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Fish have evolved over millions of years, achieving a level of swimming efficiency
that far surpasses current human-engineered capabilities. A prevalent feature in many
species is skin scales. Scholars posit that this surface texture may offer hydrodynamic
advantages, although the mechanisms remain poorly understood. This thesis investigates
the effect of roughness on aquatic locomotion. Utilising a combination of numerical
simulations and innovative analysis methods, we investigate the intricate interplay
between low-parameter, egg-carton-type surface roughness and self-propelled swimming.
Our findings indicate that both the roughness wavelength and kinematics are instrumental
in shaping the flow structures and power requirements. We observe that scaling
the roughness wavelength with the boundary-layer thickness significantly enhances
flow mixing, without a proportional increase in forces. Furthermore, the boundary
layer of a swimming foil displays fundamentally unstable spatial structures, directly
attributable to the swimming motion. This suggests that actuation at the wall could
be an effective mechanism to stabilise the boundary layer. Additionally, we probe a
parameter space concerning potential stabilising roughness shapes. We demonstrate
that surface roughness can be used to improve swimming performance and that variable
roughness functions could potentially outperform fixed small-scale roughness, given
proper tuning. Our results reveal that the interaction between roughness and kinematics
is complex and nonlinear, suggesting that roughness studies on static shapes do not

transfer directly to unsteady swimmers.
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Chapter 1

Introduction

Modern homo-sapiens have existed for a mere 160,000 years. Yet in that time we
have wrought irreparable damage on the ecosystems that support us. Our engineering
prowess, once a beacon of human ingenuity, now casts a dark shadow over the oceans.
Our monstrous vessels stand as stark monuments to our disconnection from the natural

world.

Consider the colossal drill ships that plunge deep into the ocean floor. They are not
mere structures but invasive species in our marine landscapes. Their presence disrupts
delicate aquatic ecosystems, often leading to catastrophic oil spills like the 780,000m3
Deepwater Horizon (BP) spill (NRT Response Committee, 2011). Such spills do not
merely stain our shores; they asphyxiate marine life, smother coral reefs, and poison the
intricate food webs that sustain countless species, including our own.

This relentless assault on the natural world reflects a deeper malaise: our belief that the
ocean is an inexhaustible resource for exploitation and a convenient dumping ground
for our wastes. We have forgotten that the ocean is a living, breathing entity, a complex
ecosystem that sustains all life on Earth. We have forgotten that we are part of this
ecosystem, not apart from it. We stand at a crossroads. Our engineering feats, once
symbols of progress, now need to be reimagined in harmony with the rhythms of the
ocean. We must shift from exploiters to stewards, respecting the intricate web of life
beneath the waves, to preserve the marine world not only for its inhabitants but for

future generations of humankind.

Evolution encodes a reservoir of knowledge into the designs of aquatic creatures, honing
their forms over millions of years to navigate the fluid dynamics of water with maximum
efficiency. One curiosity of fishes evolution is that the vast majority of species has
developed some sort of surface texture in the form of scales. This adaptive pathway
leads us to query the traditionally held beliefs that we must do everything to reduce
surface roughness. The caveat, of course, is that fish do not adhere to the channel
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flow physics of traditional roughness studies. Their motion is composed of a balance
between propulsive pressure forces, and drag inducing friction forces. The study of the
interaction between surface textures and kinematics in aquatic locomotion is, therefore,
a step towards understanding the potential benefits of surface textures in engineering
systems of the future.

1.1 Kinematics

Underwater propulsion is an area of research that brings together engineers and biologists
alike; it has fostered a deeper understanding of aquatic locomotion and inspired
innovation in underwater systems. The kinematics have the most significant effect
on the locomotive properties of marine animals (Lighthill, 1960, 1971; Triantafyllou et al.,
1991, 1993; Borazjani and Sotiropoulos, 2008; Eloy, 2012; Saadat et al., 2017; Di Santo
et al., 2021); however, some intricacies of animal evolution, such as the skins of sharks
and odontocetes, have sparked research into the benefits of aquatic surface textures.
Understanding the fluid dynamic interaction between kinematics and surface textures

will help us to elucidate the contribution of surface textures to aquatic locomotion.

Previous work has identified important non-dimensional kinematic parameters for
efficient swimming. The Reynolds number (Re) affects the efficiency of swimmers which
can be in the viscous (Re & 10%), transitional (Re ~ 10%), and inertial (Re — o) regime
(Borazjani and Sotiropoulos, 2008, 2010). The Strouhal number (St) describes the ratio
between the product of the wake width and the shedding frequency, and the flow
velocity; Triantafyllou et al. (1991, 1993) found that the optimal Strouhal number should
be in the range 0.25 — 0.35. Eloy (2012) tested the kinematics of fifty-three different
types of fish based on Lighthill’s elongated body theory (Lighthill, 1960, 1971) and
found that for thin tails, the optimal Strouhal number range was 0.2 — 0.4. Saadat et al.
(2017) showed that the Strouhal number was insufficient for efficient locomotion and
defined a range of optimum motion amplitude to length ratio of 0.05 to 0.15. Di Santo
et al. (2021) recently compared forty-four species of fishes and found that despite fishes’
different morphologies—categorised as; anguilliform, subcarangiform, carangiform, and
thunniform—they shared a statistically significant oscillation amplitude, a.k.a. kinematic
envelope. This work is noteworthy as previous work suggested the presence of different
kinematics was dependent on the morphology.

Self-propelled swimming (SPS) is defined as the constant movement of a swimmer
through water solely through its own effort, without the influence of any external
forces. The study of fish models under SPS facilitates the evaluation of a swimmer’s
performance under migratory conditions, where efficiency is of utmost importance.
Significant efforts have been made to assess the realistic performance of this swimming

mode, aiming to understand the key parameters involved. One model of SPS is a
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tethered swimming scenario. This is where the x position of the swimmer is fixed, and
the kinematics, or the inflow velocity is changed to centre the forces around a zero
mean. This is experimentally feasible and has facilitated a number of works (Anderson,
1996; Ulrike K Miiller et al., 2001; Zhu et al., 2002; Drucker, 2002; Nauen and Lauder,
2002; Tytell and Lauder, 2004; Tytell, 2007; Hultmark et al., 2007; Dewey et al., 2012;
Oeffner and Lauder, 2012; Wen et al., 2014). However, throughout a swimming cycle,
there is a cyclic variation in the forces that lead to the fish accelerating and decelerating
(Hess and Videler, 1984). By solving Newton’s equations and the 2-D Navier-Stokes
equations simultaneously, Carling et al. (1998) demonstrated that the swimming speed
from the coupled model was 0.77 times that of the tethered version. This model was
deemed unnecessary for instances where a swimmer’s performance is gauged by power
requirements rather than its swimming speed; a conclusion supported by Maertens et al.
(2017), who discovered that fixing the x location of the foil does not influence the power

needed for swimming, aligning with the findings of Bale et al. (2014).

1.2 Surface textures

While kinematics have received the majority of the literature’s attention, they are not
the only factor affecting the locomotive properties of swimmers. Almost ninety years
ago, Sir James Gray conducted work looking at the drag on a swimming dolphin (Gray,
1936). He supposed that dolphins must produce energy at seven times the rate of any
known mammalian muscle to overcome drag, the conjecture was later termed Gray’s
paradox. Gray'’s paradox was later found to be false due to Gray’s incorrect assumptions of
muscle force, but not before sparking a field of research into drag reduction techniques

of dolphins” and eventually other animals.

Numerous studies have highlighted the drag-reducing properties of certain textures,
though predominantly applied to static geometries. There is, however, a suggestion that
these effects could extend to unsteady aquatic propulsion. The channels depicted in
figure 1.1, running along the length of the shark, led to its early characterisation as a
riblet, as noted by Raschi and Musick (1984). Riblets are small-scale, two-dimensional
transverse grooves, scaling with the viscous flow scales, known for their drag-reducing
capabilities (see Walsh (1982); Park and Wallace (1994); R Garcia-Mayoral (2011); Cui et al.
(2019)). These channels passively reduce drag by diminishing velocity RMS fluctuation
near them and by isolating high shear stress regions to the riblet tips, thereby reducing

overall drag.

Bechert et al. (1997) explored a range of geometrical parameters for these idealised 2-D
extrusions, aiming to optimise drag reduction. They discovered that blade-shaped riblets
were most effective, achieving a frictional drag reduction of approximately 10-12%. The

potential of riblets for drag reduction, given proper tuning, remains clear. However,
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FIGURE 1.1: Figure taken from Guo et al. (2021) showing scanned electron microscopy
sections of skin at various key positions along a spiny dogfish.

issues arise if riblets are not viscously scaled or if they possess larger-scale features, such
as varied inclinations, which can generate new flow features and potentially increase
drag (refer to Bechert et al. (2000a); Nugroho et al. (2013); Boomsma and Sotiropoulos
(2016); Von Deyn et al. (2022); Roubhi et al. (2022)).

Moreover, when denticles do not completely interlock, their three-dimensionality
may be counterproductive, increasing drag. This was corroborated by Boomsma and
Sotiropoulos (2016), who compared two shark denticle shapes with a scallop riblet
design using DNS simulations. They observed that the denticles increased drag by
44-50%, while the riblets reduced it by 5% compared to a smooth surface. These
findings imply unresolved hydrodynamic issues with shark skin. The non-universality
of shark denticles forming perfect riblet grooves and the sensitivity of riblets to specific
flow conditions raise questions about their efficacy in enhancing unsteady swimmer

performance.

During a swim cycle, the surface of a swimmer might briefly encounter the viscous scales
set out by Bechert et al. (2000a) for drag-reduction of riblets however, the morphing of
the body and the fluctuating viscous length scales force the near-wall flow outside the
conditions that cause riblets to decrease drag the majority of the time. To comprehend
the potential hydrodynamic benefit of surface textures, we must look at them in the
context of a larger, dynamic system. For example, vortex generators are often low-profile

roughness elements that can significantly effect the flow and stimulate massive increases
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FIGURE 1.2: The diversity of fish scale morphology taken from the

of aerodynamic performance when positioned correctly (Lin et al., 1994; Lin, 2002).
Similarly, studies suggest that shark skin uses passive control in the flank region to
bristle the skin while swimming, increasing boundary-layer mixing and helping to keep
the flow attached at areas of flow reversal Lang et al. (2008); Afroz et al. (2016); Santos
et al. (2021). In this vein, Oeffner and Lauder (2012) tested samples of skin from the
midsection of a short-fin mako shark on both a rigid flapping plate and a flexible plate.
They found that the skin actually reduced the rigid plate’s propulsive effectiveness.
They also found that adding shark skin increased the flexible plate’s swimming speed by
12%. However, they do not provide the amplitude envelope for the flexible plate which
would ensure constant kinematics between the cases tested. Similarly, Wen et al. (2014)
covered an undulating plate in 3D printed denticles of 100 x actual size and measured a
6.6% efficiency increase. Again, they do not provide an amplitude envelope to ensure the
kinematics between the smooth and the rough surfaces remain constant. The denticles
in the above-mentioned work (Oeffner and Lauder (2012); Wen et al. (2014)) are not
scaled with local viscous scales so that they are within the drag-reducing regimes set
out by Bechert et al. (2000a).

Figure 1.2 illustrates the diverse morphology of fish scales, highlighting that sharks are
not the only aquatic swimmers with surface textures that may reduce drag. Research
on grass carp, for instance, demonstrated that a bionic surface replicating their scales
resulted in a drag reduction of about 3% in towing tank experiments, as reported by
Wu et al. (2018). Additionally, studies on European sea bass scales have furthered
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this understanding. A biomimetic surface, designed to echo the overlapping scales of
sea bass, was found capable of generating parallel streamwise velocity streaks in the
boundary layer. This mechanism is thought to play a role in delaying the transition
to turbulence, a concept that aligns with earlier fundamental studies. Such streaky
structures, induced by cylindrical roughness elements or vortex generator arrays, have
been previously observed to delay transition and contribute to drag reduction (Fransson
et al., 2006).

In a related study, Muthuramalingam et al. (2020) investigated biomimetic fish scales
on a flat plate in a water channel. Their findings revealed a 55% delay in transition to
turbulence and a theoretical 27% drag reduction. These results suggest that fish scales
can stabilise the laminar boundary layer, thereby offering potential advantages for drag

reduction in aquatic locomotion.

Therefore, the physical mechanisms responsible for the differences between rough
and smooth surfaces remain unclear and illustrates the need for a systematic study to

examine the interaction between surface textures and kinematics.

1.3 Research objectives and approach

This research aims to elucidate the contribution of surface textures to aquatic locomotion
efficiency. While previous work has explored, either, the effects of kinematics on
swimming performance, or the effects of surface texture on performance, less attention
has been paid to the combination. Yet the morphological diversity of fish scales, as well
as shark skin denticles, suggests an evolutionary advantage to these surface features.

The central objectives are: 1) Systematically investigate the first mode effects of the
interaction between roughness and kinematics; 2) Investigate the stability of the boundary
layer of a swimming foil at high Re. 3) Extend the study to realistic swimming shapes

and scales, and map out the parameter space of potential control surfaces.

1.4 Thesis outline and contributions

Chapter 2 addresses the computational methods employed in this thesis. It introduces the
equations solved, and the methodologies used for their solution. Additionally, extensive

verification across various flow regimes and geometries is detailed.

Chapter 3 conducts a detailed examination of the impact of surface roughness on a
self-propelled swimming plate. This chapter demonstrates that, as expected, roughness
increases drag on the body, requiring a higher wave speed to maintain self-propelled
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swimming. However, the interplay between roughness and kinematics extends beyond

merely increasing drag, revealing more complex dynamics.

Chapter 4 implements resolvent analysis on a swimming foil at Re = 100, 000. The chapter
shows that the swimming motion significantly affects the boundary-layer stability. We
also uncover specific spatial scales of the response modes that suggest an effective
control mechanism might be found with the introduction of surface roughness.

Chapter 5 explores the effects of roughness in higher Reynolds numbers (Re) and smaller
roughness scales. It is shown that incorporating body shape can enhance swimming
efficiency, particularly when interacting with finely tuned surface roughness. This
chapter also evaluates the actuated roughness hypothesis proposed by Lang et al. (2008).
The findings suggest that at these scales, a fish-scale-like surface texture is most effective

in improving swimming efficiency.
* We presented the representation of the viscous stress based on outer flow parameters

at Marine 2021.

¢ The initial flow field analysis of the flat plate with generic roughness elements was
presented at UK Fluids 2021 chapter 3.

¢ The initial findings of chapter 4 were presented at DisCoVor 2022.
¢ chapter 4 has been presented at APS 2022.

* We have also submitted an abstract to DisCoVor 2023 on the work relating to
chapter 5.

1.4.1 Publications

The main projects in this thesis have been, or are under preparation for publication in
the Journal of Fluid Mechanics.

1. chapter 3: Massey, J., Ganapathisubramani, B., & Weymouth, G. (2023). A systematic
investigation into the effect of roughness on self-propelled swimming plates.
Journal of Fluid Mechanics, 971, A39. doi:10.1017/jfm.2023.703

2. chapter 4: Massey, J., Ganapathisubramani, B., & Weymouth, G. (in preparation).
Time varying roughness for sharkskin inspired control of a self-propelled swimming
foil Journal of Fluid Mechanics.


doi:10.1017/jfm.2023.703
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1.4.2 Conference talks

1. MAR 2020 MACHINE LEARNING THE SKIN FRICTION OF A CIRCULAR CYLINDER
- CMNE

2. SEPT 2021 MODAL DECOMPOSITION OF FLOW OVER A ROUGH PLATE - UK
FLUIDS

3. APR 2022 SURFACE ROUGHNESS OPTIMISATION OF AN UNDULATING PLATE -
Di1sCOVOR

4. SEPT 2022 SECONDARY FLOWS IN ROUGH SWIMMING - APS DFD

5. APR 2023 THE INTERACTION BETWEEN ROUGHNESS AND SWIMMING PLATES -
D1sCOVOR

6. JUN 2023 CHAOTIC BREAKDOWN OF SECONDARY-FLOW AMPLIFICATION IN
ROUGH SWIMMERS - DELFT COLLOQUIA

7. SEPT 2023 RESOLVENT ANALYSIS OF A SWIMMING FOIL - RECOVOR



Chapter 2
Numerical method

This chapter contains work published in the Journal of Fluid Mechanics (Massey et al., 2023).

This chapter outlines the numerical methodology underpinning this thesis, employing
an in-house iLES code called Lotus. We adopt the QUICK treatment for convective
terms and used an adaptive time-step meeting the CFL condition. Coupling with the
body geometry is achieved via the BDIM, which has been validated for its second-
order convergence in both time and space. We enforce no-slip and symmetry boundary
conditions on the body. For verification and validation, we investigate the flow over a flat
plate at an angle of attack a« = 8°. While the mean lift is captured adequately, limitations
arise due to the simulation time required to resolve low-frequency fluctuations. Comparison
with experimental data reveals a 20% deviation for the rough plate, which we can
attribute to the plate’s thin geometry and thus trailing-edge 'singing’ as well as limitations
in computational resources. Further verification and validation exercises show that our
method is stable and accurate. Specifically, we achieve convergence within acceptable
error margins for both thrust coefficient and integral x-vorticity. Validation against
experimental kinematics shows a deviation within 2%, and confirms our confidence in

the numerical method.

2.1 Governing equations of incompressible fluid flow

One can describe fluid flow by a set of partial differential equations that express

conservation of mass and momentum called the Navier-Stokes equations

TR .
Tl (- V)il = —EVp—{—vV il (2.1)
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where (X, t) = (1, v, w) is the velocity vector, p(%, t) is the pressure field, ¢ is the time,
X = (x,y,z) is the spatial vector, p is the density, and v is the kinematic viscosity. From
left to right of equation 2.1 we have four distinct terms; the change of velocity in time, the
convection term, the pressure term, and the diffusion term. To ensure incompressibility,

we also use the continuity equation to constrain the solution, we define this as

Vi =0. (2.2)

The pressure is still unknown, so we define an additional relationship to couple the

velocity and pressure by taking the divergence of equation 2.1

I S I )’
V~(at+(u-V)u+pr—vVu)—0 2.3)

which we can rearrange to get the pressure-Poisson equation

V2p = —pV - <31: + (it - V)il — vvzﬁ> (2.4)

The system of equations is also bounded by the no-slip condition that defines the velocity
on the surface of a body as i, = 9(%, t) where 9(%, t) is the velocity of the body. Finally,
the Reynolds number (Re), which we have made reference to in chapter 1, describes the
balance between convective and viscous forces and is defined as

UL
Re = — 2.5
e= = 25)

where U, L are the characteristic velocity and length of the system and the kinematic

viscosity v = % where y is the dynamic viscosity of the fluid.

2.2 Numerical methods

2.2.1 Spatial Discretisation

The three main governing equations (2.1, 2.1, 2.1) are discretised onto a rectilinear grid
using a finite-volume method. The pressure field is stored on the cell centre, and the
velocity on the cell face; 2.1 shows an illustration of the discretisation of the governing

equations.
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FIGURE 2.1: Illustration of a rectilinear grid. The volume for the pressure is blue and
the u velocity component is green.

We calculate the gradients in equation 2.1 using the conservative finite-volume method
on the cell face fluxes. To approximate the convection term, we use the QUICK scheme
(Leonard (1979)). The quick scheme uses one upstream and two downstream points to
fit a quadratic function that interpolates the interest quantity at the cell face.

2.2.2 Temporal discretisation

We use Chorin’s projection method (Chorin, 1968) to step forward in time our governing
equations. Briefly, Chorin’s projection method allows us to decouple the velocity and
pressure fields by relaxing the divergence-free condition to give an intermediate velocity
field. Mathematically we split equation 2.1 into two parts

i — " -

— vV2i" — (i - V)il (2.6a)
—n+1 % .
! - o g (2.6b)

where superscript n refers to the time step level and superscript  refers to the intermediate
velocity field. Splitting equation 2.1 into equation 2.6a and equation 2.6b allows us to
compute a divergence free velocity field at i" ™! by enforcing the continuity equation

n+1 ;

equation 2.1 on p"*! instead of computing " ! from p" which would not be divergence

free at timen + 1.

We use a predictor-corrector algorithm to calculate i+ with ¢ (i) = (i - V)il — vV2il
to simplify the notation and () brackets to denote a field that might not be divergence
free. The algorithm steps for the predictor corrector steps are
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Predictor step :

1. (%) ="+ §"dt, 2.7)
2. StVPpr =V (i), (2.8)
3. = (iI*) — 6tV p*. 2.9)

Corrector step :

4. (@Y =a" 4 - (4> + ¢*)dt, (2.10)
5. StV =v. (@, (2.11)
6. "l =i —5tvpttL (2.12)

First, we use an explicit Euler scheme to predict the solution forward one-time step. Next,
we determine the pressure correction required to ensure the velocity is divergence-free.
Step 4 uses the trapezoid rule to correct the solution to time #n + 1. Finally, we check the
divergence-free condition and correct the solution accordingly. The predictor-corrector
algorithm can be shown to be second-order accurate and has the stability of the explicit
Euler method Ferziger et al. (2019).

For the time step (6t) we use the local Courant (u 5t /6x) and Péclet number (v 6t/ (5x)?).
-1
The combination of these limits 6t such that 6t < [m + max ( 3 )] .

2.2.3 Solid boundaries

To impose the no-slip condition on the body we use an Immersed Boundary (IB) method.
IB methods were first developed by the mathematician Charles Peskin Peskin (1972)
for studying flow patterns around heart valves. The main advantage of an IB method
is that they don’t require a body conforming grid, which removes the computational
cost of grid generation. For a static, simple geometry grid generation isn’t a problem,
but for complex geometries or moving boundaries generating a grid at every time step

becomes prohibitively expensive.

We use the Boundary Data Immersion Method (BDIM) from Weymouth and Yue (2011);
Maertens and Weymouth (2015). The BDIM convolves the body (B) governing equation

defined as
B =9(X,t) (2.13)

with the fluid governing equations (F) defined by the incompressible Navier-Stokes
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FIGURE 2.2: An illustration of the smoothing between the fluid and the body domain
for a circular cylinder using a smoothing kernel.

(equation 2.1). For equation 2.13, V (X, t) is the body velocity field. The equations are
then convolved though a nascent-delta kernel which defines

S
I

B(d,t), forx e Q)
(d,t), forX B 2.14)
t

./_"(L_[, ), for¥ € Qr

=
I

where the body domain is (wp) and the fluid domain is (wr). The equations are
convolved into a single meta-equation (M) which we define as

—= b4 € € € a
e (%) = pgF + (1 — p5) B+ 741%(]’_ - B) (2.15)

The interface between the fluid and body governing equation is smoothed to immerse
the body onto the background Cartesian grid without creating large derivatives. We use
a convolution kernel (K) to smooth the transition from the fluid domain (wr) to (wp),
which is illustrated in Figure 2.2.

The first and second moments of a cosine kernel, y, 31, have radial support € and are
defined as

[1 + g + Lsin (gnﬂ for|d| < e
ford < —e (2.16a)

ford > ¢

=
on
—~
AN
N—
Il
— O NI

[ () = (tn (2) 42 (1 cos (20))) | sorla <

M1
0 for|d| > €
(2.16b)
where d = |x —y| is the euclidean distance from the kernel. For a more detailed

explanation refer to Weymouth and Yue (2011); Maertens and Weymouth (2015).

The BDIM has been tested on multiple applications and validated for various use cases,
most recently Zurman-Nasution et al. (2020); Lauber et al. (2022). We will also validate
our simulations against experimental data to show the validity of the solution method.
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2.2.4 Pressure solver

We use a multigrid method for the pressure correction step in the predictor-corrector
algorithm equation 2.8 and equation 2.11. We can write the discrete Poisson equation as
a linear system of equations:

Mp =b, (2.17)

where b is the intermediate velocity field divergence, and M contains the discretised
Laplacian operator. The multigrid method is an iterative process updating an estimated

solution p" to a new solution p"*! by minimising the residual defined as

"= Mp—0b, (2.18)

where 7" is the residual at time n. We then define the error as

0t =p—p", (2.19)

where 7" is the error at time n. We can then write the linear system of equations as

Mny" =" (2.20)

Minimising " uses an increasingly coarse grid to increase the speed of the iterations.
We use a single Jacobi iteration before downsampling and increasing the grid coarseness.
The downsampling is done via

1
= (qx)Z("?—l =2 + i) =711, (2.21)

where the subscript i denotes the fine grid cell index and I the coarse grid cell index.
Once the residual has been downsampled to an arbitrary coarse grid, it is upsampled
back to the original fine grid. After each sampling step, we employ a conjugate gradient
method to update the solution. This upsampling and downsampling operation is known
as a V-cycle. V-Cycles are repeated until the pressure-Poisson equation has converged to
a divergence within a limit of 107.
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FIGURE 2.3: Schematic of the iterative verification process for numerical simulations

2.2.5 Verification

The verification of computational fluid dynamic (CFD) simulations is an iterative
process involving some key steps (figure 2.3). Initially, an estimate of the time needed
for statistically converged results is determined. Subsequently, domain sensitivity is
assessed to ensure that flow structures can develop without constraints and that altering
the domain size does not significantly influence the mean statistics. Grid refinement
is then applied to enhance computational efficiency without compromising accuracy.
The cycle culminates in a grid convergence study to validate the numerical model. This

iterative process continues until the model meets predefined accuracy criteria.

2.3 Flow over a flat plate

In this section, we will show that our numerical method can accurately simulate the flow
over a flat plate at Re = 12,000 and & = 8°. We will first show that the numerical method
is stable and converges to a solution. We will then show that the forces are invariant to
the domain size and grid resolution. Finally, we make reference to experimental data of
a flat plate at « = 8° and Re = 12,000 (Vilumbrales-Garcia et al., 2024).

2.3.1 Geometry

We set the geometry by using four planes to define a rectangular plate within our
computational domain. Using its signed distance function (SDF), we describe the plane
and create a geometric set based on the union of defined normal directions. The set of
four planes then makes up the rectangular shape of our flat plate where the flow velocity
il = 0. The roughness elements are added to this set using the SDF of a sphere and a
coordinate transform based on a modulo mapping defines the spacing of the roughness
elements. The modulo mapping reduces the computational load which is important as
computing the body properties of on all the individual roughness elements is expensive.
Instead, we update one sphere and transform the properties. We use BDIM to impose

the boundary conditions and compute the flow quantities.

We characterise the roughness based using three parameters normalised by the body
length, L (figure 2.4). The radius of the bump is defined by r, h defines the bump
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FIGURE 2.5: An example of the computational grid, rotated so that the inflow conditions
are equivalent to U = (1,0,0). There is a central region where the grid is uniform and
rectilinear.

protrusion, and sb defines the spacing. For consistency with experimental results we
use sb/2r = 1 for a case we refer to as the 70% coverage case. We match the values of
the roughness parameters to this experimental counterpart so sb = 58/960, h = 3/320,
and r = 7/320.

23.2 Grid

We use a rectilinear grid with a uniform region around the body and near wake (figure

2.5), the grid cells are then stretched to the domain boundaries via hyperbolic stretching,
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being careful not to distort the flow. The grid is aligned with the body, and the inflow
is projected in a direction U (sin(«), cos(«),0), where & = 8° is the angle of attack of
the plate. We have Neumann boundary conditions in the x, y directions and symmetry
conditions to match the finite domain of the experiments. Continuing the normalisation
of all length parameters by the body length, L, the computational domain extends over
x € [-5,9],y € [-3,3],and z € [0,3]. The uniform region around the body is bound
by x € [-1,2],y € [-0.8,1], and z € [0, 3] and the domain resolution is specified as
N = (768,768,384), where N = (nx,ny,n;). The grid spacings in the uniform region are
Ax =1/96, Ay =1/256, and A, = 1/128; more generally, they can be denoted by the
ratio8:3: 6.

2.3.3 Time convergence

To assess the convergence we look at the near-wall behaviour by looking at the forces,
defined by

§ fds _ § fyds _ §f-vds
r="05s" =055 "= "0ss (2:22)
where f = —p - f1is the normal pressure stress on the body, 7 is the body velocity, and

S is the planform area of the plate. Specifically, we use the pressure-based lift as the
viscous force is less than 1% of the total force contribution and requires an unworkable

grid resolution to fully resolve.

We run a long simulation was run for t;,;;; = 500 using a down sampled resolution of
Ax =1/64, Ay = 1/128, and 6, = 1/96 so N = (512,512,256). We can see the time
series for the lift pressure in figure 2.6a that it is not immediately clear what the longest
repeating timescale is. Subsequently, we instead look at the convergence in frequency
spectra by using the long time series simulation and calculating the power spectra using
Welch’s method with windows of 25t and a 50% overlap, we then systematically truncate

the spectra until the dominant peaks are captured.

The series truncated at ¢;,;,; = 125 does a good job capturing the dominant peaks of
the long time series data (figure 2.6b); any further truncated and the noise becomes too
much to delineate coherent peaks (see the pink line for t,, = 75). Figure 2.6b shows
that the is large amplitude instability at frequencies below 8 convection cycles, this is
likely due to the stochastic nature of separated flows. Further, the spectra exhibits peaks
at f = 0.2and f = 1 corresponding to different shedding frequencies.
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FIGURE 2.6: (a), The time series of the pressure-based lift coefficient for a simulation
time of f;,1,; = 500 convection cycles. (b), The power spectra of the time series with
lines denoting a full and truncated time series.

Domain N Mean error RMS error
([-3.5,6],[—2.5,2.5],[0,3]) (1.438,1.333,3.000) 2.3% 5.8%
([-5,9],[-3,3],10,3]) (2.000, 1.500, 3.000) 1.1% 0.4%

([-8,16],[—6,6],[0,3])  (3.250,2.500,3.000) - -

TABLE 2.1: Domain size, N , mean, and RMS error based on the large domain.

2.3.4 Domain test

The size of the domain needs to be sufficiently large so as not to introduce boundary
effects that could distort the results or compromise the accuracy of simulations. A
too-small domain may fail to capture important physical phenomena or could lead to
artificial numerical constraints. To large a domain will add unnecessary bloat to the
simulation process. To test the sufficiency of the domain—and continuing to scale all
length scales by L—we fix the size of the z direction to 3 to match the domain of the
experiments. For the x, y domain, we test the mean and RMS error and the spectra. We
use the same downsampled uniform region grid spacing as section 2.3.3, and to avoid
distorting the flow, we increase the total number of points in the domain as we increase

the domain size.

The results in table 2.1 show that the domain does not significantly affect the results.
There is not much computational benefit to using the smallest domain despite being in

an acceptable error range.
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% Mean error

2 0.7%

15 1.1%

1 0.6%
0.75 0.1%
0.5 -

TABLE 2.2: The error from z grid spacing in Cr

Ay

A Mean error
1 42.0%
0.75 25.7%
0.5 1.6%
0.375 0.3%
0.25 -

TABLE 2.3: The error from y grid spacing in Cp

2.3.5 Grid Refinement

The grid is refined in the y-direction to increase the resolution of the boundary layer
while minimising computational costs. Grid refinement in y is particularly crucial, as

the fluctuation scales in this direction are generally much smaller than those in x and z.

We conducted tests with varying grid spacing, while keeping the grid stretching in
the outer domain constant. Constraints on the maximum grid spacing are applied as
follows:

Axmax < 2.5A%,  AYmax < 8Ax (2.23)

We also limited the expansion ratio to a maximum value of 6%, which is within the
bounds tested in our domain study.

The error due to Az grid spacing, as shown in table 2.2, is relatively insensitive to
changes. We selected Az = 0.75Ax due to computational resource constraints.

Grid refinement in the y-direction provides significant gains in computational efficiency.
Table 2.3 shows that full convergence is achieved when Ay = 0.375Ax.
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Aix Mean error
48 1.6%

64 1.7%

96 1.6%
128 -

TABLE 2.4: The error in Cy, from the smooth plate grid convergence study.

1
Az Mean error

48 —37.7%
64 —23.0%
96 —7.1%
128 -

TABLE 2.5: The error in C;, from the 70% rough plate grid convergence study.

Coverage CiL,simulation CiL,experiment
0% 0.848 0.799
70% 0.632 0.761

TABLE 2.6: Comparison of simulation and experimental results for the smooth (0%
coverage) and rough (70% coverage) plate.

2.3.6 Resolution Convergence

We complete our verification phase by rigorously establishing grid convergence within
acceptable error margins. This confirms a reliable numerical representation of the flat-
plate physics. Up to this point, we have focused on the smooth plate, which serves
as a simpler foundation and influences global metrics crucial for the setup. We now
incorporate the rough plate to evaluate its effects on the simulation. Our primary

performance metric remains the time-averaged lift coefficient Cy.

For the 70% roughness configuration, the results stabilise at Ax = 1/96, enhancing our
confidence in the simulation’s accuracy. This rough plate configuration shows better
convergence compared to the smooth counterpart. The improvement is attributed to the

geometric resolution of the roughness elements significantly affecting C.

2.3.7 Validation

To validate our numerical results, we compare the Cy against corresponding experimental
data (Vilumbrales-Garcia et al., 2024).



2.4. Flat plate with general—undulatory—kinematics 21

The simulation results show relatively good agreement with experimental data (table 2.6).
For the smooth plate, the simulated C}, is within 6% of the experimental value. For the
rough plate, the discrepancy is slightly larger, within approximately 20%. The differences
can be attributed to factors surrounding the experimental and the complexities involved
in simulating rough surfaces. These results show the accuracy of our computational
model is limited, and further work is needed to confirm their suitability for further

studies on the effects of roughness on aquatic locomotion.

2.4 Flat plate with general—undulatory—kinematics

In this section, we extend our verification and validation to a flat plate at Re = 12,000
with general—undulatory—kinematics. Employing the base model from section 2.3,
we vary the roughness definition to one suited to a systematic investigation. We first
establish the stability and convergence of our numerical method for both smooth and
rough plates. Subsequently, we demonstrate the forces” invariance to domain size and
grid resolution. Lastly, we compare our model with an experiment of a flexible plate
with motion.

24.1 Geometry

Continuing to normalise all length scales by the plate length L, we use a flat plate with
a thickness 0.03 as the base model, which closely resembles the experiment of Wen
et al. (2014). For the roughness, we use a sinusoidal roughness, similar to Napoli et al.
(2008); Chan et al. (2015); Ma et al. (2020); Ganju et al. (2022), that allows us to vary the
roughness topology systematically. Figure 2.7a illustrates the parameters affecting the
roughness topology. The topography is defined as

B hsin (%) cos (%), fory > 0.015 —h
yxz) = h sin (2% — 71) cos (2%), fory < —0.015+h (229

where vy is the direction normal to the plate and x, z are the tangential direction, and A is
the roughness wavelength.

2.4.2 Kinematics

Continuing to use the swimming speed U to scale velocity and L/U to scale time, we
define the excursion of the body from the centre line as
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FIGURE 2.7: (a) The geometry used which has two defining parameters: A, the
wavelength of the roughness, and h, the roughness amplitude. (b) A visual
representation of the parameters that define the plate motion.

y(x) = A(x) sin (27 [ft — x/]) (2.25)

where f is the frequency, ( is the phase speed of the travelling wave, and A(x) is the
amplitude envelope, all of which are illustrated in figure 2.7b. The Strouhal number
is set to peak propulsive value St = 0.3 which determines the scaled frequency as
f = St/2A1, where A1 = A(x = 1) is the trailing edge amplitude and defines the wake
width of the system. We modify the recent result from Di Santo et al. (2021) for the
envelope

A 2
1(axx 2+ a1x +ag) (2.26)

i=0 @i

Ax) =

using a1, = (0.05,0.13,0.28) and A; = 0.1, as found to be optimal in Saadat et al.
(2017). The modification changes a; from —0.13 (Di Santo et al., 2021) to 0.13 reducing
the amplitude of the leading edge, enabling self-propelled swimming over a wider range
of A.

2.4.3 Grid and domain

Figure 2.8 details the grid and domain set-up. We show the domain invariance of the
solution by comparing the cycle average time series of Ct. We compare the working
domain (Domain 1) of size (18,20) and resolution (1536,1536), to a much larger domain
(Domain 2), size (9,4) and resolution (3072,3072) (figure 2.9a). Figure 2.9b shows the
cycle average time series of Cr for the three Re where ¢ = 271f mod t. For all three
(Re = 6,12, and 24 x 10%), Cr is plotted for Domain 1 (solid line), and Domain 2 (dotted
line). Cr for both domains collapses, and so the solution is domain invariant. We use a
rectilinear-grid over the domain x € [—2,7], y € [—2,2] and vary the spanwise-direction
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15 15

3 6

FIGURE 2.8: Schematic for the domain and grid. The inner box shows the region where

the grid is uniformly rectilinear; from there, the grid stretches toward the domain extent.

This is a representative grid for the xy plane on the geometry where A = 1/16. We

use a periodic boundary condition and max(6A,0.25) to define the repeating spanwise

domain size. The insert indicates the grid around the tail of the plate showing that, for

A =1/16, we have 16 cells resolving the roughness wavelength, and 5 cells resolving
the amplitude of the surface.

so that z € [0, max(6A,0.25)] (figure 2.8). For the area that contains the body motion and
the immediate wake, we use a uniform grid and then implement hyperbolic stretching
of the grid cells away from this area (figure 2.8). The grid is refined in y such that
Ay is half Ax and Az (figure 2.8 insert). This gives us a total number of grid points of
ranging [67.1,403] x 10°; which are distributed as N = (1536, 1536, [64, 384]). Careful
consideration of the aspect ratio of the maximum stretched cell meant that it did not

exceed five times that of the uniform region to avoid distorting the flow in the wake.

2.4.4 Resolution convergence

We tested resolutions of increasing powers of two for two surfaces where A = 1/16,1/52
(figure 2.10). For figure 2.10a we measured the error against the value at the highest
resolution, which contained 2.4 x 10°9 grid cells. The pressure-based thrust Cr oscillates
around a zero mean, and so we measure the error in C7% We converge to below 4% error
for both surfaces. Our working resolution is at the lowest limit of Ax = 0.004 and figure
2.10b shows that the time history of Ct also converges within this.

Figure 2.11 shows the convergence of the integral quantity of the x-vorticity magnitude
for the two surfaces where A = 1/16,1/52. We choose the surface where A = 1/16
because it is around this value that significant increases in enstrophy were found. We
also test the surface where A = 1/52 because this represents the lowest limit of our
surface resolution; for the proposed working resolution of Ax = 0.004, 5 grid cells

resolve the surface wavelength in the x and in the z direction.
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FIGURE 2.9: The domain invariance of Cr. (a) The relative size of the two-

dimensional domains. The dotted line marks the extent of Domain 2 where (x,y) €

([—4,14],]-10,10]), and the solid line marks Domain 1, where (x,y) € ([-2,7],[—2,2]).

(b) The thrust coefficient for { = 1.06 and St = 0.3, the solid line for Domain 1 and the
dotted line of Domain 2 are plotted on top of each other.

Furthermore, we measure f |wy|dV because it is zero for the two-dimensional, smooth
cases and, therefore, allows us to quantify the grid-resolution-independence of the
topographic contribution to the flow. Again, we converged to within a reasonable limit

at our working resolution of Ax = 0.004.

2.4.5 Experimental validation

First, we show that the method implemented in this study, set out in section 2.4.2,
converges to grid-independent solution. We perform simulations at St = 0.3, { = 1.06
and Re = 6,12, and 24 x 103 with increasing resolution. In figure 2.12, we plot Cr (phase
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FIGURE 2.10: This figure shows the resolution convergence for the rough, self-propelled

swimming plate. (a) The error convergence of C7% (b) Phase averaged cycle where
A =1/16.
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FIGURE 2.11: The convergence of [ |@wx|dV with simulation fidelity.

averaged over four cycles) and show that the resolution minimally affects the time series

to the point where different resolutions are barely distinguishable from each other.

Next, we validate our model by showing consistency with an experimental study (Lucas

et al., 2015). We make minor alterations to our model to match the kinematic trajectory,

St and Re of a swimming plate. In Lucas et al. (2015), they test four different plate

stiffnesses and assess the swimming performance. Of these four plates one (plate 1_3")

had an increasing amplitude envelope and a relatively constant wave speed; which

ensures the changes we need to match their conditions are minimal. Although Lucas

et al. (2015) test a range of different Sts and Re; for the plate we are matching, they only
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FIGURE 2.12: The numerical convergence for the kinematic trajectory defined by
equation 2.26 for { = 1.06 and St = 0.3.

provide the kinematic trajectory for Re = 77,000 and St = 0.31. Because of the sensitivity
of the kinematic mode shape of a flexible plate to different excitation conditions (Quinn
et al., 2014), we can only consider the data point where Re = 77,000 and St = 0.31.

Figure 2.13 shows a comparison of the raw and matched kinematic trajectories. We
match the trajectory by minimising ||y(x,t) — (y(x,t))||3 where (y(x, t)) is the model
for the kinematics. We consider the amplitude envelope, A(x) and the wave speed, {

separately and arrive at the functional form

(y(x,1)) = a;x' sin (2r(x/7 — f1)) (2.27)

where ip1, = [0.072,0.1685, —0.0701], and { = 2.15. Furthermore, we measured the
error in (y(x, t)) using

o(y(x, t) — (y(x, 1)) /o(y(x,t)) = 0.076 (2.28)

where (x) = 1/ (x — X)? is the operator to compute the standard deviation. The raw
data in Lucas et al. (2015) does not perfectly match the idealised model of a swimmer,
with slight asymmetry (figure 2.13) introducing the reported error.

We have kept the domain size, grid-refinement and time-step constant to our working
model and only altered the kinematic trajectory, St and Re. This allows us to assess the
accuracy of the computational setup compared to Lucas et al. (2015). As we increase the
resolution, Ct converges to within 1.7% of the reported experimental value, table 2.7.
This gives us confidence that the computational setup is accurate and that the kinematics
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FIGURE 2.13: The difference between the kinematic trajectories reported in Lucas et al.
(2015) and the fitted functional form (equation 2.4.5).

Ax Cr  error
0.00391 0.183 0.131
0.00195 0.167 0.029
0.00098 0.165 0.017

TABLE 2.7: The convergence of Cr to experimental results of Lucas et al. (2015).

are correctly implemented. For more validation of BDIM for swimming simulations, the
reader is referred to Maertens et al. (2017) who performs a like-for-like comparison of
undulatory locomotion with Dong and Lu (2007).

2.5 Conclusions

This chapter outlined the numerical methodology underpinning this thesis. We used
Lotus, an in-house developed finite-volume implicit large eddy simulation (iLES) code.
The implicit modelling of iLES derived from a flux-limited, QUICK (quadratic upstream
interpolation for convective kinematics), treatment of the convective terms (Hendrickson
et al., 2019). We used an adaptive time-step based on the Courant Friedrichs Lewy
condition that has been shown to converge with O(2) (Lauber et al., 2022). The body
geometry was coupled to these flow equations using the Boundary Data Immersion
Method (BDIM) formulated in Weymouth and Yue (2011), further developed for higher
Reynolds numbers in Maertens and Weymouth (2015), and thin geometries in Lauber
et al. (2022). BDIM enforced the boundary condition on the body by convolving together
the fluid and body governing equations on a Cartesian background grid.

We examined the flow over a flat plate with & = 8°. The mean lift was captured well,
however the long time period required to resolve the low frequency fluctuations limited
the reach of the convergence study to coarse meshes. Further, we compared C; to
experiments and while the smooth plate results aligned well with experimental data, the
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rough plate deviated by 20%. These experiments posed their own difficulties requiring
more work before publication. The complications surrounded the rigidity of the plate
with such a thin geometry. This resulted in a 'singing’ at the trailing edge of the plate
warranting further investigation. The comparison to experiments was useful in that
both should significant reductions in C|, with the addition of roughness, however more

work on the validation of the numerical method for our specific case was needed.

As a result, we undertook further verification and validation of the numerical method by
simulating a flat plate with general kinematics, for both rough, and smooth plates. We
showed that the method converged to acceptable error range for the thrust coefficient
and the integral of the x-vorticity, and that the results are domain invariant. We then
validated the kinematics by matching the kinematic trajectory to experimental results
and showed the thrust coefficient converge to within 2%. The results were in good

agreement with the experiment, and we have confidence in the numerical method.
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Chapter 3

A systematic investigation into the
effect of roughness on self-propelled

swimming plates

This chapter contains work published in the Journal of Fluid Mechanics (Massey et al., 2023).

This study examines the effects of surface topography on the flow and performance
of a Self-Propelled Swimming (SPS) body. We consider a thin flat plate with an egg-
carton roughness texture undergoing prescribed undulatory swimming kinematics
at a Strouhal number of 0.3 and tail amplitude to length ratio of 0.1, we use plate
Reynolds numbers of Re = 6,12, and 24 x 103, and focus on 12,000. As the roughness
wavelength is decreased, we find that the undulation wave speed must be increased to
overcome the additional drag from the roughness and maintain SPS. Correspondingly,
the extra wave speed raises the power required to maintain SPS, making the swimmer
less efficient. To decouple the roughness and the kinematics, we compare the rough
plates to equivalent smooth cases by matching the kinematic conditions. We find that
all but the longest roughness wavelengths reduce the required swimming power and
the unsteady amplitude of the forces when compared to a smooth plate undergoing
identical kinematics. Additionally, roughness can enhance flow enstrophy by up to 116%
compared to the smooth cases without a corresponding spike in forces; this suggests that
the increased mixing is not due to increased vorticity production at the wall. Instead, the
enstrophy is found to peak strongly when the roughness wavelength is approximately
twice the boundary-layer thickness over the Re range, indicating the roughness induces
large-scale secondary flow structures that extend to the edge of the boundary layer. This
study reveals the nonlinear interaction between roughness and kinematics beyond a
simple increase or decrease in drag, illustrating that roughness studies on static shapes

do not transfer directly to unsteady swimmers.



Chapter 3. A systematic investigation into the effect of roughness on self-propelled
30 swimming plates

3.1 Introduction

The complex and multiscale shape of denticles does not lend itself to systematic investigations
into the interplay between surface textures and kinematics. Consequently, we look to
simplify the surface texture and focus on the first mode effects of roughness. We
need to span a relevant physical space and yet ensure that the parameterisation of
the surface is suited for the proposed problem. We look for inspiration in the surface
textures/geometries that have been explored in previous studies that have focused on
developing methods for predicting drag on flow over rough surfaces (Moody and F.
(1944); Jiménez (2004); Flack and Schultz (2010, 2014); Garcia-Mayoral et al. (2019); Chung
et al. (2021)). Previous studies have indicated that the ratio of the total projected frontal
roughness area to the wall-paralleled projected area (solidity, A, Schlichting (1936)) and
the mean slope of the roughness texture (in the streamwise and spanwise-directions,
also known as effective slope, ES, Napoli et al. (2008)) are two geometric parameters of
a rough surface known to significantly affect the flow and forces. These two parameters
can be easily altered for structured surfaces where the surface geometry has a sinusoidal
shape. In fact, previous works have used sinusoidal roughness where the variation of
the two roughness properties can be achieved by only altering the wavelength of the
sinusoidal shape (Napoli et al. (2008); Chan et al. (2015); Ma et al. (2020); Ganju et al.
(2022)). This presents us with a surface that can be used to understand how the primary
scales of roughness (parameterised by a single quantity) interacts with kinematics, with

the hope that the findings can be generalised to more complex geometries.

In this work, we study the interaction between kinematics and roughness topologies
through high-resolution simulations of a rough self-propelled swimming thin plate. We
consider three Reynolds numbers (Re = 6,12, and 24 x 10%) with a focus on Re = 12,000
(based on swimming speed and chord length) to access moderate Reynolds numbers for
the types of flows that are in line with previous efforts (Oeffner and Lauder (2012); Wen
et al. (2014); Saadat et al. (2017); Domel et al. (2018); Thekkethil et al. (2018)). We also fix
the kinematics of the plate to a simple travelling waveform with a fixed Strouhal number,
St, that is in the propulsive regime for flapping foils and has been used extensively in
previous studies (Dong and Lu (2007); Borazjani and Sotiropoulos (2008); Maertens et al.
(2017); Muscutt et al. (2017); Thekkethil et al. (2018); Zurman-Nasution et al. (2020)).
As denticle geometries are complex with several potentially important length scales,
we focus on a simple roughness texture with a single-length scale to assess how the
topology interacts with the kinematics and impacts the hydrodynamic properties of the
swimmer. By combining information from two different, but, well-established topics we
hope to understand the influence of one on the other. These dynamic simulations with
roughness elements are the first of their kind, allowing us to establish a link between
surface roughness and kinematics, and then—with comparison to a smooth kinematic

counterpart—directly isolate the nonlinear interaction of the roughness and kinematics.
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(a)

FIGURE 3.1: The impact of { on (a) the shape of and (b) the forces on a smooth plate. (c)
The required wave speed, g, for SPS of a rough plate, given different wavelengths (A).

3.2 Results

3.2.1 Self-Propelled Swimming

We find the Self-Propelled Swimming (SPS) state by setting the wave speed ¢ to zero
the mean net thrust Cr. The wave speed is an effective control parameter to counter
roughness adjustments because increasing ¢ increases the thrust production, as shown
for a smooth plate in figure 3.1b. Figure 3.1a illustrates the change in body shape as
the wave speed increases which is a product of fixing the frequency with St = 0.3 and
letting the wavelength change the wave speed. Changing ¢ to achieve SPS allows us to
keep Re, St and A; constant to test different surface conditions without changing these
important swimming parameters identified in the literature. We use Brent’s method
(Brent, 1971) to find the Cr({) = 0 root within a tolerance of 102 which allows us to
balance precision with the number of iterations; the tabulated solutions are presented in
table A.2.

Using this approach, we found that a decrease in the roughness wavelength A requires
an increase of { to maintain SPS, figure 3.1c. { changes with A like the function ﬁ +c
(figure 3.1c). The {, A relationship leads us to restrict A in the range (1/4,1/52) as the
limits are ill-conditioned. Longer wavelengths asymptote to the smooth SPS ({ = 1.06)
where A = 1/0 whilst all A < 1/52 are drag-producing for our set-up.

3.2.2 Flow Structures

The structures of the flow provide insight into the workings of the system. Figure 3.2
shows equally spaced time instances making up a whole period of motion for two

different swimming modes at Re = 12,000. One swimming mode is { = 1.11 which



Chapter 3. A systematic investigation into the effect of roughness on self-propelled

32 swimming plates
wl
<4l
0.112 0.096 0.080 0.064 0.048 0.032 0.016 0.000
(a) t=03 (b) t=0.3

(c) t=06 (d) t=10.6
=/ ¢ y

" . B AT ) / ®
(e) t=20.9 (f) t=10.9

FIGURE 3.2: Sequential snapshots of vorticity magnitude |w| for SPS at Re = 12,000.
The two columns represent different roughness wavelengths. (a,c,d) A = 1/4 requiring
¢ = 1.11 for SPS. (b,d,e) A = 1/52 requiring { = 2.26.

is required to achieve self-propelled swimming for a surface of A = 1/4, the other is
¢ = 227 for A = 1/52. The high wave speed required to overcome roughness has
resulted in strong coherent vortices whilst the lower wave speed has a much more
dispersed vorticity field.

As ( increases, the flow around the plate moves away from those typically associated
with swimming. Figure 3.3 shows four snapshots across the range of { associated with
the surfaces tested. (a) is a smooth comparison and exhibits a two-pair plus two-single
(2P + 2S) vortex wake structure (Schnipper et al., 2009). For (b), there is an increase in
the boundary-layer mixing, and the flow moves back to a more traditional 2P structure.
As A decreases further, the leading edge vortex becomes more defined, with (c) and
(d) exhibiting well-defined vortices along the length of their body which is generally
associated with a heaving instead of a swimming plate

Figure 3.4 shows the flow structure visualised by isosurfaces of the Q-Criterion (Hunt
et al., 1988). For a direct comparison, the contour of the isosurface remains the same

between the figures. The flow exhibits a distinguishable transition as { increases. For
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FIGURE 3.3: The change in vorticity magnitude with roughness wavelength. All

instances are taken at the same cycle time (¢ = 0.1) and show the spanwise-averaged

vorticity magnitude. (a) A smooth plate and (b-d) rough plates defined by decreasing
A

low ¢ the bumps dominate the flow structure, and we see distinct horseshoe vortices
shed from each element. These vortices persist downstream into counter-rotating streaks
that compose the near wake. The flow structures get smaller as { increases and the
horseshoe vortex around each element becomes less distinct. From the middle left figure
onwards, we can see the near wake collects into a wavy vortex tube similar to those that

categorise a two-dimensional flow driven by kinematics Zurman-Nasution et al. (2020).

Next, we study the influence of Re on the self-propelled swimming flow by extending
the range to Re = 6,12 and 24 x 103, figure 3.5. The large-scale flow structures such as
the leading edge vortex and wake vortices remain similar, but increasing Re is seen to
greatly increase the production of small-scale vortices - both on the surface and in the
wake. This is because the large-scale structures are driven by the kinematics and the

surface topology and the reduced viscosity causes the structures to break down quickly.

3.2.3 Forces

We find that increasing { increases the power to maintain self-propelled swimming
(figure 3.6a) despite the strong two-dimensionality of the flow structures which are
normally associated with efficient power transfer (Zurman-Nasution et al., 2020) as
no energy is lost to three-dimensional effects. This means low { corresponding to the
longer wavelength roughness and associated three-dimensional flow structures are more
efficient.
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FIGURE 3.4: The Q-Criterion of the flow around a flat plate with a decreasing

roughness wavelength. For longer wavelength roughness, the shedding off of the

bumps dominate the structures. As the wavelength decreases, the flow transitions to a

predominantly two-dimensional state as the influence of the bump perturbations gives
way to dominant kinematically-driven structures.

Figure 3.6b show that as { increases, as does RMS(Cp ). This signals ineffective swimming
as the side forces are balanced by the mass x acceleration of the body’s motion so larger
side forces on an equally massive body cause the body to accelerate side to side more,
decreasing the smoothness. Similarly, increasing ¢ also increases RMS(Cr) (figure 3.6d)
leading to more of a surging motion, further decreasing the smoothness of the swimming.

These signs of ineffective swimming are reflected in the stated increase in Cp.

To decouple the roughness and wave speed effects, we run a smooth simulation with
the same kinematics properties as each rough case. This smooth kinematic counterpart
gives a base flow to compare against the rough simulations, and the cycled average
power and forces are shown in Figure 3.6. Figure 3.6¢ illustrates that increasing ¢ for
the smooth case increases Cr, making the smooth-plate counterparts slightly thrust
producing. The power, Cp is reduced by adding roughness to the surface of the plate,
Figure 3.6a, for the shorter wavelength roughness tested. Shorter wavelength roughness
also reduces RMS(Cp) (figure 3.6b) and RMS(Cr) (figure 3.6d), making the swimming

more effective compared to a smooth, kinematic counterpart.
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(a) :

Re = 24,000
A=1/16

FIGURE 3.5: Flow structures of plates at Re = 6,12, and 24 x 103 visualised by the same

g-criterion. The surface topographies, defined by A = 1/8,1/12,1/16, correspond to

the enstrophy peaks discussed in section 3.2.4. An animation of each of these subfigures
is available in the supplementary material.

3.2.4 Enstrophy

So far, we have shown surface roughness increases the drag on a surface, leading to
inefficient swimming, and have identified variations in the flow structures for different
textures and kinematics. To identify the separate fluid dynamic contribution of  and A
we look at scaled enstrophy of the rough surface and its smooth kinematic counterpart.
We define the scaled enstrophy as

Eo J0.5|w[?dV

o (3.1)
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FIGURE 3.6: The key swimming performance and force characteristics of the plate at

Re = 12,000. (a) The power required to maintain self-propelled swimming. (b) The

side force RMS. (c) The time-averaged and (d) RMS thrust. The points making up the

solid line are the rough simulations, and the dash-dot line is a kinematically equivalent
smooth simulation which matches { to the rough case.

where the scaling factor is the planform area times the motion amplitude to define an
appropriate reduced volume over which to evaluate the mixing. We use the subscript
(7, s) to identify the rough and smooth cases respectively.

In general, the enstrophy increases with Re because of the presence of smaller scale
structures (figure 3.5). We show this in figure 3.7a,b, which reports the results of E against
¢ for three Re. Figure 3.7a are the results of the rough plate undergoing self-propelled
swimming and figure 3.7b are the enstrophy for the smooth, kinematic counterparts.
Both the smooth and rough plates have an approximately linear increase that scales with
log Re.

The positive gradient of both the smooth and rough enstrophy shows enstrophy increases
with {, and the offset between the smooth and the rough line indicates that adding

roughness also increases enstrophy. As we increase ¢, the enstrophy increases for both
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FIGURE 3.7: (a) The {-dependant enstrophy for the rough, self-propelled swimming
plates (E;) where higher { corresponds to lower A. The circle, diamond and triangle
markers correspond to Re = 6,12 and 24 x 10° respectively. (b) The enstrophy for the
kinematically identical smooth plate Es where the dash-dot line identifies the data as
smooth and the markers relating to the Re correspond as before. (c) The difference
between the smooth and the rough enstrophies, AE with respect to A /26(Re). We take
J(Re) as the approximation of a laminar boundary-layer thickness on a smooth, flat
plate. The same markers are used to distinguish Re, and the colours orange, blue and
green (online) correspond to Re = 6,12 and 24 x 103 to aid in the distinction.

the smooth and the rough cases. At the upper limit of , the smooth and the rough lines
start converging as the rough flow, like the smooth, becomes two-dimensional (figure
3.4).

One prominent feature of figure 3.7a are the peaks in enstrophy found between { =
1.1 — 1.3. The peak in enstrophy coincides with the superposition of the flow features
associated with both the roughness and kinematics (figure 3.5). This is evident as
surfaces with shorter A are increasingly dominated by the two-dimensional vortex tubes
associated with the kinematic flow as the structures shed off the roughness elements
decrease in size (figure 3.4b-f), and surfaces with longer A are dominated by the flow off

the roughness elements (figure 3.4a,b).



Chapter 3. A systematic investigation into the effect of roughness on self-propelled
38 swimming plates

The mechanisms driving the peak in enstrophy are analogous to an amplification of flow
structures found in Prandtl’s Secondary Motions of the Second Kind (Johann Nikuradse,
1926; Ludwig Prandtl, 1926); where secondary currents were induced when the surface
texture has features that scale with the outer length-scale of the flow. In fact, Hinze
(1967, 1973) found secondary-currents form when surface roughness has dominant
scales comparable to the boundary-layer thickness (or pipe/channel height). These
secondary currents manifest as low and high-momentum pathways in the flow (Barros
and Christensen, 2014) that are further sustained by spatial gradients (Anderson et al.,
2015). Vanderwel and Ganapathisubramani (2015) identified that the spatial gradients
and the strength of these secondary currents are maximised when the spanwise-spacing
between successive roughness features are approximately equal to the boundary-layer
thickness. When the spacing is small, the flow behaves more like a homogeneous rough
surface. When the spacing is much larger than the secondary motions, the currents are
spatially confined (and small) to the location of the roughness. The analogy to the case
presented in this manuscript is not a direct comparison to Prandtl’s Secondary Motions
of the Second Kind as the flow is merely unsteady, although, the system studied herein
meet certain criteria. Specifically, large-scale streamwise vortical structures (figures
3.4 and 3.5) driven from torque associated with anisotropy of the velocity fluctuations
(Perkins, 1970; Bottaro et al., 2006).

The increasing Re shifts the peak enstrophy in figure 3.7a towards higher ¢ (lower A)
resulting in flow fields shown in figure 3.5. The enstrophy peaks occur at A =1/8,1/12
and 1/16 for Re = 6,12 and 24 x 10° respectively. In fact, estimating the value of 5(Re)
by assuming a laminar boundary-layer correlation (5(Re) ~ 4.91Re™ %), and leveraging
an approximate scaling A/25 ~ 1 yields results where A(Re) = 1/7.9,1/11.5, and
1/15.8 for Re = 6,12, and 24 x 10%. These estimations are remarkably close to the true,
enstrophy peaking wavelengths, so future studies can use this estimation to assess the
importance of their dominant roughness length scales. The laminar boundary-layer
value of J is taken since it is difficult to estimate a value of § for the swimming plate.
At these Reynolds numbers, § could also be estimated using a turbulent boundary-
layer correlation (5 o Re"?) since there is very little difference between the laminar and
turbulent values.

Further, we can delineate the relationship between A and and the boundary-layer
thickness by plotting the normalised difference in enstrophy between the smooth and
the rough plate (AE = (E, — E;)) against A /25(Re) (figure 3.7c). Figure 3.7c shows a
strong collapse of the AE/E; curves when plotted against A/26(Re) for Re = 6 and
12 x 10%. The scaled maximum of both curves is 1.16 at A/26(Re) just less than 1. The
collapse breaks down at the highest Re = 24 x 10° because the flow on the smooth plate
experiences a jump in E; at this Reynolds number, affecting the enstrophy differences.

Finally, in our study, the power increases almost linearly until ¢ ~ 1.8 (figure 3.6a) and
our enstrophy peak lies within this regime. This means that the accentuation of these
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secondary flows is truly a boundary-layer scaling, and not a result of increased vorticity
production at the wall, which would result in an increased force on the body. Therefore,
we can relate the system’s increase in mixing to scaling arguments previously defined in

turbulent wall-flows.

3.2.5 Boundary-layer-scale breakdown

The breakdown of the J-scaling coincides with the disorganisation of the flow at high
Re. To correlate the breakdown, we run extra simulations of a smooth SPS plate at Re =
3,9,18,36 and 48 x 10°. The phase-portraits of E (figure 3.8) show that for Re < 18,000,
the cases remain largely periodic. At Re > 18,000, the periodicity of the enstrophy

breaks down which corresponds to the scaling observations in figure 3.7c.

To quantify the periodicity of the flat plate base flow we look at the autocorrelation
defined as

YE(¢)E(¢ + At)

A= R (g T 1)

(3.2)

where E(¢) is the enstrophy at ¢ = 27ft. The autocorrelation is a measure of the
periodicity of the flow, where A = 1 is a perfectly periodic flow and A = 0 is a
completely random flow. Figure 3.9 shows the autocorrelation of the enstrophy for the
smooth plate at different Re. The autocorrelation shows periodic flow at Re < 18,000
and becomes random from Re > 18,000. This is consistent with the phase portraits
in figure 3.8 and the breakdown of the J-scaling in figure 3.7c. The breakdown of the
#-scaling is a result of the breakdown of the periodicity of the flow.

3.3 Conclusion

In this chapter, we examined the effect of an egg carton-type rough surface on a Self
Propelled Swimming Body. We varied the wavelength of the surface to understand
how different surface topologies change the flow and performance of the swimmer.
We found a decrease in the roughness wavelength requires a greater wave speed
to maintain self-propelled swimming. The greater wave speed changed the vortex
structures and consolidated the vorticity into two-dimensional packets with a distinct
leading edge vortex propagating down the body. The long wavelength rough surfaces
were dominated by the shedding of horseshoe vortices from individual roughness
elements that persisted in the wake. The thrust of the plate increased with wave speed,
which was needed to overcome the drag induced by the roughness. The increased wave
speed also increased the required power and the amplitude of the non-propulsive lift
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FIGURE 3.9: The autocorrelation of the enstrophy for the smooth plate at different Re.

force. These increases implied the plate was less efficient, less effective, and less steady
in its swimming. To decouple the effects of roughness and kinematics we compared
the forces and enstrophy to a smooth swimmer with identical kinematics. We saw that,
compared to the smooth cases, the roughness reduced the power required, as well as the
amplitude of the lift and drag forces. There was a peak in enstrophy which coincided
with a superposition of two flow modes, one dominated by three-dimensional structures
and the other by the two-dimensional vortex tubes. The peak in enstrophy persisted
over all three Reynolds numbers, and collapsed when the roughness wavelength is
proportional to the boundary-layer thickness. This spike in enstrophy is not a result
of increased vorticity production at the wall because we do not have a corresponding
increase in body force. Further, this boundary-layer relationship is analogous to scaling

arguments defined for turbulent wall-flows (Vanderwel and Ganapathisubramani 2015).

These results show that you cannot ignore kinematics when assessing the performance
of a swimmer with surface texture. Oeffner and Lauder (2012) and Wen et al. (2014)
reported an increase in speed and efficiency for their experiments, but we have shown a
change in wave speed dominates the thrust production of the plate. Adding a coating to
a surface could increase the stiffness and thus increase the wave speed, causing the plate
to swim faster. Another factor to consider is the structural resonance, which significantly
affects the performance of flexible plates undergoing swimming (Quinn et al. 2014). Any
study attributing performance changes to surface textures must show the independence

of their test cases to the kinematics.

We have identified non-linear interactions between the roughness and kinematics that
amplify this mixing without a nonlinear force or power increase. Other studies (Lang
et al. 2008; Afroz et al. 2016; Santos et al. 2021) have identified the bristling of shark skin
and conjectured that the increased mixing helps keep flow attached in the flank region.
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This work is significant in understanding the hydrodynamic effect of surface textures on
the flow and forces around a swimmer, it is the first study to look at surface textures on
undulating surfaces with realistic and well-defined kinematics. However, it is limited in
that the roughness elements are a hundred times larger than actual denticles, and Re is

only representative of a small, slow-swimming shark.
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Chapter 4

Resolvent analysis of a swimming
foil

This chapter is in preparation for submission to Journal of Fluid Mechanics.

This study investigates the boundary-layer dynamics of a swimming foil by using
data-driven resolvent analysis (Herrmann et al., 2021) and a body-coordinate transform.
We demonstrate that the foil’s boundary-layer is sensitive to a spectrum of harmonics,
mainly phase-locked, differing significantly from a stationary foil. This indicates a
substantial impact of swimming motion on boundary-layer stability. The analysis
reveals varied high and low-wavenumber structures in the swimming foil’s forcing
modes, while its response modes show frequency invariance. The resolvent mode
spectra uncover dominant spatial structures near the boundary layer, with forcing
modes displaying diverse wavenumbers and response modes consistent. Finally, this
study shows that the most sensitive region of the flow is right next to the body, exhibiting
large fluctuations, at a range of distinct spatial wavenumbers. These findings emphasise
the impact of swimming motion on boundary-layer stability and suggest the potential

of flow control through properly tuned surface roughness.

4.1 Introduction

In chapter 3, we examined the effects of surface topography on the flow and performance
of a Self-Propelled Swimming (SPS) body. We showed that the enstrophy of the flow
followed an outer-scaling that reached a peak at A/25(Re) = 1. This scaling breaks
down when the aperiodicity of the base flow increases. The study highlights a non-
linear relationship between roughness and kinematics beyond a simple increase in drag.
However, the study was limited to a flat plate, and so the effects of roughness on a body

with shape and a flow at a higher Re remain unknown.
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Stability analysis of fluid flows helps to understand and predict the behaviour of the
system. Canonical stability analysis comes from analysing the Orr-Somerfield equation
(Orr, 1907; Sommerfield, 1908; Orszag, 1971), which is an eigenvalue equation describing
linear, two-dimensional modes of disturbance to a viscous parallel flow. However,
Trefethen et al. (1993) showed that the non-normality of linear operators that arise from
all but a few specific solutions to the Navier-Stokes—especially when extensions are
made to three-dimensions—can potentially lead to psuedoresonance, transient growth,
and destabilising perturbations. They laid the groundwork for what is now called
resolvent analysis by studying the response of systems to deterministic disturbances.
Jovanovi¢ and Bamieh (2005) further developed this theory, emphasising an input-
output viewpoint crucial for understanding localised disturbances in multi-physics
systems. Resolvent analysis in its modern form stems from the work of McKeon and
Sharma (2010), and relies on the concept of the resolvent operator, which treats the
non-linearity in the fluctuating part of the Navier-Stokes equations as an unknown
harmonic forcing. This approach offers a low-rank approximation of forcing-response
dynamics, immensely useful for modelling, controlling, and comprehending fluid flow
physics.

The practical application of resolvent analysis faces challenges due to the need for high-
fidelity solvers for the linearised governing equations and the significant computational
demands of handling large operators. These challenges are being addressed through
randomised numerical linear algebra methods (Ribeiro et al., 2020), reducing computational
expense and memory requirements. Additionally, there’s a growing interest in adopting
data-driven approaches for obtaining the resolvent operator, bypassing the need for
governing equation access and potentially reducing computational burdens (Herrmann
etal., 2021).

Herrmann et al. (2021) proposes a unique methodology that uses the link between the
Dynamic Mode Decomposition (DMD) and koopman eigenfunctions (Williams et al.,
2015) to construct the linear basis to analyse. DMD, introduced by Schmid (2010),
is enables the extraction of spatio-temporal patterns from time-resolved data. The
availability of well maintained, and optimised codes, such as Demo et al. (2018) reduces

the barrier for resolvent analysis, surpassing the need to set up operators O(9N?).

The challenge for a moving and deformable body is that the domain position containing
the fluid and the body depend on time. Goza and Colonius (2018) successfully coupled
the fluid and body domains to identify the driving mechanisms for the onset of chaotic
flapping however, their body was an infinitesimally thin membrane. Menon and Mittal
(2020) looked at the pitching and plunging of an airfoil by rotating and translating the
reference frame, so the body remained centred within the reference frame. This is limited
in that it deals with a rigid body.
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i 1 2 3 4 5 6 7 8 9 10
a; 06 —05 —281 2225 8465 1883.7 —25674 2111.0 -—-962.2 186.8

TABLE 4.1: Values for the coefficients from equation 4.2.1

In this chapter, we investigate the stability of a swimming foil using resolvent analysis.
We use a modified NACA foil shape to represent a fish-like body, and a generalised
SPS motion to represent the kinematics. We propose a coordinate transform to study
the boundary layer of a swimming foil in body coordinates. This approach allows us
to use readily available DMD codes, and the same methodology as Herrmann et al.
(2021) to perform resolvent analysis on the boundary layer of a swimming foil. To our
knowledge, this is the first study of its kind to use both DMD on deformable bodies
with non-zero thickness, and subsequent resolvent analysis. Further, it enables the study
of the boundary-layer dynamics of a swimming foil at realistic swimming Re.

4.2 Methodology

4.2.1 Geometry

We use a NACAQ012 profile with a modified leading edge to represent a fish-like body:.
The details for the modification of the foil are set out in Appendix C.4, and the equation
for a half section is given by

y(x) = aix’ + a(i+1)ix(i+1)... + ayx" 4.1)
where n = 10 and the coefficients are defined in table 4.1.

4.2.2 Kinematics

We employ the same kinematic equation as in chapter 3 (equation 2.25), where the foil
undergoes a generalised SPS motion. In contrast to chapter 3, where we modified the
coefficients in equation 2.26 to extend SPS across a broader range of A, such adjustments
are unnecessary for the foil shape. Therefore, we adopt 491, = (0.05, —0.13,0.28), as
detailed by Di Santo et al. (2021).
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FIGURE 4.1: Illustration of the computational domain size. The insert shows the
rectilinear, inner-domain.

4.2.3 Numerical method

We use the same numerical method as in chapters 2 & 3. The computational space
is illustrated in figure 4.1; we use a domain size of x € [-1.5,5.5,y € [-15,1.5],
and z € [0,1/16]. The inner domain is defined x € [-0.35,2],y € [—0.35,0.35], and
extends throughout of z. The grid is uniform and rectilinear in the inner domain, with a
refinement ratio of 4 : 1 : 4 for Ax, Ay, andAz, it is then stretched in the outer domain
using hyperbolic stretching. The total number of grid cells is N = (4096,4096, 64)
totalling N = 1.7 x 10” grid cells. We show the domain and grid resolution are sufficient
in Appendix C.4. We save 800 snapshots over 4 cycles, with a time-step of At = 0.0033
for the swimming case, and 3400 snapshots over 17 convective cycles for the stationary
case, giving a time-step of At = 0.005.

4.2.4 Unmapping the flow

For a body with non-zero thickness and not stationary in time, DMD produces inaccurate
modes around the body motion (Menon and Mittal, 2020). This would restrict analysis
to the wake, and miss valuable insights into the boundary-layer dynamics. To overcome
this, we transform the flow into the body coordinates. We do this by taking velocity
profiles normal to the body, which are interpolated from the original solution to give a

uniform grid in body coordinates.

4.2.5 Resolvent analysis

We use the methodology from Herrmann et al. (2021) to form the resolvent analysis.

Accordingly, we use Dynamic Mode Decomposition (DMD) to approximate the eigenvalues
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FIGURE 4.2: Schematic of the coordinate transform from the computational domain (a)
to the body coordinates (b).

and eigenvectors of the dynamical system. We adopt the forward-backward DMD
approach by (Dawson et al., 2016) for this analysis as this yields the best results for our
case. Our dynamical system’s evolution is described by

Xpp1 = exp(AAE)xy, 4.2)

where x is the state at time t; = kAt. We use the u and v components of the velocity
tield as our state vector and assemble data matrices X and Y, from state snapshots. Next,
we implement the f{bDMD algorithm (Appendix B, Dawson et al. (2016)) with mode
truncation m = 40. This yields the matrices Dy, V},, r, Wy, £, Where D, = diag(gl, G1,---,61)
are the eigenvalues and V,,, r, Wy, r are direct and adjoint eigenvectors respectively. These
are related to the operator A by A; = log(g1)/At, fulfilling AV = VA and ATW = WA*,
where A" is the adjoint of A.

For the resolvent analysis, we approximate the resolvent operator using A, V,,, and
W, by considering a forced system. As such, we expand x and f in eigenvectors:
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FIGURE 4.3: The real and imaginary eigenvalues for the DMD, plotted in relation to a
unit circle. The red dots correspond to the eigenvalues of the stationary foil, and the
green to the swimming foil.

x(t) = Vya(t) and f(t) = V,,b(t), with a,b being expansion coefficients. The inner
product with W, transforms the system into

4=Ama+b. (4.3)

To maintain the 2-norm’s physical meaning, we adjust the inner product via a weighting
matrix defined from the Cholesky factorisation of V;V,, = F*F. The resolvent analysis

then proceeds with the SVD of the resolvent operator
F(—iwl — Ay) 'F1 = ¥52(w)®%, (4.4)

synthesising resolvent modes into physical coordinates, ® = meflcbi; and ¥ =
VuE ¥ 7 are the forcing and response modes respectively.

The validation of the resolvent analysis methodology, and our implementation is
presented in Appendix C.4. We simulate the flow around a stationary foil at Re = 10,250
and « = 0°, and compare the results to the numerical, and data-assimilated experimental

data of Symon et al. (2019). We find that the results are in good agreement.

4.2.6 DMD basis

The DMD of the flow field forms the basis for the resolvent analysis. The eigenvalue
spectrum obtained from DMD reveals stable modes that lie around the unit circle (figure
4.3). These modes are well captured by the DMD algorithm and thus form a good

basis for the linear operator. Figure 4.3a shows the eigenvalues for the stationary foil
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FIGURE 4.4: The maximum gain of the resolvent operator for the stationary foil at
Re = 10,250 (a), and the swimming foil at Re = 100, 000 (b).

lie perfectly on the unit circle, indicating that the basis is periodic. The eigenvalues
for the swimming foil (figure 4.3b) lie mainly on the unit circle, with a few spurious
exceptions. This is likely due to the higher Re and the complexities involved in adding
the swimming motion. These results show that the DMD basis is a good approximation
for the linear operator.

4.3 Results

4.3.1 Maximum gain

The maximum gain of the first mode of the resolvent operator exhibits distinct peaks
across various frequencies. Figure 4.4 displays this gain for both the stationary (a) and
swimming (b) foils. A peak of the gain for the stationary, validation case occurs at f = 3,
closely aligning with the most unstable mode identified in the unmapped flow of the
validation case (f ~ 3). This correspondence suggests that the resolvent analysis on the
coordinate transformed flow effectively captures dynamics similar to those of the global
system. Notably, the number of peaks in figure 4.4 correlates with, but does not exactly
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FIGURE 4.5: The forcing (a, ¢, €) and response (b, d, f) modes of the body normal
velocity component ii,, for the stationary foil.

match, the number of modes in the Dynamic Mode Decomposition (DMD) basis; there
are 10 peaks in figure 4.4(b), yet the DMD basis comprises 40 modes.

For the swimming foil, the maximum gain follows a trend akin to that of the stationary
foil, marked by multiple peaks at varying frequencies. These peaks often occur at
integer values of f*, where f* = 2Af/St, suggesting that the sensitive frequencies are

phase-locked. The maximum gain for the swimming foil is noted at f* = 3.

4.3.2 Resolvent modes
Stationary foil

The resolvent modes of the stationary foil (figure 4.5) exhibit instabilities around the
tail, where flow separation commences. The forcing modes present two distinct regions,
characterised by low and high wavenumber structures. Forcing modes driven by low
frequency perturbations are predominantly influenced by large wavenumber structures
(tigure 4.5a,b), while those driven by high frequency perturbations are governed by low

wavenumber structures(figure 4.5b,c. The response mode to low frequency perturbations
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FIGURE 4.6: The forcing (a, ¢, e, g) and response (b, d, f, h) modes for the body normal
velocity component if,.

mirrors the structure of the forcing mode, but includes a greater presence of low
wavenumber structures (figure 4.5b). In contrast, the response mode to high frequency
perturbations, although similar in structure to the forcing modes (figure 4.5d,f), exhibits
a downward reaction in spatial scales, with high wavenumber structures gaining

magnitude.

Swimming foil

The forcing and response modes of the swimming foil, as depicted in figure 4.6, differ
qualitatively from those of a stationary foil. The forcing modes display structures
primarily characterised by low-wavenumber scales in the outer-flow (figure 4.6a). The
low-wavenumber structures, oriented perpendicularly to the body boundary, vary with
the excitation frequency, with a visible reduction in k, going from figure 4.6a to figure
4.6g.

In contrast, the response modes exhibit a largely consistent structure across various

perturbation frequencies, with only minor variations in magnitude (figures 4.6b, d, f,
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FIGURE 4.7: The spatial wavenumber of the forcing (a), and response (b) modes at a
distance of n = 0.005. Each line corresponds to a peak in figure 4.4. The fft’s are taken
using Welch’s method with 2 bins.

h). This consistency suggests a robust boundary-layer response mechanism, relatively

unaffected by the excitation mode.

Except for the lowest frequency forcing mode (figure 4.6a), distinct spatial structures
across the entire length of the foil are present in the boundary layer of the resolvent
modes of the swimming foil. These structures aren’t present in the stationary foil, and is

likely due to the swimming motion.

4.3.3 Spatial wavenumber

The spatial wavenumber of the forcing modes for the resolvent peaks (figure 4.4b) vary
depending on the excitation frequency, whereas the response wavenumbers are largely
similar. Figure 4.7 shows the spatial wavenumber of the forcing and response modes
at a distance of n = 0.005 from the body boundary, where each line corresponds to a
peak in the gain (figure 4.4b). In figure 4.7, we can see that the forcing modes exhibits a
range of dominant wavenumbers in the spectra of the forcing modes, with the dominant
wavenumbers lying at peaks of ky ~ 5 and k, ~ 20. The wavenumber where k, ~ 20
corresponds to the up and down welling structures we might associate with roughness.
The response modes, however, exhibit two consistent wavenumbers of k, ~ 14 and
ky ~ 30. The consistency of the response modes suggests that the boundary-layer

response is insensitive to the perturbation frequency.
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FIGURE 4.8: A zoomed in view of the response mode (a), for the case f* = 3,

corresponding the maximum gain (figure 4.4). Power spectra of the response mode at a
range of distances (b).

4.3.4 Control

Recent advancements in resolvent analysis have led to significant progress in flow
control strategies across various fluid dynamics applications (Luhar et al., 2014; Yeh
and Taira, 2019; Jafari et al., 2023). Luhar et al. (2014) extends McKeon and Sharma
(2010) resolvent analysis to flow control techniques, particularly focusing on opposition
control. This approach decomposes the turbulent pipe flow into highly amplified
response modes, assessing the impact of opposition control (Choi et al., 1994) on these
modes” amplification characteristics and wall-normal structures. The research finds
that slower, wall-attached modes are effectively suppressed, while faster, detached
modes are amplified, highlighting a critical balance between mode detection and
suppression efficacy. Yeh and Taira (2019) employs resolvent analysis for designing
active control techniques in separated flows over airfoils under post-stall conditions. By
introducing unsteady thermal actuation, this study pinpoints the optimal frequency and
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wavenumber for actuation to maximise energy amplification. Jafari et al. (2023) explores
the potential of frequency-tuned surfaces as a passive control strategy, utilising resolvent
analysis to investigate surfaces with specific impedances that allow transpiration and/or
slip in response to wall dynamics. These surfaces are shown to suppress significant
turbulent structures, such as near-wall cycles and large-scale motions, across a wide
spectral range. The study reveals that materials designed for near-wall mode suppression
and surfaces with shear-driven impedance can lead to overall drag reduction, emphasising
the non-unique nature of drag-reducing impedance and the potential for targeting
specific frequency bandwidths with periodic material design. Together, these studies
underscore the versatility and efficacy of resolvent analysis in developing both active

and passive flow control strategies, suitable for various flow conditions and objectives.

One way of controlling the boundary-layer could be to provide opposition control to
the wall-normal fluctuations (Luhar et al., 2014). Figure 4.8a shows a zoomed in view
of the response mode for the case f* = 3, corresponding the maximum gain (figure
4.4). We can see that the response mode exhibits distinct, periodic spatial structures up
until the very inner boundary. Right at the inner boundary, we start to see much higher

wavenumber fluctuations as well as high i/, regions near the nose and tail.

Figure 4.8b shows the power spectra of the response mode at a range of distances from
the body boundary-illustrated by the grey lines in figure 4.8a. For all cut distances there
is a clear peak at k; = 26, but as the distance from the body boundary decreases, this
low wavenumber peak becomes less distinct from the high wavenumber peaks. At the
limit of n = 0 the spectra exhibits peaks across the frequency spectra. The peaks atn = 0
also fluctuate at the highest amplitude. This suggests that opposition control could be

used to suppress response structures near the boundary layer.

It is well documented that surface roughness increases wall-normal fluctuations in
turbulent boundary-layers (Grass, 1971). This is due to the roughness elements creating
high and low-pressure regions at the peaks and crests of the roughness elements,
respectively. Based on the results of this study, we suggest that opposition control
through the addition of roughness could be used to suppress the low, or high wavenumber
fluctuations, and reduce the unstable response modes, potentially reducing drag. This is

a promising avenue for future research.

4.4 Conclusions

We have performed resolvent analysis on the boundary layer of a swimming foil,
employing the data-driven technique described by Herrmann et al. (2021) and a coordinate
transformation to body coordinates. Our analysis reveals that the swimming foil
is sensitive to a range of harmonics, predominantly phase-locked. Moreover, we
demonstrate that the resolvent analysis results for the swimming foil differ qualitatively
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from those for a stationary foil, indicating that swimming motion significantly influences
boundary-layer stability. The forcing modes of the swimming foil display a variety
of distinct high- and low-wavenumber structures, while the response modes remain
largely invariant to the forcing. Further, our analysis at a distance of n = 0.005 from the
wall uncovers dominant spatial structures near the boundary layer. Here, the forcing
modes exhibit a range of wavenumbers, whereas the response modes consistently
show two wavenumbers at k, ~ 14 and k;y ~ 30. We also observe that the spatial
wavenumbers in the most amplified response mode vary with wall-normal directions,
with the highest fluctuations occurring right at the wall and spanning a range of distinct

spatial wavenumbers.

The boundary-layer stability’s sensitivity to swimming motion and the distinct spatial
wavenumbers of the resolvent modes within the boundary layer are significant findings.
These suggest that studies investigating roughness with the aim of applying insights
to swimming bodies must consider the swimming motion. Furthermore, our research
indicates that effective flow control mechanisms could be achieved by actuating the
swimmer right at the wall, potentially through the addition of properly tuned surface
roughness.
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Chapter 5

Surface roughness for increased

swimming performance

The content of this chapter contributes to a paper in preparation for submission to the
Journal of Fluid Mechanics.

This study investigates the effects of surface roughness on the hydrodynamics of a self-
propelled swimming foil, at Re = 100, 000, focusing on different roughness wavelengths.
It reveals that longer wavelengths cause unsteady vortex shedding and a mixed wake,
while shorter wavelengths create coherent vortex tubes. Boundary-layer thickness
is affected by roughness, particularly towards the tail, with separation dominant at
long roughness wavelengths. Roughness also impacts power requirements, with
certain roughness scales slightly reducing the required power by affecting vorticity
production at the wall. A variable roughness function inspired by sharkskin was tested,
showing minimal impact on power compared to a smooth surface, with some regions
of improvement. The research indicates that roughness influences are complex and
highly dependent on calibration, with smaller scales offering efficiency gains in certain
conditions. However, these benefits are not uniform across the swimming cycle and
a variable roughness function, inspired by shark skin mechanics could, potentially—
given the proper tuning—outperform fixed small-scale roughness. Overall, the study
underscores the complex interaction between surface roughness and unsteady fluid
dynamics, raising questions about the mechanisms swimmers use to control flow

through their skin.

5.1 Introduction

The diversity of inter and intra-species fish scale diversity makes it difficult to pose a

universal theory for the hydrodynamic significance of fish scales (Lauder et al., 2016).
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Investigating bluegill sunfish (Lepomis macrochirus), Wainwright and Lauder (2016)
analysed scale morphology, showing the scales on the gill cover (opercle) are smooth-
edged (cycloid), while the scales on the rest of the body have tiny teeth-like projections
(ctenoid). As you move towards the underside of the fish, the area covered by these
toothed scales (ctenii) gets larger. Near the front spiny part of the dorsal fin and on
the gill cover, the scales are smaller, length, and thickness compared to scales found on
other parts of the body. Subsequent studies (Wainwright et al., 2017) identify yet more
diversity among a wider range of fish species.

Experiments on grass carp (Ctenopharyngodon idellus) scales replicated as bionic
surfaces suggested a 3% drag reduction, attributed to a water-trapping mechanism
causing flow separation behind the scales, although detailed flow structure analysis
was lacking (Wu et al., 2018). Notably, these studies treated scales as isolated units
rather than in their natural overlapping arrangement. Muthuramalingam et al. (2019)
adopted more realistic, overlapping scales of a European bass (Dicentrarchus labrax),
and focused on how the homogenous scale pattern and overlap along the body affect
hydrodynamics. They found that the scale array produces regular rows of alternating,
streamwise low-speed and high-speed streaks inside the boundary layer close to the
surface, with maximum velocity difference of approximately 9%. Low velocity streaks
are formed in the central region of the scales whereas the high velocity streaks originated
in the overlapping region between the scales. This phenomenon is indicative of the
significant influence the arrangement and size of the overlapping scales have on the
flow patterns. When the scale height is relatively small compared to the boundary-
layer thickness, specifically less than 10%, a total drag reduction is observed. This
was corroborated by flow simulations and surface oil-flow visualizations on a physical
model of the biomimetic surface in a flow channel, demonstrating a striking correlation
in the size and layout of the streaky structures. Given these observations, and in light of
recent studies on the impact of micro-roughness in laminar boundary-layer flows, they
hypothesised that fish scales could potentially delay the transition to turbulence, thereby
further reducing drag. They use Re = 33,000, although the bass has a swimming speed
that puts it in the range of Re &~ 4 x 10°.

Muthuramalingam et al. (2020) examines how fish scales affect the transition from
laminar to turbulent flow in water. By placing biomimetic scales in overlapping patterns
on a flat plate in a laminar water channel, the scales delayed the onset of turbulence by
55% compared to a non-scaled surface. This effect, attributed to the scales generating
streamwise streaks, theoretically reduces drag by about 27%. The study suggests
potential for using fish scale-inspired designs in laminar flow control to reduce friction

drag.

Elasmobranch fishes, such as sharks, skates, and rays, feature a unique skin covered
with minute placoid scales or dermal denticles. Embedded in the stratum compactum, a
deeper collagenous layer of the skin, these scales vary in size and shape across different
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body parts and species (Reif, 1985; Bechert et al., 2000b,c; Ankhelyi et al., 2018). The
skins are covered in tiny, tooth-like scales called dermal denticles. Research suggests
these denticles play a role in controlling water flow and potentially reducing drag. Initial
theories proposed the denticle ridges act as riblets to reduce skin friction. However,
experiments found only modest 3% friction reduction with an interlocking shark skin
model(Bechert et al., 2000b,c), and 44-50% drag increase when they don’t interlock
(Boomsma and Sotiropoulos, 2016). Previous research has observed the moveability of
these scales, suggesting potential scale bristling at high speeds (Bechert et al., 1985;
Lang et al., 2008). The stratum compactum in sharks consists of helically wound
collagen fibres, providing structural support and enabling elastic energy storage during
swimming (Motta, 1977; Wainwright et al., 1978; Hebrank, 1980). The erectile nature
of these scales, believed to be anchored by elastic connective tissue, may be influenced
by skin tension changes at higher speeds (Bechert et al., 1985). This alteration in
subcutaneous pressure leads to scale erection, particularly in regions with concave
curvature during swimming (Wainwright et al., 1978; Lang et al., 2008). Scale bristling
could reduce drag on a shark through possible boundary-layer control mechanisms,
such as separation control by acting as vortex generators to delay flow separation and
reduce pressure drag (Bechert et al., 1985, 2000c,b; Lang et al., 2008). However, these
mechanisms remain untested, and the flow structures around the scales are unknown.

In chapter 3, we examined the effects of surface topography on the flow and performance
of a Self-Propelled Swimming (SPS) body. We showed that the enstrophy of the flow
followed an outer-scaling that reached a peak at A/25(Re) = 1. This scaling breaks
down when the aperiodicity of the base flow increases. The study highlights a non-
linear relationship between roughness and kinematics beyond a simple increase in drag.
However, the study was limited to a flat plate, and so the effects of roughness on a
body with shape and a flow at a higher Re remain unknown. In chapter 4 we performed
stability analysis on a swimming foil and found distinct spatial wave numbers in the
response modes. This result suggests that effective opposition control strategies might
be found to stabilise the boundary-layer of a swimming foil. However, this study only
tells us what the most unstable features are, it does not necessarily translate that these

are the most effective actuation modes to increase swimming performance.

In this study, we explore the impact of roughness wavelength on a realistic swimming
model. A NACAQ012 foil, modified at the leading edge, serves as a proxy for a fish-like
body. We examine a range of roughness wavelengths, to assess their influence on the
flow structures, boundary-layer development, and power requirements. Furthermore,
we introduce a variable roughness function contingent on body curvature, investigating
how the bristling of denticles might influence the power demands of a swimming body.
This approach aims to elucidate the intricate interplay between surface texture and
hydrodynamic efficiency in aquatic locomotion.
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FIGURE 5.1: Parameterisation of the geometry of the NACA foil with egg carton
roughness defined by A = 1/32.

5.2 Methodology

521 Geometry

We use the same foil shape employed in section 4 but with the egg-carton roughness
function of chapter 3 with amplitude 1 = 0.001. The resulting shape is visualised in
tigure 5.1, where we show the surface defined by A = 1/32. The bump amplitude, and
the viscous scales corresponding to Re = 100,000 are chosen to mimic a realistic fish of

L =~ 0.1m swimming at U ~ 1ms™ 1.

5.2.2 Numerical method

We use the same numerical method, and grid as in chapters 4 & 3. The computational
space is illustrated in figure 4.1; we use a spanwise-domain size of z € [0, [1/16,1/4]],
where the variability in z depends on A of the foil surface and ensures a minimum
distance of 4A. The total number of grid cells is N = (4096,4096, [64,256]) totalling
N = 1.7 — 4.3 x 10° grid cells. We show the domain and grid resolution are sufficient in
Appendix C.4.

5.2.3 Kinematics

Figure 5.2.3a illustrates the phase map of the body velocity. Additionally, Figure 5.2.3b
depicts the body curvature (x = 0%y/0x?), where a positive x indicates a trough shape
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FIGURE 5.3: Some kinematic characteristics. (a) shows the phase map of the body
velocity, (b) shows the curvature (x) of the body. A white line illustrates the contour
where k¥ = 2.5.

and a negative x a peak shape in the x, y reference frame. The body velocity and the
curvature exhibit strong similarities. They both vary over one period, and increase
towards the tail. x has a phase shift of —0.657, and so the body reaches its maximum

curvature 0.325 before the maximum velocity.

We remain in the self-propelled swimming regime, be fixing { = 1.42. Unlike the results
of chapter 3 we do not vary ¢ with A. This is because the reduced roughness amplitude

means that the foil stays in the SPS regime for all A tested.



62 Chapter 5. Surface roughness for increased swimming performance

5.3 Results

5.3.1 Flow structures

In the case of the smooth foil, the flow predominantly remains two-dimensional along the
body, extending from the nose to the tail as shown in figure 5.4a. This two-dimensionality
largely persists in the smooth foil’s wake, characterised by vortex tubes forming the
wake. However, in the far wake, small, spanwise-perpendicular streaks begin to emerge
around some vortices, suggesting instability. Conversely, the flow around the rough foil
is more three-dimensional. The flow structures in these scenarios show similarities to
those in figure 3.4. Specifically, with long A roughness, roughness element shedding
dominates the flow, leading to unsteady horseshoe vortex generation and a heavily
mixed wake. As A decreases, coherent two-dimensional tubes become more evident
in the wake, resembling the flow of the smooth foil. Notably, at A = 1/128, the flow
primarily features two-dimensional vortex tubes, aligned with and perpendicular to the
z-axis. Additionally, this regime shows a significant reduction in unstructured mixing
within the wake. These streamwise streaks are reminiscent of the streaks observed in
Fransson et al. (2006).

5.3.2 Boundary-layer

In this chapter, we adopt the definition of the boundary-layer thickness () using the
—y(), threshold, following the approach outlined by Uzun and Malik (2021). The phase
portraits of § are then identified by marking the instantaneous profiles in figure 5.5.

The boundary-layer thickness is shown in figure 5.5 for each of the roughness wavelengths.
The results show that the profiles on the foils remain consistent across all cases in the
range (0 < x < 0.8). In the range 0.1 < x < 0.4, J increases steadily and the temporal
variation of the profiles is minimal, with tight phase portraits. From 0.4 < x < 0.8, the
phase portraits open out, indicating a more significant variation in § with time. For the
cases where A = 1/0 and A = 1/128, the phase portraits maintain a consistent orbit in
the rear region (0.8 < x < 1), but for the other cases, areas of separation cause chaotic
behaviour in the phase portraits.

The profiles show that the boundary-layer only separates right at the tail of the A = 1/0
and A = 1/128 cases. The profiles show that the flow remains attached for 0 < x < 0.6
with no regions of flow reversal. For A = 1/0 and A = 1/128, the flow remains attached
until right at the very tail, where the boundary layer separates, at x ~ 1 for A = 1/0 and
atx > 0.9 for A = 1/128. For A = 1/32, the boundary-layer profiles show regions of
inflection at x = 0.6, implying that the boundary layer is unsteady; although there is no
flow reversal at the boundary, and so it is still attached. This is observed at x = 0.9 for
A=1/16,and x = 0.8 for A = 1/64.
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FIGURE 5.4: Flow structures for cases where A = 1/0,1/16,1/32,1/64, and 1/128
(a, b, ¢, d, e) visualised with a Q-contour of Q = 1 x 1075, All plots are coloured by
wy € [—0.025,0.025].
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FIGURE 5.6: Phase map for the boundary-layer thickness of the smooth foil.

The thickness of the boundary layer, denoted as J, for the base flow is depicted in figure
5.6. For the range of 0.1 < x < 0.5, the variation in ¢ is minimal across different cycle
times. In contrast, for x > 0.5, we observe a significant variation in § with cycle time.
Notably, this variation in 6 for x > 0.5 aligns closely with the phase times of «, albeit
with a minor phase shift of —0.1357.

We plot the difference between the smooth and rough boundary layers in figure 5.7. The
regions in purple show where the roughness increases the boundary-layer thickness,
while the regions in orange show where the roughness has decreased 6. For 0.15 <
x < 0.5, 4 is offset by a relatively constant value. This offset depends on A, with the
average being 0.17h,0.25h,0.36h, and 0.49h. For x > 0.5, the boundary-layer dynamics
are dominated by separation for A = 1/16,1/32, and 1/64. However, for A = 1/128,
the boundary layer remains attached throughout the cycle.

5.3.3 Enstrophy

Figure 5.8 shows the enstrophy for the smooth and rough cases. The enstrophy for the
1/16 and the 1/64 cases are close in value, however the RMS is larger for 1/16 case,
and they are out of phase, supporting the discussion in section 5.3.1; which pointed out
the qualitative flow structures between the cases. The enstrophy is highest for the case
where A = 1/32. This is in line with findings from chapter 4, which found that one of the
most sensitive spatial wavenumbers was k, ~ 30, which corresponds to upwelling and
downwelling effects in the response modes at this frequency. The case where A = 1/128
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FIGURE 5.7: Boundary-layer difference between the smooth and the rough cases for
A =1/16(a), 1/32(b),1/64 (c),and 1/128 (d).

has the lowest enstrophy, comparable to the smooth foil. A = 1/128 also has a lower
minimum than the smooth case, suggesting that the roughness has a stabilising effect
on the flow.

5.3.4 Power

During SPS, the power (Cp) requirement directly measures the swimmer’s efficiency, as
efficiency becomes incalculable when Cr = 0. We compare this to the smooth surface to
ascertain whether roughness impacts the swimmer positively or negatively. The cases
with A = 1/16 and 1/32 show a consistent increase in required power, especially around
the power recovery phase.
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FIGURE 5.8: Enstrophy for cases where A =1/0,1/16,1/32,1/64, and 1/128.
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FIGURE 5.9: Power (a) and PSD (b) for cases where A = 1/16,1/128, and 1/0. The PSD
is calculated using Welch’s method with a Hanning window and 50% overlap. The
legend and mean Cp values are shown in the title.

The rough surfaces, defined by A = 1/64 and 1/128, show instances where less power is
consistently required, as compared to the smooth swimmer. Specifically, the A = 1/128
case reduces the total power requirement by 2%, although this is within modelling error.
Figure 5.9 illustrates Cp varying with ¢ over four cycles, with data points plotted as
small markers to indicate minimal cycle-to-cycle variability across six cycles. In the
A = 1/64 scenario, there’s a steeper decrease in power during the ramp down to the
power recovery trough compared to the smooth case. However, its minimum is not as
low as the smooth case, and the power recovery period is shorter, leading to a marginally
higher Cp. In contrast, the A = 1/128 scenario follows a similar trend to the A = 1/64
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FIGURE 5.10: The contributions to Cp for the top half of the smooth foil.

case but with an extended, lower power recovery phase, matching the smooth case
at the minima, resulting in the reduction in Cp by 2%. The FFT in Figure 5.9b shows
that the spectral composition of the signals from the smooth and A = 1/128 cases are
largely identical, with strongly phase-locked dynamics. The primary differences appear
at higher frequencies, though distinguishing the spectra is challenging due to significant
noise at these frequencies.

We can decompose the integral by assessing cp’s temporal and spatial locality. Figure
5.10 displays the phase map of spanwise-averaged cp on the foil’s upper half. We can
divide the cp distribution into regions closely correlating with the prescribed kinematics
illustrated in figure 5.2.3. The positive (red) and negative (blue) power contributions
propagate along the foil, following the gradient that corresponds to the wavespeed of
locomotion (¢). The power recovery stroke comprises two phase regions, 0.2 < ¢ < 0.45
and 0.7 < ¢ < 0.95. The first region aligns with a downward motion in the mid-body
and an upward motion at the tail, while the second region represents the inverse.

We plot the difference in power between the rough and smooth cases (Acp = ¢p rough —
Cp,smooth) to discern where the rough surface is beneficial. Figure 5.11 shows Acp for the
top half of the foil, where green regions indicate the rough surface’s higher efficiency
compared to the smooth, and red regions highlight where the smooth surface is more
efficient. The insets display the integrals in both x and ¢ directions with the black dotted
line denoting the average over 4 cycles. We refer to the integral in the x direction as Cp,

and in the ¢ direction as cp.
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FIGURE 5.11: Smooth-rough difference in cp depending on body position and cycle

time, averaged over eight cycles, for the top half of the foil, where (a), (b), (c), and (d)

are for A = 1/16, 32, 1/64, and 1/128. The horizontal and vertical axis are the averages
in the ¢ and x directions, respectively.

For A = 1/16 and 1/32, the roughness impacts the power of the first two-thirds of the
foil minimally. However, at half the roughness wavelength, we observe fluctuations.
These are small for A = 1/16 but become more pronounced for A = 1/32and A = 1/64.
Specifically, for A = 1/16 figure 5.11a shows that roughness leads to a reduction in Acp
in the region where 0.4 < x < 0.75. This reduction mainly occurs during cycle times
0.75 < ¢ < 1. Referring to figure 5.2.3, this region correlates with negative curvature and
an increasing body velocity from zero. Furthermore, for A = 1/16, another significant
reduction in ACp appears for 0 < ¢0.15 <. This reduction primarily affects the region
where 0.7 < x < 1. The structure of this reduction, with k, ~ 16, might suggest a
correlation with the roughness wavelength.
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Similarly to the situation with A = 1/16, a region with reduced ¢p is noted for A = 1/32,
though this region extends from 0.25 < x < 0.65. For A = 1/64, this region of reduced
cp is also present but covers a more limited range, specifically 0.25 < x < 0.45. Such
observations suggest a scaling behaviour of the boundary layer, which is linearly varying
within these ranges, as illustrated in figure 5.6.

The surface characterised by A = 1/128 shows consistent regions of power reduction
(figure 5.11d). For 0.25 < x < 0.9, both ¢p and Cp in the temporal region of 0 < ¢ < 0.4
are lower compared to the smooth case. A notable fluctuation in the difference is
observed at k, ~ 20 within the 0 < ¢ < 0.4 range. Although this fluctuation also occurs
in the other cases, it is less pronounced there.

5.3.5 Inner boundary layer

To elucidate the structures influencing the power difference, we examine snapshots
of the vorticity field during the power recovery stroke, as depicted in figure 5.12. We
employ the spanwise and normal body coordinates (s, 1) to represent the flow fields.
This approach enables us to establish a stationary reference frame, accommodating the
movement of the foil. Utilising this framework, we can closely observe the boundary
layer and discern the flow structures with greater detail. Across different cases, the
flow structures exhibit similarities, characterised by a distinct low-vorticity region
followed by a high-vorticity region that traverses the foil over time. We have selected
¢ = 0.2,0.24,0.3, and 0.35 for closer inspection, as these phases manifest marked

differences in both figure 5.11 and figure 5.11.

The rough surfaces reduce the power by offsetting the vorticity production at the wall,
restricting it to the top of the roughness elements. For A = 1/64, the region where
0.7 < x <1and ¢ = 0.2 significantly reduces the power compared to the smooth case
(figure 5.11c). Correlating this with the flow structures in figure 5.12 reveals that the
mechanism stems from a combination of the reduced vorticity production at the surface
in 0.6 < x < 0.8 as well as a reduction and a vertical offset of the high vorticity region at
0.85 < x < 0.95. This mechanism is similar for A = 1/128, however, the reduction in
vorticity production is more pronounced, and the offset of the high vorticity region is
more significant and is supplemented with the bifurcation of the high vorticity region.
This is consistent with the more pronounced reduction in power for A = 1/128 for
0.875 < x < 0.9 at ¢ = 0.2 (figure 5.11d).

As ¢ increases, the low and high vorticity regions progress down the body. For ¢ = 0.25,
figure 5.9a shows that A = 1/64 reaches its lowest Cp, while the smooth, and A = 1/128
cases are still on a downward trajectory. This is consistent with the flow structures, as the
high vorticity region has increased in size, and shifted closer to the body for A = 1/64,
but not for A = 1/128. For ¢ = 0.3 and 0.35, the smooth and A = 1/128 cases converge
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FIGURE 5.12: Vorticity on the tail in terms of body coordinates (n,s) at cycle times
¢ =0.2,0.25,0.3, and 0.35. The grey dashed line represents the top of the rough surface.
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at the power recovery minimum in figure 5.9a, and figure 5.11d suggests this results
from a balance between beneficial shifts in some regions but not in others.

By comparison to the smooth, the addition of A = 1/64 roughness in the ¢ = 0.3
and 0.35 range confirms its detrimental effect on power as the vorticity structure is
equivalent; the rough surface significantly increases the power on the surface (figures
5.9a, and 5.11c). This is most evident for ¢ = 0.35, where the smooth and A = 1/64
cases have almost identical vorticity contours (figure 5.12), yet figure 5.11c shows a
significant increase in the power on the surface. Conversely, there is a slight reduction
when ¢ = 0.3 and x = 0.775, consistent with the further reduced vorticity in the low
vorticity region.

The bifurcation of the high vorticity region in A = 1/128 leads to further displacement
of the vortex cores. This displacement aligns with the J shift observed in figure 5.7d,
highlighting the intricate relationship between surface roughness, vorticity distribution,
and power generation. This correlation underscores the complexity of flow dynamics
over textured surfaces, where subtle modifications in surface characteristics can significantly

alter the flow behaviour and energy efficiency.

5.3.6 Variable-height roughness function

We have established that the roughness provides benefit for the foil when A = 1/128, at
various points on the body, and in the cycle. Lang et al. (2008) found that the denticles
of a shark erect when there is subcutaneous pressure. Thus, this bristling actuates at
concave regions on the shark (Wainwright et al., 1978; Lang et al., 2008). To test whether
this bristling could be beneficial for the swimming performance, we introduce a variable
roughness function, where the amplitude of the roughness is dependent on the curvature
of the body. We define the function as

Moariabie(X, ¢) = hmin (2.5, max(0,x)) /2.5 (5.1)

where the value 2.5 is chosen as it represents a contour where .5, = h at the mid-
body, so as not to disproportionally target the tail of the foil. We plot a white contour on
figure 5.2.3b to illustrate the contour where the roughness function is clipped so that
hoariaie = h. Thus, we replace h in equation 2.24 with hygrigpie-

Figure 5.3.6 illustrates the difference in pressure coefficients, Acp yariable = CPstatic —
Cp variabler Where cpgiatic Tepresents the smooth (A = 1/0) or the 1/128 surface, as
specified. The variable roughness function minimally influences the power relative to
the smooth case, exhibiting regions of both slight improvement and deterioration (see
figure 5.3.6a). Notably, the variable roughness function shares similar characteristics
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FIGURE 5.13: Difference in cp between, (a), the variable roughness function and the
smooth foil, and, (b), the variable roughness function and the A = 1/128 roughness
function.

with A = 1/128, as shown in figure 5.11d, with fluctuating streaks between 0.5 < x <1,

aligned with the outer flow velocity.

Overall, the variable roughness function generally underperforms compared to the
A = 1/128 case, though it does achieve local power reductions, particularly in the
range 0.775 < ¢ < 1. The difference between the variable roughness and A = 1/128
functions is evident(figure 5.3.6b). The more pronounced fluctuating streaks between
0.5 < x < 1-oriented with the outer flow—suggest a phase shift favouring the variable
roughness function. This phase shift is advantageous in the 0.775 < ¢ < 1 region, where
the variable roughness function surpasses the A = 1/128 performance. Conversely, in
the 0 < ¢ < 0.4 region, the A = 1/128 function significantly outperforms the variable
roughness function. These observations imply that while the variable roughness function
is not an adequate substitute for the A = 1/128 function, potential improvements
through fine-tuning, possibly analogous to 100 million years of evolutionary adaptation,

could substantially reduce drag in a swimming body.

5.4 Conclusion

This chapter has methodically explored the impact of surface roughness on a self-
propelled swimming foil, examining a range of roughness wavelengths and their
effects on flow structures, boundary-layer evolution, and power demands. We found
that the flow structures are highly dependent on the roughness wavelength, with

longer wavelengths leading to unsteady vortex shedding and a heavily mixed wake.
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Conversely, shorter wavelengths produce two coherent vortex tubes modes; one aligned
with the kinematic wake-rotating around the z-direction and similar to the smooth
foil-and one perpendicular. The boundary-layer thickness is offset by a constant value
for 0.15 < x < 0.5, with the offset increasing with A. For x > 0.5, the boundary-
layer dynamics are dominated by separation for A = 1/16,1/32, and 1/64. However,
for A = 1/128, the boundary layer remains attached throughout the cycle. The
roughness reduces the power requirement by offsetting the vorticity production at
the wall, restricting it to the top of the roughness elements. For A = 1/64, the region
where 0.7 < x < 1 and ¢ = 0.2 significantly reduces the power compared to the
smooth case. Correlating this with the flow structures reveals that the mechanism
stems from a combination of the reduced vorticity production under the surface in
0.6 < x < 0.8 as well as a reduction and a vertical offset of the high vorticity region at
0.85 < x < 0.95. This mechanism is similar for A = 1/128, however, the reduction in
vorticity production is more pronounced, and the offset of the high vorticity region is
more significant and is supplemented with the bifurcation of the high vorticity region.
This displacement aligns with the J shift observed in figure 5.7d, highlighting the
intricate relationship between surface roughness, vorticity distribution, and power
generation. This correlation underscores the complexity of flow dynamics over textured
surfaces, where subtle modifications in surface characteristics can significantly alter the
flow behaviour and energy efficiency.

Further, we have tested a variable roughness function, meant to mimic the bristling
effect of sharkskin (Lang et al., 2008). We found that our function minimally influences
the power relative to the smooth case, exhibiting regions of both slight improvement and
deterioration. Notably, the variable roughness function shares similar characteristics
with A = 1/128, as shown in figure 5.11d, with fluctuating streaks between 0.5 <
x < 1, aligned with the outer flow velocity. Overall, the variable roughness function
generally underperforms compared to the A = 1/128 case, though it does achieve local
power reductions, particularly in the range 0.775 < ¢ < 1. The more pronounced
fluctuating streaks between 0.5 < x < 1-oriented with the outer flow-suggest a phase

shift favouring the variable roughness function.

The findings indicate that the influence of roughness is nuanced and highly dependent
on precise calibration. Longer roughness wavelengths tend to enhance three-dimensionality
and the generation of horseshoe vortices, leading to increased surface pressure. Conversely,
small-scale roughness, when optimally tuned, offers modest efficiency gains. This is
primarily due to the confinement of vortex production to the roughness crests, which

shifts vorticity away from the surface and reduces power requirements in certain areas.

However, these benefits are not consistent throughout the entire swimming cycle, with
negative impacts observed during other phases. An attempt to implement variable
roughness modulated by body curvature, inspired by the hypothesised shark skin
mechanics suggested by Lang et al. (2008), did not yield efficiency gains compared to
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fixed small-scale roughness. This finding underscores the complex spatial and temporal
interplay between surface textures and unsteady flows.

In summary, the results of this research highlight the hydrodynamic complexities
inherent in surface roughness on self-propelled swimming bodies. While modest
improvements are achievable with precise roughness tuning, even small deviations
from optimal conditions can significantly impair performance. This underscores the
inherent challenges in translating bioinspired designs from static simulations to dynamic
applications.
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Chapter 6

Conclusions

This thesis has explored the complex interplay between surface roughness and self-
propelled aquatic locomotion. Through methodical numerical simulations, we have
examined the influence of roughness on the evolution of flow structures, boundary-layer

dynamics, and power requirements of swimming bodjies.

Our methodology centred on an in-house large eddy simulation code validated for flows
over rough, moving boundaries. This enabled us to simulate a range of test cases with
egg-carton roughness of varying roughness wavelengths, different Re, and two different
body shapes. The results were analysed using a range of novel techniques, including
resolvent analysis. The combination of simulations and analysis techniques has enabled
us to explore the complex interactions between surface roughness and self-propelled
swimming with specific insights from the following studies:

6.1 A systematic investigation into the effect of roughness on

self-propelled swimming plates

As the roughness wavelength is decreased, the undulation wave speed must be increased
to overcome the additional drag from the roughness and maintain SPS. The extra wave
speed raises the power required to maintain SPS, making the swimmer less efficient.
We find that all but the longest roughness wavelengths reduce the required swimming
power and the unsteady amplitude of the forces when compared to a smooth plate
undergoing identical kinematics. Additionally, roughness can enhance flow enstrophy
compared to the smooth cases without a corresponding spike in forces; this suggests that
the increased mixing is not due to increased vorticity production at the wall. Instead,
the enstrophy is found to peak when the roughness wavelength is approximately twice
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the boundary-layer thickness over the Re range, indicating the roughness induces large-
scale secondary flow structures. This study reveals the nonlinear interaction between
roughness and kinematics beyond a simple increase or decrease in drag.

6.2 Resolvent analysis of a swimming foil

The swimming foil’s boundary layer is sensitive to a spectrum of harmonics, mainly
phase-locked, differing significantly from a stationary foil. The analysis reveals varied
high and low-wavenumber structures in the swimming foil’s forcing modes, while
its response modes show frequency invariance. The resolvent mode spectra uncover
dominant spatial structures near the boundary layer, with forcing modes displaying
diverse wavenumbers and response modes consistent. Finally, this study shows that the
most sensitive region of the flow is right next to the body, exhibiting large fluctuations,
at a range of distinct spatial wavenumbers. These findings emphasise the impact of
swimming motion on boundary-layer stability and suggest the potential of opposition
flow control, to damp the coherent response modes through properly tuned surface
roughness.

6.3 Surface roughness for increased swimming performance

On the swimming foil, longer wavelengths cause unsteady vortex shedding and a
mixed wake, while shorter wavelengths create two, coherent, perpendicular vortex tube
structures. Boundary-layer thickness is affected by roughness, particularly towards the
tail, with separation dominant at long roughness wavelengths. Roughness also impacts
power requirements, with certain roughness scales minimally reducing the required
power by affecting vorticity production at the wall. A variable roughness function
inspired by sharkskin was tested, showing minimal impact on power compared to a
smooth surface, but with some regions of improvement. The research indicates that
roughness influences are complex and highly dependent on calibration, with smaller
scales offering efficiency gains in certain conditions. However, these benefits are not
uniform across the swimming cycle and a variable roughness function, inspired by
shark skin mechanics could, potentially—given the proper tuning—outperform fixed
small-scale roughness. Overall, the study underscores the complex interaction between
surface roughness and unsteady fluid dynamics, raising questions about the mechanisms
swimmers use to control flow through their surface.
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6.4 General remarks

This thesis provides insights into the complex and nonlinear interaction between
roughness and kinematics in self-propelled swimmers, revealing that both roughness
wavelength and kinematics significantly influence the flow structures and power requirements.
Our findings indicate that the stability of the boundary layer is fundamentally affected
by the swimming motion, particularly in the region closest to the body. Moreover,
while surface roughness is shown to enhance swimming performance, the benefits are
not uniformly distributed across the swimming cycle. This suggests the potential for
using a variable roughness function to optimise performance, though further research is

necessary to fine-tune this approach for maximal effectiveness.
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Appendix A

Flat plate forces

Table A.1, A.2, and A.3 show ,Cr, Cp for the rough, and kinematically equivalent
smooth simulations. Figure 3.6 is the graphical representation but, for ease of comparison,

we have also tabulated the data.

A g Cr CTs Cp CPs
1/0  1.06 —0.007 —0.007 0.088 0.088
1/4 111 —-0.003 —0.000 0.103 0.102
1/8 1.14 —0.003 0.004 0.111 0.110
1/12 1.22 0.002 0.015 0.135 0.135
1/16 1.26 0.000 0.020 0.148 0.148
1/20 129 —0.003 0.023 0.156 0.156
1/24 134 —0.002 0.029 0.172 0.173
1/28 137 —0.002 0.031 0.179 0.180
1/32 145 —0.003 0.039 0.204 0.205
1/36 151 —0.000 0.045 0.221 0.224
1/40 154 —0.004 0.048 0.229 0.234
1/44 176 —0.001 0.064 0.287 0.299
1/48 1.96 0.000 0.074 0.340 0.355
1/52 226 —0.003 0.084 0.396 0.417

TABLE A.1: Tabulated data of simulations at Re = 6,000 with the input roughness

defined by A and corresponding { that results in self-propelled swimming. The table

also reports the values for Ct, Cp where the subscript (- ) refers to a smooth plate for
comparison.
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A g Cr CTs Cp CPs
1/0  1.06 —0.006 —0.006 0.095 0.095
1/4 111 -0.003 -0.001 0.107 0.107
1/8 114 —-0.003 0.001 0.116 0.115
1/12 1.22 0.002 0.015 0.140 0.140
1/16 1.26 0.001 0.020 0.152 0.153
1/20 129 —0.002 0.024 0.160 0.162
1/24 134 —0.002 0.030 0.177 0.178
1/28 137 —0.000 0.033 0.185 0.185
1/32 145 —0.002 0.041 0.210 0.210
1/36 1.51 0.000 0.047 0.225 0.229
1/40 154 —0.003 0.050 0.233 0.239
1/44 176 —0.001 0.066 0.296 0.306
1/48 1.96 0.000 0.075 0354 0.361
1/52 226 —0.001 0.087 0.415 0.444

TABLE A.2: Tabulated data of simulations at Re = 12,000 with the input roughness

defined by A and corresponding ( that results in self-propelled swimming. The table

also reports the values for Cr, Cp where the subscript (-)s refers to a smooth plate for
comparison.

A C Cr CTs Cp CPs
1/0 1.06 —-0.011 -0.011 0.097 0.097
1/4 111 —-0.003 -0.001 0.109 0.111
1/8 1.14 —0.002 0.000 0.117 0.119
1/12  1.22 0.002 0.015 0.141 0.147
1/16 1.26 0.000 0.019 0.153 0.161
1/20 129 —0.004 0.021 0.161 0.169
1/24 134 —0.004 0.026 0.176 0.183
1/28 137 —0.003 0.030 0.184 0.191
1/32 145 —0.005 0.040 0.212 0.217
1/36 151 —0.000 0.046 0.229 0.236
1/40 154 —0.004 0.049 0.238 0.246
1/44 176 —0.001 0.067 0.302 0.310
1/48 1.96 0.002 0.077 0361 0.365
1/52 226 0.001 0.088 0.420 0.451

TABLE A.3: Tabulated data of simulations at Re = 24, 000 with the input roughness

defined by A and corresponding { that results in self-propelled swimming. The table

also reports the values for Cr, Cp where the subscript (-)s refers to a smooth plate for
comparison.
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Appendix B

Forward-backward DMD

In general, DMD determines the spectral quantity of the best fit linear operator (A) that
relates two snapshot matrices in time

Y = AX, (B.1)

where X and Y are measurements of the system at time t and ¢ + At. Mathematically we
can solve A such that

A=YX", (B.2)

where the superscript ()" refers to the pseudo inverse. Because A is an approximation of
the Koopman operator, we are interested in the eigenvectors, ®, and eigenvalues, A,of
the system

AD = DA . (B.3)

This is intractable for our system as A is O(n?) which would require 3TB of memory;
so we make use of the f{bDMD algorithm developed by Dawson et al. (2016).

First we take the singular value decomposition

X ~ USV*, (B.4)

where U, V are the left and right singular vectors, and X is a diagonal matrix containing
the singular values, and ()* is the conjugate transpose. These are truncated to m values to
make up a percentage variance of the system. We can then reconstruct an approximation
of A, denoted by A using our truncated singular vectors such that
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Aforwards = LI;ZYVm;;l . (B5)

The novelty of the f{bDMD algorithm is that we also compute the backward operator,
Apackwards, Which is the best fit linear operator that relates the snapshots in reverse time

Abackwards = UZZXVme ’ (B-6)

and then we combine the two operators to form a single operator

1

A= (AforwardsA_l )z . (B.7)

backwards
To reconstruct the DMD modes we solve the eigenvalue problem
AW =Wy, (B.8)
which we can use to reconstruct the high dimensional DMD modes

O=YVI 'W. (B.9)

We can now take the spectral decomposition of y as

A =1Inu/At, (B.10)

which allows us to express the whole system state as a spectral decomposition

xp = DA, (B.11)

where b are the mode-amplitudes (b = ®'x;) computed, efficiently as

b= (WA) 'z, (B.12)

where % is the first mode projection of the POD.
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Appendix C

Foil resolvent analysis comparison

C.1 Case

To validate the resolvent analysis results, we compare the modified NACA profile
described in 4.2.1 to the NACA(Q012 profile used in Symon et al. (2019). Figure C.1 shows
the v component of the velocity field for the resolvent analysis of the NACAQ012 foil at
Re = 10,250 and & = 0° for the case of Symon et al. (2019) for the experimental (a), and
the data assimilated (b) cases, as well as our case (c). The flow field for our case is very
similar to Symon et al. (2019) for both the experimental and data assimilated cases.

C.2 SPOD comparison

Figure C.2 shows the SPOD modes for the resolvent analysis of the NACA0012 foil
at Re = 10,250 and a« = 0° for the case of Symon et al. (2019) (a), as well as our case

(a) 0.5 H 0.5 (b) 0.5 HO.S

y 0f C> 11io 0 L — <Ho

.

—0.5 0 0.5 1.0 1.5 2.0 —0.5 0 0.5 1.0 1.5 2.0
© ‘ ‘ '
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—-0.25
010 015 110 115 2.0

FIGURE C.1: The v component of the velocity field for the resolvent analysis of the
NACAO0012 foil at Re = 10,250 and & = 0° for the case of Symon et al. (2019) for the
experimental (a), and the data assimilated (b) cases, as well as our case (c).
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FIGURE C.2: The SPOD modes for the resolvent analysis of the NACAO0012 foil at
Re = 10,250 and & = 0° for the case of Symon et al. (2019) (a) and our case (b).

(b). The SPOD modes for our case are very similar to Symon et al. (2019) for both the
experimental and data assimilated cases. This makes it a valid test case for our resolvent
analysis.

C.3 Resolvent formulation

For Symon et al. (2019) the resolvent forulation follows a more traditional methodology.
We adopt the bold notation for a vector in this derivation to avoid confusion. Consider
dynamical system

q = ,qu + f , (Cl)

where the state g represents the deviations from the steady state laminar flow, or the
fluctuations around a temporal mean such that q = Q — q and f is the non-linear part of
the Reynold’s decomposition of the system. The choice of L5 depends on the specifics
of the system.

The system is governed by the non-dimensional Navier-Stokes equations and the
continuity equation

aui aui . apl 1 azui

o "Wax T ox  Reox’

Mi g (C.2b)

o

(C.2a)

If we isolate the fluctuations around a temporally stationary mean q = q + q’ we can
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represent the governing equations of the disturbance as
du; ,0u; _odul 9J , , — ap. 1 9*u
1 /-1 i § — (du:! — du:l) = — "¢ 7 1 .
at " Wax T Wax ax W W) S 5 TReaxe 0 (€5
ou!
o 0. (C.3b)
By collecting the linear and non-linear terms in u;
ou; ,0u; _oul 9pi 10 9 ,, —
i STt R i STt A = — (diuy/ — uluy/ )
ot " Wax T Wax ax  Reax? | ox /T uiw) (C4a)
du; 0w _ odu, 9Jp. 1 0%u]
1 e ) - 1 L i _ f’ 4
at " Wax TWax T Reox? (C4b)
Lq(q) =71, (C.40)
where q' = (u/, p’) as the sum of its Fourier modes
W, P10t = [ [Fupl(x)e oo (C5)
For the homogenous part,
0F e “dw owi  _ 0Fy, 0P 1 02Fu\ _iwt
781‘ = — (./T"u]. TX] + u] aX] + TXI - Rie' aXiz )E dw (C6)
restrict to velocity subspace
. _ owi  _oFy, 1 0%Fy,
Py = —(Fug Ut = 5 ) (C.7)
This forms the eigenvalue problem
. B owp _9d() 1%
Z(Ufu = (()aix] —l—u]a—xj RfeaXiZ)Jru (C8)
—iwFy = LaFu, (C.9)

which is transformed to the Fourier space, such that
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FIGURE C.3: The gain for the resolvent analysis of the NACAO0012 foil at Re = 10,250
and « = 0° for the case of Symon et al. (2019) for the experimental (a), and the data
assimilated (b) cases, as well as our case (c).
—iwq = Lqq +1 (C.10)
SO
g=H(w) 't (C.11)
where H(w) = (—iw — Lg) is the resolvent operator. We can analyse using the SVD so

H(w) = $20* (C.12)

where ¥ and & are the left and right singular vectors, and ¥ is the singular value matrix.

C.4 Gain comparison

We can thus compare the method described in 4.2.5 to the method described here. We use

a DMD basis with 2 modes to mimic the traditional formulation that only uncorporates
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il. The results are shown in figure C.3. We find that the results are very similar, with peak
gain corresponding to the same frequency as the peak SPOD mode. The main difference
is the magnitude of the modes, which is likely due to differences in normalisation.
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Appendix D

Foil convergence analysis

D.1 Shape modification of the NACAO0012 foil

We alter the nose of a NACAO0012 foil to mimic the general shape of a fish. The foil is
modified by subtracting the shape of a sigmoid function from the NACAQ012 profile.
We then fit an O(10) polynomial to the points, which we use to define the body set for
the CFD simulations.
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FIGURE D.1: The shape modification of the NACA0012 foil.
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FIGURE D.3: The resolution convergence study for three grid resolutions spanning our
working resolution.

D.2 Domain study

For the domain study we compare the power for two differently sized domains. The
first domain is the same as the one used in the main text, and the second domain is
much larger, with dimensions x € [—10,10] and y € [~10, 10] totalling N = points
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FIGURE D.4: Resolution convergence study for enstrophy showing the time series (a),
and the log-log plot of the enstrophy error compared to the highest resolution (b).

D.3 Resolution convergence

For the resolution convergence, we demonstrate that both thrust and power converge
with grid resolution. Employing the same domain as in the main text, we vary the grid
resolution, covering our working range, to confirm that our results are independent
of increased resolution. This is facilitated by illustrating that the two- and three-
dimensional simulations yield consistent forces, as depicted by overlaying the two-
dimensional results onto the three-dimensional results in figure D.3. Due to feasibility
constraints, we cannot run the three-dimensional simulations at the highest resolution,
hence we use the two-dimensional results to validate the sufficiency of the highest

resolution.

The results, presented in figure D.3, reveal that the lowest resolution leads to a non-
physical drop in thrust and power, rendering it unsuitable. In contrast, the highest two

resolutions produce results that closely align.

To bolster confidence in our numerical results, we compare our most sensitive metric,
enstrophy. Similar to the previous analysis, we demonstrate that the two- and three-
dimensional simulations present comparable enstrophy, as shown by superimposing
the two-dimensional results onto the three-dimensional results in figure D.4. These
findings, displayed in figure D.4, indicate that enstrophy converges with grid resolution.
We observe a monotonic convergence to 7%, affirming that our results are numerically
stable.
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Furthermore, we have ensured that the geometry is adequately resolved. Consequently,
we maintain a minimum of 8 grid points across the amplitude of the roughness elements
and across the wavelength of the bump. For this egg-carton roughness, this geometric
resolution has been shown as sufficient in chapter 2.
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