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Abstract. Algebraic topology has proved to be a useful tool in the study of distributed comput-

ing. In this paper, we take a geometric realization problem that arises in distributed computing

and formulate it as a more general problem in algebraic topology. We go on to give solutions in

some initial cases, show that a modified problem has solutions in a wider range of cases, and relate

the solutions back to distributed computing.

1. Introduction

This paper investigates problems distributed computing via algebraic topology. Broadly speak-

ing, a distributed computing system consists of multiple software components that are on multiple

computers but run as a single system. The goal of distributed computing is to make such a network

operate as a single computer [26]. Examples of distributed systems include the world wide web,

massive multi-player online games and telecommunications networks. Algebraic topology studies

the inherent shape of topological spaces that remains unchanged by continuous deformations. This

is done by assigning algebraic objects to spaces, such as homology or homotopy groups, that do not

change if the space is changed by a continuous deformation. Algebraic topology has proved to be a

very powerful way of reducing complex systems to more manageable ones.

Topology made a dramatic appearance in distributed computing in the fundamental discovery

by Fischer, Lynch, and Paterson in 1985 (the FLP impossibility theorem [13]) that demonstrated

traditional Turing computability theory [38, 39] is not sufficient for analyzing computability problems

in asynchronous distributed systems. This implied that distributed computing is different from

standard Turing computing, and led to the creation of highly active research on computability and

efficiency in asynchronous distributed systems. The topological methods used involved simplicial

complexes and continuous maps, and were more in the realm of point-set topology.
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Algebraic topology appeared in the revolutionary work of Herlihy and Shavit [23] in 1993 as

a means of modelling and analyzing computability and complexity problems in asynchronous dis-

tributed systems. Herlihy and Rajsbaum [19] used this approach to model loop agreement tasks in

terms of 2-dimensional simplicial complexes and simplicial maps, and showed that the notion of one

task being harder than another (one implements the other) could be characterized algebraically in

terms of homomorphisms between fundamental groups of the corresponding simplicial complexes.

A higher dimensional version of this was introduced by Liu, Xu and Pan [28] in which the algebraic

invariants used were homology groups instead of the fundamental group, and the homomorphisms

that needed to be geometrically realized were for (n+1)-dimensional spaces with torsion-free homol-

ogy concentrated in degree n (that is, Hn(X;Z) is a direct sum of copies of Z and Hm(X;Z) ∼= 0 for

m /∈ {0, n}). This was developed further by Yue, Wu and Lei [35] by extending from the torsion-free

case to any abelian group, but still with homology concentrated in degree n. In this paper we extend

further by allowing for homology in multiple degrees.

The paper aims to generate interest among algebraic topologists for the field of distributed com-

puting and vice-versa. It is organized into three parts. The first focuses on algebraic topology

(Sections 2 to 6), the second part focuses on computing science (Sections 7 and 8), and the third

part focuses on the connection between the two in Section 9. Some key concepts from algebraic topol-

ogy are homology and homotopy groups, homology decomposition, mapping cones, the Hurewicz

homomorphism and simplicial approximation. Some key concepts from distributed omputing are

distributed systems, tasks, particularly rendezvous tasks, protocols, and the computability and com-

plexity of solving tasks.

We would like to thank the referees for many valuable suggestions that have improved the paper.

2. Motivation in algebraic topology

Prompted by a problem in distributed computing, explained further in Section 8, we consider the

following geometric realization problem.

Realization Problem: Let X and X ′ be path-connected spaces and fix n ≥ 2. Suppose that there

are maps ϕ : Sn −→ X and ϕ′ : Sn −→ X ′ and there is a commutative diagram

H∗(S
n;Z)

ϕ∗ //

ϕ′∗ &&MM
MMM

MMM
MM

H∗(X;Z)

γ

��
H∗(X

′;Z)
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for some Z-module map γ. Find a map g : X −→ X ′ such that g∗ = γ and there is a diagram

Sn
ϕ
//

ϕ′ !!B
BB

BB
BB

B X

g

��
X ′

that commutes up to homotopy (that is, ϕ′ ' g ◦ ϕ).

The problem will be broken down into a Homological Problem and a Homotopical Problem. The

Homological Problem looks for any map g such that g∗ = γ. The Homotopical Problem then aims

to choose a map g among all possible maps g satisfying the Homological Problem with the property

that g ◦ϕ ' ϕ′. In Theorem 5.7, a criterion is given for when the Realization Problem can be solved

that recovers the solutions in [28] and [35]. It is too much to hope that the Realization Problem

always has a solution but in Theorem 6.7 the Realization Problem is “normalized” in a manner that

shows a solution to the Homological Problem implies a solution to the Homotopical Problem.

Geometric realization problems like this have a long and rich history in Algebraic Topology.

Steenrod famously asked which graded algebras could be realized as the cohomology rings of spaces,

and this has generated an enormous amount of mathematics. Steenrod [37] showed that the poly-

nomial algebra Z[x] with x of even degree k can be realized if and only if k ∈ {2, 4}. Changing the

ground ring to the integers modulo a prime p, a complete classification of those polynomial algebras

generated by multiple even degree elements has only recently been solved [1, 32]. Steenrod’s problem

could be extended to ask, for those graded algebras that can be realized as the cohomology rings of

spaces, which algebra maps can also be realized as maps of spaces. Much less has been done on this

problem. Our Realization Problem is a homological version of this, which further asks for a “trace”

to be preserved in the form of a Hurewicz image (the image of ϕ∗ being sent to the image of ϕ′∗).

As such, it is an interesting problem in its own right.

The Realization Problem could, of course, be extended by changing Sn to some other fixed space

Y . This would increase the complexity of the problem. While this would be interesting from the

point of view of algebraic topology, it may diverge from distributed computing, where an appropriate

link is so far only known for the case of the sphere. So for now we will deal only with the case of a

sphere.

Throughout Sections 3 to 6 it will be assumed the reader has background in homology (for exam-

ple, Hatcher’s book [17]) and homotopy theory (for example, the books of Arkowitz [2], Brown [8]

or Selick [37]).

3. Preliminary information on the homotopy theory of spheres and Moore spaces

We begin with a brief description of homotopy cofibrations, as this will be an important tool used

through Sections 3 to 6. Suppose that A
f−→ B is a continuous map between pointed path-connected

spaces. Let I = [0, 1] be the unit interval with basepoint 0 and let a0 ∈ A be the basepoint. The
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reduced cone on A is the quotient space CA = (A× I)/ ∼ where (a, 1) ∼ (a′, 1) and (a0, t) ∼ (a0, 0)

for all a, a′ ∈ A and t ∈ I. Intuitively, collapse the top of the cylinder A× I to a point and collapse

the line over the basepoint to a0. The mapping cone of f is the quotient space

B ∪f CA = (B q CA)/ ∼

where B q CA is the disjoint union of B and CA and the relation is given by f(a) ∼ (a, 0) for all

a ∈ A. There is a map B −→ B ∪f CA given by inclusion. This results in a sequence of maps

A
f−→ B −→ C

where C = B∪f CA. This is referred to as a homotopy cofibration. A key property is that it induces

a long exact sequence in homology groups. (This should be thought of as a “working definition” of

a homotopy cofibration, and is all we need for now. The actual definition of a cofibration appears

in Section 9, which is in terms of an extension property. A homotopy version of this then leads to

the precise definition of a homotopy cofibration.)

Going a step further, taking the mapping cone of the inclusion B −→ B ∪f CA gives a space

homotopy equivalent to the one obtained by identifying the subspace B of B∪f CA to the basepoint,

which in turn is homotopy equivalent to the suspension ΣA. This lets us extend the maps in a

homotopy cofibration to a homotopy cofibration sequence

A
f−→ B −→ C

δ−→ ΣA.

The map δ geometrically realizes the boundary map in the long exact sequence of homology groups

induces by the homotopy cofibration A
f−→ B −→ C. Finally, any homotopy commutative diagram

A
f
//

��

B

��
A′

f ′

// B

induces a homotopy commutative diagram of homotopy cofibration sequences

A
f
//

��

B //

��

C
δ //

��

ΣA

Σf

��
A′

f ′

// B′ // C ′
δ′ // ΣA′

which could be truncated to a homotopy commutative diagram of homotopy cofibrations.

Now we move on to spheres and Moore spaces. Let k be an integer. For n ≥ 1, let

k : Sn −→ Sn
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be the map of degree k. Precisely, Sn is homeomorphic to Σn−1S1, the (n−1)-fold suspension of S1,

and k is the (n − 1)-fold suspension of the degree k map on S1. It induces multiplication by k on

Hn(Sn;Z).

Define the mod-k Moore space Pn+1(k) by the homotopy cofibration

Sn
k−→ Sn −→ Pn+1(k).

This Moore space is characterized by the fact that

H̃m(Pn+1(k);Z) ∼=

 Z/kZ if m = n,

0 if m 6= n.

Note that if k = 1 the mapping cone is contractible and if k is negative then the mapping cone

is homotopy equivalent to that for |k|. So in what follows it may be assumed that k ≥ 2. The

characterization also implies that ΣPn+1(k) ' Pn+2(k). Further, if p and q are coprime, then the

group isomorphism Z/pqZ ∼= Z/pZ⊕ Z/qZ induces a homotopy equivalence

(1) Pn+1(pq) ' Pn+1(p) ∨ Pn+1(q).

Iterating the homotopy equivalence (1), if k = pr11 · · · p
r`
` is a factorization of k into a product of

prime powers, where {p1, . . . , p`} are distinct primes, then there is a homotopy equivalence

(2) Pn+1(k) '
∨̀
j=1

Pn+1(p
rj
j ).

Therefore, for Moore spaces, we need only focus on those of the form Pn+1(pr) where p is a prime.

The next three lemmas describe building block cases leading to Proposition 3.5.

Lemma 3.1. Suppose that there is a homomorphism Hn(Sn;Z)
γ−→ Hn(Sn;Z). Then there is a

map g : Sn −→ Sn such that g∗ = γ.

Proof. Let a generate Hn(Sn;Z) ∼= Z. As γ is a homomorphism it is determined by γ(a). If γ(a) =

t · a for some t ∈ Z then let g : Sn −→ Sn be the map of degree t. This satisfies g∗(a) = t · a = γ(a),

so g∗ = γ. �

Fix a prime p and an integer r ≥ 1. As a CW -complex, Pn+1(pr) has one 0-cell, one n-cell and

one (n+ 1)-cell. Let

τ : Sn −→ Pn+1(pr)

be the inclusion of the 0 and n-cells. Observe that if a generates Hn(Sn;Z) ∼= Z and b generates

Hn(Pn+1(pr);Z) ∼= Z/prZ then τ∗(a) = b.

For any path-connected space X and integer t there is a map ΣX
t−→ ΣX of degree t. This

follows since there is a homeomorphism ΣX ∼= S1 ∧X and the map t is obtained by mutiplying by t

in the S1-coordinate and doing the identity map in the X-coordinate. Consequently, in homology t∗
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is multiplication by t on Hn(ΣX;Z) for all n ≥ 1. In particular, if n ≥ 2 then Pn+1(pr) is a

suspension, implying that it has a degree t map.

Lemma 3.2. Suppose that there is a homomorphism Hn(Sn;Z)
γ−→ Hn(Pn+1(pr);Z) where p is a

prime and r ≥ 1. Then there is a map g : Sn −→ Pn+1(pr) such that g∗ = γ.

Proof. Let a generate Hn(Sn;Z) ∼= Z and b generate Hn(Pn+1(pr);Z) ∼= Z/prZ. As γ is a homo-

morphism it is determined by γ(a). Suppose that γ(a) = t · b for some t ∈ Z/prZ. Let g be the

composite

g : Sn
τ−→ Pn+1(pr)

t−→ Pn+1(pr).

Then g∗(a) = t∗(τ∗(a)) = t∗(b) = t · b = γ(a). Thus g∗ = γ. �

Lemma 3.3. Suppose that there is a homomorphism Hn(Pn+1(pr);Z)
γ−→ Hn(Pn+1(qs);Z) where

p and q are primes and r, s ≥ 1. Then there is a map g : Pn+1(pr) −→ Pn+1(qs) such that g∗ = γ.

Proof. Let a generate Hn(Pn+1(pr);Z) ∼= Z/prZ and let b generate Hn(Pn+1(qs);Z) ∼= Z/qsZ. As γ

is a homomorphism it is determined by γ(a). Suppose that γ(a) = t · b for some t ∈ Z/qsZ. There

are three cases.

Case 1 : p and q are different primes. The only homomorphism Z/prZ γ−→ Z/qsZ is the trivial one,

so if we take g : Pn+1(pr) −→ Pn+1(qs) to be the trivial map, then g∗ = γ.

Case 2 : p = q and s ≥ r. Then Z/prZ γ−→ Z/psZ is determined by γ(a) = t · b where t = ps−r · t′

for some t′ ≥ 1. Define the map ωsr by the homotopy cofibration diagram

Sn
pr

// Sn //

ps−r

��

Pn+1(pr)

ωs
r

��
Sn

ps

// Sn // Pn+1(ps).

Notice that ωsr is degree ps−r on the n-cell and degree 1 on the (n + 1)-cell. Therefore, in integral

homology, (ωsr)∗(a) = ps−r · b. Let g be the composite

g : Pn+1(pr)
ωs

r−→ Pn+1(ps)
t′−→ Pn+1(ps).

Then g∗(a) = t′∗((ω
s
r)∗(a)) = t′∗(p

r−s · b) = t′ · pr−s · b = t · b. Thus g∗ = γ.

Case 3 : p = q and s < r. Then Z/prZ γ−→ Z/psZ is determined by γ(a) = t · b where t ≥ 1. Define

the map ρsr by the homotopy cofibration diagram

Sn
pr

//

pr−s

��

Sn // Pn+1(pr)

ρsr
��

Sn
ps

// Sn // Pn+1(ps).
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Notice that ρsr is degree 1 on the n-cell and degree pr−s on the (n + 1)-cell. Therefore, in integral

homology, (ρsr)∗(a) = b. Let g be the composite

g : Pn+1(pr)
ρsr−→ Pn+1(ps)

t−→ Pn+1(ps).

Then g∗(a) = t∗((ρ
s
r)∗(a)) = t∗(b) = t · b. Thus g∗ = γ. �

Remark 3.4. Since there is no nontrivial homomorphism Z/prZ −→ Z, any homomorphism

Hn(Pn+1(pr);Z)
γ−→ Hn(Sn;Z) is geometrically realized by the trivial map Pn+1(pr) −→ Sn.

Next, the previous lemmas are combined. Fix n ≥ 2 so that all spheres and Moore spaces are

suspensions. Let

M =

( k∨
i=1

Sn
)
∨
( ∨̀
j=1

Pn+1(p
rj
j )

)
and N =

( u∨
s=1

Sn
)
∨
( v∨
t=1

Pn+1(prtt )

)
.

Then

Hn(M ;Z) ∼=
( k⊕
i=1

Z
)
⊕
(⊕̀
j=1

Z/prjj Z
)

and Hn(N ;Z) ∼=
( u⊕
s=1

Z
)
⊕
( v⊕
t=1

Z/prtt Z
)
.

Proposition 3.5. Suppose that there is a homomorphism Hn(M ;Z)
γ−→ Hn(N ;Z). Then there is

a map g : M −→ N such that g∗ = γ.

Proof. Let {a1, . . . , ak} and {b1, . . . , b`} respectively generate the integral and torsion parts of

Hn(M ;Z), and let {c1, . . . , cu} and {d1, . . . , dv} respectively generate the integral and torsion parts

of Hn(N ;Z). As γ is a homomorphism it is determined by its action on the generating set of

Hn(M ;Z). Suppose that for 1 ≤ i ≤ k we have

(3) γ(ai) =

u∑
s=1

αi,s · cs +

v∑
t=1

βi,t · dt,

where αi,s ∈ Z and βi,t ∈ Z/prtt Z. Noting that there are no nontrivial homomorphisms from a finite

abelian group to Z, suppose that for 1 ≤ j ≤ ` we have

(4) γ(bj) =

v∑
t=1

δj,t · dt,

where δj,t ∈ Z/prtt Z.

For a space X let ΣX
σ−→ ΣX∨ΣX be the standard suspension comultiplication. For any integer

m ≥ 2, let

σm : ΣX −→
m∨
i=1

ΣX

be an m-fold iteration of σ. As σ is homotopy coassociative, the order in which the iteration

forming σm takes place is irrelevant. For 1 ≤ i ≤ k define εi : S
n −→ N by the composite

εi : S
n σu+v−→

( u∨
s=1

Sn
)
∨
( v∨
t=1

Sn
)

(
∨u

s=1 αi,s)∨(
∨v

t=1 βi,t·τ)
−−−−−−−−−−−−−−−−−−→

( u∨
s=1

Sn
)
∨
( v∨
t=1

Pn+1(prtt )

)
= N.
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Then the definition of εi, Lemmas 3.1 and 3.2, and (3) imply that (εi)∗(aj) = γ(ai).

For 1 ≤ j ≤ ` define εj : Pn+1(p
rj
j ) −→ N by the composite

εj : Pn+1(p
rj
j )

σv−→
v∨
t=1

Pn+1(p
rj
j )

∨v
t=1 δj,t·fj,t−−−−−−−−→

v∨
t=1

Pn+1(prtt )
I−→
( u∨
s=1

Sn
)
∨
( v∨
t=1

Pn+1(prtt )

)
= N,

where I is the inclusion of the right wedge summand and each map fj,t is obtained by apply-

ing Lemma 3.3 to the homomorphism γj,t : Hn(Pn+1(p
rj
j );Z) −→ Hn(Pn+1(prtt );Z) determined by

γj,t(bj) = dt. Then the definition of εj and (4) imply that (εj)∗(bj) = γ(bj). Finally, let

g : M =

( k∨
i=1

Sn
)
∨
( ∨̀
j=1

Pn+1(p
rj
j )

)
−→ N

be the wedge sum of the maps εi for 1 ≤ i ≤ k and εj for 1 ≤ j ≤ `. Then (g∗)(ai) = (εi)∗(aj) = γ(ai)

for all 1 ≤ i ≤ k and (g∗)(bj) = (εj)∗(bj) = γ(bj) for all 1 ≤ j ≤ `. Thus g∗ = γ. �

4. Homology decompositions

Define M(Z/kZ, n) = Pn+1(k) and M(Z, n) = Sn, and for any finitely generated abelian groups

A and B define M(A⊕B,n) = M(A,n) ∨M(B,n). Then

H̃m(M(A,n);Z) ∼=

 A m = n,

0 m 6= n.

Observe that if A is torsion-free then M(A,n) is a wedge of n-dimensional spheres, implying that it

is a CW -complex of dimension n, while if A has torsion then M(A,n) is a wedge of n-dimensional

spheres and (n+1)-dimensional Moore spaces, implying that it is a CW -complex of dimension n+1.

Thus there is a distinction between the dimension of a CW -complex and the largest degree in

homology that is nonzero. This motivates the following definition.

Definition 4.1. A topological spaceX has homological dimension n ifHn(X;Z) 6= 0 andHm(X;Z) = 0

for all m > n.

In particular, M(A,n) has homological dimension n regardless of whether A is torsion-free or not.

The following theorem (see, for example, [17, Theorem 4H.3]), describes the homology decomposition

of a simply-connected CW-complex.

Theorem 4.2. Let X be a simply-connected CW-complex of homological dimension n. For 2 ≤ m ≤ n,

let Hm = Hm(X;Z). Then there is a sequence of subcomplexes {Xm}nm=1 such that:

(a) X1 ⊆ X2 ⊆ · · · ⊆ Xn ' X;

(b) X1 is the basepoint of X;
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(c) for 2 ≤ m ≤ n there is a homotopy cofibration

M(Hm,m− 1)
fm−1−→ Xm−1 −→ Xm,

where (fm−1)∗ is the zero homomorphism in integral homology;

(d) Hi(Xm;Z) ∼= Hi(X;Z) for i ≤ m and Hi(Xm;Z) = 0 for i > m. �

Extending the homotopy cofibration in part (b) of Theorem 4.2 to the right and recalling that

ΣM(Hm,m− 1) 'M(Hm,m), we obtain for 2 ≤ m ≤ n a homotopy cofibration

Xm−1 −→ Xm −→M(Hm,m).

Parts (b) and (c) of Theorem 4.2 may be rephrased as follows.

Corollary 4.3. For 2 ≤ m ≤ n the homotopy cofibration Xm−1 −→ Xm −→ M(Hm,m) induces

isomorphisms

Hi(Xm;Z) ∼=


Hi(Xm−1;Z) if i < m,

Hm(M(Hm,m);Z) if i = m,

0 if i > m. �

We give two examples of homology decompositions determining homotopy types.

Lemma 4.4. Let X be a simply-connected CW -complex with the property that

H̃m(X;Z) ∼=

 G if m = n,

0 if m 6= n,

where G is a finitely generated abelian group. Then X is homotopy equivalent to a wedge of n-

dimensional spheres and (n+ 1)-dimensional Moore spaces.

Proof. By Theorem 4.2, the description of H∗(X;Z) implies that the homology decomposition

{Xm}nm=1 of X has the following properties: (i) X1, . . . , Xn−1 are all contractible and (ii) if

G ∼= (
⊕s

j=1 Z) ⊕ (
⊕t

k=1 Z/p
rk
k Z) then Xn ' (

∨s
j=1 S

n) ∨ (
∨t
k=1 P

n+1(prkk )). Since X ' Xn, the

lemma follows. �

In general, the Hurewicz homomorphism is a map πm(Y ) −→ Hm(Y ;Z) given by sending the

homotopy class of a map f : Sm −→ Y to f∗(ιm), where ιm ∈ Hm(Sm;Z) is a generator. A proof of

the following result can be found in [17, Theorem 4.37].

Theorem 4.5 (Hurewicz). Let n ≥ 2. If Y is (n − 1)-connected then the Hurewicz homorphism

induces an isomorphism πn(Y ) ∼= Hn(Y ;Z). �

In particular, if Y is (n− 1)-connected then any map Sn
f−→ Y that has zero image in homology

is null homotopic.
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Lemma 4.6. Let X be a space with the property that

H̃m(X;Z) ∼=


T if m = n,

G if m = n− 1,

0 if m /∈ {n− 1, n},

where G is a finitely generated abelian group and T is a finitely generated torsion-free abelian group.

Then X is homotopy equivalent to a wedge of (n− 1) and n-dimensional spheres and n-dimensional

Moore spaces.

Proof. By Theorem 4.2, the description of H∗(X;Z) implies that the homology decomposition

{Xm}nm=1 of X has the following properties: (i) X1, . . . , Xn−2 are all contractible, (ii) if G ∼=

(
⊕s

j=1 Z)⊕ (
⊕t

k=1 Z/p
rk
k Z) then Xn−1 ' (

∨s
j=1 S

n−1) ∨ (
∨t
k=1 P

n(prkk )), (iii) if T ∼=
⊕u

`=1 Z, then

there is a homotopy cofibration

(5)

u∨
`=1

Sn−1 fn−1−→
( s∨
j=1

Sn−1

)
∨
( t∨
k=1

Pn(prkk )

)
−→ Xn,

where (fn−1)∗ = 0, and (iv) Xn ' X.

Since Xn−1 is (n− 2)-connected, Theorem 4.5 implies that πn−1(Xn) ∼= Hn−1(Xn−1;Z). There-

fore, as (fn−1)∗ = 0, the restriction of fn−1 to any of the wedge summands in
∨u
`=1 S

n−1 has

zero image in homology and so must be null homotopic. Hence fn−1 is null homotopic. Thus the

homotopy cofibration (5) implies that there is a homotopy equivalence

Xn '
( s∨
j=1

Sn−1

)
∨
( t∨
k=1

Pn(prkk )

)
∨
( u∨
`=1

Sn
)
.

Since X ' Xn, the Lemma is proved. �

5. A method for solving the Realization Problem

The Realization Problem can be broken into two separate problems. The hypotheses are that

there are maps ϕ : Sn −→ X and ϕ′ : Sn −→ X ′ and a commutative diagram

H∗(S
n;Z)

ϕ∗ //

ϕ′∗ &&MM
MMM

MMM
MM

H∗(X;Z)

γ

��
H∗(X

′;Z)

for some Z-module map γ.

The Homological Problem: Find a map g : X −→ X ′ such that g∗ equals γ in degree n homology.

Note that having g∗ equal γ in degree n homology implies that g∗ ◦ ϕ∗ = ϕ′∗.

The Homotopical Problem: Given a map X
g−→ X ′ such that g∗ ◦ ϕ∗ = ϕ′∗, find a map

g : X −→ X ′ such that g ◦ ϕ ' ϕ′.
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Solutions to both the Homological and Homotopical Problems solve the Realization Problem.

We first address the Homological Problem. Suppose that X and X ′ are simply-connected CW -

complexes of homological dimension n such that

Hn(X;Z) ∼=
( k⊕
i=1

Z
)
⊕
(⊕̀
j=1

Z/prjj Z
)

and Hn(X ′;Z) ∼=
( u⊕
s=1

Z
)
⊕
( v⊕
t=1

Z/prtt Z
)
.

Here, we allow the possibility that k = 0, in which case Hn(X;Z) is a finite group, as well as the

corresponding possibilities that one of `, u or v equals zero. Let

M =

( k∨
i=1

Sn−1

)
∨
( ∨̀
j=1

Pn(p
rj
j )

)
and M ′ =

( u∨
s=1

Sn−1

)
∨
( v∨
t=1

Pn(prtt )

)
.

If k = 0, regard
∨k
i=1 S

n−1 as a point, and similarly for one of `, u or v being zero. Then

Hn(ΣM ;Z) ∼= Hn(X;Z) and Hn(ΣM ′;Z) ∼= Hn(X ′;Z). By Theorem 4.2, X and X ′ have ho-

mology decompositions {Xm}nm=1 and {X ′m}nm=1 respectively with Xn ' X and X ′n ' X ′. In

particular, there are homotopy cofibration sequences

M
f−→ Xn−1 −→ X

δ−→ ΣM and M ′
f ′−→ X ′n−1 −→ X ′

δ′−→ ΣM ′

with f∗ = f ′∗ = 0 and both δ∗ and δ′∗ inducing isomorphisms in degree n homology.

One approach for obtaining a map X
g−→ X ′ such that g∗ = γ in degree n is as follows. Let

γn : Hn(X;Z) −→ Hn(X ′;Z)

be the restriction of γ to degree n. Since δ∗ and δ′∗ are isomorphisms in degree n homology, γn

can equivalently be regarded as a map Hn(ΣM ;Z)
γ′n−→ Hn(ΣM ′;Z) where γ′n = δ′∗ ◦ γn ◦ δ−1

∗ .

As the homology suspension is an isomorphism, γ′n can then equivalently be regarded as a map

Hn−1(M ;Z)
γ′′n−→ Hn−1(M ′;Z) where Σγ′′n = γ′n. Since M and M ′ are wedges of spheres and Moore

spaces, by Proposition 3.5, there is a map

g′′ : M −→M ′

such that g′′∗ = γ′′n. The goal is to find a map ε that gives a homotopy commutative diagram

(6)

M
f
//

g′′

��

Xn−1

ε

��
M ′

f ′

// X ′n−1.

Proposition 5.1. In the Realization Problem, suppose that X and X ′ are simply-connected CW -

complexes of homological dimension n. If there is a map ε making the diagram (6) homotopy commute

then there is a map g : X −→ X ′ with the property that g∗ = γ in degree n homology.
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Proof. Given an ε such that (6) homotopy commutes, we obtain a homotopy cofibration diagram

M
f
//

g′′

��

Xn−1
//

ε

��

X
δ //

g

��

ΣM

Σg′′

��
M ′

f ′

// X ′n−1
// X

δ′ // ΣM ′

for some map g. Since g′′ geometrically realizes γ′′n, we have (Σg′′)∗ = Σγ′′n = γ′n. Since δ, δ′ and γ′n

are isomorphisms in degree n homology, from the right square we obtain in degree n homology an

isomorphism g∗ = (δ′)−1
∗ ◦γ′n ◦ δ∗. By definition, γ′n = δ′∗ ◦γn ◦ δ−1

∗ , so we obtain g∗ = γn in degree n

homology. By definition, γn is the restriction of γ to degree n, so we obtain g∗ = γ in degree n

homology. �

A straightforward but meaningful example of Proposition 5.1 is the following.

Corollary 5.2. Suppose that the map f ′ in (6) is null homotopic. Then there is a map g : X −→ X ′

with the property that g∗ = γ in degree n homology.

Proof. In (6), take ε to be the trivial map. Then f ′◦g′′ ' ε◦f since both f ′ and ε are null homotopic.

Now apply Proposition 5.1. �

Remark 5.3. In general, the homotopy commutativity of (6) is a challenging problem. The homol-

ogy decomposition implies that the maps f and f ′ in (6) induce the zero map in homology, however,

their homotopy classes may be nontrivial. The triviality condition in Corollary 5.2 is designed to

make the homology and homotopy properties align. In the general case, one might try to proceed in

two steps: first, show the composition X
δ−→ ΣM

Σg′′−→ ΣM ′
Σf ′−→ ΣX ′n−1 is null homotopic, implying

that Σf ′ ◦ Σg′′ extends across Σf to a map ε′ : ΣXn−1 −→ ΣX ′n−1, and second, show that ε′ is the

suspension of a map ε, and in such a way that the homotopy ε′ ◦Σf ' Σf ′ ◦Σg′′ “de-suspends”. It

would be interesting to have concrete conditions for when a map ε exists that makes (6) homotopy

commute.

For example, suppose that

H̃m(X ′;Z) ∼=

 G if m = n,

0 if m 6= n,

where G is a finitely generated abelian group. We say that the homology of X ′ is concentrated in

degree n. The homological decomposition of X ′ implies that X ′n−1 is contractible while Lemma 4.4

implies that X ′ is homotopy equivalent to a wedge of n-dimensional spheres and (n+1)-dimensional

Moore spaces. The contractibility of X ′n−1 implies that in the homotopy cofibration sequence M
f ′−→

X ′n−1 −→ X ′
δ−→ ΣM the map f ′ is trivial. By Corollary 5.2 we obtain the following.
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Proposition 5.4. In the Realization Problem, suppose that X is a simply-connected CW -complex of

homological dimension n and the homology of X ′ is concentrated in degree n. Then the Homological

Problem has a solution. That is, there is a map g : X −→ X ′ with the property that g∗ = γ. �

As another example, suppose that

(7) H̃m(X ′;Z) ∼=


T if m = n,

G if m = n− 1,

0 if m /∈ {n− 1, n},

where G is a finitely generated abelian group and T is a finitely generated torsion-free abelian group.

By Lemma 4.6, X ′ is homotopy equivalent to a wedge of spheres and Moore spaces. In particular,

as in the proof of that Lemma, the homotopy cofibration sequence M
f ′−→ X ′n−1 −→ X ′

δ−→ ΣM

has the map f ′ being null homotopic. By Corollary 5.2 we obtain the following.

Proposition 5.5. In the Realization Problem, suppose that X is a simply-connected CW -complex

of homological dimension n and the homology of X ′ satisfies (7). Then the Homological Problem

has a solution. That is, there is a map g : X −→ X ′ with the property that g∗ = γ in degree n

homology. �

We next address the Homotopical Problem. In this section this is done briefly in a special case

through an appeal to the Hurewicz Theorem. In Section 6 it is done more systematically.

Proposition 5.6. In the Realization Problem, suppose that the Homological Problem has a solution:

there is a map g : X −→ X ′ such that g∗ = γ in degree n homology. If the homology of X ′ is

concentrated in degree n then there is a map g : X −→ X ′ such that g ◦ ϕ ' ϕ′.

Proof. Since X ′ has its homology concentrated in degree n, it is (n − 1)-connected. Theorem 4.5

therefore implies that any two maps Sn −→ X ′ which induce the same map in homology are

homotopic. In our case, by hypothesis, g ◦ ϕ and ϕ′ induce the same map in homology and hence

are homotopic. Now take g = g. �

Combining Propositions 5.4 and 5.6 we immediately obtain the following.

Theorem 5.7. In the Realization Problem, suppose that X is a simply-connected CW -complex of

homological dimension n and the homology of X ′ is concentrated in degree n. Then there is a map

g : X −→ X ′ such that g ◦ ϕ ' ϕ′. �

Theorem 5.7 generalizes [35], which considered the case when the homology of X is also concen-

trated in degree n. They did not state it in these terms, but their Lemma 9 is the analogue of our

Proposition 3.5 and the proof of their Lemma 10 includes the corresponding version our Theorem 5.7.

The result in [35] in turn generalized [28], which considered the case when the homology of X is
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concentrated in degree n and both the homology of X and X ′ are torsion-free. Again, they did not

state their result in our terms but their Lemma 4 is the torsion-free analogue of our Lemma 3.5 and

the proof of their Lemma 5 includes the corresponding version of our Theorem 5.7.

6. A normalization procecdure for the Homotopical Problem

In this section we introduce additional methods to prove a further case of the Realization Problem

in Corollary 6.5 that will, in particular, result in a solution when X and X ′ both have homology

of the form (7). We then extend the methods to show in Theorem 6.7 that when the Homology

Problem has a solution, while the Homotopical Problem may not always have a solution, a certain

“normalized” problem will always have a solution.

In general, for path-connected spaces A and B, let

A ∨B j−→ A×B

be the inclusion of the wedge into the product.

Lemma 6.1. Let Y be a CW -complex of dimension ≤ n. If X is simply-connected then the map

X ∨ Sn j−→ X × Sn induces a monomorphism [Y,X ∨ Sn]
j∗−→ [Y,X × Sn].

Proof. In general, for a path-connected pointed space A, the based loop space ΩA is the space of

all continuous pointed maps S1 −→ A. Suppose that A and B are path-connected pointed spaces.

Using methods developed by Ganea [15], it can be shown that the homotopy fibre of the inclusion

A∨B j−→ A×B is homotopy equivalent to ΣΩA∧ΩB (see, for example, [37, Theorem 7.7.4]). In our

case, the homotopy fibre of the inclusion X ∨Sn j−→ X×Sn is homotopy equivalent to ΣΩX ∧ΩSn.

Since X is simply-connected, the space ΣΩX ∧ ΩSn is n-connected. Thus if Y is any CW -complex

of dimension ≤ n then the map j induces a monomorphism [Y,X ∨ Sn]
j∗−→ [Y,X × Sn]. �

For path-connected spaces A and B, let

p1 : A ∨B −→ A and p2 : A ∨B −→ B

be the pinch maps onto the left and right wedge summand respectively. Given a map f : Y −→ A∨B

let f1 and f2 be the composites

f1 : Y
f−→ A ∨B p1−→ A and f2 : Y

f−→ A ∨B p2−→ B.

If Y is a co-H-space, let

σ : Y −→ Y ∨ Y

be the comultiplication.

Lemma 6.2. Let Y be a CW -complex of dimension ≤ n that is a co-H-space. If X is simply-

connected then any map Y
f−→ X ∨ Sn is homotopic to the composite Y

σ−−→ Y ∨ Y f1∨f2−−→ X ∨ Sn.
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Proof. Since Y is an n-dimensional CW -complex, Lemma 6.1 implies that the homotopy class of

Y
f−→ X ∨ Sn is determined by the composite

f : Y
f−→ X ∨ Sn j−→ X × Sn.

Any map into a product is determined by its projections to the factors. Explicitly, if

π1 : X × Sn −→ X and π2 : X × Sn −→ Sn

are the projections onto the left and right factors respectively, and f1 and f2 are the composites

f1 : Y
f−→ X × Sn π1−→ X and f2 : Y

f−→ X × Sn π2−→ Sn,

then f is homotopic to the composite

Y
∆−−−−→ Y × Y f1×f2−−−−→ X × Sn,

where ∆ is the diagonal map. Consider the diagram

Y ∨ Y
f1∨f2 //

j

��

X ∨ Sn

j

��
Y

∆ //

σ
<<xxxxxxxxx
Y × Y

f1×f2 // X × Sn.

The left triangle homotopy commutes since σ is a comultiplication. Observe that for i ∈ {1, 2}

we have pi = πi ◦ j and therefore f i = πi ◦ f = πi ◦ j ◦ f = pi ◦ f = fi. Thus the right square

commutes by the naturality of j. The bottom row of the diagram is homotopic to f , so we obtain

f ' j ◦ (f1 ∨ f2) ◦ σ. On the other hand, by definition, f = j ◦ f . By Lemma 6.1, j induces

a monomorphism [Y,X ∨ Sn] −→ [Y,X × Sn]. Thus, as j ◦ f ' j ◦ (f1 ∨ f2) ◦ σ, we have f '

(f1 ∨ f2) ◦ σ. �

In general, a homotopy cofibration sequence A −→ B −→ C
δ−→ ΣA of path-connected spaces

comes equipped with a homotopy coaction

θ : C −→ C ∨ ΣA.

This has the property that p1 ◦θ is homotopic to the identity map on C and p2 ◦θ is homotopic to δ.

Lemma 6.3. Let X be a simply-connected CW -complex of homological dimension n. Suppose that

there is a map ϕ : Sn −→ X such that the induced map in cohomology H∗(X;Z)
ϕ∗−→ H∗(Sn;Z) is a

surjection. Then there is a map ϑ : X −→ X ∨ Sn such that p1 ◦ ϑ is homotopic to the identity map

on X and p2 ◦ ϑ is a left homotopy inverse for ϕ.

Proof. First observe that ϕ∗ being a surjection implies that Hn(X;Z) must have a Z-summand,

since all homomorphisms from a torsion abelian group to Z are trivial. The universal coefficient
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theorem therefore implies that Hn(X;Z) also has a Z-summand. Thus Hn(X;Z) ∼= (
⊕s

j=1 Z) ⊕

(
⊕t

k=1 Z/p
rk
k Z) where s ≥ 1 and possibly t = 0. Let

M =

( s∨
j=1

Sn−1

)
∨
( t∨
k=1

Pn(prkk )

)
.

Then Hn(X;Z) ∼= Hn(ΣM ;Z). As X is simply-connected and has homological dimension n, by

Theorem 4.2 it has a homology decomposition {Xm}nm=1 with Xn ' X. The description of Hn(X;Z)

implies that there is a homotopy cofibration sequence

M
f−→ Xn−1 −→ X

δ−→ ΣM,

where δ∗ is an isomorphism in degree n homology. Let δ be the composite

δ : X
δ−→ ΣM

p−→
s∨
j=1

Sn,

where p is the pinch map. Then δ∗ is an isomorphism when restricted to the torsion-free subgroup of

Hn(X;Z). Therefore, by the universal coefficient theorem, δ
∗

is an isomorphism onto the torsion-free

subgroup of Hn(X;Z).

Next consider the composite

Sn
ϕ−→ X

δ−→
s∨
j=1

Sn.

Since δ
∗

is a surjection and, by hypothesis, ϕ∗ is a surjection, the composite ϕ∗ ◦ δ∗ is also a

surjection. Let v ∈ Hn(Sn;Z) be a generator and suppose that Hn(
∨s
j=1 S

n;Z) ∼=
⊕s

j=1H
n(Sn;Z)

is generated by elements v1, . . . , vs. As ϕ∗ ◦ δ∗ is a surjection, we must have (ϕ∗ ◦ δ∗)(v`) = v for

some 1 ≤ ` ≤ s. Thus, if q` :
∨s
j=1 S

n −→ Sn is the pinch map onto the `th-wedge summand then

the composite

Sn
ϕ−→ X

δ−→
s∨
j=1

Sn
q`−→ Sn

induces an isomorphism in cohomology, and hence in homology. The Hurewicz Theorem therefore

implies that q`◦δ◦ϕ is homotopic to ±1. Composing q` with Sn
−1−→ Sn if necessary, we may assume

that q` ◦ δ ◦ ϕ is homotopic to the identity map. Hence q` ◦ δ is a left homotopy inverse for ϕ.

Finally, let

θ : X −→ X ∨ ΣM

be the homotopy coaction corresponding to δ and let ϑ be the composite

ϑ : X
θ−→ X ∨ ΣM

1∨p−→ X ∨
( s∨
j=1

Sn
)

1∨q`−→ X ∨ Sn.

Then as p1 ◦θ is homotopic to the identity map on X and p2 ◦θ homotopic to δ, the naturality of the

pinch maps p1 and p2 implies that p1 ◦ ϑ homotopic to the identity map on X and p2 ◦ ϑ homotopic

to q` ◦ δ, which is a left homotopy inverse for ϕ. �
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Proposition 6.4. In the Realization Problem, suppose that X is a simply-connected CW -complex

of homological dimension n. Suppose also that the Homological Problem has a solution: there is a

map g : X −→ X ′ such that g∗ = γ in degree n homology. If ϕ∗ is a surjection then there is a map

g : X −→ X ′ such that g ◦ ϕ ' ϕ′.

Proof. SinceX is a simply-connected CW -complex of homological dimension n and ϕ∗ is a surjection,

Lemma 6.3 implies that there is a map ϑ : X −→ X∨Sn such that p1 ◦ϑ is homotopic to the identity

map on X and p2 ◦ ϑ is a left homotopy inverse for ϕ. Define the map

d : Sn −→ X ′

by the difference d = (g ◦ ϕ)− ϕ′ and define the map g by the composite

g : X
ϑ−−−−→ X ∨ Sn g∨−d−−−−→ X ′ ∨X ′ ∇−−−−→ X ′,

where ∇ is the fold map. We will show that g∗ = γ in degree n homology and g ◦ ϕ ' ϕ′.

For the homological assertion, by hypothesis g∗ = γ in degree n homology. By the hypothesis of

the Realization Problem, γ ◦ ϕ∗ = ϕ′∗, implying that g∗ ◦ ϕ∗ = ϕ′∗. By definition, d = (g ◦ ϕ)− ϕ′,

so d∗ = 0. Therefore, the definition of g implies that g∗ = g∗. Thus g∗ = γ in degree n homology.

For the homotopy, consider the diagram

(8)

Sn
σ //

ϕ

��

Sn ∨ Sn

ϕ∨1

��
X

ϑ // X ∨ Sn
g∨(−d)

// X ′ ∨X ′
∇ // X ′.

Since Sn is a co-H-space and X is simply-connected, Lemma 6.2 implies that f = ϑ◦ϕ is homotopic

to the composite Sn
σ−−→ Sn ∨ Sn f1∨f2−−→ X ∨ Sn, where f1 = p1 ◦ f and f2 = p2 ◦ f . As f = ϑ ◦ ϕ

and p1 ◦ ϑ is homotopic to the identity map on X we obtain f1 ' ϕ. As f = ϑ ◦ ϕ and p2 ◦ ϑ is

a left homotopy inverse for ϕ, we obtain that f2 is homotopic to the identity map on Sn. Thus

ϑ ◦ ϕ ' (ϕ ∨ 1) ◦ σ, showing that the square in (8) homotopy commutes. The upper direction

around (8) is the definition of (g ◦ ϕ) − d. Since the lower row of (8) is the definition of g, the

lower direction around that diagram is g ◦ ϕ. Thus we obtain g ◦ ϕ ' (g ◦ ϕ) − d. By definition,

d = (g ◦ ϕ)− ϕ′. Hence g ◦ ϕ ' ϕ′. �

Proposition 6.4 allows for a solution to the Realization Problem in certain cases. The following

corollary should be viewed as an extension of Theorem 5.7.

Corollary 6.5. In the Realization Problem, suppose that X is a simply-connected CW -complex of

homological dimension n and X ′ has its homology of the form (7). If ϕ∗ is a surjection then there

is a map g : X −→ X ′ such that g ◦ ϕ ' ϕ′.
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Proof. By Proposition 5.5 there is a map g : X −→ X ′ with the property that g∗ = γ in degree n

homology. Since ϕ∗ is a surjection, Proposition 6.4 implies that there is a map g : X −→ X ′ such

that g ◦ ϕ ' ϕ′. �

Example 6.6. Suppose that both X and X ′ are simply-connected CW -complexes having homology

of the form (7). If ϕ∗ is a surjection then the Realization Problem has a solution.

Another use of Proposition 6.4 is to produce a normalizing procedure for the Homotopical Prob-

lem. Suppose that there is a commutative diagram

H∗(S
n;Z)

ϕ∗ //

ϕ′∗ &&MM
MMM

MMM
MM

H∗(X;Z)

γ

��
H∗(X

′;Z)

for some Z-module map γ and the Homological Problem has a solution: there is a map g : X −→ X ′

such that g∗ ◦ ϕ∗ = ϕ′∗. Usually it is not the case that ϕ∗ is a surjection, so Proposition 6.4 does

not apply. To obtain a solution we normalize by altering X to X ∨ Sn as follows.

Define the map ϕ by the composite

ϕ : Sn
σ−−→ Sn ∨ Sn ϕ∨1−−→ X ∨ Sn,

define γ by the composite

γ : H∗(X ∨ Sn;Z)
(p1)∗−→ H∗(X;Z)

γ−→ H∗(X
′;Z),

and define h by the composite

h : X ∨ Sn p1−→ X
g−→ X ′.

Observe that p1 ◦ ϕ = ϕ. Therefore γ ◦ ϕ∗ = γ ◦ (p1)∗ ◦ ϕ∗ = γ ◦ ϕ∗ and h ◦ ϕ = g ◦ p1 ◦ ϕ = g ◦ ϕ.

Thus γ ◦ ϕ∗ = ϕ′∗ and h∗ ◦ ϕ∗ = g∗ ◦ ϕ∗ = ϕ′∗. Therefore the original problem has been normalized

to a commutative diagram

H∗(S
n;Z)

ϕ∗ //

ϕ′∗ ''OO
OOO

OOO
OOO

H∗(X ∨ Sn;Z)

γ

��
H∗(X

′;Z)

and the solution to the original Homological Problem, that is, the existence of the map g such that

g∗ ◦ ϕ∗ = ϕ′∗, implies the existence of a homological solution to the Normalized Problem via the

existence of the map h satisfying h∗ ◦ ϕ∗ = ϕ′∗.

Theorem 6.7. In the Realization Problem, suppose that X is a simply-connected CW -complex

of homological dimension n and the Homological Problem has a solution: that is, there is a map

g : X −→ X ′ such that g = γ in degree n homology. Then the Normalized Problem has a solution:

there is a map h : X ∨ Sn −→ X ′ such that h ◦ ϕ ' ϕ′.
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Proof. Since the composite Sn
ϕ−→ X ∨ Sn p2−→ Sn is homotopic to the identity map, the map (ϕ)∗

is a surjection and Proposition 6.4 applies. �

Example 6.8. Suppose that X is a simply-connected CW -complex of homological dimension n

and X ′ has its homology of the form (7). By Proposition 5.5 there is a map g : X −→ X ′ with the

property that g∗ = γ in degree n homology. Therefore, by Theorem 6.7, the Normalized Problem

has a solution: there is a map h : X∨Sn −→ X ′ such that h◦ϕ ' ϕ′. Note that, unlike Example 6.5,

this does not require ϕ∗ to be a surjection.

Remark 6.9. The Normalized Problem is perhaps more of a mathematical construction, it is not

clear whether there is any connection to distributed computing.

7. Background and motivation in distributed computing

A distributed computing system consists of finitely many sequential processes that communicate

via some facilities, for example, shared read/write memory with possible augmentations [29]. The

processes are usually considered to be synchronous, semi-synchronous, or asynchronous, each of

which corresponds to a specific assumption of a bound on relative process speed. In this paper, the

processes are asynchronous, which means there is no bound on relative process speed. They can

also fail by stopping, so it is indistinguishable whether an irresponsive process has failed or is only

running slowly.

A task is a distributed coordination problem involving multiple computing processes [19], each of

which starts with a private input taken from a finite set, communicates with other processes, and

eventually decides on a private output, taken from a possibly different finite set. Examples of tasks

include consensus [13], renaming [4] and set agreement [11]. A protocol is a distributed program

that solves a task. A protocol is said to be wait-free if it tolerates halting failures by n out of n+ 1

(n ≥ 1) processes.

Computability and complexity are important topics in distributed computational theory. Com-

putability means the solvability of tasks, while complexity measures how many resources are needed

to solve the task. Examples of resources in distributed computing include communication rounds,

shared memory size, and so on. There is a long line of work that deals with computability and com-

plexity for numerous tasks in different systems under various failure models [12, 21, 22, 23, 24, 25, 28,

30, 33, 34, 35]. Such efforts date back to 1988, when Biran et al. [6] established a graph-theoretical

necessary and sufficient condition for the wait-free solvability of distributed tasks in message-passing

systems. However, their framework proved hard to extend to fewer failing processes and even the

problem of characterizing the solvability of specific tasks such as k-consensus and renaming for any

number of processes remained unsolved for a long time.

A game-changing framework for modelling and analysis based on algebraic topology was intro-

duced by Herlihy and Shavit in 1993 [23] to understand computability and complexity problems in
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asynchronous distributed systems. In that framework, a task in an asynchronous distributed system

is modelled by a triple (I,O,S), in which I is the set of inputs, O is the set of outputs, and S

is the task specification which describes all allowable (or legal) outputs for an input. A particular

execution of the distributed computing system may yield an allowable outcome or it may yield a

non-allowable outcome. A task is solvable if there is a protocol (that is, a distributed program)

which always produces allowable outcomes.

Herlihy and Shavit’s work [23] presented a topological characterization of asynchronous com-

putability. It also implied a topological characterization of the complexity of general tasks with

t ≥ 1 crash failures in a share-memory model. Later, their work was extended to a complete

topological characterization of the solvability of wait-free tasks in shared-memory models [24].

Subsequently, their approach was generalized in three directions. First, it was generalized to

systems with arbitrary communication objects, to arbitrary synchrony, or to arbitrary resilience

(rather than wait-freedom), including crash failures and Byzantine failures [14, 21, 22, 30, 31, 33].

Second, it was generalized to explore the complexity of decision tasks in some communicating model

by finding upper and/or lower bounds for complexity or giving a theoretical estimate of the cost of

time/space/etc [5, 7, 9, 10, 16, 18, 25]. Third, it was generalized to classify tasks in asynchronous

distributed systems: two tasks are equivalent if and only if they can implement each other in some

specified manner [20, 28, 35].

The classification of tasks is a difficult problem in distributed computing theory. Special cases

with solutions are loop agreement tasks. These can be defined in terms of an edge loop in a decision

space (modelled as a 2-dimensional simplicial complex) with three distinguished points on the loop.

They form a large family of tasks including set agreement and approximate agreement. Herlihy and

Rajsbaum showed that a loop agreement task is solvable in certain models if and only if the loop is

contractible in the 2-complex [19]. They also showed that two loop agreement tasks are equivalent,

that is, each implements the other, if and only if there are simplicial maps between the 2-complexes

in both directions (the composition of the maps in either order need not be the identity). Further,

they were able to express this algebraically by defining the signature of the task as the fundamental

group of the 2-complex and a distinguished element in it, and showing that two loop agreement tasks

are equivalent if and only if there is an isomorphism between their signatures [20]. This equated a

problem in computing to a problem in algebraic topology. The benefit is that the algebraic topology

form of the problem is accessibly calculated.

A series of papers have since generalized this approach, equating the solution of a family of tasks in

distributed computing to a problem in algebraic topology. One such family that has been considered

is rendezvous tasks [27, 20], which are used in many applications, for example web-crawling, peer-

to-peer lookup, and meeting scheduling. A rendezvous task intuitively models the scenarios where

autonomous agents move around in a specific space (the decision space) to meet one another. A loop
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agreement task is a one-dimensional rendezvous task. An n-dimenional rendezvous task is called

nice if the reduced homology groups of the decision space are trivial in all dimensions except n and

the nth-homology group is free abelian. In this case the algebraic signature of a rendezvous task is

defined to be the pair consisting of the nth-homology group of the decision space and a distinguished

element in that group. Liu, Xu and Pan [28] proved that the classification of nice rendezvous tasks is

completely characterized by their algebraic signatures. Later, Yue, Wu and Lei [35] generalized this

result by assuming the reduced homology groups of the decision space are trivial in all dimensions

except n and the nth-homology group can be any abelian group.

One would like to go further and consider rendezvous tasks with decision spaces that have more

complicated homology occuring in many dimensions. That is one of the objectives of this paper.

8. Modelling rendezvous tasks

Let DI and DO be the input and output data types. These are finite sets, which are possibly the

same or possibly different. Suppose there are m processes, each of which takes a private input value

from DI and produces an output value in DO. The processes collectively may be regarded as taking

an input vector
→
I with m components and producing an output vector with m components. It may

be the case that some processes do not participate in the execution, in which case a distinguished

element ⊥ is used. Here, if the ith process is not used then ⊥ appears in position i of
→
I and

similarly ⊥ could appear as a component in
→
O. At least one process must be executed, so the vector

(⊥, . . . ,⊥) must be excluded.

An m-process task T is a triple (I,O,S), where I ⊆ (DI∪{⊥})m−{(⊥, . . . ,⊥)} is the set of input

vectors, O ⊆ (DO ∪ {⊥})m − {(⊥, . . . ,⊥)} is the set of output vectors, and S ⊆ I × O is the task

specification. Here, for each input vector in I, the task specification describes all allowable output

vectors. In particular, a given input vector
→
I may have multiple possible output vectors, some of

which are allowed by the task specification and some of which are not. Those that are allowed form

a set S(
→
I ).

The set I is prefix-closed [20] if all the “prefixes”, except (⊥, . . . ,⊥), of any
→
I ∈ I remain in

I. Here, a prefix of
→
I is a vector obtained by replacing any components of

→
I with ⊥’s. Similarly

for O. An input vector
→
I matches an output vector

→
O if, when ⊥ appears in component i of

→
I ,

then ⊥ appears in component i of
→
O. It will be assumed that the task specification S sends each

input vector to a prefix-closed nonempty set of matching output vectors. The matching condition

means that only processes participating in the execution may produce an output. An execution of

a protocal sends an input vector to an output vector. A protocol solves a task if it always sends any
→
I ∈ I into S(

→
I ), that is, the outputs are always allowable.
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To define rendezvous tasks, we follow [28]. Let ∆n+1 be the (n+ 1)-dimensional simplex spanned

by {vi}n+1
i=0 in which v0 = (1, 0, . . . , 0), v1 = (0, 1, 0, . . . , 0), . . ., vn = (0, . . . , 0, 1) for 0 ≤ i ≤ n, and

vn+1 = (−1,−1, . . . ,−1). Let Σn be the boundary of ∆n+1.

Definition 8.1. (Definition 1 in [28]) An n-rendezvous task T is defined as a triple (K, δ(Σn), f),

where the decision space K is an (n + 1)-dimensional simplicial complex, δ(Σn) is a simplicial

subdivision of the simplicial complex Σn, and f : δ(Σn) −→ K is a simplicial embedding (that is, f

is a simplicial map sending δ(Σn) isomorphically onto a subcomplex of K). It is assumed that |K|

is simply-connected.

Now we interpret a rendezvous task in terms of m-process tasks. Let DI = {0, . . . , n + 1} and

let DO = V (K) be the set of vertices of K. For any U ( {0, 1, . . . , n + 1}, let αU ∈ Σn be the

simplex spanned by {vi : i ∈ U}. Let δ(αU ) be the subdivision of αU determined by restricting the

subdivision δ of Σn to α and let KU = f(δ(αU )) ⊆ K. Then KU is a subcomplex of K.

For any positive integer m, the m-process task represented by the rendezvous task (K, δ(Σn), f)

is given by T = (I,O,S), where I = (DI
⋃
{⊥})m \ {(⊥, . . . ,⊥)} is the set of input vectors, O =

(DO
⋃
{⊥})m \ {(⊥, . . . ,⊥)} is the set of output vectors, and the task specification S satisfies

S(
→
I ) =


{
→
O ∈ O :

→
O matches

→
I and val(

→
O) spans a simplex in Kval(~I)

}
if val(

→
I ) ( DI ;{

→
O ∈ O :

→
O matches

→
I and val(

→
O) spans a simplex in K

}
if val(

→
I ) = DI .

Here, val(u1, u2, . . . , um) = {ui : 1 ≤ i ≤ m} \ {⊥} for any vector (u1, u2, · · · , um). That is,

val(u1, u2, . . . , um) is the set of distinct values among the elements u1, . . . , um. Intuitively, imagine

the input of a process is the starting position of an agent while the output is the ending position;

the process may move the agent around. A rendezvous task requires agents that start close together

always end close together.

Example 8.2. Consider the set agreement task of an (n + 2, n + 1)-agreement, which means the

agreement whose set of input values is {0, 1, . . . , n + 1} and each of whose executions produces at

most n+ 1 distinct values. This is described by the rendezvous task (Σn,Σn, f), where there is no

further subdivision and f is the identity map on Σn.

As in [28], algebraic data is assigned to each task T that encodes essential features of T . Let

ιn ∈ Hn(Sn) ∼= Z be a generator. For any subdivision δ(Σn) of Σn, there is a homeomorphism

Sn ∼= |δ(Σn)|. We may then regard ιn as generating Hn(|δ(Σn)|).

Definition 8.3. Let T = (K, δ(Σn), ψ) be a rendezvous task. The signature sig(T ) is defined by

sig(T ) = (Hn(|K|), |ψ|∗(ιn)).

Let T = (K, δ(Σn), ψ) and T ′ = (K ′, δ′(Σn), ψ′) be two rendezvous tasks. Rendezvous task T

implements rendezvous task T ′ if the output complex of T , or some subdivision of it, can be used
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as a protocal for solving T ′. Two rendezvous tasks are equivalent if each implements the other. A

topological interpretation of this is the following.

Lemma 8.4. ([28, Lemma 4.1]) Rendezvous task T = (K, δ(Σn), ψ) implements rendezvous task

T ′ = (K ′, δ′(Σn), ψ′) if and only if there is a commutative diagram

|δ(Σn)|
|ψ|
//

g|

��

|K|

g

��
|δ′(Σn)|

|ψ′|
// |K ′|

where g is a map of polyhedra, g| is the restriction of g to |δ(Σn)|, and g| induces the identity map

in homology. �

The statement of Lemma 8.4 requires some explanation. First consider g|. Since |ψ′| is a bijection

onto its image it has an inverse on that image. So if g ◦ |ψ| is contained in the image of |ψ′|, then it

lifts through |ψ′|, giving a commutative diagram. The lift may be identified with the restriction of g

to the image of |ψ|, hence its name g|. Second, consider what is meant by g| inducing the identity

map in homology. Since Σn is the boundary of ∆n+1 and δ(Σn) is a subdivision, then |δ(Σn)| ' Sn,

and similarly for |δ′(Σn)|. Thus g| may be regarded as a self-map of Sn, in which case it makes sense

to say it could induce the identity map in homology.

It is useful to also observe that g| inducing the identity map in homology implies by the Hurewicz

Theorem (Theorem 4.5) that it induces the identity map on Sn. Therefore the diagram in the

statement of Lemma 8.4 can be rewritten as a commutative diagram

Sn
|ψ|
//

|ψ′| !!C
CC

CC
CC

CC
|K|

g

��
|K ′|.

This is reminiscent of the Realization Problem, more of which will be said in Section 9.

A map of signatures sig(T ) −→ sig(T ′) is a commutative diagram

(9)

Hn(|δ(Σn)|)
|ψ|∗ //

=

��

Hn(|K|)

γ

��
Hn(|δ′(Σn)|)

|ψ′|∗ // Hn(|K ′|)

for some group homomorphism γ. Note that the equality in the left column should be interpreted

as an identity map from Z to itself. Since any continuous map of spaces induces a morphism in

homology, we obtain the following.

Corollary 8.5. If rendezvous task T = (K, δ(Σn), ψ) implements rendezvous task T = (K ′, δ′(Σn), ψ′)

then there is a map of signatures sig(T ) −→ sig(T ′).
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Proof. Since T implements T ′, by Lemma 8.4 there is a commutative diagram

|δ(Σn)|
|ψ|
//

g|

��

|K|

g

��
|δ′(Σn)|

|ψ′|
// |K ′|

for some map g with g| having the property that it induces the identity map in homology. Taking

homology and letting γ = g∗, we obtain a map of signatures as in (9). �

9. Algebraic topology and distributed computing

This section links the Realization Problem in the algebraic topology part of the paper with

the distributed computing problem of characterizing rendezvous tasks. This will make use of two

important theorems in algebraic topology.

A subspace inclusion i : A −→ X has the homotopy extension property if, for any space Y , given

a homotopy H : A × I −→ Y and an extension of H0 to a map f : X −→ Y , there is an extension

of H to a homotopy H : X × I −→ Y such that H0 = f . Diagrammatically, this says that there is

a commutative diagram

A× {0}

i×1

��

// A× I

�� H

��

X × {0} //

f ,,

X × I
H

""
Y.

If the map i has the homotopy extension property then it is called a cofibration. For example, a

subspace inclusion A
i−→ X is a cofibration if and only if A is a neighborhood deformation retract

of X, that is, there is an open neighborhood of A in X that strong deformation retracts to A (see,

for example, [37, Theorem 7.1.10]. The following result is well known.

Theorem 9.1. Suppose that A
i−→ X is a cofibration and there is a homotopy commutative diagram

A
i //

h   @
@@

@@
@@

X

g

��
Y.

Then there is a map g′ that is homotopic to g for which there is a strictly commutative diagram

A
i //

h   @
@@

@@
@@

X

g′

��
Y.
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Proof. Let H : A × I −→ Y be a homotopy with H0 = g ◦ i and H1 = h. Note that H0 extends to

X
g−→ Y . Since i is a cofibration, the homotopy extension property implies that there is a homotopy

H : X × I −→ Y such that H0 = g and H(A × I) = H. Let g′ = H1. Then g′ ◦ i = H1 ◦ i =

H(A× {1}) = H(A× {1}) = h, giving the asserted commutative diagram. �

Recall that if K is a simplicial complex then the barycentric subdivision bary(K) is the simplicial

complex obtained by inductively adding a new vertex at the barycentre of each k-simplex of K and

adding all the simplices of dimension less than or equal to k determined by the extra vertices. Let

bary1(K) = bary(K) and for N ≥ 2 recursively define baryN (K) by bary(baryN−1(K)).

A continuous map f : |K| −→ |L| has a simplicial approximation f̂ : K −→ L if for every point

x ∈ |K|, |f̂ |(x) lies in the smallest simplex τ ∈ L such that f(x) ∈ τ . A proof of the following result

can be found in [3, Theorem 6.7].

Theorem 9.2. Any continuous map f : |K| −→ |L| has a simplicial approximation f̂ : baryN (K) −→

L for some sufficiently large N . Further, if K0 and L0 are subcomplexes of K and L respectively,

then |f̂ |(|K0|) ⊆ |L0|. �

We are now ready to link the algebraic topology in the Realization Problem of Section 2 to the

problem of implementing rendezvous tasks. The following theorem can be seen as a partial converse

to Corollary 8.5.

Theorem 9.3. Let T = (K, δ(Σn), ψ) and T ′ = (K ′, δ′(Σn), ψ′) be rendezvous tasks. Suppose that

there is a map of signatures sig(T ) −→ sig(T ′), that is, suppose there is a group homomorphism

γ : Hn(|K|) −→ Hn(|K ′|) such that γ ◦ |ψ|∗ = |ψ′|∗. Let e : Sn −→ |δ(Σn)| and e′ : Sn −→ |δ′(Σn)|

be homeomorphisms inducing degree 1 maps on Hn. If the Realization Problem applied to

H∗(S
n)

(|ψ|)◦e)∗//

(|ψ′|◦e′)∗ %%KK
KKK

KKK
KK

H∗(|K|)

γ

��
H∗(|K ′|).

has a solution then T implements T ′.

Proof. By definition, the map of signatures sig(T ) −→ sig(T ′) means there is a commutative diagram

Hn(|δ(Σn)|)
|ψ|∗ //

=

��

Hn(|K|)

γ

��
Hn(|δ′(Σn)|)

|ψ′|∗ // Hn(|K ′|)
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for some group homomorphism γ. Let e : Sn −→ |δ(Σn)| and e′ : Sn −→ |δ′(Σn)| be homeomor-

phisms inducing degree 1 maps on Hn. Then there is a commutative diagram

Hn(Sn)
e∗ //

=

��

Hn(|δ(Σn)|)
|ψ|∗ //

=

��

Hn(|K|)

γ

��
Hn(Sn)

e′∗ // Hn(|δ′(Σn)|)
|ψ′|∗ // Hn(|K ′|)

which we re-write as a commutative diagram

Hn(Sn)
(|ψ|◦e)∗//

(|ψ′|◦e′)∗ %%LL
LLL

LLL
LL

Hn(|K|)

γ

��
Hn(|K ′|).

Since the reduced homology of Sn is concentrated in degree n, and both |K| and |K ′| are assuming

to be simply-connected, this is the same as having a commutative diagram

H∗(S
n)

(|ψ|◦e)∗//

(|ψ′|◦e′)∗ %%KK
KKK

KKK
KK

H∗(|K|)

γ

��
H∗(|K ′|).

As there is a solution to the Realization Problem, there is a homotopy commutative diagram

Sn
|ψ|◦e

//

|ψ′|◦e′ !!B
BB

BB
BB

B |K|

g

��
|K ′|

for some map g with the property that g∗ = γ. The map |ψ| is an embedding, so as e is a

homeomorphism the composite |ψ| ◦ e is also an embedding, and hence a cofibration. Thus the

homotopy extension property (Theorem 9.1) implies that there is a continuous map g′ : |K| −→ |K ′|

such that the diagram

Sn
|ψ|◦e

//

|ψ′|◦e′ !!B
BB

BB
BB

B |K|

g′

��
|K ′|

strictly commutes. Precomposing with e−1 then gives a strictly commutative diagram

|δ(Σn)|
|ψ|
//

|ψ′|◦(e′◦e−1) ##H
HH

HH
HH

HH
|K|

g′

��
|K ′|.
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Note that as |ψ|, |ψ′|, e and e′ are all injections, the restriction of g′ (in the sense of Lemma 8.4) to

|δ(Σn)| is e′ ◦ e−1, that is, g′| = e′ ◦ e−1. This lets us re-write the previous diagram as a commutative

diagram

|δ(Σn)|
|ψ|

//

g′|
��

|K|

g′

��
|δ′(Σn)|

|ψ′|
// |K ′|.

The simplicial approximation theorem (Theorem 9.2) then implies that g′ has a simplicial approxi-

mation ĝ : baryN (K) −→ K ′ for some sufficiently large N , and there is a commutative diagram

|δ(Σn)|
|ψ|

//

ĝ|

��

|K|

ĝ

��
|δ′(Σn)|

|ψ′|
// |K ′|.

Thus by Lemma 8.4, T implements T ′. �

Combining Lemma 8.5 and Theorem 9.3 then implies there is the following algebraic characteri-

zation of rendezvous problems.

Corollary 9.4. Let T = (K, δ(Σn), ψ) and T ′ = (K ′, δ′(Σn), ψ′) be rendezvous tasks and suppose

the Realization Problem applied to the map of signatures holds. Then T implements T ′ if and only

if there is a map of signatures sig(T ) −→ sig(T ′). �

In Theorem 5.7 we showed that a solution to the Realization Problem holds. Therefore, rendezvous

problems in those contexts are completely characterized by their signatures.
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