actions of decision component in RATP Layer 2

Control
Action
(CA)

Not providing CA leads
to hazards

Providing CA leads to
hazards

CA applied
early, late, or
out of order

CA stopped
too soon or
applied too
long

CA5
and
CA6

UCA3.4: autonomous con-
troller may identify the
perceived environmental
features (CA4) that re-
quired an SDV to move
into a new position (CA5)
outside the limited ODD.

UCA3.5: autonomous con-
troller may identify a new
lateral and longitudinal
(CA6) that proposes for a
new position (CA5) out-
side the limited ODD.

N/A N/A

Causal Factor

Unsafe identification of target position and lateral/longitudinal variables.

Therefore, the potential safety requirements associated with the decision component
can be identified as follows:

• SR2.4: The decision-making component must identify a target (new) position
based on the accurately identified environmental features [SH2.2].

• SR2.5: The decision-making component must determine the required change in
lateral and longitudinal variables based on the identified (new) position [SH2.2].

• SR2.6: The decision-making component can rely on the driver correction if a tar-
get position cannot keep an SDV inside the limited ODD [SH2.2].

The third category concerns the unsafe operations associated with the control compo-
nent (SH2.3). These UCAs are presented in Table 6.9 and explained below.
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• The lateral and longitudinal variables cannot be physically applied to the actuator
component involved in the SDV systems.

• The target lateral and longitudinal variables exceed the actuator component limits
involved in the SDV systems.

TABLE 6.9: Unsafe control actions of control component in RATP Layer 2

Control
Action
(CA)

Not providing CA leads
to hazards

Providing CA leads to
hazards

CA applied
early, late, or
out of order

CA stopped
too soon or
applied too
long

CA2

UCA3.6: autonomous con-
troller cannot actuate a
new lateral and longitudi-
nal variable (CA6).

UCA3.5: autonomous con-
troller proposes new lat-
eral and longitudinal vari-
ables (CA2) that may vi-
olate a physical actua-
tor component involved in
the SDV systems (F5).

N/A N/A

Causal Factor

Exceeding the actuator component limits for applying lateral and longitudinal variables.

As a result, the potential safety requirements related to the control component can be
identified as follows:

• SR2.7: The control component must only activate the lateral and longitudinal
variables within the limits specified by the actuator component, such as the max-
imum and minimum lateral and longitudinal adjustments [SH2.3].

• SR2.8: The control component can rely on the driver correction if the target lat-
eral and longitudinal variables violate the actuator component limits in the SDV
system [SH2.3].

Step 5. Event-B model: Full details of the refined machine (m2) can be seen in Sec-
tion D.3 in Appendix D. Mapping is provided in Table 6.10 to demonstrate how new
control actions (CA4, CA5, CA6) and feedback loops (F3, F4, F5) link with the repre-
sentation of a refined machine (m2).

A constant function sensor is defined to capture the sensing data in multiple positions,
i.e., sensor ∈ POSITION → SENSING DATA. An important specification of an SDV is
demonstrated in a consistency invariant sensing data env = sensor (SDV POSITION env),
i.e., the SDV system must receive incoming sensing observations (F3) based on the
physical position of the SDV (SR2.1).
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TABLE 6.10: Control actions and feedback loops in formal model for RATP Layer 2

Control Ac-
tion & Feed-
back loop

Event-B elements

CA4 Variables, generic features, generic path and accuracy.
CA5 Variable, selectPos.
CA6 Variables, selectLat and selectLon.
F3 Variable, sensing data env.
F4 Guard grd3 in lowAccuracy event, accuracy < 80.

F5 Guard grd3 in violationLimit event, selectLat /∈ LATERAL ∨
selectLon /∈ LONGITUDINAL.

The perception component is a crucial part of the semi-automated system that uses
sensing data from external sensor systems to identify environmental features. There-
fore, we represent the functionality of the perception component by specifying two
constant functions: Identify features and OEDR task, which are defined below.

//function shows the expected results of a received sensing data
@typeof−features: Identify features ∈ (SENSING DATA× PERCEIVED FEATURES)→

Accuracy
//function recognises set of positions (path) based on the perceived features
@typeof−path recognition:OEDR task ∈ (SENSING DATA× PERCEIVED FEATURES×

Accuracy) → P(POSITION)

The decision-making component is responsible for analysing the information gathered
by the perception component and making decisions based on that information. There-
fore, we specify three castanet functions: specify target position, compute lateral and
compute longitudinal, which are defined below.

//function specifies a target position based on a path obtained from OEDR
@typeof−compute target position: specify target position ∈ P(POSITION)→ POSITION
//function computes the lateral variable to reach a specific (target) position
@typeof−compute lateral: compute lateral ∈ POSITION× LATERAL→ LATERAL
//function computes the longitudinal variable to reach a specific (target) position
@typeof−compute LONGITUDINAL: compute longitudinal ∈ POSITION× LONGITUDINAL

→ LONGITUDINAL

The control component is responsible for translating the driving decisions generated
by the decision component into low-level control signals that can effectively actuate the
vehicle’s actuators to achieve a new position. Therefore, we have specified a constant
function move to represent the actuation task of the SDV, which is defined as follows:

//function actuates lateral/longitudinal variables into new positions
@typeof−m:move ∈ POSITION× LONGITUDINAL× LATERAL→ P1(POSITION)

Furthermore, the high-level operations of a semi-automated system are organised into
five stages: Perception, Decision, Control, Intervention and AutonomousDriving. These
stages are defined within the variable stage, and the gluing invariant glu inv1 is added
to ensure consistency between the semi-automated system’s status and these stages.
The invariant is defined as follows:
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//stages when a system is performing its autonomous operations
@gluing inv1: Sys status= ON ⇒ stage ∈ {Perception, Decision, Control, Intervention,

AutonomousDriving}

The stages of a semi-automated system are modelled into five sequential categories.
The first category is the perception stage, which abstractly identifies the environmen-
tal perceived features (CA4) based on the sensing data (F3). The event perception is
modelled as follows:

event perception
any gfwhen
@grd1: gf ∈ PERCEIVED FEATURES
@grd2: Sys status= ON
@grd4: stage= Perception
then
//sensing data based on SDV’s position
@act1:sensing data env:= sensor (SDV POSITION env)
//features to be detected in the sensing data
@act2: generic features := gf
/* accuracy of the detection results */
@act4: accuracy := Identify features(sensing data env

7→ generic features)
/* recognise the path (set of position )*/
@act5: generic path := OEDR task(sensing data env 7→

features 7→ accuracy)
/* change a stage of system to be in Decision */
@act6: stage := Decision
end

Based on event perception, we have added two invariants: detection task and recogni-
tion task. These invariants ensure that the autonomous controller obtains sensing data
from a sensor during the Perception stage. Furthermore, the perceived environmental
features, such as features, path, and accuracy, are computed based on the interpreta-
tion of this sensing data (SR2.2). Subsequently, the stage of the autonomous controller
is transitioned to the Decision stage. The definitions of these invariants are as follows:

//identify the perceived environmental features based on the sensing data
@detection task: stage= Perception⇒ sensing data env ∈ ran(sensor) ∧ (

sensing data env 7→ generic features 7→ accuracy) ∈ dom(OEDR task)
//recognise the set of positions (path) according to the interpretation of sensing data
@recognition task: stage= Decision⇒ generic path ∈ ran(OEDR task)

When an autonomous controller enters the Decision stage, it goes through two sub-
stages: Intervention and Control. In the Intervention stage, a semi-automated system
may prompt a human driver to take control of the vehicle (SR2.3) if the autonomous
controller detects potential issues such as going outside its ODD or if there are inaccura-
cies in identifying the path or environmental features. This is done in a feedback loop
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(F4), where the autonomous controller evaluates the identification of environmental
features. To model these reasoning aspects, we developed the event violationExpect-
edFeatures, which is explained as follows:

event violationExpectedFeatureswhen
@grd1: Sys status= ON
@grd2: stage= Decision
//F4: feature checking
@grd3: accuracy< 80 ∨ generic path ̸⊆

ODD
then
@act1: stage := Intervention
end

On the other hand, during the preparation of the Control stage, the decision-making
component of a semi-automated system calculates a target position (CA5) and deter-
mines necessary adjustments to the vehicle’s lateral and longitudinal variables (CA6).
This calculation is based on the identified path and features, as well as the current lat-
eral and longitudinal variables of the vehicle. Therefore, the event decision is modelled
as follows:

event decisionwhen
@grd1:Sys status= ON
@grd2:stage= Decision
@grd3:accuracy≥80∧generic path⊆ODD
then
//position obtained from path
@act1: selectPos := specify target position

(generic path)
//lat/long based on the selected position
@act2: selectLat := compute lateral(

selectPos 7→ LATERAL VAR)
@act3: selectLon := compute longitudinal(

selectPos 7→ LONGITUDINAL VAR)
@act4: stage := Control
end

Based on event decision, we have added two invariants: selPosition and selLatLon. An
invariant selPosition ensures that a target (new) position will compute from the set of
positions located inside the identified path (SR2.4). In addition, an invariant selLatLon
is also added to ensure that a required change of lateral and longitudinal variables
are computed according to the target position and the current lateral and longitudinal
variables of an SDV (SR2.5). The definitions of these invariants are as follows:

//target position is based on path where detection accuracy is high
@selPosition:stage=Decision∧accuracy≥80∧path⊆ODD⇒path∈dom(

specify target position)
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/*target lateral and longitudinal identified based on a new (target) position*/
@selLatLon:stage=Control∧accuracy≥80∧path⊆ODD⇒(selectPos 7→LATERAL VAR)∈dom

(compute lateral)∧(selectPos 7→LONGITUDINAL VAR)∈dom(compute longitudinal)

In the monitoring process of implementing new lateral and longitudinal variables (CA6),
the semi-automated system must ensure that any changes to these variables do not ex-
ceed the maximum or minimum range of the actuators involved in the SDV. To achieve
this, we have developed a model that breaks down the monitoring process into two
distinct events.

1. The first event involves the acceptance of the actuating process by the event con-
trol (SR2.7). For instance, if the new lateral and longitudinal variables (CA2) fall
within the acceptable range of the actuators to move a SDV within its limited
ODD, the autonomous controller’s stage is changed to AutonomousDriving. The
event control is modelled as follows:

event controlwhen
@grd1: Sys status= ON
@grd2: stage= Control
//long/lat in the defined range
@grd3: selectLat ∈ LATERAL ∧
selectLon ∈ LONGITUDINAL

//new long/lat lead to the ODD
@grd4:move(SDV POSITION env 7→
selectLon 7→ selectLat )⊆ ODD

then
@act1:stage:=AutoDriving
end

2. The second event, violationLimit, represents a scenario where the autonomous
controller attempts to exceed the acceptable limits of the lateral and longitudinal
variables of the actuators involved in the SDV (F5), or where modifications to
the lateral and longitudinal variables will result in a new position outside the
limited ODD (F5). In such cases, the semi-automated system may require human
intervention, and the control of the SDV is transferred to the driver (SR2.6 and
SR2.8). Therefore, the autonomous controller’s stage is changed to Intervention.
The event violationLimit is modelled as follows:
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event violationLimitwhere
@grd1: Sys status= ON
@grd2: stage= Control
//F5:violates actuator limits
@grd3: selectLat /∈ LATERAL ∨
selectLon /∈ LONGITUDINAL ∨
move(SDV POSITION env 7→
selectLon 7→ selectLat) ̸⊆ ODD

then
@act1: stage := Intervention
end

In order to translate digital signals into mechanical actions or movements in SDVs, a
Boolean flag signal is used to indicate the actuation of lateral and longitudinal vari-
ables. When the signal is TRUE, the semi-automated system moves to a new position.
However, since these variables can be actuated either autonomously or manually, two
events are developed to model these scenarios.

1. The first event, auto driving, is derived from the abstract event auto actuating
and involves autonomously setting the lateral and longitudinal variables (CA2).
To accomplish this, an Event-B witness is utilised to map between the abstract
parameter and the new variables identified by the autonomous controller’s oper-
ations. During this process, the controller’s stage is in AutonomousDriving. The
event auto driving is modelled as follows:

event auto driving refines
auto actuating

where
@grd1: Sys status= ON
@grd2: selectLat ∈ LATERAL
@grd3: selectLon ∈ LONGITUDINAL
@grd4:move(SDV POSITION env 7→
selectLon 7→ selectLat)⊆ ODD

@grd5: stage= AutonomousDriving
@grd6: signal flag= FALSE
then

/* setting autonomously*/
@act1: LATERAL VAR := selectLat
@act2: LONGITUDINAL VAR :=
selectLon

/* ready to move */
@act3: signal flag := TRUE
with
/*replace autonomously*/
@auto lat: auto lat= selectLat
@auto lon: auto lon= selectLon
end

2. The second event, manual driving, is extended from an abstract event manual actuating
and is designed to simulate the corrective action taken by a human driver when
the autonomous controller is in Intervention stage. The event manual driving is
modeled as follows:
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eventmanual driving extends
manual actuatingwhere
@grd4: stage= Intervention
@grd5: signal flag= FALSE
then
/* ready to move */
@act3: signal flag := TRUE
end

The event move is extended from an abstract event move to demonstrate how the SDV
can move into a position inside the limited ODD, regardless of whether new lateral and
longitudinal variables are manually actuated in Intervention mode or autonomously
actuated in AutonomousDriving mode. Additionally, the sensor will update incoming
sensing data based on the new position of the SDV (SR2.1). The event move is modelled
as follows:

eventmove extendsmove
where@grd3: signal flag= TRUE
@grd4: stage ∈ {AutonomousDriving ,

Intervention}
then
@act2: stage := Perception
@act3: sensing data env := sensor(

new position)
@act4: signal flag := FALSE
end

In order to ensure that the actuation task of an autonomous controller maintains the
safety of the system, specifically that SDV POSITION env ∈ ODD, we added an envi-
ronmental invariant Environment-consistency which is formulated as follows:

@Environment−consistency: stage= AutonomousDriving
⇒move(SDV POSITION env 7→ selectLon 7→ selectLat)⊆ ODD

Table 6.11 presents how the formal model satisfies safety requirements (SR2.1 to SR2.8).
The refined model (machine m2) involves several assumptions (A) in a formal model:

• A2.1: The sensor system will always provide sensing data for the current state of
a limited ODD.

• A2.2: The autonomous controller can obtain sensing data from the sensor at-
tached to an SDV.

• A2.3: Perceived environmental features, such as features, path, and accuracy, are
computed based on the current position of an SDV where the sensing data are
visible.
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• A2.4: The autonomous controller can make a judgment on the detection process
of the perceived environmental features based on the accuracy score. We assume
that if the accuracy score is less than 80%, the autonomous controller will ask a
human driver to take over the control of an SDV (Intervention stage).

• A2.5: We assume that a human driver is always be receptive when the semi-
automated system requests the driver’s intervention.

TABLE 6.11: Safety requirements (SR2.1 to SR2.8) in formal model for RATP Layer 2

Safety requirements Event-B elements
SR2.1 Invariant, @consistency: sensing data env = sensor(SDV POSITION env)

SR2.2

Two invariants developed based on the event perception,
@detection task: stage = Perception ⇒ sensing data env ∈ ran(sensor)
∧(sensing data env 7→ generic features 7→accuracy) ∈ dom(OEDR task)
@recognition task: stage = Decision ⇒ generic path ∈ ran(OEDR task)

SR2.3
Guard grd3 and action act1 in violationExpectedFeatures event,
@grd3: accuracy < 80 ∨ generic path ̸⊆ ODD
@act1: stage := Intervention

SR2.4
An invariant developed based on the event decision,
@selPosition: stage = Decision ∧ accuracy ≥ 80 ∧ generic path ⊆ ODD
⇒ generic path ∈ dom(specify target position)

SR2.5

An invariant developed based on the event decision,
@selLatLon: stage = Control ∧ accuracy ≥ 80 ∧ generic path ⊆ ODD
⇒ (selectPos 7→ LATERAL VAR) ∈ dom(compute lateral) ∧
(selectPos 7→ LONGITUDINAL VAR) ∈ dom(compute longitudinal)

SR2.6 & SR2.8

Guard grd3 and action act1 in violationLimit event,
@grd3: selectLat /∈ LATERAL ∨ selectLon /∈ LONGITUDINAL ∨
move (SDV POSITION env 7→ selectLon 7→ selectLat) ̸⊆ ODD
@act1: stage := Intervention

SR2.7

Guards (grd3, grd4) and action act1 in control event,
@grd3: selectLat ∈ LATERAL ∧ selectLon ∈ LONGITUDINAL
@grd4: move(SDV POSITION env 7→ selectLon 7→ selectLat) ⊆ ODD
@act1: stage := AutonomousDriving

6.2.4 Third Analysis Process (Layer 3)

Step 1. Instantiation: The semi-automated systems are responsible for ensuring the
driver’s awareness level, especially when the SDV prompts the driver to take control.
To accomplish this, we assume that the Driver Monitoring System (DMS) inside the
human fallback controller computes the driver’s awareness level [52]. In Figure 6.17,
we refined the previous system boundary diagram to show how the DMS interprets the
driver’s input, such as eyes, head, and hands of the human driver, in order to compute the
driver’s awareness level when the semi-automated system may require intervention.
This refinement allows for a better understanding of how the SDV systems function and
how it ensures the responsiveness of the fallback driver in the intervention scenarios.
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FIGURE 6.17: System boundary diagram in RATP Layer 3

Step 2. The purpose of analysis: In this layer, the purpose of the analysis is to study
how the awareness level of a driver is involved in the autonomous operations of a
system when the semi-automated system may issue a request to intervene. A refined
System Loss (SL3) can be derived from the previous safety requirements (SR2.3, SR2.6,
and SR2.8):

• SL3: The human fallback driver does not take control of the vehicle when the
semi-automated system requests intervention.

Since the human fallback controller is responsible for ensuring the driver’s responses,
the System Hazards (SHs) associated with the system loss (SL3) are identified as fol-
lows:

• SH3.1: The human driver is not attentive to the autonomous operations of a semi-
automated system.

• SH3.2: The autonomous controller of a semi-automated system issues a request
to intervene while the awareness level of a human fallback driver is unknown.

To prevent these hazards, a high-level safety constraint (SC) is defined as follows:

• SC3: The human fallback driver must pay attention to the autonomous opera-
tions of the system when the autonomous controller moves the SDV autonomously.
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Step 3. Control structure: A refined control structure is developed to ensure the
awareness of the human fallback driver during the autonomous operations of a semi-
automated system, as shown in Figure 6.18. To explain how the DMS verifies the aware-
ness level of the driver, the human fallback controller is added to the semi-automated
system. For example, CA8 represents a driver input that enables the DMS to ensure the
driver’s awareness level. Furthermore, to capture high-level interactions between the
autonomous and human fallback controllers, CA7 and F6 are added. CA7 highlights
the responsibility of the human fallback controller to share the driver’s awareness level
with the autonomous controller, whereas F6 simulates a potential feedback loop where
the autonomous controller may request intervention.

FIGURE 6.18: Control structure in RATP Layer 3

Step 4. Identifying unsafe control actions: At this layer, the UCAs are demonstrated
in two categories. The first category comprises the unsafe operations of the DMS
(SH3.1), which are presented in Table 6.12 and explained below.
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• The autonomous controller performs its operations, such as actuating lateral and
longitudinal variables autonomously, while the awareness level of the human
fallback driver is unverified by the DMS.

• The semi-automated system may function before the DMS verifies the awareness
level of the human fallback driver.

TABLE 6.12: Unsafe control actions of DMS component in RATP Layer 3

Control
Action
(CA)

Not providing CA leads
to hazards

Providing CA leads to
hazards

CA applied early, late,
or out of order

CA stopped
too soon or
applied too
long

CA8

UCA4.1: Autonomous
controller performs its
operations while the
awareness level of a
driver is unknown.

UCA4.2: Autonomous
controller performs its
operations while the
awareness level of a
driver is unverified by
the DMS (CA8).

UCA4.3: Autonomous
controller performs
its operations before
the DMS verifies the
driver’s awareness
level (CA8).

N/A

Causal Factor

A human fallback driver is unaware of autonomous operations.

As a result, the potential safety requirements related to the DMS component can be
identified as follows:

• SR3.1: To activate the semi-automated system, the DMS must ensure the aware-
ness level of the human fallback driver [SH3.1].

• SR3.2: The DMS must compute the awareness level of a driver based on the hu-
man monitoring features, such as eyes, head, and hands of the human driver
[SH3.1].

• SR3.3: If the human fallback driver does not provide the human monitoring fea-
ture, the semi-automated system will be immediately deactivated [SH3.1].

The second category includes the unsafe operations of a system when a request to in-
tervene is sent (SH3.2). These unsafe operations are demonstrated in Table 6.13 and
explained as follows:

• The intervention request might be sent when the awareness level of the human
fallback driver is unknown.

• The autonomous controller relies on the correction action of the human fallback
driver while their awareness level is unknown.

Therefore, the potential safety requirements associated with SH3.2 can be identified as
follows:
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TABLE 6.13: Unsafe control actions of driver intervention in RATP Layer 3

Control
Action
(CA)

Not providing CA leads
to hazards

Providing CA leads to
hazards

CA applied early,
late, or out of order

CA stopped
too soon or
applied too
long

CA7

UCA4.4: Autonomous
controller performs its
operations while the
awareness level of a
driver is unaware.

UCA4.5: Autonomous
controller issues a re-
quest to intervene (F6)
when the status of the
human fallback driver is
unaware (CA7).

UCA4.6: Autonomous
controller relies on
the correction action
of the human fallback
driver (CA3) while
their awareness level
is unknown (CA7).

N/A

Causal Factor

Unknown reactions of a fallback driver when a semi-automated system issues a request to intervene.

• SR3.4: The human fallback controller must share the awareness level of a driver
with the autonomous controller [SH3.2].

• SR3.5: If the autonomous controller system issues a request to intervene, the
driver will be responsible for performing the entire driving task (manual driv-
ing) [SH3.2].

Step 5. Event-B model: A full script of the refined machine (m3) can be seen in Sec-
tion D.4 in Appendix D. Mapping is provided in Table 6.14 to detail how CA7, CA8
and F6 linked to the representation of a refined model (m3).

TABLE 6.14: Control actions and feedback loops in formal model for RATP Layer 3

Control Ac-
tion & Feed-
back loop

Event-B elements

CA7 Variable, awarenessLevel
CA8 Variable, driver input
F6 Variable, intervRequest

We modelled the awareness level of a driver and the intervention request using Booleans
as follows:

/* driver either aware (TRUE) or unaware (FALSE)*/
@typeof−awarenessLevel: awarenessLevel ∈ BOOL
/* DMS uses the driver’s input to compute the awareness level of a driver */
/*i.e, driver’s input is provided (TRUE) or not provided (FALSE)*/
@type−driverInput: driver input ∈ BOOL
/* semi−system may issue a request to intervene*/
/*i.e, request is sent (TRUE), unsent (FALSE)*/
@typeof−intervention: intervRequest ∈ BOOL
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A Boolean variable awarenessLevel (CA7) is introduced to compute the awareness level
of a driver (SR3.2) based on how the DMS detects the driver input (CA8); therefore, a
new invariant is written, as follows:

@awarenesslevel:awarenessLevel
=TRUE⇒ driver input=TRUE

In the operations of DMS, two events are used to detect human monitoring features and
calculate the awareness level of the human fallback driver. The first event, DMS driver in
put detect, models the detection of the awareness level based on the human monitor-
ing feature. When this event is triggered, it sets the driver input to TRUE and the
awareness level to TRUE. This event is modelled as follows:

event DMS driver input detect
when
@grd1: driver input= FALSE
@grd3: awarenessLevel= FALSE
then
@act1: driver input := TRUE
@act2: awarenessLevel := TRUE
end

The second event, DMS driver input remove, models the possible change in awareness
level when the human fallback driver does not provide the human monitoring feature.
This event is modelled as follows:

event DMS driver input remove
when
@grd2: driver input= TRUE
@grd3: awarenessLevel= TRUE
then
@act1: driver input := FALSE
@act2: awarenessLevel := FALSE
end

In order to ensure that the human fallback driver is aware of autonomous operations,
we added a new invariant driverAware to verify the awareness level of a driver when
the semi-automated system performs its operations.
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@driverAware: awarenessLevel=
TRUE⇒ stage ∈ {Perception ,
Decision, Control,
Intervention,
AutonomousDriving}

According to an invariant driverAware, a new guard is added to the autonomous
events, such as perception, to ensure that the semi-automated system is only operat-
ing (SR3.4) when the awareness level of a driver is verified by the DMS (SR3.1).

event perception extends perception
when
@grd5: awarenessLevel= TRUE
end

Based on the intervention cases in the previous machine (m2), the semi-automated sys-
tem may issue a request to intervene in two driving scenarios:

1. If the perception module of an autonomous controller identifies the path or en-
vironmental features with a low confidence score (F4), modelled earlier in event
violationExpectedFeatures.

2. If the control module of an autonomous controller attempts to exceed the accept-
able limits of the lateral and longitudinal variables of the actuators involved in
the SDV (F5), or where modifications to the lateral and longitudinal variables
will result in a new position outside the limited ODD (F5), modelled earlier in
event violationLimit.

Therefore, we added a new invariant intervCases to ensure that the intervention re-
quest (F6) sent if the stage of semi-automated system is in Intervention (SR3.5).

@intervCases: intervRequest= TRUE
⇒
accuracy< 80 ∨
generic path ̸⊆ ODD ∨
selectLat /∈ LATERAL ∨
selectLon /∈ LONGITUDINAL ∨
move(SDV POSITION env 7→

selectLon 7→ selectLat) ̸⊆ ODD

Based on this invariant intervCases, the intervention events such as violationLimit,
modelled in the previous machine (m2), are extended as follows:
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event violationExpectedFeatures
extends violationExpectedFeatures
where
@grd4: awarenessLevel= TRUE
@grd5: intervRequest= FALSE
then
@act2: intervRequest := TRUE
end

event violationLimit
extends violationLimit
where
@grd4: awarenessLevel= TRUE
@grd5: intervRequest= FALSE
then
@act2: intervRequest := TRUE
end

The move event is divided into two events: auto move and manual move. These
events represent how the SDV moves to a new position (CA1). Specifically, the auto move
event is activated when there is no intervention request, and it assumes that the SDV
applies lateral and longitudinal variables autonomously (CA2). This event is modelled
as follows:

event auto move refinesmove any
new positionwhere
@grd1: new position ∈ODD
@grd2: new position ∈move(

SDV POSITION env 7→
LONGITUDINAL VAR 7→
LATERAL VAR)

@grd3: signal flag= TRUE
/* new guards*/
@grd4: stage= AutoDriving

@grd5: awarenessLevel= TRUE
/* no intervention request */
@grd6: intervRequest= FALSE
then
@act1: SDV POSITION env :=

new position
@act2: stage := Perception
@act3: sensing data env := sensor(

new position)
@act4: signal flag := FALSE
end

The manual move event is used when the semi-automated system is in the Intervention
stage. In this case, the SDV applies lateral and longitudinal variables manually (CA3),
meaning that a human driver is involved in the movement of the SDV. This event is
modelled as follows:

eventmanual move refinesmove
any new positionwhere
@grd1: new position ∈ODD
@grd2: new position ∈move(

SDV POSITION env 7→
LONGITUDINAL VAR 7→
LATERAL VAR)

@grd3: signal flag= TRUE
@grd4: stage= Intervention
@grd5: awarenessLevel= TRUE

@grd6: intervRequest= TRUE
then
@act1: SDV POSITION env :=

new position
@act2: stage := Perception
@act3: sensing data env := sensor(

new position)
@act4: signal flag := FALSE
@act5: intervRequest := FALSE
end

Table 6.15 shows how the safety requirement (SR3.1 to SR3.5) has been satisfied in
a formal model. In the refined model (machine m3), there are two assumptions (A)
involved in a formal model:
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• A3.1: A human driver is receptive to any intervention requests when the semi-
automated system issues a request to intervene.

• A3.2: To determine the awareness level of a driver, we assume the use of a sensor
that is attached to the DMS events. This sensor monitors changes in the driver’s
inputs, such as eye and hand movements. By analysing these inputs, we can
calculate the driver’s level of awareness.

TABLE 6.15: Safety requirements (SR3.1 to SR3.5) in formal model for RATP Layer 3

Safety requirements Event-B elements

SR3.1 & SR3.3
Invariant, @driverAware: awarenessLevel = TRUE ⇒ stage
∈ {Perception ,Decision, Control, Intervention, AutonomousDriving}

SR3.2 Invariant, @awarenesslevel: awarenessLevel = TRUE ⇒ driver input = TRUE

SR3.4
New guards in autonomous events, such as @grd5 in perception,
@grd5: awarenessLevel = TRUE

SR3.5

Invariant for issuing intervention request, @intervCases: intervRequest = TRUE ⇒
accuracy < 80 ∨ generic path ̸⊆ ODD ∨
selectLat /∈ LATERAL ∨
selectLon /∈ LONGITUDINAL ∨
move(SDV POSITION env 7→ selectLon 7→ selectLat) ̸⊆ ODD
Where new guard and action in the event manual move to simulate the driver’s reaction
@grd6: intervRequest = TRUE
@act5: intervRequest := FALSE

6.3 Discussion

The RATP approach addresses RQ3.1 through multifaceted aspects. Initially, it offers
systematic and rigorous steps for analysing SDV systems, breaking down the analysis
into multiple iterative layers. Each layer of analysis is carefully structured to ensure
comprehensive coverage of system behaviours and interactions.

Subsequently, the RATP approach provides precise requirements and assumptions for
each analysis layer, which are then assigned to specific formal representations. This
ensures that all aspects of system safety are thoroughly considered and represented in
a structured manner.

Moreover, the RATP approach introduces analysis layers as modelling patterns, which
serve to investigate the complexity of safety in SDV systems. These patterns are de-
signed to provide a blueprint structure for understanding the dynamics of the system.
They allow for the exploration of system behaviours from a high abstract level down
to a concrete level, where a human driver may need to intervene in hazardous events.

Finally, the RATP approach includes a formal verification process, where the generic
automation features undergo iterative steps to ensure their consistency and traceabil-
ity into the formal models. This step further strengthens the robustness of the RATP

115



CHAPTER 6. RIGOROUS ANALYSIS TEMPLATE PROCESS 116

approach in addressing safety concerns in SDV systems, as the system specifications
are gradually introduced through refinement techniques. In addition, this formal veri-
fication process adds an additional layer of verification, ensuring that the identified au-
tomation features are accurately represented and aligned with the safety requirements
of the SDV system.

6.4 Advantages, Concerns and Related Work

The RATP approach has been proposed as a viable model for reuse in specific case stud-
ies. The next chapter presents the application and reuse of patterns in a concrete case
study. Before embarking on the case study, this section seeks to outline the advantages
of using the RATP approach (Section 6.4.1), as well as its limitations and concerns re-
garding its application (Section 6.4.2). We compare the RATP approach to studies that
have successfully used methodologies such as STPA and Event-B to analyse safety-
critical systems, including SDV systems (Section 6.4.3).

6.4.1 Advantages

The RATP approach has several advantages. First, it involves a template that identifies
the automation aspects of semi-automated systems for performing Dynamic Driving
Tasks (DDTs). These aspects are organised into the high-level modules involved in the
semi-automated systems, where the autonomous controller and the human fallback
driver engage together to achieve safe driving tasks. By breaking down the system into
modules and analysing each one, the RATP approach helps to ensure that the system
is safe and operates as intended.

Second, the RATP employs an iterative process that involves repeating a series of sys-
tematic steps to refine and improve the quality of the entire design. By using iterative
analysis, the requirements or constraints of a target system are gradually identified,
and the behaviours of the system are investigated from a high-level abstract view to a
more detailed, concrete view.

Third, the RATP provides robust traceability of system losses, hazards and their cor-
responding safety requirements or constraints into associated formal representations.
For example, if a safety requirement (SR2.1) states that the SDV must use a sensor to
obtain sensing data based on multiple positions, an Event-B invariant can be written
as sensing data env = sensor (SDV POSITION env) to ensure that the sensing data are
taken on the basis of the SDV ’s current position.
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Fourth, the RATP verifies a safety property of a system in an Event-B invariant at the
early stage of analysis. The behaviours of a system and their corresponding Event-
B elements are gradually added in refinement steps. For instance, if the SDV must
always be within the limited ODD (SC0), an abstract safety invariant can be written
as SDV POSITION env ∈ ODD. Further refinements are made by adding an environ-
mental invariant to ensure that the movement of a semi-automated system maintains
an abstract safety invariant when the physical lateral and longitudinal variables are
autonomously manipulated. Therefore, a new invariant is identified as stage = Au-
tonomousDriving ⇒ move(SDV POSITION env 7→ selectLon 7→ selectLat) ⊆ ODD.
This means that when the SDV is in autonomous driving mode, the movement of the
vehicle must be within the limited ODD.

6.4.2 Limitations

The RATP approach promises benefits, but it also has limitations and concerns that
may impact its effectiveness in certain contexts. It is important to acknowledge these
limitations.

First, while the automation aspects involved in the template are simple, they may re-
quire domain expertise to instantiate them accurately. For example, the perceived en-
vironmental features are intended to capture how the perception module interprets in-
coming sensing data to keep the semi-automated system within its ODD. In this case,
the perceived environmental features would be identified on the basis of the specific
ODD definition, where the semi-automated system is supposed to operate. Therefore,
it is crucial to have a deep understanding of what the semi-automated system is in-
tended to achieve in a specific ODD.

Second, the RATP approach relies on several assumptions during the development of
its modelling patterns, for instance that the semi-automated system may depend on the
human fallback driver to take control of the vehicle in a hazardous situation. Therefore,
it is assumed that a driver responds when the semi-automated system requests their
intervention (A2.5).

Third, the RATP approach has strengths and weaknesses that are included in the use
of hazard identification method of STPA, and formal verification approach of Event-B.
The STPA method focuses on the dynamic control of a system and on the causes of
hazards in the absence of component failure. Therefore, hazards could still remain that
might be the result of component failure. On the other hand, formal verification meth-
ods, such as Event-B, can verify only what they are explicitly designed to verify. As
a result, knowledge might be necessary regarding the domain in which the suggested
formalisms are being developed.
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6.4.3 Related Work

This section presents the RATP approach in comparison to other methodologies in the
field of safety-critical systems. The related work is divided into two main categories:

1. Adoption of STPA steps in the RATP approach: here, we evaluate how the RATP
approach incorporates the STPA steps and compare it to how other methodolo-
gies use these steps.

2. Integration of formal methods with STPA: in this subsection, we explore the
integration of formal methods with STPA.

Each of these categories is detailed in its own subsection.

6.4.3.1 STPA Steps in RATP

STPA is a hazard analysis method that has been used in various application domains.
However, this subsection focuses on a modified method derived from the tradition-
al/original STPA steps proposed by Leveson and Thomas [84].

STPA-Sec [139] was primarily developed to extend the original STPA steps to cover the
security concerns. Similar to STPA, STPA-Sec comprises four main steps. It begins with
identifying the losses to be considered and leads to the insecure scenarios that may vio-
late security constraints. STPA-Sec specifically emphasises analysing the vulnerability
of the system to external attacks, whilst STPA prioritises the identification of hazards
and enhancing the safety of the target system.

STPA-Priv [118] is another modification of STPA that focuses primarily on a system’s
privacy. It also adopts similar STPA steps, but it suggests using open-loop controls,
when developing a control structure, to reflect the privacy properties. Open-loop con-
trols do not require feedback loops from the controlled processes. For example, users
may or may not read a privacy guideline, nonetheless there is often no feedback pro-
vided to the controller.

DeepSTPA [111] follows the same methodology as traditional STPA, and is proposed
primarily for analysing Learning-Enabled Systems (LESs) 2. Compared to traditional
STPA, deepSTPA enhances the development of a control structure by adopting layer-
wise functionalities to establish links between development activities within the control
structure.

In the RATP approach, the traditional STPA steps are presented in Steps 1 to 4. In
contrast to previous modifications of STPA, we used a template at the beginning of

2Learning-Enabled Systems are complex systems that can learn from data and experiences in order to
improve their performance over time [110].
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the analysis to study system safety against identified hazardous states at various levels
of abstraction. The main advantage of this view is that it enables analysis of system
behaviours from a high-abstraction layer to a more detailed, concrete layer.

6.4.3.2 Formal Methods with STPA

The Event-B formal method was used with STPA to ensure that the identified hazards
were prevented or mitigated at the early stage of design. Colley and Butler [35] devel-
oped a method to demonstrate and formally analyse the critical requirements (artefacts)
generated by the STPA analysis method. The goal was to use modelling techniques,
such as formal verification, via the use of the Event-B formal method and its Rodin
toolset [7]. Similarly, Howard et al. [69] used STPA to define critical requirements
and employed formal models in Event-B to ensure the effective mitigation of vulner-
able system states. To achieve this, they constructed an abstract model based on the
control actions outlined in the STPA control structure. Additionally, they developed a
concrete/refined model that incorporated the critical requirements identified through
analysis of these control actions. Dghaym et al. [40] then extended the work of [35, 69]
to develop a compositional approach to elicit the critical requirements for autonomous
functions, and next formalised these critical requirements into Event-B models.

STPA has been applied alongside other formal methods in various studies. Abdulkhaleq
et al. [2] developed a safety engineering framework that combines STPA with for-
mal verification. STPA is used to identify the safety requirements, which are then
formalised and expressed using temporal language. Formal verification, specifically
model checking, was used to ensure that a behaviour model met the controller’s be-
haviour, where the verified model had passed the formalised requirements. Hata et
al. [61] formally modelled the constraints/requirements obtained from STPA as pre-
and post-conditions in VDM++. By incorporating STPA into the formal modelling pro-
cess, they aimed to ensure that safety considerations are properly addressed. Thomas
and Leveson [123] described a formal syntax for unsafe control actions, which are
recognised by applying STPA. This formalisation facilitates the automatic generation
of model-based requirements, along with the identification of inconsistencies in those
requirements.

In the RATP approach, formal models are developed to capture safety requirements
using a series of hierarchical patterns. The process starts with a high-level analysis layer
and advances towards a more detailed concrete layer. This view enables the formal
models to incrementally capture safety requirements while ensuring robust traceability
and consistency through formal verification.
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6.5 Conclusion

This chapter introduces the RATP methodology. This methodology consists of five
systematic steps used to identify safety requirements and to develop a rigorous model
for SDV systems. Within the RATP approach, modelling patterns are organised into
four distinct layers. These layers enable the analysis of system behaviour, starting from
a high-level abstract view and moving towards a detailed and concrete view. In the
coming chapters the focus is on the practical application of these layers, demonstrating
their use in a case study.
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Chapter 7

LKA and DMS Functions in the ALC
System

This chapter focuses on the application of the Rigorous Analysis Template Process
(RATP) approach to the Lane Keeping Assist (LKA) and Driver Monitoring System
(DMS) functions within the Automated Lane Centring (ALC) system, a process ini-
tially summarised in Section 4.2.2 of Chapter 4. This work contributes to the following
research question (RQ4):

RQ4: To what extent does the RATP methodology demonstrate its utility when applied to a
case study of varying sizes and complexity, especially those involving interactions between

human drivers and an SDV system?

In alignment with RQ4, this chapter demonstrates how the RATP approach can be
applied to model two primary functionalities in the ALC system: the LKA and the
DMS functions. Section 7.1 expounds on the systematic iterative process inherent to
the RATP approach, detailing its implementation within the context of the analysis of
the LKA and DMS features. Section 7.2 gives a conclusion of this chapter.

Parts of this chapter were published in COMPSAC 2023 [13]. Specifically, we published
a summary of the application of the RATP approach to the functionalities of LKA and
DMS.

7.1 Modelling Pattern of the ALC System

Building upon the modelling patterns discussed in Section 6.2 of Chapter 6, we ap-
plied the systematic steps of the RATP methodology in four iterations. Each represents
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an analysis process encapsulated within a single layer, gradually introducing the com-
plexity of the ALC system from a high-abstraction layer to a more detailed concrete
layer. The analysis aims to achieve the following objectives in each layer:

• ALC-Layer 0: Captures the main functionality of a system as the ALC system
moves an Self-Driving Vehicle (SDV) to the middle of its desired (target) lane.

• ALC-Layer 1: Shows in further detail how the steering angle of an SDV is modi-
fied to reach a new position inside the target lane.

• ALC-Layer 2: Introduces the autonomous operations of a system such as percep-
tion, decision-making and control.

• ALC-Layer 3: Adds further details on how the awareness level of a driver is
involved in autonomous operations.

Each layer is then further detailed in its own subsection.

7.1.1 Abstraction Level (ALC-Layer 0)

The first RATP aims to capture the high-level aspects of a system and allow the ab-
straction behaviours of an ALC system to be analysed and modelled. Specifically, we
instantiated generic automation aspects discussed in Subsection 6.2.1 of Chapter 6 as
follows:

• The limited ODD is instantiated as the target lane where the ALC system executes
its functionalities.

Each step of the RATP approach is then further detailed as follows.

Step 1. Instantiation: Starting with the main functionality, the ALC system is de-
signed to position an Self-Driving Vehicle (SDV) in the middle of its desired (or target)
lane [94, 10]. Therefore, the SDV system can be defined as a system to align a vehicle
with the centre of the target lane. The boundary of the system is defined by the tar-
get lane, which represents a specific Operational Design Domain (ODD) of the ALC
system. Based on these definitions, the system boundary diagram is constructed, as
illustrated in Figure 7.1.
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FIGURE 7.1: System boundary diagram in ALC Layer 0

Step 2. The purpose of analysis: With the help of a system component diagram (see
Figure 7.1), the main goal of analysis (focusing on its purpose of keeping the vehicle
in lane) is emphasised in an unwanted event, namely the System Loss (SL) of an ALC
system, SL0:

• SL0: The SDV collides with an object outside its target lane.

As an SDV may move into a position outside its target lane, a high-level System Hazard
(SH) associated with SL0 is SH0:

• SH0: The SDV travels into a position outside its target lane.

A high-level Safety Constraint (SC) that satisfies the system conditions to prevent SH0
is SC0:

• SC0: The SDV must always be located inside the target lane.

Step 3. Creating control structure: An abstract control structure is demonstrated in
Figure 7.2. It involves two main components: 1) the SDV with an ALC system and 2) the
target lane. To capture a high-level interaction between an SDV and the target lane, SC0
is translated into a set of Control Actions (CAs) and Feedback Loops (FLs). In more
detail, CA1 implies that an SDV may change its position to a new position, while F1
indicates the monitoring of a change in an SDV’s position.

Step 4. Identifying unsafe control actions: The Unsafe Control Actions (UCAs) of
CA1 are demonstrated in Table 7.1. UCA 1.1 indicates that the ALC system might travel
to a new position outside of the target lane; therefore, the identification of Safety Re-
quirements (SRs) for mitigating the occurrence of SH0 is SR0:

• SR0: The SDV must travel into a new position inside the target lane[SH0].
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FIGURE 7.2: Control structure in ALC Layer 0

TABLE 7.1: Unsafe control actions in ALC Layer 0

Control Ac-
tion (CA)

Not providing
CA leads to
hazards

Providing CA leads to haz-
ards

CA applied
early, late, or
out of order

CA stopped too
soon or applied
too long

CA1 N/A

UCA1.1: The SDV may
travel from a position inside
the target lane to a new posi-
tion outside the target lane.

N/A N/A

Causal Factor

Unsafe movement of an SDV

Step 5. Specifying Event-B model: Mapping is provided in Table 7.2 to demonstrate
how CA1 and F1 link with the representation of an abstract model (m0). A full script
of the initial machine (m0) can be seen in Appendix E.1.

At the abstraction level (m0 machine), we use a constant Lane to specify all posi-
tions of SDVs in the lane, i.e., Lane ⊆ POSITION. The physical position of the SDV
( CA1) is modelled as a variable SDV POSITION env, with a safety invariant @safety:
SDV POSITION env ∈ Lane, i.e., the SDV must always be within the lane (SC0). In ad-
dition, the initial position of an SDV (F1) is modelled as a constant init position, where
the initialisation position of SDV must be inside the lane, i.e., init position ∈ Lane.

TABLE 7.2: Control actions and feedback loops in formal model for ALC Layer 0

Control Ac-
tion & Feed-
back loop

Event-B elements

CA1 Variable, SDV POSITION env

F1 Action, SDV POSITION env := init position

The initial machine (m0) involves four events. First, the initialisation event sets a valid
default state of a physical position of the SDV as SDV POSITION env := init position.
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Second, the move event abstractly captures a movement of an SDV into a new position
as follows:

eventmove
any
new position
where
//A new position inside the lane
@grd1: new position ∈ Lane

then
//moved into a new position
@act1: SDV POSITION env :=

new position
end

Besides the move event, we added two events, ALC ON and ALC OFF, in order to
show the status of the ALC system. These events can demonstrate the activation and
deactivation functions as follows:

event ALC ON
where
@grd1: ALC Status= OFF
then
@act1: ALC Status := ON
end

event ALC OFF
where
@grd1: ALC Status= ON
then
@act1: ALC Status := OFF
@reset−position: SDV POSITION env :=

init position
end

Table 7.3 shows how a safety requirement (SR0) has been captured in a formal model.
At this level (machine m0), there is only one Assumption (A) involved in a formal
model, as A0:

• A0: The current position of an SDV starts inside the target lane.

TABLE 7.3: Safety requirement (SR0) in formal model for ALC Layer 0.

Safety requirements Event-B elements

SR0
Guard (@grd1) in the move event,
@grd1: new position ∈ Lane

7.1.2 High-Level Analysis Process (ALC-Layer 1)

The subsequent RATP iteration was conducted to explore the methodology employed
by an ALC system in determining its steering angle for transitioning to a new posi-
tion within the target lane. Specifically, we instantiated generic automation aspects
discussed in Subsection 6.2.2 of Chapter 6 as follows:

• The lateral control variable is specified by the steering angle, enabling the ALC
system to adjust it to maintain the SDV within the target lane.

• The human driver retains the ability to modify the steering of the SDV, providing
corrective action when necessary.

Each phase of the RATP approach is subsequently elaborated as follows.
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Step 1. Instantiation: Semi-automation systems, such as an ALC system, assume that
the driver provides corrective action if a system fails to operate as expected [101]. This
assumption indicates that a human driver is part of the SDV system. Therefore, the
SDV system is divided into two main components: 1) the human fallback driver; and 2)
the autonomous controller, as shown in Figure 7.3. A driver might provide a steering
angle manually, while the ALC system can apply a steering angle autonomously.

FIGURE 7.3: System boundary diagram in ALC Layer 1

Step 2. The purpose of analysis: A refined system loss is driven from the previously
identified safety requirement SR0 as SL1:

• SL1: A new steering angle moves an SDV to reach a new position outside of the
target lane.

As the steering of an SDV might be modified by either a human driver or an ALC
system, a system hazard of SL1 is SH1:

• SH1: The steering angle of an SDV is actuated by either a human driver or an
ALC system to reach a new position outside the target lane.

A high-level safety constraint associated with SH1 is SC1:

• SC1: The steering angle of an SDV must be modified to reach a new position
inside the target lane.

Step 3. Refining control structure: We refined a control structure according to how
the ALC system may change the steering angle of an SDV, as shown in Figure 7.4.
To show a responsible system component for identifying a steering angle, the ALC
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system was split into two subcomponents: the human fallback driver and the autonomous
controller. Based on the SC1, new CAs and FLs were added. In more detail, CA2 sets
a steering angle of an SDV autonomously, while F2 monitors a change in a current
steering angle of an SDV to identify new steering. For instance, the ALC system in [10]
determines a new steering angle of an SDV based on the required manipulation of the
current steering angle in a way that satisfies the movement into a new position. Because
a human driver might be responsible for setting a new steering angle of an SDV, CA3
indicates a high-level interaction between a human driver and the target lane when a
driver may provide a corrective action if the ALC system fails to operate as expected.

FIGURE 7.4: Control structure in ALC Layer 1

Step 4. Identifying unsafe control actions: The identification of SRs is associated
with the UCAs of CA2 and CA3, as shown in Table 7.4. For instance, UCA 2.2 and
UCA 2.3 indicate that the steering angle of an SDV can be modified to reach a position
outside of the target lane while the driver’s corrective action is missing. Therefore, the
SRs of SH1 are as follows:

• SR1.1: The ALC system must actuate a steering angle autonomously to reach a
target position inside the target lane [SH1].

• SR1.2: The human driver can provide a corrective action that actuates a steering
angle manually to reach a target position inside the target lane [SH1].

Step 5. Refining Event-B model: Mapping is provided in Table 7.5 to detail how
CA2, CA3 and F2 are linked to the representation of a refined model. Full details of the
refined model are provided in Appendix E.2.
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TABLE 7.4: Unsafe control actions in ALC Layer 1

Control
Action
(CA)

Not providing CA leads to
hazards

Providing CA leads to
hazards

CA applied early,
late, or out of order

CA
stopped
too soon
or applied
too long

CA2
and
CA3

UCA 2.1: The ALC system
moves a vehicle into a new
position inside the target
lane (CA1), but the specifi-
cations of steering are miss-
ing.

UCA 2.2: actuates
steering variable au-
tonomously (CA2) to
reach a position outside
the target lane.

UCA 2.3: driver’s
corrective action is
missing (CA3) when
an SDV moves out-
side the target lane.

N/A

Causal Factor

Wrong adjustment of the actuating variables (steering).

TABLE 7.5: Control actions and feedback loops in formal model for ALC Layer 1

Control Ac-
tion & Feed-
back loop

Event-B elements

CA2 Variable, SDV STEERING ANGLE env

CA3 Variable, SDV STEERING ANGLE env

F2 Actions in initialisation event,

SDV STEERING ANGLE env :∈ STEERING ANGLE

At this refinement level (machine m1), we modelled the physical steering variable of
an SDV as a variable called SDV STEERING ANGLE env. This variable has two con-
stants, max steering and min steering, that specify the defined range of steering angles.
In addition, we used two constants, max steering constraint and min steering constraint,
to model an acceptable adjustment of the actual steering to prevent a sudden manipu-
lation of the steering.

The movement of an SDV into a new position is modelled as a constant move, where
modifications of the steering angle enable the SDV to reach new positions. The defini-
tion of the move function is shown below.

move ∈ POSITION× STEERING ANGLE→ P1(POSITION)

Two events model the high-level cases of the ALC system at this layer, i.e., ALC actuating
(CA2), Manual actuating (CA3), as shown in Figure 7.4. The ALC actuating event ab-
stractly specifies an autonomous identification of a new steering angle to reach a new
position inside the target lane (SR1.1).

128



129 CHAPTER 7. LKA AND DMS FUNCTIONS IN THE ALC SYSTEM

event ALC actuating
any steering angle change
where
@grd1: ALC Status= ON
//steering angle change definition
@grd2: steering angle change ∈

STEERING ANGLE CHANGE
@grd3: steering angle change+

SDV STEERING ANGLE env ∈
STEERING ANGLE

//SR1.1: new steer leads into lane
@grd4:move(SDV POSITION env 7→ (

SDV STEERING ANGLE env+
steering angle change))⊆ Lane

then
//replace old steering
@act1: SDV STEERING ANGLE env := (

SDV STEERING ANGLE env+
steering angle change)

end

In the same way, the Manual actuating event describes how a human driver may pro-
vide a manual steering angle to reach a new position inside the target lane (SR1.2).

eventManual actuating
anymanual steering angle
where
@grd1:manual steering angle ∈

STEERING ANGLE

//SR1.2: driver steering leads to lane
@grd2:move(SDV POSITION env 7→

manual steering angle)⊆ Lane
then
//replace old steering
@act1: SDV STEERING ANGLE env :=

manual steering angle
end

Finally, the move event actuates either a manual or an autonomous steering angle to
move an SDV into a new position (SC1).

eventmove extendsmove
where
//new (target) position must be within a set of positions inside the lane
@grd2: new position ∈move(SDV POSITION env 7→ SDV STEERING ANGLE env)
end

Table 7.6 shows how the safety requirements (SR1.1 and SR1.2) have been captured in
a formal model. At this level (machine m1) there is a new Assumption (A) involved in
a formal model, as A1:

• A1: The human driver provides the steering angle manually to keep an SDV in-
side the target lane.

7.1.3 Second Analysis Process (ALC-Layer 2)

This RATP layer refines the previous analysis process (ALC-Layer 1) to study how the
ALC system observes the driving environment (target lane) in order to perform au-
tonomous operations such as perception, decision-making and control. Specifically, we
instantiated generic automation aspects discussed in Subsection 6.2.3 of Chapter 6 as
follows:
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TABLE 7.6: Safety requirements (SR1.1 and SR1.2) in formal model for ALC Layer 1

Safety requirements Event-B elements

SR1.1
Guard (@grd5) in the ALC actuating event,
@grd4: move(SDV POSITION env 7→ (SDV STEERING ANGLE env +

steering angle change)) ⊆ Lane

SR1.2
Guard (@grd3) in the Manual actuating event,
@grd2: move(SDV POSITION env 7→ manual steering angle)
⊆ Lane

• The perceived environmental features are defined as the desired path that the
ALC system might identify based on the incoming images from the camera sen-
sor.

• The detection score for identifying the left and right lane lines in the given images
is specified as the confidence score.

• Based on the identified/desired path, the ALC system might either prompt a
driver to intervene or specify a required steering angle change to keep an SDV
inside the target lane.

• The newly identified steering angle would be actuated to allow the SDV to travel
into a new position inside its target lane.

Each step of the RATP approach is then further detailed as follows:

Step 1. Instantiation: Based on the instantiated system component diagram (men-
tioned in Figure 5.3 of Chapter 5), the ALC system includes three main modules for
performing the LKA operations (functions): 1) perception; 2) decision; and 3) control.
Therefore, we assume that these functionalities are accomplished by the autonomous
controller inside the ALC system.

The perception component of the ALC system employs a camera system to maintain
the SDV within the target lane. It interprets images to identify a desired path based on
detected lane markings and the confidence scores derived from the detection process.
The decision component uses this desired path to adjust the steering angle, with the
primary goal of keeping the SDV within the lane markings. It selects the target po-
sition and establishes the necessary adjustments in the steering angle. Subsequently,
the control component actuates a modified steering angle to reach the selected/identi-
fied position, facilitating the autonomous driving of the SDV. In Figure 7.5, we refine a
previous system boundary diagram (mentioned earlier in Figure 7.3) to capture these
autonomous operations of an ALC system.
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FIGURE 7.5: System boundary diagram in ALC Layer 2

Step 2. The purpose of analysis: The purpose of analysis is to study how the ALC
system accomplishes its autonomous operations. A refined system loss can be driven
from the previously identified safety requirement SR1.1 as SL2:

• SL2: The autonomous controller of an ALC may actuate a steering angle au-
tonomously to reach a new position outside of the target lane.

As the autonomous controller of an ALC system involves three main components (per-
ception, decision and control), various SHs can be identified as follows:

• SH2.1: The perception component identifies the desired path that locates an SDV
outside of its target lane.

• SH2.2: The decision component identifies a target position and steering angle
based on the desired path; however, a steering angle modifies the physical (ac-
tual) steering angle of an SDV too quickly, which may cause unsafe reactions
from the human driver.

• SH2.3: The control component may actuate a target steering angle that exceeds
the SDV’s power steering range.

A high-level safety constraint associated with these SHs is SC2:

• SC2: The ALC must perform its autonomous operations to keep an SDV inside
its target lane.
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Step 3. Refining control structure: A refined control structure is constructed accord-
ing to how the ALC accomplished its autonomous operations, as shown in Figure 7.6.
The autonomous controller has three components: perception, decision and control. The
interactions (input/output) between these components are captured by using a set of
CAs and FLs.

In the perception component, F3 indicates that the ALC system must obtain an in-
coming image to identify the desired path.CA4 and CA5 indicate the possible system
interactions between the perception and decision components when the autonomous
controller identifies the desired path and its confidence score. F4 covers a feedback
loop between the perception and decision components when the ALC system may de-
termine the desired path with a high/low confidence score.

In the decision component, CA6 implies the responsibility of an ALC system to identify
a target (new) position of an SDV. In addition, CA7 indicates the responsibility of an
ALC system for identifying the required change of steering angle to reach that new
position. F5 covers feedback loops between the decision and control components when
a control component may accept/reject actuating the new steering.

FIGURE 7.6: Control structure in ALC Layer 2

Step 4. Identifying unsafe control actions: At this layer, the UCAs of autonomous
operations are demonstrated in three categories. The first category is unsafe operation,
involving the perception component (SH2.1). The UCAs of a perception component
are shown in Table 7.7. These UCAs are explained as follows:
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• The autonomous controller may identify the desired path (CA4) without sensing
the target lane (UCA3.1).

• The given/identified path (CA4) might not be updated (UCA3.2).

• Based on a low confidence score (CA5) of detecting a left/right lane lines, the
identified path (CA4) might be recognised (UCA3.3).

• The sensing data (F3) used to identify the desired path are wrong (UCA3.4).

Therefore, the potential safety requirements associated with the perception component
can be identified as follows:

• SR2.1: The perception component must update the sensing information (images)
according to the current position of an SDV [SH2.1].

• SR2.2: The perception component must use an incoming image to identify the
desired path for keeping an SDV inside the detected left and right lane lines in
the target lane [SH2.1].

• SR2.3: The perception component must compute a confidence score regarding
the detection process of a desired path [SH2.1].

• SR2.4: If the perception component identifies the desired path with a low confi-
dence score, the ALC system issues a request to intervene [SH2.1].

TABLE 7.7: Unsafe control actions of perception component in ALC Layer 2

Control
Action
(CA)

Not providing CA leads to
hazards

Providing CA leads to
hazards

CA applied early,
late, or out of order

CA
stopped
too soon
or applied
too long

CA4
and
CA5

UCA3.1: Autonomous con-
troller may identify the de-
sired path without sensing
the target lane (F3).

UCA3.2: Desired path
(CA4) does not update.

UCA3.3: Desired path
(CA4) identified accord-
ing to a low confidence
score (CA5).

UCA3.4: Desired
path(CA4) identi-
fied according to
wrong/late sensing
data (F3).

N/A

Causal Factor

Failure in the identification of a desired path.

The second category is unsafe operation involved in the decision component. The
UCAs of a decision component are shown in Table 7.8. These unsafe operations are
explained as follows:

• Target position (CA6) may locate an SDV outside of the target lane (UCA3.5).
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• Target steering angle (CA7) may actuate the steering angle of an SDV too quickly
(UCA3.6).

• When a steering angle of an SDV is actuated too quickly (F5), the driver might
fail to provide corrective action (UCA3.7).

Therefore, the potential safety requirements associated with the decision component
(SH2.2) can be identified as follows:

• SR2.5: The decision-making component must identify a target position based on
the identified path (desired path) [SH2.2].

• SR2.6: The decision-making component must determine a required change of
steering angle based on the current (physical) steering angle and the identified
(target) position [SH2.2].

• SR2.7: The decision-making component must not propose a target steering angle
that actuates a steering angle of an SDV too quickly, in order to avoid poor human
driver intervention [SH2.2].

TABLE 7.8: Unsafe control actions of decision component in ALC Layer 2

Control
Action
(CA)

Not providing CA leads to
hazards

Providing CA leads to
hazards

CA applied early,
late, or out of order

CA
stopped
too soon
or applied
too long

CA6
and
CA7

UCA3.5: Autonomous con-
troller may identify a target
position (CA6) outside the
target lane.

UCA3.6: Autonomous
controller may identify
a target steering angle
(CA7) that modifies the
steering angle of an SDV
too quickly (F5).

UCA3.7: When au-
tonomous controller
modifies the steering
angle of a vehicle too
quickly (F5), a driver
may not be able to
provide a corrective
action (CA3).

N/A

Causal Factor

Unsafe identification of target position and steering angle.

The third category is unsafe operation involved in the control component. These UCAs
are demonstrated in Table 7.9 and are explained as follows:

• Target steering (CA7) cannot be actuated due to the steering limit of a power
steering system involved in the SDV (UCA3.8).

• Target steering (CA7) exceeds the maximum and minimum steering limit (UCA3.9).

Therefore, the potential safety requirements associated with the control component
(SH2.3) can be identified as follows:
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• SR2.8: If a target steering angle exceeds the minimum steering angle, then the
control module modifies the target steering angle to the minimum steering angle
[SH2.3].

• SR2.9: If a target steering angle exceeds the maximum steering angle, then the
control module modifies the target steering angle to the maximum steering angle
[SH2.3].

• SR2.10: If the control component of an autonomous controller exceeds the steer-
ing angle range of an SDV, the ALC system issues a request to intervene [SH2.3].

TABLE 7.9: Unsafe control actions of control component in ALC Layer 2

Control
Action
(CA)

Not providing CA leads to
hazards

Providing CA leads to haz-
ards

CA applied
early, late, or
out of order

CA
stopped
too soon
or applied
too long

CA2
UCA3.8: Autonomous con-
troller cannot actuate new
steering (CA2).

UCA3.9: Autonomous con-
troller may propose a target
steering angle (CA7) outside
the steering angle range of an
SDV (F5).

N/A N/A

Causal Factor

Unsafe actuation of a target steering.

Step 5. Refining Event-B model: Mapping is provided in Table 7.10 to demonstrate
how new control actions (CA4, CA5, CA6, CA7) and feedback loops (F3, F4, F5) link
with the representation of a refined machine. Full details of the refined machine ( ma-
chine m2) can be seen in Appendix E.3.

TABLE 7.10: Control actions and feedback loops in formal model for ALC Layer 2

Control Action &Feedback loop Event-B elements
CA4 Variable, desirePath
CA5 Variable, confidenceScore
CA6 Variable, targetPosition
CA7 Variable, targetSteeringAngle
F3 Variable, IMAGE env

F4
Guard in lowConfidenceScore interven event,
@grd3: confidenceScore < 80

F5

Guards in correct exceeding events,
@grd3: SDV STEERING ANGLE env +

steeringAngleChange > max steering
and @grd3: SDV STEERING ANGLE env +

steeringAngleChange < min steering
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A constant function, camera, is introduced to capture the sensing information in mul-
tiple positions. The function is defined as follows:

camera ∈ POSITION→ IMAGE

In the context of the ALC system, it is crucial for the system to receive the incoming
images on the basis of the SDV ’s physical position (SR2.1). To ensure consistency, the
following invariant is added.

@consistency: IMAGE env= camera(SDV POSITION env)

In the perception stage, two constant functions, Seen image and OEDR task, play a
role in the computation performed by the autonomous controller to identify the desired
path on the basis of the incoming images. These functions are defined as follows:

Seen image ∈ (IMAGE× LeftLane× RightLane)→ Confidence score
OEDR task ∈ (IMAGE× LeftLane× RightLane× Confidence score)→ P(POSITION)

First, the function Seen image interprets the incoming images and produces the confi-
dence score for detecting the left and right lane lines. Second, the function OEDR task
uses the interpretations from the previous functions to identify the desired path. Over-
all, these functions contribute to the perception stage by analysing the sensory data
and providing the necessary inputs for a subsequent decision component in the au-
tonomous controller.

In the decision stage, two constant functions, target position and target steering angle,
take part in the computation performed by the autonomous controller to determine the
target position and steering angle. These functions are defined as follows:

target position ∈ Set(POSITION)→ POSITION
target steering angle ∈ POSITION× STEERING ANGLE→ STEERING ANGLE CHANGE

First, the function target position takes the set of positions derived from the perception
component, which represents the desired path, and selects one position from that set
as the target position. Second, the function target steering angle calculates the change
in steering angle needed to reach the selected/target position.

The high-level operations of an ALC system are organised into five stages: Perception,
Decision, Control, Intervention and AutonomousDriving. These stages are defined in
variable stage, where the gluing invariant gluing inv is added to ensure consistency
between the status of an ALC system and the internal stages involved in the ALC sys-
tem. For instance, this gluing invariant states that the ALC system might be in any
stage when a system is activated (ALC Status = ON).

@gluing inv: ALC Status= ON ⇒ stage ∈ {Perception,Decision,Control,
AutonomousDriving,Intervention}

136



137 CHAPTER 7. LKA AND DMS FUNCTIONS IN THE ALC SYSTEM

Boolean flag signal is added to demonstrate the movement of an SDV when either the
steering angle of a system is manually or autonomously actuated. For instance, if the
signal is TRUE, the new steering of a system is actuated to move the SDV into a new
position.

To ensure that the actuation task of an autonomous controller maintains the safety
of the system,i.e., SDV POSITION env ∈ Lane, an environmental invariant Environ-
ment consistency is added as follows:

stage= AutonomousDriving⇒move(SDV POSITION env 7→ targetSteeringAngle)⊆ Lane

The relationship between the input and output of autonomous operations is modelled
in sequential order, from the Perception stage into either the AutonomousDriving or
Intervention stage. In the perception stage, the ALC abstractly identifies the desired
path (CA4) and its confidence score (CA5) as follows:

event perception
any leftLane rightLane
when
@grd1: leftLane⊆ LeftLane
@grd2: rightLane⊆ RightLane
@grd3: ALC Status= ON
@grd5: stage= Perception
then
//image for current position
@act1: IMAGE env := camera (

SDV POSITION env)

//expected to identify these features
@act2: leftLanePoints :∈ LeftLane
@act3: rightLanePoints :∈ RightLane
//confidence score for the detection process
@act4: confidenceScore := Seen image(

IMAGE env 7→ leftLanePoints 7→
rightLanePoints)

// estimates the desired path
@act5: desirePath := OEDR task( IMAGE env 7→

leftLanePoints 7→ rightLanePoints 7→
confidenceScore 7→ leadingVehicleSet)

// change a stage of ALC to be in Decision
@act6: stage := Decision
end

Based on the perception event, two invariants are added. These invariants are defined
as follows:

//SR2.2: based on the detected lane lines and scores, the desired path is identified
@perceivedImage: stage= Perception⇒ IMAGE env ∈ ran(camera) ∧ (IMAGE env 7→

leftLanePoints 7→ rightLanePoints 7→ confidenceScore) ∈ dom(OEDR task)
//The desired path must be identified in perception’s stage
@perceptionTask: stage= Decision⇒ desirePath ∈ ran(OEDR task)

While the stage of the ALC system is changed to Decision, a model can be divided
into two stages: Intervention or Control. In the intervention stage, the ALC system
will issue a request to intervene if the low confidence score (F4) is used to compute the
desired path (SR2.4).

event lowConfidenceScore interven
where
@grd1: ALC Status= ON
@grd2: stage= Decision

//denotes a low confidence score
@grd3: confidenceScore< 80

then
@act1: stage := Intervention
end
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In the preparation of the Control stage, the decision component of ALC abstractly com-
putes a target position (CA6) and a required change of steering angle (CA7) according
to the desired path (SR2.5) and the physical (current) steering angle of an SDV (SR2.6).

event decision
when
@grd1: ALC Status= ON
@grd2: stage= Decision
//high confidence score
@grd3: confidenceScore≥ 80

then

//SR2.5: position obtained from desired path
@act1: targetPosition := target position(

desirePath)
//SR2.6: steering computed based on the target

position and current steering
@act2: steeringAngleChange :=

target steering angle(targetPosition 7→
SDV STEERING ANGLE env)

//stage of ALC changed to be in Control
@act3: stage := Control
end

Based on the decision event, two invariants, namely targetPosition and changeSteer,
are introduced. These invariants are defined as follows:

// SR2.5: a target (new) position will obtain from the desired path
@targetPosition: stage= Decision ∧ confidenceScore≥ 80⇒ desirePath ∈ dom(

target position)
//SR2.6: steering computed based on the target position and current steering
@changeSteer: stage= Control ∧ confidenceScore≥ 80⇒ (targetPosition 7→

SDV STEERING ANGLE env) ∈ dom(target steering angle)

During the actuation of a target steering angle, the ALC system ensures that the nec-
essary adjustments to the current steering angle do not exceed the maximum or mini-
mum range of the SDV ’s low-level components. The monitoring process for actuating
a target steering angle can be broken into three categories:

• First is the control event, which initiates the actuation of a target steering and
transitions the system state to AutonomousDriving.

event control
when
@grd1: ALC Status= ON
@grd2: stage= Control
//new steering in the defined range
@grd3: SDV STEERING ANGLE env+
steeringAngleChange ∈
STEERING ANGLE

//a new position inside the target lane
@grd4:move(SDV POSITION env 7→
targetSpeed 7→ (

SDV STEERING ANGLE env+
steeringAngleChange))⊆ Lane

then
@act1: targetSteeringAngle :=
steeringAngleChange+
SDV STEERING ANGLE env

@act2: stage :=
AutonomousDriving

end
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• Second is the correct steering event, which adjusts the target steering angle to be
within the minimum or maximum steering if the new steering angle falls outside
of the range of the SDV ’s power steering system. This event changes the stage of
the ALC system to Intervention when such a violation occurs.

event
correct exceeding min steering

when
@grd1: ALC Status= ON
@grd2: stage= Control
//new steering violates the minimum

steering
@grd3: SDV STEERING ANGLE env+
steeringAngleChange<
min steering

then
@act1: stage := Intervention
@act2: targetSteeringAngle :=
min steering

end

event
correct exceeding max steering

when
@grd1: ALC Status= ON
@grd2: stage= Control
//new steering violates the

maximum steering
@grd3: SDV STEERING ANGLE env+
steeringAngleChange>
max steering

then
@act1: stage := Intervention
@act2: targetSteeringAngle :=
max steering

end

• Last is the correct out of lane event, which detects an incorrect movement out-
side of the target lane and potentially adjusts the target steering to a minimum
or maximum steering. If the system identifies such a deviation, it maintains the
previous or current steering as the target steering and transitions the ALC system
stage to Intervention.

event correct out of lane
where
@grd1: ALC Status= ON
@grd2: stage= Control
//new steering moving SDV outside the

lane
@grd3: SDV STEERING ANGLE env+
steeringAngleChange ∈
STEERING ANGLE⇒move(
SDV POSITION env 7→ (

SDV STEERING ANGLE env+
steeringAngleChange)) ̸⊆ Lane

then
/* stage changed to be in ’

Intervention’*/
@act1: stage := Intervention
@act2: targetSteeringAngle :=
SDV STEERING ANGLE env

end

The ALC actuating event is refined to setting a steering angle autonomously. A new
steering angle is applied in order to move an SDV into a new position inside the target
lane, where an Event-B witness is used for mapping between the abstract parameter
and the new variable (steeringAngleChange) as follows:
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event ALC actuating refines
ALC actuating

where
@grd1: ALC Status= ON
@grd2: steeringAngleChange ∈

STEERING ANGLE CHANGE
@grd3: steeringAngleChange+

SDV STEERING ANGLE env ∈
STEERING ANGLE

@grd4:move(SDV POSITION env 7→ (

SDV STEERING ANGLE env+
steeringAngleChange))⊆ Lane

@grd5: stage= AutonomousDriving

@grd6: steeringAngleChange+
SDV STEERING ANGLE env=
targetSteeringAngle

@grd7: signal= FALSE
then
@act1: SDV STEERING ANGLE env := (

SDV STEERING ANGLE env+
steeringAngleChange)

/* ready to move */
@act2: signal := TRUE
with
@steering angle change:

steering angle change=
steeringAngleChange

end

In any case of Intervention, the Manual actuating event is extended in order to ensure
the responsiveness of a human driver by providing a steering angle manually when the
stage of the ALC system is in Intervention.

eventManual actuating
extendsManual actuating
where
@grd3: stage= Intervention
@grd4: signal= FALSE

then
/* ready to move */
@act2: signal := TRUE
end

Finally, the move event is extended to show how the SDV can move into a position
inside the target lane, whether a new steering angle is actuated manually (Intervention)
or autonomously (AutonomousDriving). In addition, the camera updates the incoming
image according to the new position of the SDV.

eventmove extendsmove
where
@grd3: signal= TRUE
@grd4: stage ∈ {

AutonomousDriving ,
Intervention}

then
@act2: stage := Perception
@act3: IMAGE env := camera(new position)
@act4: signal := FALSE
end

Table 7.11 shows how a formal model captures the safety requirements (SR2.1 to SR2.10).
In the refined model (machine m2) are several Assumptions (A) in the formal model:

• A2.1: The camera sensor always provides images for the current state of a target
lane.

• A2.2: In order to identify the desired path, the current position of a vehicle is
always in the lane, where the lane markings (left and right) are visible.

140



141 CHAPTER 7. LKA AND DMS FUNCTIONS IN THE ALC SYSTEM

• A2.3: The autonomous controller can obtain an image from the sensor camera
that is attached to an SDV.

• A2.4: The autonomous controller can make a judgement on the detection process
of a desired path based on the confidence score. Therefore, we assume that if the
confidence score is less than 80% the ALC must issue a request to intervene.

• A2.5: A human driver is always receptive when the ALC system issues a request
to intervene.

TABLE 7.11: Safety requirements(SR2.1 and SR2.10) in formal model for ALC Layer 2

Safety requirements Event-B elements
SR2.1 Invariant, @consistency: IMAGE env = camera(SDV POSITION env)

SR2.2
Invariant, @perceivedImage: stage = Perception ⇒ IMAGE env ∈ ran(camera)
∧ (Perception) (IMAGE env 7→ leftLanePoints 7→ confidenceScore)
∈ dom(OEDR task)

SR2.3
Action @act4 in the perception event @act4: confidenceScore :=
Seen image(IMAGE env 7→ leftLanePoints 7→ rightLanePoints)

SR2.4
Guard and action in lowConfidenceScore interven event:
@grd3: confidenceScore ac < 80
@act1: stage ac = Intervention

SR2.5

Invariant,@targetPosition: stage = Decision ∧ confidenceScore ≥ 80
⇒ desirePath ∈ dom( target position)
,where targetPosition is computed as
targetPosition := target position(desirePath)

SR2.6

Invariant,@changeSteer: stage = Control ∧ confidenceScore ≥ 80
⇒ (targetPosition 7→ SDV STEERING ANGLE env)
∈ dom( target steering angle)
,where steeringAngleChange is computed as
steeringAngleChange := target steering angle(targetPosition)

SR2.7

Invariant,@newSteer: stage = Control ∧ confidenceScore ≥ 80
⇒ steeringAngleChange ∈ ran ( target steering angle)
,where steeringAngleChange is in defined range as
steeringAngleChange ∈ min steering constraint .. max steering constraint

SR2.8 & SR2.9

Guards and actions in the correct exceeding events:
@grd3: SDV STEERING ANGLE env + steeringAngleChange > max steering
@grd3: SDV STEERING ANGLE env + steeringAngleChange < min steering
@act2: targetSteeringAngle := max steering
@act2: targetSteeringAngle := min steering

SR2.10

Actions in the correct exceeding events:
@act1: stage := Intervention
when the violation of the defined steering range is detected
@grd3: SDV STEERING ANGLE env + steeringAngleChange > max steering
@grd3: SDV STEERING ANGLE env + steeringAngleChange < min steering
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7.1.4 Third Analysis Process (ALC-Layer 3)

This layer refines the previous analysis process (ALC-Layer 2) to investigate how the
awareness level of a driver is involved in the autonomous operation of a system. Know-
ing the awareness level of the driver aims to ensure a response from the fallback driver
when the ALC system issues a request to intervene. Specifically, we instantiated generic
automation aspects discussed in Subsection 6.2.4 of Chapter 6 as follows:

• The human monitoring features that the DMS system might utilise to compute
the awareness level of a driver are specified as the hands-on steering wheel and
sensitive monitoring feature.

• The intervention request is defined as the warning messages that might be sent
by the ALC system to prompt the driver to assume control of the SDV as needed.

Each step of the RATP approach is then further detailed as follows:

Step 1. Instantiation: The system component diagram (mentioned in Figure 5.3 of
Chapter 5) demonstrates how the ALC system integrates with the DMS to ensure driver
alertness through two particular features: hands-on at the steering wheel and sensitive
monitoring features. It is assumed that the driver’s awareness level is computed on the
basis of the detection and computation of these features. In addition, intervention re-
quests urging the driver to take control of the SDV may be issued by semi-automated
systems such as the ALC. These requests are represented as warning messages, which
are sent under various driving scenarios. In Figure 7.7 we refine a previous system
boundary diagram to capture these operation of an ALC system.

Step 2. The purpose of analysis: This step is to study how the driver’s awareness
level is involved in the autonomous operation of a system when the ALC system may
issue a request to intervene. Based on the system boundary diagram (mentioned in
Figure 7.7), a refined system loss can be driven from the previous safety requirements
(SR2.4 and SR2.10) as SL3:

• SL3: The human driver does not take the control of a vehicle when the ALC issues
a request to intervene.

Because the human fallback controller is responsible for ensuring the reactions of a
driver, the SHs associated with the system loss (SL3) are as follows:

• SH3.1: The human driver does not pay attention to the autonomous operations
of an ALC system.
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FIGURE 7.7: System boundary diagram in ALC Layer 3

• SH3.2: The autonomous controller of an ALC system issues a request to intervene
while the awareness level of the driver is unknown.

A high-level safety constraint (SC) that satisfies the system conditions to prevent SH3.1
and SH3.2 is SC3:

• SC3: The driver must pay attention to the autonomous operation of a system
when the autonomous controller is moving the vehicle autonomously.

Step 3. Refining control structure: The control structure is refined to demonstrate
how the human fallback controller ensures driver awareness, as in Figure 7.8. In this
refined structure, the DMS is incorporated to illustrate the computation of a driver’s
awareness level. For instance, CA9 and CA10 highlight the driver’s responsibility to
provide hands on steering wheel, also a sensitive monitoring feature, thereby enabling
the DMS to ensure the driver’s awareness level. In circumstances where the driver fails
to provide these features, the DMS would be unable to verify the driver’s awareness
level, leading to immediate deactivation of the ALC. Furthermore, CA8 points to the
responsibility of the DMS to share the driver’s awareness level with the ALC system.
Based on CA8, the autonomous controller might restrict or initiate its autonomous op-
eration. Moreover, F6 and F7 illustrate two scenarios where the ALC might issue an
intervention request:
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1. F6: The ALC system is unsure whether the identified/desired path can keep the
SDV inside its target lane or might cause it to move outside of its target lane.

2. F7: The ALC system attempts to exceed the maximum or minimum range of the
SDV ’s power steering system.

In these driving situations the driver needs to take control of the SDV. As a result, the
ALC system swiftly initiates the SDV ’s transition to manual driving mode.

FIGURE 7.8: Control structure in ALC Layer 3

Step 4. Identifying unsafe control actions: At this layer, the UCAs fall into two cate-
gories. The first comprises unsafe operation of the DMS (SH3.1), as presented in Table
7.12 and explained below.

• The autonomous controller performs its operations, such as perception, while the
awareness level of the human fallback driver is unverified by the DMS (UCA 4.2).

• The ALC may function before the DMS verifies the awareness level of the human
fallback driver (UCA 4.3).

As a result, the potential SRs related to the DMS component can be identified as follows:

• SR3.1: To activate the ALC system, the DMS must ensure the awareness level of
the human fallback driver [SH3.1].
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TABLE 7.12: Unsafe control actions of DMS component in ALC Layer 3

Control
Action
(CA)

Not providing CA leads
to hazards

Providing CA leads to
hazards

CA applied early, late,
or out of order

CA stopped
too soon or
applied too
long

CA8

UCA4.1: Autonomous
controller performs its
operations while the
awareness level of a
driver is unknown.

UCA4.2: Autonomous
controller performs its
operations while the
awareness level of a
driver is unverified by
the DMS (CA8).

UCA4.3: Autonomous
controller performs
its operations before
the DMS verifies the
driver’s awareness
level (CA8).

N/A

Causal Factor

A human driver is unaware of autonomous operations.

• SR3.2: The DMS must compute the awareness level of a driver based on hands
on steering wheel, also a sensitive monitoring feature [SH3.1].

• SR3.3: If the driver’s alertness is not indicated by means of hands on steering
wheel or a sensitive monitoring feature, the ALC system is immediately deacti-
vated [SH3.1].

The second category includes unsafe operation of a system when a request to intervene
is sent (SH3.2), as shown in Table 7.13 and explained as follows:

• The intervention request might be sent when the awareness level of the human
fallback driver is unknown (UCA 4.5).

• The autonomous controller relies on the corrective action of the human fallback
driver taken while their awareness level is unknown (UCA 4.6).

TABLE 7.13: Unsafe control actions of driver intervention in ALC Layer 3

Control
Action
(CA)

Not providing CA leads
to hazards

Providing CA leads to
hazards

CA applied early,
late, or out of order

CA stopped
too soon or
applied too
long

CA7

UCA4.4: Autonomous
controller performs its
operations while the
awareness level of a
driver is unaware.

UCA4.5: Autonomous
controller issues a
request to intervene
(F6,F7) when the status
of the human fallback
driver is unaware
(CA8).

UCA4.6: Autonomous
controller relies on
the correction action
of the human fallback
driver (CA3) while
their awareness level
is unknown (CA8).

N/A

Causal Factor

Unknown reactions of a fallback driver when a semi-automated system issues a request to intervene.

Therefore, the potential safety requirements associated with SH3.2 can be identified as
follows:
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• SR3.4: The human fallback controller must share the driver’s level of awareness
with the autonomous controller [SH3.2].

• SR3.5: If the autonomous controller system issues a request to intervene, the
driver is responsible for performing the entire driving task (manual driving) [SH3.2].

Step 5. Refining Event-B model: Mapping is provided in Table 7.14 to show how
new control actions (CA8, CA9, CA10) and feedback loops (F6, F6) link to the represen-
tation of a formal model. Full details of the refined machine (machine m3) can be seen
in Appendix E.4. We modelled the awareness level of a driver and the intervention
request (warning messages) using Booleans as follows:

@typeof−awarenessLevel: awarenessLevel ∈ BOOL
@typeof−warining:warningMessage ∈ BOOL
@typeof−handsOnSteeringWheel: handsOnSteeringWheel ∈ BOOL
@typeof−sensitiveMonitoringFeature: sensitiveMonitoringFeature ∈ BOOL

TABLE 7.14: Control actions and feedback loops in formal model for ALC Layer 3

Control Action &Feedback loop Event-B elements
CA8 Variable, awarenessLevel
CA9 Variable, handsOnSteeringWheel
CA10 Variable, sensitiveMonitoringFeature
F6 & F7 Variable, warningMessage

A Boolean variable awarenessLevel (CA8) is introduced to compute the awareness level
of a driver (SR3.2) on the basis of how the DMS detects the handsOnSteeringWheel
(CA9) and a sensitiveMonitoringFeature (CA10); therefore, a new invariant is written,
as follows;

@compute awarenesslevel: awarenessLevel= TRUE⇒ (handsOnSteeringWheel= TRUE ∧
sensitiveMonitoringFeature=TRUE)

In DMS operations, DMS hands on wheel and DMS detect sensitiveMonitoringFeature
events serve to model the detection of the human monitoring features when a driver’s
alertness is indicated by either hands on steering wheel or a sensitive monitoring fea-
ture, as follows:

event DMS hands on wheel
where
@grd1:ALC Status=ON
@grd2:awarenessLevel=FALSE
@grd3:handsOnSteeringWheel=FALSE
then
@act1:handsOnSteeringWheel:=TRUE
@act3:awarenessLevel:=bool(

sensitiveMonitoringFeature=TRUE)
end

event DMS detect sensitiveMonFeature
where
@grd1:ALC Status=ON
@grd2:awarenessLevel=FALSE
@grd3:sensitiveMonitoringFeature=

FALSE
then
@act1:sensitiveMonitoringFeature:=

TRUE
@act3:awarenessLevel:=bool(

handsOnSteeringWheel=TRUE)
end
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In addition, the DMS hands off wheel and the DMS lost sensitiveMonitoringFeature
events model the possible changes in the status of either the hands-on steering wheel or
a sensitive monitoring feature; i.e., driver does not provide the hands-on steering wheel.
Therefore, the awareness level of a driver is computed according to these changes. Be-
cause the awareness level of a driver is one of the preconditions for achieving safe
operation of the semi-autonomous systems [101], the ALC system must switch off its
functionalities if drivers fail to prove their awareness level (SR3.3). Therefore, both
events are extended from the ALC OFF event in order to switch off the system safely,
as follows:

event DMS hands off wheel
extends ALC OFFwhere
@grd3: awarenessLevel= TRUE
@grd4: handsOnSteeringWheel= TRUE
then
@act3: awarenessLevel := FALSE
@act4:warningMessage := FALSE
@act5: handsOnSteeringWheel := FALSE
@act6: sensitiveMonitoringFeature :=

FALSE
end

event
DMS lost sensitiveMonitoringFeature
extends ALC OFFwhere
@grd3: awarenessLevel= TRUE
@grd4: sensitiveMonitoringFeature=

TRUE
then
@act3: awarenessLevel := FALSE
@act4:warningMessage := FALSE
@act5: sensitiveMonitoringFeature :=

FALSE
@act6: handsOnSteeringWheel := FALSE
end

Moreover, we added a new invariant (@send req) to ensure that the warningMessage
is sent if the stage of ALC system is in Intervention (SR3.5).

@send req:warningMessage= TRUE⇒ stage= Intervention

Based on the intervention cases in the previous machine (m2), the ALC system may
issue a request to intervene in three driving scenarios:

1. If the perception module of an autonomous controller identifies the desired path
with a low confidence score (F6), modelled in event lowCofidanceScore interven.

2. If the control module of an autonomous controller attempts to exceed the steering
angle range of an SDV (F7), modelled in the events correct exceeding max steering
and correct exceeding min steering.

3. If the ALC system specifies a change in the steering angle that would move
an SDV into a new position outside of the target lane, modelled in event cor-
rect out of lane.

Therefore, we added a new invariant (@interv cases) for issuing a request to intervene
in these three driving scenarios (SR3.5).
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@interv cases:warningMessage= TRUE⇒ confidenceScore< 80 ∨
SDV STEERING ANGLE env+ steeringAngleChange /∈ STEERING ANGLE ∨move(
SDV POSITION env 7→ (SDV STEERING ANGLE env+ steeringAngleChange)) ̸⊆ Lane

In order to ensure that a driver is receptive to these intervention scenarios, we added a
new invariant (@driver aware) to verify their awareness level when the ALC performs
its operations (SR3.1). Therefore, the DMS must verify the awareness level of a driver
when the ALC system is at any stage, such as perception etc.

@driver aware: awarenessLevel= TRUE⇒ stage ∈ {Perception ,Decision, Control,
Intervention, AutonomousDriving}

Table 7.15 shows how the safety requirement (SR3.1 to SR3.5) has been satisfied in a
formal model. In the refined model (machine m3), two Assumptions (A) are involved
in a formal model:

• A3.1: A human driver is receptive to any intervention requests, where the ALC is
immediately turned off (manual driving).

• A3.2: In order to compute the awareness level of a driver, we assume that in DMS
events there is an attached sensor that can monitor changes in human monitoring,
whether by hands on the steering wheel or a sensitive monitoring feature.

TABLE 7.15: Safety requirements (SR3.1 to SR3.5) in formal model for ALC Layer 3

Safety requirements Event-B elements
SR3.1 Invariant, @driver aware: awarenessLevel = TRUE ⇒ stage ∈ STAGE

SR3.2
Invariant, @awarenesslevel: awarenessLevel = TRUE
⇒ (handsOnSteeringWheel = TRUE ∧ sensitiveMonitoringFeature = TRUE)

SR3.3 & SR3.5
New guards in autonomous events, such as @grd5 in perception event ,
@grd5: awarenessLevel = TRUE

SR17

An invariant for issuing intervention requests,
@interv cases: warningMessage = TRUE ⇒ confidenceScore < 80 ∨
(SDV STEERING ANGLE env + steeringAngleChange) /∈ STEERING ANGLE
New guards and actions in the Manual actuating event to ensure
the responsiveness of a driver when the ALC issues a request to intervene
@grd6: warningMessage = TRUE
@act3: warningMessage := FALSE

7.2 Conclusion

This chapter explored the application of the RATP to the ALC system, with specific
emphasis on its LKA and DMS features. Through a systematic application of the RATP
approach we exemplified how, during autonomous operation, the ALC system au-
tonomously controls the steering angle, concurrently maintaining driver alertness via
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the DMS. The analysis was conducted in four layers, starting from a high-level analy-
sis layer and moving towards a more detailed, concrete layer. The following chapter
focuses on how the ALC system autonomously sets both the speed and steering of a
SDV.
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Chapter 8

LKA and ACC Functions in the ALC
System

In the previous chapter the Automated Lane Centring (ALC) system was examined
through the application of the Rigorous Analysis Template Process (RATP), which was
deployed across four layers. The main focus was on the Lane Keeping Assist (LKA)
and Driver Monitoring System (DMS) functions, based on five systematic steps. How-
ever, it is important to note that the ALC system also integrates the Adaptive Cruise
Control (ACC) function, which modulates the speed of an Self-Driving Vehicle (SDV)
to maintain a safe distance from leading vehicles. Thus, this chapter extends the scope
to incorporate the ACC function within the ALC system. The aim is to elucidate how
the ALC autonomously controls both steering and speed to keep the SDV within its
target lane, a process initially summarised in Section 4.2.2 of Chapter 4.

Similar to the previous chapter, this work contributes to research question (RQ4):

RQ4: To what extent does the RATP methodology demonstrate its utility when applied to a
cases of varying sizes and complexity, especially those involving interactions between human

drivers and an SDV system?

In line with RQ4, the ALC layers will be modified to include the ACC functionality
within the scope of analysis. In Section 8.1, the changes that were made to include the
ACC feature in the ALC layers are explained. Section 8.2 elucidates how the RATP
methodology addresses RQ4 with regard to the ALC case study. Section 8.3 provides
the evaluation and review of RATP application to the ALC case study. Section 8.4
presents a conclusion of this chapter.
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8.1 Adapting ALC Layers for ACC Functionality

The ALC layers initially described in Section 7.1 of Chapter 7 required modifications to
incorporate additional automation aspects, specifically those related to the ACC func-
tion. These modifications include:

• Radar reading points, which denote the sensor information used to identify po-
tential leading vehicles.

• The target speed, representing the speed that is autonomously determined.

• The application of both target speed and steering angle to move the SDV au-
tonomously.

Once these aspects are integrated, the ALC layers were updated to demonstrate how
the ALC system autonomously handles both speed and steering. The subsequent sec-
tions give a brief summary of these modifications to the ALC layers, according to the
steps of the RATP approach. Please note that we discuss only those changes to the ALC
layers developed in Section 7.1 of Chapter 7.

8.1.1 Instantiating System Boundary Diagram

The system boundary diagram was updated, as illustrated in Figure 8.1. This diagram
now includes the radar reading points, the potential leading vehicle, the specification
of a target speed and the actuation of both speed and steering to guide the SDV to a
new position.

The perception component initially interpreted the radar reading points to identify the
position of a leading vehicle. Following this, the decision component decided on a
target speed, aiming to maintain a safe distance from any potential leading vehicles.
Finally, the control component actuated the adjusted speed and steering angle to reach the
intended position, thus enabling autonomous driving of the SDV.

8.1.2 Identifying the Purpose of Analysis

The objective is to encompass the influence of speed identification on the performance
of the ALC system. Consequently, the previously identified System Losses (SLs) and
System Hazards (SHs) were revisited to include the aspect of autonomous speed iden-
tification.

The new SLs based on the potential manipulations of speed are as follows:
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FIGURE 8.1: System boundary diagram incorporating speed identification

• SL1: A newly determined speed and steering angle could lead an SDV to a posi-
tion outside of its target lane.

• SL2: The autonomous controller of an ALC may autonomously actuate a speed
that leads an SDV to a position outside of the target lane.

Based on these new SLs, the SHs were identified as follows:

• SH1: The speed of an SDV, controlled by either a human driver or the ALC sys-
tem, could potentially guide an SDV to a position outside of its target lane.

• SH2: The perception component may identify a desired path that violates the safe
distance from a potential leading vehicle.

• SH3: The control component may actuate a target speed that violates the safe
distance from a leading vehicle.

A high-level safety constraint associated with these SHs is SC1:

• SC1: The ALC must identify and actuate the target speed to keep an SDV within
its target lane while maintaining a safe distance from any leading vehicles.
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8.1.3 Updating Hierarchical Control Structure

The control structure for the ALC system has been revised to incorporate modifications
essential for the autonomous control of the SDV ’s speed. These changes are illustrated
in Figure 8.2 and explained as follows:

• The sensing data (F3) includes both the incoming images and radar reading points.

• A new control action (CA11) is added to demonstrate how the perception compo-
nent does interpret the radar reading points (F3) to detect any leading vehicles.

• A new feedback loop (F8) is established between the decision and control com-
ponents to monitor the identification of the target speed (CA7), ensuring that it
does not violate the safe distance from any potential leading vehicles.

• An additional feedback loop (F9) signals intervention requests when violation of
a safe distance from a leading vehicle is detected (F8).

• The control action (CA2) illustrates both the speed and the steering angle that
would be used to navigate an SDV autonomously into its target lane.

These adjustments were made to facilitate the investigation of how the ALC system
autonomously identifies and actuates an SDV ’s speed.

8.1.4 Identifying Unsafe Control Actions

New Unsafe Control Actions (UCAs) were introduced to emphasise potential risks
when autonomously determining and adjusting the speed of an SDV. These UCAs are
in three categories. The first highlights incorrect manipulations of the speed control
variables (SH1) and is detailed in Table 8.1. These UCAs are as follows:

• UCA1 illustrates a scenario where the speed of an SDV is autonomously adjusted
to reach a position within the target lane but the detailed specifications of the
speed variable are not provided.

• UCA2 represents a scenario where the SDV ’s speed is changed to reach a position
outside of the target lane.

To mitigate these identified risks, the Safety Requirements (SRs) were identified as fol-
lows:

• SR1: The ALC system must autonomously control the speed to keep the SDV
within the target lane [SH1].
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FIGURE 8.2: Control structure incorporating speed identification

• SR2: A human driver should be able to specify the target speed that the ALC
system aims to achieve [SH1].

TABLE 8.1: Unsafe control actions in speed variable of ALC system

Control
Action
(CA)

Not providing CA leads to
hazards

Providing CA leads to haz-
ards

CA applied
early, late, or
out of order

CA
stopped
too soon
or applied
too long

CA2

UCA1: The ALC system
moves a vehicle into a new
position inside the target
lane (CA1), but the specifica-
tions of speed are missing.

UCA2: actuates speed vari-
able autonomously (CA2) to
reach a position outside the
target lane.

N/A N/A

Causal Factor

Wrong adjustment of the actuating variables (speed).

In a similar manner, the second category covers the UCAs that lead to the SH2, where
the perception component might identify the desired path without considering the po-
tential leading vehicle. These UCAs are detailed in Table 8.2. Specifically:
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• UCA3 refers to the scenario in which the identified desired path does not take
into account any potential leading vehicle in the target lane.

• UCA4 indicates the case in which the desired path is calculated without consid-
ering the radar reading points that could identify any potential leading vehicles.

To mitigate these risks, the following safety requirements are suggested:

• SR3: The perception component must leverage the incoming radar reading points
to detect any potential leading vehicle within the identified/detected desired
path [SH2].

TABLE 8.2: New unsafe control actions in the perception component

Control
Action
(CA)

Not providing CA leads to
hazards

Providing CA leads to
hazards

CA applied early,
late, or out of order

CA
stopped
too soon
or applied
too long

CA4

UCA3: Autonomous con-
troller may identify the de-
sired path without consid-
ering the potential leading
vehicle (CA11).

UCA4: Desired path
(CA4) does not take
into account the radar
reading points (F3).

N/A N/A

Causal Factor

Failure in the identification of a desired path.

Last, the third category highlights the UCAs contributing to SH3, where the control
component might unsafely actuate the target speed. These UCAs are detailed in Table
8.3 and comprise:

• UCA5 outlines the situation in which the target or identified speed cannot be
actuated.

• UCA6 refers to the circumstance in which the actuation of the target speed may
violate the safe distance from a potential leading vehicle.

To mitigate these potential issues, the subsequent SRs are proposed as follows:

• SR4: The decision component must suggest a target speed in alignment with the
maximum speed set by the human driver [SH3].

• SR5: If the target speed could cause violation of a safe distance to a leading vehi-
cle, the control component should reduce the speed of the SDV [SH3].

• SR6: If the control component of an autonomous controller violates the safe dis-
tance to a leading vehicle, the ALC system issues a request to intervene [SH3].
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TABLE 8.3: New unsafe control actions in the control component

Control
Action
(CA)

Not providing CA leads to
hazards

Providing CA leads to haz-
ards

CA applied early,
late, or out of or-
der

CA
stopped
too soon
or applied
too long

CA2
UCA5: Autonomous con-
troller cannot actuate new
speed (CA2).

UCA6: Autonomous con-
troller may propose a target
speed (CA7) that violates a
safe distance from a poten-
tial leading vehicle (F8).

N/A N/A

Causal Factor

Unsafe actuation of speed.

8.1.5 Updating the Event-B Model

Mapping is provided in Table 8.4 to demonstrate how control actions (CA2, CA11)
and feedback loops (F3, F8, F9) link to the representation of the formal models. Full
details of the formal models are in Appendix F. However, the discussion here is centred
primarily on the formalism used for the autonomous identification of speed.

TABLE 8.4: Control actions and feedback loop incorporating speed identification

Control Ac-
tion & Feed-
back loop

Event-B elements

CA2 Variable, SDV SPEED env

CA11 Variable, leadingVehicleSet

F3 Variable, RADAR reading env

F8 Guard in safe distance violation event,
@grd1:distance < SAFE DISTANCE

F9 Variable, warningMessage

The actual speed of an SDV is represented by the SDV SPEED env variable. This vari-
able comes with two constants, max speed and min speed, which specify the specified
range for the speed variables.

@def−speed: SPEED=min speed ..max speed
@typeof−speed: SDV SPEED env ∈ SPEED

Taking into account the possibility that a human driver sets the target speed for the
ALC system (SR2), the SDV ’s target speed is represented by the ACC target speed
variable. Therefore, the ALC on event is extended to include the potential target speed
when operation of the ALC system is initiated.
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event ALC ON extends
ALC ON
any
//Driver may specify a target speed
tsp

where
@grd2: tsp ∈ SPEED
then
@act2: ACC target speed := tsp
end

A constant function radar has been introduced to capture the sensing information (F3)
in multiple positions. This function is defined as follows:

radar ∈ POSITION→ RADAR READING

In the context of the ALC system, it is crucial for the system to receive the incoming
radar points on the basis of the SDV ’s physical position (CA1). Therefore, the following
invariant was added:

@consistency 2: RADAR reading env= radar(SDV POSITION env)

The leading vehicle could be seen as the vehicle that is located in the same target lane
as the SDV. However, the ALC system can operate even without a leading vehicle;
therefore, we modelled the leading vehicles as a variable leadingVehicleSet, defined as
follows:

// there could or couldn’t be a leading vehicle
LEADING VEHICLE= {x · x ∈ Lane | {x} } ∪ {∅}

// defined a leading vehicle as variable
leadingVehicleSet ∈ LEADING VEHICLE

A constant function Seen radar reading is used by the autonomous controller to iden-
tify a potential leading vehicle. This function is defined as a partial function, signifying
the method by which the ALC system interprets radar reading points to detect a possi-
ble leading vehicle within the target lane:

//partial function enables a system to optionally detect a leading vehicle.
Seen radar reading ∈ (RADAR READING) 7→ Lane

Considering the radar reading points, the identification of the desired path was up-
dated to accommodate the potential position of a leading vehicle:

//identification of the desired path considers the position of a leading vehicle
OEDR task ∈ ( LeftLane× RightLane× Confidence score× LEADING VEHICLE)→ P(

POSITION)

A constant function target speed takes part in the computation by the autonomous
controller to determine the target speed. This function is defined as follows:

target speed ∈ POSITION× SPEED× LEADING VEHICLE→ SPEED

The movement of an SDV into a new position is modelled as a constant move, where
modifications to both speed and steering angle enable the SDV to reach new positions.
The definition of the move function is shown below:
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move ∈ POSITION× SPEED× STEERING ANGLE→ P1(POSITION)

To maintain the system safety during an actuation task by an autonomous controller,
whereby the SDV remains within the lane (SDV POSITION env ∈ Lane), an environ-
mental invariant, Environment consistency, was adjusted. This adjustment takes into
account the autonomous determination of both speed and steering angle needed to
reach a new position within the target lane (SR1), as shown below:

@Environment−consistency: stage= AutonomousDriving⇒move(SDV POSITION env 7→
targetSpeed 7→ targetSteeringAngle)⊆ Lane

In the perception stage, the identification of a possible leading vehicle was modelled as
follows:

event perception
any leftLane rightLane
when
@grd1: leftLane⊆ LeftLane
@grd2: rightLane⊆ RightLane
@grd3: ALC Status= ON
@grd5: stage= Perception
then
@act1: IMAGE env := camera (

SDV POSITION env)
@act2: RADAR reading env := radar (

SDV POSITION env)
@act3: leftLanePoints :∈ LeftLane
@act4: rightLanePoints :∈ RightLane

@act5: confidenceScore := Seen image(
IMAGE env 7→ leftLanePoints 7→
rightLanePoints)

//SR3: potential leading vehicle
@act6: leadingVehicleSet :=

Seen radar reading[{
RADAR reading env}]

//SR3: estimates the desired path
@act7: desirePath := OEDR task(

leftLanePoints 7→rightLanePoints 7→
confidenceScore 7→ leadingVehicleSet
)

@act8: stage := Decision
end

Based on the perception event, a new invariant LeadingV was added as follows:

// indicates that the ALC system might identify a leading vehicle
@LeadingV: leadingVehicleSet ̸=∅⇒ (∃ x· leadingVehicleSet= {x})

In the decision stage, the ALC decides the new speed (CA7), including identification of
steering angle and the target position, based on the identified path.

event decision
when
@grd1: ALC Status= ON
@grd2: stage= Decision
@grd3: confidenceScore≥ 80

then
@act1: targetPosition := target position(

desirePath)

@act2: steeringAngleChange :=
target steering angle(targetPosition
7→ SDV STEERING ANGLE env)

@act3: targetSpeed := target speed(
targetPosition 7→ ACC target speed 7→
leadingVehicleSet)

@act4: stage := Control
end

159



CHAPTER 8. LKA AND ACC FUNCTIONS IN THE ALC SYSTEM 160

Moreover, the ALC actuating event has been divided into ALC actuating with LV and
ALC actuating without LV. These events autonomously set the SDV ’s target speed
and steering angle. For instance, the ALC actuating with LV event calculates the dis-
tance to a leading vehicle, and is designed for scenarios where there is a leading vehicle
in the target lane.

event ALC actuating with LV refines
ALC actuating any
SDV lon SDV lat
LV lon LV lat
where
// leading vehicle set not empty
@mainGuard: leadingVehicleSet ̸=∅
@grd1: targetPosition= SDV lon 7→

SDV lat
@grd2: leadingVehicleSet= {LV lon 7→

LV lat}
@grd3: ALC Status= ON
@grd4: steeringAngleChange ∈

STEERING ANGLE CHANGE
@grd5: steeringAngleChange+

SDV STEERING ANGLE env ∈
STEERING ANGLE

@grd6: targetSpeed ∈min speed ..
ACC target speed

@grd8:move(SDV POSITION env 7→
targetSpeed 7→ (

SDV STEERING ANGLE env+
steeringAngleChange))⊆ Lane

@grd9: stage= AutonomousDriving
@grd10: steeringAngleChange+

SDV STEERING ANGLE env=
targetSteeringAngle

@grd11: signal= FALSE
then
@act1: SDV STEERING ANGLE env := (

SDV STEERING ANGLE env+
steeringAngleChange)

@act2: SDV SPEED env := targetSpeed
//ready to move
@act3: signal := TRUE
//distance to leading vehicle
@act4: distance := LV lon− SDV lon
with
@steering angle change:

steering angle change=
steeringAngleChange

@sp: sp= targetSpeed
end

In driving scenarios that involve a leading vehicle, the ALC system must ensure main-
tenance of a safe distance. To address potential violations of this constraint, the safe
distance violation event was introduced. If the ALC system breaks the safe distance
parameter, this event reduces the SDV ’s speed and prompts an intervention request.
The modelling of this event is as follows:

event safe distance violation
where
//violates the safe distance to a leading

vehicle
@grd1: distance< SAFE DISTANCE
@grd2: signal= TRUE
then

/*the stage of ALC changed to be ’
Intervention’*/

@act1: stage := Intervention
/*function to assume a system would

reduce the speed*/
@act2: targetSpeed := speed reduced

(SDV SPEED env)
@rest distance: distance := 0

end

The movement of an SDV is divided into two major categories. The first refers to au-
tonomous movement, which includes two events: auto move with LV and auto move
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without LV. These events enable the SDV to move towards a target position by actuat-
ing and using the target speed and steering angle. For instance, the auto move with LV
event is modelled as follows:

event auto move with LV
refines auto move any
LV lon LV lat
target SDV lon
target SDV lat
where
@grd0: ALC Status= ON
@grd1: targetPosition ∈ Lane
@grd2: targetSpeed ∈ SPEED
@grd3: targetSteeringAngle ∈

STEERING ANGLE
/* new (target) position must be within set

of position inside the lane */
@grd4: targetPosition ∈move(

SDV POSITION env 7→ targetSpeed 7→
targetSteeringAngle)

@SDV: targetPosition= target SDV lon 7→
target SDV lat

@grd5: signal= TRUE
@grd6: stage= AutonomousDriving
@grd7: LV lon 7→ LV lat ∈ Lane
/* new position keep safe distance */
@safe: SAFE DISTANCE> LV lon−

target SDV lon

then
@act1: SDV POSITION env :=

targetPosition
@act2: SDV SPEED env := targetSpeed
@act3: SDV STEERING ANGLE env :=

targetSteeringAngle
@act4: stage := Perception
@act5: IMAGE env := camera(

targetPosition)
@act6: RADAR reading env := radar(

targetPosition)
@act7: signal := FALSE
/* remove the old detecting of leading

vehicle */
@act8: leadingVehicleSet := {LV lon 7→

LV lat}
@reset−distance: distance := 0

with
@new position: new position=

targetPosition
@sp: sp= targetSpeed
@steer: steer= targetSteeringAngle
end

In scenarios where the SDV operates in proximity to a leading vehicle, the guard @grd7
within the auto move with LV event is designed to ensure that the SDV ’s navigation
does not compromise the prescribed safe distance to the leading vehicle. In addition, to
cover potential changes in the position of the leading vehicle, the action @act8 assigns
a new position for the leading vehicle within the target lane. This step is based on
the assumption that the leading vehicle stays within the boundaries of its current lane.
Thus, these conditions allow for dynamic adjustment to safety guidelines during SDV
movement.

The second category refers to manual movement, encapsulated by the manual move
event. This event represents the circumstances when the SDV moves manually due to
the corrective action provided by the human driver. It operates under the assumption
that the human driver maintains the SDV within the target lane.
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eventmanual move extends
manual move

where
@grd0: ALC Status= ON
@grd3: signal= TRUE
@grd4: stage= Intervention
then
@act2: stage := Perception

@act3: IMAGE env := camera(
new position)

@act4: RADAR reading env := radar(
new position)

@act5: signal := FALSE
/* remove the old detecting of leading

vehicle */
@act6: leadingVehicleSet :=∅
@reset−distance: distance := 0

end

Table 8.5 shows how the safety requirement (SR1 to SR6) has been satisfied in a formal
model. The assumptions related to autonomous speed identification include:

• A1: The radar sensor consistently provides reading points for any potential lead-
ing vehicle within the target lane.

• A2: The autonomous controller can access radar reading points from the sensor
radar attached to the SDV.

TABLE 8.5: Safety requirements (SR1 to SR7) in formal model for ACC functionality

Safety requirements Event-B elements

SR1
Environmental invariant, Environment-consistency,
stage = AutonomousDriving ⇒ move(SDV POSITION env
7→ targetSpeed 7→ targetSteeringAngle) ⊆ Lane

SR2
Action, @act2, in the ALC ON event
@act2: ACC target speed := tsp
When a driver may specify the ACC target speed.

SR3

Actions, @act6 and @act7, in the perception event
@act6: leadingVehicleSet := Seen radar reading[RADAR reading env]
@act7: desirePath := OEDR task( leftLanePoints 7→ rightLanePoints 7→
confidenceScore 7→leadingVehicleSet)
When the ALC leverages radar reading points to identify the desired path.

SR4
Action, @act3, in the decision event
@act3: targetSpeed := target speed(targetPosition 7→ ACC target speed 7→
leadingVehicleSet)

SR5 & SR6

Guard, @grd1, in the safe distance violation event.
@grd1: distance < SAFE DISTANCE, where actions are
@act1: stage := Intervention
@act2: targetSpeed := speed reduced( SDV SPEED env)

8.1.6 Proof Statistics

Table 8.6 shows the proof statistics of the ALC model that includes the LKA, DMS and
ACC functions. A step-by-step approach was used to model the automation aspects
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across four layers, with each layer corresponding to a single machine in Event-B. The
results emphasise that most of the proof obligations were discharged automatically.
This was achieved by using modelling patterns. These patterns were developed in
Section 6.2 of Chapter 6 and were specifically designed to encapsulate the automation
aspects within Event-B models.

TABLE 8.6: Proof statistics of ALC case study

Machine Generated PO Automatically Proved %

M0 3 3 100

M1 17 17 100

M2 220 208 94

M3 61 61 100

8.2 Discussion

Within chapters 7 and 8, the functionalities of the ALC system are seamlessly inte-
grated into RATP’s modelling patterns. This structured approach facilitates a thorough
evaluation of system behaviours and interactions.

The ALC system encompasses three main functionalities: LKA, ACC, and DMS. Each
of these components adds complexity, necessitating careful analysis to ensure safety.

RATP’s systematic approach enables a thorough examination of potential hazards within
the ALC system. This involves evaluating the system’s capability to autonomously ad-
just steering and speed, while also considering the possibility of human interventions.
By analysing these factors, RATP helps to uncover inherent safety challenges in the
ALC system. For instance, these challenges include:

• Progressing from abstract behavioural models of the ALC system to concrete sce-
narios where human driver intervention may be necessary.

• Gradually identifying safety requirements and refining safety properties through
a chain of refinements.

• Investigating both the capabilities of autonomous features and the decision-making
process for human driver interventions.

Through RATP, specific safety requirements and assumptions related to the ALC sys-
tem are identified and analysed. This process involves modelling critical properties
that emerge during iterative analysis, leading to refined safety measures. By system-
atically addressing these requirements, RATP ensures effective management of safety
concerns throughout ALC system development and deployment.
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In summary, the RATP methodology provides a structured and systematic approach to
addressing safety complexity in the ALC system. By integrating ALC functionalities,
investigating hazardous events, and identifying safety requirements, RATP offers valu-
able insights for enhancing the safety and reliability of autonomous driving systems.

8.3 Evaluation of RATP Method in the ALC Case Study

Employing STPA for Analysis of the ALC System: Systems Theoretic Process Anal-
ysis (STPA), serving as a method for hazard identification, provides a systematic ap-
proach to examining the behaviours of SDVs [130]. Abdulkhaleq et al. [3] propose a
dependable architecture for SDVs based on STPA. In addition, the main idea is that the
functional and architectural design of SDVs can decompose into three levels: 1) vehicle
level, which is a high-level view of the SDV; 2) system level, which demonstrates the mul-
tiple interdependent software components; and 3) component level, which is a low-level
view of the SDV.

Abdulkhaleq and Wagner [1] also applied STPA to the ACC in order to show that the re-
sult of STPA is applicable to identification of potential accident scenarios, for instance
human decision-making errors and component interaction accidents. Hanneet et al.
[89] applied STPA to a LKA system to derive safety constraints and requirements. How-
ever, they considered only the LKA system, and the driven requirements did not cover
the interactions of LKA with the DMS or other autonomous systems such as ACC. In
comparison to these studies, the RATP approach takes a more comprehensive view of
automation. It includes the role of the human driver as a fallback option, while the
ALC system identifies autonomously both speed and steering.

Specifying Automation Aspects of the ALC System: In Ref [2], the ACC function was
analysed using the STPA approach. The corresponding Linear Temporal Logic (LTL)
formula was developed, based on the requirements identified through STPA. This LTL
formula specifies essential conditions for an SDV, including the requirement for an
acceleration signal when the lane is clear (i.e., the distance is greater than the safe dis-
tance). Furthermore, the Signal Temporal Logic (STL) was employed to encapsulate the
requirements of the perception module [127]. For example, requirement R2 is stated as
“Sensor S should detect its visible/target obstacle within T1 time unit”. Subsequently,
this requirement was translated into an STL formula to aid the control design and test-
ing phase of the system under investigation. Based on the four-variable model by Par-
nas and Madey [107], the Event-B models were constructed to verify and validate the
critical automation aspects of the ALC system. For instance, studies such as the Cruise
Control System (CCS) [137], Lane Departure Warning (LDW) [136] and Speed Control
System (SCS) [90] have identified numerous properties related to the ACC and LKA.
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However, these studies consider only certain automation aspects of speed or steering,
without considering both of them together. Comparing these studies to the applica-
tion of RATP to the ALC case study, the driven STPA requirements were gradually
identified to specify system behaviours at various abstraction levels in Event-B. New
automation aspects were examined, such as the intervention request and the driver’s
awareness level. However, the temporal properties of a system remain a significant
concern.

8.4 Conclusion

This chapter expanded the application of the RATP approach to include the ACC func-
tion. We detailed how modifications in the ALC layers enabled the system to au-
tonomously determine the speed of the SDV. The following chapter explores the tem-
poral properties of the SDV system, with particular focus on investigating a driver’s
response when the ALC system issues an intervention request.
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Chapter 9

Modelling the Driver Reactions

This chapter describes our third contribution, entitled ‘Intervention Timing Pattern’.

In the preceding two chapters the Automated Lane Centring (ALC) system was ex-
amined by using the Rigorous Analysis Template Process (RATP), which was applied
across four layers to include the Lane Keeping Assist (LKA), Adaptive Cruise Control
(ACC) and Driver Monitoring System (DMS) functions. However, the examination of
the temporal properties is also required, particularly when the ALC system issues a
request for the human driver to intervene.

In this chapter, a deeper exploration into a specific aspect linked to the main Research
Question (RQ3.2) of this thesis.

RQ3.2: How can a methodology be developed to formally analyse human responses when the
SDV may issue a request to intervene?

RQ3.2 seeks to develop a method for examining the complexity of human responses
during the operation of Self-Driving Vehicle (SDV) systems. Building upon the mod-
elling patterns proposed earlier in Section 6.2 of Chapter 6, we introduce the inter-
vention timing pattern. This pattern specifically examines driver reactions to potential
intervention requests from SDVs. Moreover, the ALC layers are extended to validate
the intervention timing pattern within the context of the ALC system.

Section 9.1 introduces the intervention timing pattern for modelling driver responses.
Section 9.2 applies this pattern to the ALC case study. Section 9.3 elaborates on the
advantages and outcomes derived from employing the intervention timing pattern in
addressing RQ3.2. Section 9.4 discusses related work. Section 9.5 concludes this chap-
ter.
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9.1 Intervention Timing Pattern

The intervention timing pattern investigates how a human driver might respond when
the SDV system asks for intervention. Our pattern not only models the reaction of
a human driver but introduces new requirements and assumptions that need to be
considered to make the SDV system safe.

The intervention timing pattern explains our modelling choice and offers a broad con-
text for understanding key properties such as time progression, the clock (timer), human
reaction time and alert time. The primary concept involves using guarded events with
time constraints; thus these guarded events can be triggered only when the system
reaches a specific time.

The time progression is also designed as an event; therefore, there is no need to modify
the underlying language of Event-B. The variable time is defined as a natural number,
which allows time constraints, such as alert time, to be expressed as constants or as
relationships between different times. Moreover, time observations can be represented
by other events determining future states (events) of a system.

To enhance clarity and consistency in the modelling patterns of SDV systems, we intro-
duce an additional layer called Layer 4. This layer builds upon the modelling patterns
discussed in Chapter 6, Section 6.2, following the same steps in the RATP approach.
Layer 4 of the intervention timing pattern is explained in the next subsection.

9.1.1 Layer 4: Intervention Timing Pattern

Step 1. Instantiation: This step builds upon the system boundary diagram developed
earlier in Layer 3 as part of the modelling pattern discussed in Subsection 6.2.4 of Chap-
ter 6. We incorporated timing considerations related to certain automation aspects as
follows:

• The time when a semi-automated system issues an intervention request.

• The time when a semi-automated system might trigger an auditory notification.

• The time when a driver might respond to either the intervention request or audi-
tory notification.

Based on these timing considerations, Figure 9.1 adds the timestamps associated with
the specific situations under which the semi-automated system is required to issue an
auditory notification if an intervention request is ignored. Such a notification could be
activated, for example, when the driver does not take the necessary corrective action.
These timing aspects are considered only when the intervention request is sent. The
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auditory notification is mostly designed to ensure the driver’s responsiveness. In gen-
eral, automotive companies such as OpenPilot [10] and General Motors [66] use alert
systems for two primary tasks: 1) ensuring that the driver remains alert and responsive;
and 2) warning the driver about potentially hazardous driving conditions. The alert function
is designed to work in conjunction with these tasks and to interact with them over a
period of time. For instance, OpenPilot triggers an auditory notification if the driver
fails to respond to an intervention request within 6 seconds.

FIGURE 9.1: System boundary diagram in RATP Layer 4

Step 2. The purpose of analysis: The purpose of analysis is to study how a driver
may react to a request to intervene. The time constraints associated with alerting a
driver are investigated when the intervention request might be ignored. Therefore, a
System Loss (SL) is identified as SL1:

• SL1: The SDV collides with an object outside of its Operational Design Domain
(ODD) because the driver does not take the necessary corrective action.

As a driver might not react when the semi-automated system issues a request to in-
tervene, a System Hazard (SH) associated with the system loss (SL1) is identified as
SH1:

• SH1: The driver does not react to a request to intervene.

A high-level Safety Constraint (SC) that satisfies the system conditions to prevent SH1
is SC1:
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• SC1: The semi-automated system must alert a driver to take control of an SDV if
the driver does not react to a request to intervene.

Step 3. Control structure: The construction of a control structure also builds upon
the control structure established in Layer 3, detailed in Subsection 6.2.4 of Chapter 6.
Figure 9.2 presents a more refined control structure, organised around a system that
alerts a driver if intervention requests are ignored (SC1). A feedback loop (F7) rep-
resents that the semi-automated system delivers an auditory notification if the driver
fails to respond to an intervention request (F6). In addition, the semi-automated sys-
tem allocates a restricted timeframe in which the driver should react, as represented by
Control Action (CA3). If a driver ignores these requests, the semi-automated system is
responsible for raising the alarm and releasing control of the SDV immediately.

FIGURE 9.2: Control structure in RATP Layer 4

Step 4. Identifying unsafe control Table 9.1 presents the Unsafe Control Actions
(UCAs) are presented, which correspond to system hazard (SH1). These UCAs denote
unsafe system behaviours that may participate in SH1. The behaviours are described
as follows:

• A driver is aware of the intervention request but fails to respond.
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• A driver acknowledges the intervention request but responds late.

• When the driver is aware but does not respond, the semi-automated system may
stop working and initiate the switch to manual driving.

TABLE 9.1: Unsafe control actions in RATP Layer 4

Control
Action
(CA)

Not providing CA
leads to hazards

Providing CA leads
to hazards

CA applied early,
late, or out of or-
der

CA stopped too
soon or applied too
long

CA7
and
CA3

UCA1.1: Semi-
automated system
does not alert a
driver if a driver’s
correction action is
not provided.

UCA1.2: A driver is
aware (CA7) of are-
quest to intervene
(F6), but does not
respond (CA3).

UCA1.3: A driver
is aware (CA7)
but does respond
too late (CA3).

UCA1.4: Semi-
automated system
may release a con-
trol of an SDV when
a driver is aware
(CA7) but does not
react (CA3).

Causal Factor

A poor reaction of a driver when the semi-automated system issued a request to intervene.

In view of these system behaviours, the potential Safety Requirements (SRs) pertinent
to these behaviours can be outlined as follows:

• SR1: When an intervention request is issued, the semi-automated system should
give the driver a limited time to react (driver correction action) [SH1]

• SR2: If the driver fails to react within the limited time, the semi-automated sys-
tem should immediately trigger an alarm (auditory notification) [SH1].

• SR3: Once the system triggers an alarm, the driver is responsible for performing
the entire driving task (manual driving) [SH1].

Step 5. Event-B model: During the Event-B modelling step, our goal is to enhance
a previously presented formal model from Layer 3 as detailed in Subsection 6.2.4 of
Chapter 6. The enhancement involves incorporating timing aspects into the formal
model. The intervention pattern is explained through an example Event-B model. This
model can be reused in order to add different time considerations. As shown in the
below, the intervention pattern has six variables:

machinem0
variables
redFlag //denotes a system enters a hazardous event
time //indicates any time of a system
requestTime //time when automated system issues a request to intervene
alarmFlag //sounding an alarm
alarmTime //time waiting for a response before the alarm is sounding
reactionTime //time when a human operator may react
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invariants
@inv1: time ∈ N1 @inv2: requestTime ∈ N @inv3: alarmTime ∈ N

@inv4: redFlag ∈ BOOL @inv5: alarm ∈ BOOL @inv6: reactionTime ∈ N

....

• time: This represents the current time of a system. The incrementation of this
value implies the time progression.

• requestTime: This indicates any time in the future when a system may issue a
request to intervene.

• reactionTime: This indicates any time in the future when a driver may respond to
a request to intervene.

• alarmTime: This denotes a future time when a driver does not react to a request
to intervene, and the auditory notification is immediately sounded.

• redFlag: This is a boolean flag that indicates a system issuing a request to inter-
vene.

• alarmFlag: This is also a boolean flag that explains the status of the sound alert.

The three categories focus on various aspects of timing. The first category involves
establishing an intervention timer within hazardous events that require intervention.
An example can be found in the request event, which indicates the entrance of a haz-
ardous event when a system waits for a response before an alarm is raised. This event
is triggered when the machine prompts a request for intervention. Consequently, the
intervention timer is configured within this event as follows:

event request
any
/* Maximum time of a system waiting for a response before raises an alert*/
duration
when
/*Any time is given for waiting for a human’s response*/
@grd1: duration ∈ N1

/*No intervention request and alarm is OFF*/
@grd2: redFlag= FALSE ∧ alarmFlag= FALSE
then
/*Specify a time of waiting for a driver before the alarm sounds*/
@act1: alarmTime := time+ duration
/*Update the time of issuing a request to intervene*/
@act2: requestTime := time
/*Update a flag of issuing a request to intervene*/
@act3: redFlag := TRUE
/*No reaction from human yet*/
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@act4: reactionTime := 0

end

After the creation of the intervention timer in the request event, the timeline for the
intervention pattern is as outlined in Figure 9.3. It includes the first Requirement (SR1),
which must be considered to allow the human driver to respond when the automa-
tion issues a request to intervene. The initialisation of time for a request to intervene
(requestTime) is defined according to the current time of a system (time). In order to
give a driver a chance to respond, the parameter duration indicates the waiting time
of a system before the alarm is sounded. Therefore, the alert time (alarmTime) can be
defined as the end of the waiting time.

FIGURE 9.3: Creation of intervention timer

The second category of the intervention timer is time progression, as shown in Figure
9.4. In this modelling technique, the current time is frozen and can change with an
observation of the tick event as follows:

event tick
where
/*Work only if a system issued a request to intervene*/
@flag intervene: redFlag= TRUE
/*System time doesn’t reach an alert time yet*/
@no alarm: redFlag= TRUE ∧ alarmFlag= FALSE⇒ time≤ alarmTime
/*System time arrives on alert time, so the alarm must be operating*/
@alarmOn: (time= alarmTime ∧ redFlag= TRUE)⇒ alarmFlag= TRUE
then
/* Increment timer */
@act1: time := time+ 1

end

The tick schedules the time progression associated with the alarm property. For in-
stance, the guard alarmOn captures a critical specification when the current time is
already at the alert time; therefore, the auditory notification must be sounded before
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FIGURE 9.4: Time progression in intervention timer

computing the new value of time. To model the alarm property, the second Require-
ment (SR2) is introduced, signifying that the autonomous system will send an auditory
notification if the human response is still pending. This aspect is modelled in the notify
event as follows:

event notify
where
/*System issues a request to intervene, while an alarm is not sounding */
@grd1: alarmFlag= FALSE ∧ redFlag= TRUE
/*System time equal to or has moved beyond alert time*/
@timeAlarm: time≥ alarmTime
then
/*Update value of alarm*/
@act1: alarmFlag := TRUE
end

The third category of the intervention timer models human interventions that occur
either before or after the auditory notification sounds. To capture these two potential
forms of human reaction, the intervene event is outlined with various time intervals.
The first variant of this event, addressing human reactions prior to the auditory notifi-
cation, is modelled as follows:

event intervene
when
@grd1: redFlag= TRUE
/*Possible values of system time when a human may react*/
@grd2: time< alarmTime
then
/*Update a driver reaction time*/
@receivedReaction: reactionTime := time
@updateflag: redFlag := FALSE
end
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The guards within the first variant of the intervene event play a crucial role in encapsu-
lating the third Requirement (SR3.1) derived from SR3, which highlights the potential
for a human response prior to the activation of the auditory alarm. The grd2 guard in
this initial form of the intervene event sets a confined timeframe, allowing for human
reaction before the system’s current time aligns with the alert time. Under these spec-
ified conditions, Figure 9.5 demonstrates the narrow window of opportunity available
for a human to respond before triggering the auditory notification.

SR3.1: A human driver might respond before sounding an auditory notification.

FIGURE 9.5: Human’s response window time before alert notification

Similarly, the second form of the intervene event outlines several conditions that allow
a human driver to react after the auditory notification has sounded, which is modelled
as follows:

event intervene
when
@grd1: redFlag= TRUE
/*System has already raised an alarm*/
@grd2: time ≥ alarmTime
then
/*Update a driver reaction time*/
@receivedReaction: reactionTime := time
/*Update values of flag*/
@updateflag: redFlag := FALSE
end

The adjustment in the grd2 guard contributes to capturing the fourth Requirement
(SR3.2) derived from SR3 that indicates the possibility of receiving a human response
after the alarm sounds. Specifically, it implies that the system’s current time has already
surpassed the alert time. Given these conditions, Figure 9.6 illustrates the possible win-
dow of time in which a human may react after the auditory notification is triggered.
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SR3.2: A human driver might respond after sounding an auditory notification.

FIGURE 9.6: Human’s response window time after alert notification

Since the intervention timer is executed only when a request to intervene is issued, the
invariants between an SDV and a human driver are simple, and we have only to satisfy
the following three invariants.

@alarm state: alarmFlag= TRUE⇒ redFlag= TRUE

@waiting response: redFlag= TRUE ∧ alarmFlag= FALSE ⇒ requestTime≤ time ∧ time
≤ alarmTime

@alerting: alarmFlag= TRUE ∧ redFlag= TRUE ⇒ time≥ alarmTime

The invariant alarm state indicates that the alarm signal would be sent if there is still
a need for human intervention. Additionally, the invariant waiting response under-
scores that a system allocates a specific duration for the human to respond if an in-
tervention request is dispatched (i.e., redFlag = TRUE). Specifically, the current time
of the system (time) can go beyond the moment of issuing the intervention request
(requestTime) up to the alert time (alarmTime). This duration is thus represented as
requestTime ≤ duration ≤ alarmTime, where the system time equals the time of issu-
ing the intervention request. On the other hand, the invariant alerting denotes that an
auditory notification is only activated (i.e., alarmFlag = TRUE) if the system’s current
time exceeds this defined duration.

In this modelling strategy, three Assumptions (As) are incorporated into the formal
model:

• A1: A human driver might respond immediately or after the auditory notification
is activated.
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• A2: The waiting time, or duration, is not strictly defined, for example 3 seconds.
Instead, it is treated as a parameter representing any positive number.

• A3: The SDV is assumed to be in a safe state during the entire process of alerting
and receiving responses from the human driver.

9.2 Modelling Driver Reactions in the ALC System

This section presents the application of an intervention timer in the ALC case study. It
mainly models the driver’s reactions when the ALC system issues a request to inter-
vene, a process initially summarised in Section 4.2.4 of Chapter 4.

The various scenarios in which an intervention request might be issued by the ALC sys-
tem have been addressed in the ALC layers discussed in Chapters 7 and 8. For a more
precise representation of intervention timings, these layers are refined by introducing
a new layer, ‘ALC-Layer 4’, to the intervention timing pattern.

The following subsection presents the intervention timing pattern of the ALC case
study according to the steps of the RATP approach.

9.2.1 ALC-Layer 4: Modelling the Intervention Timing Pattern

Step 1. Instantiation: Based on the system boundary diagram detailed in Subsec-
tion 8.1.1 of Chapter 8, this step introduces temporal properties to simulate human
reactions upon receiving an intervention request from the ALC system. Some automo-
tive companies, such as Volvo [131] and Comma.ai [10], already implement notification
systems to ensure driver alertness during autonomous vehicle operation. For example,
OpenPilot, the autopilot software developed by Comma.ai [10], provides a 4-second
window for the driver to respond to an intervention request. If this request is ignored,
the system issues an auditory notification after 6 seconds and progressively reduces
the SDV ’s speed until it is completely stopped. These procedures are illustrated in
Figure 9.7, where temporal properties associated with the driver’s potential responses
are incorporated, such as the auditory notification to be sent if the intervention request
is ignored or not addressed by the driver.

Step 2. The purpose of analysis: The purpose of analysis is to study how a driver
may react to a request to intervene (warning messages). The time constraints associated
with the driver reactions are investigated, especially when the ALC issues a request to
intervene. Consequently, a SL is identified as SL2:
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FIGURE 9.7: System boundary diagram incorporating intervention timing pattern

• SL2: The SDV collides with an object outside of its target lane because the driver’s
corrective action is missing.

As a driver might not react when the ALC issues a request to intervene, a SH of SL2 is
SH2:

• SH2: The driver does not react when the ALC system issues a request to intervene

A high-level SC that satisfies the system conditions to prevent SH2 is SC2:

• SC2: The ALC must alert a driver to take the control of an SDV if the driver does
not react to a request to intervene.

Step 3. Refining control structure: This step refines the control structure based on the
structure discussed in Subsection 8.1.3 of Chapter 8. It considers a scenario where the
ALC system issues a request for intervention. Figure 9.8 illustrates a more detailed con-
trol structure designed around the ALC system, which alerts the driver if intervention
requests are ignored (SC2). This structure includes the Control Actions (CAs) and Feed-
back Loops (FLs) necessary for the ALC system to send an auditory notification (F10)
if the driver fails to respond (CA3) to the intervention requests (F6, F7, F9). The ALC
system allows a certain amount of time for the driver to react. Nonetheless, in instances
where the intervention requests are ignored by the human driver, the ALC system is
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responsible for initiating an auditory notification, subsequently releasing control of the
SDV.

FIGURE 9.8: Control structure in ALC Layer 4

Step 4. Identifying unsafe control actions: Table 9.2 presents the UCAs related to the
system hazard (SH2). These UCAs indicate potentially dangerous system operation
that may contribute to SH2, including:

• Driving scenarios where the human driver recognises the request for intervention
but takes no action.

• Driving scenarios where the human driver acknowledges the intervention re-
quest but delays taking action.

• Driving scenarios in which the ALC system is continuously operated despite non-
response from the human driver, leading to unknown safety risks.

Therefore, the SRs of SH2 can be identified as follows:

• SR4: If the ALC issues a request to intervene, the ALC system must allow the
driver a specified time in which to react (driver correction action) [SH2].
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• SR5: If a driver does not react within the specified time, the ALC immediately
raises the alarm (auditory notification) [SH2].

• SR6: If a system raises the alarm, the driver is responsible for performing the
entire driving task (manual driving) [SH2].

TABLE 9.2: Unsafe control actions in ALC Layer 4

Control
Action
(CA)

Not providing CA
leads to hazards

Providing CA leads
to hazards

CA applied early,
late, or out of or-
der

CA stopped too
soon or applied too
long

CA8

UCA1.5: ALC sys-
tem does not alert a
driver if a driver’s
corrective action is
not provided.

UCA1.6: A driver
is aware (CA8) of
a request to inter-
vene (F6,F7,F9), but
does not respond to
a request to inter-
vene (CA3).

UCA1.7: A driver
is aware (CA8)
but does respond
too late (CA3).

UCA1.8: ALC sys-
tem may release a
control of an SDV
when a driver is
aware but does not
react (CA3).

Causal Factor

A poor reaction of a driver when the ALC issued a request to intervene.

Step 5. Refining Event-B model: Mapping is provided in Table 9.3 to demonstrate
how the new feedback loop (F10) links to the representation of a formal model. Full
details of the refined machine (machine m4) are in Appendix G.2. The auditory notifi-
cation is modelled using a Boolean, as follows:

/* The alert sound might be (TRUE) or (FALSE) */
@typeof−audotioryNotification: auditoryNotification ∈ BOOL

TABLE 9.3: Feedback loop linked to ALC Layer 4

Feedback
loop Event-B elements

F10 Variable, auditoryNotification

In addition to the auditory notification, four temporal variables are introduced to model
the reactions of the human driver within the ALC systems.

time //current time of a ALC system
sentRequest //ALC time of issuing a request
driverReact //ALC time when a driver may react
alertTime //ALC time of alerting a driver

@typeof−time: time ∈ N

@typeof−sentTime: sentRequest ∈ N

@typeof−actTime: driverReact ∈ N

@typeof−alarm: alertTime ∈ N

The three categories represent different timing aspects. First, the creation of the inter-
vention timer is included in the intervention driving scenarios. These scenarios were
modelled in several Event-B events as follows:
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1. lowConfidenceScore interven: The intervention timer starts if the desired path is
identified with low confidence.

2. correct exceeding: The timer also starts when the steering attempts to go beyond
the SDV’s range.

3. correct out of lane: The timer is activated if the ALC system suggests changes in
speed and steering angle that would move the SDV out of the target lane.

4. safe distance violation: The timer starts if the ALC system speeds up the SDV so
that it is too close to the vehicle ahead.

The driving circumstances leading to the above events were analysed in the previous
ALC layers. This was done when applying the RATP approach to the LKA and ACC
functions, as discussed in Chapters 7 and 8. However, we extended these events to in-
clude the creation of an intervention timer. For instance, the lowConfidenceScore interven
event is extended based on the definition of the request event in the intervention timing
pattern as follows:

event lowConfidenceScore interven extends lowConfidenceScore interven
any
/*maximum time of a system waiting for a response before raising an alert*/
duration
when
/*time of waiting for a reaction from a driver*/
@grd6: duration ∈ N1

@grd7:warningMessage= FALSE ∧ auditoryNotification= FALSE
then
/*specify a time of waiting for a driver before the alarm sounds */
@act3: alertTime := duration+ time
/*update a time of issuing a request to intervene*/
@act4: sentRequest := time

end

Initiation of the timer within the intervention events results in the definition of action
act4 as a variable sentRequest according to the current time of the system. To provide
the driver with an opportunity to respond, the parameter duration indicates the wait-
ing time before an alarm is activated. Therefore, the action act3 sets a variable alertTime
as the end of the waiting interval.

The second category of the intervention timer is time progression. Based on the tick
event in the intervention timing pattern, the current time is frozen and it can change
with an observation as follows:

event tick
where
/* works only if a system issued a request to intervene */
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@grd1:warningMessage= TRUE
/* time less than a time of alert, so there is no need for alert*/
@grd2:warningMessage= TRUE ∧ auditoryNotification= FALSE⇒ time≤ alertTime
/*time is reach alert time, auditory notification must be operating*/
@grd3: (time= alertTime ∧warningMessage= TRUE)⇒ auditoryNotification= TRUE
then
/* accept increment time */
@act1: time := time+ 1

end

The tick event schedules the time progression associated with the alarm property. For
instance, the guard grd3 captures a critical specification when the current time is al-
ready at the alert time; therefore, the auditory notification must be sounded before
computing the new value of time. To represent the alarm property, we model the alert
event by leveraging the notify event in the intervention timing pattern. This enables
the ALC system to send an auditory notification as follows:

event alert
when
/* ALC issues a request to intervene, while an alarm is OFF */
@grd1: auditoryNotification= FALSE ∧ warningMessage= TRUE
/*current time equal to or has moved beyond alert time */
@grd2: time≥ alertTime
then
/*update value of auditory notification*/
@act1: auditoryNotification := TRUE
end

The third category of the intervention timer is to model the driver intervention be-
fore/after sounding the auditory notification. Based on the intervene event in the in-
tervention timing pattern, two events represent the possible reactions from a driver:
response before alarm and response after alarm.

event response before alarm extends
Manual actuatingwhen
//ALC issues a request, while alarm ’OFF’
@grd8:warningMessage= TRUE ∧

auditoryNotification= FALSE
//(SR6): possible values of current time

when a driver may react
@grd9: time≥ sentRequest ∧ time<

alertTime
then
//update a driver reaction time
@upd−receivedTime: driverReact := time
end

event response after alarm extends
Manual actuatingwhen
//ALC issues a request, while alarm ’On’
@grd8:warningMessage= TRUE ∧

auditoryNotification= TRUE
//(SR6):ALC raised an alarm
@grd9: time ≥ alertTime
then
@upd−receivedTime: driverReact := time
// rest an alarm
@upd−alarm: auditoryNotification :=

FALSE
end

182



183 CHAPTER 9. MODELLING THE DRIVER REACTIONS

These events involve several conditions for allowing the driver to react before/after
sounding the auditory notification. For instance, the guards grd9 in both events indi-
cate time constraints that explain the time when a driver may react (SR5).

Since our pattern is executed only when a request to intervene is issued, the invariants
between the ALC system and a human driver are simple, and we have only to satisfy
the following two invariants.

@waiting response:warningMessage= TRUE ∧ auditoryNotification= FALSE ⇒
sentRequest≤ time ∧ time≤ alertTime

@alerting: auditoryNotification= TRUE ∧ warningMessage= TRUE ⇒ time≥ alertTime

The invariant waiting response emphasises that a system gives the driver specified
time in which to respond if the intervention request is sent (warningMessage = TRUE).
Precisely, the current time of a system (time) can move beyond the time of issuing a
request to intervene (sentRequest) to the alert time (alertTime); that is the duration
(SR4) can be written as sentRequest ≤ duration ≤ alertTime where the current time of
a system is equal to the time of issuing a request to intervene. Second, the invariant
alerting indicates that a system sounds an auditory notification (sentRequest = TRUE)
only if the current time of a system goes beyond that duration (SR5).

Table 9.4 details how the safety requirement (SR4 to SR6) has been satisfied in a formal
model. There are three Assumptions (As) involved in a formal model:

• A4: A human driver reacts immediately after the auditory notification is sounded.

• A5: The waiting time/duration is not strictly defined, such as 3 seconds. Instead
it is treated as a parameter representing any positive number.

• A6: The ALC system is assumed to be in a safe state during the entire process of
alerting and receiving responses from the human driver.

TABLE 9.4: Safety requirements (SR4 to SR6) in formal model for ALC Layer 4

Safety requirements Event-B elements

SR4
Invariant, @waiting response: warningMessage = TRUE ∧
auditoryNotification = FALSE ⇒ sentRequest ≤ time ∧ time ≤ alertTime

SR5
Invariant, @alerting: auditoryNotification = TRUE ∧ warningMessage
= TRUE ⇒ time ≥ alertTime

SR6

Guards in events, response before alarm and response after alarm
where @grd9 in both events specifies a time that a driver may react
@grd9: time ≥ sentRequest ∧ time < alertTime
@grd9: time ≥ alertTime
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9.3 Discussion

The intervention timing pattern is a critical component in the development of SDV
systems, especially when considering the human driver as a fallback option during
hazardous driving events. It outlines a structured method for specifying the timing
properties needed to model the windows of opportunity for a driver’s intervention
response. This pattern is particularly relevant for systems such as ALC, where the
precise measurement of human interaction is vital for ensuring safety and reliability.

The analysis utilises an intervention timing pattern to accurately map the timing of a
driver’s potential responses to the ALC system’s prompts. It differentiates between
scenarios in which a driver might respond before the urgency of auditory notification
is perceived, and situations where the driver’s reaction occurs after acknowledging the
notification. This approach facilitates a thorough examination of the range of a driver’s
possible reaction times in relation to the auditory signals from the ALC system.

The benefits of utilising the intervention timing pattern in SDV systems are multi-
faceted:

• Requirement and Assumption Identification: The intervention timing pattern
serves as a structured framework that identifies specific requirements and as-
sumptions related to the driver’s engagement in the SDV’s autonomous opera-
tions. By explicitly defining these parameters, it assists in shaping a comprehen-
sive understanding of the role and expectations of human intervention, ensuring
that both system developers and stakeholders have a clear blueprint to refer to.

• Addressing Modelling Challenges: One of the complex aspects of modelling
SDV systems lies in accounting for the uncertain nature of a driver’s response
during autonomous operations. The intervention timing pattern plays a crucial
role in overcoming this issue. It establishes a methodical framework that inte-
grates the possibility of human responses into the system’s functional procedures,
ensuring that these variables are included in the system design even if they are
not directly detectable. Therefore, it ensures that the model remains robust and
reflective of real-world scenarios where driver reactions may not always be ap-
parent.

• Driver Inclusion Beyond Fallback: Traditionally, the role of a driver in an SDV
system is often relegated to that of a mere fallback option—intervening only when
the system fails or is unsure of the next course of action. However, the inter-
vention timing pattern encourages developers to transcend this limited view. It
prompts the consideration of the driver as an active participant, capable of vary-
ing responses across different scenarios. This, in turn, aids in crafting a more
robust and realistic model of fallback mechanisms within the SDV system.
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In summary, the intervention timing pattern not only accentuates the intricacies of hu-
man intervention in automated systems but also propels a forward-thinking approach
to SDV system development. This pattern is instrumental in acknowledging the range
of possible human reactions, guiding the creation of systems that excel technically
while also being attuned to human behaviour and needs. Such an approach promotes a
seamless integration of humans and machines, aiming for a balanced and cooperative
relationship.

9.4 Related Work

Formalising and verifying discrete timing properties. Cansell et al. [29] developed a pattern
to model the timing and order of events within systems, using time-stamped actions
and reactions to simulate real-time processes. Their model uses a clock (timer) to track
current time and events set to trigger at future times. The system advances time and ac-
tivates events accordingly. However, this model does not handle interruptions during
event sequences.

Butler and Falampin [27] proposed a refinement strategy of timing properties that intro-
duces a clock variable representing the current time and an operation that progresses
the clock. Therefore, time constraints are added to the clock to handle interruptions
during event sequences where the clock cannot move beyond the specific point at
which the deadline is violated.

Based on this methodology, many studies, such as [117, 142], have been carried out
to extend Event-B with timing properties. Sarshogh and Butler [117] propose a trig-
ger response pattern to develop Event-B models with several timing properties such
as deadline, delay and expiry. Their approach assigns timestamps for trigger and re-
sponse events and employs a tick event to prevent the global clock from moving to a
point where time constraints between the trigger and response events would be vio-
lated. Zhu et al. [142] extended the work of [27, 117] to provide formally the semantics
and syntax between the trigger and response events.

In our pattern, we specify an intervention timeline based on the human reaction time
and the alert time, namely the deadline can be seen as a time when a driver may react,
where the alert time has combined the delay and expiry based on the received hu-
man’s response. Nonetheless, the time-sensitive characteristics associated with the au-
tonomous functions of the ALC system continue to be a significant issue. For instance,
the timing aspects related to observing the driving environment and determining the
desired path are not fully investigated.
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9.5 Conclusion

This chapter introduced the intervention timing pattern into the modelling patterns
of SDV systems. Following the systematic steps of the RATP methodology, the new
layer, Layer 4, was presented to model the human driver responses when the SDV sys-
tems may issue a request to intervene. In the line for RATP Layer 4, the ALC layers
were extended to cover how the driver may respond to various intervention requests
of the ALC system. Future work will further refine these investigations, with a par-
ticular focus on expanding the understanding of temporal properties associated with
autonomous functions of the SDV system. A second area of focus could centre around
refining the instantiation of patterns. Specifically, the machine inclusion plug-in [64]
within Event-B could be employed to enhance the transformation of a pattern into a
concrete example, thereby simplifying the application of intervention timing patterns
across various use cases when the SDV may require driver interventions.
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Chapter 10

Conclusions

In this chapter we present a summary of our main contributions, outline the limitations
of our approach, share the lessons learned during the development of our case study
and explore avenues for further research opportunities.

10.1 Contributions

The main contributions of this thesis can be summarised as follows:

• Defining a template for analysing automation in Self-Driving Vehicle (SDV)
systems: Introduced as the Rigorous Analysis Template (RAT) in Chapter 5, this
template provides a framework for the analysis of Self-Driving Vehicle (SDV) sys-
tems. It illustrates how a generic template can be instantiated into a concrete ex-
ample, such as in the Automated Lane Centring (ALC) system. Based on the in-
stantiated template, the Systems Theoretic Process Analysis (STPA) and Event-B
are adopted to identify safety requirements and develop formal models, respec-
tively. The contributions here involve two aspects:

1. Clarify and identify the automation aspects between human drivers and
SDVs during the performance of Dynamic Driving Tasks (DDTs), especially
if a system requires a human driver to play a fallback role to ensure the safety
of a system.

2. Link the automation aspects of DDTs with the internal components of SDV
systems in order to specify the responsibility of either human drivers or SDV
systems during the performance of DDTs.

• Developing an iterative analysis method: Presented as the Rigorous Analysis
Template Process (RATP) in Chapter 6, this method involves five systematic steps
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inspired by STPA and Event-B methodologies. The contributions here also in-
volve two aspects:

1. Novel systematic analysis steps that integrate STPA and Event-B to formally
analyse and model safety concerns in SDV systems.

2. Modelling patterns that use these systematic analysis steps to analyse SDV
system behaviours. These patterns transition from a high-level abstract layer
down to a more detailed, concrete layer. A primary benefit of these patterns
is their ability to facilitate the analysis of system behaviours, enabling a pro-
gressive investigation into the complexity of safety concerns involved in the
SDV systems.

• Defining the Intervention Timing Pattern: This pattern, presented in Chapter 9,
explores how human drivers might respond when an SDV system issues an in-
tervention request. It is included as the final layer inside the modelling patterns.

• Validation and Evaluation: Our methodology has been validated and evaluated
through application to a complex case study involving various aspects of the ALC
system. This includes:

1. High-level interactions between human drivers and the ALC system, pre-
sented in Chapter 5.

2. The integration of the Lane Keeping Assist (LKA) and Driver Monitoring
System (DMS) functions, presented in Chapter 7.

3. The incorporation of the Adaptive Cruise Control (ACC) function within
both the LKA and DMS functions, presented in Chapter 8.

4. A detailed examination of potential driver reactions when the ALC system
may issue an intervention request, presented in Chapter 9.

Specifically, these contributions can be associated with different users:

• For developers of Self-Driving Vehicle (SDV) systems: Modelling patterns offer
a rigorous and traceable analysis that progressively investigates safety require-
ments related to the Self-Driving Vehicle (SDV) at the design level. This enables a
detailed and methodical exploration of safety concerns that might be considered
during the development of SDV systems.

• For safety analysts: The systematic steps of the Rigorous Analysis Template Pro-
cess (RATP) initiate with the instantiation of a template. The process begins with a
gradual consideration of the abstract representation of the system. As the analysis
progresses, additional system components are integrated, facilitating a methodi-
cal identification of associated hazards and requirements.

188



189 CHAPTER 10. CONCLUSIONS

• For users of refinement-based approach: The RATP approach provides a me-
thodical solution to the challenging task of finding an effective refinement strat-
egy. This includes selecting the specific abstractions, requirements and assump-
tions that need to be modelled in each refinement.

10.2 Limitations

In Section 6.4.2 of Chapter 6 we explained certain limitations and constraints of the Rig-
orous Analysis Template Process (RATP) approach and its template prototype. Some of
these constraints are essential to guarantee the appropriate behaviour of Self-Driving
Vehicle (SDV) systems. For instance, the human driver must be ready to assume control
if the SDV system sends an intervention request.

Other limitations are related to various assumptions identified within the modelling
patterns that were generated by the RATP approach. For example, SDV systems might
use sensors to detect the perceived environmental features. In fact, these features must
be precisely defined in advance to fully comprehend how environmental constraints
may affect the performance of Dynamic Driving Tasks (DDTs).

Furthermore, the RATP approach inherits some weaknesses from the Systems Theo-
retic Process Analysis (STPA) and Event-B methodologies. For instance, the systematic
steps of the RATP, along with their modelling patterns, are primarily designed to fo-
cus on dynamic system control and the underlying causes of hazards in the absence
of component failure. Consequently, formal verification can only validate the critical
properties that emerge from the interactions between multiple system components.

10.3 RATP Methodology: Lessons from ALC Case Study

In this section, we discuss the lessons learned and refinements made to the methodol-
ogy while utilising RATP in analysing the Automated Lane Centring (ALC) case study.

10.3.1 Analysing Dynamic Driving Tasks of SDV Systems

In our investigation, the template for SDV was developed on the basis of collabora-
tion between human drivers and autopilot software in order to achieve safe DDTs. To
integrate this template into the ALC case study, two instantiation strategies were pre-
sented.

The first strategy proposes handling the instantiation process independently from the
informal and formal methods, as outlined in Section 5.2.3 of Chapter 5. Nonetheless,
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we cannot systematically assess how the instantiation process and its associated au-
tomation aspects might influence the analysis of the safe DDTs in the ALC study. For
instance, this includes how the perception component may identify the left and right
lane lines on the basis of the incoming images and what assumptions might arise from
this detection process.

The second strategy integrates the instantiation process within a systematic and iter-
ative analytical approach. The ALC case study was dissected across varying layers,
transitioning from a high-level abstraction layer to a more detailed, concrete layer, as
deeply explained in Chapter 7. Adopting the instantiation step within both informal
and formal analysis phases facilitates the step-by-step examination of a system’s be-
haviours.

To summarise, we present two key insights:

1. Depth and refinement: Iterative analysis allows for consistent improvement of
the template. Initially, the process tackles broader concerns or overarching fea-
tures. With each subsequent iteration, more specific details are examined and
refined. By the end, the template comprehensively covers both general and de-
tailed elements of the DDTs.

2. Feedback integration: In the iterative approach, feedback from early analysis
layers is directly integrated into subsequent analysis layers. This ensures that the
template evolves to capture the automation aspects of the DDTs better, leading to
a more accurate representation.

10.3.2 Bridging STPA and Event-B: A Dual Strategy Examination

The combination of STPA and Event-B focuses on how well a rigorous model can meet
the driven STPA requirements. To understand this better, we also presented two strate-
gies.

Our initial approach treated Event-B and the STPA steps as distinct entities. As detailed
in Section 5.2.3 of Chapter 5, this method leaned heavily on separating the two, thereby
operating without a clearly defined refinement strategy. As a result, the creation of a
rigorous model was left primarily to our modelling choices and potentially left room
for inconsistencies.

Realising the limitations of the first strategy, our subsequent approach aimed at a more
cohesive integration. Therefore, we began introducing Event-B into the process at the
conclusion of the systematic analysis steps during every iterative process, a methodol-
ogy illustrated in Figure 6.1 of Chapter 6. By adopting this iterative process, we estab-
lished a systematic pathway, aligning the rigorous model with the specific objectives of
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analysis at each abstraction layer. This ensured that the model and analysis progressed
together, capturing insights at every iteration/refinement.

From this work, we learned two main points:

1. Comprehensive view: Each Event-B machine is not an isolated entity. Instead,
it serves a specific purpose, incrementally incorporated into the overarching be-
haviours of SDV systems. This idea supports the need for a comprehensive view
when approaching system modelling and analysis.

2. Purpose-driven refinement: While the freedom of modelling choices can be strong,
our modelling patterns emphasised the significance of aligning refinement strate-
gies with the analytical objectives of each iterative layer. By doing so, we ensure
that the model remains relevant, precise and dynamically adjusted to the evolv-
ing landscape of the analysis.

10.3.3 Modelling New Behaviours and Features

From the development and application of the RATP approach, several key lessons were
learnt. A primary takeaway was the method adaptability in exploring various automa-
tion aspects, specifically its capacity to integrate behaviours previously challenging to
model.

For instance, understanding driver reactions based on the ALC system intervention
requests was complex without clarity on the internal behaviours of a system. Conse-
quently, the methodology underwent iterative refinements. Chapter 5 investigates the
high-level interactions between human drivers and the ALC system. Various driving
scenarios, concerning intervention requests, were explored in Chapters 7 and 8. Based
on this, Chapter 9 presents models of driver reactions, taking into account earlier ex-
aminations of how the ALC system issues a request to intervene.

In summary, we highlight two primary insights:

1. Flexibility: The RATP demonstrated its adaptability by accommodating behaviours
that were initially difficult to model. This flexibility ensured a comprehensive
view of the system as the analysis progressed.

2. Understanding human responses As the research progressed, the analysis re-
vealed a clearer understanding of human responses. This was particularly appar-
ent in observing how the ALC system initiated intervention requests. The find-
ings underscore the value of adopting a systematic and adaptable methodology,
ensuring that critical components such as human intervention are comprehen-
sively examined.
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10.4 Research Opportunities

A range of future developments could be applied for both iterative enhancements and
further validation of the RATP approach.

Automation Aspects: Improvements to the RATP methodology can incorporate var-
ious automation dynamics, as follows:

1. Temporal dynamics: One can consider the temporal properties integral to au-
tonomous operations in SDV systems. These include timing details of sensing
data reception and environment feature prediction.

2. Automation in absence of human responses: Certain situations might lead to the
SDV system receiving no human response upon issuing an intervention request.
Therefore, more investigation on the mitigation strategies might be required. An
example scenario: If no intervention occurs within a limited timeframe, the SDV
could initiate an emergency stop by locating a safe position.

Domain study field: The autonomy observed in SDV systems finds parallels in other
sectors. The Unmanned Aerial Systems (UASs), also known as drones, present a suit-
able example. Drones are categorised into levels based on human (trained pilot) su-
pervision [112]. This similarity provides potential for expanding the RATP approach
adaptability, as follows:

1. Template development: It would be beneficial to organise and generalise a tem-
plate addressing the unique automation dynamics present in both UASs and SDV
systems.

2. Human interventions in UAS systems: Another compelling area is exploring
human interventions during UAS operations. For instance, a situation where a
trained pilot remotely intervenes upon a drone identifying critical circumstances.

Validation methods: To robustly validate the RATP methodology, engaging with do-
main experts is pivotal. Such engagement can be channelised through:

1. Industrial case studies: Introducing a new case study could provide insights for
modifying or extending the modelling patterns. Collaboration with local experts
offers a valuable perspective. This real-world validation would emphasise the
RATP approach applicability.
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2. Comparative Analysis with Industry Practices: Different automotive companies
adopt various strategies to achieve high-level automation in SDV systems. For
instance, Tesla and OpenPilot (software by comma.ai) develop autopilot software
with pre-recorded/learned maps [31]. In contrast, companies such as General
Motors (GM) and Ford emphasise the use of pre-passive recorded maps over ac-
tive driving environment analysis [59]. Exploring how the RATP approach aligns
with these strategies could pave a significant new path in the field.

3. Scenario-Based Approaches for Autonomous Vehicles: This involves creating
diverse sets of real-world situations to test and validate their performance [114].
These scenarios encompass various road conditions, traffic scenarios, and unex-
pected events to ensure the SDV’s capability to navigate safely and efficiently. By
simulating these scenarios, researchers can assess the SDV’s responses, identify
potential weaknesses, and refine its algorithms for improved autonomy.
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Appendix A

The NHTSA Safety Protocol

In this appendix, the National Highway Traffic Safety Administration (NHTSA) safety
protocol is demonstrated. In general terms, the NHTSA safety protocol comprises 12
comprehensive guidelines for developing an Self-Driving Vehicle (SDV) system. These
guidelines are categorised into two sections: design and testing. Tables A.1 and A.2
present these guidelines; for more detailed information, readers can refer to [8].

195



A
PPEN

D
IX

A
.

T
H

E
N

H
T

SA
SA

FET
Y

PR
O

TO
C

O
L

196

TABLE A.1: Conceptual details of the NHTSA safety framework.

Element Description Group
An efficient safety
approach

A comprehensive analysis approach contains sufficient plans and control processes for devel-
oping an autonomous vehicle. It involves some standards, such as ISO 26262 [67] and ISO
21448 [73], to be adopted in order to demonstrate the vehicle safety at the design level.

General

ODD The ODD (operational design domain) must be carefully considered when designing SDVs. It
involves in which conditions SDVs are intended to operate. These conditions can be catego-
rized into five factors: 1) The design of roadway (e.g. single line, highway, etc.), 2) Geographic
zone (e.g. desert, city, etc.), 3) Speed limit and range, 4) Environmental events (e.g. daytime,
weather, etc.), and 5) Other domain constraints (e.g. operate only in specific road, etc.). More-
over, In the case where the automated vehicle is outside of its ODD, SDVs should establish a
safe transition to the fallback human component. However, if SDVs do not receive indications
that a human fallback component is receptive to fully take control of a vehicle, the autonomous
controller should mitigate risks and reduce speed to ensure the safe parking of a vehicle.

Design

OEDR The OEDR (Object and Event Detection and Response) indicates the detection and responsive
mechanisms of SDV to deal with any driving circumstances that might happen. Therefore,
SDVs require performing OEDR tasks while it satisfies and obeys its ODD. In general, the
ODD specifies the target environment in which the OEDR system performs its functionalities.
For instance, the OEDR would be expected to detect and respond to a variety of obstacles such
as other vehicles, bicyclists, pedestrians, and any ODD conditions that might affect the safe
operation of SVDs.

Design

A reliable fallback
mechanism

The SDV should be able to detect malfunctions in its operations and also be able to notify the
human fallback component of such unmanaged events in order to safely change the control of
a vehicle to be managed by the human driver.

Design

Traffic Laws SDVs are also supposed to obey public or government standards. These governmental stan-
dards involve the expected performance of an SDV when deployed on public roads.

Design
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TABLE A.2: Conceptual details of the NHTSA safety framework (continued).

Element Description Group
HMI (Interfaces) It demonstrates a well-designed interface for showing the driving information, such as the

current motion plan, which obstacles might affect driving behaviours, and so on. In general,
SDVs should ensure a safe communication channel among the operator (passengers, human
driver) and the autonomous controller.

Design

Cybersecurity
threats

An SDV is also responsible for managing any malicious attacks. These attacks might be an
anonymous person who remotely controls the autonomous vehicle through unauthorized ac-
cess permission through the internal input and output channels, such as Bluetooth, and wire-
less maintenance ports , and more [103].

Design

Testing NHTSA recommends an extensive testing approach before deploying any release of SDVs.,This
approach involves three types of testing: 1) simulation, 2) indoor road, and 3) public road
testing. In addition, the process of testing a system might be evaluated and performed by
either the development team or an independent third party.

Testing and
crash miti-
gation

Avoidance crash
method

NHTSA also encourages the design of crash avoidance methods that minimize the extent of
injury during a crash event. Although crashes remain a reality of public road driving, SDVs can
apply a variety of techniques, such as the ABS (anti-lock braking system), in order to minimize
crash damages.

Testing and
crash miti-
gation

A safe post-crash
method

SDVs should rapidly return to a safe state after being engaged in an accident. Therefore,
NHTSA encourages automotive companies to identify the strategies that would be applied
when a crash happens.

Testing and
crash miti-
gation

Data recording NHTSA recommends recording and reviewing the behaviours of the SDV during its mission.
This kind of behavioural data can help to identify potential software bugs and errors. More-
over, these failures will be considered in the next major release.

Testing and
crash miti-
gation

Training NHTSA recommends having a well-defined consumer training session. It could involve the
ways that a human fallback driver can engage within SDVs, especially if he/she may need
to take over control of the vehicle. In addition, it also contains a training session on effective
communications between the vehicle’s consumers and the internal interface system in order to
understand the capability and limits of the SDV and its HMI.

Testing and
crash miti-
gation
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Appendix B

Automated Lane Centring in
OpenPilot

This appendix explains our exploration of the Automated Lane Centring (ALC) system
developed by OpenPilot, conducted within the Carla simulator. Subsection B.1 pro-
vides a Python script used to monitor and record the behaviours of the ALC system
in the simulator. Subsection B.2 summarises the analysis of the recorded behaviours,
aiming to encapsulate and provide a clear summary of the main goals the ALC system
seeks to accomplish. The complete Python scripts are accessible for download at this
provided link1.

B.1 Recording Behaviours using Python Scripts

OpenPilot, a semi-automated driving system developed by Comma.ai [10], is used in
the Carla simulator [43] to simulate self-driving and test different algorithms in a safe
environment.

To connect OpenPilot with Carla, a bridge plugin [10] was created. This bridge, a
Python script, acts as an interpreter, allowing OpenPilot and Carla to exchange infor-
mation. This makes it possible for researchers and developers to safely test self-driving
algorithms in a realistic simulation environment.

The bridge in OpenPilot gathers data from Carla’s sensors, like cameras, LiDAR, GPS,
and vehicle motion details, similar to what real Self-Driving Vehicle (SDV) would col-
lect. Once the data is collected, the bridge converts it into a format that OpenPilot can
use. OpenPilot then uses this data to make decisions about how the SDV should steer.

1The Python scripts used for analysing and recording the behaviours of the ALC system in the Carla
simulator are available in a GitHub repository at https://github.com/fhdotb/openPilotCarla.git.
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Therefore, we used OpenPilot’s bridge to study how the ALC system behaves in differ-
ent conditions like ’clear’ and ’rainy’ weather and at different speeds, like 25, 30, and
40 miles per hour. To do this, we added some Python functions to OpenPilot’s bridge,
primarily as follows:

• policing function: This function extracts important information from OpenPilot’s
ALC software. For instance, it calculates a detection score, which gives us how
likely the system is to correctly identify the desired path by analysing the lane
lines in incoming images.

• spawn leading vehicle: This function places a new vehicle in front of OpenPilot
in the Carla simulation. This allows us to study how OpenPilot responds when
there is a vehicle ahead.

• humanDriverStateOutputs: This function monitors a human driver’s facial ex-
pressions and eye movements to assess their level of alertness when OpenPilot
is in operation. If the driver’s behaviour indicates they may not be paying ade-
quate attention, OpenPilot’s software will alert a driver and then automatically
deactivate.

The corresponding code for these functions is provided below.

def policing_function(currentspeed,currentVelocity,current_vehicle_angle,

old_vehicle_angle,steer_now,steer_old,is_openpilot_engaged,current_location,

max_steer_angle,rk,count_f,risk_priority):

leftProb, rightProb , desiredPathPro , desire = lateralPlanOutputs()

cruise_control_based, hasLead = longtiudinalPlan()

valid, yawRate, steerRatio, sensorValid, angleOffsetAverageDeg, angleOffsetDeg =

liveParametersOutputs()

awarenessStatus , awarenessActive , awarenessPassive = humanDriverStateOutputs (0)

alertStatus,alertText1,alertText2,alertSound = carStateParameters ()

if desiredPathPro < 0.6 and desiredPathPro > 0.3:

risk_priority = risk_priority +1

text_error_message = ’detection probability less than 60’

safety_procedure = ’mitigation strategy’

elif desiredPathPro <= 0.3:

risk_priority = risk_priority +2

text_error_message = ’detection probability less than 30’

safety_procedure = ’mitigation strategy’

else:

risk_priority =0

text_error_message = ’detection probability more than 60’

safety_procedure = ’Pass’

case = {’time’: getTime(),

’is_openpilot_engaged’: is_openpilot_engaged,

’target position’: current_location,
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’currentspeed’:currentspeed,

’currentVelocity’: currentVelocity,

’current_vehicle_angle’: round(current_vehicle_angle, 3),

’old_vehicle_angle’:round(old_vehicle_angle, 3) ,

’max_steer_vehicle_angle’: round(max_steer_angle, 3),

’steer_rate_limit’: 0.5,

’current_steer’:round(steer_now, 3),

’old_steer’: round(steer_old, 3),

’leftLaneProb’: round(leftProb, 3),

’rightLaneProb’: round(rightProb, 3),

’desiredPathProb’: round(desiredPathPro, 3),

’HasLead’: hasLead,

’specifyCruise’: cruise_control_based,

’awarenessStatus’: awarenessStatus,

’alertStatus’: alertStatus,

’alertText1’: alertText1,

’alertText2’: alertText2,

’alertSound’: alertSound,

’detectionProbability’: text_error_message,

’safety_procedure’:safety_procedure}

return case, risk_priority

def lateralPlanOutputs ():

leftProb = 0.0

rightProb = 0.0

desiredPathPoints = []

desiredPathPro = 0.0

curvatures = []

curvatureRates = []

leftProb = sm[’lateralPlan’].lProb

rightProb = sm[’lateralPlan’].rProb

desiredPathPoints = sm[’lateralPlan’].dPathPoints

desiredPathPro = sm[’lateralPlan’].dProb

desire = sm[’lateralPlan’].desire

curvatures = sm[’lateralPlan’].curvatures

curvatureRates = sm[’lateralPlan’].curvatureRates

return leftProb, rightProb , desiredPathPro, desire

def longtiudinalPlan():

sm.update(4)

hasLead = sm[’longitudinalPlan’].hasLead

speeds = sm[’longitudinalPlan’].speeds

accels = sm[’longitudinalPlan’].accels

jerks = sm[’longitudinalPlan’].jerks

vCruiseDEPRECATED = sm [’longitudinalPlan’].vCruiseDEPRECATED

cruise_control_based = sm [’longitudinalPlan’].longitudinalPlanSource

return cruise_control_based, hasLead

def liveParametersOutputs():

sm.update(5)

valid = sm[’liveParameters’].valid

201



APPENDIX B. AUTOMATED LANE CENTRING IN OPENPILOT 202

yawRate = sm[’liveParameters’].yawRate

steerRatio = sm[’liveParameters’].steerRatio

sensorValid = sm[’liveParameters’].sensorValid

angleOffsetAverageDeg = sm[’liveParameters’].angleOffsetAverageDeg

angleOffsetDeg = sm[’liveParameters’].angleOffsetDeg

return valid, yawRate, steerRatio, sensorValid, angleOffsetAverageDeg, angleOffsetDeg

def humanDriverStateOutputs (humanFallbackMode):

if humanFallbackMode ==1:

sm.update(2)

faceProb = 0.0

leftEyeProb = 0.0

rightEyeProb = 0.0

leftBlinkProb = 0.0

rightBlinkProb = 0.0

distraxtedProb = 0.0

distractedEyes = 0.0

eyesOnRoad = 0.0

phoneUse = 0.0

faceProb = sm[’driverState’].faceProb

leftEyeProb = sm[’driverState’].leftEyeProb

rightEyeProb = sm[’driverState’].rightEyeProb

leftBlinkProb = sm[’driverState’].leftBlinkProb

rightBlinkProb = sm[’driverState’].rightBlinkProb

distraxtedProb = sm[’driverState’].distraxtedProb

distractedEyes = sm[’driverState’].distractedEyes

eyesOnRoad = sm[’driverState’].eyesOnRoad

phoneUse = sm[’driverState’].phoneUse

awarenessStatus = sm[’driverMonitoringState’].awarenessStatus

awarenessActive = sm[’driverMonitoringState’].awarenessActive

awarenessPassive = sm[’driverMonitoringState’].awarenessPassive

return awarenessStatus , awarenessActive , awarenessPassive

def carStateParameters ():

vTargetLead = sm[’controlsState’].vTargetLead

vCruise = sm[’controlsState’].vCruise

aTarget = sm[’controlsState’].aTarget

#UI tests

engageable = sm[’controlsState’].engageable

alertStatus = sm[’controlsState’].alertStatus

alertText1 = sm[’controlsState’].alertText1

alertText2 = sm[’controlsState’].alertText2

alertSound = sm[’controlsState’].alertSound

return alertStatus,alertText1,alertText2,alertSound

def safeData(dict_data, header):

print(’myList len:’,len(dict_data))

csv_file = "c1.csv"

try:

with open(csv_file, ’w’) as csvfile:

writer = csv.DictWriter(csvfile, fieldnames=header)

writer.writeheader()
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for data in dict_data:

writer.writerow(data)

print(’DataSaved,OK’)

except IOError:

print("error = data cannot saved")

def spawn_leading_vehicle(client, world, blueprint_library, vehicle):

vehicle_location = vehicle.get_transform().location

vehicle_waypoint = world.get_map().get_waypoint(vehicle_location)

new_vehicle_waypoint = vehicle_waypoint.next(20)[0]

new_vehicle_location = new_vehicle_waypoint.transform.location + carla.Location(0, 0 , 2

)

new_vehicle_rotation = new_vehicle_waypoint.transform.rotation

new_vehicle = blueprint_library.filter(’vehicle.tesla.*’)[1]

batch = [

carla.command.SpawnActor(new_vehicle, carla.Transform(new_vehicle_location,

new_vehicle_rotation)).then(

carla.command.SetAutopilot(carla.command.FutureActor, True))

]

lead_vehicle_id = client.apply_batch_sync(batch)[0].actor_id

return lead_vehicle_id

B.2 Assessing and Understanding Recorded Behaviours

The objective of this section is to analyse the behavioural responses collected from
OpenPilot in the Carla simulator. These responses illustrate how the ALC system of
OpenPilot achieves its primary functionality, specifically, maintaining a vehicle in the
centre of its target lane.

The ALC system was tested with various environmental variables, such as speed and
weather. As illustrated in Figure B.1, different weather scenarios are represented. The
primary focus is to assess the ability of the ALC system in OpenPilot to detect lane
lines on the target lane accurately. Gaining a deeper understanding of these aspects can
enhance the analysis outcomes of the ALC system. This, in turn, can study its safety
and reliability, making it a more reliable component of autonomous vehicle technology.

The capability of ALC to identify left and right lane lines can vary depending on envi-
ronmental conditions. Factors like weather, lighting, and road surface affect how well
the ALC system detects these lines. OpenPilot explains this detection process using
probabilities, with scores ranging from 0 to 100. These scores are crucial in calculating
the desired path for keeping a vehicle in its designated lane. The calculation consid-
ers the likelihood of detecting the left and right lane lines in images from the camera
system. Therefore, OpenPilot relies on these probabilities to determine the confidence
level of the ALC system in identifying lane lines for lane-keeping.
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FIGURE B.1: Testing ALC system in OpenPilot under diverse weather settings

For instance, Figure B.2 illustrates the relationship between the detection probabilities
of the left and right lane lines and the resulting desired path. These detections are
based on various images obtained from the Carla simulator. By analysing changes in
these detection probabilities, it becomes evident that the ALC system might generate
an unsafe desired path when it fails to detect lane lines with high confidence scores.

FIGURE B.2: Desired path probability over the time period, illustrating changes in lane
detection scores

The ALC system primarily aims to maintain the vehicle’s position within the target
lane by recommending adjustments to the steering angle. These suggested changes
are then applied to the vehicle’s physical steering wheel. Furthermore, the steering
angle adjustments are constrained within specific limits, specifically -70 and 70 degrees.
These limits correspond to the vehicle’s steering capabilities, ensuring that the steering
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adjustments proposed by the ALC system can be executed by the vehicle’s steering
mechanism.

For a visual representation of this concept, refer to Figure B.3, which demonstrates
how the steering angle evolves as the vehicle aligns itself within the target lane. In con-
junction with the detection probabilities introduced in Figure B.2, this figure visually
illustrates the ALC system’s operation in lane detection and steering control, offering a
clear understanding of its functionality.

FIGURE B.3: Changes in the steering angle over time, demonstrating adjustments in
the vehicle’s physical wheels

Alongside lane detection and steering adjustments, OpenPilot also prioritises monitor-
ing the human driver’s attentiveness during the operation of the ALC system. The
main objective of monitoring human driver behaviours is to ensure that the driver can
play a supervisory role and intervene if the ALC system encounters hazardous driving
events. Therefore, OpenPilot incorporates a Driver Monitoring System (DMS), which
keeps track of various indicators of driver engagement. For instance, the Driver Mon-
itoring System (DMS) verifies whether the human driver inside the vehicle maintains
their hands on the steering wheel, and it also monitors their eyes and head to assess
their level of awareness.

OpenPilot employs a system that prioritises safety by actively requesting driver inter-
vention under certain circumstances. These intervention requests generally fall into
two categories:

1. The system may send a Take Control request if a turn exceeds the steering limit,
which can occur in particularly sharp turns or abrupt lane changes. For instance,
Figure B.4 illustrates the monitoring process of applying steering angle adjust-
ments, with a red line indicating the intervention request.
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2. OpenPilot’s Driver Monitoring System (DMS) may not be able to verify the driver’s
awareness level, possibly due to the driver not keeping their hands on the steer-
ing wheel or showing signs of fatigue or inattention

FIGURE B.4: OpenPilot’s ’Take Control’ request during excessive steering adjustment

When OpenPilot sends an intervention request, it allows a window of four seconds
for the driver to respond and regain control of the vehicle. If no response is detected
within a further two seconds, reaching six seconds since the initial request, OpenPilot
activates an auditory notification to alert the driver. If the driver still does not respond,
the system gradually reduces the vehicle’s speed until it comes to a complete stop,
ensuring the safety of the passengers and other road users.

B.3 Driver Monitoring System in Autonomous Vehicles

The DMS is designed to monitor the driver carefully and issue alerts upon detecting
signs of drowsiness, distraction, or disengagement. This enhances safety and security
during SDV operation. It is important to note that the DMS is not exclusive to fully
autonomous vehicles; it also serves semi-automated systems where the human driver
remains an essential part of the control loop.

One of the primary features of the DMS is active monitoring. This requires the driver
to keep their hands on the steering wheel, even in a semi-automated system. It acts as
a safety check, ensuring that the driver is prepared to resume control if and when haz-
ardous driving events occur. This guarantees that a driver can intervene appropriately.

Besides the active monitoring feature, the DMS integrates sophisticated monitoring ca-
pabilities using an in-car camera. This feature employs advanced algorithms for facial
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recognition and eye tracking to determine the driver’s level of attention and readiness
to take over the SDV’s control. By detecting and tracking the position of the driver’s
eyes and head, the DMS confirms that the driver remains alert and focused on the road
ahead. An example of a sensitive monitoring feature is provided in the subsection be-
low.

B.3.1 Sensitive Monitoring Feature

The mechanism for determining sensitive monitoring features relies mainly on on-
line facial recognition algorithms. For instance, the online facial recognition algorithm
called Dlib 2 [120] can be used to measure the awareness level of a human driver by ex-
tracting the face variables of the driver during the operation of the ALC. The driver’s
eyes are the essential features for estimating the driver’s awareness level. The eyes
may blink during the extracting process, which must be considered when counting the
number of images (frames) in which open eyes could not be detected. Therefore, the
Eye Aspect Ratio (EAR) can be used to measure either lost or blinking frames in the
sequence of images. The EAR is an example of a sensitive feature that could be used
to measure the awareness level of a human driver. The summary of this algorithm is
shown in Figure B.5, where the image processing unit, the state machine diagram of
the awareness system and algorithm design are illustrated.

Specifically, the DMS in OpenPilot is designed to monitor the driver’s level of aware-
ness by using a variety of indicators, most commonly through the use of cameras that
focus on the driver’s face and upper body. In addition, the general operation of the
DMS in OpenPilot can be described as follows:

1. Facial Recognition: OpenPilot uses facial recognition to ensure that the driver is
facing forward and has their eyes open. If the driver looks away from the road for
an extended period or closes their eyes, the system will typically issue a warning.

2. Head Position: The angle and orientation of the driver’s head may also be moni-
tored to identify where the driver is looking

3. Audible and Visual Alerts: If the DMS detects that the driver is not paying suffi-
cient attention, it can issue audible and/or visual warnings to alert the driver.

4. Escalation: In extreme cases where the driver does not respond to alerts, the
system may be designed to safely bring the car to a stop.

5. Integration: The DMS does not operate in isolation. It is typically integrated with
other systems in the vehicle to create a comprehensive safety view. For instance, if

2Dlib [77] is a C++ toolkit that includes machine learning algorithms and tools for creating complex
software, and its functionalities can be leveraged to detect faces and landmarks on them, which can then
be used to train models for facial expression recognition.
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FIGURE B.5: Summary of the detection process of a sensitive monitoring feature based
on the Dlib algorithm

the adaptive cruise control is following another car and the DMS detects that the
driver is not paying attention, it can take more conservative actions like reducing
the current speed of a vehicle.
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Appendix C

Modelling High-Level System
Aspects in ALC System

In this appendix, we present the complete Event-B version of the high-level system
component interactions between the human drivers and the Automated Lane Centring
(ALC) system, as outlined in Chapter 5. The complete Event-B models 1 are presented
in the following sections.

C.1 Context c0

context c0
sets
STAGE
POSITION
IMAGE
constants
Perception
Decision
Control
Intervention
Environment
Lane
init position
STEERING ANGLE

camera
path recognition
compute target position
compute target steering angle

1The model is available as a Rodin archive at https://tinyurl.com/SESS2022.
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move
axioms
@def−STAGE: partition(STAGE, {Perception}, {Decision}, {Control}, {Intervention}, {

Environment})
@def−STEERING ANGLE: STEERING ANGLE=−100 .. 100
@typeof−Lane: Lane⊆ POSITION
@typeof−init position: init position ∈ Lane

@typeof−camera: camera ∈ POSITION→ IMAGE
@typeof−path recognition: path recognition ∈ IMAGE→ P(POSITION)
@typeof−compute target position: compute target position ∈ P(POSITION)→

POSITION
@typeof−compute target steering angle: compute target steering angle ∈ P(POSITION)

→ STEERING ANGLE
@typeof−move:move ∈ POSITION× STEERING ANGLE→ POSITION

@consistency:
∀ position· position ∈ POSITION⇒
move(position 7→ compute target steering angle(path recognition(camera(position)))

) ∈ Lane
end

C.2 Machine m0

machinem0
sees c0
variables
stage // stage of ACL system

position // The (physical) position of the vehicle
image // The image to be used as the input to the perception stage
steering angle // The (actual) steering angle of the vehicle

desire path // output of the perception stage
confident score // output of the perception stage

target position // output of the planning stage
target steering angle // output of the planning stage

invariants
@typeof−stage: stage ∈ STAGE

@typeof−position: position ∈ Lane // Safety: the position must be in Lane
@typeof−image: image= camera(position) // Consistency: The camera always show the

image of the current position
@typeof−steering angle: steering angle ∈ STEERING ANGLE
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@typeof−desire path: desire path⊆ POSITION
@typeof−perceived confident: confident score ∈ 0..100

@typeof−target position: target position ∈ POSITION
@typeof−target steering angle: target steering angle ∈ STEERING ANGLE

// Deriving from the consistency
@Environment−consistency: stage= Environment⇒move(position 7→ steering angle)

∈ Lane
events
event INITIALISATION
begin
@init−stage: stage := Perception
@init−position: position := init position
@init−image: image := camera(init position)
@init−steering angle: steering angle :∈ STEERING ANGLE
@init−desire path: desire path :=∅ // No desire path
@init−confident score: confident score := 0 // No confident score
@init−target position: target position :∈ POSITION // No initial target position (hence

random)
@init−target steering angle: target steering angle :∈ STEERING ANGLE // No initial

target steering angle (hence random)
end

event perception
when
@grd1: stage= Perception
then
@act1: stage := Decision
@act2: desire path := path recognition(image)
@act3: confident score :∈ 0 .. 100
end

event decision
when
@grd1: stage= Decision
then
@act1: stage := Control
@act2: target position := compute target position(desire path)
@act3: target steering angle := compute target steering angle(desire path)
end

event control
when
@grd1: stage= Control
then
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@act1: stage := Intervention
@act2: steering angle := target steering angle
end

event accept
when
@grd1: stage= Intervention
@grd2:move(position 7→ steering angle) ∈ Lane
then
@act1: stage := Environment
end

event correct
any angle
when
@grd1: stage= Intervention
@grd2: angle ∈ STEERING ANGLE
@grd3:move(position 7→ angle) ∈ Lane
then
@act1: stage := Environment
@act2: steering angle := angle
end

event environment
when
@grd1: stage= Environment
then
@act1: stage := Perception
@act3: position :=move(position 7→ steering angle)
@act2: image := camera(move(position 7→ steering angle))
end

end

C.3 Machine m1

machinem1
refinesm0
sees c0
variables
stage // stage of ACL system

position // The (physical) position of the vehicle
image // The image to be used as the input to the perception stage
steering angle // The (actual) steering angle of the vehicle
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desire path // output of the perception stage
confident score // output of the perception stage

target position // output of the planning stage
target steering angle // output of the planning stage

manual drive // Manual drive
hands on steering wheel // Hands on steering signal
auditory notification
warning message
sensitive monitoring features detected
invariants
@typeof−hands on steering wheel: hands on steering wheel ∈ BOOL
@typeof−manual drive:manual drive ∈ BOOL
@typeof−auditory notification: auditory notification= TRUE⇒manual drive= TRUE
@typeof−warning message:warning message ∈ BOOL
@typeof−sensitive monitoring features detected:

sensitive monitoring features detected ∈ BOOL
@hands on steering wheel: hands on steering wheel= FALSE⇒ auditory notification=

TRUE
@sensitive monitoring features detected: sensitive monitoring features detected=

FALSE⇒ auditory notification= TRUE
@safety−Correction: stage= Intervention ∧warning message= FALSE⇒move(position

7→ steering angle) ∈ Lane

events
event INITIALISATION extends INITIALISATION
begin
@init−manual drive:manual drive := FALSE
@init−hands on steering wheel: hands on steering wheel := TRUE
@init−warning message:warning message := FALSE
@init−auditory notification: auditory notification := FALSE
@init−sensitive monitoring features detected: sensitive monitoring features detected

:= TRUE
end

event perception extends perception
end

event decision extends decision
end

event control extends control
begin
@act3:warning message := bool(move(position 7→ target steering angle) /∈ Lane)
end
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event accept refines accept
when
@grd1: stage= Intervention
@grd2:warning message= FALSE
@grd3:manual drive= FALSE
then
@act1: stage := Environment
end

event correct extends correct
when
@grd4:manual drive= TRUE ∨warning message= TRUE
end

event environment extends environment
end

event hands on wheel
when
@grd1: hands on steering wheel= FALSE
then
@act1: hands on steering wheel := TRUE
@act2: auditory notification := bool(sensitive monitoring features detected= FALSE)
end

event hands off wheel
when
@grd1: hands on steering wheel= TRUE
then
@act1: hands on steering wheel := FALSE
@act2: auditory notification := TRUE
@act3:manual drive := TRUE
end

event detect sensitive monitoring features
when
@grd1: sensitive monitoring features detected= FALSE
then
@act1: sensitive monitoring features detected := TRUE
@act2: auditory notification := bool(hands on steering wheel= FALSE)
end

event lost sensitive monitoring features
when
@grd1: sensitive monitoring features detected= TRUE
then
@act1: sensitive monitoring features detected := FALSE
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@act2: auditory notification := TRUE
@act3:manual drive := TRUE
end

event autonomos drive
when
@grd1:manual drive= TRUE
@grd2: hands on steering wheel= TRUE
@grd3: sensitive monitoring features detected= TRUE
then
@act1: auditory notification := FALSE
@act2:manual drive := FALSE
end

end
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Appendix D

Modelling Patterns for SDV
Systems

In this appendix, we present the complete Event-B version of the modelling patterns
for the Self-Driving Vehicle (SDV) system, as outlined in Chapter 6. The majority of
the proof obligations in these patterns were verified either automatically using Rodin
provers or with the assistance of additional external prover plug-ins, such as SMT
solvers (as illustrated in Figure D.1).

FIGURE D.1: Modelling Patterns Prover Statistics.

The complete Event-B models 1 are presented in the following sections.

1The Event-B models for developing patterns of SDV systems are available as a Rodin archive at https:
//drive.google.com/drive/folders/1D7rVAJKCEh_-rVr9hKZZYdFDCxAP8r3F.
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D.1 Abstract Level

D.1.1 Context c0

context c0
sets
Semi FUNCTION /* function might be : On, OFF */
constants
POSITION /* set of positions that an SDV (physical vehicle) can move to them */
ODD /* subset of position */
init position /* initial position of SDV */
ON /* Semi−automation system is working*/
OFF /* Semi−automation system is deactivated*/
axioms
/* Type of POSITION */
@typeof−POSITION: POSITION= N × Z

/* ODD involves a set of positions */
@typeof−ODD:ODD⊆ POSITION
/* the initial position of an SDV is located in the ODD */
@typeof−init position: init position ∈ODD
/* System status */
@def−system−mode: partition(Semi FUNCTION, {ON}, {OFF})
end

D.1.2 Machine m0

machinem0 sees c0
/*
* Abstract machine (M0) aims to capture how the constraints

* imposed by the driving environment can affect the movement of an SDV.

*/
variables
/*×××*
* M0 −−−−− variables
××××*/
/* (CA1) The (physical) position of the vehicle */
SDV POSITION env
/* System status is ON or OFF */
Sys status

invariants
/* SC0: the SDV must always be located inside the limited ODD */
@safety: SDV POSITION env ∈ODD
@ALC mode: Sys status ∈ Semi FUNCTION

events
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event INITIALISATION
begin
/* (F1) shows the current position of an SDV */
@init−position: SDV POSITION env := init position
/*initialise ALC status is ON*/
@init−mode: Sys status := OFF
end

/*
* activation

*/
event system on
where
@grd1: Sys status= OFF
then
@act1: Sys status := ON
end

/*
* deactivation

*/
event system off
where
@grd1: Sys status= ON
then
@act1: Sys status := OFF
@reset−position: SDV POSITION env := init position
end

/*
* This event changes a current position of an SDV into a new position inside the ODD.

*/
eventmove
any
new position
where
/* SR0: the SDV must travel into a new position inside the ODD*/
@grd1: new position ∈ODD
then
/* moved into a new position inside the ODD */
@act1: SDV POSITION env := new position
end

end
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D.2 First Refinement

D.2.1 Context c1

context c1 extends c0
constants
/* lateral range */
LATERAL
max lat
min lat

/* longitudinal range */
LONGITUDINAL
max lon
min lon
/*
* A function assumes that an SDV actuate lateral\longitudinal vehicle variables

* to reach a new position (actuation task).

*/
move

axioms
@typeof−max lat:max lat ∈ Z

@typeof−min lat:min lat ∈ Z

@min max steering:min lat<max lat

/* these just an example of lateral range */
@def−lateral: LATERAL=min lat ..max lat

@typeof−max lon:max lon ∈ Z

@typeof−min lon:min lon ∈ Z

@min max lon:min lon<max lon

/* these just an example of longitudinal range */
@def−longitudinal: LONGITUDINAL=min lon ..max lon

/*
* This function assumes that SDV actuates a longitudinal variable, such as speed,

* and a lateral variable, such as steering angle , in order to reach a specific

* position where SDV moves into multiple positions inside the limited ODD.

*/
@def−MOVE:move=
(

λlong 7→ lat 7→ speed 7→ angle · long 7→ lat ∈
POSITION ∧
speed ∈ LONGITUDINAL ∧
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angle ∈ LATERAL |
{i · i ∈ 1 .. 3 | long+ i 7→ lat+ i× speed× angle}

)

theorem@typeof−move:move ∈ POSITION× LONGITUDINAL× LATERAL→ P1(

POSITION)

end

D.2.2 Machine m1

machinem1 refinesm0
sees c1
/*
* This machine (M1) investigate how the lateral and longtiudinal variables of an SDV is

modified

* to reach a new position inside the limited ODD.

*/
variables

/*×××*
* M0 −−−−− variables
××××*/
/* (CA1) The (physical) position of the vehicle */
SDV POSITION env
/* System status is ON or OFF */
Sys status

/*×××*
* M1 −−−−− variables
××××/
/* (CA2) The (actual) lateral variable of the SDV */
LATERAL VAR
/* (CA3) The (actual) longitudinal variable of the SDV */
LONGITUDINAL VAR

invariants

/*lateral variable must be in a defined range of lateral variable in SDV (abstract constant)*/
@typeof−lateral: LATERAL VAR ∈ LATERAL
/*longitudinal variable must be in a defined range of longitudinal variable in SDV (abstract

constant)*/
@typeof−longitudinal: LONGITUDINAL VAR ∈ LONGITUDINAL

events
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event INITIALISATION extends INITIALISATION
begin
/*(F2) The current lateral variable of an SDV that is randomly initialised*/
@init−steering angle: LATERAL VAR :∈ LATERAL
/*(F3) The current longitudinal variable of an SDV that is randomly initialised */
@init−speed: LONGITUDINAL VAR :∈ LONGITUDINAL
end

/*
* This event identifies lateral/longitudinal variables autonomously

*/
event auto actuating
any
auto lat
auto lon
where
/* System status is ON*/
@grd1: Sys status= ON
/* lateral definition */
@grd2: auto lat ∈ LATERAL
/* longitudinal definition */
@grd3: auto lon ∈ LONGITUDINAL
/* (SR1): system’s modification leads to ODD */
@grd4:move(SDV POSITION env 7→ auto lon 7→ auto lat )⊆ ODD
then
@act1: LATERAL VAR := auto lat
@act2: LONGITUDINAL VAR := auto lon
end

/*
* This event identifies lateral/longitudinal variables manually

*/
eventmanual actuating
any
manual lat
manual lon
where
@grd1:manual lat ∈ LATERAL
@grd2:manual lon ∈ LONGITUDINAL
/*(SR2): driver’s modification leads to lane */
@grd3:move(SDV POSITION env 7→manual lon 7→manual lat)⊆ ODD
then
/* new steering depends on how a driver specified steering angle */
@act1: LATERAL VAR :=manual lat
@act2: LONGITUDINAL VAR :=manual lon
end
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/*
* A extended event moves an SDV in its ODD based on the (new) lateral and longitudinal

variables

* of a system or human driver, where a movement must lead into the ODD

*/
eventmove extendsmove
where
/* new (target) position must be within set of position inside the ODD*/
@grd2: new position ∈move(SDV POSITION env 7→ LONGITUDINAL VAR 7→ LATERAL VAR

)

end

event system on extends system on
end

event system off extends system off
end

end

D.3 Second Refinement

D.3.1 Context c2

context c2 extends c1
sets

/* set of images obtaining from the driving environment (target lane) */
SENSING DATA
/* set of Perceived environmental features */
PERCEIVED FEATURES
/* partition shows the different stages of semi−automation system, such as Perception,

planning and etc*/
Auto STAGE

constants

/* An abstract constant uses to show how system gets sensing data from the driving
environment

* (sensor of perception component)

*/
sensor
/* An abstract constant shows the expected results of a received sensing data

* (detection process of perception component )

*/
Identify features
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/*
* An abstract constant shows how system accomplishes the OEDR task based on the sensing

images

* (recognition process of perception component )

*/
OEDR task
/*
* An abstract constant shows a accuracy of identifying Perceived features in a received

sensing data

* For instance, score from 0 to 100 indicates the accuracy of the identification process in the
incoming sensing data.

* 0 is very low accuracy, while 100 is a high accuracy

*/
Accuracy
/*
* An abstract constant shows how system computes planning task, e.g.,

* 1) system selects one (target) position from a set of positions obtained from the OEDR
function

*/
specify target position
/*
* An abstract constant shows how system computes planning task , e.g.,

* 2) system identifies a change of steering angle based on the target position and a current
steering angle.

*/
compute lateral
/*
* An abstract constant shows how system computes planning task , e.g.,

* 3) system identifies a change of LONGITUDINAL based on the target position and a
current LONGITUDINAL.

*/
compute longitudinal

/*
* These constants used to distinguish between different possible stages of semi−automation

system

*/
/* perception’s stage*/
Perception
/* decision’s stage*/
Decision
/* control’s stage */
Control
/* intervention’s stage, indicates that system could ask driver to take a control of SDV*/
Intervention
/* Autonomous driving’s stage, indicates that system actuate lateral and longitudinal

variables autonomously to reach a (identified) target position */
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AutonomousDriving

axioms

/* possible stages of semi−automation system */
@def−STAGE: partition(Auto STAGE, {Perception}, {Decision}, {Control},{

AutonomousDriving}, {Intervention})
/* range of Confidence score from 0 to 100 */
@score: Accuracy= 0 .. 100

/*
* Perception task

* (three functions)

*/
// 1) SENSING DATA obtains from sensor based on SDV’s position
@typeof−sensor: sensor ∈ POSITION→ SENSING DATA
/* 2) function shows the expected results of a received SENSING DATA. */
@typeof−identify−features: Identify features ∈ (SENSING DATA× PERCEIVED FEATURES)

→ Accuracy
/* 3) function recognises the path (set of position ) based on the left/right lane lined, image

and confidence score */
@typeof−path recognition:OEDR task ∈ (SENSING DATA× PERCEIVED FEATURES×

Accuracy) → P(POSITION)
/*
* End of Perception task

*/

/*
* planning task

* (three functions)

*/
/* 1) function to specify a target position based on a set of positions obtained from OEDR

recognition */
@typeof−compute target position: specify target position ∈ P(POSITION)→ POSITION
/* 2) function to compute the lateral variable to reach a specific position */
@typeof−compute lateral: compute lateral ∈ POSITION× LATERAL→ LATERAL
/* 3) function to compute the longitudinal variable to reach a specific position */
@typeof−compute LONGITUDINAL: compute longitudinal ∈ POSITION× LONGITUDINAL

→ LONGITUDINAL
/*
* End of planning task

*/

/*
* This is the aim of system, which means that there is always one lateral and longitudinal

variable
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* can be used to move an SDV into a position inside the limited ODD

*/
// @aim: ∀ SDV position· SDV position ∈ POSITION ⇒
//(∃ SDV lateral, SDV longitudinal · SDV lateral ∈ LATERAL ∧ SDV longitudinal ∈

LONGITUDINAL ⇒
// move (SDV position 7→ SDV longitudinal 7→ SDV lateral) ⊆ ODD
//)

end

D.3.2 Machine m2

machinem2 refinesm1
sees c2
/*
* This machine (M2) studies how the ALC system accomplishes its autonomous operations ,

such as perception, decision−making and control,

* to identify the steering angle that autonomously moves an SDV into a position inside the
target lane

*/

variables
/*×××*
* M0 −−−−− variables
××××*/
/* (CA1) The (physical) position of the vehicle */
SDV POSITION env
/* System status is ON or OFF */
Sys status

/*×××*
* M1 −−−−− variables
××××/
/* (CA2) The (actual) lateral variable of the SDV */
LATERAL VAR
/* (CA3) The (actual) longitudinal variable of the SDV */
LONGITUDINAL VAR

/*×××
* M2 − variables
××××/
/* (F3) The image would obtain from sensor, which can be used as the input to the perception

stage*/
sensing data env

/*(CA4) indicates some features in a received image */
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generic features

/*(CA4) set of positions seen as the path that navigates an SDV inside its limited ODD*/
generic path

/* (CA4) score to show the accuracy of detection process for seeing image and identifying
path */

accuracy

/* (CA5) a new (target) position that identifies form a set of positions ( path) */
selectPos

/* (CA5) a target steering angle that would be used to autonomously move an SDV from
current position into target position */

selectLat

/* (CA5) a required change of steering angle from a current steering to a new (target) steering

*/
selectLon

/* shows the different stages of ALC system, such as Perception, planning and etc */
stage

/* A boolean flag indicates that an SDV is ready to move*/
signal flag

invariants

@typeof−stage: stage ∈ Auto STAGE
@typeof PerceivedFeatures: generic features ∈ PERCEIVED FEATURES
@typeof−accuracy: accuracy ∈ Accuracy
@typeof−path: generic path⊆ POSITION
@typeof−sel position: selectPos ∈ POSITION
@typeof−sel LATERAL: selectLat ∈ LATERAL
@typeof−sel LONGITUDINAL: selectLon ∈ LONGITUDINAL
@typepf−signal movement: signal flag ∈ BOOL

/*
* The gluing inv1 invariant states that the system might be in any stage when a SDV system

* aims to identify a new steering angle (manual or autonomous)

*/
@gluing inv1: Sys status= ON ⇒ stage ∈ {Perception, Decision, Control, Intervention,

AutonomousDriving}

/*
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* (SR2.1): the perception module must update the sensing information according to the
current position of an SDV.

* Consistency: The sensor always shows the sensing data for the current position of SDV

*/
@consistency: sensing data env= sensor(SDV POSITION env)

/*
* identify the perceived environmental features based on the sensing data

*/
@detection task: stage= Perception⇒ sensing data env ∈ ran(sensor) ∧

(sensing data env 7→ generic features 7→ accuracy) ∈ dom(OEDR task)

/*
* recognize the set of positions (path) according to the interpretation of sensing data

*/
@recognition task: stage= Decision⇒ generic path ∈ ran(OEDR task)

/*
* target position identified based on the perceived path

*/
@selPosition: stage= Decision ∧ accuracy≥ 80 ∧ generic path⊆ ODD⇒

generic path ∈ dom(specify target position)

/*
* target position identified based on the perceived path

*/
@selLatLon: stage= Control ∧ accuracy≥ 80 ∧ generic path⊆ ODD⇒

(selectPos 7→ LATERAL VAR) ∈ dom(compute lateral)
∧
(selectPos 7→ LONGITUDINAL VAR) ∈ dom(compute longitudinal)

/*
* This invariant ensures that ALC system never exceeds the defined range of steering angle

when the new (target) steering angle is used

* to move an SDV into a new (target) position inside the target lane

*/
@Environment−consistency: stage= AutonomousDriving

⇒move(SDV POSITION env 7→ selectLon 7→ selectLat)⊆ ODD

events

event INITIALISATION extends INITIALISATION
begin
/* sensor is ready to provide an image for the initial position */
@init−image: sensing data env := sensor (init position)
/* the stage of system starts with perception module */
@init−stage: stage := Perception
/* No desire path (hence empty)*/
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@init−generic path: generic path := ∅
/* No confident score (hence zero) */
@init−accuracy: accuracy :∈ Accuracy
/* No initial selected position (hence random) */
@init−selPosition: selectPos :∈ POSITION
/* No initial selected steering angle (hence random) */
@init−selLATERAL: selectLat :∈ LATERAL
/* No initial selected speed (hence random) */
@init−selSpeed: selectLon :∈ LONGITUDINAL
/* No initial perceived features (hence random)*/
@typeof perFeatures: generic features :∈ PERCEIVED FEATURES
/* signal of movement*/
@typeof signal: signal flag := FALSE

end

/*
* This event performs the perception task. It involves three main subtasks:

* 1) obtain sensing data from sensor based on SDV’s position

* 2) identify accuracy of detection based on the given perceived features and sensing data

* 3) recognise new path (set of position ) based on the sensing data, perceived features and
accuracy

*/
event perception
any
gf
when
@grd1: gf ∈ PERCEIVED FEATURES
@grd2: Sys status= ON
@grd4: stage= Perception
then
/* obtain an sensing data from sensor based on SDV’s position */
@act1: sensing data env := sensor (SDV POSITION env)
/* specify some features to be detected in the sensing data */
@act2: generic features := gf
/* identify accuracy based on the detection results of perceived\specific features from

sensing data */
@act4: accuracy := Identify features(sensing data env 7→ generic features)
/* recognise the path (set of position ) based on the perceived features, sensing data and

accuracy */
@act5: generic path := OEDR task(sensing data env 7→ generic features 7→ accuracy)
/* change a stage of system to be in Decision */
@act6: stage := Decision
end

/*
* This event checks whether new path has been identified using a low or high accuracy.

* Note: if a accuracy is less than 80, we assume that a low accuracy score
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*/
event violationExpectedFeatures
where
@grd1: Sys status= ON
@grd2: stage= Decision
/*(F4): reason about the identification of environmental features */
@grd3: accuracy< 80 ∨ generic path ̸⊆ ODD
then
/*
* (SR8): if the perception module identifies the desired path with a low confidence score,

the ALC system will issue a request to intervene.

* Therefore, the stage of ALC system changed to be in ’Intervention’

*/
@act1: stage := Intervention
end

/*
* This event shows how an ALC system performs the planning task in order to identify a

target position and a change of steering angle

* when the stage of the ALC is in Decision, and the confidence score is greater than or equal
80

* Note: if a confidence score is more or equal 80, we assume that a high confidence score

*/
event decision
when
@grd1: Sys status= ON
@grd2: stage= Decision
@grd3: accuracy≥ 80 ∧ generic path⊆ ODD
then
/* new (target) position obtained from identified path*/
@act1: selectPos := specify target position(generic path)
/* specify lat and long based on the selected position */
@act2: selectLat := compute lateral(selectPos 7→ LATERAL VAR)
@act3: selectLon := compute longitudinal(selectPos 7→ LONGITUDINAL VAR)
/* stage changed to be in Control */
@act4: stage := Control
end

/*
* This event shows how ALC performs the actuation task for moving an SDV into a target

position when the stage of the ALC is in Control.

*/
event control
when
@grd1: Sys status= ON
@grd2: stage= Control
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/* selected LONGITUDINAL and steering must be in the defined range */
@grd3: selectLat ∈ LATERAL ∧ selectLon ∈ LONGITUDINAL
/* based on a change of a LONGITUDINAL and steering, the movement of an SDV must

lead to a position inside the ODD */
@grd4:move(SDV POSITION env 7→ selectLon 7→ selectLat )⊆ ODD
then
/* the stage of ALC changed to be in ’AutonomousDriving’*/
@act1: stage := AutonomousDriving
end

event violationLimit
where
@grd1: Sys status= ON
@grd2: stage= Control
/*(F5): violates physical actuator component*/
@grd3: selectLat /∈ LATERAL ∨ selectLon /∈ LONGITUDINAL ∨
move(SDV POSITION env 7→ selectLon 7→ selectLat) ̸⊆ ODD
then
@act1: stage := Intervention
end

/*
* This is a refined event from an abstract event auto actuating for allowing a target steering

angle (autonomous steering angle) to be used

* for moving an SDV in its target lane when the stage of the autonomous controller is in
AutonomousDriving

*/
event auto driving refines auto actuating
where
@grd1: Sys status= ON
@grd2: selectLat ∈ LATERAL
@grd3: selectLon ∈ LONGITUDINAL
@grd4:move(SDV POSITION env 7→ selectLon 7→ selectLat)⊆ ODD
@grd5: stage= AutonomousDriving
@grd6: signal flag= FALSE
then
/* setting the lateral and longitudinal variables autonomously */
@act1: LATERAL VAR := selectLat
@act2: LONGITUDINAL VAR := selectLon
/* ready to move */
@act3: signal flag := TRUE
with
/*a change of lateral and longitudinal are replaced by a change identified by the

autonomous operations*/
@auto lat: auto lat= selectLat
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@auto lon: auto lon= selectLon
end

/*
* This is a refined event from an abstract event manual actuating for covering how a human

driver intervenes to take over control of an SDV

* when the stage of the system is in Intervention.

*/
eventmanual driving extendsmanual actuating
where
@grd4: stage= Intervention
@grd5: signal flag= FALSE
then
/* ready to move */
@act3: signal flag := TRUE
end

/*
* This is an extended event for using either a manual or autonomous steering angle to move

* the SDV inside its target lane

*/
eventmove extendsmove
where
@grd3: signal flag= TRUE
@grd4: stage ∈ {AutonomousDriving , Intervention}

then
@act2: stage := Perception
@act3: sensing data env := sensor(new position)
@act4: signal flag := FALSE

end

event system on extends system on
end

/*
* This is an extended event to reset a stage of an autonomous controller to be at

* the perception stage when a system is switched off

*/
event system off extends system off
then
/* ALC STAGE reset into initialization value*/
@restALC: stage := Perception
@rest−image: sensing data env := sensor (init position)
@rest signal flag: signal flag := FALSE
end
end
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D.4 Third Refinement

D.4.1 Machine m3

machinem3 refinesm2
sees c2
/*
* This machine (M3) studies how how the awareness level of a driver can impact

autonomous operations. It specifically discusses how SDV systems ensure that
human drivers remain responsive when the system issues a request to intervene

*/

variables
/*×××*
* M0 −−−−− variables
××××*/
/* (CA1) The (physical) position of the vehicle */
SDV POSITION env
/* System status is ON or OFF */
Sys status

/*×××*
* M1 −−−−− variables
××××/
/* (CA2) The (actual) lateral variable of the SDV */
LATERAL VAR
/* (CA3) The (actual) longitudinal variable of the SDV */
LONGITUDINAL VAR

/*×××
* M2 − variables
××××/
/* (F3) The image would obtain from sensor, which can be used as the input to the perception

stage*/
sensing data env

/*(CA4) indicates some features in a received image */
generic features

/*(CA4) set of positions seen as the path that navigates an SDV inside its limited ODD*/
generic path

/* (CA4) score to show the accuracy of detection process for seeing image and identifying
path */

accuracy
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/* (CA5) a new (target) position that identifies form a set of positions ( path) */
selectPos

/* (CA5) a target steering angle that would be used to autonomously move an SDV from
current position into target position */

selectLat

/* (CA5) a required change of steering angle from a current steering to a new (target) steering

*/
selectLon

/* shows the different stages of system, such as Perception, planning and etc */
stage

/* A boolean flag indicates that an SDV is ready to move*/
signal flag

/*×××
* M3 − variables
××××/
/* (CA8) indicates the driver’s input to compute awareness level */
driver input
/* (CA7) shows the awareness level of a driver */
awarenessLevel
/* (F6) indicates that semi−automated system issues an intervention request */
intervRequest

invariants
/* driver either aware (TRUE) or unaware (FALSE)*/
@typeof−awarenessLevel: awarenessLevel ∈ BOOL
/* DMS uses the driver’s input to compute the awareness level of a driver */
@type−driverInput: driver input ∈ BOOL
/* semi−system may issue a request to intervene*/
@typeof−intervention: intervRequest ∈ BOOL

@awarenesslevel: awarenessLevel= TRUE ⇒ driver input= TRUE
@driverAware: awarenessLevel= TRUE⇒ stage ∈ {Perception ,Decision, Control,

Intervention, AutonomousDriving}

@interventionRequest: intervRequest= TRUE⇒ stage= Intervention

@intervCases: intervRequest= TRUE
⇒
accuracy< 80 ∨
generic path ̸⊆ ODD ∨
selectLat /∈ LATERAL ∨
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selectLon /∈ LONGITUDINAL ∨
move(SDV POSITION env 7→ selectLon 7→ selectLat) ̸⊆ ODD

events

event INITIALISATION extends INITIALISATION
begin
/* No initial driver’s input (hence FALSE)*/
@init−driverInput: driver input := FALSE
/* initial awareness level is FALSE, means a driver is unaware of driving task */
@init−awareness level: awarenessLevel := FALSE
/* initial intervention request is FALSE, means the system does not issue a request to

intervene */
@init−InterRequest: intervRequest := FALSE
end

event DMS driver input detect
any d input /* human monitoring feature*/
when
@grd1: d input= FALSE
@grd3: awarenessLevel= FALSE
then
@act1: driver input := TRUE
@act2: awarenessLevel := TRUE
end

event DMS driver input remove
when
@grd2: driver input= TRUE
@grd3: awarenessLevel= TRUE
then

@act1: driver input := FALSE
@act2: awarenessLevel := FALSE
end

event perception extends perception
when
@grd5: awarenessLevel= TRUE
end

event violationExpectedFeatures extends violationExpectedFeatures
where
@grd4: awarenessLevel= TRUE
@grd5: intervRequest= FALSE
then
@act2: intervRequest := TRUE
end
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event decision extends decision
when
@grd4: awarenessLevel= TRUE
end

event control extends control
when
@grd5: awarenessLevel= TRUE
@grd6: intervRequest= FALSE
end

event violationLimit extends violationLimit
where
@grd4: awarenessLevel= TRUE
@grd5: intervRequest= FALSE
then
@act2: intervRequest := TRUE

end

event auto driving extends auto driving
when
@grd7: awarenessLevel= TRUE
@grd8: intervRequest= FALSE
end

eventmanual driving extendsmanual driving
when
@grd6: awarenessLevel= TRUE
@grd7: intervRequest= TRUE
then
@act4: intervRequest := FALSE
end

event auto move refinesmove
any
new position

where
// inherited elements
@grd1: new position ∈ODD
@grd2: new position ∈move(SDV POSITION env 7→ LONGITUDINAL VAR 7→
LATERAL VAR)

@grd3: signal flag= TRUE
/* new guards*/
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@grd4: stage= AutonomousDriving
@grd5: awarenessLevel= TRUE
/* no intervention request */
@grd6: intervRequest= FALSE

then
// inherited elements
@act1: SDV POSITION env := new position
@act2: stage := Perception
@act3: sensing data env := sensor(new position)
@act4: signal flag := FALSE

end

eventmanual move refinesmove
any
new position // inherited element

where
@grd1: new position ∈ODD // inherited element
@grd2: new position ∈move(SDV POSITION env 7→ LONGITUDINAL VAR 7→
LATERAL VAR) // inherited element

@grd3: signal flag= TRUE // inherited element
/* new guards*/
@grd4: stage= Intervention
@grd5: awarenessLevel= TRUE
@grd6: intervRequest= TRUE

then
@act1: SDV POSITION env := new position // inherited element
@act2: stage := Perception // inherited element
@act3: sensing data env := sensor(new position) // inherited element
@act4: signal flag := FALSE // inherited element
/* new action */
@act5: intervRequest := FALSE

end

event system on extends system on
then
/* reset variables of this machine */

// @rst−driverFeature: generic driverFeature :=∅
@rst−driverInput: driver input := FALSE
@rst−awareness level: awarenessLevel := FALSE
@rst−InterRequest: intervRequest := FALSE
end

event system off extends system off
then
/* reset variables of this machine */
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// @rst−driverFeature: generic driverFeature :=∅
@rst−driverInput: driver input := FALSE
@rst−awareness level: awarenessLevel := FALSE
@rst−InterRequest: intervRequest := FALSE
end
end
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Appendix E

Modelling LKA and DMS Functions
in the ALC System

In this appendix, we present the complete Event-B version of the application of the
modelling patterns for the Lane Keeping Assist (LKA) and Driver Monitoring System
(DMS) functions in the Automated Lane Centring (ALC) system, as outlined in Chapter
7. The majority of the proof obligations in modelling these functions were verified
either automatically using Rodin provers or with the assistance of additional external
prover plug-ins, such as SMT solvers (as illustrated in Figure E.1).

FIGURE E.1: Modelling LKA and DMS functions, prover statistics

The complete Event-B models 1 are presented in the following sections.

1The Event-B models for developing design patterns of SDV systems are available as a Rodin archive
at https://drive.google.com/drive/folders/1D7rVAJKCEh_-rVr9hKZZYdFDCxAP8r3F.
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E.1 Abstract Level

E.1.1 Context c0

context c0
sets
ALC FUNCTION /* function might be : On, OFF */
constants
POSITION /* set of positions that an SDV can move to them */
Lane /* subset of position */
init position /* initial position of SDV */
ON /* ALC is working*/
OFF /* ALC is deactivated*/
axioms
/* Type of POSITION */
@typeof−POSITION: POSITION= N × Z

/* Lane involves a set of positions */
@typeof−Lane: Lane⊆ POSITION
/* the initial position of an SDV is located in the Lane */
@typeof−init position: init position ∈ Lane
/* System status */
@def−ALC−mode: partition(ALC FUNCTION, {ON}, {OFF})
end

E.1.2 Machine m0

machinem0 sees c0
/*
* Abstract machine (M0) aims to capture the main functionality of a system as ’the ALC

system moves an SDV in the middle of its desired (target) lane

*/
variables
/*×××*
* M0 −−−−− variables
××××*/
/* (CA1) The (physical) position of the vehicle */
SDV POSITION env
/* System status is ON or OFF */
ALC Status

invariants

/* SC0: the SDV must always be located inside the target lane */
@safety: SDV POSITION env ∈ Lane
/*System status might be either ON or OFF*/
@ALC mode: ALC Status ∈ ALC FUNCTION
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events

event INITIALISATION
begin
/* (F1) shows the current position of an SDV */
@init−position: SDV POSITION env := init position
/*initialise ALC status is ON*/
@init−mode: ALC Status := OFF
end

/*
* Activation Function

*/
event ALC ON
where
@grd1: ALC Status= OFF
then
@act1: ALC Status := ON
end

/*
* Deactivation Function

*/
event ALC OFF
where
@grd1: ALC Status= ON
then
@act1: ALC Status := OFF
@reset−position: SDV POSITION env := init position
end

/*
* This event changes a current position of an SDV into a new position inside the target lane.

*/
eventmove
any
/* SR0: the SDV must travel into a new position inside the target lane */
new position
where
/* A new position inside the target lane*/
@grd1: new position ∈ Lane
then
/* moved into a new position inside the target lane */
@act1: SDV POSITION env := new position
end
end
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E.2 First Refinement

E.2.1 Context c1

context c1 extends c0
constants
/* steering range */
STEERING ANGLE
max steering
min steering

/* range of acceptable change to physical steering angle*/
STEERING ANGLE CHANGE
max steering constraint
min steering constraint

/* A function assumes that an SDV actuate target steering angle to reach a target position (
actuation task) */

move

axioms
@typeof−max steering:max steering ∈ Z

@typeof−min steering:min steering ∈ Z

@min max steering:min steering<max steering

/* these just an example of steering range */
@def−STEERING ANGLE: STEERING ANGLE=min steering ..max steering

@typeof−max steering constrint:max steering constraint ∈ Z

@typeof−min steering constrint:min steering constraint ∈ Z

@min max steering change:min steering constraint<max steering constraint

@def−STEERING ANGLE CHANGE: STEERING ANGLE CHANGE=min steering constraint
..max steering constraint

/*
* function to assume that SDV actuates a steering angle into a specific position where SDV

moves

* into multiple positions inside the lane to reach a specific position

*/
@def−MOVE:move= (λlong 7→ lat 7→ angle · long 7→ lat ∈ POSITION ∧ angle ∈

STEERING ANGLE | {i · i ∈ 1 .. 3 | long+ i 7→ lat+ i× angle})
theorem@typeof−move:move ∈ POSITION× STEERING ANGLE→ P1(POSITION)
end

E.2.2 Machine m1
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machinem1 refinesm0
sees c1
/*
* This machine (M1) investigate how the steering angle of an SDV is modified to reach a new

position inside the target lane.

*/
variables
/*×××*
* M0 −−−−− variables
××××*/
SDV POSITION env
ALC Status

/*×××*
* M1 −−−−− variables
××××/
/* (CA2) The (actual) steering angle of the vehicle */
SDV STEERING ANGLE env
invariants
/* Steering angle must be in a defined range of steering angle (abstract constant) */
@typeof−steering angle: SDV STEERING ANGLE env ∈ STEERING ANGLE
events
event INITIALISATION extends INITIALISATION
begin
/* (F2) The current steering angle of an SDV that is randomly initialized */
@init−steering angle: SDV STEERING ANGLE env :∈ STEERING ANGLE
end
/*
* This event identifies a steering angle autonomously

*
*/
event ALC actuating
any
steering angle change
where
@grd1: ALC Status= ON
/*steering angle change definition */
@grd2: steering angle change ∈ STEERING ANGLE CHANGE
/* new steering angle in defined range*/
@grd3: steering angle change+ SDV STEERING ANGLE env ∈ STEERING ANGLE
/* (SR1.1): new change will lead into the lane */
@grd4:move(SDV POSITION env 7→ (SDV STEERING ANGLE env+
steering angle change))⊆ Lane

then
/* replace old steering */
@act1: SDV STEERING ANGLE env := (SDV STEERING ANGLE env+
steering angle change)

end
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/*
* This event identifies a steering angle manually

*/
eventManual actuating
any
manual steering angle
where
@grd1:manual steering angle ∈ STEERING ANGLE
/*(SR1.2): driver steering leads to lane */
@grd2:move(SDV POSITION env 7→manual steering angle)⊆ Lane
then
/*replace old steering*/
@act1: SDV STEERING ANGLE env :=manual steering angle
end

/*
* A extended event moves an SDV in its target lane based the (new) steering angle of ALC

or human driver.

* where a movement must lead into the lane

*/
eventmove extendsmove
where
/* new (target) position must be within set of position inside the lane*/
@grd2: new position ∈move(SDV POSITION env 7→ SDV STEERING ANGLE env)
end

event ALC ON extends ALC ON
end
event ALC OFF extends ALC OFF
end

end

E.3 Second Refinement

E.3.1 Context c2

context c2 extends c1
sets
/* set of images obtained from the driving environment (target lane) */
IMAGE
/* partition shows the different stages of the ALC system, such as Perception, planning and

etc*/
STAGE
/* set of left lane lines */
LeftLane
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/* set of right lane lines */
RightLane
constants
/* An abstract constant uses to show how the autonomous controller gets the images of

SDV’s positions in the driving environment (sensor of perception task) */
camera
/* An abstract constant shows the expected results of a received image */
Seen image
/* An abstract constant shows how ALC accomplishes the OEDR task based on the sensing

images (perception task)

* For example, the desired path (set of positions) would identify from a received image

*/
OEDR task
/* An abstract constant shows an accuracy of identifying left/right lane lines in a received

image

* For instance, a score from 0 to 100 indicates the accuracy of the identification process of left
and right lane lines in the incoming image.

* 0 is very low accuracy, while 100 is a high accuracy

*/
Confidence score
/*
* An abstract constant shows how AC computes planning task, e.g., ALC selects one (target)

position from a set of position (desired path)

*/
target position
/*
* An abstract constant shows how AC computes planning task, e.g., ALC identifies a change

of steering angle based on the target position and a current steering angle

*/
target steering angle

/*
* These constants are used to distinguish between different possible stages of the ALC

system

*/
Perception /* perception’s stage*/
Decision /* decision’s stage*/
Control /* control’s stage */
Intervention /* intervention’s stage indicates ALC could ask the driver to take control of

SDV*/
AutonomousDriving /* Autonomous driving’s stage, indicates ALC actuate the steering

angle autonomously to reach a (identified) target position */

axioms
/* possible stages of ALC system */
@def−STAGE: partition(STAGE, {Perception}, {Decision}, {Control},{

AutonomousDriving}, {Intervention})
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/* range of Confidence score from 0 to 100 */
@score: Confidence score= 0 .. 100
/*
* Perception task

* (three functions)

*/
// 1) image obtains from camera based on SDV’s position
@typeof−camera: camera ∈ POSITION→ IMAGE
/* 2) function shows the expected results of a received image. */
@typeof−image−seen: Seen image ∈ (IMAGE× LeftLane× RightLane)→

Confidence score
/* 3) function recognises the desired path (set of position ) based on the left/right lane lined,

image and confidence score */
@typeof−path recognition:OEDR task ∈ (IMAGE× LeftLane× RightLane×

Confidence score) → P(POSITION)
/*
* End of Perception task

*/
/*
* planning task

* (two functions)

*/
/* 1) function to specify a target position based on a set of positions (desired path) */
@typeof−compute target position: target position ∈ P(POSITION)→ POSITION
/* 2) function to compute the change of steering angle to reach a specific position */
@typeof−compute target steering angle: target steering angle ∈ POSITION×

STEERING ANGLE→ STEERING ANGLE CHANGE
/*
* End of the planning task

*/
/*
* This is the aim of the ALC system, which means that there is always one steering angle

* can be used to move an SDV into a position inside the target lane

* */
@aim: ∀ SDV position· SDV position ∈ POSITION⇒
(∃ SDV steering · SDV steering ∈ STEERING ANGLE⇒

move (SDV position 7→ SDV steering)⊆ Lane
)

end

E.3.2 Machine m2

machinem2 refinesm1
sees c2
/*
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* This machine (M2) studies how the ALC system accomplishes its autonomous operations,
such as perception, decision−making and control,

* to identify the steering angle that autonomously moves an SDV into a position inside the
target lane.

*/

variables
/*×××*
* M0 − variables
××××*/
SDV POSITION env
ALC Status

/*×××*
* M1 − variables
××××/
SDV STEERING ANGLE env

/×××*
* M2 − variables
××××/
/* (F3) The image would obtain from the camera, which can be used as the input to the

perception stage */
IMAGE env
/* indicates left lane lines in a received image */
leftLanePoints
/* indicates right lane lines in a received image */
rightLanePoints
/* (CA4) set of positions seen as the desired path */
desirePath
/* (CA5) score to show the accuracy of the detection process for seeing images and

identifying the desired path */
confidenceScore
/* (CA6) a new (target) position that identifies form a set of positions (desired path) */
targetPosition
/* (CA7) a target steering angle that would be used to autonomously move an SDV from the

current position into the target position */
targetSteeringAngle
/* (F5) a required change of steering angle from current steering to a new (target) steering */
steeringAngleChange
/* shows the different stages of the ALC system, such as Perception, planning and etc */
stage
/* A boolean flag indicates that an SDV is ready to move*/
signal
invariants

@typeof−stage: stage ∈ STAGE
@typeof−desire path: desirePath⊆ POSITION
@typeof−perceived confident: confidenceScore ∈ Confidence score
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@typeof leftLanePoints: leftLanePoints ∈ LeftLane
@typeof rightLanePoints: rightLanePoints ∈ RightLane
@typeof−target position: targetPosition ∈ POSITION
@typeof−target steering angle: targetSteeringAngle ∈ STEERING ANGLE
@typeof−current steering angle change: steeringAngleChange ∈

STEERING ANGLE CHANGE
@typepf−signal movement: signal ∈ BOOL

/* The gluing inv1 invariant states that the ALC system might be at any stage when an SDV
system aims to identify a new steering angle (manual or autonomous)*/

@gluing inv1: ALC Status= ON ⇒ stage ∈ STAGE

/*(SR2.1): The camera always shows the image of the current position*/
@consistency: IMAGE env= camera(SDV POSITION env)

/* (SR2.2): based on the detected left/right lane lines and confidence scores, the perception
component identifies the desired path*/

@perceivedImage: stage= Perception⇒ IMAGE env ∈ ran(camera) ∧
(IMAGE env 7→ leftLanePoints 7→ rightLanePoints 7→ confidenceScore) ∈ dom(

OEDR task)

/*
* before changing the stage of ACL from perception to Decision, the desired path must be

identified

*/
@perceptionTask: stage= Decision⇒ desirePath ∈ ran(OEDR task)

/* (SR2.5) and (SR2.6): emphasise that the decision−making component must compute a
target position and a required change of steering angle according to the set of positions (
desired path) and a current steering angle of an SDV. Therefore, invariant targetPosition
ensures that a target (new) position will obtain from the desired path, i.e., targetPosition
:= compute target position(desirePath). In addition, invariant changeOfSA ensures that
a required change of steering angle is computed according to the target position and the
current steering angle of an SDV, i.e., steeringAngleChange := target steering angle(
targetPosition → SDV STEERING ANGLE env). Note: confidenceScore ≥ 80 denotes
that a system identifies a correct path (assumption) */

@targetPosition: stage= Decision ∧ confidenceScore≥ 80⇒
desirePath ∈ dom(target position)

@changeSteer: stage= Control ∧ confidenceScore≥ 80⇒
(targetPosition 7→ SDV STEERING ANGLE env) ∈ dom(target steering angle)

/* (SR2.7): indicates that a target steering angle must not actuate the physical steering angle
of an SDV too quickly; therefore, invariant change ofSteeringAngle ensures that the
decision−making component identifies a required change of the steering angle in a
defined range that prevents actuating the steering of an SDV too quickly, i.e.,
steeringAngleChange ∈ min steering constraint .. max steering constraint.*/
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@newSteer: stage= Control ∧ confidenceScore≥ 80⇒ steeringAngleChange ∈ ran(
target steering angle)

/*This invariant ensures that a control module of the ALC system always provides a new (
target) steering angle in a defined range of power steering system in SDV*/

@Control−consistency: stage= Control⇒ targetSteeringAngle ∈ STEERING ANGLE

/* This invariant ensures that the ALC system never exceeds the defined range of steering
angle when the new (target) steering angle is used to move an SDV into a new (target)
position inside the target lane*/

@Environment−consistency: stage= AutonomousDriving
⇒move(SDV POSITION env 7→ targetSteeringAngle)⊆ Lane

events

event INITIALISATION extends INITIALISATION
begin
/* Camera is ready to provide an image for the initial position */
@init−image: IMAGE env := camera (init position)
/* the stage of ALC system starts with the perception module */
@init−stage: stage := Perception
/* No desire path (hence empty)*/
@init−desire path: desirePath := ∅
/* No confident score (hence zero) */
@init−confident score: confidenceScore := 0

/* No initial target position (hence random) */
@init−target position: targetPosition :∈ POSITION
/* No initial target steering angle (hence random) */
@init−target steering angle: targetSteeringAngle :∈ STEERING ANGLE
/* NO initial amount change in current steering angle (hence random) */
@init−change steering angle: steeringAngleChange :∈ STEERING ANGLE CHANGE
/* No initial left lane points (hence random)*/
@typeof leftLanePoints: leftLanePoints :∈ LeftLane
/* No initial right lane points (hence random)*/
@typeof rightLanePoints: rightLanePoints :∈ RightLane
/* signal of movement*/
@typeof signal: signal := FALSE

end

/*
* This event performs the perception task. It involves three main subtasks:

* 1) obtain an image from the camera based on SDV’s position

* 2) identify confidence score based on the detection results of a received image as the left/
right lane lines

* 3) recognise the desired path (set of positions) based on the left/right lane lines, image and
confidence score

*/
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event perception
any
leftLane /* given left lane */
rightLane /* given right lane */
when
@grd1: leftLane⊆ LeftLane
@grd2: rightLane⊆ RightLane
@grd3: ALC Status= ON
@grd4: stage= Perception
then
/* obtain an image from camera based on SDV’s position */
@act1: IMAGE env := camera (SDV POSITION env)
@act2: leftLanePoints :∈ LeftLane
@act3: rightLanePoints :∈ RightLane
/* SR2.3: identify confidence score based on the detection results of a received image as the

left/right lane lines */
@act4: confidenceScore := Seen image(IMAGE env 7→ leftLanePoints 7→
rightLanePoints)

/* recognise the desired path (set of position ) based on the left/right lane lines, image and
confidence score */

@act5: desirePath := OEDR task(IMAGE env 7→ leftLanePoints 7→ rightLanePoints 7→
confidenceScore)

/* change a stage of ALC to be in Decision */
@act6: stage := Decision
end

/*
* This event checks whether the desired path has been identified using a low or high

confidence score.

* Note: if a confidence score is less than 80, we assume that a low confidence score

*/
event lowConfidenceScore interven
where
@grd1: ALC Status= ON
@grd2: stage= Decision
/* (F4): the ALC system may determine the desired path with a low confidence score */
@grd3: confidenceScore< 80

then
/* (SR2.4): if the perception module identifies the desired path with a low confidence score,

the ALC system will issue a request to intervene. Therefore, the stage of the ALC system
changed to be in Intervention */

@act1: stage := Intervention
end
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/* This event shows how an ALC system performs the planning task in order to identify a
target position and a change of steering angle when the stage of the ALC is in Decision,
and the confidence score is greater than or equal to 80. Note: if a confidence score is more
or equal to 80, we assume that a high confidence score*/

event decision
when
@grd1: ALC Status= ON
@grd2: stage= Decision
/* denotes a high confidence score */
@grd3: confidenceScore≥ 80

then
/* new (target) position obtained from a set of positions (desired path) */
@act1: targetPosition := target position(desirePath)
/* a change of steering angle computed based on the identified (target) position and current

steering angle of SDV */
@act2: steeringAngleChange := target steering angle(targetPosition 7→
SDV STEERING ANGLE env)

/* the stage of ALC changed to be in ’Control’ */
@act3: stage := Control
end

/* This event shows how ALC performs the actuation task for moving an SDV into a target
position when the stage of the ALC is in Control.*/

event control
when
@grd1: ALC Status= ON
@grd2: stage= Control
/* a required change of current steering must be in the defined range of power steering

system in SDV */
@grd3: SDV STEERING ANGLE env+ steeringAngleChange ∈ STEERING ANGLE
/* based on a change of steering angle, the movement of an SDV must lead to a position

inside the target lane */
@grd4:move(SDV POSITION env 7→ (SDV STEERING ANGLE env+
steeringAngleChange) )⊆ Lane

then
/* target steering angle of ALC is computed */
@act1: targetSteeringAngle := steeringAngleChange+ SDV STEERING ANGLE env
/* the stage of ALC changed to be in ’AutonomousDriving’*/
@act2: stage := AutonomousDriving
end

/*
* This event covers how ALC may change a target steering angle to satisfy the defined range

(minimum steering)

* of the power steering system in the SDV when the stage of the ALC is in Control.

*/
event correct exceeding min steering
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when
@grd1: ALC Status= ON
@grd2: stage= Control
/*
* ALC presents a change of steering angle that violates the minimum steering of the power

steering system in SDV.

*/
@grd3: SDV STEERING ANGLE env+ steeringAngleChange<min steering
/*
* the minimum steering of the power steering system moves SDV into a new position

inside the target lane

*/
@grd4:move(SDV POSITION env 7→min steering)⊆ Lane
then
/* if the control module of ALC exceeds the steering angle range of an SDV, the ALC

system will issue a request to intervene; therefore, the stage of ALC changed to be in ’
Intervention’*/

@act1: stage := Intervention
/* If a target steering angle exceeds the minimum steering angle, then the control module

will modify the target steering angle to be the minimum steering angle*/
@act2: targetSteeringAngle :=min steering
end

/* This event covers how ALC may change a target steering angle to satisfy the defined
range (maximum steering) of the power steering system in the SDV when the stage of the
autonomous controller is in Control*/

event correct exceeding max steering
when
@grd1: ALC Status= ON
@grd2: stage= Control
/*ALC presents a change of steering angle that violates the maximum steering of the power

steering system in SDV*/
@grd3: SDV STEERING ANGLE env+ steeringAngleChange>max steering
/* the maximum steering of the power steering system moves SDV into a new position

inside the target lane*/
@grd4:move(SDV POSITION env 7→max steering)⊆ Lane
then
/* if the control module of ALC exceeds the steering angle range of an SDV, the ALC

system will issue a request to intervene; therefore, the stage of ALC changed to be in ’
Intervention’*/

@act1: stage := Intervention
/* If a target steering angle exceeds the maximum steering angle, then the control module

will modify the target steering angle to be the maximum steering angle*/
@act2: targetSteeringAngle :=max steering
end
/*
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* This event detects a wrong movement outside the target lane when the ALC system may
change a target steering to a minimum or maximum steering

*/
event correct out of lane
where
@grd1: ALC Status= ON
@grd2: stage= Control
/* when a change of steering angle in a defined range of steering angle but moving SDV

outside the lane*/
@grd3: SDV STEERING ANGLE env+ steeringAngleChange ∈ STEERING ANGLE⇒
move(SDV POSITION env 7→ (SDV STEERING ANGLE env+ steeringAngleChange)) ̸⊆
Lane

then
/* The stage of ALC changed to be ’Intervention’*/
@act1: stage := Intervention
/*
* Keep the current steering as the target steering

* because the previous steering is safer than this new steering << assumption >>

*/
@act2: targetSteeringAngle := SDV STEERING ANGLE env
end

/*This is a refined event from an abstract event ALC actuating for allowing a target steering
angle (autonomous steering angle) to be used for moving an SDV in its target lane when
the stage of the autonomous controller is in AutonomousDriving*/

event ALC actuating refines ALC actuating
where
@grd1: ALC Status= ON
@grd2: steeringAngleChange ∈ STEERING ANGLE CHANGE
@grd3: steeringAngleChange+ SDV STEERING ANGLE env ∈ STEERING ANGLE
/* (SR): the ALC system must actuate a steering angle to reach a target position that keeps

an SDV inside the target lane */
@grd4:move(SDV POSITION env 7→ (SDV STEERING ANGLE env+
steeringAngleChange))⊆ Lane

@grd5: stage= AutonomousDriving
@grd6: steeringAngleChange+ SDV STEERING ANGLE env= targetSteeringAngle
@grd7: signal= FALSE
then
/* Change the current steering based on the steering change of ALC system */
@act1: SDV STEERING ANGLE env := (SDV STEERING ANGLE env+
steeringAngleChange)

/* ready to move */
@act2: signal := TRUE
with
/* a change of steering angle is replaced by a change identified by the ALC system */
@steering angle change: steering angle change= steeringAngleChange
end
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/* This is a refined event from an abstract event Manual actuating for covering how a
human driver intervenes to take over control of an SDV when the stage of the ALC is in
Intervention */

eventManual actuating extendsManual actuating
where
@grd3: stage= Intervention
@grd4: signal= FALSE
then
/* ready to move */
@act2: signal := TRUE
end

/*
* This is an extended event for using either a manual or autonomous steering angle to move

* The SDV inside its target lane

*/
eventmove extendsmove
where
@grd3: signal= TRUE
@grd4: stage ∈ {AutonomousDriving , Intervention}

then
@act2: stage := Perception
@act3: IMAGE env := camera(new position)
@act4: signal := FALSE

end

event ALC ON extends ALC ON
end

/*
* This is an extended event to reset a stage of an autonomous controller to be at

* the perception stage when a system is switched off

*/
event ALC OFF extends ALC OFF
then
/* ALC STAGE reset into initialisation value*/
@restALC: stage := Perception
@rest−image: IMAGE env := camera (init position)
@rest signal: signal := FALSE
end
end
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E.4 Third Refinement

E.4.1 Machine m3

machinem3 refinesm2
sees c2
/*
* This machine (M3) investigates how the awareness level of a driver involves in the

autonomous operations of a system in order to

* ensure that a human driver is a fallback option when the ALC system may issue a request to
intervene.

*/
variables
/*××××××××××
* M0 − variables
××××××××××*/
SDV POSITION env
ALC Status

/*××××××××××
* M1 − variables
××××××××××* /
SDV STEERING ANGLE env

/××××××××××*
* M2 − variables
××××××××××*/
IMAGE env
leftLanePoints
rightLanePoints
desirePath
confidenceScore
targetPosition
targetSteeringAngle
steeringAngleChange
stage
signal

/*××××××××××
* M3 − variables,
××××××××××*/
/* (CA8) shows the awareness level of a driver */
awarenessLevel
/* (F6, F7) indicates that the ALC system issues an intervention request */
warningMessage
/* (CA9) indicates whether a driver puts their hands on the steering wheel inside the SDV or

not */
handsOnSteeringWheel
/* (CA10) indicates whether a driver provides a sensitive monitoring feature or not */
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sensitiveMonitoringFeature
invariants

@typeof−awarenessLevel: awarenessLevel ∈ BOOL
@typeof−warining:warningMessage ∈ BOOL
@typeof−handsOnSteeringWheel: handsOnSteeringWheel ∈ BOOL
@typeof−sensitiveMonitoringFeature: sensitiveMonitoringFeature ∈ BOOL

/* (SR3.2): This invariant ensures that the awareness level of a driver computes based on the
detection of the hands−On steering wheel and the sensitive monitoring feature */

@awarenesslevel: awarenessLevel= TRUE⇒ (handsOnSteeringWheel= TRUE ∧
sensitiveMonitoringFeature=TRUE)

/* (SR3.1): This invariant ensures that a driver will be aware of driving tasks in any stages of
ALC, such as perception, planning and etc */

@driver aware: awarenessLevel= TRUE⇒ stage ∈ {Perception ,Decision, Control,
Intervention, AutonomousDriving}

/*(SR3.5)This invariant means that the ALC system will send an intervention request if
the autonomous controller’s stage in Intervention*/

@send req:warningMessage= TRUE⇒ stage= Intervention

/* (SR3.5) Because we have two intervention scenarios in the previous machine, the
intervention request will send as follows

* 1) when the ALC system used a low confidence score to identify the desired path, OR

* 2) when the ALC system attempts to exceed the define steering range of the power
steering system

* 3) when the ALC system moves to position outside the lane

*/
@interv cases:warningMessage= TRUE

⇒
confidenceScore< 80 ∨
SDV STEERING ANGLE env+ steeringAngleChange /∈ STEERING ANGLE ∨
move(SDV POSITION env 7→ (SDV STEERING ANGLE env+ steeringAngleChange))

̸⊆ Lane

events
event INITIALISATION extends INITIALISATION
begin
/*initial awareness level is FALSE, which means a driver is unaware of driving task*/
@init−awareness level: awarenessLevel := FALSE
/*initial warning message is FALSE, means the ALC system does not issue a request to

intervene*/
@init−warining:warningMessage := FALSE
/*initial detection of hands−on steering wheel is FALSE, means driver does not put hands

on steering wheel*/
@init−handsOnSteeringWheel: handsOnSteeringWheel := FALSE
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/*initial detection of sensitive monitoring feature is FALSE, means driver does not provide
sensitive monitoring feature*/

@init−sensitiveMonitoringFeature: sensitiveMonitoringFeature := FALSE
end

/* This event abstractly captures a change of the hands−on steering wheel when a driver
puts their hands on the steering wheel inside the SDV.*/

event DMS hands on wheel
where
@grd1: ALC Status= ON
@grd2: awarenessLevel= FALSE
@grd3: handsOnSteeringWheel= FALSE
then
@act1: handsOnSteeringWheel := TRUE
/* compute based on both human monitoring features */
@act3: awarenessLevel := bool (sensitiveMonitoringFeature= TRUE)
end

/*This event abstractly captures a change of the sensitive monitoring feature when a driver
provides their sensitive monitoring features*/

event DMS detect sensitiveMonitoringFeature
where
@grd1: ALC Status= ON
@grd2: awarenessLevel= FALSE
@grd3: sensitiveMonitoringFeature= FALSE
then
@act1: sensitiveMonitoringFeature := TRUE
/* compute based on both human monitoring features */
@act3: awarenessLevel := bool (handsOnSteeringWheel= TRUE)
end

/*This is a refined event from the ALC OFF event for covering a possible change of the
hands−on steering wheel. Note; the human monitoring features, such as the hands−on
steering wheel, are considered as one of the preconditions for activating the ALC system
; therefore, the system immediately switches off and starts again from the initialisation
states when a driver removes their hands from the steering wheel*/

event DMS hands off wheel
extends ALC OFF
where
@grd3: awarenessLevel= TRUE
@grd4: handsOnSteeringWheel= TRUE
then
@act3: awarenessLevel := FALSE
@act4:warningMessage := FALSE
@act5: handsOnSteeringWheel := FALSE
@act6: sensitiveMonitoringFeature := FALSE
end
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event DMS lost sensitiveMonitoringFeature
extends ALC OFF
where
@grd3: awarenessLevel= TRUE
@grd4: sensitiveMonitoringFeature= TRUE
then
@act3: awarenessLevel := FALSE
@act4:warningMessage := FALSE
@act5: sensitiveMonitoringFeature := FALSE
@act6: handsOnSteeringWheel := FALSE

end

event ALC ON extends ALC ON
then
/* reset variables of this machine */
@reset−awareness level: awarenessLevel := FALSE
@reset−warining:warningMessage := FALSE
@reset−handsOnSteeringWheel: handsOnSteeringWheel := FALSE
@reset−sensitiveMonitoringFeature: sensitiveMonitoringFeature := FALSE
end

event ALC OFF extends ALC OFF
then
/* reset variables of this machine */
@reset−awareness level: awarenessLevel := FALSE
@reset−warining:warningMessage := FALSE
@reset−handsOnSteeringWheel: handsOnSteeringWheel := FALSE
@reset−sensitiveMonitoringFeature: sensitiveMonitoringFeature := FALSE
end

/*The awareness level of a driver must be TRUE to enable the perception event*/
event perception extends perception
where
@grd5: awarenessLevel= TRUE

end

/*The awareness level of a driver must be TRUE to enable the low cofidance score event
Warning message changes to TRUE, which denotes the ALC system issue a request to
intervene*/

event lowConfidenceScore interven extends lowConfidenceScore interven
where
@grd4: awarenessLevel= TRUE
@grd5:warningMessage= FALSE
then
@act2:warningMessage := TRUE

end
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/*Awareness level of a driver must be TRUE to enable the decision event*/
event decision extends decision
where
@grd4: awarenessLevel= TRUE

end

/*The awareness level of a driver must be TRUE to enable the control event Warning
message must be FALSE to ensure that a system can keep working with no need for
driver help*/

event control extends control
where
@grd5: awarenessLevel= TRUE
@grd6:warningMessage= FALSE

end

/*Awareness level of a driver must be TRUE to enable the correct steering max event
Warning message must be TRUE which denotes the ALC system issue a request to
intervene*/

event correct exceeding max steering
extends correct exceeding max steering
where
@grd5: awarenessLevel= TRUE
@grd6:warningMessage= FALSE
then
@act3:warningMessage := TRUE

end

/*Awareness level of a driver must be TRUE to enable the correct steering min event
Warning message must be TRUE which denotes the ALC system issue a request to
intervene*/

event correct exceeding min steering
extends correct exceeding min steering
where
@grd5: awarenessLevel= TRUE
@grd6:warningMessage= FALSE
then
@act3:warningMessage := TRUE

end

/*Awareness level of a driver must be TRUE to enable the correct steering min event
Warning message must be TRUE which denotes the ALC system issue a request to
intervene*/

event correct out of lane extends correct out of lane
where
@grd5: awarenessLevel= TRUE
@grd6:warningMessage= FALSE
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then
/* the stage of ALC changed to be in ’Intervention’*/
@act3:warningMessage := TRUE
end

/*Awareness level of a driver must be TRUE to enable the Auto driving event Warning
message must be FALSE to ensure that a system can keep working with no need for
driver help*/

event ALC actuating extends ALC actuating
where /* driver is aware*/
@grd8: awarenessLevel= TRUE
/* no request to intervene*/
@grd9:warningMessage= FALSE

end

/*Awareness level of a driver must be TRUE to enable the Manual driving event Warning
message must be TRUE to enable this event. In any cases of intervention, a driver will be
receptive and change Warning message to be FALSE */

eventManual actuating extendsManual actuating
where
@grd5: awarenessLevel= TRUE
@grd6:warningMessage= TRUE
then
@act3:warningMessage := FALSE

end

/*This event assumes that a driver would provide a steering angle manually when the ALC
system is in Intervention*/

eventmanual movement refinesmove
any
new position

where
@grd1: new position ∈ Lane
@grd2: new position ∈move(SDV POSITION env 7→ SDV STEERING ANGLE env) //

inherited element
@grd4: signal= TRUE
@grd5: stage= Intervention
/* driver is already react*/
@grd6: awarenessLevel= TRUE
@grd7:warningMessage= FALSE

then
@act1: SDV POSITION env := new position
@act3: stage := Perception
@act4: IMAGE env := camera(new position)
@act5: signal := FALSE

end
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/*This event assumes that an SDV applies a steering angle autonomously.*/
event auto movement refinesmove
any
new position

where
@grd1: new position ∈ Lane
@grd2: new position ∈move(SDV POSITION env 7→ SDV STEERING ANGLE env) //

inherited element
@grd4: signal= TRUE
@grd5: stage= AutonomousDriving
@grd6: awarenessLevel= TRUE
@grd7:warningMessage= FALSE
then
@act1: SDV POSITION env := new position
@act3: stage := Perception
@act4: IMAGE env := camera(new position)
@act5: signal := FALSE

end

end
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Appendix F

Modelling LKA, DMS and ACC
Functions in the ALC System

In this appendix, we present the complete Event-B version of the application of the
modelling patterns for the Lane Keeping Assist (LKA), Driver Monitoring System (DMS)
and Adaptive Cruise Control (ACC) functions in the Automated Lane Centring (ALC)
system, as outlined in Chapter 8. The majority of the proof obligations in modelling
these functions were verified either automatically using Rodin provers or with the as-
sistance of additional external prover plug-ins, such as SMT solvers (as illustrated in
Figure F.1).

FIGURE F.1: Modelling LKA, DMS and ACC functions, prover statistics

The complete Event-B models 1 are presented in the following sections.

1The Event-B models for developing design patterns of SDV systems are available as a Rodin archive
at https://drive.google.com/drive/folders/1D7rVAJKCEh_-rVr9hKZZYdFDCxAP8r3F.
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F.1 Abstract Level

F.1.1 Context c0

context c0
sets
ALC FUNCTION
constants
POSITION
Lane
init position
ON
OFF
axioms
@typeof−POSITION: POSITION= N × Z

@typeof−Lane: Lane⊆ POSITION
@typeof−init position: init position ∈ Lane
@def−ALC−mode: partition(ALC FUNCTION, {ON}, {OFF})
end

F.1.2 Machine m0

machinem0 sees c0
variables
SDV POSITION env
ALC Status
invariants
@safety: SDV POSITION env ∈ Lane
@ALC mode: ALC Status ∈ ALC FUNCTION
events
event INITIALISATION
begin
@init−position: SDV POSITION env := init position
@init−mode: ALC Status := OFF
end
event ALC ON
where
@grd1: ALC Status= OFF
then
@act1: ALC Status := ON
end
event ALC OFF
where
@grd1: ALC Status= ON
then
@act1: ALC Status := OFF
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@reset−position: SDV POSITION env := init position
end
eventmove
any
new position
where
@grd1: new position ∈ Lane
then
@act1: SDV POSITION env := new position
end
end

F.2 First Refinement

F.2.1 Context c1

context c1 extends c0
constants
STEERING ANGLE
max steering
min steering

STEERING ANGLE CHANGE
max steering constraint
min steering constraint

/* Speed range*/
SPEED
max speed
min speed
/* A function assumes that an SDV actuate target steering angle to reach a target position (

actuation task) */
move

axioms
@typeof−max steering:max steering ∈ Z

@typeof−min steering:min steering ∈ Z

@min max steering:min steering<max steering
@def−STEERING ANGLE: STEERING ANGLE=min steering ..max steering

@typeof−max speed:max speed ∈ N1

@typeof−min speed:min speed ∈ N1

@min max speed:min speed<max speed
/* these just an example of steering range */
@def−speed: SPEED=min speed ..max speed
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@typeof−max steering constrint:max steering constraint ∈ Z

@typeof−min steering constrint:min steering constraint ∈ Z

@min max steering change:min steering constraint<max steering constraint
@def−STEERING ANGLE CHANGE: STEERING ANGLE CHANGE=min steering constraint

..max steering constraint

/*
* This function assumes that SDV actuates a specific speed and steering angle in order to

reach a specific

* position where SDV moves into multiple positions.

*/
@def−MOVE:move=
(

λlong 7→ lat 7→ speed 7→ angle · long 7→ lat ∈
POSITION ∧
speed ∈ SPEED ∧
angle ∈ STEERING ANGLE |
{i · i ∈ 1 .. 3 | long+ i 7→ lat+ i× speed× angle}

)

theorem@typeof−move:move ∈ POSITION× SPEED× STEERING ANGLE→ P1(

POSITION)
end

F.2.2 Machine m1

machinem1 refinesm0
sees c1
variables
SDV POSITION env
ALC Status
SDV STEERING ANGLE env
/* (CA2) (CA3) The (actual) speed of the SDV */
SDV SPEED env
/* target speed*/
ACC target speed
invariants
@typeof−steering angle: SDV STEERING ANGLE env ∈ STEERING ANGLE
/* Speed must be in a defined range of speed (abstract constant) */
@typeof−speed: SDV SPEED env ∈ SPEED
/* ACC target speed*/
@type0f−targetSpeed: ACC target speed ∈ SPEED

events
event INITIALISATION extends INITIALISATION
begin
/* (F2) The current speed and steering angle of an SDV that is randomly initialised */
@init−steering angle: SDV STEERING ANGLE env :∈ STEERING ANGLE
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@init−speed: SDV SPEED env :∈ SPEED
/* random initialised*/
@init−targetSpeed: ACC target speed :∈ SPEED
end
/*
* This event identifies speed and steering angle autonomously

*
*/
event ALC actuating
any
/* possible change of a current steering angle by ALC */
steering angle change
/* possible change of a current speed by ALC*/
sp
where
/* System status is ON*/
@grd1: ALC Status= ON
/*steering angle change definition */
@grd2: steering angle change ∈ STEERING ANGLE CHANGE
/* new steering angle of ALC computed according to the current steering and a steering

change that ALC might require */
@grd3: steering angle change+ SDV STEERING ANGLE env ∈ STEERING ANGLE
/* new speed definition */
@grd4: sp ∈min speed .. ACC target speed ∧ sp≤max speed
/* (SR1): new change of steering angle will lead into the lane */
@grd5:move(SDV POSITION env 7→ sp 7→ (SDV STEERING ANGLE env+
steering angle change) )⊆ Lane

then
/* Change a SDV’s steering based on the current steering and the required steering change

of ALC */
@act1: SDV STEERING ANGLE env := (SDV STEERING ANGLE env+
steering angle change)

/* Change a SDV’s speed by ALC */
@act2: SDV SPEED env := sp
end
/*
* This event identifies speed and steering angle manually

*/
eventManual actuating
any
/* possible change of a current steering angle by human driver */
manual steering angle
manual speed
where
@grd1:manual steering angle ∈ STEERING ANGLE
@grd2:manual speed ∈ SPEED
@grd3:move(SDV POSITION env 7→manual speed 7→manual steering angle)⊆ Lane
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then
/* new steering depends on how a driver specified steering angle */
@act1: SDV STEERING ANGLE env :=manual steering angle
@act2: SDV SPEED env :=manual speed
end

/*
* A refined event moves an SDV in its target lane based the (new) steering angle and speed

of ALC

* where a movement must lead into the lane

*/
event auto move refinesmove
any
new position
sp
steer
where
@grd0: ALC Status= ON
@grd1: new position ∈ Lane
@grd2: sp ∈ SPEED
@grd3: steer ∈ STEERING ANGLE
/* new (target) position must be within set of position inside the lane */
@grd4: new position ∈move(SDV POSITION env 7→ sp 7→ steer)
then
@act1: SDV POSITION env := new position
@act2: SDV SPEED env := sp
@act3: SDV STEERING ANGLE env := steer
end

/*
* An extended event manual moves moves an SDV in its target lane based the (new)

steering angle and speed of human driver.

* where a movement must lead into the lane

*/
eventmanual move extendsmove
where
/* new (target) position must be within set of position inside the lane */
@grd2: new position ∈move(SDV POSITION env 7→ SDV SPEED env 7→
SDV STEERING ANGLE env)

end

/*
* Driver specifies a target speed when the ALC system starts working.

*/
event ALC ON extends ALC ON
any
/* Driver may specify a target speed*/
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tsp
where
@grd2: tsp ∈ SPEED
then
@act2: ACC target speed := tsp
end

event ALC OFF extends ALC OFF
end

end

F.3 Second Refinement

F.3.1 Context c2

context c2 extends c1
sets
IMAGE
/* radar pints to capture the distance and speed of leading vehicle */
RADAR READING
STAGE
LeftLane
RightLane
constants
camera
/*
* An abstract constant uses to show how autonomous controller gets the radar points from

multiple positions

* in the driving environment.

*/
radar
/* Leading vehicle set*/
LEADING VEHICLE
Seen image
/*
* An abstract constant shows the expected results of a received radar readings

*/
Seen radar reading

OEDR task
Confidence score
target position
target steering angle
target speed
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Perception
Decision
Control
Intervention
AutonomousDriving
SAFE DISTANCE
SPEED REDUCER
speed reduced
axioms

@def−STAGE: partition(STAGE, {Perception}, {Decision}, {Control},{
AutonomousDriving}, {Intervention})

/* define leading vehicle */
@Zero or more: LEADING VEHICLE= {x · x ∈ Lane | {x} } ∪ {∅}

@score: Confidence score= 0 .. 100
@typeof−camera: camera ∈ POSITION→ IMAGE
@typeof−radar: radar ∈ POSITION→ RADAR READING
@typeof−image−seen: Seen image ∈ (IMAGE× LeftLane× RightLane)→

Confidence score
@typeof−radar−seen: Seen radar reading ∈ (RADAR READING) 7→ Lane
@typeof−path recognition:OEDR task ∈ ( LeftLane× RightLane× Confidence score×

LEADING VEHICLE) → P(POSITION)

@typeof−compute target position: target position ∈ P(POSITION)→ POSITION
@typeof−compute target steering angle: target steering angle ∈ POSITION×

STEERING ANGLE→ STEERING ANGLE CHANGE
@typeof−compute targer speed: target speed ∈ ( POSITION× SPEED×

LEADING VEHICLE)→ SPEED

@aim: ∀ SDV position· SDV position ∈ POSITION⇒
(∃ SDV speed, SDV steering · SDV steering ∈ STEERING ANGLE ∧ SDV speed ∈ SPEED⇒

move (SDV position 7→ SDV speed 7→ SDV steering)⊆ Lane
)

/*Safe distance*/
@distance: SAFE DISTANCE ∈ N1

@rd: SPEED REDUCER ∈ N1

@mitigation speed reduce: speed reduced ∈ SPEED→min speed .. SPEED REDUCER
@reduced speed range: SPEED REDUCER≤max speed
end

F.3.2 Machine m2

machinem2 refinesm1
sees c2
/*
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* This machine (M2) studies how the ALC system accomplishes its autonomous operations ,
such as perception, decision−making and control,

* to identify the steering angle and speed that autonomously moves an SDV into a position
inside the target lane

*/
variables
SDV POSITION env
ALC Status
SDV STEERING ANGLE env
SDV SPEED env
ACC target speed

/*×××*
* M2 −−−−− variables
××××*/
IMAGE env
/* Radar points variable */
RADAR reading env

leftLanePoints
rightLanePoints
desirePath
confidenceScore
/* Leading vehicle variable*/
leadingVehicleSet
targetPosition
targetSteeringAngle
steeringAngleChange
targetSpeed
distance

stage
signal

invariants

@typeof−stage: stage ∈ STAGE
@typeof−desire path: desirePath⊆ POSITION
@typeof−perceived confident: confidenceScore ∈ Confidence score
@typeof leftLanePoints: leftLanePoints ∈ LeftLane
@typeof rightLanePoints: rightLanePoints ∈ RightLane

@typeof leadingV: leadingVehicleSet ∈ LEADING VEHICLE

@t: leadingVehicleSet ̸=∅⇒ (∃ x· leadingVehicleSet= {x})

@typeof−target position: targetPosition ∈ POSITION
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@typeof−target steering angle: targetSteeringAngle ∈ STEERING ANGLE
@typeof−current steering angle change: steeringAngleChange ∈

STEERING ANGLE CHANGE
@typeof−target speed: targetSpeed ∈ SPEED

@typeof−target distance: distance ∈ Z

@typepf−signal movement: signal ∈ BOOL

@gluing inv1: ALC Status= ON ⇒ stage ∈ STAGE

/*
* (SR): The camera and radar always obtain the sensing data (image, radar points) of the

current position

*/
@consistency 1: IMAGE env= camera(SDV POSITION env)
@consistency 2: RADAR reading env= radar(SDV POSITION env)

/*
* (SR): based on the detected left/right lane lines, confidence score and potential leading

vehicle, the perception component identifies the desired path

*/
@perceivedSensingData: stage= Perception⇒ IMAGE env ∈ ran(camera) ∧
(leftLanePoints 7→ rightLanePoints 7→ confidenceScore 7→ leadingVehicleSet) ∈ dom(

OEDR task)

/*
* (SR5): before changing the stage of ACL from perception to Decision, the desired path must

be identified

*/
@perceptionTask: stage= Decision⇒ desirePath ∈ ran(OEDR task)

@targetPosition: stage= Decision ∧ confidenceScore≥ 80⇒
desirePath ∈ dom(target position)

@changeOfSteerSp: stage= Control ∧ confidenceScore≥ 80⇒
(targetPosition 7→ SDV STEERING ANGLE env) ∈ dom(target steering angle) ∧
(targetPosition 7→ SDV SPEED env 7→ leadingVehicleSet) ∈ dom(target speed)

@change ofSteeringAngle: stage= Control ∧ confidenceScore≥ 80⇒
steeringAngleChange ∈ ran(target steering angle)

@Control−consistency1: stage= Control⇒ targetSteeringAngle ∈ STEERING ANGLE
@Control−consistency2: stage= Control⇒ targetSpeed ∈ SPEED
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@Environment−consistency: stage= AutonomousDriving
⇒move(SDV POSITION env 7→ targetSpeed 7→ targetSteeringAngle)⊆ Lane

events

event INITIALISATION extends INITIALISATION
begin

@init−image: IMAGE env := camera (init position)
@init−radarReading: RADAR reading env := radar (init position)
@init−stage: stage := Perception
@init−desire path: desirePath := ∅
@init−confident score: confidenceScore := 0

@typeof leftLanePoints: leftLanePoints :∈ LeftLane
@typeof rightLanePoints: rightLanePoints :∈ RightLane
@typeof leadingVS: leadingVehicleSet :=∅
@init−target position: targetPosition :∈ POSITION
@init−target steering angle: targetSteeringAngle :∈ STEERING ANGLE
@init−change steering angle: steeringAngleChange :∈ STEERING ANGLE CHANGE
@init−target speed: targetSpeed :∈ SPEED
@init−distance: distance := 0

@typeof signal: signal := FALSE
end

event perception
any
leftLane /* given left lane */
rightLane /* given right lane */
when
@grd1: leftLane⊆ LeftLane
@grd2: rightLane⊆ RightLane
@grd3: ALC Status= ON
@grd5: stage= Perception
then
@act1: IMAGE env := camera (SDV POSITION env)
@act2: RADAR reading env := radar (SDV POSITION env)
@act3: leftLanePoints :∈ LeftLane
@act4: rightLanePoints :∈ RightLane

@act5: confidenceScore := Seen image(IMAGE env 7→ leftLanePoints 7→
rightLanePoints)

/*
* In ACC, we randomly identify the leading vehicle based on the a received radar points

* It could be either any position inside the Lane or empty

*/
/* leading vehicle*/

273



APPENDIX F. MODELLING LKA, DMS AND ACC FUNCTIONS IN THE ALC SYSTEM 274

@act6: leadingVehicleSet := Seen radar reading[{RADAR reading env}]
/*
* Here we show the predicted path that the SDV suppose

*/
@act7: desirePath := OEDR task( leftLanePoints 7→ rightLanePoints 7→ confidenceScore

7→ leadingVehicleSet)
/* change a stage of ALC to be in Decision */
@act8: stage := Decision
end

event lowConfidenceScore interven
where
@grd1: ALC Status= ON
@grd2: stage= Decision
@grd3: confidenceScore< 80

then
@act1: stage := Intervention
end

event decision
when
@grd1: ALC Status= ON
@grd2: stage= Decision
@grd3: confidenceScore≥ 80

then
@act1: targetPosition := target position(desirePath)
@act2: steeringAngleChange := target steering angle(targetPosition 7→
SDV STEERING ANGLE env)

/* a change of speed computed based on the identified (target) position, ACC target speed
and leading vehicle */

@act3: targetSpeed := target speed(targetPosition 7→ ACC target speed 7→
leadingVehicleSet)

@act4: stage := Control
end

event control
when
@grd1: ALC Status= ON
@grd2: stage= Control
@grd3: SDV STEERING ANGLE env+ steeringAngleChange ∈ STEERING ANGLE
@grd4:move(SDV POSITION env 7→ targetSpeed 7→ (SDV STEERING ANGLE env+
steeringAngleChange))⊆ Lane

then
@act1: targetSteeringAngle := steeringAngleChange+ SDV STEERING ANGLE env
@act2: stage := AutonomousDriving
end
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event correct exceeding min steering
when
@grd1: ALC Status= ON
@grd2: stage= Control
@grd3: SDV STEERING ANGLE env+ steeringAngleChange<min steering
then
@act1: stage := Intervention
@act2: targetSteeringAngle :=min steering
end

event correct exceeding max steering
when
@grd1: ALC Status= ON
@grd2: stage= Control
@grd3: SDV STEERING ANGLE env+ steeringAngleChange>max steering
then
@act1: stage := Intervention
@act2: targetSteeringAngle :=max steering
end

event correct out of lane
where
@grd1: ALC Status= ON
@grd2: stage= Control
@grd3: SDV STEERING ANGLE env+ steeringAngleChange ∈min steering ..max steering

∧
move(SDV POSITION env 7→ targetSpeed 7→ (SDV STEERING ANGLE env+
steeringAngleChange)) ̸⊆ Lane

then
@act1: stage := Intervention
@act2: targetSteeringAngle := SDV STEERING ANGLE env
end

/*
* This is a refined event from an abstract event ALC actuating for allowing a target steering

angle (autonomous steering angle) to be used

* for moving an SDV in its target lane when the stage of the autonomous controller is in
AutonomousDriving

*/
event ALC actuating with LV refines ALC actuating
any
// new position as longitudinal and lateral
SDV lon SDV lat
// leading vehicle as longitudinal and lateral
LV lon LV lat
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where
@mainGuard: leadingVehicleSet ̸=∅
// coordinates as lon and lat
@grd1: targetPosition= SDV lon 7→ SDV lat
@grd2: leadingVehicleSet= {LV lon 7→ LV lat}
/* System status is ON*/
@grd3: ALC Status= ON
/*steering angle change definition */
@grd4: steeringAngleChange ∈ STEERING ANGLE CHANGE
/* new steering angle of ALC computed according to the current steering and a steering

change that ALC might require */
@grd5: steeringAngleChange+ SDV STEERING ANGLE env ∈ STEERING ANGLE
/* new speed definition */
@grd6: targetSpeed ∈min speed .. ACC target speed
/* (SR3): the ALC system must actuate a steering angle to reach a target position that keeps

an SDV inside the target lane */
@grd8:move(SDV POSITION env 7→ targetSpeed 7→ (SDV STEERING ANGLE env+
steeringAngleChange))⊆ Lane

@grd9: stage= AutonomousDriving
@grd10: steeringAngleChange+ SDV STEERING ANGLE env= targetSteeringAngle
@grd11: signal= FALSE
then
/* Change the current steering based on the steering change of ALC system */
@act1: SDV STEERING ANGLE env := (SDV STEERING ANGLE env+
steeringAngleChange)

/* Change a SDV’s speed by ALC */
@act2: SDV SPEED env := targetSpeed
/* ready to move */
@act3: signal := TRUE
// distance to leading
@act4: distance := LV lon− SDV lon
with
/* a change of steering angle is replaced by a change identified by the ALC system */
@steering angle change: steering angle change= steeringAngleChange
/* a change of speed is replaced by a change identified by the ALC system */
@sp: sp= targetSpeed
end

event ALC actuating without LV refines ALC actuating
where
@mainGuard: leadingVehicleSet=∅
/* System status is ON*/
@grd3: ALC Status= ON
/*steering angle change definition */
@grd4: steeringAngleChange ∈ STEERING ANGLE CHANGE

276



277 APPENDIX F. MODELLING LKA, DMS AND ACC FUNCTIONS IN THE ALC SYSTEM

/* new steering angle of ALC computed according to the current steering and a steering
change that ALC might require */

@grd5: steeringAngleChange+ SDV STEERING ANGLE env ∈ STEERING ANGLE
/* new speed definition */
@grd6: targetSpeed ∈min speed .. ACC target speed
/* (SR3): the ALC system must actuate a steering angle to reach a target position that keeps

an SDV inside the target lane */
@grd8:move(SDV POSITION env 7→ targetSpeed 7→ (SDV STEERING ANGLE env+
steeringAngleChange))⊆ Lane

@grd9: stage= AutonomousDriving
@grd10: steeringAngleChange+ SDV STEERING ANGLE env= targetSteeringAngle
@grd11: signal= FALSE
then
/* Change the current steering based on the steering change of ALC system */
@act1: SDV STEERING ANGLE env := (SDV STEERING ANGLE env+
steeringAngleChange)

/* Change a SDV’s speed by ALC */
@act2: SDV SPEED env := targetSpeed
/* ready to move */
@act3: signal := TRUE
/* distance */
@act4: distance := 0

with
/* a change of steering angle is replaced by a change identified by the ALC system */
@steering angle change: steering angle change= steeringAngleChange
/* a change of speed is replaced by a change identified by the ALC system */
@sp: sp= targetSpeed
end

eventManual actuating extendsManual actuating
where
@grd4: stage= Intervention
@grd5: signal= FALSE
then
/* ready to move */
@act3: signal := TRUE
end

event safe distance violation
where
@grd1: distance< SAFE DISTANCE
@grd2: signal= TRUE
then
/* the stage of ALC changed to be in ’Intervention’*/
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@act1: stage := Intervention
/* function to assume a system would reduce the speed*/
@act2: targetSpeed := speed reduced(SDV SPEED env)
@rest distance: distance := 0

end

/* auto move whit leading vehicle */
event auto move with LV refines auto move
any
LV lon
LV lat
target SDV lon
target SDV lat
where
@grd0: ALC Status= ON
@grd1: targetPosition ∈ Lane
@grd2: targetSpeed ∈ SPEED
@grd3: targetSteeringAngle ∈ STEERING ANGLE
/* new (target) position must be within set of position inside the lane */
@grd4: targetPosition ∈move(SDV POSITION env 7→ targetSpeed 7→
targetSteeringAngle)

@SDV: targetPosition= target SDV lon 7→ target SDV lat
@grd5: signal= TRUE
@grd6: stage= AutonomousDriving
@grd7: LV lon 7→ LV lat ∈ Lane
/* new position keep safe distance */
@safe: SAFE DISTANCE> LV lon− target SDV lon

then
@act1: SDV POSITION env := targetPosition
@act2: SDV SPEED env := targetSpeed
@act3: SDV STEERING ANGLE env := targetSteeringAngle
@act4: stage := Perception
@act5: IMAGE env := camera(targetPosition)
@act6: RADAR reading env := radar(targetPosition)
@act7: signal := FALSE
/* remove the old detecting of leading vehicle */
@act8: leadingVehicleSet := {LV lon 7→ LV lat}
@reset−distance: distance := 0

with
/* a change of steering angle is replaced by a change identified by the ALC system */
@new position: new position= targetPosition
/* a change of speed is replaced by a change identified by the ALC system */
@sp: sp= targetSpeed
@steer: steer= targetSteeringAngle
end
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/* auto move without leading vehicle */
event auto move without LV refines auto move
where
@grd0: ALC Status= ON
@grd1: targetPosition ∈ Lane
@grd2: targetSpeed ∈ SPEED
@grd3: targetSteeringAngle ∈ STEERING ANGLE
/* new (target) position must be within set of position inside the lane */
@grd4: targetPosition ∈move(SDV POSITION env 7→ targetSpeed 7→
targetSteeringAngle)

@grd5: signal= TRUE
@grd6: stage= AutonomousDriving

then
@act1: SDV POSITION env := targetPosition
@act2: SDV SPEED env := targetSpeed
@act3: SDV STEERING ANGLE env := targetSteeringAngle
@act4: stage := Perception
@act5: IMAGE env := camera(targetPosition)
@act6: RADAR reading env := radar(targetPosition)
@act7: signal := FALSE
/* remove the old detecting of leading vehicle */
@act8: leadingVehicleSet :=∅
@reset−distance: distance := 0

with
/* a change of steering angle is replaced by a change identified by the ALC system */
@new position: new position= targetPosition
/* a change of speed is replaced by a change identified by the ALC system */
@sp: sp= targetSpeed
@steer: steer= targetSteeringAngle
end

eventmanual move extendsmanual move
where
@grd0: ALC Status= ON
@grd3: signal= TRUE
@grd4: stage= Intervention
then
@act2: stage := Perception
@act3: IMAGE env := camera(new position)
@act4: RADAR reading env := radar(new position)
@act5: signal := FALSE
/* remove the old detecting of leading vehicle */
@act6: leadingVehicleSet :=∅
@reset−distance: distance := 0

end

event ALC ON extends ALC ON
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end
/*
* This is an extended event to reset a stage of an autonomous controller to be at

* the perception stage when a system is switched off

*/
event ALC OFF extends ALC OFF
then
/* ALC STAGE reset into initialization value*/
@restALC: stage := Perception
@rest−image: IMAGE env := camera (init position)
@rest−radarPoints: RADAR reading env := radar (init position)
@rest signal: signal := FALSE
@reset−distance: distance := 0

end
end

F.4 Third Refinement

F.4.1 Machine m3

machinem3 refinesm2
sees c2
/*
* This machine (M3) investigates how the awareness level of a driver involves in the

autonomous operations of a system in order to

* ensure that a human driver is a fallback option when the ALC system may issue a request to
intervene.

*/
variables

SDV POSITION env
ALC Status
SDV STEERING ANGLE env
SDV SPEED env
ACC target speed
IMAGE env
RADAR reading env
leftLanePoints
rightLanePoints
desirePath
confidenceScore
leadingVehicleSet
targetPosition
targetSteeringAngle
steeringAngleChange
targetSpeed
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distance
stage
signal
/*×××*
* M3 −−−−− variables
××××*/
awarenessLevel
warningMessage
handsOnSteeringWheel
sensitiveMonitoringFeature
invariants

@typeof−awarenessLevel: awarenessLevel ∈ BOOL
@typeof−warining:warningMessage ∈ BOOL
@typeof−handsOnSteeringWheel: handsOnSteeringWheel ∈ BOOL
@typeof−sensitiveMonitoringFeature: sensitiveMonitoringFeature ∈ BOOL

@compute awarenesslevel: awarenessLevel= TRUE⇒ (handsOnSteeringWheel= TRUE ∧
sensitiveMonitoringFeature=TRUE)

@driver Aware: awarenessLevel= TRUE⇒ stage ∈ {Perception ,Decision, Control,
Intervention, AutonomousDriving}

@send interventionRequest:warningMessage= TRUE⇒ stage= Intervention

@intervention cases:warningMessage= TRUE
⇒
confidenceScore< 80 ∨
SDV STEERING ANGLE env+ steeringAngleChange /∈ STEERING ANGLE ∨
targetSpeed ∈ SPEED ∨
move(targetPosition 7→ targetSpeed 7→ (SDV STEERING ANGLE env+

steeringAngleChange)) ̸⊆ Lane ∨
distance< SAFE DISTANCE

events

event INITIALISATION extends INITIALISATION
begin
@init−awareness level: awarenessLevel := FALSE
@init−warining:warningMessage := FALSE
@init−handsOnSteeringWheel: handsOnSteeringWheel := FALSE
@init−sensitiveMonitoringFeature: sensitiveMonitoringFeature := FALSE
end

event DMS hands on wheel
where
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@grd1: ALC Status= ON
@grd2: awarenessLevel= FALSE
@grd3: handsOnSteeringWheel= FALSE
then
@act1: handsOnSteeringWheel := TRUE
/* compute based on both human monitoring features */
@act3: awarenessLevel := bool (sensitiveMonitoringFeature= TRUE)

end

event DMS detect sensitiveMonitoringFeature
where
@grd1: ALC Status= ON
@grd2: awarenessLevel= FALSE
@grd3: sensitiveMonitoringFeature= FALSE
then
@act1: sensitiveMonitoringFeature := TRUE
@act3: awarenessLevel := bool (handsOnSteeringWheel= TRUE)

end

event DMS hands off wheel extends ALC OFF
where
@grd2: awarenessLevel= TRUE
@grd3: handsOnSteeringWheel= TRUE
then
@act2: awarenessLevel := FALSE
@act3:warningMessage := FALSE
@act4: handsOnSteeringWheel := FALSE
@act5: sensitiveMonitoringFeature := FALSE

end

event DMS lost sensitiveMonitoringFeature extends ALC OFF
where
@grd3: awarenessLevel= TRUE
@grd4: sensitiveMonitoringFeature= TRUE
then
@act3: awarenessLevel := FALSE
@act4:warningMessage := FALSE
@act5: sensitiveMonitoringFeature := FALSE
@act6: handsOnSteeringWheel := FALSE

end

event ALC ON extends ALC ON
then
@reset−awareness level: awarenessLevel := FALSE
@reset−warining:warningMessage := FALSE
@reset−handsOnSteeringWheel: handsOnSteeringWheel := FALSE
@reset−sensitiveMonitoringFeature: sensitiveMonitoringFeature := FALSE
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end

event ALC OFF extends ALC OFF
then
@reset−awareness level: awarenessLevel := FALSE
@reset−warining:warningMessage := FALSE
@reset−handsOnSteeringWheel: handsOnSteeringWheel := FALSE
@reset−sensitiveMonitoringFeature: sensitiveMonitoringFeature := FALSE
end

event perception extends perception
where
@grd6: awarenessLevel= TRUE

end

event lowConfidenceScore interven extends lowConfidenceScore interven
where
@grd4: awarenessLevel= TRUE
@grd5:warningMessage= FALSE
then
@act2:warningMessage := TRUE

end

event decision extends decision
where
@grd4: awarenessLevel= TRUE

end

event control extends control
where
@grd5: awarenessLevel= TRUE
@grd6:warningMessage= FALSE

end

event correct exceeding min steering extends correct exceeding min steering
where
@grd4: awarenessLevel= TRUE
@grd5:warningMessage= FALSE
then
@act3:warningMessage := TRUE

end

event correct exceeding max steering extends correct exceeding max steering
where
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@grd4: awarenessLevel= TRUE
@grd5:warningMessage= FALSE
then
@act3:warningMessage := TRUE

end

event correct out of lane extends correct out of lane
where
@grd4: awarenessLevel= TRUE
@grd5:warningMessage= FALSE
then
@act3:warningMessage := TRUE

end

event ALC actuating with LV extends ALC actuating with LV
where
/* driver is aware*/
@grd12: awarenessLevel= TRUE
/* no request to intervene*/
@grd13:warningMessage= FALSE

end

event ALC actuating without LV extends ALC actuating without LV
where
/* driver is aware*/
@grd12: awarenessLevel= TRUE
/* no request to intervene*/
@grd13:warningMessage= FALSE

end

/*
* Awareness level of a driver must be TRUE to enable the Manual actuating event

* Warning message must be TRUE to enable this event. In any cases of intervention,

* a driver will be receptive and change Warning message to be FALSE

*/
eventManual actuating extendsManual actuating
where
@grd6: awarenessLevel= TRUE
@grd7:warningMessage= TRUE
then
@act4:warningMessage := FALSE

end

event safe distance violation extends safe distance violation
where
@grd3: awarenessLevel= TRUE
@grd4:warningMessage= FALSE
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then
@act3:warningMessage := TRUE

end

event auto move without LV extends auto move without LV
where
@grd8: awarenessLevel= TRUE
@grd9:warningMessage= FALSE

end

event auto move with LV extends auto move with LV
where
@grd8: awarenessLevel= TRUE
@grd9:warningMessage= FALSE

end

eventmanual move extendsmanual move
where
/* driver is already react, see manual actuating*/
@grd6: awarenessLevel= TRUE
@grd7:warningMessage= FALSE

end

end
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Appendix G

Intervention Timing Pattern

This appendix presents the complete Event-B models1 for the intervention timing pat-
tern, as discussed in Chapter 9.

G.1 Layer 4: Driver Reactions in Modelling Patterns

In this section, we present the complete Event-B version of the intervention timing
pattern, as outlined in section 9.1 of Chapter 9. The majority of the proof obligations
in modelling these functions were verified either automatically using Rodin provers
or with the assistance of additional external prover plug-ins, such as SMT solvers (as
illustrated in Figure G.1).

An Event-B machine for generic driver reactions is presented in the following section.

G.1.1 Intervention Timing Pattern

machinem0
/*
* Models the time constraints when the automated system issues a request to intervene.

*/
variables
/*Red flag denotes a system enters a hazardous driving event and waits a fallback driver to

react */
redFlag
/*Indicates any time of a system */
time
/*Trigger/hazard time when automated system issues a request to intervene*/

1The Event-B models for developing design patterns of SDV systems are available as a Rodin archive
at https://drive.google.com/drive/folders/1D7rVAJKCEh_-rVr9hKZZYdFDCxAP8r3F.
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FIGURE G.1: Intervention timing pattern, prover statistics.

requestTime
/*Sounding an alarm */
alarmFlag
/*Time waiting for a response from a fallback human before the alarm is sounding*/
alarmTime
/*Time when a fallback human may react to a request to intervene before the auditory

notification is sounding*/
reactionTime

invariants
@inv1: time ∈ N

@inv2: requestTime ∈ N

@inv3: alarmTime ∈ N

@inv4: redFlag ∈ BOOL
@inv5: alarmFlag ∈ BOOL
@inv6: reactionTime ∈ N

/*
* This emphasizes that a system gives the fallback human a limited time to respond if the

intervention request is sent (redFlag = TRUE).

* The limited time is included in the sum of alarm time and the time of issuing a request to
intervene. Precisely, the current time of

* a system (time) can move beyond the time of issuing a request to intervene (requestTime) to
the alert time (|alarmTime|),i.e., the waiting

* time can be written as (time ≤ requestTime + alarmTime) where a current time of a system
is equal to the time of issuing a request to

* intervene (time = requestTime).

*/
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@waiting response: redFlag= TRUE ∧ alarmFlag= FALSE ⇒ requestTime≤ time ∧ time
≤ alarmTime

/*
* This invariant ensures that the alarm will be triggered if the system exceeds the waiting time

* where the tick took intervene event blocks time progression until the alarm event triggered
the alarm.

*/
@alerting: alarmFlag= TRUE⇒ time≥ alarmTime

// if alarm then red flag is on
@alarm state: alarmFlag= TRUE⇒ redFlag= TRUE

/* alarm is a delay pattern from the request

* intervene is a deadline pattern from the request.

*/

events
event INITIALISATION
begin
/* none−deterministic assignment of a system time */
@init−time: time := 0

/* no start time of trigger event, hence zero */
@init−requestTime: requestTime := 0

@init−alarmTime: alarmTime := 0

/*No initialization of human reaction time; hence is zero*/
@init−reactionTime: reactionTime := 0

@init−flagEvent: redFlag := FALSE
@init−alarm: alarmFlag := FALSE
end

/* A trigger event indicates the entrance of a hazardous event when a system waits for a
response before an alarm is raised */

event request
any
/* Maximum time of a system waiting for a response before raises an alert*/
duration
when
/*Any time is given for waiting human’s response*/
@grd1: duration ∈ N1

/*No intervention request and alarm is OFF*/
@grd2: redFlag= FALSE ∧ alarmFlag= FALSE
then
/*Specify a time of waiting for a driver before the alarm sounds*/
@act1: alarmTime := time+ duration
/*Update a time of issuing a request to intervene*/
@act2: requestTime := time

289



APPENDIX G. INTERVENTION TIMING PATTERN 290

/*Update a flag of issuing a request to intervene*/
@act3: redFlag := TRUE
/*No reaction from human yet*/
@act4: reactionTime := 0

end

/*
* tick tock schedules the time progression associated with the alarm property

*/
event tick
where
/*Work only if a system issued a request to intervene*/
@flag intervene: redFlag= TRUE
/*System time doesn’t reach a alert time yet */
@no alarm: redFlag= TRUE ∧ alarmFlag= FALSE⇒ time≤ alarmTime
/*System time arrives on alert time, so alarm must be operating*/
@alarmOn: (time= alarmTime ∧ redFlag= TRUE)⇒ alarmFlag= TRUE
then
/* Increment timer */
@act1: time := time+ 1

end

/*
* The alarm event is ’sounding’ when a driver does not react and the counter (time) reaches (

alert time)

*/
event notify
where
/*System issues a request to intervene, while an alarm is not sounding */
@grd1: alarmFlag= FALSE ∧ redFlag= TRUE
/*System time equal to or has moved beyond alert time*/
@timeAlarm: time≥ alarmTime
then
/*Update value of alarm*/
@act1: alarmFlag := TRUE
end

/*
* A fallback human reacts before sounding the auditory notification

*/
event intervene
when
/*Automated system issues a request to intervene, while an alarm is ’Off’*/
@grd1: redFlag= TRUE
/*Possible values of system time when a driver may react*/
@grd2: time< alarmTime
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then
/*Update a driver reaction time*/
@receivedReaction: reactionTime := time
/*Update values of flag and alarm: human did react*/
@updateflag: redFlag := FALSE
end

end

G.2 ALC-Layer 4: Driver Reactions in the ALC System

In this section, we present the complete Event-B version of the application of the inter-
vention timing pattern to the Automated Lane Centring (ALC) system, as outlined in
section 9.2 of Chapter 9. The majority of the proof obligations in modelling these func-
tions were verified either automatically using Rodin provers or with the assistance of
additional external prover plug-ins, such as SMT solvers (as illustrated in Figure G.2).

FIGURE G.2: Prover statistics for modelling driver reactions in ALC system

An Event-B machine for driver reactions in the ALC system is presented in the follow-
ing section.
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G.2.1 Machine m4

machinem4 refinesm3
sees c2

/*
* This machine (M4) models the time constraints when an ALC system issues a request to

intervene. For instance, ALC system may wait for

* the driver’s reaction, the time when an ALC system may raise the alarm and wait as well, or
a time when a ALC releases the control of an SDV.

*/
variables
/*×××*
* M0 −−−−− variables
××××*/
/* (CA1) The (physical) position of the vehicle */
SDV POSITION env
/* System status is ON or OFF */
ALC Status

/*×××*
* M1 −−−−− variables
××××/
/* (CA2) The (actual) steering angle of the vehicle */
SDV STEERING ANGLE env
/* (CA3) The (actual) speed of the SDV */
SDV SPEED env
/* target speed*/
ACC target speed

/*×××*
* M2 −−−−− variables
××××*/
/* (F3) The image would obtain from camera, which can be used as the input to the

perception stage */
IMAGE env
RADAR reading env
/* indicates left lane lines in a received image */
leftLanePoints
/* indicates right lane lines in a received image */
rightLanePoints
/* (CA4) set of positions seen as the desired path */
desirePath
/* (CA5) score to show the accuracy of detection process for seeing image and identifying

desired path */
confidenceScore
leadingVehicleSet
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/* (CA6) a new (target) position that identifies form a set of positions (desired path) */
targetPosition
/* (CA7) a target steering angle that would be used to autonomously move an SDV from

current position into target position */
targetSteeringAngle
/* (F5) a required change of steering angle from a current steering to a new (target) steering

*/
steeringAngleChange
/* target speed*/
targetSpeed
/*distance */
distance
/* shows the different stages of ALC system, such as Perception, planning and etc */
stage
/* A boolean flag indicates that an SDV is ready to move*/
signal

/*×××*
* M3 −−−−− variables
××××*/
/* (CA8) shows the awareness level of a driver */
awarenessLevel
/* (F6,F7) indicates that ALC system issues an intervention request */
warningMessage
/* (CA9) indicates whether a driver puts their hands on steering wheel inside the SDV or not

*/
handsOnSteeringWheel
/* (CA10) indicates whether a driver provides a sensitive monitoring feature or not */
sensitiveMonitoringFeature

/*××××××××××
* M4 −−−−− variables
××××××××××*/

/*
* (F8) Sounding an alarm, might be On(TRUE) or Off(FALSE)

*/
auditoryNotification

/*
* This indicates a current time of a system

*/
time

/*
* This indicates when a system issues a request to intervene (warningMessage achf = TRUE

)
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*/
sentRequest

/*
* Time when a driver may react to a request to intervene before the auditory notification is

sounding.

*/
driverReact

/*
* Time waiting for a response from a driver before the the auditory notification is sounding

*/
alertTime

invariants

/*
* Alarm might be On (TRUE) or Off (False) when a driver ignores\reacts to an intervention

request

*/
@typeof−audotioryNotification: auditoryNotification ∈ BOOL

/*
* current time of ALC system

*/
@typeof−time: time ∈ N

/*
* Time of issuing a request to intervene

*/
@typeof−sentTime: sentRequest ∈ N

/*
* Time when a driver may react

*/
@typeof−receivedTime: driverReact ∈ N

/*
* Alarm time after ending waiting of a driver if a driver does not react

*/
@typeof−alarm: alertTime ∈ N

/*
* (SR18):

* This emphasises that a system gives the driver a limited time to respond if the intervention
request is sent (|warningMessage achf = TRUE|).
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* The limited time is included in the sum of alert time and the time of issuing a request to
intervene. Precisely, the current time of a system (|time|) can move beyond

* the time of issuing a request to intervene (|sentRequest tm|) to the alert time (|alertTime|),i.
e., the waiting time can be written as |time ≤ sentRequest tm + alertTime|

* where a current time of a system is equal to the time of issuing a request to intervene (|time
= sentRequest tm|).

*/
@waiting response:warningMessage= TRUE ∧ auditoryNotification= FALSE ⇒

sentRequest≤ time ∧
time≤ alertTime

/* (SR19)

* the invariant|@alerting| ensures that the auditory notification will be sent if the system
exceeds the waiting time

* where the |tick took intervene| event blocks time progression until the |alert| event sent
the auditory notification.

*/
@alerting: auditoryNotification= TRUE ∧ warningMessage= TRUE ⇒ time≥ alertTime

events

event INITIALISATION extends INITIALISATION
begin
/* alarm is OFF*/
@init−audotioryNotification: auditoryNotification := FALSE

/* time variables initialized*/
/* any current time of a system*/
@init− intervTime: time :∈ N

/*No initialization of sending intervention request time; hence is zero*/
@init−sentTime: sentRequest := 0

/*No initialization of human reaction time; hence is zero*/
@init−receivedTime: driverReact := 0

/* No initialization of alert time; hence is zero */
@init−alertTime: alertTime := 0

end

/*
* These events specify a sending time when the ALC system issues a request to intervene

* (warningMessage achf = TRUE)

*/
event lowConfidenceScore interven extends lowConfidenceScore interven
any
/* maximum time of a system waiting for a response before raises an alert */
duration
when
/*Time of waiting for a reaction from a driver*/
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@grd6: duration ∈ N1

@grd7:warningMessage= FALSE ∧ auditoryNotification= FALSE
then
/* 1) Specify a time of waiting for a driver before the alarm sounds */
@act3: alertTime := duration+ time
/* 2) Update a time of issuing a request to intervene*/
@act4: sentRequest := time

end

event correct exceeding min steering extends correct exceeding min steering
any
/* maximum time of a system waiting for a response before raises an alert */
duration
when
/*Time of waiting for a reaction from a driver*/
@grd6: duration ∈ N1

@grd7:warningMessage= FALSE ∧ auditoryNotification= FALSE
then
/* 1) Specify a time of waiting for a driver before the alarm sounds */
@act4: alertTime := duration+ time
/* 2) Update a time of issuing a request to intervene*/
@act5: sentRequest := time

end

event correct exceeding max steering extends correct exceeding max steering
any
/* maximum time of a system waiting for a response before raises an alert */
duration
when
/*Time of waiting for a reaction from a driver*/
@grd6: duration ∈ N1

@grd7:warningMessage= FALSE ∧ auditoryNotification= FALSE
then
/* 1) Specify a time of waiting for a driver before the alarm sounds */
@act4: alertTime := duration+ time
/* 2) Update a time of issuing a request to intervene*/
@act5: sentRequest := time

end

event correct out of lane extends correct out of lane
any
/* maximum time of a system waiting for a response before raises an alert */
duration
when
/*Time of waiting for a reaction from a driver*/
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@grd6: duration ∈ N1

@grd7:warningMessage= FALSE ∧ auditoryNotification= FALSE
then
/* 1) Specify a time of waiting for a driver before the alarm sounds */
@act4: alertTime := duration+ time
/* 2) Update a time of issuing a request to intervene*/
@act5: sentRequest := time

end

event safe distance violation extends safe distance violation
any
/* maximum time of a system waiting for a response before raises an alert */
duration
when
/*Time of waiting for a reaction from a driver*/
@grd5: duration ∈ N1

@grd6:warningMessage= FALSE ∧ auditoryNotification= FALSE
then
/* 1) Specify a time of waiting for a driver before the alarm sounds */
@act4: alertTime := duration+ time
/* 2) Update a time of issuing a request to intervene*/
@act5: sentRequest := time

end

/*
* The tick tock schedules the time progression associated with the alarm property

*/
event tick took intervene
where
/* works only if a system issued a request to intervene */
@grd1:warningMessage= TRUE
/* Increment duration is inside the intervention timer */
@grd2:warningMessage= TRUE ∧ auditoryNotification= FALSE⇒ time≤ alertTime
/*Time is reach alert time, auditory notification must be operating*/
@grd3: (time= alertTime ∧warningMessage= TRUE)⇒ auditoryNotification= TRUE
then
/* accept increment time */
@act1: time := time+ 1

end

/*
* A driver reacts before sounding the auditory notification

*/
event response before alarm extendsManual actuating
when
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/*ALC issues a request to intervene, while an alarm is OFF*/
@grd8:warningMessage= TRUE ∧ auditoryNotification= FALSE
/* (SR20): Possible values of current time when a driver may react */
@grd9: time≥ sentRequest ∧ time< alertTime
then
/* update a driver reaction time*/
@upd−receivedTime: driverReact := time

end

/*
* A driver reacts after sounding the auditory notification

*/
event response after alarm extendsManual actuating
when
/*ALC issues a request to intervene, while an alarm is On */
@grd8:warningMessage= TRUE ∧ auditoryNotification= TRUE
/*(SR∀∀): System has already raised an auditory notification */
@grd9: time ≥ alertTime
then
@upd−receivedTime: driverReact := time
/* rest an alarm*/
@up−alarm−state: auditoryNotification := FALSE

end

/*
* The alarm event is on when a driver does not react and the counter (time) reaches (alerttime

)

*/
event alert
when
/* ALC issues a request to intervene, while an alarm is OFF */
@grd1: auditoryNotification= FALSE ∧ warningMessage= TRUE
/*current time equal to or has moved beyond alert time */
@grd2: time≥ alertTime
then
/* update value of auditory notification*/
@act1: auditoryNotification := TRUE
end

event auto move with LV extends auto move with LV
any
duration
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/* A duration that the ALC system may take to complete its operations and moves an SDV
into a new position */

where
/* duration must be a positive number*/
@duration: duration ∈ N1

then
@act9: time := time+ duration

end

event auto move without LV extends auto move without LV
any
duration

/* A duration that the ALC system may take to complete its operations and moves an SDV
into a new position */

where
/* duration must be a positive number*/
@duration: duration ∈ N1

then
@act9: time := time+ duration

end

eventmanual move extendsmanual move
then
/* reset time*/
@upd−sendTime: sentRequest := 0

@upd−receivedTime: driverReact := 0

@upd−alertTime: alertTime := 0

/* rest variables of modelling driver reactions*/
@alram−of: auditoryNotification := FALSE

end

event DMS hands on wheel extends DMS hands on wheel
end

event DMS detect sensitiveMonitoringFeature extends
DMS detect sensitiveMonitoringFeature

end

event DMS hands off wheel extends DMS hands off wheel
then
/* reset time*/
@upd−sendTime: sentRequest := 0

@upd−receivedTime: driverReact := 0

@upd−alertTime: alertTime := 0
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/* rest variables of modelling driver reactions*/
@alram−of: auditoryNotification := FALSE

end

event DMS lost sensitiveMonitoringFeature extends DMS lost sensitiveMonitoringFeature
then
/* reset time*/
@upd−sendTime: sentRequest := 0

@upd−receivedTime: driverReact := 0

@upd−alertTime: alertTime := 0

/* rest variables of modelling driver reactions*/
@alram−of: auditoryNotification := FALSE

end

event ALC ON extends ALC ON
then
/* reset time*/
@upd−sendTime: sentRequest := 0

@upd−receivedTime: driverReact := 0

@upd−alertTime: alertTime := 0

/* rest variables of modelling driver reactions*/
@alram−of: auditoryNotification := FALSE

end

event ALC OFF extends ALC OFF
then
/* reset time*/
@upd−sendTime: sentRequest := 0

@upd−receivedTime: driverReact := 0

@upd−alertTime: alertTime := 0

/* rest variables of modelling driver reactions*/
@alram−of: auditoryNotification := FALSE
end

event perception extends perception
end

event decision extends decision
end

event control extends control
end

event ALC actuating with LV extends ALC actuating with LV
end
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event ALC actuating without LV extends ALC actuating without LV
end

end

301





References

[1] Asim Abdulkhaleq and Stefan Wagner. Experiences with applying stpa to
software-intensive systems in the automotive domain. STAMP Conference at MIT,
2013.

[2] Asim Abdulkhaleq, Stefan Wagner, and Nancy Leveson. A comprehensive safety
engineering approach for software-intensive systems based on stpa. Procedia En-
gineering, 128:2–11, 2015.

[3] Asim Abdulkhaleq, Daniel Lammering, Stefan Wagner, Jürgen Röder, Norbert
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[58] Rânik Guidolini, Lucas G Scart, Luan FR Jesus, Vinicius B Cardoso, Claudine
Badue, and Thiago Oliveira-Santos. Handling pedestrians in crosswalks using
deep neural networks in the iara autonomous car. In 2018 International Joint Con-
ference on Neural Networks (IJCNN), pages 1–8. IEEE, 2018.

[59] Abhishek Gupta, Alagan Anpalagan, Ling Guan, and Ahmed Shaharyar Khwaja.
Deep learning for object detection and scene perception in self-driving cars: Sur-
vey, challenges, and open issues. Array, 10:100057, 2021.

[60] Anthony Hall. Seven myths of formal methods. IEEE software, 7(5):11–19, 1990.

[61] Akihiro Hata, Keijiro Araki, Shigeru Kusakabe, Yoichi Omori, and Hsin-Hung
Lin. Using hazard analysis stamp/stpa in developing model-oriented formal
specification toward reliable cloud service. In 2015 International Conference on
Platform Technology and Service, pages 23–24. IEEE, 2015.

[62] Richard Hawkins. 1.2 – identifying hazardous system behaviour, practical guid-
ance – automotive, Seen (2021/07/10). URL https://www.york.ac.uk/media/

assuring-autonomy/bodyofknowledgestructure/section1imagesanddocs/1.

2%20automotive%20practical%20guidance%20Richard%20Hawkins.pdf.

[63] Thai Son Hoang. An introduction to the event-b modelling method. Industrial
Deployment of System Engineering Methods, pages 211–236, 2013.

[64] Thai Son Hoang, Dana Dghaym, Colin Snook, and Michael Butler. A composition
mechanism for refinement-based methods. In 2017 22nd International Conference
on Engineering of Complex Computer Systems (ICECCS), pages 100–109. IEEE, 2017.

[65] Thai Son Hoang, Naoto Sato, Tomoyuki Myosin, Michael Butler, Yuichiroh Nak-
agawa, and Hideto Ogawa. Policing functions for machine learning systems. In
Workshop on Verification and Validation of Autonomous Systems: Satellite Workshop of
Floc., 2018.

[66] Jeroen H Hogema, Sjoerd C De Vries, Jan BF Van Erp, and Raymond J Kiefer. A
tactile seat for direction coding in car driving: Field evaluation. IEEE Transactions
on Haptics, 2(4):181–188, 2009.

308

https://www.york.ac.uk/media/assuring-autonomy/bodyofknowledgestructure/section1imagesanddocs/1.2%20automotive%20practical%20guidance%20Richard%20Hawkins.pdf
https://www.york.ac.uk/media/assuring-autonomy/bodyofknowledgestructure/section1imagesanddocs/1.2%20automotive%20practical%20guidance%20Richard%20Hawkins.pdf
https://www.york.ac.uk/media/assuring-autonomy/bodyofknowledgestructure/section1imagesanddocs/1.2%20automotive%20practical%20guidance%20Richard%20Hawkins.pdf


309 REFERENCES

[67] Hommes and Qi Van Eikema. Review and assessment of the iso 26262 draft road
vehicle-functional safety. Technical report, SAE Technical Paper, 2012.

[68] Giles Howard, Michael Butler, John Colley, and Vladimiro Sassone. Formal anal-
ysis of safety and security requirements of critical systems supported by an ex-
tended stpa methodology. In 2017 IEEE European Symposium on Security and Pri-
vacy Workshops (EuroS&PW), pages 174–180. IEEE, 2017.

[69] Giles Howard, Michael Butler, John Colley, and Vladimiro Sassone. A method-
ology for assuring the safety and security of critical infrastructure based on stpa
and event-b. International Journal of Critical Computer-Based Systems, 9(1-2):56–75,
2019.

[70] Henry Alexander Ignatious, Manzoor Khan, et al. An overview of sensors in
autonomous vehicles. Procedia Computer Science, 198:736–741, 2022.

[71] Shantanu Ingle and Madhuri Phute. Tesla autopilot: semi autonomous driving,
an uptick for future autonomy. International Research Journal of Engineering and
Technology, 3(9):369–372, 2016.

[72] ISO. Road vehicles – functional safety. International Organization for Standardiza-
tion, 2018.

[73] ISO. Pas 21448-road vehicles-safety of the intended functionality. International
Organization for Standardization, 2019.

[74] Ruochen Jiao, Hengyi Liang, Takami Sato, Junjie Shen, Qi Alfred Chen, and
Qi Zhu. End-to-end uncertainty-based mitigation of adversarial attacks to au-
tomated lane centering. arXiv preprint arXiv:2103.00345, 2021.

[75] Maryam Kamali, Louise A Dennis, Owen McAree, Michael Fisher, and Sandor M
Veres. Formal verification of autonomous vehicle platooning. Science of computer
programming, 148:88–106, 2017.

[76] Maryam Kamali, Sven Linker, and Michael Fisher. Modular verification of vehi-
cle platooning with respect to decisions, space and time. In International Workshop
on Formal Techniques for Safety-Critical Systems, pages 18–36. Springer, 2018.

[77] Davis King. Dlib c++ library. Access on: http://dlib. net, 2012.

[78] OM Kirovskii and VA Gorelov. Driver assistance systems: analysis, tests and the
safety case. iso 26262 and iso pas 21448. IOP Conference Series: Materials Science
and Engineering, 534(1), 2019.

[79] Philip Koopman. Challenges in autonomous vehicle validation: Keynote presen-
tation abstract. In Proceedings of the 1st International Workshop on Safe Control of
Connected and Autonomous Vehicles, pages 3–3, 2017.

309



REFERENCES 310

[80] Philip Koopman and Michael Wagner. Challenges in autonomous vehicle testing
and validation. SAE International Journal of Transportation Safety, 4(1):15–24, 2016.

[81] Philip Koopman, Uma Ferrell, Frank Fratrik, and Michael Wagner. A safety stan-
dard approach for fully autonomous vehicles. In International Conference on Com-
puter Safety, Reliability, and Security, pages 326–332. Springer, 2019.

[82] Neil Lerner, James Jenness, Emanuel Robinson, Timothy Brown, Carryl Bald-
win, Robert E Llaneras, et al. Crash warning interface metrics. Technical report,
United States. National Highway Traffic Safety Administration, 2011.

[83] Michael Leuschel and Michael Butler. Prob: an automated analysis toolset for
the b method. International Journal on Software Tools for Technology Transfer, 10(2):
185–203, 2008.

[84] N. Leveson and J.P. Thomas. Stpa handbook. https://psas.scripts.mit.edu/
home/get_file.php?name=STPA_handbook.pdf, 2018.

[85] Nancy Leveson, Mirna Daouk, Nicolas Dulac, and Karen Marais. Applying
stamp in accident analysis. In NASA Conference Publication, pages 177–198.
NASA; 1998, 2003.

[86] Nancy G Leveson. Engineering a safer world: Systems thinking applied to safety. The
MIT Press, 2016.

[87] Xiaodong Liu, Hongji Yang, and Hussein Zedan. Formal methods for the re-
engineering of computing systems: a comparison. In Proceedings Twenty-First An-
nual International Computer Software and Applications Conference (COMPSAC’97),
pages 409–414. IEEE, 1997.

[88] Matt Luckcuck, Marie Farrell, Louise A Dennis, Clare Dixon, and Michael Fisher.
Formal specification and verification of autonomous robotic systems: A survey.
ACM Computing Surveys (CSUR), 52(5):1–41, 2019.

[89] Haneet Singh Mahajan, Thomas Bradley, and Sudeep Pasricha. Application of
systems theoretic process analysis to a lane keeping assist system. Reliability En-
gineering & System Safety, 167:177–183, 2017.

[90] Amel Mammar and Marc Frappier. Modeling of a speed control system using
event-b. In International Conference on Rigorous State-Based Methods, pages 367–
381. Springer, 2020.

[91] Frederick Hirsch Marcellus Buchheit. A short introduction into trustworthi-
ness., March 2018. URL https://www.iiconsortium.org/news/joi-articles/

2018-Sept-JoI_A_Short_Introduction_into_Trustworthiness-TTG.pdf.

[92] Thomas C McKelvey. How to improve the effectiveness of hazard and operability
analysis. IEEE Transactions on Reliability, 37(2):167–170, 1988.

310

https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
https://www.iiconsortium.org/news/joi-articles/2018-Sept-JoI_A_Short_Introduction_into_Trustworthiness-TTG.pdf
https://www.iiconsortium.org/news/joi-articles/2018-Sept-JoI_A_Short_Introduction_into_Trustworthiness-TTG.pdf


311 REFERENCES

[93] Natasha Merat, A Hamish Jamson, Frank CH Lai, Michael Daly, and Oliver MJ
Carsten. Transition to manual: Driver behaviour when resuming control from
a highly automated vehicle. Transportation research part F: traffic psychology and
behaviour, 27:274–282, 2014.

[94] Rhiannon Michelmore, Marta Kwiatkowska, and Yarin Gal. Evaluating uncer-
tainty quantification in end-to-end autonomous driving control. arXiv preprint
arXiv:1811.06817, 2018.

[95] John A Michon. A critical view of driver behavior models: what do we know,
what should we do? In Human behavior and traffic safety, pages 485–524. Springer,
1985.

[96] Christopher A Miller and Raja Parasuraman. Designing for flexible interaction
between humans and automation: Delegation interfaces for supervisory control.
Human factors, 49(1):57–75, 2007.

[97] General Motors. Self-driving safety report, Sean (2020-05-27). URL https://

www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf.

[98] General Motors. Self-driving safety report, Sean (2020-05-27). URL https://

www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf.

[99] Huansheng Ning, Rui Yin, Ata Ullah, and Feifei Shi. A survey on hybrid human-
artificial intelligence for autonomous driving. IEEE Transactions on Intelligent
Transportation Systems, 2021.

[100] National Transportation Safety Board (NTSB). Preliminary report
hwy18mh010, Seen (2020/01/22). URL https://www.ntsb.gov/

Pages/PageNotFoundError.aspx?requestUrl=https://www.ntsb.gov/

investigations/AccidentReports/Reports/HWY18MH010-%20prelim.pdf.

[101] Society of Automotive Engineers (SAE). Taxonomy and definitions for terms
related to on-road motor vehicle automated driving systems., Sean (2019/11/22).
URL https://www.sae.org/standards/content/j3016_201806/.

[102] O’Kane. Tesla starts using in-car camera for autopilot driver monitoring.,
Sean (2021-05-27). URL https://www.theverge.com/2021/5/27/22457430/

tesla-in-car-camera-driver-monitoring-system.

[103] D.G. Padmavathi and M. Shanmugapriya. A survey of attacks, security mecha-
nisms and challenges in wireless sensor networks. arXiv preprint arXiv:0909.0576,
2009.

[104] Yunxian Pan, Qinyu Zhang, Yifan Zhang, Xianliang Ge, Xiaoqing Gao, Shiyan
Yang, and Jie Xu. Lane-change intention prediction using eye-tracking technol-
ogy: A systematic review. Applied Ergonomics, 103:103775, 2022.

311

https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf
https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf
https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf
https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf
https://www.ntsb.gov/Pages/PageNotFoundError.aspx?requestUrl=https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-%20prelim.pdf
https://www.ntsb.gov/Pages/PageNotFoundError.aspx?requestUrl=https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-%20prelim.pdf
https://www.ntsb.gov/Pages/PageNotFoundError.aspx?requestUrl=https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-%20prelim.pdf
https://www.sae.org/standards/content/j3016_201806/
https://www.theverge.com/2021/5/27/22457430/tesla-in-car-camera-driver-monitoring-system
https://www.theverge.com/2021/5/27/22457430/tesla-in-car-camera-driver-monitoring-system


REFERENCES 312

[105] Raja Parasuraman, Thomas B Sheridan, and Christopher D Wickens. A model
for types and levels of human interaction with automation. IEEE Transactions on
systems, man, and cybernetics-Part A: Systems and Humans, 30(3):286–297, 2000.

[106] Darsh Parekh, Nishi Poddar, Aakash Rajpurkar, Manisha Chahal, Neeraj Kumar,
Gyanendra Prasad Joshi, and Woong Cho. A review on autonomous vehicles:
Progress, methods and challenges. Electronics, 11(14):2162, 2022.

[107] David Lorge Parnas and Jan Madey. Functional documents for computer sys-
tems. Science of Computer programming, 25(1):41–61, 1995.

[108] Haapanen Pentti and Helminen Atte. Failure mode and effects analysis of
software-based automation systems. VTT Industrial Systems, STUK-YTO-TR, 190:
190, 2002.

[109] Edson Prestes, Joel Luis Carbonera, Sandro Rama Fiorini, Vitor AM Jorge, Mara
Abel, Raj Madhavan, Angela Locoro, Paulo Goncalves, Marcos E Barreto, Maki
Habib, et al. Towards a core ontology for robotics and automation. Robotics and
Autonomous Systems, 61(11):1193–1204, 2013.

[110] Yi Qi, Philippa Ryan Conmy, Wei Huang, Xingyu Zhao, and Xiaowei Huang.
A hierarchical hazop-like safety analysis for learning-enabled systems. arXiv
preprint arXiv:2206.10216, 2022.

[111] Yi Qi, Yi Dong, Xingyu Zhao, and Xiaowei Huang. Stpa for learning-enabled
systems: A survey and a new method. arXiv preprint arXiv:2302.10588, 2023.

[112] Millie Radovic. Tech talk: Untangling the 5 levels of drone au-
tonomy, last accessed 2022/11/25. URL https://droneii.com/project/

drone-autonomy-levels.

[113] Anand S Rao and Michael Wooldridge. Foundations of rational agency. In Foun-
dations of rational agency, pages 1–10. Springer, 1999.

[114] Stefan Riedmaier, Thomas Ponn, Dieter Ludwig, Bernhard Schick, and Frank
Diermeyer. Survey on scenario-based safety assessment of automated vehicles.
IEEE access, 8:87456–87477, 2020.

[115] Highway safety research & communications (HSRC). Top safety picks by
hsrc., last accessed 2022/06/22. URL https://www.iihs.org/iihs/ratings/

TSP-List.

[116] Asieh Salehi Fathabadi, Colin Snook, Dana Dghaym, Thai Son Hoang, Fahad
Alotaibi, and Michael Butler. Designing critical systems using hierarchical stpa
and event-b. In Rigorous State-Based Methods - 9th International Conference, ABZ
2023, Nancy, France, May 30 - June 2, 2023, Proceedings, pages 220–237. Springer,
2023. URL https://doi.org/10.1007/978-3-031-33163-3_17.

312

https://droneii.com/project/drone-autonomy-levels
https://droneii.com/project/drone-autonomy-levels
https://www.iihs.org/iihs/ratings/TSP-List
https://www.iihs.org/iihs/ratings/TSP-List
https://doi.org/10.1007/978-3-031-33163-3_17


313 REFERENCES

[117] Mohammad Reza Sarshogh and Michael Butler. Specification and refinement of
discrete timing properties in event-b. Electronic Communications of the EASST, 36,
2011.

[118] Stuart S Shapiro. Privacy risk analysis based on system control structures: Adapt-
ing system-theoretic process analysis for privacy engineering. In 2016 IEEE Secu-
rity and Privacy Workshops (SPW), pages 17–24. IEEE, 2016.

[119] Thomas B Sheridan and William L Verplank. Human and computer control of
undersea teleoperators. Technical report, Massachusetts Inst of Tech Cambridge
Man-Machine Systems Lab, 1978.

[120] Tereza Soukupova and Jan Cech. Eye blink detection using facial landmarks. In
21st computer vision winter workshop, Rimske Toplice, Slovenia, 2016.

[121] Sardar Muhammad Sulaman, Armin Beer, Michael Felderer, and Martin Höst.
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