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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Coral reefs provide ecosystem benefits to millions of people but are threatened by rapid

environmental change and ever-increasing human pressures. Restoration is becoming a

priority strategy for coral reef conservation, yet implementation remains challenging and it is

becoming increasingly apparent that indirect conservation and restoration approaches will

not ensure the long-term sustainability of coral reefs. The important role of environmental

conditions in restoration practice are currently undervalued, carrying substantial implications

for restoration success. Giving paramount importance to environmental conditions, particu-

larly during the pre-restoration planning phase, has the potential to bring about considerable

improvements in coral reef restoration and innovation. This Essay argues that restoration

risk may be reduced by adopting an environmentally aware perspective that gives historical,

contemporary, and future context to restoration decisions. Such an approach will open up

new restoration opportunities with improved sustainability that have the capacity to dynami-

cally respond to environmental trajectories.

IntroductionAU : Pleasenotethatthereferencecitationsintexthavebeenreorderedtobeinsequentialorder:Pleasecheckandcorrectwherenecessary:
Coral reefs are one of the most biodiverse ecosystems on Earth, providing goods and services

valued at up to $9.9 trillion per year [1]. Nearly 1 billion people live within 100 km of a coral

reef [2], a global-scale societal dependence that places significant pressure on coral reef health

[3,4]. These acute human pressures are further compounded by anthropogenic climate change,

including rapid increases in ocean warming, acidification, deoxygenation, and sea level rise

over the coming decades [5]. For corals, migration to more favorable environmental condi-

tions is only possible at the larval stage; settled recruits and established adult colonies must
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therefore adapt or acclimatize to the environmental conditions they face. However, the capac-

ity for corals to do this is varied [6–8], raising significant concerns about the long-term sur-

vival of coral reefs [9] and their capacity to continue delivering ecological and socioeconomic

benefits [10].

It is becoming increasingly apparent that indirect conservation and restoration approaches

will not ensure the long-term sustainability of coral reefs [11–14], and are “not a viable option

for sustainable coral reef management” [15]. Without active interventions, coral reef ecosys-

tems are expected to collapse worldwide within the coming decades [5,16,17], with devastating

ecological, socioeconomic, and cultural consequences. Effective reef restoration therefore has

the potential to directly contribute to key targets within the UN Sustainable Development

Goals, including improved artisanal food security, societal equality, fishery sustainability, and

ecosystem resilience [15]. Such potential is exemplified in the recognition of coral reef restora-

tion as a priority action in both the UN Ocean Decade and the UN Restoration Decade

initiatives.

Ecological restoration, defined as “the process of assisting the recovery of an ecosystem that

has been degraded, damaged, or destroyed” [18], can be a vital practice for habitats where nat-

ural recovery is hindered. While the ultimate goal of most restoration initiatives is to return

ecosystems to pre-disturbance states, achieving this goal is becoming increasingly challenging

in coral reefs [19]. Consequently, efforts to reinstate biological integrity and diversity, ecosys-

tem function, and services may help mitigate long-term impacts. Broadly, restoration activities

fall into 2 main categories: indirect restoration (Box 1) approaches that facilitate natural recov-

ery and active restoration (Box 1) approaches that manipulate the system to promote coral

growth. However, unless the unfavorable environmental conditions leading to degradation are

addressed (which may be feasible for acute stressors such as point-source pollution, but poses

a considerable challenge for the pervasive impacts of global climate change), sustainable resto-

ration remains extremely challenging [20]. Further, persistent habitat loss over the long term

and the effects of climate change can exceed the adaptive capacities of individual species, lead-

ing to fundamental changes in ecosystem structure and/or function [21,22]. Consequently, the

pursuit of restoring historical and/or primeval states faces challenges [23–25]. Instead, active

restoration initiatives are gaining recognition as essential for safeguarding the future of coral

reefs [16,26–28] and their associated goods and services [29], buying time while efforts are

made to address global climate challenges.

Box 1. Glossary

Indirect restoration

Lessen stressors responsible for reef degradation, with the aim of helping natural recov-

ery of coral reefs towards a previous ecosystem state. This approach encompasses actions

such as improvements to water quality (e.g., removal of pollution point sources).

Active restoration

Deliberate human interventions are taken to expedite reef survival, using specific tech-

niques to manipulate the system and enhance ecosystem function. Examples of such

methods include coral gardening and transplantation (sometimes with land-based or

ocean-based nurseries), larval enhancement, genetics-based selection, microbiome

manipulation, and substratum engineering (i.e., artificial reefs).
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Nevertheless, despite a clear and pressing need for implementation, coral reef restoration cur-

rently faces limitations in widespread scalability, longevity, and cost efficiency [30]. In this Essay,

we highlight the undervalued roles of environmental conditions in restoration practice, which

carry substantial implications for restoration success. In situ environmental conditions have a

well-established correlation with coral abundance and reef development (Table 1), underscoring

their crucial importance in “predicting conservation baselines and guiding management invest-

ments” [3]. Indeed, a retrospective examination of environmental conditions at reef restoration

sites shows that organic carbon, sea surface temperature anomalies, distance from land, and light

intensity are some of the most important factors influencing outplant survival [31]. Consequently,

giving paramount importance to environmental conditions, particularly during the pre-restora-

tion planning phase, has the potential to bring about considerable improvements in coral reef res-

toration and innovation. Such environmental and climatic considerations could also be used to

inform the most suitable biological and/or (eco)engineering approaches, guiding the selection of

novel restoration sites that may not have previously sustained reefs.

Environmental parameter reporting in the coral reef restoration

literature

To provide context on the historical and current prevalence of environmental parameter

reporting in coral reef restoration research (before, during, and after restoration activities), we

conducted a systematic literature review on academic publications (n = 157; S1 Table). Most

articles (55%) did not explicitly report any environmental parameters within the manuscript

text (S2 Table). Among those that did, temperature and light (provided as depth or light inten-

sity) were the most commonly reported (25% to 27%; Fig 1A and S2 Table); only 30% reported

more than 3 parameters (Fig 1B and S2 Table). Despite year-on-year variability, the number of

studies reporting environmental parameters and the breadth of parameters assessed over time

Protection

Creation of marine protected areas to protect existing reefs from some external pressures

(e.g., overfishing). No directed control over the trajectory of coral reef ecosystem

change.

Reef-of-tomorrow

Novel coral reef ecosystems, established in new areas lacking recent coral reef presence,

or in completely deteriorated reefs, featuring distinct communities of coral reef taxa.

Reef-of-tomorrow formation is stimulated by implementing active restoration tech-

niques in new and/or degraded areas identified to be within a favorable environmental

range for corals (and other associated organisms) in the coming years-to-decades. Reefs-

of-tomorrow have the potential to offer a range of ecosystem services comparable to

present-day and historical reefs and may create an opportunity for new service

provision.

Environmental envelope

The set of environments within which it is believed a species or community can persist

and their environmental requirements are satisfied.
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has increased (Fig 1C and 1D), but with no apparent geographic pattern (Fig 1E). Notably,

three critical environmental factors that constrain coral distribution—nutrients, geomorphol-

ogy, and carbonate chemistry—were each reported in�6% of articles (Fig 1A), highlighting a

gap in attention of these priority factors [32]. It is important to note that this literature review

did not include the gray literature or unpublished results, and it did not consider embedded

local knowledge that might not be quantified and documented in primary research manu-

scripts. Additionally, where environmental parameters were not reported, this does not neces-

sarily mean that environmental parameters were not considered. Nevertheless, our findings

underscore the underreporting of environmental parameters in academic literature, which are

essential for improving our scientific understanding of the factors that contribute to the suc-

cess and failure of restoration efforts.

Environmental and climatic considerations can guide restoration

decisions

Despite the observed increase in survival rates of restored corals over time [92], environmental

factors remain a key determinant of restoration failure, both in the short term and the long

term [93,94]. In cases where local environmental changes are minimal, or where human acces-

sibility remains essential for service benefits, restoring coral reefs in current or historic loca-

tions with locally derived parent colonies may still be a worthwhile approach, at least in the

short term. However, given the widespread impact of environmental change, coastal anthropo-

genic pressure, and future environmental projections, we propose that environmental consid-

erations should now be given equal weight alongside physiological, ecological, and

socioeconomic criteria in restoration decision-making. Adopting a holistic environmental

approach enables a departure from the default reactive restoration pattern, allowing for the

Table 1. Environmental parameters known to impact some aspects of coral ecophysiology.

Parameter Coral regulatory capacity Exemplar

references

Geophysical

Temperature Growth, photosynthesis, respiration, reproduction, recruitment, thermal bleaching, survival, and

disease resistance

[8,32–35]

Light intensity (including light pollution at

night)

Photosynthesis, calcification, bleaching, chlorophyll content, and symbiont density [36–39]

Light quality/light spectrum Growth, coloration, and photophysiology [40–42]

UV radiation Cellular and DNA integrity [43–47]

Lunar light cycles Reproduction [45–47]

Waves Breakage, growth, diffusive boundary layer, and bleaching [48–51]

Currents Planulae supply and connectivity [48–51]

Sedimentation Bleaching, survival, disease susceptibility, metabolism, calcification, and reproduction [52–55]

Depth Refer to light, temperature, carbonate system, nutrients, and waves parameters [38,56,57]

Geochemical

Salinity Osmotic stress, photosynthesis, calcification, bleaching, and survival [58–60]

Nutrients Calcification, metabolism, bleaching sensitivity, and growth [61–68]

Pollutants and contaminants (e.g.,

herbicides, oil)

Photosynthesis and calcification, survival, reproduction, early-life transitions and genetic effects,

and metabolism

[65,69–75]

Carbonate system Calcification, reef growth, bioerosion, bioavailability of other elements, and fish behavior [66,67,76–82]

Oxygen Metabolism, bleaching, and survival [83–87]

Dissolved organic carbon/dissolved organic

matter

Microbial biomass, reef microbialization, and dissolved organic carbon release by algae [88–90]

https://doi.org/10.1371/journal.pbio.3002542.t001
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Fig 1. Measurement of environmental parameters in 157 active restoration studies from 1984 to 2022. (A) Percentage of articles reporting environmental

parameters, grouped according to priority categories suggested by Abrego and colleagues [34,91] (S1 Table, light and depth combined). Depth was included

under the “Light” category. (B) Heat map indicating the number of environmental parameters reported (columns) in each applied restoration method (rows)

in the articles. The total number of articles using a specific restoration method are given after the row title. Color gradient is row specific and proportional to

the number of articles corresponding to that restoration method, where the darkest color indicates the highest number of articles within that category. Number

of articles for each method are given in parenthesis following the restoration method title, with some articles using more than 1 restoration technique. (C)

Number of articles reporting measurements of environmental parameters over time. Full height of the bars corresponds to the total number of articles from

that year, with the number of articles per year that reported environmental conditions shaded in pink. (D) Sum of the number of environmental parameters

reported across all articles over time. (E) Spatial distribution of articles by location, with points scaled by the number of studies per location. See S1 Table for

the literature review search terms and the final publication database.

https://doi.org/10.1371/journal.pbio.3002542.g001
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enhancement of active coral restoration approaches within present-day and projected environ-

mental contexts. This approach creates opportunities for innovative and alternative strategies

with higher long-term sustainability (Fig 2).

Achieving the highest level of scientific robustness in coral reef restoration would entail

quantifying a comprehensive set of local environmental parameters, complemented by histori-

cal context and future projections, which would be applied as priority information layers

Fig 2. The cycle between functional and degraded reefs, driven by stressors at local–global scales. A return to a functional reef system can be achieved

following degradation through a continuum of restoration intervention options (outer band). In the face of a rapidly changing climate, low-intervention

options (protection and indirect restoration) are associated with relatively poor long-term sustainability (inner band; red/orange colors) compared to high-

intervention options and innovative restoration solutions (inner band; blue/green colors). The gradient of restoration intervention is associated with an

increasing necessity for a priori environmental consideration (outer arrow) to guide decisions on the most suitable restoration approach, the best target site(s),

and the definition of context-specific restoration success. The reef-of-tomorrow insert proposes a novel restoration intervention strategy, in which future

environmental trajectories directly inform the creation of new reef systems that are spatially and ecologically distinct from present-day reefs.

https://doi.org/10.1371/journal.pbio.3002542.g002
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during decision-making processes. However, the resources, skillsets, logistics, and finances

required for such an approach are substantial and likely unattainable in many situations. In

light of these constraints, compromises may need to be made, with the understanding that

what remains a priority must be locally relevant and guided by contemporary understanding.

Prior to applying restoration efforts, the cause(s) of the original reef degradation should be

determined so that the most appropriate restoration method can be utilized. To enhance envi-

ronmental parameter consideration in restoration efforts, we propose three options to aid in

navigating the challenges presented.

The first option is to consider the translation of local and traditional environmental knowl-

edge. This is frequently underestimated and tends to go unrecorded in empirical science [20],

but it holds considerable potential for addressing gaps in environmental knowledge (particu-

larly concerning spatiotemporal variation). The second option is to access remote data. Satel-

lite remote sensing programs generate extensive datasets across a multitude of parameters.

These datasets are particularly pertinent for understanding regional-scale variability, with

many programs offering time series spanning several years. To complement this, monitoring

initiatives by academic institutions, nongovernmental organizations, and governmental agen-

cies operate in numerous areas. When publicly available or accessible upon request, these data-

sets provide valuable information for understanding local-scale environmental contexts. In the

unlikely circumstance where the first two options are not available, a third option is to conduct

baseline environmental monitoring. The selection of parameters to consider depends on the

local context (refer to Table 1). Some parameters (e.g., point-source pollution inputs) may

require dedicated field efforts for sample collection and analysis. Other parameters are more

financially and logistically accessible (Box 2). With this approach, resolving spatiotemporal

variability should be a priority to sufficiently inform conservation decisions.

Box 2. Suggestions for environmental parameter monitoring
techniques

• Secchi disk measurements can serve as a proxy for light conditions and sedimentation.

• Temperature can be easily recorded in situ using low-cost data loggers (less than $40

each).

• Depth (and sometimes temperature) can be easily recorded from dive computers, a

common accessory for SCUBA divers.

• Salinity can be measured inexpensively with a hydrometer (under $30) or refractome-

ter (approximately $100). Simultaneous measurement of temperature and salinity

enables identification of different water masses, which can be subsequently used to

infer water currents and reef oceanography.

• pH (a component of the ocean carbonate system) can be determined at a low-cost with

up to 0.1 unit resolution using pH paper strips (around $5 to 10 per 100 strips). In

some systems, this may be sufficient to discern spatial and/or temporal variability

across a reef. Other components of the carbonate system (e.g., pCO2, total alkalinity,

dissolved inorganic carbon) require greater financial and logistical investment.

• Many of these parameters (e.g., temperature, salinity, pH, turbidity) can also be reli-

ably and potentially continuously monitored using low-cost bespoke sensor systems

controlled by micro-computers (for example, Raspberry pi [95,96]).
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Once the causes of reef degradation are understood and the environmental seascape across

a reef is characterized, decisions regarding the extent and type of restoration intervention

must be decided. Historical, contemporary, and future environmental contexts have crucial

roles at this stage, gaining significance as the level of intervention increases (Fig 2). In some

instances, it may be feasible to eliminate the environmental stressor(s) causing reef degrada-

tion (e.g., increased sedimentation from dredging). In these scenarios, adopting an environ-

mentally aware perspective offers robust evidence to support behavioral and/or policy change,

and less intrusive options like protection (Box 1) and/or indirect restoration (Fig 2) may prove

sufficient to restore a functional reef. In these cases, environmental assessment, conducted

through methods such as local knowledge gathering, remote data, and/or baseline monitoring

may be confined to a defined period pre-restoration, and focus on a limited suite of parameters

related to the specific stressor(s).

Using environmental considerations to innovate restoration

approaches

In cases where the environmental context does not favor indirect restoration approaches,

active restoration interventions are required. Although these interventions are inherently

more complex and pose greater risks during implementation, their prevalence in the literature

is increasing (S1 Table). This may be attributed to the urgent need for climate action, with a

rising awareness of the rapidly diminishing and unfavorable projections for the future survival

of coral reefs [16,97]. As the extent of restoration intervention expands, both contemporary

and future environmental conditions gain heightened significance (Fig 2) and should thus be

prioritized during the planning stage. A comprehensive environmentally aware perspective

will facilitate a quantitatively informed selection of the restoration location and/or interven-

tion type. This choice can be iteratively refined over time as new data and technologies emerge,

which will help to overcome present-day uncertainty in environmental prediction modeling,

which remains a fundamental challenge. Nevertheless, an environmentally informed analysis,

even without future predictions, would enhance the efficiency of restoration activity resources

and contribute to improved sustainability. This approach might include:

1. The identification of restoration areas where an environmental stress is (or will be) lower.

2. The identification of restoration areas where environmental variability is naturally high,

providing resilience against background environmental change.

3. The selection of an intervention type that aligns best with the in situ conditions of the resto-

ration area.

4. The selection of coral species that are best suited to the restoration area and to the interven-

tion type.

One potential outcome of such an approach is that restoration could successfully be performed

in areas where coral reefs have not been historically present. We propose that these so-called

“reefs-of-tomorrow” (Box 1) could prompt a shift in restoration decision-making to something

more adaptive to prevailing and projected environmental conditions. If designed appropriately,

these reefs-of-tomorrow would ideally provide the same ecosystem services as current reefs, if not

more, with enhanced tolerance to current and projected environmental conditions. Active inter-

ventions in reefs-of-tomorrow could include both spatial and ecological applications.

Spatially, climate change is causing areas previously suitable for coral growth to become

compromised, while regions that were once unsuitable are now, or soon will be, within
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environmental envelopes (Box 1) conducive to coral reef development [98]. Consequently,

there is potential for a latitudinal expansion of coral reefs, particularly in current marginal reef

systems; in fact, some coral species are already undergoing poleward migration [99]. This shift

opens up ecological, socioeconomic, and cultural opportunities for sustainable coral reef sys-

tems over the coming decades, albeit geographically shifted away from current/historical

boundaries of coral reef extent. Drawing insights from terrestrial forestry, embedment of envi-

ronmental considerations into restoration and forest expansion initiatives has improved resto-

ration effectiveness in the former forest margins, which are now within optimal

environmental envelopes [100]. Similar principles could be applied in coral reef restoration.

To do this, we must recognize that although a reef used to be in a particular location, it might

now, or in the near future, be more effective to restore the reef at or beyond its current mar-

gins, taking advantage of shifted boundaries in favorable environmental and climatic enve-

lopes. It is important to note that poleward species and habitat shifts are expected to be

variable and not a simple increase in latitude [98,101,102]. Rigorous spatiotemporal environ-

mental understanding is essential to determine new envelope boundaries. As uncertainty in

environmental projections improves, contingent on the quality of environmental input data,

our confidence in predicting future coral (reef) boundaries will also increase. These projection

data in turn provide the foundation for guiding the boundaries of optimal restoration sites.

Ecologically, coral reef species exhibit differential responses to the same environmental per-

turbation, with varying effects on physiological processes including calcification, growth rate,

metabolism, feeding behavior, and reproduction, among others (Table 1). Active restoration

initiatives typically use either asexual methods (coral transplantation) or sexual recruits,

obtained through larval collection and settlement. Among these reef restoration approaches,

branching coral species have emerged as the preferred candidates due to their fast growth

rates, higher nursery survival rates, the ease of handling large numbers of fragments in the

nurseries, esthetic appeal, and the capacity to quickly create complex environments. Consider-

ing future environmental contexts, these reef restoration approaches may be further optimized

by incorporating naturally heat-resistant corals [103,104], or those engineered to be more

environmentally resilient via selective breeding, coral chimerism, epigenetics, and/or micro-

biome manipulation [105,106], or by artificially increasing structural complexity [107]. This

optimization can be employed to design reef-of-tomorrow restoration in a degraded coral reef

area, featuring a different consortia of coral reef taxa compared to the pre-degradation state.

Given the rapid rate of global environmental change and the bleak outlook for present-day

coral reef distributions, the present moment calls for an expansion in the scope of reef restora-

tion intervention [108], along with a serious contemplation of innovative reef-of-tomorrow

strategies (Fig 2). From the standpoint of coral survival, this approach might be the pinnacle in

restoration intervention, involving the establishment of new reef ecosystems that are spatially

and ecologically distinct from present-day reefs. These would be situated in areas where

emerging environmental envelopes are, or soon will be, conductive to sustainable coral reef

development. Naturally, these shifts would necessitate consideration of concurrent changes in

associated flora and fauna, as well as the implications for ecosystem service provision. The

shift towards anthropogenically created reefs, encompassing changes in both ecological com-

position and location, builds upon the momentum gained from the use of “designer” ecosys-

tems as a tool for goal-orientated, forward-looking restoration practices [109]. While this

approach has stirred division within conservation science, proponents argue that it might be

“the only way to practically confront novel environmental regimes” [110]. The reef-of-tomor-

row restoration approach provides a platform for reef sites with environmentally extreme con-

ditions (e.g., tide pools, back reefs, CO2 vent sites, lagoons, mangrove forests, high latitudes) to

emerge as crucial areas for the long-term sustainability of the global coral reef ecosystem [111].
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Although we recognize these ecosystems, and the corals supporting them, as natural resilience

hotspots [104,112], their use as a stress-tolerant coral stock has yet to be fully integrated into

active restoration efforts [104] or global conservation initiatives [113]. Nevertheless, small-

scale studies are starting to provide evidence that a reef-of-tomorrow approach may be a viable

restoration strategy. For example, “bleaching-resistant” coral nurseries have been established 2

km from their tide-pool parent colonies in American Samoa [114], and macrotidal heat-resis-

tant corals from northwest Australia are known to maintain heat tolerance alongside low tem-

perature acclimation [115].

Using environmental and climatic considerations in a risk–benefit

analysis

Attempting to predict and select species survivors instead of conserving biological diversity

from which survivors could naturally emerge presents inherent risks such as fitness trade-offs

and pathogen spread, and may underestimate the adaptive potential of reef communities

[109,116]. However, in the face of rapid climate change, the argument for adopting riskier res-

toration interventions is gaining traction [97,104]. To mitigate these risks, we put forward the

notion that in a reef-of-tomorrow approach, the selection of restoration sites and methodolo-

gies should heavily rely on a robust, quantifiable environmental foundation. This foundation

should encompass a comprehensive understanding of past and present-day environmental

conditions, along with high-confidence, low-uncertainty projections of future environmental

trajectories, preferably at regional-to-local scales (Fig 3). Environmental contexts will also have

a crucial role in guiding and refining restoration goals, as different restoration outcomes will

be associated with different environmental optima. The ultimate restoration initiative will rep-

resent the delicate balance between service provisions, maximal sustainability, and the priori-

ties of restoration goals. High-intervention restoration approaches that establish new spatial

boundaries and/or introduce new ecological communities could yield significant ecological,

social, economic, cultural, political, and ethical implications [110], whether positive or nega-

tive. The incorporation of these factors in the restoration objectives might lead to the adoption

of an environmentally suboptimal approach [100]. However, we emphasize that if this is the

case, it should be grounded in a robust environmental knowledge base to minimize inherent

risks. Therefore, the success of reef-of-tomorrow restoration relies on a thorough analysis of

the risks and benefits associated with both natural and social factors, including environmental

trajectories, biodiversity, community accessibility, and service provision. To effectively man-

age this, restoration objective(s) must be well defined and justifiable across stakeholders [117].

Consequently, stakeholder consultation and consensus building in the risk–benefit analysis

remain essential components of restoration planning.

The optimization of any of the restoration approaches presented in Fig 2 faces challenges

due to the predictive risk and uncertainty associated with all environmental parameters, par-

ticularly when restoration objectives are not well defined. This challenge is especially pro-

nounced for extreme events or unexpected environmental trajectories: the influence of

catastrophic events such as marine heatwaves and tropical storms on restoration success for

coral reefs and beyond is well documented [118]. Directly mitigating against these events, par-

ticularly at a local scale, may not be feasible. To minimize the risk of failure, especially against

extreme events, a sensible strategy is to adopt a bet-hedging “portfolio” approach to restora-

tion. This approach involves integrating biological resilience and innovative techniques with

environmental considerations to encompass a significant portion of the risk–benefit gradient

(Fig 3) and maximize the opportunities for success [109]. Such an approach may involve using

multiple species, life stages, and genotypes; implementing restoration at multiple sites or
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habitat types; and the use of several parallel restoration methods [118,119]. An environmen-

tally aware, bet-hedging reef restoration could therefore operate as a “synergistic intervention”

[120], with ethical, political, economic, and ecological justification, and the potential to achieve

both social and ecological resilience in parallel.

Conclusion

Coral reefs stand out as one of the most ecologically, environmentally, and socioeconomically

important ecosystems in the marine realm, offering a myriad of direct ecosystem services and

provisions to millions of people worldwide. However, rapid environmental changes and esca-

lating human pressures on coastal zones are threatening the enduring survival of coral reefs. It

has become evident that relying solely on climate mitigation may not be sufficient to safeguard

the future viability of corals and coral reefs. Simultaneously, targeted active restoration actions

Fig 3. Conceptual overview of a coral restoration risk–benefit gradient. Different restoration approaches (dark blue

boxes) have different levels of risk associated with their implementation and long-term sustainability, but also yield

differing levels of service benefits (light blue boxes), with implications that are positive (blue text), negative (red text), or

mixed (purple text). Shifts in service access may be detrimental to original stakeholders but provide opportunities for

new stakeholders. An environmentally aware perspective has the potential to reduce risks while maintaining the benefits

(green dashed boxes).

https://doi.org/10.1371/journal.pbio.3002542.g003
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are deemed necessary, but the long-term sustainability of current efforts raises uncertainties.

Environmental factors consistently hold a pivotal role in determining restoration success, yet

they are underreported in the existing reef restoration literature. Integrating environmental

considerations into restoration strategies will reduce risk and accelerate innovation, as seen in

the development of reefs-of-tomorrow, which work with environmental changes rather than

working against them. Although not without challenges, we contend that embracing an

environmentally aware perspective has the potential to enhance the long-term sustainability of

corals and coral reef ecosystems.
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