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Lithium-ion batteries are highly considered for rechargeable storage devices due to

their competitive theoretical capacities and energy densities; they have shown great

potential for use in electric and hybrid vehicles. Having already found use in smaller

portable devices, research now pushes to increase their efficiency through the use of

models to better understand the processes occurring and by studying materials for

new designs. In this thesis, we first focus on the charge transport occurring within

the electrolyte before considering the intercalation of lithium within electrode par-

ticles. We begin by giving an overview of the structure and current development

of a lithium-ion battery before discussing the equations to describe the movements

of ions in the electrolyte phase. We discuss the application of these equations to

a dilute electrolyte and then introduce moderately concentrated electrolyte theory,

where we now consider the interactions between ions. We present an ion-hopping

model using a Monte Carlo algorithm to simulate these ionic interactions and the

effect on their movements. We use this model to find the activity coefficients of

electrolytes composed of LiPF6 using various solvents. We discuss single-particle

models and how they can be used to simplify computationally intensive models such

as the Doyle-Fuller-Newman model. A study of quantum tunnelling and solving the

Schrödinger equation is presented, which we apply to LiFePO4 and LiCoO2 cath-

odes to investigate electron tunnelling as a potential cause of electrode degradation

and electrolyte decomposition.
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List of Variables and Parameters

Table showing the variable and parameters and their descriptions and units used throughout the thesis. The table displays

starts with Latin letters and then Greek letters each in alphabetical order.

Symbol Description Units

an Activity of the negative ionic species dimensionless

ap Activity of the positive ionic species dimensionless

as Activity of the neutral solvent species dimensionless

B Permeability factor of the electrodes dimensionless

bet Brunauer-Emmett-Teller (commonly shortened to BET) surface area m−1

Cnum Coordination number (or ligancy) change in text dimensionless

c0 Initial ion concentration of the electrolyte mol m−3

c0,a Initial concentration of lithium ions in the anode particles mol m−3

c0,c Initial concentration of lithium ions in the cathode particles mol m−3

ca Concentration of lithium ions in the anode particles mol m−3

cc Concentration of lithium ions in the cathode particles mol m−3

cmax
a Maximum concentration of lithium ions in the anode particles mol m−3

cmax
c Maximum concentration of lithium ions in the cathode particles mol m−3

ce Ion concentration of the electrolyte mol m−3

cn Concentration of the negative ionic species in the electrolyte mol m−3

cp Concentration of the positive ionic species in the electrolyte mol m−3

cs Concentration of the neutral solvent species in the electrolyte mol m−3

cT Total concentration of the electrolyte mol m−3

Da Diffusivity function of the lithium ions in the anode particles m2 s−1

Dc Diffusivity function of the lithium ions in the cathode particles m2 s−1

De Diffusivity function of the ions in the electrolyte m2 s−1

Deff Effective Diffusivity of the electrolyte m2 s−1

Dij Maxwell-Stefan diffusivity of species i due to species j dimensionless

Dn Diffusion coefficient of the negative ionic species in the electrolyte m2 s−1

Dp Diffusion coefficient of the positive ionic species in the electrolyte m2 s−1

Ds Diffusion coefficient of the neutral solvent species in the electrolyte m2 s−1

dn Driving force on negative ions due to chemical potential gradient N

dp Driving force on positive ions due to chemical potential gradient N

ds Driving force on solvent due to chemical potential gradient N

E Electric field V m−1

Ea Activation energy for the given reaction to occur J

Ecell Potential difference across the cell V

E0
cell Standard cell potential difference V

E0
ox Oxidation standard potential difference V

E0
red Reduction standard potential difference V
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Eeq Equilibrium potential V

Eij Energy required for a particle to hop from site i to site j J

Ei−j Average interaction energy between particles of substances i and j J

Eq Total energy of the quantum particle change J

ETot
i Total energy of the system due to particles of substance i J

Fc Electrostatic force between two point charges N

Fdn Drag force exerted on a negative ion due to the electrolyte N

Fdp Drag force exerted on a positive ion due to the electrolyte N

Fen Force on a negative ion in electrolyte due to electric field N

Fep Force on a positive ion in electrolyte due to electric field N

fij Drag coefficient inflicted in species i by species j dimensionless

G Gibbs free energy J

G0 Standard Gibbs free energy J

GAa Gibbs energy of activation for the anodic reaction J

GAc Gibbs energy of activation for the cathodic reaction J

G0
A,a Gibbs energy of activation for anodic reaction standard conditions J

G0
A,c Gibbs energy of activation for cathodic reaction standard conditions J

Gmix Gibbs free energy of mixing J

H Enthalpy J

Gi,initial Gibbs free energy of substance i before mixing J

Gi,final Gibbs free energy of substance i after mixing J

GT,initial Total Gibbs free energy of the solution before mixing J

GT,final Total Gibbs free energy of the solution after mixing J

Hmix Enthalpy of mixing J

I Current through the cell A

j Current density in the electrolyte A m−2

j0 Exchange current density A m−2

ja Current density in the anode particles A m−2

jc Current density in the cathode particles A m−2

jn Current density on the surface of the electrode particles A m−2

Kdn Drag coefficient of the negative ion species dimensionless

Kdp Drag coefficient of the positive ion species dimensionless

ka Butler-Volmer rate constant for the anodic reaction depends on order

kc Butler-Volmer rate constant for the cathodic reaction depends on order

ki Wave number m−1

Mmol
i Molar mass of substance i kg

mi Mass of substance i kg

N− Flux of a general negative ion in the electrolyte mol m−2s−1

NT Number of steps between temperature changes dimensionless

ne Number of electrons transported dimensionless

ni Number of ions of species i in a solution dimensionless
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ntotal Total number of ions in a solution dimensionless

Pi,j Probability of a particle hopping from site i to site j dimensionless

p Pressure Pa

Q Charge C

Qr Reaction quotient dimensionless

qan Advective flux of the negative ionic species mol m−2s−1

qap Advective flux of the positive ionic species mol m−2s−1

qdn Diffusive flux of the negative ionic species mol m−2s−1

qdp Diffusive flux of the positive ionic species mol m−2s−1

qn Flux of the negative ionic species in the electrolyte mol m−2s−1

qp Flux of the positive ionic species in the electrolyte mol m−2s−1

qs Flux of the neutral solvent species in the electrolyte mol m−2s−1

Ra Radius of the anode particles m

Rc Radius of the cathode particles m

Rk Rate constant for the given reaction depends on order

r Distance from the centre of an electrode particle m

S Entropy J K−1

Smix Entropy of mixing J K−1

T Absolute temperature K

T coeff Transmission coefficient dimensionless

Tc Temperature reducing constant dimensionless

Tinitial Initial chosen temperature for the simulation K

t Time s

t+ Electrolyte transference number dimensionless

U Internal energy J

Ueq,a Open-circuit potential in the anode V

Ueq,c Open-circuit potential in the cathode V

V Cell voltage V

Va Electric potential at the anode current collector V

Vbar Function of the potential barrier V

Vc Electric potential at the cathode current collector V

V c
i Electric potential energy of point charge i due to the other point charges V

V c
Total Total electric potential energy of a system of point charges V

V ∗ Volume m3

V ∗
n Partial molar volume of the negative ionic species in the electrolyte m3

V ∗
p Partial molar volume of the positive ionic species in the electrolyte m3

V ∗
s Partial molar volume of the neutral solvent species in the electrolyte m3

vn Velocity of the negative ionic species in the electrolyte ms−1

vp Velocity of the positive ionic species in the electrolyte ms−1

vs Velocity of the neutral solvent species in the electrolyte ms−1

x Distance across the electrochemical cell m
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zn Valency of the negative ion species dimensionless

zp Valency of the positive ion species dimensionless

Symbol Description Units

αa Charge transfer coefficient for the anodic reaction dimensionless

αc Charge transfer coefficient for the cathodic reaction dimensionless

γn Activity coefficient of the negative ionic species dimensionless

γp Activity coefficient of the positive ionic species dimensionless

γs Activity coefficient of the neutral solvent species dimensionless

ε Permittivity of the electrolyte F m−1

εel Volume fraction of the electrolyte dimensionless

εr Relative permittivity of the medium compared to a vacuum dimensionless

ηa Overpotential between the electrolyte and anode particles V

ηc Overpotential between the electrolyte and cathode particles V

κ Conductivity of the electrolyte S m−1

µn Chemical potential of the negative ionic species J mol−1

µp Chemical potential of the positive ionic species J mol−1

µs Chemical potential of the neutral species J mol−1

µ0
n Chemical potential of negative ions species under standard conditions J mol−1

µ0
p Chemical potential of positive ion species under standard conditions J mol−1

µ0
s Chemical potential of solvent species under standard conditions J mol−1

µ̂n Electrochemical potential of the negative ionic species J mol−1

µ̂p Electrochemical potential of the positive ionic species J mol−1

µ̂s Electrochemical potential of the neutral solvent species J mol−1

ρ Charge density in the electrolyte C m−3

σa Conductivity in the anode S m−1

σc Conductivity in the cathode S m−1

Φa Electric potential in the anode V

Φc Electric potential in the cathode V

φe Electric potential in the electrolyte V

χn Mole fraction of the negative ionic species dimensionless

χp Mole fraction of the positive ionic species dimensionless

χs Mole fraction of the neutral solvent species dimensionless

Ψ Wave function (1-dimensional) m− 1
2

ω Work done J
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Table showing the description and values of the physical constants used in the thesis.

Symbol Description Value

e Elementary charge 1.602176634x10−19 C

ε0 Permittivity of a vacuum 8.8541878128x10−12 F m−1

F Faraday constant 9.648533212x104 C mol−1

ĥ Reduced Planck constant 1.054571817x10−34 J s

kB Boltzmann constant 1.380649x10−23 J K−1

ke Coulomb constant 8.9875517923x109 N m2 C−2

NA Avogadro constant 6.02214076x1023 mol−1

Rg Universal gas constant 8.31446261815324 J mol−1 K−1

Table showing the description of the chemical symbols used in the thesis.

Chemical Symbol Description

C6 Graphite

CO(CH2O)2 Ethylene carbonate (EC)

CO(C2H5O)2 Diethyl carbonate (DC)

CO(C3H8O2) Ethyl methyl carbonate (EMC)

Co3+ / Co4+ Cobalt ion

Li+ Lithium ion

LiAsF6 Lithium hexafluoroarsenate

LiBF4 Lithium tetrafluoroborate

LiCoO2 Lithium cobalt oxide

LiCoPO4 Lithium cobalt phosphate

LiFePO4 Lithium iron phosphate (LFP)

LiMn2O4 Lithium manganese oxide (LMO)

LiMnPO4 Lithium manganese phosphate

LiPF6 Lithium hexafluorophosphate

LiWO2 Lithium tungsten oxide

Mn+3 / Mn+4 Manganese ion

TiS2 Titanium disulfide
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1 Introduction

With the increasing need for sustainable energy storage devices that are both

economical and reliable, the research and development of lithium-ion batteries as

rechargeable storage devices has increased significantly in recent years. Since Sony

released the first commercial secondary lithium-ion battery in 1991 (Blomgren,

2017), they have shown significant advantages in terms of high energy densities

and low self-discharge compared to other types of rechargeable batteries. Small

lithium-ion batteries have found use in many portable electronics, such as mobile

phones and laptops (Al Hallaj et al., 1999) and show great potential for use in

electric vehicles. (Goodenough and Park, 2013).

Researchers are still encountering problems relating to the safety of such devices;

the build-up of heat due to the exothermic reactions can lead to thermal runaway

(Al Hallaj et al., 1999). However, the precautions to prevent such problems, such

as the use of non-flammable electrolytes, can take away from the potential electro-

chemical performance. The occurrence of unwanted side reactions can also cause

irreversible capacity fade, an issue many types of lithium-ion batteries experience,

which reduces its useful cycling life (Ramadass et al., 2003). Models to predict

such behaviour have been developed to try to understand the potential causes. The

effects of overcharging can result in the deposition of lithium on the negative elec-

trode and electrolyte decomposition; this process reduces the available lithium and

electrolyte on further cycling (Zhang et al., 2000). A LiC6|LiPF6|LiMn2O4 cell was

investigated, with a model predicting that the use of thinner electrodes consisting of

smaller particles would reduce this effect (Arora, White and Doyle, 1999). By mod-

elling the charge and discharge of a lithium-ion battery, we can better understand

the processes that occur, with the aim of current research to improve charging rate

and cycling performance to make them more efficient for use in vehicles while still

maintaining low cost and high safety.

In this chapter, we review the literature focused on the development and current

research of lithium-ion batteries, with a discussion of relevant materials studied. In

Section 1.1, we begin by giving an overview of the structure of an electrochemical

cell and the general mechanism through which it works before moving on to de-

scribe the electrochemical reactions occurring at the electrodes during the charge

and discharge processes in Section 1.2. We then explore their development and
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discuss the important properties for an efficient lithium-ion battery in Section 1.3

by focusing on each part of a cell separately.

1.1 The Structure of a Lithium-Ion Battery

A lithium-ion battery is composed of many electrochemical cells, where each cell

is made up of four main parts: two electrodes, one positive and one negative, the

electrolyte, and a separator, which acts as a barrier to prevent the flow of electrons

between the electrodes but still allows the lithium ions to pass through. Each elec-

trode has a current collector, which is then attached to an external circuit. This

structure is shown in Figure 1, where a) and b) show the cell during charge and

discharge, respectively.

Figure 1: A representation of a lithium-ion battery during a) (left) charge and b) (right) dis-

charge. The lithium ions move through the electrolyte and cross the separator while the electrons

travel between the current collectors via the external circuit.

During the discharge of the cell, the lithium ions are transported from the negative

electrode, known as the anode, to the positive electrode, known as the cathode, by

the following mechanism: they diffuse from the particles in the negative electrode to

the electrode-electrolyte interface. Here, an oxidation reaction occurs which results

in the release of a lithium ion into the electrolyte. These ions now diffuse and move

under the influence of the electric field, through the electrolyte towards the positive

electrode where the ions intercalate with the electrode via a reduction reaction and

diffuse into the positive electrode particles. Meanwhile, an electron is released into

the negative electrode which travels through the external circuit, via the current

collectors, to the positive electrode, where it is absorbed by a positive lithium ion.

13



This movement of electrons generates the current.

A similar process occurs while the cell is being charged, but instead the lithium ions

are transported from the positive electrode to the negative electrode. However, for

this mechanism to occur, a potential difference must be applied across the cell.

1.2 Electrochemical Reactions

Electrochemical reactions occur at both the anode and cathode during the charge

and discharge processes. The discharge reactions will occur spontaneously, while

the charge reactions only occur when a potential has been applied. The spontaneity

is determined by the electrode materials’ relative oxidising/reducing ability, which

is a measure of its tendency to give away/take in electrons. This concept is closely

related to that of Gibbs Free Energy.

1.2.1 Gibbs Free Energy

The idea of Gibbs free energy, denoted G, was first considered in the 1870s by

Josiah Willard Gibbs, where he termed the concept as the ’available energy’ of a

system (Atkins et al., 1988). More specifically, it can be described as the amount

of energy stored in a system that is ’free’ to do work (Atkins and De Paula, 2014)

and depends on the enthalpy and entropy of the system as follows:

G = H − TS, [1.1]

where T is the temperature in Kelvin. Here, S is the entropy, a measure of the

disorder in the energy of a system and therefore relates to the amount of energy

that is not available to do work. In general, energy has a tendency to disperse from

a localised area as well as convert to different forms, making a system more chaotic.

Therefore, with every spontaneous change the entropy will increase (Atkins et al.,

1988).

H is the enthalpy, which can be written as:

H = U + pV ∗, [1.2]

14



where p is the pressure, V ∗ is the volume, and U is the internal energy of the system.

It is a measure of the energy required to create and then maintain the system.

We are interested in the change in Gibbs free energy when a reaction occurs. Con-

sider an electrochemical cell where a reaction is occurring at constant temperature

and pressure. As the reaction advances over time, we can write the change in Gibbs

energy as:

∆G =
∂G

∂t

∣∣∣∣
T,p=const.

[1.3]

While the reaction advances we can denote the amount of work that can be done

as ω so, by the definition of Gibbs free energy, we can write that:

dω

dt
= ∆G. [1.4]

During this change, work will be done to transport electrons between the electrodes,

this is given by the product of the amount of charge transported, Q, and the po-

tential difference across the electrochemical cell, which we will denote as Ecell:

dω = QEcell. [1.5]

We can write the amount of charge transported as −neFdt where ne denotes the

number of electrons that are transported throughout the whole reaction, and F

is Faraday’s constant, which is defined as the magnitude of charge per mole of

electrons. The minus sign represents the negative charge of an electron. We can

therefore write:

dω = −neFEcelldt. [1.6]

Combining equations [1.4] and [1.6], we therefore find the relation between the

Gibbs free energy and the cell potential:

∆G = −neFEcell. [1.7]

Note that, in general, the Gibbs free energy is often considered relative to some

standard Gibbs free energy for the particular reaction, ∆G0. It can be given by

(Atkins and De Paula, 2014):
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∆G = ∆G0 +RTln(Qr), [1.8]

where R is the universal gas constant and T is absolute temperature. Here, Qr

is known as the reaction quotient and is related to the activities of the products

relative to the activities of the reactants. We will be considering ideal solutions so

the activities can typically be replaced with concentration-like terms. In Chapter

3, we will go into more detail about activities and how they are important when

looking at non-ideal solutions.

Substituting equation [1.7] into [1.8] and rearranging, leads to:

Ecell = −∆G0

neF
− RT

neF
ln(Qr), [1.9]

and therefore we can introduce a standard cell potential, E0
cell, such that:

E0
cell = −∆G0

neF
, [1.10]

therefore giving:

Ecell = E0
cell −

RT

neF
ln(Qr). [1.11]

This equation is known as the Nernst equation. To understand how this concept

links to the charge and discharge processes, we will consider the reactions that take

place within an electrochemical cell composed of a LiCoO2 cathode and a C6 anode.

We first need to look at the standard potentials of each electrode (relative to the

standard hydrogen electrode). These values are typically given as the reduction po-

tential, but the relative oxidation potential is found by simply taking the negative

of the reduction potential.

The standard potentials for the reduction of each electrode are given by (relative

to the standard hydrogen electrode):

Li+ + C6 + e− → LiC6 (E0
red(C6/LiC6) ∼ −2.84V vs. SHE), [1.12]
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Li+ + CoO2 + e− → LiCoO2 (E0
red(CoO2/LiCoO2) ∼ 1.00V vs. SHE), [1.13]

where the standard potentials for the relative oxidation reactions are given by −E0.

Overall, the standard potential difference of the cell, E0
cell, is given by the sum of the

oxidation standard potential of the oxidation reaction and the reduction standard

potential of the reduction reaction. We can denote this as:

E0
cell = E0

ox(ox) + E0
red(red), [1.14]

where we are using the subscript to denote the type of standard potential we are

using and the term in brackets to denote which reaction.

Rewriting this in terms of just the reduction standard potentials, we therefore find:

E0
cell = −E0

red(ox) + E0
red(red). [1.15]

Considering the example of a LiCoO2 cathode and a C6 anode, we have the overall

reaction of the cell:

CoO2 + LiC6 → LiCoO2 + C6, [1.16]

where we have the following reactions occurring at the anode [1.17] and cathode

[1.18] respectively. These are known as half-equations:

Oxidation reaction at the anode:

LiC6 → C6 + Li+ + e−, [1.17]

Reduction reaction at the cathode:

CoO2 + Li+ + e− → LiCoO2, [1.18]

and the calculation of E0
cell is as follows:

E0
cell = E0

ox(anode) + E0
red(cathode), [1.19]

= −(E0
red(anode) + E0

red(cathode), [1.20]

= (−(−2.84) + 1.00 = 3.84V vs. SHE. [1.21]
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As this value for E0
cell is positive (so ∆G is negative) we can see the following overall

reaction given in [1.16] is therefore the discharge reaction that occurs spontaneously.

Once the cell has discharged, it will need to be recharged again by the following

reaction:

LiCoO2 + C6 → CoO2 + LiC6. [1.22]

The value of E0
cell for this reaction is ∼ −3.84V , and therefore the Gibbs free energy

is positive, indicating a non-spontaneous reaction. In order to drive this reaction

to occur, a potential difference of greater than 3.84V must be applied.

1.2.2 Capacity Fade

The equations discussed above are the theoretical reactions that will occur in the

electrochemical cell. In reality, not all the lithium will be extracted and inserted

between the electrodes. The reactions given in [1.17] and [1.18] can instead be

written as:

At the anode:

LiC6

discharge−−−−−⇀↽−−−−−
charge

Li1−xC6 + xLi+ + xe−, [1.23]

At the cathode:

Li1−xCoO2 + xLi+ + xe−
discharge−−−−−⇀↽−−−−−
charge

LiCoO2, [1.24]

where x represents the number of moles of lithium that are successfully transferred

between the two electrodes. This value varies for different materials for each elec-

trode and will also decrease over repeated charge and discharge cycles, representing

a fading capacity with each cycle. A decrease in capacity for a given material can

be caused by various mechanisms (Zhang et al., 2000); this can include a permanent

change in the structure of the electrode, which can prevent some lithium ions from

being able to (de)-intercalate, or the loss of lithium to unwanted side reactions,

which can reduce the amount of lithium available to be transferred (Imamura et

al., 2011). This is an important concept to consider when selecting materials for

use as an anode or cathode; a material that experiences less structural degradation

and less loss of lithium can maintain capacity for a longer useful cycling life.
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1.3 The Development of Lithium-Ion Batteries

The idea behind a lithium-ion battery was first developed in the early 1970s by

Michel Armand, who first considered the idea of lithium ions moving reversibly

between two intercalating electrodes (Blomgren, 2017). This idea was then taken

further by Lazzari and Scrosati, who went on to develop a cell composed of LiWO2

and TiS2 electrodes. Due to the potentials of the chosen electrodes, the potential

range of the cell was limited, but after completing 68 cycles, the cell showed rela-

tively little deterioration (Lazzari and Scrosati, 1980).

Since then, a variety of transition metals have been tested for their performance for

reversible lithium insertion and extraction, finding that both transition metal sul-

phides and halides were unsuitable due to having low open-circuit voltages and low

conductivity, respectively (Padhi, Nanjundaswamy and Goodenough, 1997). The

materials used for the electrodes and the electrolyte are an important considera-

tion, as they can have a significant impact on the cell’s safety, capacity, and energy

density, which are key to the overall practicality for use in electric vehicles. We will

consider each part of a cell and discuss the most commonly used materials.

1.3.1 The Cathode

Cathodes require the use of lithium-ion host materials that have high positive redox

potentials (Ji et al., 2011). Most current research is focused on the use of transition

metals that can readily undergo oxidation and reduction to allow for the extraction

and insertion of lithium ions (Rao, 2014). The chosen material must remain struc-

turally stable during the charge and discharge processes in order to minimise the

irreversible capacity fade.

The lithium-ion battery released by Sony in 1991 made use of hexagonal-structured

lithium cobalt oxide (LiCoO2) as the cathode material. It displayed promising re-

sults while also being smaller, lighter, and possessing higher energy density than

other designs for rechargeable batteries, such as lead-acid (Li et al., 2009). As such,

it is among some of the most commonly used cathode materials. It is usually cycled

between fully lithiated and half-lithiated states, which gives a specific capacity of

∼ 150 mAhg–1 and shows potential for a long cycling life (Li et al., 2009). However,

a lithium cobalt oxide cathode has safety problems associated with the instability

caused by overcharging. On removal of the lithium ions from the electrode (during
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the charge process), a possible side reaction is the oxidation of a Co+3 ion to Co4+

ions, which are unstable and at high concentrations they can irreversibly affect the

internal structure of the electrode (Li et al., 2009). Another proposed theory in-

volved the Co+3 ions dissolving in the electrolyte, leading to the reduction of the

potential capacity with each charge (Fergus, 2010b).

As cobalt is not as readily available as some other transition metals, such as iron

and manganese, these electrodes can often only be used in small cells due to the

higher costs involved. These cells, while still useful in smaller portable technologies

such as mobile phones, are not practical for use in electric vehicles (Rao, 2014).

The development of lithium manganese oxide (LiMn2O4) as a cathode was first con-

sidered in 1981 when Hunter suggested that the spinel structure would be preserved

when most of the lithium ions have de-intercalated (Hunter, 1981). In 1983, the

first LiMn2O4 cathode was tested as lithium ions were chemically inserted into the

lattice, which caused the reduction of Mn4+ to Mn3+ (Thackeray et al., 1983).

LiMn2O4 has improved thermal stability, compared to LiCoO2, and so is much

safer with the added benefit of lower manufacture cost while still maintaining a

similar theoretical capacity of ∼ 148 mAhg–1, meaning it has also become one of

the leading materials for cathode electrodes. (Rao, 2013). However, at present, the

practical capacity has been found to be ∼ 120 mAhg–1, and the material tends to

suffer from capacity fading with repeated charge and discharge cycles. Similarly to

the case with LiCoO2, a suggested explanation for this capacity fading is due to

the dissolution of the manganese ions in the electrolyte (Arora, White, Doyle, 1998).

Lithium iron phosphate (LiFePO4), another possible compound for use as a cath-

ode, was first proposed in 1996 (Padhi, Nanjundaswamy and Goodenough, 1996).

It quickly became a favourable option to explore due to the availability of iron, con-

tributing to lower costs while still possessing a competitive specific capacity ∼ 170

mAhg–1 and thermal stability (Rao, 2014). Other phosphates have been considered

for use as cathodes, such as LiMnPO4 and LiCoPO4, which have higher open-circuit

voltages. However, LiFePO4 has the highest theoretical capacity (Fergus, 2010b).

Upon charging, the lithium ions de-intercalate from the cathode, which causes the
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oxidation of iron from Fe2+ to Fe3+, leaving FePO4 (Padhi, Nanjundaswamy and

Goodenough, 1997). The olivine structure is retained in this process, which occurs

via two phases and results in one-dimensional lithium-ion transport (Ellis et al.,

2007) and a relatively flat discharge curve (Fergus, 2010b).

1.3.2 The Anode

Similar to the cathode, the anode must also remain structurally stable when in

use as well as have high conductivity. The material should be strongly reducing to

allow for higher open-circuit voltages when paired with a highly oxidising cathode

(Xu, 2004). Pure lithium metal has excellent capacity (∼ 3820 mAhg–1) and is

also strongly reducing (Eftekhari, 2017), but the safety risks involved with its use

prevent it from being a practical choice for an anode (Li et al., 2009).

Carbon is a readily available resource, so research on various carbonaceous mate-

rials has been a major focus (Wu, Rahm and Holze, 2003). Carbon in the form

of graphite (C6) is the most frequently used material for the anode in commercial

lithium-ion batteries. Graphite is made up of layers of structured carbon atoms,

called graphene sheets, which allow lithium ions to intercalate reversibly between

these layers. The carbon atoms are ordered into a lattice where each atom is only

bonded to three others, leaving a free electron and making the material highly

conductive along these planes (Ji et al., 2011). The graphene layers have a high

surface-area-to-mass ratio, which can contribute to a lower overall weight for the

cell while still maintaining a theoretical specific capacity of ∼ 372 mAhg–1 (Ji et

al., 2011).

Past research has also included the use of metal alloys. They often had problems

with low cycling life, however the use of nanoparticles of these materials showed

some improvements with this problem (Ritchie and Howard, 2006). In addition,

nanoparticles allow for larger surface areas and an increased number of active sites

for the intercalation of lithium ions. This leads to an increase in energy densities (Ji

et al., 2011). The introduction of metal oxides to form composites with graphite or

the carbon coating of the electrode can also reduce electrolyte decomposition and

therefore improve the cycling behaviour on the first cycle (Wu, Rahm and Holze,

2003).
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1.3.3 The Electrolyte

An electrolyte lies between the negative and positive electrodes and often consists

of a lithium-based salt dissolved in an organic solvent, which allows the transfer of

lithium ions between the electrodes. The safety of the battery is of high importance,

therefore the electrolyte should have low flammability and be thermally stable. The

electrode-electrolyte interface is vital in influencing the performance of the battery

as the electrolyte must retain high stability with both electrodes. This is especially

relevant as we push for batteries with higher energy densities by looking for cath-

odes and anode materials that are more oxidising and reducing (Xu, 2004). This

stability is related to the potentials of the electrodes (as discussed in Section 1.2.1),

which must both lie within the ”electrochemical window” of the electrolyte; if the

value for the anode is lower than this window it will reduce the electrolyte while

a value for the cathode being too high will cause oxidation of the electrolyte. In

both cases, it can cause an irreversible decrease in capacity (Goodenough and Park,

2013).

In an ideal situation, we would be able to find materials that have potentials as

close to the limits of the electrolyte’s electrochemical window as possible, resulting

in a high open-circuit voltage and therefore a high energy density.

However, in some cases, these processes occurring can give the cell an advan-

tage. During the initial charge process, some solvent-based electrolytes will be

oxidised/reduced and cause a thin layer to form over the cathode/anode, known as

the solid electrolyte interface (SEI) (Verma, Maire and Novák, 2010). This layer

then acts as a protective barrier and prevents the process from occurring further

while still allowing the lithium ions to intercalate/de-intercalate as before. This

process will cause a slight loss in capacity but will avoid further capacity fade dur-

ing later cycles (Goodenough and Kim, 2010).

Lithium-based electrolytes have been a focus due to their relatively wide electro-

chemical windows while also having the ability to form stable SEI layers (Goode-

nough and Kim, 2010). For example, lithium hexafluorophosphate (LiPF6) was first

proposed for use as an electrolyte in lithium-ion batteries in 1968 and is now used

commercially due to its practicality across a range of properties (Xu, 2004). While

LiPF6 does not have the best performance in every requirement for an electrolyte,
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it has been a popular choice due to its ability to simultaneously meet many of the

requirements to a reasonable degree. For example, while lithium tetrafluoroborate

(LiBF4) has a slightly higher ionic mobility, LiPF6 still has the advantage of higher

conductivity and the ability to form a more stable SEI layer. Similarly, while lithium

hexafluoroarsenate (LiAsF6) has a higher conductivity than both, there were safety

concerns due to its relatively high toxicity (Xu, 2004).

1.4 Research into Lithium-Ion Batteries

In addition to the development of suitable electrolyte and electrode materials, there

is extensive research into a wide range of methods to improve the performance of

lithium-ion batteries, including both experimental and computational work.

Porous electrode theory has been developed by John Newman since 1962; this the-

ory has been applied to various battery systems and fits well with experimental

results (Newman and Tiedemann, 1975). Since then, Newman and his colleagues

have developed the Doyle-Fuller-Newman model, a popular charge transport model

that brings together the equations for the electrodes, electrolyte and reaction ki-

netics (Doyle, Fuller and Newman, 1993)(Newman et al., 2003)(Fuller, Doyle and

Newman, 1994a,b). The DFN model has been at the frontline of charge transport

research, with many using the model for studying a specific aspect of an electro-

chemical cell and also looking to optimise their models for use in complex and

extensive problems.

The safety of lithium-ion batteries is an important consideration, especially when

looking at use in vehicles. The study of heat and energy generation in differ-

ent parts of a cell could give insight into safer designs (Richardson and Korotkin,

2021), while the use of mechanical models (Yiding, et al., 2020) and Monte Carlo

simulation methods (Zhang et al., 2022) to investigate electrode degradation could

predict battery failure.

Experimental work in cell imaging and monitoring can help us understand the

complex chemistry behind the redox reactions on an electrode’s surface, leading to

breakthroughs in new electrode materials and optimising cell performance (Sathiya

et al., 2015)(Biton et al., 2016).
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These models can give insight into the complex workings of an electrochemical cell,

leading the way for batteries to be built with improved performance. In addition,

research focused on modelling safety issues could be implemented to predict and

prevent causes of battery failure.

1.4.1 Optimising Performance Parameters

Compared to other secondary battery options, Lithium-ion batteries bring higher

energy densities and specific energies; these are important factors that contribute

to their popularity for energy storage systems. Energy density is defined as the

amount of energy a battery contains per unit volume; it is sometimes referred to

as volumetric energy density with units WhL−1. Similarly, specific energy can be

defined as the amount of energy a battery contains per unit mass. It can also be

referred to as gravimetric energy density and has units Whkg−1. These energy den-

sities give a measure of how much energy a battery can produce; higher values can

store more energy while being smaller and lighter. This property can be important

for use in small portable devices where size is a key factor, such as mobile phones,

but can be equally useful for electric vehicles where weight might be a consideration.

The first commercial battery by Sony had a gravitational energy density of 80Whkg−1,

however with the significant research since then, energy densities of > 300Whkg−1

became attainable (Blomgren, 2017). The development of a lithium-ion battery

with a gravitational energy density of 711Whkg−1 was recently announced, which

used a manganese-based material for the cathode and a lithium-metal anode (Li et

al., 2023).

One research avenue towards increasing energy densities includes increasing the cell

voltage. This is determined by the difference between the ’operating voltages’ of

the anode and cathode, which is dictated by the voltage at which the oxidation and

reduction reactions occur for the selected cathode and anode materials. For higher

cell voltages, we need to maximise this difference, but this can prove challenging

to do without the electrolyte causing problems; pushing the cell voltage beyond

the stable electrochemical window of the electrolyte causes its irreversible decom-

position and decreases the battery’s cycle life (Chen et al., 2019). Such electrode

materials have been researched (Hu et al., 2013)(Li et al., 2017), but new electrolyte

options that may be able to support higher voltages are still being studied. Solid
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electrolytes are an example (Manthiram, 2017)(Lau et al., 2018); they are typically

safer in design but have lower conductivities than liquid electrolytes (Fergus, 2010a).

Increasing the specific capacity of a lithium-ion battery is another way to increase its

energy density. Specific capacity is the amount of charge the battery can produce,

per unit of mass, when discharged at a given voltage. It is measured in Ahkg−1.

Similarly, capacity density is the amount of charge the battery can produce per

unit of volume (AhL−1). Increasing the capacity means increasing the number of

sites on the electrodes where lithium ions are able to reversibly (de)-intercalate and

the number of electrons that are able to contribute towards the oxidation/reduction

reactions. The challenge is being able to do this while still keeping the battery small

and light (Choi and Aurbach, 2016).

To overcome this limitation, research into conversion-reaction electrodes has found

possible material options that have shown theoretical specific capacities of up to

5 times greater than those used at present (Meng et al., 2023). These types of

electrodes involve oxides of transition metals that were not originally considered

possible candidates due to their structures not accepting the intercalation of lithium

ions. Instead of intercalation, these materials react to form lithium oxides on the

surface of the electrode, however the exact mechanism of these reactions is not yet

understood fully (Yu et al., 2015)(Yu et al., 2018). These options still come with

significant limitations; these conversion reactions can often cause large structural

changes leading to serve capacity fade, even early in the battery’s cycle life. Simi-

larly, safety issues can arise due to the use of oxides increasing the risk of unwanted

exothermic side reactions leading to thermal runaway (Cabana et al., 2010)(Man-

thiram, 2017)(Meng et al., 2023).

Currently under research to increase specific capacity include doping, a method

where very small quantities of other elements are introduced into the structures

of the electrodes with the intention of altering the electrochemical properties to

improve performance (Lüder et al., 2017). For example, doping a LiCoO2 elec-

trode with aluminium (Al) and lanthanum (La) was found to help with structural

stability when cycling at higher voltages (Liu et al., 2018), while doping cathode

materials has been shown to slightly reduce electrolyte decomposition and decrease

the release of oxygen (Yan et al., 2020).
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1.5 Report Outline

In this thesis, we study the modelling of charge transport throughout different parts

of an electrochemical cell. When starting the project, the original plan was to study

each part of a cell and consider a charge transport model for each part. Then, to

combine these into a model for a full cell that encapsulates the essential charge

transport equations and also builds on these ideas to bring new insights or account

for more complex behaviour. Completing the full-cell model within the time proved

to be too ambitious, but here we present the individual models for the parts of an

electrochemical cell with discussion on how they could be combined into a full-cell

model in the future.

We begin by focusing on the modelling of charge transport through the electrolyte

phase. In Chapter 2, we will briefly outline the Poisson-Nernst-Planck theory and

discuss how this can be applied to a model for dilute electrolytes. In this model, we

will consider the situation where we have charge neutrality and an ideal solution.

While this can be a suitable assumption for the bulk electrolyte, we will investigate

in Chapter 3 how to account for non-ideality.

We will introduce the electrochemical potentials of the ionic species in an electrolyte

to formulate an alternative model to Chapter 2. We discuss more concentrated elec-

trolytes, where the assumption of an ideal solution does not hold, and interactions

between ions become important to consider. We derive a model to account for this

by considering partial molar volumes and then give analytical and numerical solu-

tions.

We study models used to account for non-ideal behaviour, such as the Maxwell-

Stefan equations and Margules functions. We set up an ion-hopping model where

we consider a Monte Carlo algorithm to simulate these ionic interactions and apply

these models. We run the simulation for electrolytes using various solvents and

compare the results to experimental results from the literature. We focus on cal-

culations for the activity coefficient term, as this is the term that incorporates the

deviation from ideality. We make additional amendments to the algorithm and run

further simulations to model the formation of solvation shells in the electrolyte.
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In Chapter 4, we introduce the Dolye-Fuller-Newman (DFN) model and follow the

derivation of a single-particle model that maintains good agreement with the DFN

model while reducing computational complexity.

We study the double layer in Chapter 5 and consider the effect it has on the

movements of the ions adjacent to the electrode surface. We will investigate the

Schrödinger equation and its applications to modelling electrons moving through a

potential barrier. We link this to an electrochemical cell by considering the electrons

tunnelling through the potential barriers near the electrode surface. We study the

effect this could have on Butler-Volmer reaction kinetics and electrode capacity.

In Chapter 6, we will summarise these models and consider developments for future

work.

The models studied in Chapters 2 and 3 explore the electrolyte, both dilute and

moderately concentrated, while in Chapter 5 we look at the reactions occurring on

the surface of the electrodes. Linking these models together would involve consider-

ing the fluxes at the electrode surfaces and quantifying how this drives the reaction

rates of the redox reactions and explains the Butler-Volmer kinetics. This could

also give more insight into our study of electron tunnelling. Additionally, a further

model of the charge transport occurring within the electrode materials, such as dif-

fusion into the particles, could complete the full cell model.

A full cell model could prove to be computationally expensive, so here we link to the

work in Chapter 4 where we considered a single particle model from the literature

as an alternative formulation that has proved to be significantly quicker to solve

while maintaining good agreement. This gives insight into how we could follow a

similar process to reduce the complexity of our models without reducing accuracy,

which would allow the inclusion of more complex behaviour, such as applying a

similar asymptotic analysis to better understand the double layer behaviour.

27



2 Models for Dilute Electrolytes

2.1 Poisson-Nernst-Planck Theory

To begin to model the movements of the ions in the electrolyte we will first consider

the Poisson-Nernst-Planck theory which can be used for the modelling of dilute

electrolytes. Following the derivation found in (Richardson and King, 2007), we

first consider the movement of the ions due to diffusion and under the influence of

the electric field, so we proceed by deriving the diffusive and advective fluxes of the

positive and negative ion species.

2.1.1 The Electric Potential

By assuming the electric field is irrotational, it can therefore be written in terms of

the electric potential, φ:

∇× E = 0 =⇒ E = −∇φ. [2.1]

Applying the differential form of Gauss’s law, we get Poisson’s equation:

∇.E =
ρ

ε
=⇒ ∇.(ε∇φ) = −ρ, [2.2]

where ρ is charge density and ε is the permittivity of the electrolyte, which we will

assume to be constant. This allows us to rewrite [2.2] in terms of the concentrations

of the two ionic species (Bazant, Thornton and Ajdari, 2004):

∇2φ =
−ρ
ε

=
F

ε
(cn − cp), [2.3]

where F is Faraday’s constant, cn and cp are the concentrations of the negative and

positive species.

2.1.2 The Flux of the Ionic Species

To consider the fluxes of the ions in the electrolyte, the positive lithium ions (Li+)

and a general negative ion denoted as N−, we need to allow for their diffusive

movement due to the concentration gradient and their advective movement due to

the electric field. We will denote the concentration of each species as ci and each

flux as qi, where i = n, p for the negative and positive species.
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The Diffusive Flux: To find the diffusive flux of an ionic species, we use Fick’s

1st law of diffusion:

qdi = −Di∇ci, [2.4]

where qdi , the diffusive flux of species i, is proportional to the concentration gradient

of that species with D as the diffusion coefficient. The negative sign here denotes

the fact that the ions will flow from areas of high concentration towards areas of

low concentration, therefore flowing against the concentration gradient. Values for

the diffusion coefficient often fall around the range 10−10− 10−9 m2s–1 (Atkins and

De Paula, 2014).

The Advective Flux: The advective flux for each species is given by:

qai = civai , [2.5]

where vai is the velocity of species i due to the electric field.

We begin by considering the forces acting on a single ion. Each ion will experience

a force from the electric field, Fei given by equation [2.6]. We can then use [2.1]

to write in terms of the electric potential. The ezi term allows for the charge of

the ion where e ∼ 1.602 × 10−19 C is the charge of a single proton, known as the

elementary charge.

Fei = eziE = −ezi∇φ. [2.6]

This force will cause the ion to move through the electrolyte towards the electrode

of the opposite charge. This movement will then cause the electrolyte to exert a

drag force, Fdi given by equation [2.7], on the ion until it reaches a terminal drift

velocity, vai , with the drag coefficient Kdi :

Fdi = Kdivai . [2.7]

This drift velocity is reached when these two forces are balanced, so we find the

following relation:

−ezi∇φ = Kdivai =⇒ vai = − ezi
Kdi

∇φ, [2.8]
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where the drift velocity of the ion is proportional to the strength of the electric field.

We can now introduce the concept of mobility, which gives a measure of how easily

an ion moves through the electrolyte while under the influence of the electric field.

We can relate the mobility of an ion to the drag coefficient, leading to:

Mi =
1

Kdi

=⇒ vai = −eziMi∇φ. [2.9]

Therefore, by substituting [2.9] into [2.5] for each species of ion, we find the following

advective fluxes:

qai = −cieziMi∇φ, [2.10]

The Einstein Relation: We can also link the mobility of the ion to the diffusion

coefficient by the following relation:

Mi =
Di

kBT
, [2.11]

where kB ∼ 1.381 × 10−23 kg s–2 K–1 is the Boltzmann’s constant, and T is the

absolute temperature.

We can now take the fact that the elementary charge can be written in terms of

Faraday’s constant and Avogadro’s constant, NA ∼ 6.022× 1023 mol–1:

e =
F

NA

, [2.12]

where Avogadro’s constant can also give the relation between the universal gas

constant, Rg ∼ 8.314 J mol–1K–1, and the Boltzmann’s constant as:

Rg = kBNA. [2.13]

Combining equations [2.12] and [2.13] we find the relation:

e

kB
=

F

Rg

, [2.14]

which can be substituted into the advective flux [2.10] to give:

qai = −zici
FDi

RgT
∇φ [2.15]
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The total flux for each ion species is now given by the sum of its respective diffusive

[2.4] and advective parts [2.15], giving:

qi = −Di

(
∇ci + zici

F

RgT
∇φ
)
, [2.16]

Using the assumption that the species of ion will not interact with each other, the

electrolyte will behave as an ideal solution, we can also introduce equations for the

conservation of each ion species:

∂ci
∂t

+∇.qi = 0. [2.17]

Bringing together equations [2.3], [2.16] and [2.17] we have the general equations

for the model. We will now look at how this model can be applied to a dilute

electrolyte in 1-dimension.

2.2 A 1D Model for Dilute Electrolytes

Consider a single electrode with its surface located at x = 0, immersed in a 1 : 1

binary electrolyte which spans the region 0 < x < L. A binary electrolyte is

one composed of a single compound that dissociates into one positive ion and one

negative ion, which have charges zp and zn such that zn = −zp (Newman and

Thomas-Alyea, 2004). In the case that zp = +1 and zn = −1 we have a 1 : 1

electrolyte (e.g. LiPF6 dissociates into Li+ ions and PF6
– ions). We will be con-

sidering a 1-dimensional model, where the x-direction represents the distance from

the electrode surface.

The use of this 1-dimensional set-up simplifies the equation for the electric field

[2.1] to:

E = −∂φ
∂x

ex, [2.18]

and equations [2.3], [2.16] and [2.17] now become:

∂2φ

∂x2
=
F

ε
(cn − cp), [2.19]
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qn = −Dn

(
∂cn
∂x
− cn

F

RgT

∂φ

∂x

)
, [2.20]

∂cn
∂t

+
∂qn
∂x

= 0, [2.21]

qp = −Dp

(
∂cp
∂x

+ cp
F

RgT

∂φ

∂x

)
, [2.22]

∂cp
∂t

+
∂qp
∂x

= 0. [2.23]

where we have expanded equations [2.16] and [2.17] for each ion species, i = n, p.

Equations [2.20] - [2.23] are often referred to as the Nernst-Planck equations for flux,

and together with Poisson’s equation they are known as the Poisson-Nernst-Planck

theory.

2.2.1 Charge Neutrality

As we are considering a electrolyte that acts as an ideal solution, it is usual to

assume charge neutrality in the bulk electrolyte. This leads to the assumption that

the concentrations of the positive and negative species are equal. To justify this, we

begin by non-dimensionalising equations [2.19] - [2.23] using the following scalings

(Richardson and King, 2007):

x = Lx̂, t =
L2

D
t̂, cn = c0ĉn, cp = c0ĉp, [2.24]

qn =
D

L
c0q̂n, qp =

D

L
c0q̂p, φ =

RgT

F
φ̂. [2.25]

Here, we are scaling x by an approximate length for an electrochemical cell, L,

where c0 represents typical electrolyte concentration and D gives the typical scale

of the diffusion coefficients Dn and Dp. We also need to consider a suitable value

for ε, the permittivity of the electrolyte, which is typical given in terms of the per-

mittivity of free space such that ε = εrε0, where εr is the relative permittivity. For

a dilute electrolyte, the salt is not considered to have too much of an impact on

permittivity so often can be taken as similar to the permittivity of water, which

is given by 80ε0 = 7.0834x10−10 Fm−1 (Richardson and King, 2007). Values for
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these parameters are given in Table 1.

Applying these scalings leads to:

RgT

FL2

∂2φ̂

∂x̂2
=
F

ε
(c0ĉn − c0ĉp), [2.26]

D

L
c0q̂n = −Dn

(
c0

L

∂ĉn
∂x̂
− c0ĉn

F

RgT

RgT

FL

∂φ̂

∂x̂

)
, [2.27]

D

L
c0q̂p = −Dp

(
c0

L

∂ĉp
∂x̂

+ c0ĉp
F

RgT

RgT

FL

∂φ̂

∂x̂

)
, [2.28]

Dc0

L2

∂ĉn

∂t̂
+

D

L2
c0
∂q̂n
∂x̂

= 0, [2.29]

Dc0

L2

∂ĉp

∂t̂
+

D

L2
c0
∂q̂p
∂x̂

= 0, [2.30]

which simplifies to:

εRgT

F 2L2c0

∂2φ̂

∂x̂2
= (ĉn − ĉp), [2.31]

q̂n = −Dn

D

(
∂ĉn
∂x̂
− ĉn

∂φ̂

∂x̂

)
, [2.32]

∂ĉn

∂t̂
+
∂q̂n
∂x̂

= 0, [2.33]

q̂p = −Dp

D

(
∂ĉp
∂x̂

+ ĉp
∂φ̂

∂x̂

)
, [2.34]

∂ĉp

∂t̂
+
∂q̂p
∂x̂

= 0. [2.35]

We can rewrite these equations by introducing new variables:

λ2∂
2φ̂

∂x̂2
= (ĉn − ĉp), [2.36]

q̂n = −α
(
∂ĉn
∂x̂
− ĉn

∂φ̂

∂x̂

)
, [2.37]

∂ĉn

∂t̂
+
∂q̂n
∂x̂

= 0, [2.38]
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q̂p = −β
(
∂ĉp
∂x̂

+ ĉp
∂φ̂

∂x̂

)
, [2.39]

∂ĉp

∂t̂
+
∂q̂p
∂x̂

= 0, [2.40]

where we have used:

α =
Dn

D
, β =

Dp

D
, λ =

1

L

√
εRgT

F 2c0

. [2.41]

We can relate λ to the Debye length, which gives the thickness of a region termed

the double layer; a region adjacent to an electrode where charge neutrality is not

satisfied. The Debye length of an electrolyte is given by (Newman and Thomas-

Alyea, 2004):

Ld =

√
εRgT

F 2c0

, [2.42]

therefore comparing to [2.41], we find the relation:

λ =
Ld
L
. [2.43]

Table 1: Values and descriptions of parameters introduced in equations [2.24] - [2.25] and the

derived dimensionless parameter for λ from equation [2.41].

Parameter Description Value Reference

c0 Salt concentration of the electrolyte 1000 mol m−3 (Richardson and King, 2007)

ε Permittivity of the electrolyte 80ε0 = 7.0834x10−10 Fm−1 (Richardson and King, 2007)

D Diffusivity of the electrolyte 5.34x10−10 m2 s−1 (Srinivasan, and Newman, 2004)

L Length of the electrochemical cell 1.6x10−4 m (Ecker et al., 2015)

Ld Debye length 4.342x10−10 m Calculated from [2.42]

λ Relation between Debye length and cell length 2.714x10−6 Calculated from [2.41]c)

T Temperature 298 K (Srinivasan, and Newman, 2004)

Typically, the scale of the Debye layer is much smaller than the scale of the whole

cell (Ranom, 2014). This can be seen by the values of λ, L and Ld in Table 1 where

λ << 1 and Ld << L. This allows us to set the left side of equation [2.36] to 0,

therefore we can impose:
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ĉn − ĉp ≈ 0 =⇒ ĉn ≈ ĉp, [2.44]

so we can then denote:

ĉn = ĉp = ĉ, [2.45]

which gives rise to the following equations:

q̂n = −α
(
∂ĉ

∂x̂
− ĉ∂φ̂

∂x̂

)
, [2.46]

∂ĉ

∂t̂
+
∂q̂n
∂x̂

= 0, [2.47]

q̂p = −β
(
∂ĉ

∂x̂
+ ĉ

∂φ̂

∂x̂

)
, [2.48]

∂ĉ

∂t̂
+
∂q̂p
∂x̂

= 0. [2.49]

To make a further simplification, we can consider setting the diffusion coefficient of

the positive ion species equal to the typical value, Dp = D. This leads to altering

the scalings for t, qn and qp to:

t =
L2

Dp

t̂, qn =
Dp

L
c0q̂n, qp =

Dp

L
c0q̂p, [2.50]

and changes α and β to:

α =
Dn

Dp

, β =
Dp

Dp

= 1, [2.51]

where α now represents the ratio of the positive and negative diffusivities.

Substituting [2.51] into [2.46] - [2.49], we find:

q̂n = −Dn

Dp

(
∂ĉ

∂x̂
− ĉ∂φ̂

∂x̂

)
, [2.52]

∂ĉ

∂t̂
+
∂q̂n
∂x̂

= 0, [2.53]
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q̂p = −
(
∂ĉ

∂x̂
+ ĉ

∂φ̂

∂x̂

)
, [2.54]

∂ĉ

∂t̂
+
∂q̂p
∂x̂

= 0. [2.55]

Here, we are still treating the negative and positive ions as diffusing independently of

each other. Another possible approach is to consider the diffusivity of the electrolyte

as a whole, with the positive and negative ions contributing to this diffusivity due

to their movements. This is known as ambipolar diffusion, which gives a measure

of the effective diffusivity of the electrolyte.

2.2.2 Ambipolar Diffusion

Now that we are only considering one variable for the concentration, we can com-

bine [2.46] - [2.49] to reduce the number of equations. To start we consider the

conservation equations [2.47] and [2.49]; it follows that:

β

(
∂ĉ

∂t̂
+
∂q̂n
∂x̂

)
+ α

(
∂ĉ

∂t̂
+
∂q̂p
∂x̂

)
= 0. [2.56]

On substituting the fluxes [2.46] and [2.48] into the conservation equations [2.56]

we find:

β

(
∂ĉ

∂t̂
− α

(
∂2ĉ

∂x̂2
− ∂ĉ

∂x̂

∂φ̂

∂x̂
− ĉ∂

2φ̂

∂x̂2

))
+ α

(
∂ĉ

∂t̂
− β

(
∂2ĉ

∂x̂2
+
∂ĉ

∂x̂

∂φ̂

∂x̂
+ ĉ

∂2φ̂

∂x̂2

))
= 0,[2.57]

which therefore simplifies down to:

∂ĉ

∂t̂
− δ ∂

2ĉ

∂x̂2
= 0, [2.58]

where we have defined a dimensionless form of the effective diffusivity:

δ =
2αβ

α + β
=

2DnDp

D(Dn +Dp)
=
Deff

D
. [2.59]

Equation [2.59], which can be termed the ambipolar diffusion equation, shows how

the two ion species diffuse together as though they are a single neutral species,

this results directly from the assumption of charge neutrality so therefore is only

applicable to bulk electrolytes (Schmuck and Bazant, 2015). This effect can be seen
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more clearly if we consider an electrolyte containing ions with unequal charges.

In general, the effective diffusivity in the dilute limit can be written as:

Deff =
(zp − zn)DnDp

(zpDp − znDn)
, [2.60]

where zn and zp are the charges of the negative and positive species respectively.

Rewriting equation [2.60] as:

1

Deff

=
zp

Dn(zp − zn)
− zn
Dp(zp − zn)

, [2.61]

we can see that Deff is measure of the average diffusivity, weighted by the ratio

of the charges. The ion with the larger magnitude of charge will have a larger

advective flux and so will have a tendency to diffuse at a faster rate, however the

effective diffusivity will be influenced more by the ion with the smaller magnitude

of charge (and smaller diffusivity) in order prevent the ion species from separating

too far, to maintain charge neutrality in the solution (Ghosal and Chen, 2010).

2.2.3 Discussion

In this section, we have presented a 1D model for a dilute electrolyte using Poisson-

Nernst-Planck theory to describe the effect of the electric field and concentration

gradient on the fluxes of the positive and negative ionic species. In Section 2.1, we

set up a general form of the model as:

∇2φ =
F

ε
(cn − cp), [2.62]

qi = −Di

(
∇ci + zici

F

RgT
∇φ
)
, [2.63]

∂ci
∂t

+∇.qi = 0. [2.64]

In Section 2.2, we opted to study a 1:1 binary electrolyte, where the charges of

the ions are zn = −1, zp = 1, leading to a simplification of equation [2.63]. We

also chose to reduce the model to 1-dimension, with the x-direction measuring the

distance from the electrode (which is located at x = 0), this represents a horizontal

cross-section taken from Figure 1.
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The original Doyle-Fuller-Newman model considers 1-dimensional lithium transport

between the anode and the cathode (Doyle et al., 1993), this comes from the as-

sumption that the chemistries and structures of the electrodes and electrolyte are

consistent throughout the 3D material and therefore taking a 1D cross-section or a

2D cross-section either horizontally or vertically is representative of any other cross-

section (Nonner and Eisenberg, 1998)(Liu, 2009). The only exception to this is at

the boundaries of the structure (other than where the electrodes are). In reality,

these boundaries could lead to slight turbulent and unpredictable movements in the

electrolyte, we will discuss the effects of this and methods to model this in Chapter 3.

Similarly, interactions between the charged ions could cause movements in all three

dimensions, however in the dilute limit it is typical to neglect these ionic inter-

actions, therefore we expect the concentration gradient to only vary significantly

across the x-direction (Lagnoni et al., 2022). In Chapter 3, we will study more

concentrated electrolytes where we will consider the interactions between ions, this

will lead to looking at the electrolyte in 2D.

Here, we only included one electrode, located at x = 0, as we were interested in

studying the difference in behaviour close to and far from this electrode. The

inclusion of a second electrode located at x = L and then applying a current

across the cell would result in the following boundary conditions on the fluxes

(Subramaniam, 2019):

qn|x=0 = 0, qn|x=L = 0, [2.65]

qp|x=0 = R0, qp|x=L = RL, [2.66]

where the fluxes of the negative ions are still 0 as these ions are not (de)-intercalated

into the electrodes, while the positive lithium ions will (de)-intercalate at a rate de-

termined by the reaction occurring at that electrode. Here we have denoted the

reaction rates as R0 and RL for the electrodes located at x = 0 and x = L, respec-

tively. We will look at a full-cell model in Chapter 4.

An important factor for an electrolyte is the lithium salt’s ability to dissociate into

ions (for example Lithium hexafluorophosphate (LiPF6) dissociates into Li+ and

PF−6 ions). If the lithium salt dissociates fully into ions, the solution is known as

a strong solution, whereas one that only partially dissociates is known as a weak
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solution. A solution with more dissociated ions leads to the ability for more charge

to be carried and therefore high conductivities. It is for this reason commercial

lithium-ion batteries opt to use strong solutions for the electrolyte.

Poisson-Nernst-Planck theory shows good agreement in the bulk electrolyte, but

only shows agreement in the double layer when considering weak electrolytes. For

strong electrolytes it tends to predict much higher concentrations than are typi-

cally possible; it has been argued this is due to neglecting the solvent molecules.

Accounting for these solvent molecules along with an incompressibility condition

enforces a conservation of volume and therefore ensures the model doesn’t predict

higher concentrations than can realistically fit into the space. This can be seen in

(Richardson and King, 2007), and we will study this concept in Chapter 3.
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3 Moderately Concentrated Electrolytes

In the previous chapter, we considered dilute electrolytes and assumed they behaved

as an ideal solution. This allowed us to state the resulting equations in terms of

the concentration of the ionic species. In this chapter, we will discuss this assump-

tion in relation to concentrated electrolytes and how this affects the equations we

previously derived.

We start by defining chemical and electrochemical potentials and how these relate

to ideal solutions and then discuss the differences to non-ideal solutions. This mo-

tivates a look into the Stefan-Maxwell equations and Margules functions to model

for moderately concentrated electrolytes (Newman et al., 2003), where we must also

consider the activity terms. We will use these equations to consider how we can

build a model based on ions hopping on a lattice to develop a Monte Carlo simula-

tion to describe the ionic movements where we take into account these interactions

between different ionic species.

3.1 Gibbs Free Energy and Chemical Potentials

Recall equations [1.1] and [1.2], where we can define Gibbs free energy, G of a

mixture, as:

G = H − TS = U + pV ∗ − TS, [3.1]

where H is the enthalpy, U is the internal energy, S is entropy, p is pressure, V ∗ is

volume, and T is the absolute temperature.

Next, we can define the chemical potential, which is often referred to as the partial

molar Gibbs energy and can be written as (Atkins and De Paula, 2014):

µi =
∂G

∂ni

∣∣∣∣
p,T,nj,j 6=i

, [3.2]

where ni is a measure of the amount of species i and we are holding the pressure,

temperature and the amounts of all other species constant. The chemical potential
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describes how the Gibbs free energy will change when the composition of the mix-

ture changes.

The total Gibbs free energy of a solution is the sum of the partial Gibbs free energies

of each species multiplied by the amount of that species that is present, therefore

we can define G as:

G =
∑
i

∂G

∂ni

∣∣∣∣
p,T,nj ,j 6=i

ni =
∑
i

µini. [3.3]

If we change the composition of the solution, the change in Gibbs free energy is

therefore given by:

dG =
∑
i

dµini +
∑
i

µidni. [3.4]

Similarly, if we take equation [3.1] and consider the change in Gibbs free energy

dG = dU + d(pV ∗)− d(TS) = dU + pdV ∗ + V ∗dp− TdS − SdT, [3.5]

while holding pressure and temperature constant, we find:

dG = dU + pdV ∗ − TdS. [3.6]

We can rewrite equation [3.6] in terms of the change in internal energy, dU , and

introduce the chemical potential from equation [3.2], where we have written the

Gibbs free energy in terms of the solution’s components, ni (Moran and Shapiro,

2006):

dU = TdS − pdV ∗ +
∑
i

µidni. [3.7]

We can now substitute in for dU using [3.7] into equation [3.6], we are left with:

dG =
∑
i

µidni − SdT + V ∗dp. [3.8]

Combining equations [3.8] and [3.4] and cancelling terms, we find:
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V ∗dp− SdT =
∑
i

dµini, [3.9]

and therefore under constant temperature and pressure we find the Gibbs-Duhem

equation [3.10], which shows how the chemical potentials of different species in a

solution are not independent of each other: an increase in one will lead to a decrease

in another.

∑
i

dµini = 0. [3.10]

We can use a similar approach to find a relation between the mole fraction and

partial molar volumes of a solution. For a solution of volume V , the partial molar

volume for species i can be defined as (Atkins and De Paula, 2014):

V ∗i =
∂V ∗

∂ni
. [3.11]

This implies the relation:

dV ∗ =
∑
i

V ∗i dni, [3.12]

where we can then integrate to give:

V ∗ =
∑
i

V ∗i ni. [3.13]

Similarly to [3.10], [3.13] gives a relation between the amounts of each species that

can occupy a given volume: an increase in the amount of one species therefore leads

to a decrease in the amount for the other.

3.2 Electrochemical Potentials

In Chapter 2, we set up a model for electrolytes using the Poisson-Nernst-Planck

theory. Here, we will briefly consider how to define similar equations using electro-

chemical potentials. The electrochemical potential is closely related to the chemical

potential; the chemical potential describes the difference in free energy with chang-

ing composition while the electrochemical potential accounts for this term as well

as the energy change from external effects such as an electric field.
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As before, we will denote the positive and negative species’ concentrations as cp

and cn and their charges as zp and zn, with the addition of the concentration of the

neutral (zs = 0) solvent species as cs.

We can write the electrochemical potential, µ̄i, of a species as:

µ̄i = µi + ziFφ, [3.14]

where F is Faraday’s constant and µi is the chemical potential of the species. The

chemical potential of a species can also be written in terms of its activity:

µi = µ0
i +RgT ln(ai), [3.15]

where µ0
i is the chemical potential of the species under standard conditions and ai

is the activity (Bard and Faulkner, 2001), which itself can be written in terms of

the activity coefficient γi and the mole fraction χi:

ai = γiχi. [3.16]

The mole fraction gives the ratio of the concentration of the species to the total

concentration of the solution:

χi =
ci
cT
, [3.17]

where, for the species i = n, p, s:

cT =
∑
i

ci = cn + cp + cs, [3.18]

and therefore we can conclude that:

∑
i

χi = 1. [3.19]

When considering dilute electrolytes it is usual to assume the solution behaves ide-

ally. In this limit, the activity coefficient γi → 1, and so the activity can simply be

replaced with the mole fraction terms (Mortimer, 2008).

Combining [3.14], [3.15] and [3.16], we can write the electrochemical potentials as:
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µ̄n = µ0
n +RgT ln(χn) + znFφ, [3.20]

µ̄p = µ0
p +RgT ln(χp) + zpFφ, [3.21]

µ̄s = µ0
s +RgT ln(χs), [3.22]

which can be combined with equations [2.17] and a similar conservation equation

for the solvent, to give an alternative form of equations [2.16] and [2.17]

qn = −cn
Dn

RgT
∇µ̄n, [3.23]

∂cn
∂t

+∇.qn = 0, [3.24]

qp = −cp
Dp

RgT
∇µ̄p, [3.25]

∂cp
∂t

+∇.qp = 0, [3.26]

qs = −cs
Ds

RgT
∇µ̄s, [3.27]

∂cs
∂t

+∇.qs = 0. [3.28]

We would expect these equations will hold when considering an ideal solution; in

general a model for a dilute electrolyte will be assumed to be an ideal solution and

so the above equations can be used.

3.3 A Model Using Electrochemical Potentials

Following on from Chapter 2, we can also derive a model for the concentration

profile through the electrolyte using the electrochemical potentials for the charged

ion species and neutral solvent species.

We will again consider a one-dimensional model for a positive electrode immersed in

a 1 : 1 binary electrolyte that contains positive lithium ions (Li+), general negative

ions (N−) with charges ±1 and a general neutral solvent species. With this setup,

equations [3.20] - [3.28] simplify to:
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qn = − Dn

RgT
cn
∂µn
∂x

, [3.29]

qp = − Dp

RgT
cp
∂µp
∂x

, [3.30]

qs = − Ds

RgT
cs
∂µs
∂x

, [3.31]

µn = µ0
n +RgT ln (χn)− Fφ, [3.32]

µp = µ0
p +RgT ln (χp) + Fφ, . [3.33]

µs = µ0
s +RgT ln (χs). [3.34]

3.3.1 Analytical Solutions

Considering the case where the flux of each species is 0, we will therefore set qi = 0

for i = n, p, s. To avoid the trivial solution of all concentrations being 0, we find

that the derivative of each electrochemical potential must be 0. This allows us to

write:

RgT ln

(
cn
cT

)
− Fφ = A, [3.35]

RgT ln

(
cp
cT

)
+ Fφ = B, [3.36]

RgT ln

(
cs
cT

)
= C, [3.37]

where we have used [3.17] to substitute in for the mole fraction of each species.

Solving for each concentration and combining the constant terms, we find:

cn = ÃcT e
F
RgT

φ
, [3.38]

cp = B̃cT e
− F
RgT

φ
, [3.39]

cs = C̃cT . [3.40]

We can see from equation [3.17], that equation [3.40] is equivalent to a constant

mole fraction for the solvent species, therefore we know that at any point x from

the electrode, the concentration of the solvent relative to the total concentration,
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cT will always be the same.

Combining these equations with the one-dimensional form of [2.3], [3.13], and [3.18]:

∂2φ

∂x2
=
F

ε
(cn − cp), [3.41]

cT = cn + cp + cs, [3.42]

V ∗n cn + V ∗p cp + V ∗s cs = 1. [3.43]

We again will non-dimensionalise these equations, using similar scalings to Section

2.2.1, these are shown in Table 2 where this time we will also scale the solvent

concentration cs and total concentration cT by the typical electrolyte concetration

c0.

x = Lx̂, cn = c0ĉn, cp = c0ĉp, cs = c0ĉs, φ =
RgT

F
φ̂. [3.44]

Table 2: Values and descriptions of parameters introduced in equation [3.44] and the derived

dimensionless parameter for λ from equation [2.41].

Parameter Description Value Reference

c0 Salt concentration of the electrolyte 1000 mol m−3 (Richardson and King, 2007)

ε Permittivity of the electrolyte 80ε0 = 7.0834x10−10 Fm−1 (Richardson and King, 2007)

D Diffusivity of the electrolyte 5.34x10−10 m2 s−1 (Srinivasan, and Newman, 2004)

L Length of the electrochemical cell 1.6x10−4 m (Ecker et al., 2015)

Ld Debye length 4.342x10−10 m Calculated from [2.42]

λ Relation between Debye length and cell length 2.714x10−6 Calculated from [2.41]c)

T Temperature 298 K (Srinivasan, and Newman, 2004)

From equation [3.18], we can see the dimensionless form of the total concentration,

cT can be written as: ĉT = cT
c0

.

This results in:

ĉn = ÃĉT e
φ̂, [3.45]

ĉp = B̃ĉT e
−φ̂, [3.46]

ĉs = C̃ĉT , [3.47]
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RgTε

F 2L2c0

∂2φ̂

∂x̂2
= (ĉn − ĉp), [3.48]

ĉT = ĉn + ĉp + ĉs, [3.49]

V ∗n ĉn + V ∗p ĉp + V ∗s ĉs =
1

c0

. [3.50]

At first glance, it might be possible to greatly simplify these equations by assuming

that ĉT is constant throughout the electrolyte. Applying this assumption to the

equations [3.45] - [3.47], we find that ĉs must then also be constant, and we can

absorb the cT terms into the constant terms:

ĉn = Ãeφ̂, [3.51]

ĉp = B̃e−φ̂, [3.52]

ĉs = C̃. [3.53]

We again consider the usual boundary conditions for the potential, φ̂ and concen-

trations, ĉn and ĉp in the bulk electrolyte:

φ̂|x̂=1 = 0, [3.54]

ĉn|x̂=1 = 1, [3.55]

ĉp|x̂=1 = 1. [3.56]

We then find Ã = B̃ = 1 and so:

ĉn = eφ̂, [3.57]

ĉp = e−φ̂. [3.58]

Substituting equations [3.57] and [3.58] into Poisson’s equation [3.41], where, as in

Section 2.2.1, we have set λ = 1
L

√
εRgT

F 2c0
, we therefore find an equation to solve for

just the electric potential, φ̂:

∂2φ̂

∂x̂2
=

4

λ2
(eφ̂ − e−φ̂) =

2

λ2
sinh(φ̂). [3.59]
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To solve this equation, we first notice that:

∂

∂x̂

(
1

2

(
∂φ̂

∂x̂

)2)
=
∂φ̂

∂x̂

∂2φ̂

∂x̂2
, [3.60]

therefore we can rewrite equation [3.59] as:

∂

∂x̂

(
1

2

(
∂φ̂

∂x̂

)2)
=
∂φ̂

∂x̂

2

λ2
sinh(φ̂). [3.61]

Using the fact that:

∂

∂x̂
(cosh(φ̂)) =

∂φ̂

∂x̂
sinh(φ̂), [3.62]

we can then integrate to find:

(
∂φ̂

∂x̂

)2

=
4

λ2
cosh(φ̂) + c1. [3.63]

Considering the setup of the model, for the electric potential we have the following

boundary conditions:

φ̂|x̂→1 → 0, [3.64]

∂φ̂

∂x̂

∣∣∣∣
x̂→1

→ 0. [3.65]

Substituting into equation [3.63], this implies that c1 = −4
λ2

and using the fact that

−1 + cosh(φ̂) = 2 sinh2
(
φ̂
2

)
, we can rewrite equation [3.63] as:

∂φ̂

∂x̂
= ±2

√
2

λ
sinh

(
φ̂

2

)
, [3.66]

which can be solved to give:

tanh(
φ̂

4
) = c2e

−
√
2
λ
x̂, [3.67]

where we have chosen the negative root to ensure that φ̂(x̂) is purely real as x̂→ 1,

therefore giving the electric potential as:
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φ̂(x̂) = 4 tanh−1(c2e
−
√
2
λ
x̂). [3.68]

Note, that taking the positive root for φ̂ would lead to an imaginary electric po-

tential which would cause problems with conservation equations, as the imaginary

term describes unstable particles that tend to decay over time (Griffiths, 2006).

Quantum mechanics uses imaginary potentials and potential energies to describe

wave functions, which we will look at in Chapter 5 when studying the possibility of

electron tunnelling occurring on the electrode-electrolyte interface.

Implementing a boundary condition at the electrode surface, we want the potential

to be equal to the applied potential, V , and therefore we can find c2 in terms of V̂ :

φ|x=0 = V =⇒ φ̂|x̂=0 =
F

RT
V = V̂ , [3.69]

=⇒ c2 = tanh

(
V̂

4

)
[3.70]

Therefore we find the equation for the potential φ̂ as:

φ̂(x̂) = 4 tanh−1

(
tanh

(
V̂

4

)
e−
√
2
λ
x̂

)
. [3.71]

This solution for φ̂ is plotted against dimensionless distance in Figure 2, showing

agreement with the expected profile for the electric potential discussed in Section

5.1.

This form can now be substituted into [3.57] and [3.58] to give concentration profiles

for each ion species. These can be seen in Figure 4, where we have compared them

to the numerical solution in Section 3.3.2.

3.3.2 Numerical Solution

We will now consider a solution where we assume cT is not constant; we will assume

it has the form cT = cT (x). From equation [3.18], we have that the mole fraction

of the solvent species is constant, and therefore we have that cT is proportional to cs.

Recall the system of dimensionless equations [3.45] - [3.50]:
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Figure 2: A plot of the analytic solution, equation [3.71], for the dimensionless potential against

dimensionless distance from the electrode surface.

ĉn(x̂) = ÃĉT (x̂)eφ̂(x̂), [3.72]

ĉp(x̂) = B̃ĉT (x̂)e−φ̂(x̂), [3.73]

ĉs(x̂) = C̃ĉT (x̂), [3.74]

∂2φ̂(x̂)

∂x̂2
=

1

λ2
(ĉn(x̂)− ĉp(x̂)), [3.75]

ĉT (x̂) = ĉn(x̂) + ĉp(x̂) + ĉs(x̂), [3.76]

V ∗n ĉn(x̂) + V ∗p ĉp(x̂) + V ∗s ĉs(x̂) =
1

c0

. [3.77]

From [3.77], we can see that:

ĉs(x̂) =
1

V ∗s

(
1

c0

− V ∗n ĉn(x̂)− V ∗p ĉp(x̂)

)
. [3.78]

Combining [3.74] and [3.76] we can also see that:

ĉs(x̂) = C̃(ĉn(x̂) + ĉp(x̂) + ĉs(x̂)), [3.79]
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which rearranges to give:

ĉs(x̂) =
C̃(ĉn(x̂) + ĉp(x̂))

(1− C̃)
, [3.80]

which can be substituted into [3.72] and [3.73]:

ĉn(x̂) = Ã

(
ĉn(x̂) + ĉp(x̂) +

C̃[ĉn(x̂) + ĉp(x̂)]

(1− C̃)

)
eφ̂(x̂), [3.81]

ĉp(x̂) = B̃

(
ĉn(x̂) + ĉp(x̂) +

C̃[ĉn(x̂) + ĉp(x̂)]

(1− C̃)

)
e−φ̂(x̂). [3.82]

As with the analytical solution, we can consider the solution at the far boundary,

as x̂ reaches the bulk electrolyte, where we have that both concentrations ĉn and

ĉn tend to the same value of c0 and the electric potential tends to 0.

ĉn(x̂)|x̂=1 = 2Ãc0

(
1

(1− C̃)

)
= c0, [3.83]

ĉp(x̂)|x̂=1 = 2B̃c0

(
1

(1− C̃)

)
= c0. [3.84]

This implies that:

Ã = B̃ =
1− C̃

2
, [3.85]

resulting in:

ĉn(x̂) =
1

2
(ĉn + ĉp)e

φ̂, [3.86]

ĉp(x̂) =
1

2
(ĉn + ĉp)e

−φ̂. [3.87]

Similarly, we can apply the conditions for the concentrations to the x̂ = 0 boundary,

where we assume ∂ĉn
∂x̂

= ∂ĉp
∂x̂

= 0. Differentiating [3.86] and [3.87] and substituting

in for ĉT and ĉs using:

∂ĉn
∂x̂

∣∣∣∣
x̂=0

=
1

2
eφ̂
[
∂ĉn
∂x̂

+
∂ĉp
∂x̂

+ (ĉn + ĉp)
∂φ̂

∂x̂

]∣∣∣∣
x̂=0

= 0, [3.88]

∂ĉp
∂x̂

∣∣∣∣
x̂=0

=
1

2
e−φ̂
[
∂ĉn
∂x̂

+
∂ĉp
∂x̂
− (ĉn + ĉp)

∂φ̂

∂x̂

]∣∣∣∣
x̂=0

= 0, [3.89]
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and applying the conditions we find:

1

2
eV̂
[
(ĉn + ĉp)

∂φ̂

∂x̂

]∣∣∣∣
x̂=0

= 0, [3.90]

−1

2
e−V̂

[
(ĉn + ĉp)

∂φ̂

∂x̂

]∣∣∣∣
x̂=0

= 0. [3.91]

This leaves us with the condition that

∂φ̂

∂x̂

∣∣∣∣
x̂=0

= 0. [3.92]

Bringing equations [3.75], [3.86] and [3.87] together along with the boundary con-

ditions, we can summarise the model as:

∂φ̂

∂x̂
= θ̂, [3.93]

∂θ̂

∂x̂
=

1

λ2
(ĉn − ĉp), [3.94]

ĉn(x̂) =
1

2
(ĉn + ĉp)e

φ̂, [3.95]

ĉp(x̂) =
1

2
(ĉn + ĉp)e

−φ̂, [3.96]

φ̂|x̂=0 = V̂ , φ̂|x̂=1 = 0, [3.97]

∂ĉn
∂x̂

∣∣∣∣
x̂=0

= 0, ĉn|x̂=1 = c0, [3.98]

∂ĉp
∂x̂

∣∣∣∣
x̂=0

= 0, ĉn|x̂=1 = c0, [3.99]

where we have rewritten equation [3.75] as a system of first-order differential equa-

tions.

Bringing the equations together, we now note this system of equations is overdeter-

mined and so solving numerically we may be unable to find a solution other than

the trivial solution of cn = cp = 0. We will reduce the number of equations by using

equation [3.95] to rewrite cn in terms of cp:

ĉn

[
1− 1

2
eφ
]

=
1

2
ĉpe

φ̂, [3.100]
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leading to:

ĉn =
1

2e−φ̂ − 1
ĉp. [3.101]

Substituting this into equation [3.94], we find:

∂θ̂

∂x̂
=

1

λ2
ĉp

[
1

2e−φ̂ − 1
− 1

]
, [3.102]

where we are now only considering the concentration of the positive lithium ions.

Numerical Procedure To solve this numerically, we first considered using the

py-pde package in Python by following the solving of Poisson’s equation in 1D

(Zwicker, 2020). This package implements a finite difference method and requires

a function of the form:

∂2y

∂x2
= F (x). [3.103]

Writing equation [3.75] into this form we have:

∂2φ

∂x2
= F (x) [3.104]

F (x) =
1

λ2
(cn(x)− cp(x)) [3.105]

The spatial domain of [xmix, xmax], is uniformly discretised into a grid of intervals,

where N + 1 nodes are placed that determine the boundaries of each interval. This

is shown in Figure 3, where the green dots represent the nodes located within the

domain, the blue dots represent the nodes placed on either boundary of the domain

and the red dots represent the ’ghost’ nodes that are generated and approximated

in order to implement the Neumann boundary conditions.

To start, we define the grid nodes as:

xi = xmin + i∆x, for i = 0, 1, ..., N [3.106]

∆x =
xmax − xmin

N
[3.107]

and the solution on each node as:
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Figure 3: Representing the spatial discretization of the domain for the finite difference method

discussed in Section 3.3.2. The green dots represent nodes within the domain, the blue dots

represent the nodes on the boundaries of the domain, and the red dots represent the ’ghost’ nodes

that are used to apply a central difference to the Neumann boundary conditions.

φi = φ(xi). [3.108]

The basis of the finite difference method is approximating the derivatives as finite

differences, in this case we use the second order central difference:

φ′′(xi) ≈
φi−1 + φi+1 − 2φi

(∆x)2
. [3.109]

In our case xmin = 0, xmax = 1 and therefore the grid becomes:

xi = i∆x, for i = 0, 1, ..., N [3.110]

∆x =
1

N
[3.111]

we also define:

Fi(x) = F (xi) =
1

λ2
(cn(xi)− cp(xi)) =

1

λ2
(cn,i − cp,i) [3.112]

Applying the finite difference equation [3.109] to [3.104] and [3.105], we find:

φi−1 + φi+1 − 2φi
(∆x)2

=
1

λ2
(cn,i − cp,i) [3.113]

which can be rearranged to give:

φi−1 + φi+1 − 2φi =
(∆x)2

λ2
(cn,i − cp,i). [3.114]

We also need to define the boundary conditions on φ, cn and cp, equations [3.97]

and [3.98]-[3.99]b) become:
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φ0 = V̂ , φN = 0, [3.115]

cn,N = c0, cp,N = c0. [3.116]

We also need the Neumann boundary conditions, which involve applying a first-

order finite difference equation. We opted to use a central difference to approximate

these boundary conditions as it is typically for accurate than forward or backwards

difference. This finite difference is given by:

∂cn
∂x

≈ cn,i+1 − cn,i−1

2∆x
, [3.117]

∂cp
∂x

≈ cp,i+1 − cp,i−1

2∆x
[3.118]

and so the boundary conditions [3.98]-[3.99]a) become:

cn,i − cn,−1

2∆x
= 0, [3.119]

cp,1 − cp,−1

2∆x
= 0, [3.120]

leading to:

cn,1 = cn,−1, [3.121]

cp,1 = cp,−1. [3.122]

where we have introduced the ’ghost’ nodes represented by the red dots in Figure

3 but then approximated them to the solution of nodes within the grid.

Using py-pde we implemented this scheme with N = 60 and a convergence tolerance

of 1x10−4. The numerical solution to this system for the concentrations ĉn and ĉp

is shown in Figure 4, along with the analytical solution from Section 3.3.1.

We note that both solutions very quickly approach 1 as x̂ increases towards the

bulk electrolyte, implying that the assumption used in Section 3.3.1 of ĉT (and

therefore ĉs) remaining constant is a reasonable assumption in the bulk electrolyte

but breaks down as we approach the electrode boundary. It is at this boundary

where we approach the double layer (which will be discussed in Chapter 5) and it
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Figure 4: A plot showing the analytical and numerical solutions for the model, as described

in Sections 3.3.1 and 3.3.2 respectively. The blue and orange lines show the analytical solutions,

while the green and red circles are the numerical solutions for ĉn and ĉp, respectively.

becomes necessary to consider non-ideal behaviour.

An important consideration is the Python package py-pde enforces the restriction

that the discretisation must be uniform, meaning ∆x must be constant. For the

majority of our domain this is not an issue, but close to the electrode surface where

the concentrations and electric potential vary more, a non-uniform grid could help

to more closely approximate the solution. By increasing the number of nodes in

these regions, the scheme can more closely follow a solution.

A way to improve this numerical solution could be to generate our own Python

package to allow smaller ∆x in regions where the derivatives of the function vary

the most. A scheme where ∆x is adjusted as the solution proceeds could increase

the accuracy and convergence of the solution.

We will now study in more detail what an ideal solution is, why this assumption is

made and why it is not a suitable assumption for more concentrated electrolytes.

3.4 Ideal Solutions

When a solution contains more than one type of substance, it is important to con-

sider the energy changes that occur when the substances are first combined. A
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solution consisting of a mixture of different substances is considered an ideal so-

lution if there is no change in internal energy on mixing. This can be seen by

comparing the Gibbs free energy before and after mixing.

Recall that we can define Gibbs free energy as a sum of enthalpy and the entropy

(multiplied by the absolute temperature). We can therefore define the change in

Gibbs free energy on mixing as:

∆Gmix = ∆Hmix − T∆Smix. [3.123]

We will now consider the Gibbs free energy of two substances before and after

mixing. Before mixing, we can state their Gibbs free energies using equations [3.3]

and [3.15], to give:

G1,initial = [µ0
1 +RT ln(χ1)]n1 = µ0

1n1, [3.124]

G2,initial = [µ0
2 +RT ln(χ2)]n2 = µ0

2n2. [3.125]

Both substances are in their pure form, so the mole fractions are χi = 1, and so the

second term in the chemical potential is neglected.

The total Gibbs free energy before mixing is therefore simply the sum of these

energies:

GT,initial = µ0
1n1 + µ0

2n2. [3.126]

The two substances are now mixed, again using equations [3.3] and [3.15], we find:

G1,final = µ1n1 = [µ0
1 +RT ln(χ1)]n1, [3.127]

G2,final = µ2n2 = [µ0
2 +RT ln(χ2)]n2. [3.128]

When [3.127] and [3.128] are added together, we find:

GT,final = [µ0
1 +RT ln(χ1)]n1 + [µ0

2 +RT ln(χ2)]n2. [3.129]

We would like the change in Gibbs free energy Gfinal −Ginitial, so we can find:
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∆Gmix = RT [ln(χ1)n1 + ln(χ2)n2]. [3.130]

Similarly to equation [3.17], we can use an equation to relate ni to a total amount

of both substances ntotal = n1 + n2:

χi =
ni
ntotal

, [3.131]

which we can substitute in for n1 and n2 into equation [3.130] to give:

∆Gmix = ntotalRT [χ1 ln(χ1) + χ2 ln(χ2)]. [3.132]

Equation [3.132] is known as the Gibbs energy of mixing. For an ideal solution, we

can note that the mole fractions of each species will be 0 < χi < 1, therefore ∆Gmix

will always be negative, meaning the mixing will occur spontaneously.

Refer back to equation [3.123], we can find (Atkins and De Paula, 2014):

∂∆Gmix

∂T

∣∣∣∣
p,ni

= −∆Smix, [3.133]

which we can then combine with equation [3.132] to give:

∆Smix = −ntotalR[χ1 ln(χ1) + χ2 ln(χ2)]. [3.134]

Equation [3.134] is known as the entropy of mixing, which we can see will increase as

the substances are mixed. As the entropy of a solution is a measure of the disorder

of the system, it makes sense that a mixture of two substances would have greater

entropy than them separately in their pure forms.

Combining equations [3.123], [3.132], and [3.134] we can conclude that the enthalpy

of mixing for a closed system held at a constant temperature, ∆Hmix, must be 0.

This implies that the net energy to maintain the mixed system is the same as to

maintain the separate pure systems. This relates to the energy involved with the

interactions between the particles of both substances.
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Consider a solution containing particles of two substances, A and B; the possible

interactions that can occur are between A − A, B − B and A − B. In an ideal

solution, the average energy of the interactions between different particles must be

equal to the average energy of the interactions between similar particles (Atkins

and De Paula, 2014). This can be written as:

EA−A + EB−B = 2EA−B. [3.135]

In general, for equation [3.135] to hold, A and B must be structurally very similar.

Common examples of this include where both substances are hydrocarbons which

have similar molecular structures.

Electrolyte solutions are composed of a solute dissolved into a solvent; in general,

the substances used for these are unlikely to be structurally similar, leading to non-

ideal solutions when mixed. In addition, in an electrolyte solution the solute is

dissociated into ions. These ions are charged and so there will be electrostatic in-

teractions between them. These interactions will be much stronger than those with

the solvent particles and so equation [3.135] will not hold, suggesting significant

deviations from ideality (Wright, 2007).

In Chapter 2, when we considered a dilute electrolyte, we used the assumption of the

electrolyte behaving as an ideal solution. In these electrolytes, the concentrations of

the ions are low compared to the concentration of the solvent. As it is primarily the

interactions between the charged ions that cause the non-ideal behaviour, the effect

is lessened as these interactions occur much less frequently, and so it is generally a

reasonable assumption to make for the dilute case.

For use in lithium-ion batteries, moderately concentrated electrolytes are of interest,

where the ideal solution assumption is not typically valid. In the remainder of

this chapter, we will study non-ideal solutions and how we can account for these

differences in our models.

3.5 Non-Ideal Solutions and Activity Coefficients

In Chapter 2, we looked at dilute electrolytes, where we assumed the electrolyte

behaves as an ideal solution which neglects interactions between the differently
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charged ionic species. In a dilute electrolyte this assumption is reasonable. How-

ever, at higher concentrations, ions passing close to one another will occur much

more frequently making these interactions important to consider.

In Section 3.2, we defined equations for the electrochemical potential in terms of

the activity ai = γiχi and then took the limit where the activity coefficient γi → 1

and therefore replaced the activity term with the mole fraction. As discussed in

Section 3.3, this is a valid simplification for dilute electrolytes but does not hold for

moderately concentrated electrolytes, such as those found in commercial batteries.

Recalling these equations, this time we retain the activity term:

µ̄i = µ0
i +RT ln(ai) + ziFφ, [3.136]

where the electrochemical potential for the positive, negative and neutral solvent

species is denoted by µ̄i where i = p, n, s respectively, µ0
i is the chemical potential

of the species under standard conditions, zi is the charge and ai is the activity.

The activity, ai, is a measure of the ’effective concentration’ of a species when un-

der non-ideal conditions. It is the activity coefficient term γi that encompasses the

deviation from the ideal behaviour (Atkins and De Paula, 2014).

A common cause for electrolytes to deviate from ideal behaviour is the interactions

between the different ion species. As opposite charged ions will tend to be attracted

to each other, an individual ion will often be surrounded by ions of the opposite

charge which removes the more random nature that ideal solutions tend to follow

and reduces the mean distances between ions. This also affects the movements of

ions as they will no longer move independently. This is known as the relaxation

effect, which becomes more prominent with increased concentrations (Samson et

al., 1999).

These interactions cause energy changes on mixing, meaning the enthalpy of mixing

∆Hmix is no longer 0. A model to account for these energy changes defines the

activity coefficients as functions of the mole fraction of the other ion species. These

functions are known as Margules functions.
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3.5.1 Margules Functions

In order to account for interactions between ions in an electrolyte, we will now

consider a ’regular’ solution. This is a solution where we make the assumption that

the entropy of mixing ∆Smix is the same as if the solution was an ideal solution,

but the enthalpy of mixing ∆Hmix is longer assumed to be 0 (Atkins and De Paula,

2014). This enthalpy difference aims to account for the energy changes caused by

the ionic interactions, however the restriction placed on the entropy assumes the

ions are still distributed randomly as in an ideal solution.

Consider a mixture containing two substances, A and B. We want to derive an ex-

pression for the energy changes that occurred during the mixing due to the change

in interactions between molecules.

We begin by defining the term coordination number, also known as ligancy, which

gives the maximum number of other molecules a given molecule can interact with

at any given time. Here, we will denote the average coordination number of the

system as Cnum.

Assuming there are nA molecules of substance A, we can define the average number

of other molecules they will interact with as nACnum. The number of molecules of

B that will be interacting with these molecules of A is proportional to the mole

fraction of B and is therefore given by χBnACnum.

Before mixing, all of these molecules of A would have been interacting with only

other similar molecules, therefore we define the total energy change due to the

molecules of A, as:

∆ETot
A = χBnACnum[EB−A − EA−A], [3.137]

where, as before, we denote the energy of interactions between two molecules i and

j as Ei−j where i, j = A,B.

Similarly, the total energy change due to the molecules of B is given by:

∆ETot
B = χAnBCnum[EB−A − EB−B], [3.138]
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leading to a total energy change due to interactions as the sum of these contribu-

tions, divided by 2 to avoid counting all interactions twice. This can be rearranged

to give:

∆ETot =
Cnum

2

nAnB
nA + nB

[
2EB−A −

(
EA−A + EB−B

)]
, [3.139]

where we have replaced each mole fraction term χi with ni
nA+nB

, given by equation

[3.131].

Due to the approximation that the entropy of mixing is equal to that of a similar

composition ideal solution, and the only change to the Gibbs free energy is coming

from the enthalpy of mixing no longer being 0, we can use equation [3.2] to define

our change in chemical potential as:

∆µi =
∂∆ETot

∂ni

∣∣∣∣
T,p,nj ,j 6=i

. [3.140]

Therefore we can find for substance A:

∆µA = α

[
nB

nA + nB
− nAnB

(nA + nB)2

]
= α

nB
2

(nA + nB)2
, [3.141]

where

α =
Cnum

2

[
2EB−A −

(
EA−A + EB−B

)]
. [3.142]

We can now reintroduce the mole fraction term using equation [3.131] to give:

∆µA = αχB
2, [3.143]

and a similar expression for the change in chemical potential of substance B can be

given by:

∆µB = αχA
2. [3.144]

Recall equation [3.15] for the chemical potential, we can substitute the activity

for the mole fraction and activity coefficient using equation [3.16] and rewrite to

separate the activity coefficient and mole fraction as:
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µi = µ0
i +RT [ln(γi) + ln(χi)]. [3.145]

It is the RT ln(γi) term that accounts for the deviation from ideality, so setting this

equal to the change in chemical potentials from equations [3.143] and [3.144], we

can define the activity coefficients of one substance in terms of the mole fraction of

the other substance, such as:

ln(γA) =
α

RT
χB

2, [3.146]

ln(γB) =
α

RT
χA

2, [3.147]

which are known as Margules functions.

Therefore, we can give the altered chemical potentials as:

µA = µ0
A +RT ln(χA) + αχB

2, [3.148]

µB = µ0
B +RT ln(χB) + αχA

2. [3.149]

These chemical potentials go some way to describing a non-ideal solution. They

include a term to account for the energy due to the ionic interactions between

different species; this term depends on the mole fraction of the other species, which

in turn depends on its concentration. However, there are still assumptions made

for the entropy of mixing which will not always be valid. The entropy is assumed

to be the same as if the solution was ideal and therefore indicates a more random

distribution of the ions than is likely to be the case.

3.5.2 Maxwell-Stefan Equations

Another proposed way to study the ionic interactions in a solution is to consider

the drag forces the different species exert on each other. Here, we introduce the

Maxwell-Stefan equations which were applied to multi-component systems by New-

man and Thomas-Alyea and are now used as a basis for moderately concentrated

diffusion (Newman and Thomas-Alyea, 2004). The equations were originally de-

veloped by James Clerk Maxwell, who aimed to model diffusion in binary dilute

gases. They were then taken further by Josef Stefan, who studied the application
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to multi-component fluids.

These equations aim to account for the interactions between different species by

considering the drag forces present when the ions move relative to each other. It is

assumed there is a balance between the drag forces acting on the ions due to their

relative velocities and the driving force due to the chemical potential gradient. This

driving force is therefore given by (Bothe, 2011):

di = χi∇µi, [3.150]

where we are considering positive, negative and neutral solvent species denoted by

i = p, n, s respectively.

This driving force must also be equal to the frictional drag force, which depends

on the relative velocities of the ions and their mole fractions in the solution. This

therefore gives:

di = −RT
∑
j 6=i

fijχiχj(vi − vj), [3.151]

where fij is a drag coefficient, together with the mole fractions of each species

RTfijχiχj gives the drag inflicted on species i by species j and vi is the velocity of

species i.

Setting these forces equal to each other and rearranging leads to:

ci∇µi =
∑
j 6=i

RTfijcTχiχj(vj − vi). [3.152]

We now introduce the Maxwell-Stefan diffusivity term Dij, a matrix of diffusivities

giving the drag forces between pairs of species:

Dij =
1

fij
. [3.153]

Note that fij = fji, the drag of species i on another j is equal to the drag j exerts

on i; this means that Dij is a symmetric matrix (Verros and Giovannopoulos, 2009).
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Substituting equation [3.153] into [3.152] and rewriting the mole fractions in terms

of concentrations using equation [3.17], we find:

ci∇µi =
∑
j 6=i

RTcicj
cTDij

(vj − vi). [3.154]

Equation [3.154] gives a system of equations known as the Maxwell-Stefan equations

for multi-component diffusion (Bothe, 2011). In later sections, we will be using these

equations in a model where we aim to study the movements of ions in an electrolyte

where we will not assume it behaves as an ideal solution.

3.6 An Ion-Hopping Model

To study the ionic movements in a moderately concentrated electrolyte, we will build

a model based on ions hopping on a lattice. We will be treating the electrolyte as

a non-ideal solution, so we will be applying the theory behind the Maxwell-Stefan

equations and Margules functions.

Consider a single particle on a 1D lattice consisting of N sites. We can start by

denoting the site that the particle is currently occupying as site i, and we now want

to consider the probabilities of the particle hopping to a different adjacent site.

3.6.1 The Arrhenius Equation

The Arrhenius equation gives the rate of a reaction occurring by considering the

energy required for the reaction to occur and the mean kinetic energy of the in-

dividual particles involved, which depends on the absolute temperature T of the

system as:

EK
mean =

3

2
kBT, [3.155]

where kB is the Boltzmann constant.

The ratio of this kinetic energy with the required energy therefore gives a measure

of the rate of the reaction, according to the Arrhenius equation, given by:

Rk = A exp

(
Ea
kBT

)
. [3.156]
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where Rk is the reaction rate constant, A is a phenomenological constant that de-

pends on the chemical reaction being studied, and Ea is the activation energy, which

can be defined as the amount of energy required for the reaction to occur.

In this case, we are considering the amount of energy required for the particle to hop

to an adjacent site, namely site j, so we can instead denote this as Ei,j the amount

of energy required for this particle to hop from site i to site j, where j = i+1 or i−1.

We are interested in the probabilities of the particle hopping to these adjacent sites,

denoted Pi,i−1, Pi,i+1, so we can use the Arrhenius equation to form the following

equations:

Pi,i−1 = A exp

(
Ei,i−1

kBT

)
, [3.157]

Pi,i+1 = A exp

(
Ei,i+1

kBT

)
. [3.158]

3.6.2 Monte Carlo Algorithms

In order to simulate the behaviour of the ions in an electrolyte we will use these

probability equations to devise a model that makes use of a Monte Carlo algorithm.

These algorithms are a subset of computational methods that use probability dis-

tribution theory and random sampling to predict and describe the outcome of an

event. In this case, the events we will be studying are the hopping movements of

multiple ions, which we will be treating as point charges.

We will be using as a basis a Monte Carlo method known as the Metropolis algorithm

(Metropolis et al., 1953). The steps of the algorithm are as follows:

1. The point charges are randomly placed on a lattice, and the energy of the

system due to the point charges is calculated, Ecurrent.

2. A random charge is selected, followed by a direction to move. In 2D, this

equates to choosing the x or y direction and positive or negative directions.

3. The charge is assumed to move in this direction and the energy of the new

configuration is calculated, Enew.
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� If this new configuration has a lower energy the change is accepted,

Ecurrent = Enew and the process returns to step 1.

� If the new configuration has a higher energy, the change is accepted with

a probability of P = exp
(
Ecurrent−Enew

kBT

)
, where this equation is related

to the Arrhenius equation by equation [3.158]. If the change is rejected,

the configuration reverts to the previous one and Ecurrent remains the

same. The process then returns to step 1.

These steps are then repeated until the system is in a low-energy state. Note, the

change in step 3 is decided by generating a random number between 0−1 and then

comparing the calculated probability P to this random number. If P is greater than

the generated random number, the configuration change occurs.

3.7 Our Monte Carlo Algorithm

Here, we will lay out how we have implemented the algorithm to study a moderately

concentrated electrolyte. We begin by mentioning the assumptions we have made

and then describe the simulation procedure.

3.7.1 Assumptions

We will be assuming the electrolyte is a strong electrolyte, meaning the solute will

dissociate into ions fully in the solvent. This is instead of a weak electrolyte, which

does not fully dissociate therefore both ions and molecules will be present in these

solutions. The higher number of ions present will lead to an increase in conductiv-

ity, which is a desirable property for lithium-ion batteries (Xu, 2004).

To start with, we will be assuming a 1 : 1 binary electrolyte, one that each molecule

dissociates into a single positive ion and a single negative ion with valances zp =

+1, zn = −1. Lithium hexafluorophosphate (LiPF6) is a popular choice for use

in commercial batteries. It dissociates into Li+ and PF−6 ions, and therefore is a

binary electrolyte, so this assumption could be valid (Schaefer, 2011). However, the

intention is to enable the model to be adaptable to account for other electrolytes.

3.7.2 Initial Iteration of the Algorithm

To start, the ions are placed randomly on the lattice, an example is shown in

Figure 5. Next, we need a way to keep track of the electrostatic potential energy of
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the system. This energy is caused by the electrostatic (or Coulomb) forces of the

ions acting on other nearby ions. For a pair of point charges, Q1 and Q2, where

Qi = ezi, zi is the valance of charge i and e is the elementary charge≈ 1.602x10−19C,

separated by a distance r, the electrostatic force between them is given by:

Figure 5: A representation of the initial set-up used for the algorithm, showing a lattice with

an electrode either side. The negative ions are shown in red, while the positive ions are in green.

A white particle, or a ’hole’, represents a solvent molecule. The starting positions are given by

all particles being placed randomly on the lattice at the start of the algorithm. This is a 20 x 20

representation of the lattice, for the simulations we used a 100 x 100 lattice.

Fc = ke
Q1Q2

r2
, [3.159]

where ke is known as Coulomb’s constant, given by:

ke =
1

4πε
, [3.160]

where ε = ε0εr is termed the permittivity of the medium which is given as a multiple

of the vacuum permittivity ε0 = 8.854x10−12 F m−1 and εr is the relative permit-

tivity.

If the calculated force from equation [3.159] is negative, then the two charges must

be of opposite signs and therefore the force between them is attractive, whereas a
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positive force implies the charges are of the same sign and the force is repulsive.

The electric potential energy of charge Q1 while in the presence of Q2 is therefore

given by:

V c = ke
Q1Q2

r
. [3.161]

Equation [3.161] can generalised for N charges Qi, i = 1, .., N . Equation [3.162]

gives the potential energy of charge i due to all the other charges.

V c
i = keQi

N∑
j,j 6=i

Qj

rij
, [3.162]

where rij is the distance between charges i and j.

Finally, this can expanded to give the electrostatic potential energy of the whole

system of charges:

V c
Total =

1

2
ke

N∑
i

Qi

N∑
j,j 6=i

Qj

rij
, [3.163]

where we include the factor of 1
2

to avoid counting the contribution from each charge

twice.

We will be using equation [3.163] to calculate the electrostatic potential energy of

the system of ions on the lattice.

Note that in general, Coulomb’s law only applies to stationary point charges. This

is due to the movement of charge causing a magnetic field to be induced and there-

fore leading to a difference in the force that the charge experiences. To take this

into account, the Biot-Savart law and Lorentz forces can be studied. However, in

this case we are calculating the Coulomb forces in between each hopping movement,

so at this time we are assuming the charges are instantaneous at rest.

The simulation begins with a calculation of the energy of the initial configuration,

where we set an initial temperature. We then follow the steps set out in Section
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4.5.2 to bring the system to a low-energy state. This is done by introducing a

temperature-reducing constant Tc and a set number of steps NT , where 0 < Tc < 1,

and slowly reducing the temperature by a factor of Tc every NT steps (Kirkpatrick

et al., 1983). This step aims to simulate the initial mixing of the solute into the

solvent, with the electrostatic potential energy relating to the enthalpy of mixing

discussed in Section 4.4.

We took the initial temperature to be Tinitial = 298K and the temperature-reducing

constant Tc = 0.95. The simulation was run for 10, 000 steps, and the number of

steps between temperature changes was NT = 500.

Now the system is in a low-energy state, we can now proceed with the simulation of

the electrolyte while there is a electric potential applied between the two electrodes.

3.7.3 Introducing Margles Functions

We are interested in using this simulation to study the behaviour of the ions in

more concentrated electrolytes; specifically we can consider the activity coefficient

of the electrolyte and study how this varies with changing electrolyte concentration.

Here, we consider a specific electrolyte example and introduce Margules functions

to quantify the activity coefficients. We then compare our simulation results to

experimental results found in (Stewart and Newman, 2008).

Consider a binary 1 : 1 electrolyte with solute Lithium hexafluorophosphate (LiPF6),

which dissociates into Li+ and PF−6 ions in a carbonate solvent. Here, we initially

looked at ethylene carbonate (EC, chemical formula: CO(CH2O)2), diethyl car-

bonate (DC, chemical formula: CO(C2H5O)2) and ethyl methyl carbonate (EMC,

chemical formula: CO(C3H8O2)). The first set of results for these solvents moti-

vated us to also look at a solvent made up of a combination of EC and EMC.

We can rewrite equations [3.146] and [3.147] as:

ln(γLi+) =
α

RT
χPF−6

2, [3.164]

ln(γPF−6 ) =
α

RT
χLi+

2, [3.165]

where we have also rewritten equation [3.142]:
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α =
Cnum

2

[
2EPF−6 −Li+ −

(
ELi+−Li+ + EPF−6 −PF−6

)]
. [3.166]

Recall the altered forms of the chemical potentials using Margules functions, equa-

tions [3.148], [3.149] and writing them using the Li+ and PF−6 ions:

µLi+ = µ0
Li+ +RT ln(χLi+) + αχPF−6

2, [3.167]

µPF−6 = µ0
PF−6

+RT ln(χPF−6 ) + αχLi+
2, [3.168]

and the equation for electrochemical potential [3.14]:

µ̄i = µi + ziFφ. [3.169]

These can be combined for the electrochemical potentials for each species:

µ̄Li+ = µ0
Li+ +RT ln(χLi+) + αχPF−6

2 + Fφ [3.170]

µ̄PF−6 = µ0
PF−6

+RT ln(χPF−6 ) + αχLi+
2 − Fφ, [3.171]

where we have set zn = −1 and zp = +1.

3.7.4 Simulation Procedure

During the simulation, we kept track of both the total electrostatic energy of the

system of point charges, using equation [3.163] and the electrochemical potential of

each charged species using equations [3.170] and [3.171], where the value for α was

calculated using equation [3.166].

We now used the electrochemical potentials to guide the simulation, with the cal-

culated electrostatic energies having an impact if the change in electrostatic energy

is large enough in comparison to the change in electrochemical potentials. At each

step, the following algorithm occurred:

1. The electrochemical potential of the positive and negative species is calcu-

lated and the electrostatic energy of the system due to the point charges is

calculated, Ecurrent.
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2. A random charge is selected, followed by a direction to move. In 2D, this

equates to choosing the x or y direction and positive or negative directions.

3. The charge is assumed to move in this direction and the new electrochemi-

cal potentials are calculated along with the electrostatic energy of the new

configuration, Enew.

� If the charge follows the direction of the electrochemical potential (if

∆µ̂i < 0), the electrostatic energy is now compared:

– If the new configuration has a lower electrostatic energy (Enew <

Ecurrent) then new configuration is accepted Ecurrent = Enew and the

process returns to step 1.

– If the new configuration has a higher electrostatic energy (Enew >

Ecurrent), the change is accepted with a probability of P = exp
(
Ecurrent−Enew+|∆µ̄i|

kBT

)
,

where this equation is related to the Arrhenius equation by equation

[3.158]. If the change is rejected, the configuration reverts to the pre-

vious one and Ecurrent remains the same. The process then returns

to step 1.

� If the charge is seen as ’going against’ the electrochemical potential (if

∆µ̄i > 0) the electrostatic energy is again compared. The change is ac-

cepted with a probability of P = exp
(Ecurrent−Enew−|∆µ̄i|

kBT

)
. If the change

is rejected, the configuration reverts to the previous one and Ecurrent

remains the same. The process then returns to step 1.

To summarise, by including the change in electrochemical potential in the proba-

bilities, the following occurs:

- If the configuration change follows the direction expected from the electrochemical

potential, the probability of the change happening is increased. If the electrostatic

energy also decreases this change is guaranteed.

- While the configuration not following the electrochemical potential doesn’t imme-

diately mean the change doesn’t occur, the probability of it occurring is decreased.

A decrease in electrostatic energy no longer guarantees the change.

This keeps the random nature of the Monte Carlo simulation while incorporating

the effects of the electric potential and the interactions between the charged ions.
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We repeated the simulation for different values of the mole fraction (XLi+) between

0.01 − 0.1. Using a lattice size of 100 x 100, Table 3 shows the values for mole

fractions used and how this translates into the number of positive and negative ions

included in each simulation.

The typical coordination number of the lithium ions in (LiPF6) ranges from 3− 6

(Malliakas et al., 2016), with numbers closer to 4 appearing more frequently in the

literature (Yuan et al., 2014)(Kameda et al., 2016). We have completed the simu-

lation calculations for Cnum = 3, 4, 5, 6 for each solvent.

Table 3: The mole fraction values used in the simulation and the number of positive and

negative ions and solvent molecules used to represent these mole fractions.

χLiFP6 No. of Li+ ions No. of FP−6 ions No. of solvent molecules

0.01 50 50 9900

0.02 100 100 9800

0.03 150 150 9700

0.04 200 200 9600

0.05 250 250 9500

0.06 300 300 9400

0.07 350 350 9300

0.08 400 400 9200

0.09 450 450 9100

0.1 500 500 9000

In order to compare our results to the experimental results in the literature, we will

be converting these mole fractions into molalities.

We have previously defined mole fraction in terms of concentrations, as:

χLiPF6 =
cLiPF6

cT
, χS =

cs
cT
, [3.172]

where s = solvent.

This can be rewritten in terms of the number of moles of solute and solvent:
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χLiPF6 =
nLiPF6

nLiPF6 + ns
, χS =

ns
nLiPF6 + ns

. [3.173]

Dividing [3.173] a) by [3.173] b) leads to:

χLiPF6

χs
=
nLiPF6

ns
. [3.174]

The number of moles in a substance is given by the mass of the substance (mi)

divided by the substance’s molecular mass (Mmol
i ):

ni =
mi

Mmol
i

, [3.175]

therefore substituting this for each substance into equation [3.174] we find:

χLiPF6

χs
=
mLiPF6/M

mol
LiPF6

ms/Mmol
s

=
mLiPF6M

mol
s

msMmol
LiPF6

. [3.176]

which can be rearranged to give:

χLiPF6

χsMmol
s

=
mLiPF6

msMmol
LiPF6

. [3.177]

Molalities describe the amount of a solute (in moles) per 1kg of solvent, so can be

written as:

Molality =
nLiPF6

ms/1000
. [3.178]

We can rearrange and substitute in the number of moles of solute using equation

[3.175] to give:

Molality =
1000mLiPF6

msMmol
LiPF6

. [3.179]

This is similar to the RHS of equation [3.177], therefore we can substitute it in to

give the molality in terms of mole fractions:

Molality =
1000χLiPF6

χsMmol
s

. [3.180]
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Finally, we know the sum of all mole fractions must total 1, therefore we have

χs = 1 − χLiPF6 and we can then define the molality in terms of just the mole

fraction of the solute χLiPF6 and the molecular mass of the solvent Mmol
s :

Molality =
1000χLiPF6

(1− χLiPF6)M
mol
s

. [3.181]

We now require the molecular mass of each solvent; these are shown in Table 4.

In (Stewart and Newman, 2008), they used a solvent made up of a 1 : 1 (by mas)

mix of EC and EMC. Using their respective molecular masses, we can conclude

the mix was 54.174% EC and 45.826% EMC, therefore giving a molecular mass of

95.413gmol−1.

Table 4: The solvents used in the simulation and their molecular masses, listed in g mol−1.

Solvent Molecular mass, Mmol
i (g mol−1)

Ethylene carbonate 88.062

Diethyl carbonate 118.13

Ethyl methyl carbonate 104.10

EC:EMC mix 95.413

We can now use equation [3.181] to convert the mole fractions in table 3 into

molalities for each type of solvent. These molalities are found in Table 5.

Table 5: The mole fractions used in the simulation and their conversions into molality for each

solvent used.

χLiFP6 Molality EC Molality DC Molality EMC Molality EC:EMC mix

0.01 0.1147 0.08551 0.09703 0.1059

0.02 0.2317 0.1723 0.1960 0.2139

0.03 0.3512 0.2618 0.2971 0.3241

0.04 0.4732 0.3527 0.4002 0.4367

0.05 0.5977 0.4455 0.5056 0.5516

0.06 0.7248 0.5403 0.6131 0.6690

0.07 0.8547 0.6372 0.7230 0.7889

0.08 0.9874 0.7361 0.8353 0.9114

0.09 1.123 0.8372 0.9500 1.037

0.1 1.261 0.9406 1.067 1.165
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3.8 Results and Discussion

The algorithm described above was run for 10, 000 steps for each mole fraction using

the numbers of charged ions and solvent molecules as shown in Table 3. The sim-

ulation produced values for α, then using equation [3.164] we calculated the values

for the activity coefficient ln(γLi+).

Note that equation [3.164] includes a term multiplying by the mole fraction of the

PF−6 ions. As the electrolyte is a binary 1:1 electrolyte, we have an equal number

of positive and negative ions, meaning we also have an equal number of moles of

each. This dictates that the mole fractions of the individual ions species are simply

half of the mole fraction of the combined species.

Specifically, [3.164] can be written as:

ln(γLi+) =
α

RT

1

2
χLiPF6

2. [3.182]

Using the conversions in Table 5, we were then able to plot the activity coefficient

against molality for each solvent, as shown in Figure 6. The dotted line in the

plots represents the experimental results from the literature (Stewart and Newman,

2008). Table 6 shows the parameters used in the simulation.

Table 6: Values and descriptions of parameters introduced in the simulation, including those

first used in the second and third iterations of the algorithm.

Parameter Description Value Reference

Cnum Coordination number of Li+ ions 3, 4, 5, 6 (Malliakas et al., 2016)

δpart Partial charge assigned to solvent molecules ±0.2 (Vigil et al., 2023)

δr Reducing factor for charged ions 0.8 (Vigil et al., 2023)

ε Permittivity of electrolyte 80ε0 = 7.0834x10−10 F m−1 (Richardson and King, 2007)

NT Number of steps between temperature changes 500 (Kirkpatrick et al., 1983)

φ(x) Electric potential Equation from ref (Richardson et al., 2021)

Tc Temperature reducing constant 0.95 (Kirkpatrick et al., 1983)

Tinitial Initial temperature 298 K (Richardson et al., 2021)

zn Valency of Lithium ion 1 (Richardson et al., 2021)

zp Valency of negative counter-ion −1 (Richardson et al., 2021)
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3.8.1 Results for First Iteration of Algorithm

The results for ethylene carbonate in Figure 6a) show some agreement for molalities

< 1 mol kg−1, with the results following the same general shape as the curve from

the experimental results. They tend to predict slightly lower values for the activity

coefficient but then diverge off to much higher values for molalities > 1 mol kg−1.

The diethyl carbonate solvent showed a similar trend but overall tended to have

higher activity coefficients.

The solvents ethylene carbonate and ethyl methyl carbonate showed results closest

to the experimental results, so we opted to also run the simulation for a solvent

composed of a mixture of these two substances. It is common for electrolytes in

commercial lithium-ion batteries to use a mixture of substances as the solvent as

this can allow the electrochemical properties of the electrolyte to be optimised, so

we felt this a reasonable addition solvent to try. We considered the mixed solvent

of EC and EMC that was used in (Stewart and Newman, 2008).

We found the results for this mixed solvent, shown in Figure 6d), were slightly

closer to the experimental results curve but were again still diverging significantly

to much higher values at higher molalities.

For all solvents, the higher values of coordination number showed much more sig-

nificant divergence to higher activity coefficients. This is to be expected as a higher

coordination number allows a given charged ion to have more closest neighbour ions

and therefore there are more close-range ionic interactions occurring. These interac-

tions lead to a deviation from ideality by decreasing the mobility of the ions, so one

would expect higher coordination numbers to show more deviation and therefore

higher activity coefficients.

Up to this point, we have primarily focused on the interactions between the posi-

tive and negative ions. It is important to consider that solvent molecules, despite

having no charge, can still have an effect on the charged ions. This is caused by

the polarity of the solvent molecules; a solvent with a higher polarity has partial

charges on different sides of the molecule, causing a slight charge imbalance and

therefore causing a response in the presence of charged ions.
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Figure 6: Plots of activity coefficient ln(γLi+) as a function of molality for different coordination

numbers and solvents. For each plot, the dotted line shows the curve fit to experimental data

from (Stewart and Newman, 2008) for comparison. a) Shows the results for an ethylene carbonate

solvent, b) shows the results for a diethyl carbonate solvent, c) shows the results for an ethyl

methyl carbonate solvent, d) shows the results for a solvent made up of a mixed EC:EMC solvent.

These results come from the initial iteration of the algorithm discussed in Sections 3.6 and 3.7.
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When the solute dissociates into the solvent, the ions become fully surrounded by

the solvent molecules, which orientate themselves so the direction of the dipole mo-

ment is opposite to the charge of the ion. This is, solvent molecules surrounding a

positive ion will align themselves so the part of the molecule with a slight negative

partial charge is facing inwards towards the positive ion. This occurrence is known

as the formation of a solvation shell and can have an effect on the mobility of the

ions in the solution.

In order to study this effect, we opted to make changes to the algorithm to account

for these solvation shells. Of the solvents we have opted to study, ethylene carbonate

has a very high polarity, while diethyl carbonate and ethyl methyl carbonate have

much lower polarities.

3.8.2 Results for Second Iteration of Algorithm

The first method to account for the solvation shells involved modifying the ion-

hopping probabilities. The aim was to do this by introducing an additional step

in the algorithm when calculating the energy changes. If, as represented in Figure

7a), the algorithm has selected a charged ion (in this case a negative ion) to swap

places with a solvent molecule (highlighted in grey) which is immediately adjacent to

another charged ion (the above positive ion) we wish to consider the energy changes.

Figure 7: A representation of the methods used to account for solvation shells. a) Shows a

negative ion (in red) swapping places with a solvent molecule that is already adjacent to a charged

ion. This solvent molecule is part of a solvation shell surrounding the positive ion. b) Shows how

we implemented the dipole moment in the solvent molecules. When calculating the energy of an

ion due to the presence of a polar solvent molecule, b) shows how we assign the charges when

considering ion A, c) shows how we assign the charges when considering ion B.
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Initially, only the charged ions would contribute to the energy, but solvent molecules

involved in a solvation shell could be seen as ’shielding’ the central charged ion and

lessening its contribution to the energy. This is known as the formation of partial

charges (Jämbeck et al., 2012). The effect of this is a reduction in the calculated

’current energy’. For moves where the energy change is negative by a large mar-

gin, this will not have an impact. However, for moves where the energy change is

negative but very small in magnitude, this could potentially cause the change to

not occur. Finally, if the energy change is positive, the energy change will appear

slightly larger in magnitude and therefore will be slightly less likely to occur.

The additional step in the algorithm occurs once the charge is selected but before

the move takes place (between steps 2 and 3), and is as follows:

The position the charge is being moved into is checked, if this position currently

has a solvent molecule then the positions adjacent to that solvent molecule are also

checked. If this solvent molecule is not currently adjacent to another charged ion

(other than the one being moved) then the simulation proceeds as normal. However,

if the solvent molecule is currently adjacent to another charged ion the following

occurs:

� The magnitude of charge of the adjacent charged ion is multiplied by a reduc-

ing factor of δr so that Qi,new = δrQi

� The energy change with this reduced magnitude of charge is calculated and

input into the probabilities which dictates whether the change goes ahead as

previously.

� The reducing factor δr is removed and the charge of the ion goes back to ±1.

In the literature, a Monte Carlo simulation was used to calculate electrolyte trans-

ference numbers, which gives a measure of the proportion of the current that is

carried by a charged ion. They opted to account for the solvation of lithium ions in

a polar solvent by scaling the charges of the lithium ions (and the negative counter-

ions) to values between 0.78− 1. The results showed good agreement with previous

calculations of transference numbers, with the suggestion of a number ∼ 0.8 being

the optimal value (Leontyeva and Stuchebrukhov, 2011)(Vigil et al., 2023). We

therefore chose to use δr = 0.8 in this iteration of the algorithm.
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Figure 8: Plots of activity coefficient ln(γLi+) as a function of molality for different coordination

numbers and solvents. For each plot the dotted line shows the curve fit to experimental data

from (Stewart and Newman, 2008) for comparison. a) Shows the results for an ethylene carbonate

solvent, b) shows the results for a diethyl carbonate solvent, c) shows the results for an ethyl

methyl carbonate solvent, d) shows the results for a solvent made up of a mixed EC:EMC solvent.

These results come from the second iteration of the algorithm originally discussed Sections in 3.6,

3.7., with the changes in Section 3.8.2 included.

The results of the algorithm with this change are shown in Figure 8. The plots

overall show a similar shape to the first iteration’s results but do predict slightly

lower activity coefficients, with lower coordination numbers dropping quite far below

the experimental results curve. The high molalities have again diverged to much

higher activity coefficient values; this time the activity coefficients are not quite as

high but the divergence away from the other results is steeper.

3.8.3 Results for Final Iteration of Algorithm

The results did not quite follow the trend we were hoping to see, so we opted to

make additional changes to account for the solvation shells. To represent the dipole
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Figure 9: Plots of activity coefficient ln(γLi+) as a function of molality for different coordination

numbers and solvents. For each plot, the dotted line shows the curve fit to experimental data

from (Stewart and Newman, 2008) for comparison. a) Shows the results for an ethylene carbonate

solvent, b) shows the results for a diethyl carbonate solvent, c) shows the results for an ethyl

methyl carbonate solvent, d) shows the results for a solvent made up of a mixed EC:EMC solvent.

These results come from the third iteration of the algorithm originally discussed in Sections 3.6

and 3.7., with the changes in Section 3.8.3 included.
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moment of the solvent molecules, we will alter the energy calculations to consider

the solvent molecule particles, that are adjacent to a charged ion, to have a slight

’charge’ depending on which the charge of the ion they are adjacent to.

When calculating the energy in a system of charges we can consider the energy of a

given particle A due to another particle B (EA−B), or the energy of particle B due

to particle A (EB−A). So far, we have assumed these values are equal.

Instead, when considering the energy from particle A’s (a positive ion) point of

view, we will let the solvent molecules nearby have a slight opposite charge, while

the solvent molecules adjacent to other ions (say particle B) will have a slight

charge of the same sign as the particle they are surrounding. This is to represent

the polar solvent molecules aligning themselves so the opposite charge is close to

the surrounding ion and the like charge is facing outwards towards the rest of the

lattice. This is shown in Figure 7b) when considering particle A and in Figure 7c)

when considering particle B.

This was implemented into the energy calculation parts of the algorithm (in addition

to the steps implemented in Section 3.8.2). The energy of the current configuration

is calculated using Coulomb’s Law, equation [3.163] as previously. However, while

calculating the pairwise interactions the solvent molecules will be assigned a partial

charge (±δpart) depending on the charge of the ion they are adjacent to. Calculating

the energy of the pairwise interaction for some ions Ci is as follows:

� The solvent molecules adjacent to Ci are assigned partial charges, δpart, of the

opposite charge to Ci.

� The solvent molecules adjacent to all other ions are assigned partial charges,

δpart, of the same charge as the ion they are adjacent to. This is done ad-

ditively, so if a solvent molecule is adjacent to two ions of opposite charge,

it remains as having no partial charge (+δpart − δpart = 0). Conversely, if

adjacent to two ions of the same charge it will be assigned a partial charge of

±2δpart.

� Use Coulombs Law to calculate the electrostatic energy between ion Ci and

all charged ions and partially charged molecules.
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This is repeated for all charged ions, and each time the solvent molecules are as-

signed new partial charges depending on the charges of the ions being considered.

The overall implication of this change to the algorithm is a further reduction in the

energies being considered, especially at higher concentrations.

We opted to continue to use the fact that the partial charges of the lithium ions

become ∼ 0.8 when solvated and therefore to balance this we chose the solvent

partial charges δpart = 0.2. This represents a slight dipole moment forming without

the solvent molecules becoming too charged.

The results of the algorithm with these changes are shown in Figure 9.

We can see that low molalities still follow the experimental curve quite well, with

these results following the curve slightly better, especially the lower coordination

numbers for the mixed EC:EMC solvent. This suggests that the alterations we

made to the algorithm go some way towards accounting for these solvation shells

and the interactions they cause with the charged ions. The results also imply, in

agreement with the literature, that lithium ions in this form will typically have

coordination numbers closer to 3− 4.

3.9 Summary

In this chapter, we have studied moderately concentrated electrolytes. These elec-

trolytes are closer to those used in commercial batteries, but their study requires

refining previous assumptions to account for the high concentrations. We began by

introducing electrochemical potentials and the concept of activity. We summarised

a model using these electrochemical potentials and found analytical and numerical

solutions.

We then discussed the differences between ideal and non-ideal solutions. In dilute

electrolytes, the activity term can be replaced with the mole fraction as they tend

to act like an ideal solution. However, concentrated electrolytes deviate from this

ideality, so this assumption can no longer hold. This deviation is measured by the

activity coefficient. We introduced Margles functions and the Maxwell-Stefan equa-

tions, which are popular ways to account for non-ideal behaviour.
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We set up a Monte Carlo simulation based on ions hopping on a lattice, which

would study the ionic interactions in an electrolyte to approximate their activity

coefficients. We studied an electrolyte composed of lithium hexafluorophosphate

and different solvent choices and compared the results to experimental results from

the literature. We found the simulation gave reasonable agreement for low molali-

ties but tended to deviate to much higher values for molalities > 1 mol kg−1.

These results motivated altering the algorithm to account for ion-solvent interac-

tions due to the polarity of the solvents we studied. We ran the results for two

further iterations of the algorithm, and each time the results improved slightly.

The results for the final algorithm for the mixed solvent (composed of ethylene

carbonate and ethyl methyl carbonate) showed reasonable agreement across the

molality range tested when using lower coordination numbers.

3.9.1 Further work

The simulation could be extended to account for non-binary electrolytes, where

the solute may dissociate into various ions of different charges, as well as testing

more mixed solvent combinations. The Maxwell-Stefan equations could be incor-

porated into the simulation. This will introduce the drag force between different

ions. However, this drag force depends on the relative velocities of the ions involved;

therefore, as discussed above, Coulomb’s law may no longer be valid, and an alter-

native method to calculate the energy may be needed.

The Debye-Hückel theory describes the deviation from ideality using a continuous

model to study electrostatic potential energy from such interactions. The model

shows agreement with experiments for lower concentrations, so it could provide in-

sight on how to proceed with refining the algorithm for higher concentrations.

For the simulation in this section, we restricted our focus to a 2D model. Comparing

this to 3D, it is typical to assume symmetry along the height of an electrochemical

cell and so a 2D cross-section can suitably model the situation while significantly

reducing computing complexity. We chose to simulate the ionic movements on a

cross-section of a 3D cell; we expect the ionic movements due to the electric field

to be well represented as the electric potential between the two electrodes will be

consistent in the (y, z) directions (assuming the chemistry of electrode materials
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are consistent) and therefore the ions will only be effected based on their distance

from the electrodes (in the x direction). The ionic movements due to ion-ion and

ion-solvent interactions are where a 3D model could change significantly as such

interactions could have an effect in all directions. Extending the geometry of our

simulation to 3D would increase the number of hopping directions to choose from

to 6, which wouldn’t increase complexity by much. However, a 3D geometry would

significantly increase the number of hopping sites and therefore also the number of

ions present if we were to study the same concentrations.

Similarly, due to limitations with computational power, we had to restrict the size

of our lattice to a 100x100 grid, comparing this to reality it is significantly less ion

sites. The average nearest-neighbour distance of a Li+ ion is ∼ 2.1x10−10 m (Mar-

cus, 1988) and a typical distance between electrodes is 2x10−5 m (Ecker et al., 2015)

leading to approximately ∼ 1x105 ions fitting between the electrodes. In addition,

the ionic radius of the negative counter ions and solvent molecules would differ. A

PF−6 ion has an ionic radius of 2.42x10−10 m (Simoes, 2017) and so ∼ 4x104 would

fit between the electrodes, with the solvent molecules being bigger still. This great

variance in sizes makes it difficult to quantify how close different ions can get to

each other and therefore how many ion sites would be most accurate. We opted for

a 100x100 grid with fixed site sizes to keep the computational times reasonable but

still have a representative sample.

Despite restricting the geometry to 2D and considering a smaller number of ions,

our simulation showed results that followed the same general shape as those found

in the literature. The results for low concentrations showed very good agreement

while higher concentrations tended to deviate, although each time we refined the

algorithm our results improved. This is to be expected, as higher concentrations

require more ions present in the simulation which in turn leads to more ionic inter-

actions. The 2D geometry restricts these ions from being close to as many other ions

therefore the model may predict less significant ionic interactions for the high con-

centrations. Extending the simulation to three dimensions could bring new insights

into the ionic and solvent-ion interactions that occur.
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4 Single-Particle Models

The development of accurate electrochemical cell models is often held back by the

complexity of the resulting equations, making them extremely intensive to solve.

For example, including non-linear diffusion, working in three dimensions, investi-

gating the specific chemistries of electrode and electrolyte materials and working

with multiple scales, from the microscopic equations within electrode particles to

the macroscopic scale of transport in the electrolyte.

In an effort to simplify these models while still retaining their accuracy and validity,

the single-particle model has been developed. This method reduces the complexity

of the equations involved by considering just a single representative particle for each

electrode. This comes with the assumption that the particles in the electrode are

all equal in shape and size, and the rates of the redox reactions occurring are not

dependent on the location within the electrode. This method can also be extended

to graded electrodes (Richardson et al., 2020).

It has been demonstrated that making use of a single-particle model still main-

tains high accuracy while being significantly less computationally intensive. Re-

search includes studying the cycling life (Ning and Popov, 2004),(Santhanagopalan

et al., 2006), side reactions and their effect on electrode degradation (Li et al.,

2018)(Planella and Widanage, 2023) and charge/discharge behaviour under various

temperatures (Guo, Sikha and White, 2010).

In this chapter, we study a single-particle model derived from the Doyle-Fuller-

Newman (DFN) model. To start, we will introduce the DFN model and set out the

equations for a full electrochemical cell, with a discussion on important parameters.

We will non-dimensionalise the model and follow the asymptotic method applied

in (Richardson et al., 2020) for the resulting single-particle model. We will then

discuss possible ways this model could be developed or the sorts of situations in

which it could be applied.

4.1 The Full-Cell Doyle-Fuller-Newman Model

The Doyle-Fuller-Newman model is a popular electrochemical model presented in

(Doyle, Fuller and Newman, 1993). It incorporates all aspects of an electrochemical
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cell to model the charge transport in the electrodes and the electrolyte phases, as

well as the intercalation of lithium ions into the electrode materials and the reaction

rates occurring on the electrode surfaces. Here, we summarise the model for a full

electrochemical cell:

As shown in Figure 10, we use the following setup:

The anode occupies the region between L1 < x < L2.

The separator occupies the region between L2 < x < L3.

The cathode occupies the region between L3 < x < L4.

The electrolyte occupies the region between L1 < x < L4.

The current collectors are located at x = L1 and x = L4.

Figure 10: A diagram of the setup used for the DFN model for a full electrochemical cell. Here,

we show the movements of the lithium ions and the electrons during the discharge of the cell.

Macroscopic Equations We begin by discussing the macroscopic equations for

the electrolyte and the electrodes. Consider a binary 1:1 electrolyte composed of

lithium ions Li+ and a negative ion N− in a solvent. In the following equations we

will be using N− to denote the flux of the negative ions in the electrolyte. These
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equations could also have been stated in terms of the flux of the lithium ions; we

have chosen to define the equations in terms of the negative ions as no additional

terms will be required to account for the redox reactions, as would have been the

case with the lithium ions (Richardson et al., 2020).

We also have an electrolyte concentration ce(x, t) and the potential in the electrolyte

Φe, which is generally given with respect to that of a lithium electrode. j is the

current density in the electrolyte, while jn is the current density on the surface

of the electrode particles, which is determined by the rate of the redox reactions

occurring on this surface. As given in (Richardson et al., 2020) and (Korotkin et

al., 2021), the equations for the electrolyte are given by:

In the region L1 < x < L4

εel
∂ce
∂t

+
∂N−
∂x

= 0, N− = −B(x)De(ce)
∂ce
∂x
− (1− t+)

j

F
[4.1]

∂j

∂x
= bet(x)jn(x, t), j = −B(x)κ(ce)

(
∂Φe

∂x
− 2RgT (1− t+)

Fce

∂ce
∂x

)
[4.2]

Equation [4.1] describes the ionic transport through the electrolyte, while equation

[4.2] maintains conservation of charge from the current transfer at the electrode

surfaces through the electrolyte. Here, εel(x) is known as the electrolyte phase vol-

ume fraction, which can be defined as (analogous to the definition of mole fraction)

the volume of the specific substance divided by the volume of all substances. Its

value varies throughout the electrodes and the separator (Xu et al., 2017). B(x)

is the permeability factor that depends on the electrode material. It can often be

approximated from the Bruggeman relation where B(x) = (εel)
3
2 (Richardson et al.,

2020), however it has been argued that using this relation can lead to larger values

for B(x) than the true values (Zülke et al., 2021).

The diffusivity of the electrolyte is denoted De(ce), which describes the extent that

the electrolyte allows the diffusive movements of the ions; higher values allow the

ions to diffuse more rapidly. Similarly, κ refers to the conductivity of the electrolyte,

which depends on the choice of electrolyte. Stronger electrolytes dissociate more

fully into ions, meaning more ions are available to carry charge, therefore leading

to higher conductivities.
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The transference number is denoted t+, which gives a measure of the amount of

charge that is carried by the Li+ ions. As we are considering the negative ions,

we instead include the term (1 − t+). The Brunauer-Emmett-Teller (commonly

shortened to BET) surface area gives a measure of the surface area of the electrode

particles that are able to interact with the electrolyte relative to the electrode’s

volume. Here we have denoted it as bet(x) (Zulke et al., 2021). Finally, Rg, T and

F are the universal gas constant, temperature and Faraday’s constant, respectively.

Next, we look at the macroscopic equations for the electrodes, equation [4.3] gives

the conservation equations for charge in the anode, with equation [4.4] being the

relative one for the cathode. We have denoted the current densities, the electric

potentials and the conductivities for the anode and cathode as ja, jc,Φa,Φc, σa, σc.

In the region L1 < x < L2

∂ja
∂x

= −bet(x)jn, ja = −σ∂Φa

∂x
[4.3]

In the region L3 < x < L4

∂jc
∂x

= −bet(x)jn, jc = −σ∂Φc

∂x
[4.4]

The current density on the surface of the electrode particles can be given by the

Butler-Volmer equation, which describes the kinetics of the reaction rates of the

redox reactions as functions of overpotentials. Here, we denote the concentrations

of lithium ions in the electrode particles as ca and cc with cmaxa and cmaxc as the

maximum concentration of lithium ions in the anode and cathode, respectively.

jn =


2Fkac

1/2
e (ca|r=Ra(x))

1/2(cmaxa − ca|r=Ra(x))
1/2 sinh

(
Fηa

2RgT

)
in L1 ≤ x < L2,

0 in L2 < x < L3,

2Fkcc
1/2
e (cc|r=Rc(x))

1/2(cmaxc − cc|r=Rc(x))
1/2 sinh

(
Fηc

2RgT

)
in L3 ≤ x < L4.

[4.5]

The overpotentials ηa, ηc can be defined in terms of the difference in potential be-

tween the electrolyte Φe and the electrode particles Φa,Φc minus the equilibrium po-

tential of the electrode Ueq,a, Ueq,c. These equilibrium potentials can also be referred

to as open circuit potentials, and they depend on the electrochemical properties of

the electrode materials.

90



ηa = Φa − Φe − Ueq,a(ca|r=Ra(x)) ηc = Φc − Φe − Ueq,c(cc|r=Rc(x)). [4.6]

Next, we introduce the boundary conditions for these equations:

N−|x=L1 = 0 N−|x=L4 = 0. [4.7]

ja|x=L1 = I(t)
A

ja|x=L2 = 0, [4.8]

jc|x=L3 = 0 jc|x=L4 = I(t)
A
, [4.9]

j|x=L1 = 0 j|x=L4 = 0, [4.10]

and an initial condition for the lithium concentration in the electrolyte:

ce|t=0 = c0. [4.11]

At each end of the cell, where the current collectors are located, there is no move-

ment of negative ions into or out of the current collectors, therefore it follows that

the negative ion flux N− at each boundary is 0. Similarly, at the boundaries where

the electrodes meet the separator, the current densities ja, jc must be 0, whereas the

current densities on the boundaries of the electrodes must be equal to the current

density supplied by (or to) the external circuit. This current density is given by the

current I(t) divided by the area of the electrode’s cross-section, A.

Microscopic Equations We are now interested in transport equations for within

the electrode particles, this is when r < Ra(x), Rc(x), the distance from the centre of

the particle relative to the radii of the electrode particles. To allow for the variance

of particle sizes along the electrode, we have denoted these radii as functions of x.

∂ca
∂t

=
1

r2

∂

∂r

[
r2Da(ca)

∂ca
∂r

]
in 0 < r < Ra(x) for L1 < x < L2[4.12]

∂cc
∂t

=
1

r2

∂

∂r

[
r2Dc(cc)

∂cc
∂r

]
in 0 < r < Rc(x) for L3 < x < L4[4.13]

where Da(ca) and Dc(cc) are the diffusivities of the respective electrode’s particles.
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We require that the change in concentration of lithium at the centre of the particles

must equal 0, while on the particle surfaces it must be proportional to the surface

current density. Therefore, we define the boundary conditions as:

∂ca
∂r

∣∣∣∣
r=0

= 0,
∂ca
∂r

∣∣∣∣
r=Ra(x)

= − jn
Da(ca)F

for L1 > x > L2 [4.14]

∂cc
∂r

∣∣∣∣
r=0

= 0,
∂cc
∂r

∣∣∣∣
r=Rc(x)

= − jn
Dc(cc)F

for L3 > x > L4. [4.15]

We also require initial conditions on the concentrations, this time for ca and cc, we

define:

ca|t=0 = c0,a [4.16]

cc|t=0 = c0,c. [4.17]

While setting up this model, we have introduced new parameters, Table 7 sum-

marises these parameters with their descriptions and values. In this model, these

parameters are all taken to be constants.

Table 7: Values and descriptions of parameters introduced in the model.

Parameter Description Value Reference

εel Electrolyte volume fraction 0.3407 (Srinivasan, and Newman, 2004)

ka Butler-Volmer rate constant for the anodic reaction 2.28x10−11 m2.5 s−1 mol−0.5 (Malifarge et al., 2018)

kc Butler-Volmer rate constant for the cathodic reaction 3x10−12 m2.5 s−1 mol−0.5 (Srinivasan, and Newman, 2004)

L2 − L1 Typical thickness of the cathode 6.2x10−5 m (Srinivasan, and Newman, 2004)

L3 − L2 Typical thickness of the separator 2.5x10−5 m (Malifarge et al., 2018)

L4 − L3 Typical thickness of the anode 7.4x10−5 m (Ecker et al., 2015)

T Temperature 298 K (Srinivasan, and Newman, 2004)

t+ Transference number 0.38 (Valen and Reimers, 2005)

4.1.1 Non-Dimensionalisation

Here, we introduce some parameters that are representative of the typical scale of

the variables in the model in order to non-dimensionalise the equations. These are

the scalings used in (Richardson et al., 2020), here we will include a table describing

the parameters used and give approximate values, these are shown in Table 8 along

with any derived dimensionless parameters in Table 9.
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t = τt∗ x = Lx∗ r = R̂r∗ R = R̂R∗ [4.18]

De = D̂eD
∗
e Ds = D̂sD

∗
s κ = κ̂κ∗ ce = c0c

∗
e [4.19]

cs = cmaxs c∗s Φe =
RgT

F
Φ∗e Φs = ÛΦ∗s j =

Î

A
j∗ [4.20]

js =
Î

A
j∗s jn =

Î

ALb̂
j∗n I = ÎI∗ηs =

RgT

F
η∗s [4.21]

Ueq,s = ÛU∗eq,s N− =
B̂D̂ec0

L
N∗− B = B̂B∗ [4.22]

bet = b̂b∗et σ = σ̂σ∗ Li = LL∗i [4.23]

Size of Parameters Here, we are scaling most quantities with their typical val-

ues. We scale x by the typical value of the width of the electrochemical cell, denoted

L and similarly, where the boundary conditions rely on the widths of specific parts

of the cell we have also scaled Li, i = 1, 2, 3, 4 by the total width L. The radial

coordinate, r, is scaled by the average radius of the electrode particles. This radius

can differ for the anode and cathode as it depends on the material chosen, we chose

to study a Graphite (LiC6) anode and a Lithium Iron Phosphate (LiFePO4) cath-

ode. A typical current that the cell is able to sustain when discharged is denoted

at Î and the time coordinate t is scaled by the typical timescale over which a cell

will discharge with the given current Î, we have denoted this timescale as τ .

The diffusivities in the electrolyte and both electrodes will vary depending on the

materials chosen, so each have been scaled separately by a typical value for the

diffusion coefficient in the specific medium. We have chosen to consider a lithium

hexafluorophosphate (LiPF6) electrolyte and its diffusivity has been scaled by D̂e.

Similarly, the diffusivities in the anode and cathode have been scaled by D̂a and

D̂c, and the conductivities in the electrolyte and the electrodes have been scaled by

their typical values, κ and σ, respectively.

The concentrations in the electrolyte phase and each electrode have been scaled

individually. In the electrolyte, the initial lithium salt concentration is assumed to

be uniform, this leads from the assumption of the cell being at equilibrium and so

there is no current flow. The electrolyte concentration has been scaled by this initial

value, denoted c0. For each electrode, there is a maximum concentration of lithium

that can be intercalated into material, this depends on the material chosen and

93



its structure. We have scaled the lithium concentration in each electrode by these

maximum values, namely cmaxa and cmaxc for the anode and cathode respectively.

Table 8: Descriptions and typical values of the parameters introduced in equations [4.18] -

[4.23]. Here, our chosen anode is Graphite (LiC6) and our chosen cathode is Lithium Iron

Phosphate (LiFePO4)

Parameter Description Value Reference

A Typical electrode cross-sectional area 1.54x10−4 m2 (Malifarge et al., 2018)

B̂ Typical permeability factor of electrolyte 0.1989 Calculated using Bruggeman relation

(Richardson et al., 2020)

b̂ Typical Brunauer-Emmett-Teller surface area for electrode 2.7x106 m2 kg−1 (Duan et al., 2023)

c0 Typical lithium concentration in the electrolyte 1000 mol m−3 (Richardson and King, 2007)

cmaxa Maximum lithium concentration in the anode 31920 mol m−3 (Ecker et al., 2015)

cmaxc Maximum lithium concentration in the cathode 20950 mol m−3 (Srinivasan and Newman, 2004)

Da Typical diffusivity in the anode 7x10−14 m2 s−1 (Ecker et al., 2015)

Dc Typical diffusivity in the cathode 8x10−18 m2 s−1 (Srinivasan and Newman, 2004)

D̂e Typical diffusivity of the electrolyte 5.34x10−10 m2 s−1 (Srinivasan and Newman, 2004)

Î Typical current draw 0.0015 A (Srinivasan and Newman, 2004)

κ̂ Typical conductivity of the electrolyte 1 S m−1 (Valen and Reimers, 2005)

L Typical thickness of the electrochemical cell 1.6x10−4 m (Ecker et al., 2015)

R̂a Typical radius of the anode particles 1.37x10−5 m (Ecker et al., 2015)

R̂c Typical radius of the cathode particles 5.2x10−8 m (Srinivasan and Newman, 2004)

σ̂ Typical conductivity of the electrode 0.5 S m−1 (Ecker et al., 2015)

τ Typical time-scale for discharge process 1.7x105 s (Srinivasan and Newman, 2004)

U Typical change in overpotential during discharge 0.2 V (Srinivasan and Newman, 2004)

The permeability of the electrolyte and the BET surface area for the electrodes are

scaled by their typical values, denoted B̂ and b̂. The value for B̂ shown in Table 8

was calculated using the Bruggeman relation B̂ = (ε)
3
2 (Richardson et al.,2020) us-

ing the value for the volume fraction from Table 7. Both the open-circuit potentials

Ueq,s and the electric potentials Φs of the electrodes related directly to the overpo-

tentials ηs by equation [4.6], so we have chosen to scale these values by a typical

change in this overpotential, denoted Û . For the electric potential in the electrolyte

Φe, we have chosen to scale by RgT

F
which denotes the thermal voltage. In the case

of electrolytes, this can be defined as the voltage generated by the heat from the

ion movements. This was used to scale the electrolyte potential as it is typically a

good measure of the amount of variation of the potential across the electrolyte.
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A typical value for the flux of the negative ions in the electrolyte is described by the

diffusive flux (recall equation [2.4]) for the initial concentration with the diffusion

coefficient being multiplied by B̂. This accounts for the effect that the permeability

of the solution has on the ion movements. This is then divided by the scale of the

distance the ions must diffuse, namely the length scale of the electrochemical cell L.

The current densities of the electrode and electrolyte ja, jc and j are simply the

typical current through the cell divided by the cross-sectional area of the electrode,

while the transfer current density on the surface of the electrode depends on the

surface reaction rates and so must additionally be divided by BET surface area b̂

that determines the proportion of the electrode’s surface area that able to interact

with the electrolyte.

All of these values are summarised in Table 8 with their descriptions and approxi-

mate values from the literature. The non-dimensionalisation process then leads to

the introduction of some derived dimensionless parameters, these are summarised

in Table 9 with their values calculated using the values in Table 8.

Electrolyte Equations Applying the non-dimensionalisation using the scalings

in equations [4.18] - [4.23] to the electrolyte equations [4.1] - [4.2] leads to:

εl

[
L2

B̂D̂eτ

]
∂c∗e
∂t∗

+
∂N∗−
∂x∗

= 0,

[
B̂D̂ec0

L

]
N∗− = −

[
B̂D̂ec0

L

]
B∗D∗e

∂c∗e
∂x∗
− (1− t+)j∗

Î

AF
,[4.24]

Î

LA

∂j∗

∂x∗
=

Î

LA
betj

∗
n, j∗ = −

[
ARgTB̂κ̂

FLÎ

]
B(x)κ(c)

(
∂Φ∗e
∂x∗
− 2(1− t+)

c∗e

∂c∗e
∂x∗

)
,[4.25]

which simplifies to (and dropping the stars for easier notation):

εelN
∂ce
∂t

+
∂N−
∂x

= 0, N− = −BDe
∂ce
∂x
− Γ(1− t+)j, [4.26]

∂j

∂x
= betjn, j = −PBκ

(
∂Φe

∂x
− 2(1− t+)

ce

∂ce
∂x

)
, [4.27]

where we have introduced:
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N =
L2

τB̂D̂e

, Γ =
ÎL

AD̂eB̂Fc0

, P =
ARgTB̂κ̂

FLÎ
. [4.28]

The non-dimensional boundary conditions become:

j∗|x∗=L∗1 = 0, j∗|x∗=L∗4 = 0, N∗−|x∗=L∗1 = 0, N∗−|x∗=L∗4 = 0, [4.29]

and initial condition:

c∗e|t∗=0 = 1. [4.30]

Here, we have introduced the derived dimensionless parameters N ,Γ, P which are

summarised with approximate values in Table 9. L2

B̂D̂e
gives a measure of the

timescale for the diffusion through the electrolyte, therefore N gives the ratio of this

diffusion timescale to the timescale for cell discharge. B̂D̂c0
L

represents the typical

diffusive flux and Î
AF

represents a typical drift flux in the electrolyte due to the

electric field and so Γ gives the ratio of diffusive flux to drift flux in the electrolyte.

Table 9: Values of the derived dimensionless parameters introduced in equations [4.28], [4.39]

and [4.45] using the values in Table 8.

Parameter Value

Γ = ÎL

AD̂eB̂Fc0
0.152

Θ = σ̂RgTA

LÎF
8.24

λ = ÛF
RgT

7.79

N = L2

τB̂D̂e
0.00142

P = ARgTB̂κ̂

FLÎ
3.28

Q = R̂2

τD̂s
1.99x10−3

Υ = FksALb̂cmaxs c01/2

Î
8.51

RgT

F
denotes the thermal voltage which is linked to the ionic movements. This

leads to RgTB̂

FL
describing these ionic movements across a distance L with electrolyte

permeability B̂. Multiplying this by the conductivity of the electrolyte, κ̂ therefore

gives a measure of the ionic conductivity as these ions move through the electrolyte.

P gives a measure of this ionic conductivity divided by the current density of the

electrode (Richardson et al., 2020).

96



Electrode Equations Similarly, applying the scalings in equations [4.18] - [4.23]

to equations for the electrodes [4.3] - [4.6] leads to:

Î

AL

∂j∗a
∂x∗

= − Î b̂

ALb̂
b∗etj

∗
n,

Î

A
j∗a = −σ̂σ∗ Û

L

∂Φ∗a
∂x∗

[4.31]

Î

AL

∂j∗c
∂x∗

= − Î b̂

ALb̂
b∗etj

∗
n,

Î

A
j∗c = −σ̂σ∗ Û

L

∂Φ∗c
∂x∗

[4.32]

Î

ALb̂
j∗n =


2Fkcmaxa (c0c

∗
ec
∗
a|r∗=R∗a)1/2(1− c∗a|r∗=R∗a)1/2 sinh

(RgT
F

Fη∗a
2RgT

)
in L∗1 < x∗ < L∗2,

0 in L∗2 < x∗ < L∗3,

2Fkcmaxc (c0c
∗
ec
∗
c |r∗=R∗c )1/2(1− c∗c |r∗=R∗c )1/2 sinh

(RgT
F

Fη∗c
2RgT

)
in L∗3 < x∗ < L∗4.

[4.33]

RgT

F
η∗a = ÛΦ∗a −

RgT

F
Φ∗e − ÛU∗eq,a

RgT

F
η∗c = ÛΦ∗c −

RgT

F
Φ∗e − ÛU∗eq,c. [4.34]

These simplify to (where we have also dropped the stars in notation):

∂ja
∂x

= −betjn, ja = −Θλσ
∂Φa

∂x
, [4.35]

∂jc
∂x

= −betjn, jc = −Θλσ
∂Φc

∂x
, [4.36]

jn =


2Υ(ceca|r=Ra)1/2(1− ca|r=Ra)1/2 sinh

(
ηa
2

)
in L1 < x < L2,

0 in L2 < x < L3,

2Υ(cecc|r=Rc)1/2(1− cc|r=Rc)1/2 sinh
(
ηc
2

)
in L3 < x < L4,

[4.37]

ηa = λ(Φa − Ueq,a)− Φe ηc = λ(Φc − Ueq,c)− Φe. [4.38]

where:

Θ =
σ̂RgTA

LÎF
, λ =

ÛF

RgT
, Υ =

FksALb̂c
max
s c0

1/2

Î
[4.39]
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As before, we can apply the non-dimensionalisation to the boundary conditions:

j∗a|x∗=L∗1 = I(t) j∗a|x∗=L∗2 = 0, [4.40]

j∗c |x∗=L∗3 = 0 j∗c |x∗=L∗4 = I(t), [4.41]

Here, we have introduced the dimensionless parameters Θ, λ,Υ, approximate values

are shown in Table 9. Θ is almost analogous to P in the electrolyte equations in that

represents the ionic conductivity in the electrodes divided by the current density.

λ is the ratio of the characteristic cell voltage to the thermal voltage from the ionic

movements. Υ is the rate of lithium insertion into the electrode materials divided

by the current density on the surface of the electrode.

Electrode Particles Equations Continuing, we now apply the non-dimensionalisation

to the equations describing within the electrode particles. As before, we apply the

scalings in equations [4.18] - [4.23] to equations [4.12] and [4.13], which leads to:

R̂s
2

τD̂a

∂c∗a
∂t∗

=
1

r∗2
∂

∂r∗

[
r∗2D∗a

∂c∗a
∂r∗

]
,

R̂s
2

τD̂c

∂c∗c
∂t∗

=
1

r∗2
∂

∂r∗

[
r∗2D∗c

∂c∗c
∂r∗

]
, [4.42]

which we simplify to (dropping the stars in notation):

Q∂ca
∂t

=
1

r2

∂

∂r

[
r2Da

∂ca
∂r

]
, Q∂cc

∂t
=

1

r2

∂

∂r

[
r2Dc

∂cc
∂r

]
, [4.43]

where we have introduced the characteristic timescale for the cell discharge as:

τ =
FALb̂cmaxs R̂

Î
[4.44]

and so the terms on the left side of equations [4.42]a) and b) have been simplified

by introducing:

Q =
R̂2

τD̂s

. [4.45]

Here, Q is analogous to N for the electrode particles, it gives the ratio of the

timescale for the diffusive flux through the electrode particles relative to the timescale

for the cell discharge.
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Applying this to the boundary conditions [4.14]and [4.15] leads to:

∂c∗a
∂r∗
∣∣
r∗=0

= 0,
∂c∗c
∂r∗
∣∣
r∗=0

= 0 [4.46]

FALb̂D̂ac
max
a

R̂Î

∂c∗a
∂r∗
∣∣
r∗=R∗a

= − j∗n
D∗a

FALb̂D̂cc
max
c

R̂Î

∂c∗c
∂r∗
∣∣
r∗=R∗c

= − j∗n
D∗c

[4.47]

which we simplify to:

∂c∗a
∂r∗
∣∣
r∗=0

= 0,
∂c∗c
∂r∗
∣∣
r∗=0

= 0 [4.48]

∂c∗a
∂r∗
∣∣
r∗=R∗a

= −Qj
∗
n

D∗a

∂c∗c
∂r∗
∣∣
r∗=R∗c

= −Qj
∗
n

D∗c
[4.49]

Finally, for the initial conditions [4.16] and [4.51], we find:

c∗a|t=0 =
c0,a

cmaxa

[4.50]

c∗c |t=0 =
c0,c

cmaxc

. [4.51]
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4.2 Summary of Full Cell Dimensionless Model

Macroscopic equations:

εlN
∂ce
∂t

+
∂N−
∂x

= 0, N− = −BDe(ce)
∂ce
∂x
− Γ(1− t+)j [4.52]

∂j

∂x
= betjn, j = −PBκ

(
∂Φe

∂x
− 2(1− t+)

ce

∂ce
∂x

)
[4.53]

∂ja
∂x

= −betjn, ja = −Θλσ
∂Φa

∂x
[4.54]

∂jc
∂x

= −betjn, jc = −Θλσ
∂Φc

∂x
[4.55]

jn =


2Υ(ceca|r=Ra)1/2(1− ca|r=Ra)1/2 sinh

(
ηa
2

)
in L1 < x < L2,

0 in L2 < x < L3,

2Υ(cecc|r=Rc)1/2(1− cc|r=Rc)1/2 sinh
(
ηc
2

)
in L3 < x < L4.

[4.56]

ηa = λ(Φa − Ueq,a(ca|r=Ra))− Φe ηc = λ(Φc − Ueq,c(cc|r=Rc))− Φe. [4.57]

with boundary conditions and initial condition:

ja|x=L1 = I(t) ja|x=L2 = 0, [4.58]

jc|x=L3 = 0 jc|x=L4 = I(t), [4.59]

ce|t=0 = 1 ca|t=0 =
c0,a

cmaxa

. ca|t=0 =
c0,c

cmaxc

. [4.60]

j|x=L1 = 0 j|x=L4 = 0 [4.61]

N−|x=L1 = 0 N−|x=L4 = 0 [4.62]

Microscopic equations: For 0 < r < Rs(x)

In L1 < x < L2 Q∂ca
∂t

=
1

r2

∂

∂r

[
r2Da(ca)

∂ca
∂r

]
, [4.63]

∂ca
∂r

∣∣
r=0

= 0,
∂ca
∂r

∣∣
r=Ra(x)

= − Qjn
Da(ca)

. [4.64]

In L3 < x < L4 Q∂cc
∂t

=
1

r2

∂

∂r

[
r2Dc(cc)

∂cc
∂r

]
, [4.65]

∂cc
∂r

∣∣
r=0

= 0,
∂cc
∂r

∣∣
r=Rc(x)

= − Qjn
Dc(cc)

, [4.66]
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where, for s = a, c:

Q =
R̂2

τD̂s

τ =
FALb̂cmaxs R̂

Î
N =

L2

τB̂D̂
, Γ =

ÎL

AD̂B̂Fc0

[4.67]

P =
ARgTB̂κ̂

FLÎ
, Θ =

σ̂RgTA

LÎF
, λ =

ÛF

RgT
, Υ =

FkALb̂cmaxs c0
1/2

Î
[4.68]

The full cell potential can then be calculated from the following relation:

V (t) = Vc(t)− Va(t), [4.69]

where:

Va(t) = Φa|x=L1 , Vc(t) = Φc|x=L4 . [4.70]

4.3 Asymptotic Expansions

Following the derivation in (Richardson et al., 2020), we will apply asymptotic

analysis to derive the leading order terms and first-order correction terms for the

single-particle model for a full cell.

Using the following expansions:

Φs = Φs,0 +
1

λ
Φs,1 + ..., V = V0 +

1

λ
V1 + ..., cs = cs,0 +

1

λ
cs,1 + ..., [4.71]

js = js,0 +
1

λ
js,1 + ..., η = η0 +

1

λ
η1 + ..., jn = jn,0 +

1

λ
jn,1 + ..., [4.72]

Φe = Φe,0 + Φe,1 + ..., ce = ce,0 + ce,1 + ..., j = j0 + j1 + ..., [4.73]

N− = N−,0 +N−,1 + .... [4.74]

we can substitute into the dimensionless model. We can start by finding the leading

order problem, followed by the first order correction term for the cell voltage.

4.3.1 Leading order for the microscopic electrode particle equations

Starting with the equations for the electrode particles, we can consider the leading

order problem by substituting the expansions [4.71] - [4.74] into equations and

boundary conditions [4.63] - [4.66]. This leads to:
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Q∂(ca,0 + 1
λ
ca,1 + ...)

∂t
=

1

r2

∂

∂r

[
r2Da(ca,0 +

1

λ
ca,1 + ...)

∂(ca,0 + 1
λ
ca,1 + ...)

∂r

]
, [4.75]

∂(ca,0 + 1
λ
ca,1 + ...)

∂r

∣∣
r=0

= 0, [4.76]

∂(ca,0 + 1
λ
ca,1 + ...)

∂r

∣∣
r=Ra(x)

= − Q(jn,0 + 1
λ
jn,1 + ...)

Da(ca,0 + 1
λ
ca,1 + ...)

. [4.77]

Q∂(cc,0 + 1
λ
cc,1 + ...)

∂t
=

1

r2

∂

∂r

[
r2Dc(cc,0 +

1

λ
cc,1 + ...)

∂(cc,0 + 1
λ
cc,1 + ...)

∂r

]
, [4.78]

∂(cc,0 + 1
λ
cc,1 + ...)

∂r

∣∣
r=0

= 0, [4.79]

∂(cc,0 + 1
λ
cc,1 + ...)

∂r

∣∣
r=Rc(x)

= −Q(jn,0 + 1
λ
jn,1 + ...)

Dc(cc,0 + 1
λ
cc,1 + ...)

. [4.80]

Taking the limit λ → ∞, we find the leading order terms for equations [4.63] -

[4.66]:

Q∂ca,0
∂t

=
1

r2

∂

∂r

[
r2Da(ca,0)

∂ca,0
∂r

]
, [4.81]

∂ca,0
∂r

∣∣
r=0

= 0, [4.82]

∂ca,0
∂r

∣∣
r=Ra(x)

= − Qjn,0
Da(ca,0)

. [4.83]

Q∂cc,0
∂t

=
1

r2

∂

∂r

[
r2Dc(cc,0)

∂cc,0
∂r

]
, [4.84]

∂cc,0
∂r

∣∣
r=0

= 0, [4.85]

∂cc,0
∂r

∣∣
r=Rc(x)

= − Qjn,0
Dc(cc,0)

. [4.86]

4.3.2 Leading order for the macroscopic electrode equations

Similarly, substituting the expansions [4.71] - [4.74] into equations [4.54] - [4.57]
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∂(ja,0 + 1
λ
ja,1 + ...)

∂x
= −bet(jn,0 +

1

λ
jn,1 + ...), [4.87]

∂(jc,0 + 1
λ
jc,1 + ...)

∂x
= −bet(jn,0 +

1

λ
jn,1 + ...), [4.88]

ja,0 +
1

λ
ja,1 + ... = −Θλσ

∂(Φa,0 + 1
λ
Φa,1)

∂x
, [4.89]

jc,0 +
1

λ
jc,1 + ... = −Θλσ

∂(Φc,0 + 1
λ
Φc,1)

∂x
. [4.90]

Rearranging equations [4.89] and [4.90]:

−1

λ

1

Θσ
(ja,0 + ja,1 + ...) =

∂Φa,0

∂x
+

1

λ

∂Φa,1

∂x
, [4.91]

−1

λ

1

Θσ
(jc,0 + jc,1 + ...) =

∂Φc,0

∂x
+

1

λ

∂Φc,1

∂x
. [4.92]

and then taking the limit λ→∞ we are left with:

∂ja,0
∂x

= −betjn,0,
∂Φa,0

∂x
= 0, [4.93]

∂jc,0
∂x

= −betjn,0,
∂Φc,0

∂x
= 0. [4.94]

and boundary and initial conditions:

ja,0|x=L1 = I(t), ja,0|x=L2 = 0, [4.95]

jc,0|x=L3 = 0, jc,0|x=L4 = I(t), [4.96]

ca,0|t=0 = ca,0, cc,0|t=0 = cc,0 [4.97]

For equations [4.57]:

1

λ
(ηa,0 +

1

λ
ηa,1 + ...) = Φa,0 +

1

λ
Φa,1 + ...− Ueq,a(ca,0|r=Ra +

1

λ
ca,1|r=Ra + ...)− 1

λ
Φ0[4.98]

1

λ
(ηc,0 +

1

λ
ηc,1 + ...) = Φc,0 +

1

λ
Φc,1 + ...− Ueq,c(cc,0|r=Rc +

1

λ
cc,1|r=Rc + ...)− 1

λ
Φ0,[4.99]

again taking the limit λ→∞ we are left with:

Φa,0 = Ueq,a(ca,0|r=Ra), Φc,0 = Ueq,c(cc,0|r=Rc) [4.100]
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4.3.3 Leading order for the electrolyte problem

We can apply a similar method to find the leading order problem for the equations

in the electrolyte. Substituting the expansions [4.71] - [4.74] into equations [4.52]

and [4.53] and boundary and initial conditions [4.60]a), [4.61] and [4.62] leads to:

εelN
∂ce,0
∂t

+
∂N−,0
∂x

= 0, N−,0 = −BDe(ce,0)
∂ce,0
∂x
− Γ(1− t+)j0 [4.101]

∂j0

∂x
= betjn,0, j0 = −PBκ

(
∂Φ0

∂x
− 2(1− t+)

ce,0

∂ce,0
∂x

)
[4.102]

with boundary conditions and initial condition:

j0|x=L1 = 0 j0|x=L4 = 0 [4.103]

N−,0|x=L1 = 0 N−,0|x=L4 = 0 [4.104]

ce,0|t=0 = 1. [4.105]

Bringing these equations together we can give the leading order problem as:

εelN
∂ce,0
∂t

+
∂N−,0
∂x

= 0, N−,0 = −BDe(ce,0)
∂ce,0
∂x
− Γ(1− t+)j0 [4.106]

∂j0

∂x
= betjn,0, j0 = −PBκ

(
∂Φ0

∂x
− 2(1− t+)

ce,0

∂ce,0
∂x

)
, [4.107]

∂ja,0
∂x

= −betjn,0,
∂Φa,0

∂x
= 0,

∂jc,0
∂x

= −betjn,0,
∂Φc,0

∂x
= 0. [4.108]

Φa,0 = Ueq,a(ca,0|r=Ra), Φc,0 = Ueq,c(cc,0|r=Rc), [4.109]

Q∂ca,0
∂t

=
1

r2

∂

∂r

[
r2Da(ca,0)

∂ca,0
∂r

]
, Q∂cc,0

∂t
=

1

r2

∂

∂r

[
r2Dc(cc,0)

∂cc,0
∂r

]
. [4.110]

∂ca,0
∂r

∣∣
r=0

= 0,
∂ca,0
∂r

∣∣
r=Ra(x)

= − Qjn,0
Da(ca,0)

, [4.111]

∂cc,0
∂r

∣∣
r=0

= 0,
∂cc,0
∂r

∣∣
r=Rc(x)

= − Qjn,0
Dc(cc,0)

. [4.112]

ja,0|x=L1 = I(t), ja,0|x=L2 = 0, jc,0|x=L3 = 0, jc,0|x=L4 = I(t), [4.113]

ca,0|t=0 = ca,0, cc,0|t=0 = cc,0, Va,0 = Φa,0|x=L1 , Vc,0 = Φc,0|x=L4 , [4.114]
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j0|x=L1 = 0, j0|x=L4 = 0, N−,0|x=L1 = 0, N−,0|x=L4 = 0, ce,0|t=0 = 1.[4.115]

We can note that equations [4.108](b) and (d) implies that Φa,0 and Φc,0 are inde-

pendent of x and so are only functions of t so we can rewrite equations [4.109] in

terms of cs,0:

U−1
eq,a(Φa,0) = ca,0|r=Ra(x) = C0,a(t), [4.116]

U−1
eq,c(Φc,0) = cc,0|r=Rc(x) = C0,c(t), [4.117]

and therefore define the leading order terms for the cell voltage as:

Va,0 = Φa,0(t) = Ueq,a(Ca,0(t)), Vc,0 = Φc,0(t) = Ueq,c(Cc,0(t)). [4.118]

Integrating equations [4.108](a) and (c) between L1 and L2 and L3 and L4, respec-

tively, and applying boundary conditions [4.113], we find:

−
∫ L2

L1

betjn,0dx = ja,0|x=L2 − ja,0|x=L1 = −I(t), [4.119]

−
∫ L4

L3

betjn,0dx = jc,0|x=L4 − jc,0|x=L3 = I(t). [4.120]

So we can rewrite equations [4.111](b) and [4.112](b) as:∫ L2

L1

bet
Da(ca,0)

Q
∂ca,0
∂r

∣∣
r=Ra(x)

dx = I(t) [4.121]∫ L4

L3

bet
Dc(cc,0)

Q
∂cc,0
∂r

∣∣
r=Rc(x)

dx = −I(t). [4.122]

When considering a single-particle model, we can define the particle sizes in the

given electrodes to be of a specific size and no longer dependent on x, namely

Ra, Rc. Bringing the above equations together and applying this we find:

Q∂ca,0
∂t

=
1

r2

∂

∂r

[
r2Da(ca,0)

∂ca,0
∂r

]
, Q∂cc,0

∂t
=

1

r2

∂

∂r

[
r2Dc(cc,0)

∂cc,0
∂r

]
. [4.123]

∂ca,0
∂r

∣∣
r=0

= 0, Da(ca,0)
∂ca,0
∂r

∣∣
r=Ra

=
QI(t)∫ L2

L1
betdx

, [4.124]

∂cc,0
∂r

∣∣
r=0

= 0, Dc(cc,0)
∂cc,0
∂r

∣∣
r=Rc

= − QI(t)∫ L4

L3
betdx

. [4.125]

ca,0|t=0 = c0,a, cc,0|t=0 = c0,c, Va,0 = Ueq,a(Ca,0(t)), Vc,0 = Ueq,c(Cc,0(t))[4.126]
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which give conditions on Ca,0 and Ca,0.

Similarly, we can find an expression for ηa,0 and ηc,0 by applying expansions to

[4.56]:

-2.0cm

jn,0 +
1

λ
jn,1 + ... =



2Υ(ce,0(ca,0|r=Ra + 1
λ
ca,1|r=Ra + ...))1/2

(1− ca,0|r=Ra − 1
λ
ca,1|r=Ra − ...)1/2 sinh

(ηa,0+ 1
λ
ηa,1+...

2

)
in L1 < x < L2,

0 in L2 < x < L3,

2Υ(ce,0(cc,0|r=Rc + 1
λ
cc,1|r=Rc + ...))1/2

(1− cc,0|r=Rc − 1
λ
cc,1|r=Rc − ...)1/2 sinh

(ηc,0+ 1
λ
ηc,1+...

2

)
in L3 < x < L4.

[4.127]

again taking the limit λ→∞ we are left with:

jn,0 =


2Υ(ce,0ca,0|r=Ra)1/2(1− ca,0|r=Ra)1/2 sinh

(ηa,0
2

)
in L1 < x < L2,

0 in L2 < x < L3,

2Υ(ce,0cc,0|r=Rc)1/2(1− cc,0|r=Rc)1/2 sinh
(ηc,0

2

)
in L3 < x < L4.

[4.128]

Rearranging therefore leads to:

ηa,0 = 2arcsinh

(
jn,0

2Υ(ce,0ca,0|r=Ra)1/2(1− ca,0|r=Ra)1/2

)
, [4.129]

ηc,0 = 2arcsinh

(
jn,0

2Υ(ce,0cc,0|r=Rc)1/2(1− cc,0|r=Rc)1/2

)
. [4.130]

4.3.4 First order correction terms

Next we want to consider a first order correction term. Starting with the macro-

scopic electrode equations, we begin by substituting the expansion terms [4.71] -

[4.74] into equations [4.54] - [4.57]:

∂ja,0
∂x

+
1

λ

∂ja,1
∂x

+ ... = −bet(jn,0 +
1

λ
jn,1 + ...), [4.131]

∂jc,0
∂x

+
1

λ

∂jc,1
∂x

+ ... = −bet(jn,0 +
1

λ
jn,1 + ...), [4.132]

ja,0 +
1

λ
ja,1 + ... = −Θλσ

(
∂Φa,0

∂x
+

1

λ

∂Φa,1

∂x
+ ...

)
, [4.133]

jc,0 +
1

λ
jc,1 + ... = −Θλσ

(
∂Φc,0

∂x
+

1

λ

∂Φc,1

∂x
+ ...

)
, [4.134]
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This time we need to rearrange for the first order terms. For equations [4.133] and

[4.134] we rearrange for the first order terms in Φs:

1

λ

∂Φa,1

∂x
=

(
1

−Θλσ

)
(ja,0 +

1

λ
ja,1 + ...)− ∂Φa,0

∂x
− ... [4.135]

1

λ

∂Φc,1

∂x
=

(
1

−Θλσ

)
(jc,0 +

1

λ
jc,1 + ...)− ∂Φc,0

∂x
− ... [4.136]

First we note we can neglect the Φs,0 terms, due to [4.108](b) and [4.108](d), and

therefore we can cancel some λ terms to give:

∂Φa,1

∂x
=

(
1

−Θσ

)
(ja,0 +

1

λ
ja,1 + ...) [4.137]

∂Φc,1

∂x
=

(
1

−Θσ

)
(jc,0 +

1

λ
jc,1 + ...) [4.138]

We now apply the limit λ→∞, simplifying to:

∂Φa,1

∂x
= −ja,0

Θσ
,

∂Φc,1

∂x
= − jc,0

Θσ
. [4.139]

Integrating, we can rewrite this as:

Φa,1 = −
∫ L1

x

ja,0
Θσ

dx+ Φa,1|x=L1 , Φa,1 = −
∫ x

L4

jc,0
Θσ

dx+ Φc,1|x=L4 . [4.140]

Recall equation [4.70], we can apply the expansions [4.71] - [4.74] to give:

Va,0(t) +
1

λ
Va,1(t) = Φa,0|x=L1 +

1

λ
Φa,1|x=L1 , [4.141]

Vc,0(t) +
1

λ
Vc,1(t) = Φc,0|x=L4 +

1

λ
Φc,1|x=L4 . [4.142]

Using the leading order equations [4.114]c) and d), we remove the leading order

terms and can find for first order:

Va,1(t) = Φa,1|x=L1 , Vc,1(t) = Φc,1|x=L4 . [4.143]

and substitute this into equations [4.140]a) and b) to give:
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Φa,1 = −
∫ L1

x

ja,0
Θσ

dx+ Va,1, Φa,1 = −
∫ x

L4

jc,0
Θσ

dx+ Vc,1. [4.144]

Similarly, we apply a similar method for equations [4.131] and [4.132]; we can cancel

the leading order terms using equations [4.108] a) and c):

1

λ

∂ja,1
∂x

= −bet(
1

λ
jn,1), [4.145]

1

λ

∂jc,1
∂x

= −bet(
1

λ
jn,1), [4.146]

and therefore cancelling the λ terms we can find in terms of js,1 as:

∂ja,1
∂x

= −betjn,1,
∂jc,1
∂x

= −betjn,1, [4.147]

and therefore integrating leads to:

[ja,1]L2
L1

= −
∫ L2

L1

betjn,1dx, [jc,1]L4
L3

= −
∫ L4

L3

betjn,0dx. [4.148]

Applying the expansions [4.71] - [4.74] to the boundary conditions [4.58] and [4.59]:

ja,0|x=L1 +
1

λ
ja,1|x=L1 = I(t), ja,0|x=L2 +

1

λ
ja,1|x=L2 = 0, [4.149]

jc,0|x=L3 +
1

λ
jc,1|x=L3 = 0, jc,0|x=L4 +

1

λ
jc,1|x=L4 = I(t), [4.150]

and using the leading order boundary conditions [4.113] to simplify, we find the first

order terms for the boundary conditions as:

ja,1|x=L1 = 0, ja,1|x=L2 = 0, [4.151]

jc,1|x=L3 = 0, jc,1|x=L4 = 0, [4.152]

Applying these boundary conditions to [4.148] leads to:

∫ L2

L1

betjn,1dx = 0,

∫ L4

L3

betjn,1dx = 0, [4.153]

giving conditions on jn,1.
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These conditions on jn,1, together with the first order correction terms for Va,1

and Vc,1 and the leading order models discussed in Sections 4.3.1 and 4.3.2 for the

microscopic and macroscopic electrode equations, respectively, and in Section 4.3.3

for the electrolyte combine to give the single-particle model.

4.4 Summary

In this chapter, we have introduced the concept of single-particle models and how

they can be used to simplify a full-cell, multi-scale model such as the Doyle-Fuller-

Newman (DFN) model. We described the setup of an electrochemical cell and laid

out the DFN model to describe the charge transport occurring in each phase of the

cell. We non-dimensionalised the model, making notes on the significance of some

parameters.

We then went on to follow the derivation in (Richardson et al., 2020) to apply

asymptotic analysis on the model to derive the leading order model and the first

order correction terms. It was shown in (Richardson et al., 2020) that this single-

particle model shows good agreement with the DFN model for various electrode

chemistries.

This model could be applied to various current areas of lithium-ion battery research.

The study of the electrode surface reactions could help with insight into electrode

degradation and electrolyte decomposition; this single-particle model could help

simplify the reaction equations resulting from the Butler-Volmer kinetics. Mod-

elling the heat generation and energy losses occurring in different parts of the elec-

trochemical cell was presented in (Richardson and Korotkin, 2021); the derivation

of an equivalent single-particle model could prove valuable. Similarly, this model

could set a pathway to the study of much more complex electrode structures by

helping to reduce the complexity of the model, such as for a lithium iron phosphate

cathode where the lithium transport in the electrode particles occurs in two phases

(Richardson et al., 2021).
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5 The Double Layer

In Chapter 2, we looked at a model for a dilute electrolyte where we made the as-

sumption of charge neutrality, where the concentrations of the negative and positive

ions are equal throughout the electrolyte. However, we find that at the interface

between an electrode and the electrolyte, the behaviour of the ions is different from

that in the bulk electrolyte. Each species of ion has a tendency to be attracted

to the electrode of the opposite charge, therefore at each interface one species of

ion will be much more abundant than the other and so we have a net separation

of charge (Chapman, 1913). This layer is referred to as the electrical double layer,

and for most typical electrolyte concentrations it has a width of a few nanometres

(Newman and Thomas-Alyea, 2004).

5.1 The Structure of the Double Layer

The double layer consists of two layers; the layer closest to the electrode is called

the Stern layer, and consists of a thin, dense layer of ions with the opposite charge

of the electrode, these ions are said to be specifically adsorbed (Bard and Faulkner,

2001). This layer is bounded by two planes, termed the inner and outer Helmholtz

planes. The inner Helmholtz plane is defined by the position of the centres of the

specifically adsorbed ions, while the outer Helmholtz plane is by the centres of the

closest location (to the electrode) of the solvated ions; these ions are surrounded

by solvent molecules which restricts how close they can get (Newman and Thomas-

Alyea, 2004). Moving away from the electrode, the ions are now able to move more

freely; this layer is often termed the diffuse layer (Stillinger and Kirkwood, 1960)

and extends out to the bulk solution. The potential in the Stern layer is thought

to decrease linearly, while it then decreases exponentially throughout the diffuse

layer as it tends to 0 in the bulk electrolyte (Mortimer, 2008). This is shown in

Figure 11, where the structure of the double layer adjacent to a negative electrode

is shown in a), while b) shows a plot of the potential through the double layer, with

the dashed lines representing the boundaries of the Stern layer and diffuse layer.

The thickness of the double layer is dependent on the concentration of the elec-

trolyte (Newman and Thomas-Alyea, 2004), with higher concentrations leading to

narrower double layers, often due to the compression of the Stern layer with higher

concentrations (Brown, Goel and Abbas, 2016). It has also been shown that the ion
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Figure 11: a) A representation of the structure of the electrical double layer adjacent to a

negative electrode. b) A plot showing the potential across the electrical double layer, with the

dashed lines showing the boundaries between each layer. The potential in the Stern layer decreases

linearly, while it decreases exponentially in the diffuse layer.

size can have an effect on its thickness; larger ion sizes can lead to thicker double

layers (Bohinc, Kralj-Igliĉ and Igliĉ, 2001). The thickness of the double layer will

then affect the rate of processes occurring at the electrode (Bard and Faulkner,

2001).

5.1.1 Chapter Outline

Here, we will briefly set out the aims of this chapter and how we will go about

studying them. We wish to investigate the double layer, the region adjacent to

an electrode. To do this we are going to focus on the redox reactions that occur

on the electrode surface, where the lithium ions (de)-intercalate into the electrode

structure.

The aim of this chapter is to investigate the occurrence of electron tunnelling within

the double layer and its effect on the rates of the redox reactions and therefore on

cell performance. At the beginning of this work, we theorised that electron tun-

nelling out of the electrode could make the electrons more readily available for the

reactions, leading to an increase in reaction rate and therefore faster lithium inter-

calation. During the charge cycle, this would lead to faster charge times which is a

favourable feature for a rechargeable battery. On the other hand, during discharge,

faster lithium intercalation into the cathode would lead to the battery not lasting as

long, an unfavourable property. We proposed that if the electron tunnelling could
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be studied and more controlled, it could be utilised to gain more favourable charge

times while mitigating its effects during discharge. Ultimately, we found our predic-

tion was incorrect and instead found results that suggested the electron tunnelling

leads to a reduction of cell performance without any significant benefits. Here,

we discuss how we went about investigating this behaviour and the conclusions we

came to.

To look at these reactions we split our focus into two parts, an electron tun-

nelling model and the Butler-Volmer equation. In Section 5.2, we will introduce the

Schrödinger equation and derive a general matrix equation to solve it for any given

potential barrier. This gives us values for the transmission coefficient, which is a

measure of the probability of an electron successfully tunnelling through the bar-

rier. We apply this to the potential barriers found in the double layer for specific

cathode materials (lithium iron phosphate and lithium cobalt oxide) at multiple

times throughout the discharge process resulting in plots of transmission coefficient

against state of discharge (SoD). We then repeat this for different discharge voltages.

In Section 5.3 we now focus on the redox reaction rates by introducing the Butler-

Volmer equation and applying this equation to the same materials as in Section 5.2

throughout the discharge process and again we repeat for various discharge volt-

ages. This gives us curves for current density against state of discharge.

In Section 5.4 we bring our results for the transmission coefficients and current

densities together and plot them together as functions of state of discharge. This

allows us to compare the results and investigate any possible relations between

them. In this Section, we then discuss the results individually and together and

then explore possible consequences and further research ideas.

5.2 Quantum Tunnelling

We will now shift focus to specifically consider the movement of electrons as lithium

ions (de)-intercalate with the electrodes. During the (dis)-charge of an electrochem-

ical cell, a lithium ion travels from one electrode to the other through the electrolyte

while an electron travels in the same direction but through the external circuit. The

lithium ion will now absorb the electron, but to do this the electron will need to

travel against the potential difference that is across the cell. In this chapter, we
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review the process of electrons tunnelling through a potential barrier to discuss

whether this is a possible mechanism that occurs in an electrochemical cell.

In this section, we will briefly set out the background to quantum tunnelling and

introduce how the Schrödinger equation can be used to describe the process of

tunnelling compared to a classical mechanics situation. We will begin with the

example of a single potential barrier to demonstrate the process, before extending

the problem to multiple barriers and then formulating a general model that can be

used to solve the problem of tunnelling through any potential curve. This model will

then be used later in the chapter to study electron tunnelling through a potential

barrier at the electrode-electrolyte interface in an electrochemical cell.

5.2.1 Background

Consider an object with energy E approaching a potential barrier with potential

V ; in classical mechanics we could interpret this as a ball of mass m travelling at

velocity v towards a ramp of height h, as shown in blue in Figure 12.

Figure 12: An image demonstrating the difference between classical mechanics (where the in-

coming ball (blue) will either have enough energy to overcome the ramp (green) or will roll back

down if not (red)) and quantum mechanics (where the ball has a possibility of tunnelling through

the ramp (orange)).

In this example, the ball would have kinetic energy EK = 1
2
mv2 and would require

gravitational potential energy of EG = mgh to make it over the ramp. Therefore, if
1
2
v2 ≥ gh holds, we would expect the ball to follow the path shown in green in Figure

12 and make it to the other side. If 1
2
v2 < gh, the ball will not have enough energy

to reach the top of the ramp and therefore we would expect it to be impossible for it
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to be found beyond the barrier, instead following the path shown in red in Figure 12.

Quantum mechanics treats the situation from a different perspective. When con-

sidering objects at the subatomic level, such as electrons, the concept of tunnelling

is introduced. The idea behind tunnelling suggests that even if 1
2
v2 < gh, there is

still a small probability that the object will be found on the other side of the po-

tential barrier as it has tunnelled through via the path shown in orange in Figure 12.

Quantum tunnelling has been applied to many research areas, one of the earliest

being the Gamow model which describes the process of alpha decay where the alpha

particle is confined to a potential well. George Gamow linked the probability of the

alpha particle tunnelling through the potential well to the half-life of the decay

process (Griffiths, 2006). The most well-known example is the Scanning Tunnelling

Microscope. Developed by Gerd Binnig and Heinrich Rohrer, the instrument uses

electron tunnelling to produce 3D images of material surfaces with resolutions such

that individual atoms can be precisely imaged (Binnig and Rohrer, 1986).

5.2.2 The Schrödinger Equation

In quantum mechanics, the concept of wave-particle duality describes how matter

can exhibit properties of both particles and waves. The idea was proposed in 1924

by Louis de Broglie and was later demonstrated experimentally when diffraction

patterns of a beam of electrons were observed. Diffraction is the spreading out of a

wave (Thomson and Reid, 1927), for example a water wave, as it passes through a

narrow gap.

This leads to the concept of a wave function, which describes the wave in space

as it evolves. This evolution can be described by the Schrödinger Equation, one

of the fundamental equations of quantum mechanics (Schrödinger, 1926); it has

been described as being analogous to Newton’s 2nd Law. The time-independent

Schrödinger equation can be stated as follows:

− h̄2

2m

d2Ψ

dx2
+ Vbar(x)Ψ(x) = EqΨ(x), [5.1]

where h̄ is the reduced Planck’s constant given by h/2π, m is the mass of the

particle, x represents the direction of motion, Eq is the energy of the quantum
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particle, in this case electrons measured in electron volts, eV , and Vbar(x) is the

function of the potential barrier.

Solving the Schrödinger Equation: Following (Giffiths, 2004) we solve the

Schrödinger equation. We can rewrite [5.1] as:

− h̄2

2m

d2Ψ

dx2
+
[
Vbar(x)− Eq

]
Ψ(x) = 0, [5.2]

We will be considering multiple small regions where Vbar(x) is constant, and applying

Schrödinger’s equation to each region, so we can write the characteristic equation

as:

− h̄2

2m
k2 + (Vbar − Eq) = 0, [5.3]

and we can now consider the cases where Eq > Vbar and Eq < Vbar.

1. When Eq > Vbar:

The characteristic equation [5.3] has complex roots, so a general solution can

be written as:

Ψ(x) = A1e
ikx +B1e

−ikx where k =

√
2m(Eq − Vbar)

h̄
. [5.4]

2. When Eq < Vbar:

The characteristic equation [5.3] has real roots, so a general solution can be

written as:

Ψ(x) = A2e
kx +B2e

−kx where k =

√
2m(Vbar − Eq)

h̄
. [5.5]

Here Ψ(x) can be defined as the wave function and k the wave number. The wave

function describes the system at each point in space; the eikx term represents the

portion of the wave travelling in the positive direction, while the e−ikx term repre-

sents the portion of the wave travelling in the negative direction. The coefficients

Ai and Bi, i = 1, 2 are complex-valued constants defining the magnitude of each of

these parts of the wave.
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Boundary Conditions: In the following examples, it will be necessary to solve

the Schrödinger equation within multiple regions where the potential relative to the

electron’s energy will vary. This will give us a solution in each region that we can

combine to create one ’smooth’ solution. This will require imposing conditions on

the boundaries, x = bi, i = 1, 2, ..., of each region so that the solutions and their

derivatives are continuous:

Ψ1|x=b1 = Ψ2|x=b1

dΨ1

dx

∣∣∣∣
x=b1

=
dΨ2

dx

∣∣∣∣
x=b1

,

Ψ2|x=b2 = Ψ3|x=b2

dΨ2

dx

∣∣∣∣
x=b2

=
dΨ3

dx

∣∣∣∣
x=b2

,

...
...

Ψi|x=bi = Ψi+1|x=bi

dΨi

dx

∣∣∣∣
x=bi

=
dΨi+1

dx

∣∣∣∣
x=bi

. [5.6]

5.2.3 A Single Barrier

Consider a single potential barrier of width 2a centred around the origin of potential

Vbar,0, where Vbar,0 > Eq, as shown in Figure 13. This potential can be split into 3

regions and be defined as:

Vbar(x) =


0 for x < −a,
Vbar,0 for − a > x > a,

0 for x > a.

[5.7]

Using the general solutions to the Schrödinger equation above, we can define the

wave functions, Ψi, and wave numbers, ki, for each region. In the regions on either

side of the potential barrier we have Eq > Vbar,0, so we can use the form of [5.4],

whereas in the region containing the barrier we have Eq < Vbar,0 so we use the form

of [5.5]. This leads to:

Ψ1(x) = A1e
ik1x +B1e

−ik1x, [5.8]

Ψ2(x) = A2e
k2x +B2e

−k2x, [5.9]

Ψ3(x) = A3e
ik1x +B3e

−ik1x, [5.10]

where:
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k1 =

√
2mEq

h̄
, k2 =

√
2m(Vbar,0 − Eq)

h̄
. [5.11]

We can start by considering the B3 term; this term represents the reflected portion

in the region beyond the barrier, however as the potential remains 0 in this region,

this term is physically impossible to be non-zero. Therefore, we can set B3 = 0.

Figure 13: A representation of the potential barrier used for a single barrier example. The arrows

demonstrate the direction and magnitude of the incident, reflected and transmitted portions of

the wave in each region. The dotted line shows the energy of the incoming wave relative to the

potential barrier (Eq < Vbar,0)

We then proceed by formulating the relevant boundary conditions at x = −a and

x = a, using the form of [5.6]:

Ψ1|x=−a = Ψ2|x=−a
dΨ1

dx

∣∣∣∣
x=−a

=
dΨ2

dx

∣∣∣∣
x=−a

[5.12]

Ψ2|x=a = Ψ3|x=a
dΨ2

dx

∣∣∣∣
x=a

=
dΨ3

dx

∣∣∣∣
x=a

[5.13]

Applying these conditions results in the following equations:

−B1e
ik1a + A2e

−k2a +B2e
k2a = A1e

−ik1a [5.14]

ik1B1e
ik1a + k2(A2e

−k2a − B2e
k2a) = ik1A1e

−ik1a [5.15]

A2e
k2a +B2e

−k2a − A3e
ik1a = 0 [5.16]

k2A2e
k2a − k2B2e

−k2a − ik1A3e
ik1a = 0 [5.17]
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The Transmission Coefficient: We are interested in solving for A3 as this rep-

resents the transmitted portion of the wave that made it beyond the barrier. This

will allow us to find an expression for the transmission coefficient, T coeff , which

gives a measure of the probability that the particle, in this case an electron, will

successfully tunnel through the barrier and be found on the other side. The trans-

mission coefficient is the ratio of magnitude of the transmitted wave relative to the

initial incoming wave, given by:

T coeff =
|A3|2
|A1|2

[5.18]

We begin by combining equations [5.14] and [5.15] to find:

2A1e
−ik1a = A2e

−k2a
(

1− ik2

k1

)
+B2e

k2a

(
1 +

ik2

k1

)
[5.19]

while combining equations [5.16] and [5.17] results in:

A2e
k2a =

1

2
A3e

ik1a

(
1 +

ik1

k2

)
[5.20]

B2e
−k2a =

1

2
A3e

ik1a

(
1− ik1

k2

)
[5.21]

Substituting equations [5.20] and [5.21] into [5.19] we find:

A1e
−ik1a =

1

4
A3e

ik1a

[(
1 +

ik1

k2

)(
1− ik2

k1

)
e−2k2a +

(
1− ik1

k2

)(
1 +

ik2

k1

)
e2k2a

]
,[5.22]

then rearranging we can finally write:

A1e
−ik1a = A3e

ik1a

[
cosh(2k2a) +

i(k2
2 − k1

2)

2k1k2

sinh(2k2a)

]
, [5.23]

where we have made use of:

sinh(x) =
ex − e−x

2
cosh(x) =

ex + e−x

2
. [5.24]

Using [5.18] we can therefore state the transmission coefficient as:

T coeff =
1

cosh(2k2a) + i(k2
2−k12)

2k1k2
sinh(2k2a)

, [5.25]

As expected we can see that as a, half the width of the barrier, increases, T coeff

will decrease drastically, and therefore the probability of tunnelling is much lower.
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The Wave Function: To find a numerical solution for the wave function, the

most efficient method is to form a matrix equation; this method can then be gen-

eralised for any number of barriers, which will be discussed later. To proceed, we

can also consider the A1 term, which is the coefficient of the initial incoming wave.

We are interested in the other coefficients relative to the incoming wave, so we can

simplify by setting A1 = 1.

From equations [5.14] - [5.17], we can form the following matrix equation:
−eik1a e−k2a ek2a 0

ik1e
ik1a k2e

−k2a −k2e
k2a 0

0 ek2a e−k2a −eik1a
0 k2e

k2a −k2e
−k2a −ik1e

ik1a



B1

A2

B2

A3

 =


e−ik1a

ik1e
−ik1a

0

0


which can be solved numerically for the coefficients B1, A2, B2 and A3. With these

solutions, we can substitute back into equations [5.8] - [5.10] and then plot Ψ against

x; the resulting solution is shown in Figure 14.

Figure 14: A plot showing the solutions to the Schrödinger equation for the wave function, Ψ in

each region. The solution acts as an oscillating wave before the barrier, as it enters the potential

barrier the solution decays exponentially before showing oscillating behaviour again beyond the

barrier, this time with a smaller amplitude.
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5.2.4 Extending to a Double Barrier

We can extend this idea to a barrier, where the potential varies slightly across the

barrier, which we can treat as two separate barriers adjacent to each other. Consider

a potential barrier, as shown in Figure 15, positioned between x = a1 and x = a3,

with a change in potential at x = a2, such that Vbar(x) can be defined as:

Vbar(x) =



0 for x < a1

Vbar,0 for a1 > x > a2

Vbar,1 for a2 > x > a3

0 for x > a3

Figure 15: A representation of the potential barrier used for a double barrier example. The

arrows demonstrate the direction and magnitude of the incident, reflected and transmitted portions

of the wave in each region. The dotted line shows the energy of the incoming wave relative to the

potential barrier (Eeq < Vbar,0, Eeq < Vbar,1)

As before we can define the wave functions and wave numbers, where we have set

reflection coefficient of Ψ4 to 0 and normalised the coefficient of the incoming wave

to 1:
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Ψ1(x) = eik1x +B1e
−ik1x [5.26]

Ψ2(x) = A2e
k2x +B2e

−k2x [5.27]

Ψ3(x) = A3e
k3x +B3e

−k3x [5.28]

Ψ4(x) = A4e
ik1x [5.29]

where:

k1 =

√
2mEq

h̄
k2 =

√
2m(Vbar,0 − Eq)

h̄
k3 =

√
2m(Vbar,1 − Eq)

h̄
[5.30]

Similarly, we can apply boundary conditions [5.6] to each boundaries at x = a1,

x = a2 and x = a3:

Ψ1|x=a1 = Ψ2|x=a1

dΨ1

dx

∣∣∣∣
x=a1

=
dΨ2

dx

∣∣∣∣
x=a1

[5.31]

Ψ2|x=a2 = Ψ3|x=a2

dΨ2

dx

∣∣∣∣
x=a2

=
dΨ3

dx

∣∣∣∣
x=a2

[5.32]

Ψ3|x=a3 = Ψ4|x=a3

dΨ3

dx

∣∣∣∣
x=a3

=
dΨ4

dx

∣∣∣∣
x=a3

[5.33]

This can lead to the matrix equation :



−e−ik1a1 ek2a1 e−k2a1 0 0 0

ik1e
−ik1a1 k2e

k2a1 −k2e
−k2a1 0 0 0

0 ek2a2 e−k2a2 −ek3a2 −e−k3a2 0

0 k2e
k2a2 −k2e

−k2a2 −k3e
k3a2 k3e

−k3a2 0

0 0 0 ek3a3 e−k3a3 −eik1a3
0 0 0 k3e

k3a3 −k3e
−k3a3 −ik1e

ik1a3





B1

A2

B2

A3

B3

A4


=



eik1a1

ik1e
ik1a1

0

0

0

0


The solution to the matrix equation for the wave function is shown in Figure 16.

In both Figure 14 and Figure 16, we can note the change in the behaviour of the

oscillating wave as it enters the potential barrier. The solution decays exponentially

within before showing oscillating behaviour again on the other side, only now with

a much smaller amplitude. This amplitude relative to the incoming wave is directly

related to the transmission coefficient. The solutions shown here are simply a

background as we build up to more complex potential curves in the next section.
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Figure 16: A plot showing the solutions to the Schrödinger equation for the wave function, Ψ

in each region for a double potential barrier. The solution acts as an oscillating wave before the

barrier; as it enters the potential barrier the solution decays before showing oscillating behaviour

again beyond the barrier.

5.2.5 A General Matrix Equation

This problem can be extended to account for tunnelling through a potential curve.

For any given curve, we can simplify the potential to multiple barriers each with

constant potential.

Consider a potential curve, which we divide into N potential barriers, where we

denote each with potential Vbar(x) = Vbar,i, i = 0, . . . N + 1. Here Vbar,0 and

Vbar,N+1 denote the potential on either of side of the barrier, so we will take

Vbar,0 = Vbar,N+1 = 0. This leads to splitting the wave function, Ψ, into N + 2

equations:
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Ψ0 = A0e
ik0x +B0e

−ik0x [5.34]

Ψ1 = A1e
k1x +B1e

−k1x [5.35]
...

... [5.36]

ΨN = ANe
kNx +BNe

−kNx [5.37]

ΨN+1 = AN+1e
ik0x +BN+1e

−ik0x [5.38]

where:

k0 =

√
2mEq

h̄
[5.39]

k1 =

√
2m(Vbar,1 − Eq)

h̄
[5.40]

...
... [5.41]

kN =

√
2m(Vbar,N − Eq)

h̄
[5.42]

This leads to a (2N + 1)× (2N + 1) matrix of the form:
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                           −
e−

ik
0
a
0

ek
1
a
0

e−
k
1
a
0

0
0

0
··
·

··
·

0

ik
0
e−

ik
0
a
0
k

1
ek

1
a
0
−
k

1
e−

k
1
a
0

0
0

0
··
·

··
·

0

0
ek

1
a
1

e−
k
1
a
1

−
ek

2
a
1

−
e−

k
2
a
1

0
··
·

··
·

0

0
k

1
ek

1
a
1
−
k

1
e−

k
1
a
1
−
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2
ek

2
a
1

k
2
e−

k
2
a
1

0
··
·
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·
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−
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−
1

e−
k
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−
1
a
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−
1

−
ek

N
a
N
−
1

−
e−

k
N
a
N
−
1

0

0
··
·

··
·

0
k
N
−

1
ek

N
−
1
a
N
−
1
−
k
N
−

1
e−

k
N
−
1
a
N
−
1
−
k
N
ek

N
a
N
−
1
k
N
e−

k
N
a
N
−
1

0

0
··
·

··
·

0
··
·

0
ek

N
a
N

e−
k
N
a
N

−
ei
k
1
a
N

0
··
·

··
·

0
··
·

0
k
N
ek

N
a
N

−
k
N
e−

k
N
a
N
−
ik

1
ei
k
1
a
N

                                              B
0

A
1

B
1

A
2 . . .

B
N
−

1

A
N

B
N

A
N

+
1

                   =

                   ei
k
0
a
0

ik
0
ei
k
0
a
0

0 0 . . . 0 0 0 0

                   
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We have represented these solutions by using various different equations for the

potential curve; these are shown in Figure 17. The next step is to link this model

for electron tunnelling to lithium-ion batteries; we will apply it to potential curves

adjacent to electrodes for specific electrode materials, to study this in relation to

reaction rates on the surface of the electrodes.

Figure 17: A selection of plots demonstrating the solutions for the wave function, Ψ, for the

tunnelling problem with different potential curve barriers.
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5.3 The Butler-Volmer Equation

In order to study the reactions occurring at the electrode-electrolyte interface, we

first consider the Butler-Volmer equation, which describes the kinetics of these oxi-

dation and reduction reactions. The equation was named after John Alfred Butler

and Max Volmer; Butler published his work in 1924, which was then expanded upon

by Volmer in 1930 (Dickinson and Wain, 2020).

The Butler-Volmer equation is a fundamental equation that can be derived from

the laws of thermodynamics; it gives the relationship between the electrode current

density, j, and the electrode potential E and can be stated as:

j = ja − jc = j0

[
exp

(
αazF (E − Eeq)

RgT

)
− exp

(
− αczF (E − Eeq)

RgT

)]
, [5.43]

where j0 is the exchange-current density: a measure of the current-density when

the electrode is at equilibrium and therefore E − Eeq = 0. As in previous sections,

F , Rg and T are Faraday’s constant, the universal gas constant and temperature

respectively and z is the number of electrons transferred in the reaction.

Here we introduce the overpotential, a measure of the deviation between the applied

electrode potential and the equilibrium potential:

η = E − Eeq. [5.44]

This deviation is scaled by the dimensionless values αs, s = a, c which are the an-

odic and cathodic charge transfer coefficients which describe the deviation for the

anodic and cathodic reactions respectively.

We are interested in the reactions occurring at the electrode-electrolyte interface,

so we can rewrite equation [5.44] as:

η = (Esolid − Eelectrolyte)− Eeq, [5.45]

where we have rewritten the potential difference across the electrode-electrolyte in-

terface as the difference between the potential in the electrode and the potential in

the electrolyte.
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5.3.1 Equilibrium Potentials

During the discharge process, the lithium ions are inserted into the cathode material,

during this process the equilibrium potential (also be referred to as the open-circuit

potential) varies as more lithium is inserted. These equilibrium potential curves

can also vary depending on the chemistry of the chosen material.

Here, we will specifically consider iron-phosphate (LixFePO4, commonly referred to

as LFP) and cobalt dioxide (LixCoO2), Figure 18 shows the equilibrium potential

for these materials against the state of discharge (SoD) where x = cs
cs,max

is the

concentration of lithium that has been inserted into the material relative to the

maximum concentration that the material can hold, therefore the SoDs for the

graphs in Figure 18 vary between 0− 1.

Figure 18: The equilibrium potentials as functions of state of discharge for LFP and cobalt

dioxide cathodes. a) For LFP, the data points and curve fit equation come from (Srinivasan and

Newman, 2004), given by equation [5.46] b) For cobalt dioxide, the data points come from (Fuller

et al., 1994b) and we found a curve fit, given in equation [5.47].

The equilibrium potential of LFP has a wide region where the potential doesn’t

fluctuate with changing state of discharge, with narrow regions of steep decrease

either side, as shown in Figure 18a). This shape indicates two phases occurring

during the discharge process (Srinivasan and Newman, 2004).

The data points in the literature were found by solving a discharge model to specific

states of discharge and then a curve was found to fit this data. The equation for
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this curve was found to be:

Eeq = 3.11456 + 4.43879 tan−1

[
− 71.7352x+ 70.8534

]
−4.2403 tan−1

[
− 68.5605x+ 67.7301

]
.

[5.46]

The cobalt dioxide material shows a much more variable equilibrium potential with

state of discharge, the data points were plotted from simulation results in the litera-

ture (Fuller et al., 1994b) and then we applied a curve to fit the data. The equation

for this curve is given by:

Eeq = 1.92303x5 − 6.84711x4 + 10.4457x3

−7.32774x2 + 1.01491x+ 4.61167.
[5.47]

For both of these equations x = cs
cs,max

is the state of discharge.

Figure 19: The equilibrium potential as a function of state of discharge for a graphite anode.

The data points come from (Allart, Montaru and Gualous, 2018), we found a curve fit, given by

equation [5.48].

Similarly, we can consider an anode material, here we will look at graphite LiC6.

During the discharge of the cell, the lithium ions are de-intercalated from the
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graphite structure. We can again look at the equilibrium potential against the

state of discharge, which is shown in Figure 19.

The equilibrium potential curve for graphite shows a steep change when the amount

of intercalated lithium is low (x < 0.1) and then shows less variance across higher

amounts of lithium, with only small step decreases.

The data points were taken from the literature, where a half-cell was charged and

discharged using pulse of current to take measurements of the equilibrium potential

at specific states of discharge (Allart, Montaru and Gualous, 2018).

In order to fit a curve to these we opted to split the data into the regions of x < 0.1

and x ≥ 0.1 and find separate curves for each region with the intention that the

curves will provide a better fit to the data. The equation for these curves was found

to be:

Eeq =

−558.067x4 − 144.702x3 + 154.006x2 − 28.5837x+ 1.78385 for x < 0.1,

3.16145x4 − 7.78813x3 + 6.45701x2 − 2.26234x+ 0.422129 for x ≥ 0.1.

[5.48]

Now consider a full cell composing of graphite anode and a cobalt dioxide cath-

ode. During the discharge process the lithium is oxidised into Li+ ions which

de-intercalate from the graphite material C6 and are then inserted into the cathode

material CoO2. During this reaction the cobalt ions are reduced from the Co4+

form to the Co3+ form.

Using the equations for the respective electrode equilibrium potential we can there-

fore plot the total cell equilibrium potential against the cell discharge, as shown in

Figure 20. Note that both Figure 18 and Figure 19 show the equilibrium potential

as a function of discharge for the given electrode, with SoD = 0 meaning the elec-

trode has been depleted of lithium ions and SoD = 1 meaning the electrode has

maximum concentration of lithium ions. We are considering the discharge of a full

cell, therefore we are interested in change in equilibrium potential of the cathode

material as lithium ions are intercalated (so SoD changes from 0 to 1). Conversely,

for the anode material, we are interested in change in equilibrium potential of the
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as lithium ions are de-intercalated (so SoD changes from 1 to 0).

Figure 20: The full cell equilibrium potentials as functions of state of discharge for graphite/LFP

and graphite/cobalt dioxide cells. We used the data from (Srinivasan and Newman, 2004) for LFP,

the data from (Fuller et al., 1994b) for cobalt dioxide and (Allart, Montaru and Gualous, 2018)

for graphite.

The equilibrium potentials of both the graphite/cobalt dioxide and graphite/LFP

cells show similar-shaped curves due to the steep change in equilibrium potential of

graphite when it is almost fully depleted. The significant difference in these curves

comes from cobalt dioxide displaying more consistent variance over the discharge

process, while LFP has a very steep curve when almost fully intercalated. This

combination leads to the graphite/cobalt dioxide cell displaying much more vari-

ance for SoD < 0.9 compared to the graphite/LFP cell and overall the equilibrium

potential of the graphite/cobalt dioxide remains higher across the entire discharge

process.

A cobalt dioxide cathode can have problems with fully de-intercalating lithium ions

compared to LFP. This is known as the depth of discharge of the electrode and

is one factor that effects their cycle life. This can be seen in Figure 20 where the
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graphite/cobalt dioxide cell never reaches SoD < 0.1.

5.3.2 Derivation of the Butler-Volmer Equation

To start we will first consider transition-state theory, which studies reactions rates

by considering the energy states the reactants go through to become the products.

Consider a reaction where reactants R1, R2 combine to form a product P :

R1 +R2 → P. [5.49]

In order for this reaction to occur both R1 and R2 must go through some physical

changes, such as the breaking of bonds. In order to break these bonds energy is

required, therefore this energy is absorbed from the surroundings.

This means there is some intermediate state for these reactants before they go on to

form the products of the reaction. This intermediate state is know as the transition

state; it is a high-energy state that all reactants must reach in order to then go on to

complete the reaction and form the product. The formation of such bonds releases

energy into the surroundings, therefore if a given mole of reactants is able to absorb

enough energy to reach the transition state the reaction will always complete and

the products will always be formed.

This high-energy can therefore be linked to an activation energy, called the Gibbs

energy of activation ∆GA, for this reaction to occur as shown in Figure 21, where we

can see the potential energy changes occurring throughout the reaction for both an

endothermic (left) and an exothermic (right) reaction. An endothermic reaction is

one that overall requires more energy for the breaking of the bonds than is released

by the formation of the new bonds, whereas exothermic reaction is the opposite and

overall gives a release of energy due to the products having a lower energy state

than the reactants.

We are particularly interested in the Gibbs energy of activation for a given reaction

as we can link this to the rate of the reaction. Following (Newman and Thomas-

Alyea, 2004), the Gibbs energy of activation can be defined as:
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Figure 21: The potential energy changes over the reaction pathway for a) an endothermic

reaction and b) an exothermic reaction.

∆GA,a = ∆G0
A,a + Ca [5.50]

∆GA,c = ∆G0
A,c + Cc, [5.51]

where we have denoted the Gibbs energy of activation as ∆GA,a,∆GA,c to indicate

the these activation energies may be different for the oxidation and reduction reac-

tions.

In these equations, ∆G0
A,s are the Gibbs energy of activation for the reaction when

there is no applied potential difference and Cs is some change in energy due to an

applied potential difference, which we will consider below.

Consider an electrochemical reaction occurring at an electrode boundary, where

z electrons are transferred and Ox and Red are the oxidised and reduced species

respectively:

Ox + ze− −−⇀↽−− Red. [5.52]

This equation can be written as two half-equations, describing the anodic and ca-

thodic reactions:

Anodic (Oxidation):

Red → Ox + ze−. [5.53]

Cathodic (Reduction):

Ox + ze− → Red. [5.54]
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If the transition state for this reaction is similar to the reduced species Red, it is

reactant-like for the anodic reaction and product-like for the cathodic reaction. This

leads to the applied potential difference, ∆φ having a large impact on the cathodic

reaction by increasing the amount of energy required by zF∆φ. This will also little

impact on the anodic reaction, meaning the Gibbs energy of activation is indepen-

dent of this potential difference.

Conversely, if the transition state is similar to the oxidised species, it is reactant-like

for the cathodic reaction and therefore will have little impact on activation energy.

The transition state is product like for the anodic reaction and so the potential

difference will have a large impact but this time will contribute work done and

therefore reduce the Gibbs energy of activation by zF∆φ.

This phenomenon can be accounted for by introducing charge transfer coefficients

αs, where s = a, c for the anodic and cathodic reactions. These charge transfer

coefficients give a measure of how reactant-like or product-like the transition state

is, and therefore the extent of which ∆φ affects the Gibbs energy of activation.

In an actual reaction, the charge transfer coefficients will not be strictly 0 or 1 and

therefore the Gibbs energy of activation equations can instead be summarised as;

∆GA,a = ∆G0
A,a − αazF∆φ, [5.55]

∆GA,c = ∆G0
A,c + αczF∆φ. [5.56]

In single-step reactions, the values for the charge transfer coefficients can typically

be defined as αa + αc = 1 and so can often be written in the equations as simply α

and 1− α (Dickinson and Wain, 2020).

We are interested in studying the rate of reactions [5.53] and [5.54] where these

Gibbs energies of activation can be applied. The rates of these equations occur-

ring, denoted ra, rc, is proportional to the concentrations of species Red and Ox

respectively and so can be written as:

ra = ka[Red], [5.57]

rc = kc[Oxx]. [5.58]
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where we have introduced ka and kc as the rate constants of each reaction.

These can then be written in terms of the anodic and cathodic current densities

ja and jc which are these rates multiplied by the amount of charge transferred,

which can be given by the number of electrons transferred multiplied by Faraday’s

constant, zF :

ja = zFka[Red], [5.59]

jc = zFkc[Oxx]. [5.60]

Next, we introduce the Eyring equation, which relates rate constants to the Gibbs

energy of activation, GA, of the reaction:

k =
κkBT

h
exp

(−∆GA

RgT

)
, [5.61]

where κ is the transmission coefficient, kB is Boltzmann’s constant and h is Planck’s

constant. For simplicity we can combine these constants and denote them as Ba

and Bc, phenomenological constants that depend on the chemical reaction being

studied. We can define our rate constants as:

ka = Ba exp

(−∆GA,a

RgT

)
, [5.62]

kc = Bc exp

(−∆GA,c

RgT

)
, [5.63]

where we have denoted the Gibbs energy of activation as ∆GA,a,∆GA,c to indicate

the these activation energies may be different for the oxidation and reduction reac-

tions.

Substituting the rate constants into [5.59] and [5.60] to give:

ja = zFBa[Red] exp

(−∆GA,a

RgT

)
, [5.64]

jc = zFBc[Oxx] exp

(−∆GA,c

RgT

)
, [5.65]

and then substituting in the Gibbs energies of activation from equations [5.55] and

[5.56]:
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ja = zFBa[Red] exp

(−∆G0
A,a

RgT

)
exp

(
αazF∆φ

RgT

)
, [5.66]

jc = zFBc[Ox] exp

(−∆G0
A,c

RgT

)
exp

(−αczF∆φ

RgT

)
. [5.67]

If we consider the reaction is at equilibrium, there is no net flow of current and there

is a balance between the reaction rates of the oxidation and reduction reactions

ra = rc. Recalling equations [5.57], [5.58], we can therefore write:

Ba[Red] exp

(−∆G0
A,a

RgT

)
exp = Bc[Ox]

(−∆G0
A,c

RgT

)
, [5.68]

which leads us to denote:

j0 = zFBa[Red] exp

(−∆G0
A,a

RgT

)
= zFBc[Ox] exp

(−∆G0
A,c

RgT

)
, [5.69]

and therefore the current densities can be simplified to:

ja = j0 exp

(
αazF∆φ

RgT

)
, [5.70]

jc = j0 exp

(−αczF∆φ

RgT

)
. [5.71]

Now we can consider the potential difference ∆φ. If we denote the electrode poten-

tial of the cell while a current is being produced as E and the electrode potential

of the cell at equilibrium as Eeq, we can therefore replace the ∆φ term by E −Eeq:

ja = j0 exp

(
αazF (E − Eeq)

RgT

)
, [5.72]

jc = j0 exp

(−αczF (E − Eeq)
RgT

)
. [5.73]

Finally, recall the net current density at the electrode is simply ja− jc, which leads

to the Butler-Volmer equation:

j = j0

[
exp

(
αazF (E − Eeq)

RgT

)
− exp

(−αczF (E − Eeq)
RgT

)]
. [5.74]

For a single-step reactions we can replace αc = α and αa = 1−α, and using equation

[5.44] we can replace E − Eeq = η to give:
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Figure 22: a) Current density, split into anodic and cathodic current densities, as a function of

overpotential (which has been scaled by F
RgT

). b) Current density as a function of overpotential

(scaled by F
RgT

) for values of α = 0.25, 0.5, 0.75.

j = j0

[
exp

(
(1− α)zFη

RgT

)
− exp

(−αzFη
RgT

)]
. [5.75]

To show how the individual current densities in equations [5.72] and [5.73] depend

on overpotential and therefore contribute to the total current density, Figure 22 a)

shows a plot of these current densities against overpotential with both anodic and

cathodic transfer coefficients α = 0.5 while Figure 22 b) shows a plot of how current

density j varies for a few different values of α.

5.3.3 Tafel Approximation

The Butler-Volmer equation can be simplified when considering high-magnitude

overpotentials; this leads us to an equation known as the Tafel equation.

For large positive overpotentials (typically η > 0.12V ) the 2nd term in equation

[5.75] becomes significantly smaller than the 1st term and so can be neglected. This

leaves us with:

j = j0 exp

(
(1− α)zFη

RgT

)
. [5.76]
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Similarly, for negative overpotentials (η < −0.12V ) the 1st term in equation [5.75]

can be neglected when compared to the 2nd term, leaving us with:

j = −j0 exp

(−αzFη
RgT

)
. [5.77]

5.4 Results and Discussion

We are now ready to compare the current densities calculated using the Butler-

Volmer equation [5.75] to the transmission coefficients found by applying the elec-

tron tunnelling model discussed in Section 5.2. We will be considering cathodes

made up of lithium iron phosphate (LFP, LiFePO6) and lithium cobalt dioxide

(LiCoO2). In both cases we assume the charge transfer coefficient α = 0.5.

For the cobalt dioxide cathode, we begin by solving the Butler-Volmer equation for

the cathodic current density using equation [5.73] for different states of discharge;

we use [5.47] for the values of the equilibrium potential, Eeq.

We then applied the electron tunnelling model discussed in Section 5.2.5 to set up

a matrix for the wave function. We split the potential barrier adjacent to the elec-

trode into 10 sections, each with constant potential, and solved for the transmission

and refection coefficients for each section of the potential barrier. We calculated

the value of the final transmission coefficient relative to the incoming wave, which

represents the proportion of the wave that was able to transmit through the entire

potential barrier and therefore gives a measure of the probability of the electron

tunnelling through the barrier. This process was repeated over the discharge pro-

cess, using the values of the equilibrium potential from equation [5.47]. Note, as we

are considering a cathode material, the system discharging means the insertion of

lithium ions into the electrode material.

The plots in Figure 23 show the resulting transmission coefficients (in red) and the

current densities (in blue) as a function of state of discharge. We repeated this for

different values of E, the potential difference between the electrode and electrolyte

across the surface, the plots show values between E = 3.6 − 4.2V : a) E = 4.2V,

b) E = 4V, c) E = 3.8V and d) E = 3.6V . These values were chosen as they fall

within the usual discharges voltages for cobalt dioxide (Wang, 2014).
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Figure 23: Transmission coefficients and current density as functions of state of discharge for a

cobalt dioxide cathode discharged at various voltages, a) E = 4.2V, b) E = 4V, c) E = 3.8V and

d) E = 3.6V .

The plots in Figure 23 show the trend of both transmission coefficient and current

density decreasing as the system is discharged. Similarly, the plots show that the

higher the voltage that the cell is discharged at, the higher the transmission coef-

ficient. This suggests that when discharged at higher voltages, there is a increased

chance of electrons tunnelling against the potential curve and into the electrolyte.

This is likely to cause unwanted side reactions, such as the electron reacting with

the lithium ions on the surface of the cathode to form a solid layer rather than

allowing the lithium ion to intercalate. This could lead to an irreversible decrease

in capacity if this lithium isn’t able to be removed and de-intercalate back into the

anode on charging, or could simply cause damage to the cathode, therefore reduc-

ing its capacity for future charge/discharge cycles. These electrons also could react

with the electrolyte causing its decomposition.
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These type of reactions occurring on the cathode can cause the formation of a layer

known as the cathode-electrolyte interphase (often shortened to CEI). It has been

found that higher discharge voltages can increase the risks of CEI layers forming

(Guo et al., 2022).

We repeated this process for the LFP cathode using equation [5.46] for the values

of the equilibrium potential over the discharge process, Eeq. The plot in Figure 24

shows the results for the transmission coefficients (in red) and the current densities

(in blue) as a function of state of discharge. We varied the values of E between

E = 3.3 − 3.9V ; the plots show: a) E = 3.9V, b) E = 3.7V, c) E = 3.5V and

d) E = 3.3V . These values were chosen as they are close to the usual discharges

voltages for LFP (Lain and Kendrick, 2021).

Figure 24: Transmission coefficients and current density as functions of state of discharge for

an LFP cathode discharged at various voltages, a) E = 3.9V, b) E = 3.7V, c) E = 3.5V and d)

E = 3.3V .
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The results for the LFP cathode show a similar trend to the cobalt dioxide cathode,

with the transmission coefficients decreasing with lower discharge voltages. This is

to be expected as it has been found that LFP can also suffer from the formation of

CEI layers, especially at higher voltages (Kim et al., 2023). The reactions involved

in forming this layer are often exothermic, leading to the release of heat which can

cause safety issues. The degradation of the cathode material has also been found to

increase at higher temperatures, and often led to a significant decrease in capacity

(Wang et al., 2022).

5.5 Summary and Further Work

In this chapter, we have studied the electrical double layer; this layer occurs at

the interface between an electrode and the electrolyte. In contrast to the bulk

electrolyte, the concentrations of the ionic species in this region can no longer be

assumed to be equal.

We began with an overview of the structure of the double layer and how the electric

potential varies in this region. We introduced the concept of quantum tunnelling

through a potential barrier compared to the classical mechanics approach. We

discussed how the Schrödinger equation could be applied to give probabilities of

electrons tunneling through the potential barrier. We demonstrated the solutions

to the Schrödinger equation for a simple single barrier and a double barrier. Then,

we derived a model to solve for any given potential barrier and calculate the trans-

mission coefficients. We calculated these coefficients for different states of discharge.

We then introduced the Butler-Volmer equation, which is used to describe the

reaction kinetics occurring at the electrode-electrolyte interface. We studied the

equilibrium potentials for specific electrode materials using data given in the liter-

ature. This allowed us to substitute the equations for the equilibrium potentials

into the Butler-Volmer equation to give the current density as a function of state

of discharge.

We compared the transmission coefficients and the current densities for lithium

iron phosphate and cobalt dioxide cathodes, discharged at various voltages, to give

insight into how these vary over the discharge process. We found higher voltages
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typically led to increased transmission coefficient for both types of cathode material.

We suggest this could give insight into electron tunnelling contributing to increased

cathode degradation and the formation of CEI layers.

5.5.1 Further Work - Intercalation Models

To further study the double layer and the reactions occurring on the electrode-

electrolyte interface we could study the intercalation mechanisms in more detail.

In 1996, lithium iron phosphate (LiFePO4, known as LFP) was found to be a good

candidate for use as a cathode material (Padhi, Nanjundaswamy and Goodenough,

1996), however this material leads to a relatively flat discharge curve, implying that

a separation into lithium-rich and lithium-poor phases occurs during this process

(Bazant, 2012). This leads to a need for a more detailed look into the diffusion

occurring within these particles, as a linear diffusion can no longer be assumed. In

this section, we will briefly set out the relevant background to the shrinking-core

model and the Cahn-Hilliard equation.

The Shrinking Core Model: Up until 1996, most models of the intercalation

of lithium used linear Fickian diffusion, where the reaction occurs on the surface of

the particle and then lithium diffuses into the particle. This diffusion is assumed

to only occur in the radial direction. During discharge, the lithium is inserted into

FePO4 by the reaction shown by equation [5.78]:

FePO4 + xLi+ + xe− → LixFePO4, [5.78]

where x is the number of moles of lithium that is being transferred.

After the discovery of LFP’s properties during discharge, a new model was first

proposed to explain these observations. Their research found that the capacity of

the cell decreased more severely than expected over longer cycles. They concluded

that this was a reversible capacity loss that was due to the two-phase reaction that

occurs, and could be avoided by reducing the current (Padhi, Nanjundaswamy and

Goodenough, 1997).

They proposed the following alternative reaction:

FePO4 + xLi+ + xe− → xLiFePO4 + (1−x)FePO4. [5.79]
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As this lithium is inserted, it is first inserted on the surface of the particle, forming

a shell of LiFePO4 and an interface between the two regions. This is then followed

by more lithium insertion at this new interface, forming another shell within the

previous one. This leads to a series of shells being formed, along with a new interface

each time, with each shell having a smaller surface area than the previous. This

process was termed the ’shell-core’ mechanism and can be seen in Figure 25.

Figure 25: A representation of the shell-core mechanism, a figure taken from (Padhi, Nan-

jundaswamy and Goodenough, 1997). The figure shows a series of shells forming around the

lithium-poor core, with the interface moving inwards as more shells form.

As the diffusion proceeds at an assumed constant rate, the surface area of the

interface also shrinks, meaning that at some point the amount of lithium trans-

ported to the interface will no longer be supported. The surface area when this

occurs is termed the critical surface area; beyond this point less lithium is able to

be transported and the performance of the cell is diffusion-limited. However, this

cell performance can be restored on the following cycles and does not represent an

irreversible capacity fade (Padhi, Nanjundaswamy and Goodenough, 1997).

In 2004, the porous electrode theory was then developed to include a similar mech-

anism, now termed the shrinking core model, that shows similarities to the previous

mechanisms; a representation is shown in Figure 26.

The mechanism begins with lithium being inserted at the surface of the particle:

FePO4 + y Li+ + ye− → LiyFePO4 [5.80]

Some of this lithium is then transported to the interior of the particle, via diffusion.

We denote this amount by x, where x < y.

FePO4 (interior) + LiyFePO4 (outer) → LixFePO4 (int) + Liy−xFePO4 (outer)[5.81]
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Figure 26: A representation of the shrinking core mechanism, a figure taken from (Srinivasan

and Newman, 2004). The figure shows the insertion of lithium on the surface while simultaneously

lithium diffuses into the lithium-poor core, causing this core to shrink.

However while this is occurring, more lithium is being inserted into the outer shell:

Liy−xFePO4 (outer) + xLi+ + xe− → LiyFePO4 (outer) [5.82]

This process leads to a lithium-rich outer shell with a lithium-poor inner core; as

the mechanism proceeds more of the core becomes lithium-rich, essentially causing

the lithium-poor core to ’shrink’ as the interface between the two phases moves

inwards (Srinivasan and Newman, 2004).

The Cahn-Hilliard Equation: Another approach to modelling phase separa-

tion is using a non-linear partial differential equation known as the Cahn-Hilliard

equation [5.88], developed in 1957.

As in previous chapters, we can start by denoting the mass flux as:

∂c

∂t
= −M∇2µ, [5.83]

where c is the concentration, M is the mobility and µ is the chemical potential; we

can also define the chemical potential as:

µ =
∂G

∂c
[5.84]
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where G is the Gibbs free energy.

We can define the Gibbs free energy density as:

F =

∫
V

(f(c) + ε2|∇c|2)dV, [5.85]

where f(c) is a scaled free energy density due to the contributions of both phases, a

function that has the form of a double potential. The ε2|∇c|2 term gives a measure

of the free energy density due to the concentration gradient at the interface. Here,

ε is a phenomenological parameter which scales with interface width (Cahn and

Hilliard, 1958).

We can therefore define the Gibbs free energy as:

G(c) = f(c) + ε2|∇c|2), [5.86]

and therefore using [5.84], we can find:

µ = f ′(c) + ε2∇2c. [5.87]

Finally, substituting [5.87] into [5.83] we find:

∂c

∂t
= −M∇2(f ′(c) + ε2∇2c) [5.88]

which is know as the time-dependent Cahn-Hilliard equation.
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6 Conclusions and Future Work

In this thesis, we have studied charge transport in lithium-ion batteries by consid-

ering the movements of charged ions in different parts of an electrochemical cell.

Here, we will summarise the work completed in each chapter with specific details on

the novel results produced in Chapters 3 and 5 and how this work could be taken

further.

We began Chapter 1 by giving an overview of lithium-ion batteries and their use as

energy storage devices. We discussed the structure of an electrochemical cell and

the electrochemical reactions that occur during the charge and discharge processes.

We gave background to the current popular research areas with a particular focus

on electrode and electrolyte materials and experimental and computational meth-

ods to improve their performance and reliability.

In Chapter 2, we began to explore models that can be used to describe charge

transport in the electrolyte. We began by considering a dilute electrolyte to derive

the equations for the Poisson-Nernst-Planck theory and then went on to consider

how this can be applied to the electrolyte near an electrode’s surface, where a dou-

ble layer forms. Throughout the model for dilute electrolytes, we assumed charge

neutrality, which we justified by non-dimensionalising the model and using the fact

that the Debye length for a dilute electrolyte is very small compared to the overall

scale of the cell (Richardson and King, 2007). This allowed for the concentrations

of each species in the electrolyte, cn and cp, to be replaced by electrolyte concentra-

tion, c, which reduces the number of equations and boundary conditions required

to solve the model.

We have also assumed the electrolyte behaves as an ideal solution which neglects

interactions between the differently charged ions. In a dilute electrolyte, this as-

sumption is reasonable, however electrolytes used in lithium-ion batteries are often

of higher concentration (∼ 1 M) than the dilute model allows (Newman and Thomas-

Alyea, 2004). At these higher concentrations, ions passing close to one another will

become much more frequent, making these interactions important to consider. Due

to the charges of the ions, oppositely charged ones will tend to attract each other,

and this leads to lower mobility.
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This motivated a look into the Maxwell-Stefan equations to model for moderately

concentrated electrolytes (Newman et al., 2003), where the mole fraction term in

the electrochemical potentials is replaced with the activity ai(ci). In Chapter 3,

we introduced the idea of electrochemical potential and studied how they could be

incorporated into charge transport models for the electrolyte phase. We opted to

formulate these into our own model and to include partial molar volume terms for

each species in the electrolyte to place restrictions on the high concentrations found

adjacent to the electrodes. Most models in the literature tend to predict higher

values for these concentrations than could realistically fit into the space. We gave

analytical and numerical solutions to our model. Our analytical solution appeared

to place too many restrictions on the total concentration allowed in a given volume,

so we relaxed these restrictions and solved the model numerically using a finite

difference scheme.

We then discussed the difference between ideal and non-ideal solutions. In order to

account for the interactions between the ionic species, we looked at the Maxwell-

Stefan equations and Margules functions. We set up a model that uses a Monte

Carlo algorithm to simulate the ionic movements in the electrolyte; we applied Mar-

gules functions to calculate values for the activity coefficient for various electrolyte

concentrations and solvent choices. Comparing the simulation results to experimen-

tal results from the literature, we found agreement at low concentrations, but the

results deviated to much higher activity coefficients at higher concentrations.

This motivated us to study the solvent more closely; we opted to account for the

formation of solvation shells in the simulation. These shells form in electrolytes

with polar solvents, such as those typically studied in the literature. This involved

making changes to the algorithm to represent the solvent molecules (adjacent to

a charged ion) as having partial charges on opposite sides of the molecule. We

repeated the simulation with these changes and found better agreement with the

experimental results. We observed that the mixed solvent used in the literature

showed promising results when assuming the lithium ions have coordination num-

bers ∼ 4, with the higher concentrations no longer showing significant deviation.

This model and the simulation results are a novel contribution towards moderately

concentrated electrolyte research. Often in the literature, ion-ion and ion-solvent
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interactions are neglected but they become important to consider at higher con-

centrations. Here, we show their inclusion gives good agreement with experimental

results and by studying the solvent in more detail we were able to continue to refine

our results. We feel this model could be used to further understand electrolytes

using different solvents, by altering the solvent interactions further to account for

the polarity of the chosen solvent.

In Chapter 4, we introduce the Doyle-Fuller-Newman (DFN) model, a popular

charge transport model for electrochemical cells. The DFN model is often compu-

tationally intensive to solve; a single-particle model can bring simplifications while

still maintaining high accuracy. Following the model derived by (Richardson, et al.,

2020), we began by non-dimensionalising the DFN model and then applied asymp-

totic analysis to find the leading-order model and the first-order correction terms.

In Chapter 5, we outlined a model where we attempted to account for the double

layer at the electrode’s surface. We have summarised the background of quantum

tunnelling and how this differs from classical mechanics. The Schrödinger equation

can be solved to give a measure of the probability of a quantum particle (in this

case, an electron) tunnelling through a potential barrier. Starting from the simple

potential step barrier, we discussed the form of a general matrix equation that can

be applied to any potential curve. We applied this model to cathodes made of

lithium iron phosphate and lithium cobalt dioxide to find the transmission coeffi-

cients when discharged at different voltages. These coefficients give a measure of

the probability of the electron tunnelling through the potential barrier. We used

data from the literature to find equations for the equilibrium potentials for these

materials. An interesting further look could consider not only the transmission co-

efficient for the electron tunnelling through the complete barrier but also how this

transmission coefficient changes throughout the barrier.

We introduced the Butler-Volmer equation to study the reaction kinetics of the re-

dox reactions occurring on the electrode surfaces. Using the equilibrium potentials,

we found the current densities for the same cathode materials and compared them

to the results from the electron tunnelling.

Applying the theory behind electron tunnelling to electrochemical cells is not of-
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ten considered in the literature, and is typically only looked at with relation to

anode materials, such as graphite. Here, we instead focus on cathode materials.

The motivation behind studying electron tunnelling was to determine if it could be

occurring at the electrode surface and contributing to the Butler-Volmer reaction

rates, with the idea that a higher occurrence of electron tunnelling could lead to

faster reactions and therefore faster lithium (de)-insertion.

Instead, the work in Chapter 5 indicated potential drawbacks to electrons tunnelling

out of the electrodes. We observed that the transmission coefficients increased at

higher discharge voltages; we suggested this could explain some of the degradation

these cathodes can experience. If electrons are tunnelling through the potential

barrier, they could go on to react with the electrolyte or irreversibly react with

lithium ions on the surfaces of the electrode. We suggest it could be a significant

mechanism through which a cathode-electrolyte interphase is able to form as well as

electrolyte decomposition. This is due to less available lithium ions in the electrolyte

for charge transport, leading to a reduction in capacity on repeated charge-discharge

cycles, especially at higher discharge voltages where our electron tunnelling model

suggests higher rates of electron tunnelling could be occurring.

6.1 Further Work

Here, we detail some possible research ideas to expand on the work done in each

chapter.

Further work on the Monte Carlo algorithm in Chapter 3 could include comparisons

to a continuous model derived from the Debye-Hückel theory. This could provide

ideas for how to account for the ionic interactions for future iterations of the algo-

rithm. Similarly, introducing the Maxwell-Stefan equations, and therefore including

the effects of the drag forces between ions, could prove valuable for refining the sim-

ulation for higher concentrations.

The simulation could be expanded to 3D and with a larger lattice, this wouldn’t

add too much more complexity to code the simulation but would require much more

computing power. The results could once again be compared to the literature and

other parameters could be calculated, such as electrolyte transference number t+

or electrolyte conductivity κ. More consideration of the ionic movements at the
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boundaries of the system would then become more important.

In solution, the positive and negative ions will have different radii from when they

are in solid form. Ionic radii depend on atomic structure and so there will be a vari-

ance in how close the ions and solvent molecules can get to each other depending

on the ions involved in the interaction. Our lattice treated the possible ion sites as

a grid of sites of set size and equal distance from each other. To more accurately

represent reality this could be reconsidered, but would add significant additional

complexity to the algorithm.

Chapter 4 introduces the single-particle model; this model shows good agreement

with the DFN model while being computationally quicker to solve and therefore

a similar process of asymptotic analysis could be applied to other models, such as

those used in battery management systems and models predicting electrode degra-

dation or thermal modelling. These models are often very computationally complex

to solve, and so a single-particle model could be a reasonable alternative.

In Chapter 5, we used electron tunnelling to explore the double layer. Our results

provided a reasonable basis for further research into the formation of CEI layers,

and the equivalent solid electrolyte interphase (SEI) layers that form on anodes.

Studying the effects of these layers on cell capacity over multiple cycles or possi-

ble ways to reduce electron tunnelling, and therefore reduce the formation of these

layers, could be valuable in research into increasing cycle life and overall cell per-

formance. Such as a look at more electrode materials and their specific chemistries

and how this affects the electric potential between the electrodes.

A model for lithium diffusion within the electrode particles could be included. Mod-

els in the literature often assume linear diffusion in the radial direction, but exper-

imental results have shown this doesn’t fully describe the lithium transport. Non-

linear diffusion has been researched with more complex models considering specific

electrode materials. For example, lithium iron phosphate undergoes phase separa-

tion during intercalation, we briefly set out the Cahn-Hilliard equation which has

been a focus of research recently to account for this behaviour. Combining this

with the models in Chapters 3 and 5 could form a full-cell model; our detailed look

at the ionic interactions and the solvent molecules in the electrolyte could lead to
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more interesting results and insights for other parts of a cell.
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