The University of Southampton
University of Southampton Institutional Repository

A redox switch allows binding of Fe(II) and Fe(III) ions in the cyanobacterial iron-binding protein FutA from Prochlorococcus

A redox switch allows binding of Fe(II) and Fe(III) ions in the cyanobacterial iron-binding protein FutA from Prochlorococcus
A redox switch allows binding of Fe(II) and Fe(III) ions in the cyanobacterial iron-binding protein FutA from Prochlorococcus

The marine cyanobacterium Prochlorococcus is a main contributor to global photosynthesis, whilst being limited by iron availability. Cyanobacterial genomes generally encode two different types of FutA iron-binding proteins: periplasmic FutA2 ABC transporter subunits bind Fe(III), while cytosolic FutA1 binds Fe(II). Owing to their small size and their economized genome Prochlorococcus ecotypes typically possess a single futA gene. How the encoded FutA protein might bind different Fe oxidation states was previously unknown. Here, we use structural biology techniques at room temperature to probe the dynamic behavior of FutA. Neutron diffraction confirmed four negatively charged tyrosinates, that together with a neutral water molecule coordinate iron in trigonal bipyramidal geometry. Positioning of the positively charged Arg103 side chain in the second coordination shell yields an overall charge-neutral Fe(III) binding state in structures determined by neutron diffraction and serial femtosecond crystallography. Conventional rotation X-ray crystallography using a home source revealed X-ray-induced photoreduction of the iron center with observation of the Fe(II) binding state; here, an additional positioning of the Arg203 side chain in the second coordination shell maintained an overall charge neutral Fe(II) binding site. Dose series using serial synchrotron crystallography and an XFEL X-ray pump-probe approach capture the transition between Fe(III) and Fe(II) states, revealing how Arg203 operates as a switch to accommodate the different iron oxidation states. This switching ability of the Prochlorococcus FutA protein may reflect ecological adaptation by genome streamlining and loss of specialized FutA proteins.

Crystallography, X-Ray, Ferric Compounds/chemistry, Ferrous Compounds/chemistry, Iron-Binding Proteins/metabolism, Iron/metabolism, Oxidation-Reduction, Prochlorococcus/metabolism, Transferrin/metabolism, Water/chemistry, metalloprotein, protein dynamics, room temperature crystallography, iron, XFEL
0027-8424
e2308478121
Bolton, Rachel
ef622c55-8cf1-46e0-b3dd-97c967dce111
Machelett, Moritz M.
c9aa7658-2a08-48d6-9ce1-8c3b6d00a58c
Stubbs, Jack
ed13c87e-6ffc-45cd-96d3-7b3c12569a5d
Axford, Danny
8cf0d174-31a2-4f9e-8e99-1bfa15bd1d36
Caramello, Nicolas
44b85f28-c66c-4e70-a4ab-c8efe07543f8
Catapano, Lucrezia
61b596be-0891-4595-89e3-78367abed231
Malý, Martin
6da95b42-478a-4353-b78b-ba4b2ce93849
Rodrigues, Matthew J.
8bb144f8-e917-457c-bb94-465bc225f961
Cordery, Charlotte
1fe1f1a4-68f3-4528-a2c0-280d3f1e0f1f
Tizzard, Graham J.
8474c0fa-40df-43a6-a662-7f3c4722dbf2
MacMillan, Fraser
7c37a816-8dba-4b1d-b003-6d1b50024191
Engilberge, Sylvain
845c9e80-ee35-4d1e-9490-549ac64705fe
von Stetten, David
763356ff-ed26-4f5e-9930-92bd415357ab
Tosha, Takehiko
4a9070f8-bd27-4d2f-a4da-20d101b7e7b8
Sugimoto, Hiroshi
e44da785-b58f-4669-bb37-e46be643809d
Worrall, Jonathan A.R.
2ca758e0-026b-44cf-8ef2-0bcdb21caf0b
Webb, Jeremy S.
ec0a5c4e-86cc-4ae9-b390-7298f5d65f8d
Zubkov, Mike
d3d7a294-b59d-4310-a386-5041318d1aac
Coles, Simon
3116f58b-c30c-48cf-bdd5-397d1c1fecf8
Mathieu, Eric
abc89c7d-bf0c-48c6-a390-2dc3e5616be1
Steiner, Roberto A.
ba79ab79-ac31-476c-b5d3-22fc7dc73c01
Murshudov, Garib
ebee8e65-18b8-49c7-85fa-d46b10d76c00
Schrader, Tobias E.
e466c616-c5e4-4b50-b388-c81e0775e304
Orville, Allen M.
6315216e-d496-43f3-a97b-a07fc45e8b56
Royant, Antoine
96dd9b8f-12f9-4b8f-a80b-02f76a0a41de
Evans, Gwyndaf
46cb660a-bce7-4c62-8afc-de2a197ed02c
Hough, Michael A.
d15335d7-f023-4c6f-a306-e2f270e6a2ae
Owen, Robin L.
101c8487-b6fb-4930-a223-8c569db19536
Tews, Ivo
9117fc5e-d01c-4f8d-a734-5b14d3eee8dd
et al.
Bolton, Rachel
ef622c55-8cf1-46e0-b3dd-97c967dce111
Machelett, Moritz M.
c9aa7658-2a08-48d6-9ce1-8c3b6d00a58c
Stubbs, Jack
ed13c87e-6ffc-45cd-96d3-7b3c12569a5d
Axford, Danny
8cf0d174-31a2-4f9e-8e99-1bfa15bd1d36
Caramello, Nicolas
44b85f28-c66c-4e70-a4ab-c8efe07543f8
Catapano, Lucrezia
61b596be-0891-4595-89e3-78367abed231
Malý, Martin
6da95b42-478a-4353-b78b-ba4b2ce93849
Rodrigues, Matthew J.
8bb144f8-e917-457c-bb94-465bc225f961
Cordery, Charlotte
1fe1f1a4-68f3-4528-a2c0-280d3f1e0f1f
Tizzard, Graham J.
8474c0fa-40df-43a6-a662-7f3c4722dbf2
MacMillan, Fraser
7c37a816-8dba-4b1d-b003-6d1b50024191
Engilberge, Sylvain
845c9e80-ee35-4d1e-9490-549ac64705fe
von Stetten, David
763356ff-ed26-4f5e-9930-92bd415357ab
Tosha, Takehiko
4a9070f8-bd27-4d2f-a4da-20d101b7e7b8
Sugimoto, Hiroshi
e44da785-b58f-4669-bb37-e46be643809d
Worrall, Jonathan A.R.
2ca758e0-026b-44cf-8ef2-0bcdb21caf0b
Webb, Jeremy S.
ec0a5c4e-86cc-4ae9-b390-7298f5d65f8d
Zubkov, Mike
d3d7a294-b59d-4310-a386-5041318d1aac
Coles, Simon
3116f58b-c30c-48cf-bdd5-397d1c1fecf8
Mathieu, Eric
abc89c7d-bf0c-48c6-a390-2dc3e5616be1
Steiner, Roberto A.
ba79ab79-ac31-476c-b5d3-22fc7dc73c01
Murshudov, Garib
ebee8e65-18b8-49c7-85fa-d46b10d76c00
Schrader, Tobias E.
e466c616-c5e4-4b50-b388-c81e0775e304
Orville, Allen M.
6315216e-d496-43f3-a97b-a07fc45e8b56
Royant, Antoine
96dd9b8f-12f9-4b8f-a80b-02f76a0a41de
Evans, Gwyndaf
46cb660a-bce7-4c62-8afc-de2a197ed02c
Hough, Michael A.
d15335d7-f023-4c6f-a306-e2f270e6a2ae
Owen, Robin L.
101c8487-b6fb-4930-a223-8c569db19536
Tews, Ivo
9117fc5e-d01c-4f8d-a734-5b14d3eee8dd

Bolton, Rachel, Machelett, Moritz M. and Stubbs, Jack , et al. (2024) A redox switch allows binding of Fe(II) and Fe(III) ions in the cyanobacterial iron-binding protein FutA from Prochlorococcus. Proceedings of the National Academy of Sciences of the United States of America, 121 (12), e2308478121. (doi:10.1073/pnas.2308478121).

Record type: Article

Abstract

The marine cyanobacterium Prochlorococcus is a main contributor to global photosynthesis, whilst being limited by iron availability. Cyanobacterial genomes generally encode two different types of FutA iron-binding proteins: periplasmic FutA2 ABC transporter subunits bind Fe(III), while cytosolic FutA1 binds Fe(II). Owing to their small size and their economized genome Prochlorococcus ecotypes typically possess a single futA gene. How the encoded FutA protein might bind different Fe oxidation states was previously unknown. Here, we use structural biology techniques at room temperature to probe the dynamic behavior of FutA. Neutron diffraction confirmed four negatively charged tyrosinates, that together with a neutral water molecule coordinate iron in trigonal bipyramidal geometry. Positioning of the positively charged Arg103 side chain in the second coordination shell yields an overall charge-neutral Fe(III) binding state in structures determined by neutron diffraction and serial femtosecond crystallography. Conventional rotation X-ray crystallography using a home source revealed X-ray-induced photoreduction of the iron center with observation of the Fe(II) binding state; here, an additional positioning of the Arg203 side chain in the second coordination shell maintained an overall charge neutral Fe(II) binding site. Dose series using serial synchrotron crystallography and an XFEL X-ray pump-probe approach capture the transition between Fe(III) and Fe(II) states, revealing how Arg203 operates as a switch to accommodate the different iron oxidation states. This switching ability of the Prochlorococcus FutA protein may reflect ecological adaptation by genome streamlining and loss of specialized FutA proteins.

Text
Bolton - Accepted Manuscript
Available under License Creative Commons Attribution.
Download (2MB)

More information

Accepted/In Press date: 16 February 2024
Published date: 19 March 2024
Keywords: Crystallography, X-Ray, Ferric Compounds/chemistry, Ferrous Compounds/chemistry, Iron-Binding Proteins/metabolism, Iron/metabolism, Oxidation-Reduction, Prochlorococcus/metabolism, Transferrin/metabolism, Water/chemistry, metalloprotein, protein dynamics, room temperature crystallography, iron, XFEL

Identifiers

Local EPrints ID: 488512
URI: http://eprints.soton.ac.uk/id/eprint/488512
ISSN: 0027-8424
PURE UUID: ac2c13bc-5a6c-423b-8766-6f52ef0dee81
ORCID for Jack Stubbs: ORCID iD orcid.org/0000-0002-3788-1687
ORCID for Martin Malý: ORCID iD orcid.org/0000-0002-6081-9291
ORCID for Charlotte Cordery: ORCID iD orcid.org/0000-0003-2321-8144
ORCID for Graham J. Tizzard: ORCID iD orcid.org/0000-0002-1577-5779
ORCID for Jeremy S. Webb: ORCID iD orcid.org/0000-0003-2068-8589
ORCID for Simon Coles: ORCID iD orcid.org/0000-0001-8414-9272
ORCID for Ivo Tews: ORCID iD orcid.org/0000-0002-4704-1139

Catalogue record

Date deposited: 26 Mar 2024 17:37
Last modified: 03 May 2024 16:32

Export record

Altmetrics

Contributors

Author: Rachel Bolton
Author: Moritz M. Machelett
Author: Jack Stubbs ORCID iD
Author: Danny Axford
Author: Nicolas Caramello
Author: Lucrezia Catapano
Author: Martin Malý ORCID iD
Author: Matthew J. Rodrigues
Author: Fraser MacMillan
Author: Sylvain Engilberge
Author: David von Stetten
Author: Takehiko Tosha
Author: Hiroshi Sugimoto
Author: Jonathan A.R. Worrall
Author: Jeremy S. Webb ORCID iD
Author: Mike Zubkov
Author: Simon Coles ORCID iD
Author: Eric Mathieu
Author: Roberto A. Steiner
Author: Garib Murshudov
Author: Tobias E. Schrader
Author: Allen M. Orville
Author: Antoine Royant
Author: Gwyndaf Evans
Author: Michael A. Hough
Author: Robin L. Owen
Author: Ivo Tews ORCID iD
Corporate Author: et al.

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×