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RESEARCH ARTICLE

Fair and efficient ride-scheduling: a preference-driven approach
Yi Cheng Ong, Nicos Protopapas, Vahid Yazdanpanah, Enrico H. Gerding and Sebastian Stein

School of Electronics and Computer Science, University of Southampton, Southampton, UK

ABSTRACT
Smart mobility and, in particular, automated ridesharing platforms promise efficient, safe, and 
sustainable modes of transportation in urban settings. To make such platforms acceptable to 
the end-users, it is key to capture their preferences not in a static manner (by determining 
a fixed route and schedule for the vehicle) but in a dynamic manner by giving the riders the 
chance to get involved in the routing process of an upcoming journey. To that end, this work 
provides a toolbox of multiagent methods that enable different forms of active preference- 
awareness in ridesharing services. We capture riders’ preferences (as end-users of a ridesharing 
service), preserve their privacy by avoiding expecting them to share preferences with other 
riders, and show the efficacy of the presented ridesharing algorithms using agent-based 
simulation and illustrating their utilitarian and fairness properties.
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1. Introduction

Ridesharing is a promising means towards reducing car
bon emissions and mitigating climate change effects 
(Furuhata et al., 2013). Integrating preference-awareness 
into ridesharing systems enhances the satisfaction of the 
end-users and, in turn, allows efficiently using the spare 
capacity in urban transportation services (Rigas 
et al., 2014). However, although the potential gains are 
known, some traditional urban transportation systems – 
such as bus services – are not benefiting from ridesharing 
technologies. Our buses are still operating based on fixed 
schedules and, in the best case, use historical data on the 
behaviour of riders to improve their routes. However, 
determining routes based on data about past users does 
not necessarily fit how present riders want to use the 
service. For example, arguably, bus schedules that were 
generated based on travellers’ behaviour in 2019 (i.e., 
before the COVID-19 pandemic) do not satisfy what 
riders want in 2024. While gathering data more fre
quently and then fixing a static schedule is an option, in 
this work, we go a step further and suggest dynamic 
schedules that are determined based on the preferences 
of the current users/riders. Doing this will allow buses to 
provide customised services to riders, avoid wasting 
resources by meeting unnecessary stations, and find com
promises for pickup and drop-off locations that users see 
preferable.

Ridesharing can be considered a vehicle routing 
problem that is typically solved by optimising a given 
global objective function. Most studies focused on 
optimising operational-based objective functions 

(Mourad et al., 2019), which usually benefit the ride
sharing service provider rather than the passengers. 
Optimising based on the provider’s incentives would 
not lead to widespread adoption of this service, as 
passengers’ preferences are not taken into considera
tion. Thus, more recently, there have been studies 
regarding incorporating preferences or incentives of 
passengers into the ridesharing problem. These studies 
specified constraints, such as passengers’ maximum 
travel distance and maximum waiting time, to ensure 
some level of quality service, as well as incorporating 
new terms in the objective function, which encapsu
lates the overall satisfaction of passengers (Mourad 
et al., 2019). However, this method does not guarantee 
fairness among the passengers. For example, 
a ridesharing system might choose route A because it 
minimises the total waiting time and travelling time of 
all passengers. However, route A might lead to 
a longer travel time for a subset of passengers; for 
the sake of minimising the overall objective function, 
their preferences have been neglected, such that route 
A results in more inconvenience to them. In principle, 
assuming that the ideal route needs to be optimal 
merely based on the characteristics of the city in an 
objective sense (e.g., in terms of distances), ignores 
how satisfied riders are in a subjective sense. In such 
a view, ridesharing is approached and accordingly 
solved as a merely technical problem with no intention 
to take into account the social and preferential dimen
sions. In view of human-centred AI techniques and 
the need for developing trustworthy human-AI 
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partnerships (Ramchurn et al., 2021), we see rideshar
ing as an inherently sociotechnical problem and argue 
that the acceptance of it by society depends on its 
ability to capture riders’ preferences throughout the 
journey.

In the line of work on the application of multiagent 
techniques to ridesharing and the so-called autono
mous mobility-on-demand systems (Zhang et al.,  
2015), there are attempts to optimise the efficiency of 
using the shared space (Agatz et al., 2012), to use 
ridesharing for transportation of goods and passengers 
(van der Tholen et al., 2021), and to analyse the envir
onmental benefits of ridesharing (Jalali et al., 2017). In 
comparison to techniques that build on a snapshot of 
the system with resource optimisation in mind (e.g., 
Agatz et al. (2012); Jalali et al. (2017)) and approaches 
on mixed rider-goods transportation settings (e.g., van 
der Tholen et al. (2021)), our focus is on passenger 
transportation and the use of ridesharing dynamically 
by capturing riders’ preferences. Here, it is critical to 
capture the preferences of passengers for a journey, 
and in particular, their satisfaction concerning their 
asserted urgency and ideal pickup/drop-off times. 
Moreover, it is unrealistic to assume complete knowl
edge about the preferences of riders (which would 
allow standard optimisation techniques to be applied). 
Instead, riders may have reservations about sharing 
their preferences and these may also change given 
additional knowledge they gain during the generation 
of routes. To address these challenges, our work is the 
first attempt to develop a safe framework (as we do not 
expect riders to share information between them) for 
preference-aware dynamic ridesharing. Moreover, in 
contrast to recent work that applies voting mechan
isms to decide about destinations and accordingly 
form like-minded coalitions of riders for a journey 
(e.g., in Dennisen and Müller (2016)), we focus on 
a given set of users (e.g., employees of a company) 
and work on the satisfaction of users by allowing them 
to participate in the planning of the journey.1

Against this background, this is the first contribution 
that develops algorithms for determining ridesharing 
routes in participation with riders, allows dynamic rout
ing by integrating voting mechanisms, and relaxes the 
expectation that riders need to compromise their priv
acy by sharing information with other riders.

On an abstract level, our approach integrates voting 
mechanisms into ridesharing to capture preferences. 
Note that the idea is not to ask all the (potential) riders 
to interact with their ridesharing application, e.g., on 
their personal mobile devices, and vote. In contrast, 
our approach allows providing minimal information 
to the service provider (via such an application) and 
then the voting procedure takes place in the back
ground. To that end, we merely expect users to express 
their station of origin, their destination, and desired 
pick-up and drop-off times. Users share such 

information with the service (as a trusted agent), 
which respects users’ privacy by avoiding expecting 
them to share such sensitive data with other users.

To that end, we take the following principles fol
lowing the literature on ridesharing (Aïvodji et al.,  
2016; Hasan et al., 2018) and trust in smart mobility 
(Zavvos et al., 2022):

● Participatory: in the sense that users can influ
ence the operation of the service with respect to 
their pickup/drop-off preferences.

● Generic: to have a framework that is not fixed to 
a specific setting, e.g., to a particular urban area, 
but is aware of key concerns in the urban trans
portation context.

● Modular: in the sense that we can integrate dif
ferent forms of voting mechanisms and utility 
evaluation functions.

● Safe: in the sense that riders do not need to share 
information between them, but only with 
a trusted ridesharing agent.

1.1. Contributions

To encourage more citizens to utilise ridesharing ser
vices, these services should not neglect passengers’ 
preferences (Stein & Yazdanpanah, 2023) and should 
cope with the high computational complexity of find
ing an optimal (or close to optimal) solution. Our 
contribution revolves around solving these two pro
blems within a static ridesharing context. We propose 
and experimentally analyse two families of algorithms 
to construct a common schedule for various riders 
using the same bus. Our first solution is grounded 
on a randomised greedy approach and allows the 
riders to build a schedule in a round-robin fashion 
collectively: the riders are visited in a random order 
and each rider expands the current solution to accom
modate their needs. In the second family of algo
rithms, the schedule is expanded by voting on which 
partial solution should be inserted. Our proposed 
algorithms are evaluated using simulations for various 
spatial, temporal and preferential scenarios.2

1.2. Roadmap

The remainder of the work is organised as follows: in 
Section 2, we provide a formal modelling of the ride
sharing problem using a graph-theoretical representa
tion and show how preferences can be modelled using 
a utility function. In Section 3, different preference- 
aware ridesharing algorithms, the rationale behind 
each and how they capture aspects of the problem 
are presented. We evaluate the presented algorithms 
in Section 3 via simulation-based experiments and use 
real-life datasets from dense neighbourhoods to 
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compare the efficacy of our suggested ridesharing 
algorithms.3 We discuss links to related work in 
Section 5 and provide concluding remarks in 
Section 6.

2. Formal model

We consider the case of generating a route for a single 
bus that is part of a 24-hour ridesharing service. The 
route generated will be the order of stations to visit by 
taking into account the temporal preferences of the 
current riders. In the remainder of this section, we first 
define the map as a graph, and then we specify the 
riders in the system. Following this, we formalise how 
we represent a solution, i.e., the bus route.

Table 1 provides an overview of the notation.

2.1. Graph

The service region is represented by a fully connected 
graph GðL;EÞ, where L is the set of stations and E is the 
set of edges connecting any two stations. Each edge 
ðli; ljÞ 2 E has a corresponding weight wðli; ljÞ which is 
the shortest travel time between the two locations li and lj.

2.2. Riders

The input also consists of a set of riders R such that 
each ri 2 R has a departure station ldðriÞ 2 L and an 
arrival station laðriÞ 2 L. Moreover, each rider has 
their most preferred departure and arrival time, repre
sented by T�dðriÞ and T�aðriÞ respectively.

To evaluate the satisfaction level of riders, riders’ 
preferences for different temporal allocations 
should be represented. It can be reasonably 
assumed that, for every rider, as their departure 
and arrival time deviation increases, the satisfaction 

level decreases. Thus, a decreasing utility function 
with respect to increased time deviation is appro
priate. Additionally, we do not assume that each 
rider is homogeneous (i.e., each rider has 
a different sense of urgency and patience). 
Furthermore, we expect the utility of the impatient 
riders to decrease rapidly and the utility of patient 
riders to have a much slower decreasing rate. 
Taking these points into consideration, we, there
fore, assume the following utility function: 

The functions Ud
ri
ð�Þ and Ua

ri
ð�Þ measure the respec

tive utilities obtained by rider ri as he or she 
departs at time TdðriÞ and arrives at time TaðriÞ. 
The total utility, measured by UriðTd;TaÞ, is simply 
the sum of the two respective utilities. Value βri 

is 
a scalar within the range ½0; 1� that captures the 
patience of rider ri. Higher β values indicate greater 
patience. The distance jT�dðriÞ � TdðriÞj is the time 
deviation from ri’s most preferred departure time, 
and jT�aðriÞ � TaðriÞj the time deviation from ri’s 
most preferred arrival time. Since the β values are 
in the range ½0; 1�, any increase in time deviation 
will cause a decrease in utility. Additionally, the 
rate of such decrease is dependent on the β value; 
the lower the β value, the greater the decrease rate. 
Finally, the utility obtained for each rider ri will 
always be in the range ½0; 1�.

To illustrate the working of the utility function, 
consider the following example: There are two riders 
r1 and r2 with the following beta values: 

The two riders also have the same departure and 
arrival time deviation: 

The resulting utilities obtained are: 

We can see that rider r2 has a lower utility than 
that of rider r1 although both departure and arri
val time deviations are the same. Essentially, time 
deviations will cause a greater decrease in utility 
for riders with lower patience (lower β value).

Table 1. Overview of the model’s formal notation.
Symbols Description

ri Rider i
ldðriÞ Departure location for ri
laðriÞ Arrival location for ri
T�d ðriÞ Preferred departure time for ri

T�a ðriÞ Preferred arrival time for ri

TdðriÞ Allocated departure time for ri
TaðriÞ Allocated arrival time for ri
sðriÞ Status for ri , which can be onboard or onground
βri

Patience parameter for ri

GðL; EÞ Fully connected graph with locations L and edges E
li 2 L Location i
eðli; ljÞ 2 E Edge between li and lj

wðli; ljÞ Travel Time between station li and station lj
S Sequence of TourNodes
PosðSÞ Insertion positions of S
si TourNode at the i-th position of S
lsi Location at si
T a

si
Arrival time at si

T w
si

Waiting time at si

T d
si

Departure time at si

RP
si

Set of riders picked up at si

RD
si

Set of riders dropped off at si

JOURNAL OF SIMULATION 3



To generate a βri 
value for each rider, we utilise the 

beta distribution (Gupta & Nadarajah, 2004), which is 
versatile enough to cover for multiple scenarios (see 
Section 3 for details). For clarification, “βri

” refers to 
the value that represents the patience value of ri, while 
“beta” refers to the beta distribution used to generate 
the patience values of all riders R. We chose the beta 
distribution as it allowed us to sample values from the 
½0; 1� range, and to simulate various interesting scenar
ios. Note that: (i) when βri

¼ 0, the utility function for 
ri will be undefined. In this scenario, we set the utility 
value to be 0, indicating that ri is indifferent to any 
time deviation, in the sense that they are incompletely 
satisfied with any time deviation; (ii) when βri

¼ 1, the 
utility of ri is 1 given any time deviation. This also 
indicates that the rider is indifferent, but in the sense 
that ri is perfectly satisfied with any time deviation; 3. 
If βri

2 ð0; 1Þ and the time deviations for both depar
ture and arrival times are 0 minutes, the resulting 
utility will be 1 (the rider gets the maximum utility 
when the ideal pick up and drop off times are met).

2.3. Solution

We define the solution S as a sequence of TourNodes 
where each TourNode si is represented by a tuple: 

where lsi is the location at the i-th position of S, Ta
si 

is 
the arrival time at lsi , Tw

si 
the waiting time duration at 

lsi , RP
si 

the set of riders to be picked-up at si and RD
si 

the 
set of riders to be dropped-off at si.

Figure 1 illustrates an example of the solution model. 
The numbering on each node represents a station’s id. 
Note that there can be repeated locations in the solution. 
The edges represent travel time in minutes, calculated by 
taking the distance between the stations, and dividing it 
by the average bus speed. There are constraints imposed 
on the solution: (1) The arrival time of any node Ta

si 

equals the arrival time of the previous node Ta
si� 1 

plus 
the waiting time of the previous node Tw

si� 1
, plus the travel 

time between the stations wðlsi� 1 ; lsiÞ; (2) Riders can only 
be picked up and dropped off at their desired stations.

As depicted in Figure 1, starting from station 0, the 
bus waits for 5 minutes to pick up rider r1 before 

departing to station 1. Once at station 1, the bus 
again waits for 5 minutes to pick up riders r2 and r3 
before leaving for station 3. This continues until all 
riders have been dropped off. Note that, in this work, 
we are assuming that at any point in the journey, seat 
capacity always exceeds the number of riders. The bus 
will not accept any pick-up requests at any time range 
½Ta

si
;Tw

si
� that has no more available seats.

The full list of model variables and their descrip
tions are summarised in Table 1.

3. Preference-aware ridesharing algorithms

In this section, we present preference-aware rideshar
ing algorithms and discuss how they capture various 
aspects of the problem. The presented algorithms in 
this section will be evaluated in Section 3 using simu
lation-based experiments.

3.1. Randomised greedy algorithm

Our first approach, which we will also use as 
a benchmark for the following algorithms, is the 
Randomised Greedy Algorithm (RGA). The algorithm 
begins with an empty solution S and a shuffled list of 
riders R. Then, for each rider ri 2 R, we find the best 
positions in S to insert their departure and arrival 
stations to maximise the utility of rider ri. When an 
existing TourNode sk 2 S better satisfies ri than any 
valid, new TourNode, then ri is included in RP

sk 
or RD

sk 

(depending if we are allocating arrival times or depar
ture stations). In other words, we find positions (or 
existing TourNodes) in S such that the utility of ri is 
maximised given the current state of S. The algorithm 
finishes when all riders are allocated to two TourNodes 
in S: one for departure and one for arrival. The pseu
docode for this algorithm is given in Algorithm 1.
As shown in Algorithm 1, we first shuffle the list of riders 
R. Then, for each rider ri (examined according to the 
shuffled list), the ValidTourNodes function (at lines 3.1 
and 3.1) iterates over all insertion positions k 2 PosðSÞ
and creates a TourNode sk based on the rider’s preferred 
departure/arrival time/stations. Additionally, 
ValidTourNodes also iterates over all existing 
TourNodes si 2 S to find any si that has the desired 
departure and arrival stations. Then we have two sets, 
Sd and Sa, corresponding to the set of valid departure and 
arrival TourNodes. The ValidTourNodes function also 
enforces the following two constraints: When a new 
TourNode sk is created at position k of S, then:

(1) The location lsk must not be in flsk� 1 ; lskþ1g. In 
other words, adjacent stations in S must be 
different.

(2) The resulting departure time of skþ1 should not 
exceed its original departure time.Figure 1. Solution model.

4 Y. C. ONG ET AL.



The first constraint ensures that the final solution 
S is a valid route (adjacent stations within the 
route should always be different). The second 
constraint was introduced as a means to reduce 
the time complexity of the algorithm, as well as 

ensuring that the resulting utilities remain stable 
throughout the insertion process. Consider that 
we have an existing solution S with a large num
ber of TourNodes and that the best position for 
rider r1 is position 10. If the second constraint is 
not enforced, inserting the new TourNode s10 
would cause cascading updates on the departure, 
arrival and waiting times on the subsequent 
TourNodes after position s10. Not only is this 
computationally expensive, but the utility for 
each rider would also fluctuate each time a new 
station is inserted. Finally, once we have the best 
departure and arrival tour node s�d s�a, we either 
insert them into S if it does not exist in S, or add 
ri into RD

s�d 
and RP

s�a
.

3.2. Fairness algorithms

The Randomised Greedy Algorithm, although tak
ing preferences into account, does not take into 
account any fairness aspects. Indeed, the riders 
that would benefit the most are those that get an 
allocation first; the remaining riders generally have 

Figure 2. Iterative Voting procedure.

Algorithm 1: Randomised Greedy Algorithm
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less flexibility for their allocation. To encourage the 
use of such a system, some fairness policies need to 
be introduced. As such, we propose two algorithms 
which aim to provide fair solutions: Randomised 
Greedy++ (RGA++) and Iterative Voting (IV). 
Both of these algorithms utilise the 
ValidTourNodes function in Algorithm 1 in order 
to find (or create) the best s�d and s�a.

The first of these algorithms, Randomised Greedy++ is 
a variant of Randomised Greedy with just a simple change; 
for each rider, instead of allocating both departure and 
arrival times at the same time, we first only allocate 
a departure time for them. Next, we allocate the arrival 
times for each rider in the reverse order. This form of 
allocation is also known as picking sequences (see, e.g., 
Brandt et al. (2016)). The main idea is that the earlier riders 
were allocated a departure time, the later they are allocated 
an arrival time. The algorithm is shown in Algorithm 2.

Iterative Voting follows the previous idea of building 
a schedule iteratively but also allows for more interaction 
between the riders and the schedule-creating procedure. 
The algorithm works as follows: While there are still 
unallocated riders,4 each unallocated rider proposes 
a TourNode (either of departure or arrival, depending 
on the rider’s status) which encapsulates the desired sta
tion, the pick up time, drop-off time and waiting time (see 
lines 9 to 16 in Algorithm 3). Once the proposal phase 
ends, the riders rank their candidates according to their 
utility functions. The rankings are then passed on a voting 
rule, which selects a single TourNode as a winner. The 
process repeats until all riders are allocated. We should 
note here that all the riders’ side actions can be implemen
ted using a smart agent, which knows riders’ temporal and 
spatial preferences and a strategy to rank TourNodes.

Iterative Voting is described in detail in Figure 2 
and Algorithm 3. The two constraints imposed by 

the ValidTourNodes function are also imposed in 
this algorithm, too. Hence, each proposing rider 
selects its proposal by a pool of available 
TourNodes Sd or Sa. Once the list of candidates is 
finalised, all riders need to rank all available 
TourNodes. To do this, we can compute the utility 
of the riders for arrival and departure TourNodes. 
This is straightforward when the departure or arri
val locations of a rider, say rider ri, coincide with the 
TourNode’s sk location (i.e., when either ldðriÞ ¼ lsk 

or laðriÞ ¼ lsk ): the utility of rider ri for sk is com
puted as Ud

ri
ðTd

sk
Þ or Ua

ri
ðTa

sk
Þ. Special treatment is, 

however, required when the riders need to rank 
TourNodes whose location is neither a rider’s 
departure nor arrival location. While the algorithm 
can handle many scenarios – the only requirement is 
that the riders should rank the TourNodes – in 
Section 3, we assume that each rider ranks candidate 
TourNodes according to their distance from their 
arrival or departure locations (depending on the 
rider’s status).

In Section 3, we evaluate our mechanism using some 
well-known voting rules. We start with the arguably more 
commonly used voting rule of popularity5 (IV-popularity): 
Given all rankings, the top choices of all riders are 
counted, and the most popular one is selected. One can 
argue that popularity ignores much information by just 
focusing on the top choice of each rider. To examine this, 
we consider two other rules: First, the Borda rule (IV- 
Borda), which assigns points to each candidate according 
to their position in the ranking. More specifically, given 
a ranking over m candidates, the candidate at the i-th 
position gets a score of m � i points: hence, a candidate in 
the top position is assigned m points, a candidate in 
the second position is assigned m � 1, and a candidate 
in the last position gets 1 point. The candidate accumulat
ing the highest score is the winner of the election. 
A similar rule is the harmonic rule (IV-harmonic), which 
assigns 1=i points to the candidate in the i-th position. 
Finally, we utilise the instant runoff (IV-IR)6 rule, a widely 
used voting procedure, which runs in phases: at each 
phase, the candidates are ranked according to their popu
larity scores, and the least favourable candidate is elimi
nated. The process continues until a single candidate 
survives, which is the winner. We should note, however, 
that Iterative Voting is not grounded on a single voting 
rule but is general enough to handle any voting rule based 
on candidate rankings. We refer the reader to Chapter 2 of 
(Brandt et al., 2016) for more information on the popu
larity, Borda and instant runoff voting rules, and to 
(Boutilier et al., 2012) for the harmonic rule.

3.3. Safety

To ensure a safe framework for the riders, where no rider 
can know another rider’s route, our algorithms can be 

Algorithm 2: Randomised Greedy ++
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employed by a trusted central authority, e.g., a cloud 
service. In this architecture, the trusted agent will handle 
necessary communications, i.e., our algorithm does not 
necessitate agents to share private information with one 
another, hence no potential breach of privacy. In the case 
of the RGA algorithms, the riders will send their prefer
ences (the patience parameter, desired departure and 
arrival times, and preferred departure and arrival loca
tions) to the cloud service. Then, the algorithm will be 
implemented, and the riders will be informed about their 
departure and arrival times and locations. The IV algo
rithms require even less sensitive information as there is 
no need to communicate the preferences to the central 
authority. The riders only need to send their proposed 
TourNodes, and a ranking of the candidate TourNodes. 
When a TourNode is proposed, the central authority 
informs the rider whether the TourNode is valid; if it is 
not valid, the rider will provide a new proposal. After the 
end of the algorithm, all riders are informed of the final 
schedule. Observe that during the communication of the 
proposed TourNodes and the final schedule (in both 
families of algorithms), there is no need to communicate 
the lists of riders for pick-up and drop-off, which can be 

held only by the central authority.

3.4. Applicability and practical challenges

We end this section with a brief discussion on how our 
methods can be implemented in practice. All of our 

algorithms can be implemented through web-based 
(smartphone) applications. The application will ask 
for the spatial and temporal preferences of the riders 
and will use a discrete choice experiment7 to estimate 
the riders’ β value. For the RGA family of algorithms, 
the applicability is straightforward. For the IV family 
of algorithms, the application will act as a proxy 
between the rider and the algorithm. Given the rider’s 
preferences, it automatically votes on her behalf by 
optimising over the list of available choices. A few 
occasional questions might be asked during the pro
cess to fine-tune the procedure. Hence, the cognitive 
burden to the rider is limited to answering preference- 
elicitation questions. This is a clear benefit compared 
to the fixed bus routes, which become extensively 
complex when needed to cover sizeable urban areas 
(Badia et al., 2017).

The adoption of our approach is, of course, not 
coming without limitations. The most obvious one 
is its departure from the current norm of fixed bus 
schedules and our assumption of the social accept
ability of such a technology. One possible way to 
implement our proposal is through a hybrid sys
tem, which will use the traditional approach of 
fixed routes to cover a stable and predictable 
demand and, in addition, smaller versatile buses 
using dynamic routes to cover unpredictable or 
less frequent demand. A careful implementation 
of this system will allow commuters to use the 
dynamically scheduled buses to connect easily 
between large transportation hubs or move towards 
areas with low or inconsistent demand, allowing 
for better adoption of the system.

4. Experimental results

We conducted a range of experiments under dif
ferent parameter settings in order to test the effi
cacy of the proposed algorithms in terms of their 
utilitarian and fairness properties under different 
real-life scenarios. We then suggest which type of 
algorithms would work best given the specific set
tings. The different parameter settings we consider 
for our simulation-based experiments include vary
ing the number of riders and their similarity in 
terms of time sensitivity and station preferences. 
Each experiment is run 100 times to obtain the 
mean sum of utilities and mean Gini index, the 
metrics we use to evaluate our proposed algo
rithms, regarding efficiency and fairness. Next, we 
define various parameter settings used for our 
simulations.

4.1. Bus service

Table 2 lists the bus service parameters used for our 
simulation experiments. To simulate an average 

Algorithm 3: Iterative Voting
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performance of our algorithms, we assume that the 
buses travel with a constant average bus speed of 
13km=h, which has been chosen according to the 
“bus speed performance by boroughs” report from 
Transport for London (Transport for London, 2021). 
We evaluate our algorithms under perfect conditions 
where the buses are always on time to avoid distrac
tions due to adverse effects like traffic.

4.2. Graph

We consider a high density geographical region where 
bus stations are near to each other. To this end, we 
utilised the Naptan dataset (Department for 
Transport, 2014), and obtained the latitude and long
itudes of bus stations in Westminster, London. There 
are a total of 66 bus stations in this dataset. We con
sider the 66 bus stations as fully connected. We con
sider the shortest distance between each station, 
approximated using the great circle distance, calcu
lated based on the haversine formula (Robusto, 1957).

4.3. Preference generation

While generating preferences, it is assumed that riders 
want to get dropped off as early as possible and that 
they have knowledge of the travel time between the 
departure and arrival stations, such that their pre
ferred arrival time is always greater than the sum of 
their departure time and travel time. This gives more 
meaning when reviewing the experimental results 
compared to having unrealistic preferences, which 
would result in very low utilities regardless of how 
the proposed algorithms perform. For the list of vari
able rider parameters, refer to Table 3.

4.3.1. Time-sensitivity
The alpha and beta parameters correspond to the 
parameters for the beta distribution (see, e.g., Gupta 
and Nadarajah (2004)). The beta distribution is quite 
versatile and allows us to model different scenarios 
regarding time-sensitivity. For our experiments, we 
use four specific alpha-beta pairs, to simulate four 

indicative cases: In the first case, we use alpha ¼ 10 
and beta ¼ 10 to simulate a balanced population with 
mean patience factor equal to 1=2, highly concentrated 
around the mean. The second case, with alpha ¼ 10 
and beta ¼ 2, simulates a skewed, mostly patient (or 
time-insensitive) population, with a mean at 5=6, while 
the case alpha ¼ 2 and beta ¼ 10, simulates 
a symmetrical, mostly impatient (or time-sensitive) 
population with mean at 1=6. We recall here that 
higher β values imply more patient riders. Finally, 
the case with alpha ¼ 1=2 and beta ¼ 1=2 is bimodal. 
While the mean of the distribution is 1=2, the popula
tion is concentrated around the extreme values 0 
and 1.

4.3.2. Temporal preferences
Given that this is a 24-hour service, riders’ time 
preferences are modelled as minutes in the interval 
[0, 1440] with unit time steps. We consider peak- 
hours-based distribution when generating prefer
ences. To encapsulate real-world demand, riders’ 
time preferences are first sliced into time frames as 
shown in Table 4.

To simulate a higher percentage of riders during peak 
hours, we set a higher sampling probability for requests 
in peak time frames than non-peak time frames. 
We tested a range of probabilities [0.6, 0.7, 0.8] (conse
quently, non-peak time frames have [0.4, 0.3, 0.2] prob
ability) and the results for the different experiments 
showed similar trends. As such, we use a peak-time 
probability of 0:8 for our simulations.

4.3.3. Spatial preferences
Lastly, the desired pick up and drop off stations V 
are sampled in two ways: First, by using uniform 
sampling, i.e., one location is sampled uniformly at 
random to act as a departure station, and another 
location is sampled, without replacement, to act as 
an arrival station. Our second approach uses 
a hotspot based sampling: in this scenario, specific 
locations are declared as hotspots during the morn
ing and evening peak time windows, which get much 
higher demand than the other locations. In our 
experiments we select randomly a set of 10 or 20 
locations from V . These locations act as morning 
and evening peak hotspots, and during these time 
windows, these locations are sampled with higher 
probability than the other locations. For simplicity, 
in our experiments, we assume that these are the 

Table 2. Bus service parameters.
Parameter Value

Service Hours 24
Average Speed 13km=h

Table 3. Rider parameters. The first row refers to the values of 
the beta distribution; the second row describes the sampling 
method for the pick up and drop off locations; the third row 
shows the number of riders for each experiment.

Parameter Value

ðalpha; betaÞ ½ð10; 10Þ; ð10; 2Þ; ð2; 10Þ; ð1=2; 1=2Þ�
Spatial preferences ½uniform; 10hotspots; 20hotspots�
Number of Riders ½25; 50; 75; 100; 125; 150; 175; 200�

Table 4. Time frames.
Service Type Time Frame

Midnight Rides [0, 420]
Morning Peak [420, 560]
Working Hours [560, 1020]
Evening Peak [1020, 1140]
Night Rides [1140, 1440]
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only locations with positive demand during the 
morning and evening peak time windows.

5. Result discussion

We compare the performance of the proposed algo
rithms from a utilitarian and fairness perspective 
under different scenarios, where we vary (1) the num
ber of riders, (2) their patience and (3) the similarity in 
their preferences in terms of desired pick-up and 
drop-off stations and times.

5.1. Utilitarian perspective

We first examine our algorithms for efficiency, mea
suring their performance according to the mean utili
tarian social welfare: This is the sum of the utility of 
the riders, normalised by the number of experiments. 
To allow for a better comparison between the 

algorithms, we also normalise by the number of riders. 
Formally, in each iteration, we measure the following: 

where N is the number of passenger, and Uri follows 
Equation 1.

Figure 3 depicts the normalised mean social welfare 
of the riders when riders’ preferences over the stations 
are uniform. In this case, the Iterative Voting algo
rithm, with the instant runoff voting rule, outperforms 
all others. The same algorithm, with the Borda voting 
rule, is clearly the worst case – as we will see later, this 
is a recurring theme. The remaining algorithms admit 
quite similar performances, with IV with popularity 
being the second-best algorithm in most cases.

Figures 4 and 5 present the same measure when the 
station sampling is based on the hotspot idea, as described 
above. In these scenarios, Borda and harmonic rules are 
clearly outperformed, while all remaining rules perform 

Figure 3. The social welfare, normalized by the number of passengers in the scenario without hotspots, for each algorithm. The 
plots show bands of 95% confidence intervals.

JOURNAL OF SIMULATION 9



quite the same. IV-IR does not yield the best social wel
fare, as before, although its loss compared to the best case 
is not large. RGA++ performs the best in most cases now. 
IV-Borda again performs the worst, and in this case, IV- 
harmonic follows at a close distance.

5.2. Fairness perspective

To measure fairness, we use the Gini Index (Gini (1912); 
see also, Moulin (1988)), a popular measure of wealth 
inequality, which is also used in the transportation litera
ture (Yan & Howe, 2019), and has some precedence in 
the artificial intelligence literature (Lackner, 2020). 
Formally, the Gini index is defined as the following ratio: 

where N is the number of passenger, and Uri follows 
Equation 1.

In each experiment, the Gini index is computed 
among the rider’s utilities, and the mean is presented 
in Figures 6–8. We recall that a Gini index of 0 implies 
total fairness in the sense that all riders receive exactly 
the same utility, while an index close to 1 implies total 
inequality. We also note that the Gini index should be 
considered in conjecture to our efficiency measures 
since a low Gini index implies nothing about the 
efficiency guarantees.8

For uniform spatial preferences (Figure 6) IV-IR 
returns fairer solutions. In conjecture to our efficiency 
results, IV-IR is clearly the best-performing algorithm 
from our proposals. The least fair algorithm is IR- 
Borda. The remaining algorithms define a middle 
ground with similar fairness performances.

When the spatial preferences are highly concen
trated in a few hotspots, then RGA++ yields a lower 
Gini index in most cases. IV-Borda and IV- 
harmonic algorithms appear to be the least fair of 
all, with IV-harmonic performing slightly better 
between the two. In Section A in the Appendix, we 

Figure 4. The social welfare, normalized by the number of passengers, in the scenario with 10 hotspots, for each algorithm. The 
plots show bands of 95% confidence intervals.
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employ a detailed analysis using Student’s t-test, 
where we compare each pair of algorithms along 
all possible scenarios we use.

5.3. Final remarks

As a conclusion to this section, we give some final 
remarks:

● IV-IR appears to be the best option in the case 
without hotspots, both with respect to fairness 
and efficiency. Our detailed analysis in Section 
A in the Appendix further supports this. 
Whenever it is not the best algorithm, it is still 
a reasonable choice, and it performs quite well in 
the cases of 10 and 20 hotspots, although it falls 
behind the RGA++ algorithm. Due to this, we 
believe that this algorithm is a good candidate for 
further investigation. A possible explanation for 
this success is that IV-IR, at each point, clears up 
TourNodes, which are undesirable by many 

riders. Hence, at each point, most riders need to 
select two choices that are not very bad for them.

● When our experiments use hotspots, the RGA++ 
algorithm overperforms all the other algorithms, 
and RGA is a reasonable choice. This is justifiable 
since there are only a few locations where 
TourNodes can be scheduled, hence the greedy 
approach performs well.

● In contrast, IV-Borda provides the worst results, 
again both with respect to fairness and efficiency, 
in nearly all cases. Due to these failures, this 
algorithm should not be considered for practical 
implementation.
Rather unsurprisingly, the IV-Borda algorithm 
fails to perform in both measures: the rule gives 
a relatively high score to TourNodes, which offers 
very small value to some riders. For example, 
consider an instance where roughly half the 
riders prefer station a for pick-up, half riders 
prefer station c, and a single rider prefers station 
b, and b is closer to a and b than a and b between 

Figure 5. The social welfare, normalized by the number of passengers, in the scenario with 20 hotspots, for each algorithm. The 
plots show bands of 95% confidence intervals.
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them, hence this is the second choice for nearly 
all riders: under Borda rule, location b would be 
selected as the starting station, and almost all 
riders will not be fully satisfied. On the contrary, 
IV-IR, IV-popularity and IV-harmonic will never 
choose b. This decreases the overall sum of uti
lities and also increases the inequality between 
the riders. This phenomenon is more apparent 
in the cases of time-sensitive riders (see 
Figure 3(c)) and in the hotspot-based sampling, 
especially when the number of hotspots is small 
(see Figures 4 and 7).

● The situation is not as clear for the remaining 
algorithms. Most algorithms perform close to (or 
better than) RGA, our baseline algorithm. The 
RGA++ algorithm performs the best (or close to 
best) with respect to both objectives in highly con
centrated spatial preferences. The IV-popularity 
algorithm is a reasonable choice, especially in the 
bimodal preferences example. The IV-harmonic 
algorithm might be useful in the uniform spatial 

preferences setting but suffers similarly to IV-Borda 
when a few stations dominate the demand. See 
Section A in Appendix for details.

● The RGA++ mechanism performs slightly better 
than RGA, both with respect to fairness and 
efficiency, in almost all cases explored. The 
same correlation is observed between IV-IR and 
IV-popularity.

● As the number of riders increases, the perfor
mance decreases in most cases, although some 
notable exceptions are observed.

● Finally, the changes in time sensitivity affect the 
relation between our algorithms, but not by 
much.

6. Related work

This work relates to three lines of research on 
ridesharing: (1) optimisation-oriented approaches, 
(2) rider satisfaction and agent-based simulations 
for ridesharing, and (3) game-theoretical coalition 

Figure 6. The mean Gini index in the scenario without hotspots, for each algorithm. The plots show bands of 95% confidence 
intervals.
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formation and voting techniques in ridesharing. 
Below, we go through these lines and elaborate 
on how the presented approach in this work 
relates to each.

Building on the literature on operations research, 
ridesharing is traditionally understood as an optimisa
tion problem (see the extensive review of such a view 
in (Agatz et al., 2012)). This perspective mainly 
focuses on improving the service from the service 
providers’ point of view. For instance, the presented 
method in (Biswas et al., 2017) purely focuses on 
optimising the service with the main goal of profit 
maximisation, while the more recent work presented 
in (van der Tholen et al., 2021) looks at mixed-purpose 
autonomous vehicles (where goods and riders may 
share space in a transportation service). Then, the 
main focus is on the optimal use of the available 
space where riders and goods are both considered as 
preference-less entities. We deem that in such 
approaches, the preference of riders may be sacrificed 

as the course of a journey is optimised with respect to 
the service providers’ definition of optimality.

Another line of research (e.g., in Bistaffa et al. 
(2018)) is focused on providing platforms for simulat
ing ridesharing systems and modelling their beha
viour. Such approaches are crucial as they provide 
a test bed for evaluating different ridesharing algo
rithms and comparing their performance. Recently, 
more attention has been given to the satisfaction of 
riders. For instance, in Levinger et al. (2020), the 
authors apply data-driven techniques to learn 
a satisfaction function that is concerned with how 
riders were satisfied in previously operated rideshar
ing journeys. Fitting to the curve of “rider behaviour/ 
satisfaction” would be appropriate for predictably 
similar domains (e.g., when the service is operating 
in closed settings such as ridesharing within an indus
trial plant). However, in more unpredictable settings 
(such as an urban area), bounding the current users of 
a service to preferences of past users may result in 

Figure 7. The mean Gini index in the scenario with 10 hotspots, for each algorithm. The plots show bands of 95% confidence 
intervals.
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lower satisfaction in comparison to capturing the pre
ferences of current users themselves.

Simulation-based analysis has been used for var
ious topics regarding public transportation and 
public buses in particular. We briefly present 
some indicative examples in the following. Dui 
and Zhang (2021) simulate urban taxi sharing sys
tems. Legêne et al. (2020) use simulations to model 
the impact of automated vehicles in an urban area. 
Wang et al. (2023) use simulation to analyse the 
bus bunching phenomenon, where multiple busses 
arrive simultaneously at the same bus stop. Sung 
et al. (2022) use simulations to tackle scheduling 
problems for electric buses. Moosavi et al. (2020) 
propose a simulation model to analyse and 
improve reliability factors, including waiting time. 
Multi-agent-based simulation has also been used to 
analyse and improve bus scheduling under differ
ent enviroments (Ap Sorratini et al., 2008; Meignan 
et al., 2007; Urquhart et al., 2019).

Finally, our work is related to contributions that 
apply game-theoretical coalition formation techni
ques and voting theory to ridesharing problems 
(Bistaffa et al., 2015; Cheng et al., 2014; Dennisen 
& Müller, 2016; Nourinejad & Roorda, 2016). Such 
approaches are related to our use of voting 
mechanisms but mainly focus on orthogonal pro
blems in ridesharing or zoom on a different deci
sion point. For instance, in (Cheng et al., 2014), 
the authors focus on forming rider coalitions based 
on the amount they are willing to pay, or in 
(Bistaffa et al., 2015) on how to fairly share the 
service cost among the riders, while our focus is 
mainly on how the service can operate in order to 
maximise rider satisfaction. Then, in both 
(Nourinejad & Roorda, 2016) and (Dennisen & 
Müller, 2016), the focus is on how the journey 
should start and the initiation of the journey 
(which complements our focus on allowing riders 
to participate in the route generation process). In 

Figure 8. The mean Gini index in the scenario with 20 hotspots for each algorithm. The plots show bands of 95% confidence 
intervals.
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(Nourinejad & Roorda, 2016), an agent-based 
model is presented for matching rider groups to 
vehicles using auction-based techniques. Then, 
cost-revenue analysis is applied to evaluate match
ing mechanisms based on how they ensure the 
(financial) survival of service providers. Finally, in 
(Dennisen & Müller, 2016) voting methods are 
used to decide riders’ coalitions to share a ride. 
This is orthogonal to our use of voting mechanisms 
to build a schedule for a ride.

7. Conclusions and future work

In this work, we presented algorithms for prefer
ence-aware dynamics ridesharing, used voting 
mechanisms to allow participation, and evaluated 
the performance as well as the utilitarian and fair
ness properties of the algorithms using simula
tion-based experiments. Such algorithms can be 
implemented in ridesharing services to improve 
the satisfaction of riders and, in turn, to foster 
the financial and environmental benefits of smart 
mobility.

Another extension to this work will be on how 
to nudge riders towards environmentally sustain
able routes (e.g., to opt for less congested routes 
that may diverge from the shortest path). To that 
end, we envisage the applicability of incentive 
engineering methods (see, e.g., (Iwase et al.,  
2021; Protopapas et al., 2024)). Such methods 
necessitate integrating a bargaining phase among 
computational agents that represent each rider to 
reach a consensus on a more sustainable trajectory 
that is acceptable by the riders (Baarslag et al.,  
2017).

Notes

1. A detailed discussion on how this work relates to 
different lines of research on ridesharing appears in 
Section 5.

2. The initial idea behind this work is presented at the 
6th International Workshop on Agent-Based 
Modelling of Urban Systems (Ong et al., 2022).

3. For this, we used the publicly available Great Britain’s 
national dataset of public transport access points (bus 
stops, rail stations, airports, ferry piers, tram/metro/ 
underground stops) (Department for Transport,  
2014).

4. in the sense that not all riders have been allocated 
a departure and arrival time.

5. This is also known as plurality voting.
6. Also known as the Single Transferable Vote rule.
7. see, e.g., König and Grippenkoven (2020) on how the 

method has been implemented in the context of 
ridesharing.

8. Indeed, even if all utilities are negligible, then the 
Gini index would be 0 if their difference would be 
equal.
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