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ABSTRACT: The replacement of cobalt in vitamin B12 derivatives by other transition metals is a formal 
path to non-natural corrins. Here, we describe nibinamide (Nibi), the novel Ni(II)-analogue of the natural 
B12-derivative cobinamide (Cbi), and its synthesis from the metal-free ligand of Cbi, hydrogenobinamide 
(Hbi), both isolated as tetrafluoroborate salts. Aqueous solutions of the metal-free corrin Hbi are strongly 
fluorescent, whereas its Ni(II)-complex Nibi is non-luminescent. The solution structures of Hbi and of 
Nibi were characterized by hetero-nuclear NMR-spectroscopy. The Ni(II)-corrin Nibi was deduced to 
be roughly iso-structural to cob(I)inamide (CbiI) and to house a diamagnetic d8-metal-ion iso-electronic 
to CoI in CbiI. The chemically robust Nibi is, thus, a structural mimic of enzyme-activated and reduced 
biosynthetic precursors of vitamin B12 and a B12-antimetabolite potentially functioning as a specific 
inhibitor of B12-biosynthesis.

KEYWORDS: antivitamin B12, B12-antimetabolite, corrin, tetrapyrrole, transition metal, vitamin B12.

INTRODUCTION

The pre-eminent biological use of the corrin ligand 
in the natural vitamin B12-derivatives, and of cobalt as 
their specific transition metal center, poses the intriguing 
problem as to why this particular partnership has evolved 

for providing the unique biochemical reactivity of the 
B12-cofactors [1–5]. The specific chemistry of cobalt 
and other transition metals, when bound by the helical 
‘ring-contracted’ natural corrin ligand, is the subject of 
fundamental questions [1, 2, 6, 7]. Indeed, the synthesis 
of transition metal analogues of the natural cobalt-corri-
noids has been a longstanding ‘holy grail’ in the B12-field 
[8–11]. Fortunately, the elucidation of the biochemical 
B12-biosynthesis paths [12, 13], coupled with bioengi-
neering approaches [14], has opened up direct preparative 
access to hydrogenobyric acid (Hby) [7], the metal-free 
corrin ligand of vitamin B12 (CNCbl). The biosynthetic 
availability of Hby has generated a consummate oppor-
tunity for the synthesis and characterization of transition 
metal corrins, including zincobyric acid (Znby) [15] and 
nibyric acid (Niby) [16], the Zn(II)- and Ni(II)-complexes 
of Hby, respectively. Furthermore, Znby and Hby served 
as rational precursors for the preparation of the ‘complete’ 
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vitamin B12 analogues zincobalamin (Znbl) and nibala-
min (Nibl), both also structurally characterized [15, 16].

In the Eschenmoser labs [17, 18], a nickel corrin was 
constructed in the 1960s as the first synthetic corrin, also 
allowing for an unprecedented X-ray crystallographic 
investigation of the structure of a non-cobalt corrin [19]. 
In more recent times, the quest for Ni-analogues of the 
B12-cofactors as structural B12-mimics has resurged [10, 
11, 16], as Ni(II)-analogues of the cobalamins (Cbls) 
are predicted to reveal interesting coordination chemical 
features and could represent ‘antivitamins B12’ [20–23]. 
The structural elucidation of the related natural porphy-
rinoid nickel-cofactor F430 [24] and its complex biologi-
cal chemistry [25, 26] have strongly boosted interest in 
the basic coordination chemistry of tetrapyrrolic nickel-
complexes [27–29]. Herein, we report on the metal-free 

cobinamide ligand hydrogenobinamide (Hbi) and its 
Ni(II)-complex nibinamide (Nibi) (see Scheme 1), and 
their first synthesis.

RESULTS AND DISCUSSION

The metal-free Cbi-ligand Hbi was prepared from 
Hby by attaching the (R)-isopropanolamine moiety to its 
carboxylic acid group, using an established carbodiimide 
method [30]. In brief, an aqueous solution of 2.92 mg 
(3.33 μmol) of Hby and of 20 moleq N-hydroxybenz-
triazole (HOBt), was treated with 7.96 mg (106 μmol) of 
(R)-isopropanolamine in 200 μl of 1 M HCl. The solution 
was degassed and frozen with external dry ice, and 2 mg 
(4 moleq) of EDC*HCl was added under Ar. The reaction 

Scheme 1. Formulae of cobalt, zinc, nickel and metal-free corrinoids. Left: General formula of the cobalamins (Cbls) vitamin B12 
(R = CN, CNCbl), coenzyme B12 (R = 5′-deoxyadenosyl, AdoCbl), methylcobalamin (R = CH3, MeCbl) and cob(II)alamin (R = e-, 
CblII) Center: Formula of the metal-free corrin hydrogenobyric acid (Hby), of Co(II)-cobyric acid (CbyII), zincobyric acid (Znby), 
with the omission of the β-axial ligands at Co(II) and Zn(II), and of the Ni(II)corrin nibyric acid (Niby). Right: formula of metal-free 
hydrogenobinamide (Hbi), of cob(I)inamide (CbiI) and of nibinamide (Nibi).

Scheme 2. Outline of the synthesis of Hbi and Nibi from Hby. i) (R)-1-amino-2-propanol; HOBt, EDC*HCl, in H2O; ii) Ni(OAc)2 
in H2O, 90 °C.
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mixture was warmed up to 0 °C and its pH was adjusted 
to 6.4. Further addition of six portions of about 3 moleq 
EDC*HCl each at 0 °C over the course of 168 h, isola-
tion of the product using RP18 solid phase extraction and 
lyophilization furnished 2.88 mg (2.82 μmol, 85% yield) 
of pure Hbi-BF4 as an orange powder (see Scheme 2).

An aqueous solution of Hbi at pH 5 exhibited UV/
Vis- and CD-spectral features (see Fig. 1 and Fig. S2), 
as well as strong fluorescence with maxima at 609 nm 
and 553 nm (see Fig. S3), all similar to the correspond-
ing spectra of Hby [7]. A high-resolution mass spec-
trum of Hbi confirmed the expected molecular formula 
C48H74N11O8 (see Fig. S4). The data from hetero-nuclear 
NMR-spectra allowed for the assignment of 73 of the 
74 H-atoms and of all 48 C-atoms (see Table S2), which 

allowed the structure of Hbi in an aqueous solution to 
be elucidated. Two ‘inner’ H-atoms were detected that 
gave rise to singlets at δ = 12.44 and δ = 12.68 ppm in 
the 1H-NMR spectrum (see Fig. 2). Using the critical 
HMBC and NOE correlations (see e.g. [31–33]), the two 
singlets were assigned to H(N4) and H(N2), respectively 
(see Fig. S5), in line with the corresponding assignments 
for Hby [7] and for the complete metal-free B12-ligand 
hydrogeno-balamin (Hbl) [16], but (formally) contrast-
ing the position of the ‘inner’ H-atoms in Eschenmoser’s 
metal-free model corrin [34]. Only small shifts to the 
lower field by 0.01 ppm (1H) and by roughly 3ppm (15N) 
were indicated for the inner NH-groups in the spectrum 
of Hbi, when compared to Hby (see Tables S1 and S2). 
The detailed data from homo-nuclear and hetero-nuclear 
correlations (see Fig. S6) were consistent not only with 
the established diagonal arrangement of two ‘inner’ pro-
tons in metal-free corrins [7, 16, 34], but also with the 
intact stereo-structure of Hbi.

With pure samples of metal-free Hbi in hand, the 
one-step synthesis of transition metal analogues of the 
cobalt-containing cobinamides, metbinamides (Metbis), 
has become a realistic target, providing access to a still 
unexplored area in the wider B12-field. Thus, the Ni(II)-
corrin nibinamide (Nibi) was prepared by heating a 
deoxygenated aqueous solution of Hbi and Ni(OAc)2 pH 
6 for 1 h at 90°C (Scheme 2), furnishing pure Nibi-BF4 
(56% yield) as a yellow powder. An aqueous solution of 
Nibi buffered to pH 5 exhibited UV/Vis- and CD-spectra 
very similar to the corresponding spectra of Niby (see 
Fig. 3 and Fig. S8).

The solution structure of Nibi, molecular formula 
C48H72BF4N11O8Ni from a high-resolution ESI-MS spec-
trum (see Fig. S9), was determined by hetero-nuclear 

Fig. 1. UV/Vis-absorption spectrum of Hbi (c = 19 μM in 
10 mM aq. Na-phosphate pH5, 298K).

Fig. 2. 600MHz 1H-NMR spectrum of Hbi (c = 2 mM) in H2O/D2O (9:1) at pH5 and 298K.
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high field NMR-spectroscopy (see Fig. 4 for a 500 MHz 
1H-NMR spectrum), providing assignment of all 58 non-
exchangeable H-atoms and all 48 C-atoms (see Table S3). 
The NMR-data for the Ni(II)-complex Nibi featured very 
similar characteristics to the ones described for Niby. 
Compared to the spectrum of metal-free Hbi, similar 
shift differences were determined from the NMR-data 
for Nibi, as had been observed earlier for the correspond-
ing pair Hby and Niby [16]. The set of homo-nuclear 
and hetero-nuclear correlations from the NMR spectra of 
Nibi in D2O also confirmed its expected stereo-structure 
(see Fig. S10). 1H,1H-NOE-correlations between the iso-
propanol terminus of the modified f-side chain and C151, 
as well as the neighboring ring D moiety of the corrin 
ring, support a time-averaged position of this rather lipo-
philic terminal group near the lower face of the corrin. 
In fact, the acquired spectral data suggest the diamag-
netic Ni(II)-corrin Nibi be an iso-electronic and roughly 

iso-structural mimic of the strongly reducing [35] and 
highly nucleophilic, but structurally less characterized 
Co(I)-corrin cob(I)inamide (CbiI).

The major structural effects of the formal replace-
ment of cobalt by nickel in vitamin B12 derivatives were 
revealed by the X-ray crystal structure analysis of Niby, 
finding the 4-coordinate diamagnetic Ni(II)-ion of Niby 
located close (at 0.025 Å) to the best plane through the 
four inner corrin N-atoms [16]. The 4-coordinate Ni(II)-
ion is bound with short average Ni-N bond lengths of 
1.86 Å in Niby [16]. This crystallographic finding, and a 
complementary one with the Rh(III)-corrin adenosylrho-
dibalamin (AdoRhbl) [9], support the suggestion that the 
coordination hole of the ‘ring contracted’ corrin ligand 
is still too large for strain-free binding of a low-spin 
d8-Ni(II)-center. However, the Ni(II)-ion of Niby was 
deduced to coordinate the corrin ligand in a similar way 
[16] as the 4-coordinate Co(II)-center of a protein-bound 
Co(II)corrin [36], or as the 5-coordinate Co(II)-centers in 
the crystalline Co(II)-corrins CblII [37] and cob(II)yrinic 
acid heptamethyl ester [38].

We have developed here a rational, direct synthe-
sis path to the polar metal-free Cbi-ligand Hbi and 
to its diamagnetic Ni(II)-complex nibinamide Nibi 
(the Ni(II)-analogue of Cbi). Both of these novel cor-
rins reveal key structural features of Cbis, the major 
‘incomplete’ natural cobalt-corrins. This work extends 
our recent studies with AdoRhbl [9], ClRhbl [39] and 
zincobalamin (Znbl) [15], Rh(III)- and Zn(II)- ana-
logues of 6- and 5-coordinate ‘base-on’ Cbls, resp., as 
well as with nibalamin (Nibl) [16], the Ni(II)-analogue 
of (‘complete’) four coordinate ‘base-off’ Cbl-forms 
including CblI. The Ni(II)-corrin Nibi is presented 
here as an excellent redox-stable structural mimic for 
the corresponding natural 4-cooordinate ‘incomplete’ 
CbiII- and CbiI-species. Such activated reduced CbiII- 
and CbiI-species play the roles of highly reactive inter-
mediates in basic B12-biosynthetic enzyme processes in 
microorganisms that generate coenzyme B12 (AdoCbl) 
from externally supplied and actively imported Cbis 
[40] via cobalt-adenosylation and subsequent ‘comple-
tion’ to Ado-cobamides [13, 41–45]. As a stable Cbi-
mimic, Nibi, thus, may represent a B12-antimetabolite 
with the potential of selectively impairing the B12-bio-
synthetic capacity of bacteria. Like the cobinamides [41, 
46], Nibi would be predicted to possess the little capac-
ity to downregulate the expression of the bacterial B12-
uptake systems as ligands of the B12-riboswitches. Nibi 
would, furthermore, not be expected to find a ready cel-
lular import in humans and animals via their B12-uptake 
system [47–48], contrasting with the behavior of genu-
ine ‘antivitamins B12’ [20–22, 49]. As a consequence, 
Nibi represents a novel antibiotic candidate, selectively 
targeting microorganisms. Accordingly, studies with the 
‘incomplete’ Ni(II)-corrin Nibi and with other suitably 
structured transition metal analogues of the Cbis are 
clearly worthwhile.

Fig. 3. UV-Vis spectrum of Nibi (c=44 μM) in 10 mM aqueous 
Na-phosphate buffer pH 5 (298K).

Fig. 4. 500 MHz 1H-NMR-spectrum of Nibi (c=2.6 mM in 
D2O, HDO pre-saturated, 298K) X= residual HDO signal.
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EXPERIMENTAL

General

Materials

Methanol (MeOH), acetonitrile (MeCN), HiPerSolv 
Chromanorm, and acetic acid (HOAc) p.A., 1-hydroxy-
benzotriazole (HOBt), sodium hydroxide (NaOH) 
p.A. were from VWR chemicals; R(-)-1-amino-2-pro-
panol from Fluka; N-(3-dimethylaminopropyl)-N′-
ethylcarbodiimide hydrochloride (EDC*HCl), nickel 
acetate trihydrate (Ni(OAc)2*3 H2O) p.A.; tetrafluoro-
boric acid 48% in H2O; sodium tetrafluoroborate, p.A., 
sodium acetate (NaOAc); sodium dihydrogenphosphate 
(NaH2PO4), disodium hydrogenphosphate (Na2HPO4) 
from Sigma Aldrich; water (H2O) deionized, was puri-
fied by reversed osmosis via MilliQ academic system; 
D2O 99.96%D from Eurisotop; Spectra: UV-Vis: Agilent 
Cary 60. CD: Jasco J-715 or Jasco J-1500-150 CD spec-
tropolarimeters, spectra were recorded at 298K. NMR: 
500 MHz Varian Unity Inova, 5mm triple-resonance 
probe with z-gradients, pulse sequences from VNMR 
J-ChemPak 4.1; 600 MHz Bruker Avance II+ with Prod-
igy TCITM probe; 1H reference to δ(HDO) = 4.75 ppm, 
signal assignments were based on 1H, (1H,1H)-COSY, 
(1H,13C)-HSQC, (1H,13C)-HMBC and (1H,1H)-ROESY 
spectra. ESI-HR-MS: Thermo Scientific LTQ-Orbitrap 
XL, (+)-ion mode, 4.5 kV in MeOH. Chromatograpy: 
HPLC using Hitachi Elite LaChrom, L2130 pump, 
L245 diode array detector; Dionex Ultimate 3000, vari-
able wavelength detector; column: YMC-Triart –C18, 
250x4.7 mm, S-5 μm, 12 nm; solvent composition: A: 
10 mM aqueous NH4OAc pH 7, B= MeOH; 8% to 95%B 
0–40 min, 95% B 40–44 min, 95% to 8%B 44–45 min, 
flow= 1 mL/min. RP18-MPLC: Büchi C-605 pump 
module (binary) flow≈10 mL/min, home-packed RP18 
column (l=230 mm, Ø=26 mm, column volume (cv) = 
122 mL) using about 100 g LiChroprep RP18. Sep-Pak® 
C18 cartridges (various sizes, from Waters) were condi-
tioned with 20 mL MeOH and 60 mL H2O prior to use.

Synthesis of hydrogenobinamide 
tetrafluoroborate (Hbi)

In a 20 mL 2-necked round bottom flask 2.92 mg (3.33 
μmol) Hby [7], 8.88 mg (65.7 μmol, 20 eq) 1-hydroxy-
benzotriazole (HOBt) were dissolved in 3.2 mL H2O. 
A solution of 7.96 mg (106μmol, 32eq) R-(-)-1-amino-
2-propanol in 100 μL 1 M HCl was added and the mixture 
was deoxygenated by 3 freeze/vacuum/thaw cycles. The 
solution was frozen and 2.0 mg (10.6 μmol, 4eq) N-(3-
dimethylaminopropyl)-N′-ethylcarbodiimide hydrochlo-
ride (EDC*HCl) were added under Ar. The solution was 
thawed and the pH was adjusted to pH 6.4 with ~40μl 
1 M NaOH under vigorous stirring. The reaction was 
kept on ice for 7d and ~1.5–2 mg (~3eq) EDC*HCl were 

added once per day in Ar counter flux. After 168 h the 
orange reaction solution was diluted with H2O to ~10ml 
and loaded on a Sep-Pak® plus long cartridge. The 
adsorbate was washed with 20 mL H2O, 20 mL 100 mM 
aqueous NaBF4 pH 6, and a further 20 mL H2O. The Hbi 
was eluted with 3 mL 100 μM NaBF4 in MeOH. The elu-
ate was frozen and lyophilized under HV. The residue 
was dissolved in 1ml H2O and lyophilized again. 2.88 mg 
(2.82 μmol, 85%) of powdery orange Hbi (a tetrafluo-
roborate) were obtained (for HPLC see Fig. S1). UV/Vis 
(c=18.9 μM in 10 mM aq. Na-phosphate pH 5, RT): λmax 
[nm] (lg ε) = 525 (4.28), 495 (4.31), 472 (sh, 4.16), 3.93 
(3.71), 377 (3.77), 330 (4.67), 320 (sh, 4.51), 288 (4.31), 
270 (4.56) (see Fig. 1). CD (c=42.4 μM in 10 mM aq. 
Na-phosphate pH 5, 293K): λmax/min [nm] (± Δε [l*mol-

1*cm-1]) = 522 (-3.5), 501 (-2.7), 394 (0.4), 328 (15.2), 
270 (-7.9), 232 (3.1); λ0 [nm] = 425, 367, 296, 242, 222  
(see Fig. S2). Fluorescence (c=7.62 μM in 10 mM aq. 
Na-phosphate pH 5): emission spectrum (λexc = 500 nm): 
λmax [nm] (rel. int.) = 609 (406), 553 (216); excitation 
spectrum (λem = 609 nm): λmax [nm] (rel. int.) = 526 (477), 
502 (413), 393 (70), 376 (81), 330 (580), 320 (439), 305 
(285), 270 (394), 262 (258) (see Fig. S3). 1H-NMR spec-
tra were measured at 600 MHz (c(Hbi) = 1.96 mM in 
10 mM Na-phosphate in 10% D2O, at 298K, see Fig. 2), 
1H- 13C- and 15N-signal assignments from 2D homo- and 
hetero-nuclear spectra, see Figs. S5 and S6, Tables S1 
and S2). HR-ESI-MS (MeOH): 934.579 (12), 933.575 
(57), 932.572 (100, [C48H74N11O8]

+ ≡ [M]+); 486.269 
(5), 485.767 (10, [M+K]2+); 478.783 (16), 478.281 (56), 
477.780 (98, [M+Na]2+); 467.291 (9), 466.789 (16, 
[M+H]2+) (see Fig. S4).

Synthesis of nibinamide tetrafluoroborate (Nibi)

In a 15 mL Schlenk tube equipped with a reflux con-
denser 2 mL 0.5 M Ni(OAc)2 pH were degassed by 5 
freeze/vacuum/thaw cycles. 1.70 mg (1.82 μmol) Hbi 
were added and the mixture was degassed by further 3 
freeze/vacuum/thaw cycles. The apparatus was pressur-
ized with Ar and the brown solution was heated to 90°C 
for 1h. After cooling to room temperature the apparatus 
was aerated and the green solution was diluted with H2O 
to 20 mL. The solution was loaded on a Sep-Pak® C18 
Classic cartridge. The adsorbate was washed with 20 mL 
H2O followed 20 mL 100 mM NaBF4 pH 6 and a fur-
ther 20 mL H2O. The crude nibinamide (Nibi) was eluted 
with 3 mL 100 μM NaBF4 in MeOH. The solvents were 
evaporated on the rotary evaporator (55°C), and the resi-
due was dissolved in 10 mM NaOAc pH 6 and loaded 
on the MPLC column. The crude Nibi was purified using 
1 L portions of 10%, 12%, 13%, 14%, 15%, and 16% 
MeCN in 10 mM Na(OAc)2. The Nibi-containing frac-
tion was concentrated to ~40 ml on the rotary evaporator 
(50°C) and loaded on a Sep-Pak® C18 Classic cartridge. 
The adsorbate was washed with 80 mL 100 mM NaBF4 
pH 6, 20 mL 50 mM NaBF4, and 20 mL H2O. The fraction 
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with Nibi was eluted with 2 mL 100μM NaBF4 in MeOH 
and evaporated on the rotary evaporator. The residue was 
dissolved in 1 mL of H2O and the sample was lyophilized 
overnight. 1.10mg (1.02μmol, 56%) of yellow powdery 
Nibi were isolated pure (for HPLC see Fig. S7). UV-Vis 
(c=44.1μM in 10mM Na-phosphate pH 5, RT): λmax [nm] 
(lg ε) = 465 (3.90), 448 (3.94), 430 (sh, 3.86), 404 (sh, 
3.69), 334 (4.24), 321 (sh, 4.14), 262 (sh, 3.91), 252 (3.97) 
(see Fig. 3). CD (c=44.1μM in 10mM Na-phosphate pH 
5, 293K): λmax/min [nm] (±Δε [l*mol-1*cm-1]) = 457 (-0.79), 
413 (0.53), 326 (sh, 3.35), 315 (4.94), 255 (-5.86); λ0 
[nm]= 431, 393, 342, 289, 226 (see Fig. S8). 1H-NMR 
spectra were measured at 500 MHz (c(Nibi) =2.55 mM in 
D2O at 298K, see Fig. 4), 1H- and 13C-signal assignments 
from 2D homo- and hetero-nuclear spectra, see Fig. S10 
and Table S3). HR-ESI-MS (MeOH): m/z (%)=992.944 
(2), 991.490 (20), 990.488 (34), 989.495 (55), 988.492 
(100, [C48H72N11NiO8]

+ ≡ [M]+); 513.726 (5, [M+K]2+); 
507.740 (3), 507.239 (17), 506.738 (32), 506.21 (42), 
505.739 (76, [M+Na]2+); 496.248 (7), 495.747 (15), 
495.250 (20), 494.749 (37, [M+H]2+) (see Fig. S9).
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