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Abstract

We propose a new method for estimating subject-specific mean functions from longitudinal data.
We aim to do this in a flexible manner (without restrictive assumptions about the shape of the
subject-specific mean functions), while exploiting similarities in the mean functions between dif-
ferent subjects. Functional principal components analysis fulfils both requirements, and methods
for functional principal components analysis have been developed for longitudinal data. However,
we find that these existing methods sometimes give fitted mean functions which are more complex
than needed to provide a good fit to the data. We develop a new penalised likelihood approach to
flexibly model longitudinal data, with a penalty term to control the balance between fit to the data
and smoothness of the subject-specific mean curves. We run simulation studies to demonstrate
that the new method substantially improves the quality of inference relative to existing methods
across a range of examples, and apply the method to data on changes in body composition in
adolescent girls.

Keywords: Clustered data; Functional principal components analysis; Mixed-effects models;
Penalised likelihood; Smoothing; Subject-specific inference

1 Introduction

We consider a simple longitudinal data setup, in which observations are made on each of d subjects,
with observations on subject i at ni time points. We are interested in modelling how the mean
response for each subject varies over time.

Writing Yij for the observation on subject i at time point tij , we might model

Yij = µi(tij) + ϵij , i = 1, . . . , d, j = 1, . . . ni, (1)

where µi(.) is a function describing how the mean response for subject i varies over time, and
ϵij ∼ N(0, σ2) are independent error terms. Our interest is in estimating the subject-specific
mean functions µi(.). In doing this, we aim to allow flexible dependence on time, and to make use
of similarities between these curves to improve estimation.

A large range of methods exist for this problem, and we review some of them in Section 3.
The most commonly-used methods are simple mixed-effects models which assume each µi(.) varies
linearly with time. In Section 2.1, we motivate the need for more flexible models for longitudinal
data, giving a real-data example in which the assumption of linear dependence on time is too
restrictive.

To allow flexible dependence on time while still exploiting similarities between the subjects, we
focus on methods from functional principal components analysis, in which each subject-specific
mean function is expressed as the population mean plus a subject-specific combination of a small
number of unknown functions. These functions, the principal component functions, are chosen to
be able to best explain the variation between the subject-specific mean functions.

Methods for functional principal components analysis with longitudinal data (often known as
sparse functional principal components analysis) have been developed previously (Yao et al., 2005;
Di et al., 2009). However, these methods sometimes give fitted mean functions which are more
complex than necessary. In Section 2.2, we give an example with data simulated from a simple
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random intercept model, with a linear dependence on time, and show that existing methods for
sparse functional principal components analysis give wiggly curves for the fitted mean functions.
This is problematic because it may lead to the conclusion that there is a complex relationship
with time even in cases where the true relationship is linear.

In this paper, we develop a new penalised likelihood approach to flexibly model longitudinal
data, with a penalty term to control the balance between fit to the data and smoothness of the
subject-specific mean curves. In Section 5, we run simulation studies across a range of examples to
demonstrate that the new method substantially improves the quality of inference relative to exist-
ing methods, in terms of estimation error (often several times smaller than existing methods) and
confidence intervals (with close to correct coverage, in cases where existing methods substantially
under-cover).

The setup (1) is a simple one, with normal errors and a single covariate (time). We focus
on this simple setup to make the methods development and coding more straightforward, and to
make the main ideas easier to understand. The same general ideas have the scope to be applied
to more complex modelling problems, and we discuss some possible extensions in Section 7.

2 Motivating examples

2.1 Percent body fat in adolescent girls

A common modelling assumption is that the subject-specific mean functions are linear in time.
We first give an example where this assumption is not reasonable, to motivate the development
of more flexible models.

We consider data on body fat measurements taken from the MIT Growth and Development
Study, originally studied by Phillips et al. (2003). The data is used as an example in Fitzmaurice
et al. (2011), and is made available as the fat data in the associated ALA R package (Luque and
Bates, 2012).

The data contains measurements of percent body fat for 162 girls, in the years before and
after menarche (time of first period). Measurements were taken roughly annually, with the last
appointment scheduled four years after menarche. Time is rescaled to be relative to time of
menarche, so that zero represents reported time of menarche. The number of observations on each
subject ranges from 3 and 10, with a mean of 6.5. The data for the first 20 girls is shown in Figure
1. The estimated µ̂i(.) from a linear mixed model with random intercepts and slopes is overlaid.

It seems that percentage fat tends to increase over time, but this increase does not appear to
be linear. Fitzmaurice et al. (2011) consider a smoothed curve for the mean response over time,
similar to Figure 2. On average, percent body fat seems to increase more slowly before menarche
than after.

A key advantage of longitudinal data relative to cross-sectional data is that it enables the
study of individual trajectories, as well as the average behaviour in the population. There are
many possibilities for those individual trajectories consistent with any given population-averaged
trajectory (such as the curve in Figure 2). For instance, individuals might all have trajectories of
the same shape, shifted up or down by an intercept, or the shape of those trajectories might differ
substantially between individuals. In the latter case, we might want describe the similarities and
differences between the shapes of individual curves. For instance, we might ask whether there are
times at which the percent body fat is increasing rapidly for a large majority of girls, or other
times with high variability between girls, with percent body fat increasing rapidly for some and
decreasing rapidly for others.

To answer this sort of question, we need to model the individual curves. If there were a
large number of observations on each subject, it might be reasonable to simply fit a separate
smooth curve for each subject. However, in this case we have a small number of observations per
subject, so it is important to share information between subjects to obtain better estimates of
the individual curves. For instance, by borrowing information from others we may hope to get a
reasonable estimate for the trajectories of subjects 8 and 13, even though we only have a small
number of observations on them.
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Figure 1: Percentage body fat against time, for the first twenty girls in the fat data. The fit
from a random slopes model is shown with dashed lines.
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Figure 2: Percentage body fat against time for all girls in the fat data, with loess smoothed
curve overlaid.
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Figure 3: Example simple longitudinal data, with fit from a random intercept model shown with
dashed lines.

Linear mixed models (such as the random slopes model shown in Figure 1) allow such informa-
tion sharing when the individual mean curves µ̂i(.) are modelled as straight lines. The aim of this
paper is to develop new methods to enable flexible non-linear dependence on time, while sharing
information between subjects. We analyse the fat data using our new methods in Section 6.

2.2 Simulated data from a random intercept model

To motivate why improvements to current methods for functional principal component analysis
are needed, consider the data shown in Figure 3. The fit from a linear random intercept model
is show with dashed lines. This simple random intercept model appears to fit the data very well
(and in fact the data are simulated from this model).

Figure 4 shows the estimated curve µ̂1(.) for the first subject, using three approaches to
functional principal component analysis: PACE (Yao et al., 2005) and Di (Di et al., 2009), and the
new penalised likelihood method proposed in this paper. We will review the existing approaches
in Section 3. To use the PACE and Di methods, we must make some choices about which methods
to use for tuning parameter selection. The details of the precise methods used here are described
as PACE-BIC and Di-95 in Section 5.1.2.

PACE and Di both estimate µ̂1(.) as a wiggly curve, while the estimate from the new penalised
likelihood method is very close to the straight line fit from the random intercept model. Estimates
of the subject-specific mean curves for the other subjects behave similarly. At first glance, it
appears that PACE and Di may be over-fitting to the data: estimating wiggly curves rather than
straight lines in order to match the data more closely. However, this is not the case: the residual
sum of squares is smaller for the random intercept fit (1.8) than for the PACE (3.0) or Di (3.6)
fits.

A desirable property of flexible regression methods is that if a simple linear model fits the
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(a) PACE (Yao et al., 2005)
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(b) Di (Di et al., 2009)
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(c) Penalised likelihood

Figure 4: The estimated curve µ̂1(.) for the the first subject, for the data shown in Figure 3,
using a variety of flexible regression methods (solid lines). The fit from a random intercept model
is overlaid with dashed lines. The points show the observations made on the first subject.

data well, the flexible regression model should return a similar fit, close to a straight line. While
existing methods based on functional principal components will give consistent estimates of the
individual curves given sufficient data, they do not have this property of parsimony. The new
penalised likelihood methodology developed here directly penalises average wiggliness of the mean
curves, with a smoothing parameter trading off fit to the data against this average wiggliness.

3 Existing modelling approaches

3.1 Flexible models without the longitudinal component

Without the longitudinal component, we could use a penalised spline approach to flexibly model
the mean function µ(.) by

µ(t) =

nB∑
j=1

βjbj(t),

where where bl(.) are spline basis functions. To avoid over-fitting, we could estimate the parameters
by using penalised likelihood

ℓp(β, σ
2) = ℓ(β, σ2)− γw(µ), (2)

where

w(f) =

∫ ∞

−∞
f ′′(t)dt

is wiggliness of a function f and γ is a smoothing parameter, which may be chosen by generalised
cross validation or by maximising a marginal likelihood (Wood, 2017). This is not directly useful
here, because we wish to model the subject-specific mean, but our proposed approach described
in Section 4 involves a penalised likelihood with similar structure to (2).

3.2 Linear mixed models

Linear mixed models provide a relatively simple approach for modelling the subject-specific mean
functions µi(.). We could assume a random intercept model

µi(t) = β0 + β1t+ u0i, u0i ∼ N(0, σ2
u) (3)

or a random slopes model

µi(t) = β0 + β1t+ u0i + u1i, ui = (u0i, u1i)
T ∼ N2(0,Σu). (4)
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The random intercept model (3) assumes that each subject deviates from the population-averaged
response only by changing the intercept, while the random slopes model (4) allows the mean
response curve for each subject to be any straight line.

The simple linear mixed models (3) and (4) make a strong assumption of linearity of the mean
curves over time, which is often not appropriate (as for instance in the fat data from Section 2.1).

3.3 Linear mixed models with spline basis

More flexibility can be included within the framework of linear mixed models by using a spline
basis. We could use a random intercept model

µi(t) =

nB∑
j=1

βjbj(t) + u0i, u0i ∼ N(0, σ2
u) (5)

or the analogue of the random slopes model, which includes a random subject-specific term for
each basis coefficient

µi(t) =

nB∑
j=1

βjbj(t) +

nB∑
j=1

ujibj(t) ui = (u1i, . . . , unBi)
T ∼ NnB

(0,Σu). (6)

The random intercept model (5) assumes that each subject deviates from the population-
averaged curve only by changing the intercept, which may be too simplistic. Model (6) is very
flexible (provided that a sufficient number of basis functions are used), but requires large number
of observations on each subject in order to estimate the O(nB

2) unknown parameters. We may
need to take nB fairly large to provide a flexible basis, but a large nB makes the estimation
problem worse.

The model (6) does not penalise the wiggliness of the subject-specific mean curves. There
are several related approaches which model each subject-specific mean curve as a combination of
spline basis functions, including a penalty on the wiggliness of these curves. Pedersen et al. (2019)
provides a review, including code to fit these models in the mgcv R package (Wood, 2017). Scheipl
et al. (2015) describes a spline-based approach, including extensions to more complex problems,
available in the pffr function of the refund R package (Goldsmith et al., 2023). Unlike model
(6), the random effects for each spline coefficient are assumed independent in these models, with
simple structure ui ∼ NnB

(0, σ2
uI). This substantially reduces the number of parameters which

need to be estimated, but does not allow modelling of dependence between the random coefficients.

3.4 Functional principal components analysis

3.4.1 Motivation

In many cases, there may be variation between the mean curves which is not explained by a change
in intercept, but which could be explained in some relatively simple way. For instance, in Figure
5a, the mean curves are clearly related to one another, but an intercept is not enough to explain
the variation. In this particular case, the curves are generated according to

µi(t) = f0(t) + uif1(t), ui ∼ N(0, 1), (7)

with the function f0(.) as in Figure 5b and f1(.) in 5c.
In general, this motivates us to consider

µi(t) = f0(t) +

K∑
k=1

ukifk(t), ui = (u1i, . . . , uKi)
T ∼ NK(0,Σu). (8)

where fj(.) areK unknown functions (which could be written in terms of a spline basis), describing
the variation in the subject-specific mean functions. K is the unknown number of functions needed
to describe the variation, where in many cases K ≪ nB . For instance, a random intercept model

6
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Figure 5: An example of model (7) with one-dimensional variation.

has K = 1 variation function (a constant), and a random slopes model has K = 2 variation
functions (a constant and a linear function).

In the form (8) this model is unidentifiable. To see this, write f(t) = (f1(t), . . . , fK(t))T , so
that µi(t) = f0(t) + uT

i f(t), and choose any orthogonal matrix Q. Then let

u∗
i = Qui, f∗(t) = Qf(t),

where
u∗
i ∼ NK(0,Σ∗

u), Σ∗
u = QΣuQ

T .

Since
(u∗

i )
T f∗(t) = uT

i Q
TQf(t) = uT

i f(t),

(f0(t), f(t),Σu) and (f0(t), f
∗(t),Σ∗

u) parameterise the same process. We need to impose further
constraints on the variation functions and Σu to make (8) an identifiable model.

3.4.2 The Karhunen-Loéve decomposition

These ideas are strongly linked to functional principal components analysis (FPCA), which relies
on the Karhunen-Loéve decomposition

µi(t) = f0(t) +

∞∑
k=1

ukifk(t), (9)

where uki are uncorrelated random variables, with E(uki) = 0 and var(uki) = 1, ordered such
that λ1 ≥ λ2 ≥ . . .. Here f1, f2, . . . are orthonormal functions, that is

⟨fi, fj⟩ = 0 for all i ̸= j ∈ {1, 2, . . . , }

and
⟨fk, fk⟩ = 1 for all k ∈ {1, 2, . . . , }

where

⟨f, g⟩ =
∫ ∞

−∞
f(t)g(t)dt.

The functions fk, k = 1, . . . are called the functional principal components, or eigenfunctions, of
the process.
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3.4.3 Estimating the functional principal components

The first methods introduced to estimate functional principal components were developed for the
case when a large number of observations are made on each subject, at the same dense grid of
time points for each subject, as is typically the case for functional data. In longitudinal data, the
observation times may be irregular and different for each subject, and the number of observations
per subject is often relatively small.

The link between functional data analysis and longitudinal data analysis was described by
Yao et al. (2005), who developed the PACE (principal components analysis through conditional
expectation) method for estimating the functional principal components for longitudinal data.
PACE is a two-step approach: first the mean f0 and functional principal components f1, . . . , fk
are estimated, then the rest of the model is fitted as if these estimated functions were fixed.
The global mean f0 is estimated by pooling across the subjects and fitting a smooth curve. The
functional principal components are estimated from a smoothed version of the estimated covariance
function. There are various approaches to do this smoothing: PACE uses kernel smoothing, while
Di et al. (2009) use penalised splines to smooth the covariance. PACE is available through the
fdapace R package (Zhou et al., 2022), while the Di et al. (2009) approach is available through
the fpca.sc function the refund R package (Goldsmith et al., 2023). These methods involve two
smoothing parameters: one for smoothing the mean, and another for smoothing the covariance.
The number of functional principal components K must also be chosen, e.g. to explain a certain
proportion of the variation, or by other criteria such as AIC or BIC.

As well as estimating the subject-specific mean functions µi(.), we would like to be able to
express our uncertainty in these estimates. Goldsmith et al. (2013) point out that this is prob-
lematic for two-step approaches, because these methods do not take into account uncertainty in
the estimated functional principal components. Since we are using a full likelihood framework, we
may use standard likelihood-based inference methods to quantify uncertainty.

We develop an new penalised likelihood approach to estimating the functional principal com-
ponents, jointly estimating the mean and functional principal components together with the other
parameters of the model. We demonstrate through a range of examples that our penalised likeli-
hood approach provides substantially more accurate estimates of the subject-specific mean curves
than two-step approaches, and provides confidence intervals with close to nominal coverage.

4 A penalised likelihood approach

4.1 The model

For someK and functions f0, f1, . . . , fK , we use model (1) with the subject-specific mean functions
assumed to be of the form

µi(t) = f0(t) +

K∑
k=1

uikfk(t), (10)

where uik are independent and identically distributedN(0, 1) random variables. Here f0, f1, . . . , fk
and σ2 are all unknown quantities which must be estimated. For now, we view K as fixed, but
will describe methods to choose the value of K in Section 4.7.

To make the model identifiable, we must impose some constraints on f1, . . . fK . Motivated
by the Karhunen-Loéve decomposition (9), we enforce the constraint that f1, . . . , fK must be
orthogonal functions, that is

⟨fi, fj⟩ = 0 for all i ̸= j ∈ {1, . . . ,K}. (11)

We enforce orthogonality rather than orthonormality because we assume that random effects
uik have unit variance. This is equivalent to modelling uik ∼ N(0, λk), and enforcing orthonor-
mality. The eigenvalues associated with our model can be found as λk = ⟨fk, fk⟩ = ∥fk∥2.

With the orthogonality constraint, the model is nearly identifiable, up to two simple types of
transformations of the functional principal components. We can permute the order of f1, . . . , fK ,
or for any k change fk for −fk and each uik for −uik, without altering the overall process. In
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theory, we could add extra constraints to make the model fully identifiable: ordering f1, . . . , fK
by size, so that

∥f1∥ ≥ ∥f2∥ ≥ . . . ≥ ∥fK∥, (12)

and deciding on the sign of fk by insisting that∫
fk(t)dt ≥ 0. (13)

In practice, we do not enforce these additional constraints, although our optimisation method
nearly always gives estimated fk in order of size, meeting (12). If necessary, it is straightforward
to transform and solutions to meet constraints (12) and (13), by permutation and changes of sign.

For k = 0, . . . ,K, write fki = (fk(ti1), . . . , fk(tini
))T for the vector which evaluates the function

fk at each time point for subject i. The joint distribution of Yi = (Yi1, . . . Yini
) in model (10) is

Yi ∼ Nni

(
f0i,Σ(σ

2, f1i, . . . , fKi)
)
,

where

Σ(σ2, f1i, . . . , fKi) = σ2I +

K∑
k=1

fkif
T
ki. (14)

The likelihood of the model (10) is therefore

L(f0, f1, . . . , fK , σ2) =

d∏
i=1

ϕni

(
f0i,Σ(σ

2, f1i, . . . , fKi)
)
,

where ϕn(., µ,Σ) is the probability density function of the Nn(µ,Σ) distribution, and the log-
likelihood is

ℓf (f0, f1, . . . , fK , σ2) =

d∑
i=1

log ϕni

(
f0i,Σ(σ

2, f1i, . . . , fKi)
)
. (15)

We include the superscript f to clarify that here we parameterise the process by by the functions
f0, f1, . . . , fK , as we later consider log-likelihoods under alternative parameterisations.

To avoid over-fitting, we penalise the expected wiggliness of each subject’s mean curve µi(.).
We write wE = E[w(µi)] for the expected wiggliness of µi, where µi are random variables as
described by (10). There is a simple formula for the expected wiggliness:

Claim 1. We have

wE = w(f0) +

k∑
j=1

w(fj).

All proofs are given in Appendix A. We write wE = wE(f0, f1, . . . , fK), to make the dependence
on the functions f0, f1, . . . , fK explicit.

We maximise the penalised log-likelihood

ℓfp(f0, f1, . . . , fK , σ2) = ℓf (f0, f1, . . . , fK , σ2)− γ

2σ2
wE(f0, f1, . . . , fK), (16)

where γ is a smoothing parameter. For now, we will focus on estimating the model parameters
for fixed γ, and return to the problem of choosing γ in Section 4.7, where we also justify dividing
the smoothing parameter by 2σ2.

To estimate the unknown quantities, we could choose f0, f1, . . . , fK and σ2 to maximise
ℓfp(f0, f1, . . . , fK), subject to the constraint (11), that f1, . . . , fK are orthogonal functions.

This very general form of the optimisation problem is not yet feasible to use in practice. It
involves infinite-dimensional optimisation over all possible functions f0, f1, . . . fK : in Section 4.2
we will reduce this to a finite-dimensional problem by writing the fj in terms of basis functions. A
challenging constrained optimisation problem still remains, due to the orthogonality constraint on
f1, . . . , fK . In Section 4.3 we will address this by creating a new parameterisation for the problem
which ensures orthogonality between f1, . . . , fK .

9



4.2 Spline basis

We write

fj(t) =

nB∑
l=1

βjlbl(t) = βT
j b(t),

for j = 0, 1, . . . ,K, where bl(.) are cubic spline basis functions, b(t) = (b1(t), . . . , bnB
(t))T is a

vector of basis functions evaluated at t, and βj = (βj1, . . . , βjnB
)T is the vector of coefficients for

fj . In this form, the unknown quantities to estimate are β0, β1, . . . , βK and σ2.
The log-likelihood has the same form as (15), where the values of fki = (fk(ti1), . . . , fk(tini))

T

depend on βk through
fk(tij) = βT

j b(tij).

Write X(i) as a ni × nB design matrix for the basis for the ith subject, with jth row b(tij). Then
we may write fki(βk) = X(i)βk, and the log-likelihood is

ℓβ(β0, β1, . . . , βK , σ2) =

d∑
i=1

log ϕni

(
f0i(β0),Σ(σ

2, f1i(β1), . . . , fKi(βK))
)
.

We will choose our basis functions to be orthonormal, such that

⟨bi, bi⟩ = 1 and ⟨bi, bj⟩ = 0 for all i ̸= j.

We use the orthogonalsplinebasis R package (Redd, 2022) to do this. Claim 2 says that we
can obtain a set of orthogonal functions from an orthonormal basis by choosing a set of orthogonal
coefficient vectors.

Claim 2. Suppose that b1, . . . , bnB
are an orthonormal basis, and fj(t) =

∑nB

l=1 βjlbl(t). Then the
functions f1, . . . fK are orthogonal if and only if the coefficient vectors β1, . . . , βK are orthogonal,
that is, if

⟨βi, βj⟩ = 0, for all i ̸= j ∈ {1, . . . ,K} (17)

where ⟨βi, βj⟩ = βT
i βj is the usual inner product for vectors.

Finding the wiggliness of each fj from the spline basis is straightforward: there is a matrix S

such that w(fj) = βj
TSβj . Given the coefficient vectors β0, β1, . . . , βK , the expected wiggliness

may be written

wE =

K∑
j=0

βj
TSβj .

We will write wE = wE(β0, β1 . . . , βK) to make the dependence on the coefficient vectors explicit.
We could therefore estimate the unknown parameters β0, β1, . . . , βK and σ2 by maximising

the penalised log-likelihood

ℓβp (β0, β1, . . . , βK , σ2) = ℓβ(β0, β1, . . . , βK , σ2)− γ

2σ2
wE(β0, β1, . . . , βK) (18)

subject to the constraint that β1, . . . , βK are orthogonal vectors. The constraint makes this a
challenging optimisation problem, and in Section 4.3 we will develop a new parameterisation
which ensures the component vectors β1, . . . , βK are orthogonal, to remove the constraint at the
optimisation stage.

4.3 Orthogonality transform

In this section we describe a reparameterisation α1, . . . , αK such that any orthogonal set of vectors
β1, . . . , βK may be obtained for some choice of the αks. In combination with the orthonormal spline
basis from Section 4.2, this will enable us to parameterise the set of orthogonal functions f1, . . . , fk,
without the need to place any constraints on the values of the new parameters α1, . . . , αK .

We do not place any constraints on β1, and let β1 = α1, for any α1 ∈ RnB . For each k > 1, we
need to ensure that βk is orthogonal to each of β1, . . . , βk−1, leading to k − 1 constraints, so we
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take αk ∈ RnB−k+1. We may rewrite the constraint that βk is orthogonal to each of β1, . . . , βk−1

in matrix-vector form, as
BT

k−1βk = 0, (19)

where Bk−1 is the nB × (k − 1) matrix with columns columns β1, . . . , βk−1. To find βk from αK

and β1, . . . , βk−1, we follow a general recipe described in Section 1.8.1 of Wood (2017):

1. Find a QR decomposition of Bk−1, as Bk−1 = Qk−1Rk−1, where Qk−1 is an orthogonal
matrix and Rk−1 is upper triangular.

2. Partition Qk−1 = (Sk−1 : Tk−1) so that Tk−1 contains the final nB − k+1 columns of Qk−1.

3. Let
βk = Tk−1αk.

For any αk ∈ RnB−k+1, this give a βk meeting the orthogonality constraint (19).

We may find the penalised likelihood under our new parameterisation by first finding β =
(β1, . . . , βK) from α = (α1, . . . , αk) then substituting into the penalised log-likelihood (18) for
(β0, β, σ

2), to give
ℓαp (β0, α, σ

2) = ℓβp (β0, β(α), σ
2).

For numerical stability, we maximise the penalised log-likelihood over log σ rather than σ2.
The full set of parameters is θ = (β0, α, log σ), with penalised log-likelihood

ℓp(θ) = ℓp(β0, α, log σ) = ℓαp (β0, α, exp(2 log σ)). (20)

4.4 Maximising the penalised log-likelihood

We find the maximum penalised likelihood estimate θ̂ by maximising ℓp(θ) from (20) over θ. In
practice, we do this by first fitting the model with K = 0, then increasing K one at a time, using
the parameter values from the previous fit to give starting values for the optimisation.

We use the BFGS method to maximise the penalised log-likelihood. For speed, it is important
to have access to the gradient of the penalised log-likelihood, which would be difficult to find by
hand because of the complexity of the transformation in 4.3. We used automatic differentiation to
obtain the gradient, by using the Stan Math C++ library in R (Stan Development Team, 2020).

4.5 Estimating the subject-specific mean curves

Given the maximum penalised likelihood estimate θ̂, we can estimate the subject-specific mean
curves as

µ̂i(t) = f̂0(t) +

K∑
k=1

ûkif̂k(t),

where f̂k(t) = β̂T
k b(t), where β̂k = βk(θ̂), and we estimate ui = (ui1, . . . , uiK)T by

ûi = Σ̂−1
i (yi − f̂0i),

where Σ̂i = Σ(σ̂2, f̂1i, . . . , f̂Ki) from (14).

4.6 Confidence intervals

We express the uncertainty in our estimated mean curves µ̂i(t) through pointwise confidence
intervals.

We may always express each subject-specific mean in terms of the fixed set of basis functions
b(.). For fixed β and u, we may write

µi(t) = βT
0 b(t) +

K∑
k=1

uikβ
T
k b(t) = (β0 +

K∑
k=1

uikβk)
T b(t) = δTi b(t)

11



where

δi = β0 +

K∑
k=1

uikβk

are the basis coefficients for µi, which depend on β and ui.
To find a pointwise confidence interval for µi(t), we use a parametric bootstrap approach. We

will first find a parametric bootstrap sample {δ(1)i , . . . , δ
(nS)
i } for the basis coefficients δi of the

subject-specific mean functions.
For the fitted model (with K and γ treated as fixed at their chosen values), we first find the

Hessian matrix H of the penalised log-likelihood at the maximum penalised Lakewood estimate
θ̂, and find V = −H−1. For each j = 1, . . . , ns, to find the sample δ(j), we:

1. Generate θ(j) ∼ Np(θ̂, V ).

2. Reparameterise out of the orthogonal parameterisation, to find β
(j)
k = βk(θ

(j)). Write

f
(j)
k (t) = [β

(j)
k ]T b(t).

3. For each subject i = 1, . . . , d:

(a) Find f
(j)
0i , f

(j)
1i , . . . , f

(j)
Ki , where fki = (f

(j)
k (ti1), . . . , f

(j)
k (tini

))T , is the vector which

evaluates the function f
(j)
k at each time point for subject i.

(b) Find Σ
(j)
i = Σ([σ2](j), f

(j)
1i , . . . , f

(j)
Ki ) using (14), and û

(j)
i =

(
Σ

(j)
i

)−1(
yi − f

(j)
0i

)
.

(c) Sample u
(j)
i |θ(j), y,∼ N(û

(j)
i ,Σ

(j)
i ).

(d) Find

δ
(j)
i = β

(j)
0 +

K∑
k=1

u
(j)
ik β

(j)
k

4. Return δ(j) = (δ
(j)
1 , . . . , δ

(j)
d ).

Given {δ(1)i , . . . , δ
(nS)
i }, we may then find a confidence interval for µi(t) (at any time point t)

by finding

[µi(t)]
(j) = δ

(j)
i b(t)

for each sample j = 1, . . . , nS , then using appropriate quantiles of {[µi(t)]
(1), . . . , [µi(t)]

(nS)} (e.g.
the 2.5% and 97.5% quantiles for a 95% interval).

In addition to confidence intervals about µi, we could also use the sample δ(j) to find confidence
intervals for other quantities of interest. For instance, we can find confidence intervals for the
derivative of the subject-specific mean function by finding

[µ′
i(t)]

(j) = δ
(j)
i b′(t).

This process dues not allow for uncertainty in the tuning parameters K and γ, so there may be
some potential for under-coverage. However, we will see that the confidence intervals have close
to nominal coverage in simulation studies.

4.7 Choosing the tuning parameters

4.7.1 Choosing the number of functional principal components K

For a fixed smoothing parameter γ, we find that the fit eventually stabilises as we increase the
number of functional principal components K, with with λ̂K = ∥f̂K∥2 approaching zero. We
could take K very large, and still get a good fit, but with lots of unimportant functional principal
components, with λ̂k ≈ 0. For computational reasons, we prefer K to choose as small as possible
while including all of the important functional principal components.

To do this, we use the fraction of variance explained. For each candidate K, we estimate the
error variance σ̂2

K . There is a residual variance which cannot be explained by variation in the

12



subject-specific mean functions, which we write as σ̂2
∞ = limK→∞ σ̂2

K . The non-residual variance
for each K is σ̂2

K − σ̂2
∞. The fraction of variance explained is

FVE(K) =
σ̂2
0 − σ̂2

K

σ̂2
0 − σ̂2

∞

We aim to choose the smallest K so that FVE(K) > tFVE, for some threshold tFVE, close to 1. In
all the later examples we use tFVE = 0.999.

We cannot calculate σ̂2
∞, since we do not fit the model with infinitely large K. For sufficiently

large K, we will have σ̂2
K ≈ σ̂2

∞. Starting with Kmax = 2, fit the model for all K ≤ Kmax, and
use σ̂2

Kmax
in place of σ̂2

∞, to give

FVE(K;Kmax) =
σ̂2
0 − σ̂2

K

σ̂2
0 − σ̂2

Kmax

.

We check whether FVE(Kmax − 1;Kmax) > tFVE, and choose K = Kmax − 1 if so. If not, we
increase Kmax by one, refit the model with K = Kmax, and repeat the process until we have a
sufficiently large fraction of variance explained.

4.7.2 Choosing the smoothing parameter γ

We choose the smoothing parameter γ to maximise an approximate marginal likelihood. To do
this, we must first consider a Bayesian interpretation of the penalty term.

We may rewrite the penalty term in (18) as

− γ

2σ2
wE =

K∑
j=0

− γ

2σ2
βj

TSβj .

We use the equivalence between penalised likelihood estimation with penalty

− γ

2σ2
βT
k Sβk

and maximum a posteriori estimation with improper Bayesian prior

βk ∼ N

(
0,

σ2

γ
S−

)
, (21)

an improper normal prior where S− is the pseudo-inverse of the matrix S, since S is not of full
rank (Wood, 2017, Section 4.2.4).

The prior for β0 is given by (21). Since we reparameterise β = (β1, . . . , βK) in terms of
α = (α1, . . . , αK), we seek a prior for α such that if α has this distribution then βk = βk(α) has
distribution (21) for k = 1, . . . ,K.

We may achieve this by letting

α1 ∼ N

(
0,

σ2

γ
S−

)
and

αk|α1, . . . , αk−1 ∼ N

(
0,

σ2

γ
S−
k

)
, for k = 2, . . . ,K,

where
Sk = TT

k−1STk−1.

The matrices Tk−1 are defined in step (2) of the transformation in Section 4.3, and depend on
α1, . . . , αk−1.

Since we optimise our penalised log-likelihood over θ = (β0, α1, . . . , αK , log σ)T , we will also
include a prior on log σ, which we describe shortly. Our penalty over θ is

pen(θ|γ) = − γ

2σ2
βT
0 Sβ0 −

K∑
k=1

αkS
T
k αk
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We then rewrite the log prior as the penalty plus a remainder term, as

log π(θ|γ) = pen(θ|γ) + r(θ, γ).

If we choose the improper prior π(log σ) ∝ σ−2R for log σ, where R =
∑K

k=0 rk and rk =
rank(Sk) = min{nB − 2, nB − k + 1}, then the remainder term is

r(θ, γ) =
1

2

K∑
k=0

log |Sk|+ +R(log γ − 1).

At first sight, it appears that there is no dependence on θ in the remainder r(θ, γ), which would
lead to an exact match between the maximum a-posteriori estimate and the penalised likelihood
estimate. However, there is a small dependence on α, since SK depends on α1, . . . , αk−1, so the
maximum a-posteriori estimate will differ slightly from the penalised likelihood estimate.

We choose γ to maximise a quantity based on the marginal likelihood for γ,

cγ =

∫
πunnorm(θ, γ|y)dθ (22)

where
πunnorm(θ, γ|y) = f(y|θ)π(θ|γ).

Making a Laplace approximation to (22) gives an approximate log-marginal likelihood

log ĉγ = log πunnorm(θMAP(γ), γ) +
p

2
log(2π)− 1

2

∣∣ logHMAP(γ)
∣∣, (23)

where θMAP(γ) is the maximum a-posteriori estimate for θ given γ, HMAP(γ) is the Hessian of
log πunnorm(θ|y) at θMAP(γ) and p = dim(θ).

We find a further approximation to the marginal likelihood by replacing θMAP(γ) by the

penalised likelihood estimate θ̂(γ) in (23), also replacing HMAP(γ) by Ĥ(γ), the Hessian of the
penalised log-likelihood at its maximum, which gives our approximate log marginal likelihood
criterion

log c̃γ = log πunnorm(θ̂(γ), γ) +
p

2
log(2π)− 1

2

∣∣ log Ĥ(γ)
∣∣,

= ℓp(θ̂(γ), γ) + r(θ̂(γ), γ) +
p

2
log(2π)− 1

2

∣∣ log Ĥ(γ)
∣∣. (24)

In examples, we find that maximising this criterion tends to give an appropriate value of γ. The
inference is typically not sensitive to the precise value of γ. Further study of the properties of the
criterion would be useful, and is left for future work.

In theory, the same marginal likelihood criterion (24) could be optimised over K as well as γ.
However, computing the marginal likelihood criterion requires us to first find the Hessian matrix
at the maximum of the penalised log-likelihood, which is relatively computationally expensive. We
reduce the computational burden by finding a marginal likelihood just once for each γ, choosing
K given γ as described in Section 4.7.1.

5 Simulation studies

5.1 General setup

5.1.1 Introduction

We compare the penalised likelihood approach against existing approaches through simulation
studies. We simulate from model (1), with a wide range of different choices for the true subject-
specific mean functions µi. These mean functions are of the form (10), for some number of
functional principal components K = K0. The various processes used to generate the data are
described in sections 5.2–5.4. For each choice, we generate 100 datasets, then use a range of
methods to estimate the subject-specific mean curves µi. A common set of methods are used for
estimation in each case, as described in section 5.1.2. The metrics we use to compare the quality
of inference from each method are described in section 5.1.3.
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5.1.2 Estimation methods

For ease of reference later on, we give short names to our chosen estimation methods (highlighted
below in bold type). The methods used for estimating the subject-specific mean curves µi are:

1. RI: The simple random intercept model (3).

2. RS: The simple random slopes model (4).

3. PACE (Yao et al., 2005), through the FPCA function in the fdapace R package. To choose
K, we either fix K = K0 (PACE-Oracle, not realistic in practice) or estimate K, either by
making the fraction of variance explained (FVE) at least 0.95 (PACE-95) or 0.99 (PACE-
99) , or using AIC (PACE-AIC) or BIC (PACE-BIC). We use generalised cross validation
to select bandwidths for smoothing the mean and covariance functions (as this gave better
results than the default choice), and default values for other parameters.

4. The method of Di et al. (2009), through the fpca.sc function in the refund R package. To
choose K, we either fix K = K0 (Di-Oracle) or estimate K to make the FVE at least 0.95
(Di-95) or 0.99 (Di-99). We use default values for other parameters.

5. PL: the proposed penalised likelihood method. We use the methods for choosing K and γ
described in Section 4.7, with tFVE = 0.999 for the FVE threshold.

We also used the method of Goldsmith et al. (2013), through the ccb.fpc function in refund,
in some preliminary simulation runs, but it appeared to give worse estimates than the Di methods
in the cases we considered, with extremely large confidence intervals. Since this method was also
more computationally expensive than the others, we decided not to include it in the full simulation
studies.

5.1.3 Measures used for comparisons

We compare the quality of inference from the different methods by using the mean integrated
squared error for each estimate of the subject specific mean functions µ̂ = (µ̂1, . . . , µ̂d), across the
range of times observed in the data. We define the integrated squared error for subject i as

ISE(µ̂i) =

∫ tmax

tmin

[
µ̂i(t)− µi(t)

]2
dt,

where tmin = mini,j{tij} and tmax = maxi,j{tij}. The mean integrated squared error is

MISE(µ̂) =
1

d

d∑
i=1

ISE(µ̂i).

We then find the MISE for each of the 100 datasets generated from each process, and report the
RMISE – the square root of the mean MISE across datasets – for each method.

In some cases, it became clear that the MISE of Di and PACE estimators were sometimes
large because of a few subjects with very large error. To understand the quality of inference for
an average subject, we decided to also look at the median integrated squared error

MedISE(µ̂) = median
(
ISE(µ̂1), . . . , ISE(µ̂d)

)
.

We find the MedISE for each of the 100 datasets generated from each process, then report the
RMedISE – the square root of the median MedISE across datasets – for each method.

To give a clear comparison of the performance of the new PL estimator relative to existing
methods, we will consider the relative RMedISE of each estimator µ̂ compared with the PL
estimator,

Relative RMedISE(µ̂) =
RMedISE(µ̂)

RMedISE(µ̂PL)
.
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Figure 6: Relative root median integrated square error for each estimator relative to the PL
estimator, for each subcase of the random intercept simulations.

For each case, it is useful to be able to examine the various estimated subject-specific mean
functions for a typical simulation run and subject. To find a run and subject with typical per-
formance, we first choose the run with median integrated squared error closest to the overall
MedISE for PACE-Oracle, and within that run find the subject with integrated squared error for
PACE-Oracle closest to the median integrated square error.

For the Di and PL methods, we compute pointwise 95% confidence intervals associated with
each estimated subject-specific mean µ̂i. We also attempted to compute confidence intervals from
PACE, but this resulted in errors on a substantial number of runs, so the comparison is not
included here. For each dataset, we compute the average pointwise coverage of these intervals
across the range of times observed in the data [tmin, tmax]. For each method, we report the average
coverage across the datasets.

5.2 Random intercept model

We simulate data from a random intercept model

yij = β0 + β1tij + u0i + ϵij , i = 1, . . . d, j = 1, . . . , ni,

where u0i ∼ N(0, σ2
u) and ϵij ∼ N(0, σ2). We generate data from 16 processes of this form, given

by all possible combinations of: β0 = −1, β1 = 2, σu ∈ {0.5, 1}, σ ∈ {0.1, 0.5}, d ∈ {20, 50},
ni ∈ {5, 10} (with an equal number of observations on each subject). The time points tij are
uniformly distributed on [0, 1].

Tables 1 and 2 in Appendix B show the RMISE and RMedISE for each case and method.
Figure 6 plots the relative RMedISE for each case, showing only Oracle methods for PACE and
Di, with K fixed at 1. In reality, we must estimate K, which increases the error further. The
PACE and Di estimators always have the largest errors, several times larger than the PL estimator
in many cases. The loss of efficiency by using the PL method relative to the true RI model is
small: the relative error for the RI model is always at least 0.9.
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Figure 7: Estimated mean curves for a typical simulation run (67) and subject (14) in the random
intercept simulations with ni = 10, d = 20, σ = 0.1, σu = 1.

The PACE and Di estimators perform worst when the error variance is small (σ = 0.1) and
the random effects variance is large (σu = 1), with RMedISE 4–7 times larger than PL in these
cases (similarly, the RMISE is 5–8 times larger than for PL).

We examine the case ni = 10, d = 20, σ = 0.1, σu = 1 in more detail. Figure 7 shows various
estimated mean curves for a typical simulation run (67) and subject (14), where the run and
subject were chosen as described in 5.1.3. The PL estimate matches the true linear mean function
closely, while the Di and PACE estimates do not give a fit close to a straight line.

Table 3 gives the pointwise coverage of nominally 95% confidence intervals for the subject-
specific mean curves, for the PL and Di methods. The PL confidence intervals have approximately
correct coverage, whereas the Di confidence intervals all have much lower than the nominal cov-
erage.

5.3 Random slopes model

We simulate data from a random slopes model

yij = β0 + β1tij + u0i + u1i + ϵij , i = 1, . . . d, j = 1, . . . , ni,

where ui = (u0i, u1i)
T ∼ N2(0,Σu), ϵij ∼ N(0, σ2), and

Σu =

(
σ2
0 ρσ0σ1

ρσ0σ1 σ2
1

)
.

We generate data from 32 processes of this form, given by all possible combinations of: β0 = −1,
β1 = 2, σ0 ∈ {0.5, 1}, σ1 = 0.5, ρ ∈ {0, 0.5}, σ ∈ {0.1, 0.5}, d ∈ {20, 50}, ni ∈ {5, 10} (with an
equal number of observations on each subject). The time points tij are uniformly distributed on
[0, 1].

Tables 4 and 5 in Appendix B show the RMISE and RMedISE for each case and method. The
random slopes model and new PL method give the lowest errors in each case. In many cases, the
PACE and Di estimators have errors several times larger than the the PL estimator.

Figure 8 plots the relative RMedISE for each case, showing only Oracle methods for PACE
and Di, with K fixed at 2. The PACE and Di estimators always have the largest errors, several
times larger than PL in many cases. The loss of efficiency by using the PL estimator relative to
the true RS model is small: the relative error for the RS model is always at least 0.95.

The PACE and Di estimators perform worst when the error variance is small (σ = 0.1) and the
random effects variance is large (σu = 1), with similar performance whether the random intercept
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(b) ρ = 0.5

Figure 8: Relative relative median integrated square error for each estimator relative to the PL
estimator, for each subcase of the random slope simulations.
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Figure 9: Estimated mean curves for a typical simulation run (79) and subject (5) in the random
slope simulations with ni = 10, d = 20, σ = 0.1, σu = 1, ρ = 0.5.

and slope are uncorrelated (ρ = 0) or correlated (ρ = 0.5). In many cases, despite the presence of
random slopes, the RI estimator outperforms the PACE and Di estimators.

We examine the case ni = 10, d = 20, σ = 0.1, σu = 1, ρ = 0.5 in more detail. Figure 9 shows
various estimated mean curves for a typical simulation run (79) and subject (5), where the run
and subject were chosen as described in 5.1.3. As in the random intercept simulations, the PL
estimate matches the true linear mean function closely, while the Di and PACE estimates do not
give a fit close to a straight line.

Table 6 gives the pointwise coverage of nominally 95% confidence intervals for the subject-
specific mean curves, for the PL and Di methods. As before, the PL confidence intervals have
approximately correct coverage, whereas the Di confidence intervals all have much lower than the
nominal coverage.

5.4 One-dimensional variation

We simulate from the process used in Figure 5, which has one-dimensional variation, but is not a
random intercept model. The data are generated by

yij = s(t)(β0 + β1tij + ui) + ϵij , i = 1, . . . d, j = 1, . . . , ni,

where ui ∼ N(0, σ2
u), ϵij ∼ N(0, σ2), and

s(t) = [0.5 + 0.1(10t− 5)2]−1.

We generate data from 16 processes of this form, given by all possible combinations of: β0 =
−0.5, β1 = 0.1, σu ∈ {0.5, 1}, σ ∈ {0.1, 0.5}, d ∈ {20, 50}, ni ∈ {5, 10}

Tables 7 and 8 in Appendix B show the RMISE and RMedISE for each case and method. In
many cases, all other estimators have error several times larger than the the PL estimator. Figure
10 plots the relative RMedISE for each case, showing only Oracle methods for PACE and Di, with
K fixed at 1. The PACE and Di estimators always perform worse than the PL estimator, with
error several times larger than the PL estimator in many cases. Unsurprisingly, the RI and RS
estimators do badly here, as they model the subject-specific mean curves as straight lines, which
is far from the truth.

As in other cases, the PACE and Di estimators perform worst when the error variance is small
(σ = 0.1) and the random effects variance is large (σu = 1). We examine the case ni = 10,
d = 20, σ = 0.1, σu = 1 in more detail. Figure 11 shows various estimated mean curves for a
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Figure 10: Relative root median integrated square error for each estimator relative to the PL
estimator, for each subcase of the one-dimensional variation simulations. The y axis is truncated
at 4.3: in the σ = 0.1 cases the relative error for RI and RS exceeded this threshold, and are not
plotted.
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Figure 11: Estimated mean curves for a typical simulation run (71) and subject (14) in the one-
dimensional variation simulations with ni = 10, d = 20, σ = 0.1, σu = 1.

typical simulation run (71) and subject (8), where the run and subject were chosen as described
in 5.1.3. While the Di and PACE estimates match the overall shape reasonably well, they have
substantially larger errors than the PL estimate.

Table 9 gives the pointwise coverage of nominally 95% confidence intervals for the subject-
specific mean curves, for the PL and Di methods. As in the previous examples, the PL confidence
intervals have approximately correct coverage, whereas the Di confidence intervals all have much
lower than the nominal coverage.

6 Application: percent body fat in adolescent girls

We return to the data from Section 2.1, and estimate the subject-specific mean curves using the
new approach. We choose K = 4 components, and estimate the error standard deviation as
σ̂ = 0.32.

The fat data is provided by the ALA R package, subject to the note that the data “represent
a subset of the study materials and should not be used to draw substantive conclusions”. We use
this data to a demonstrate methodology, and the conclusions we make should not be treated as
substantive scientific conclusions.

Figure 12 shows estimated percent body fat µ̂i(t) for the first twenty girls, with 95% confidence
intervals. The fit appears reasonable, but some work is needed to generalise beyond individuals,
to understand how percent fat body varies with time in the population as whole.

Figure 13 shows estimates and confidence interval for the population averaged mean curve.
The population averaged mean curve from the piecewise linear model from Fitzmaurice et al.
(2011) is overlaid. From this, it is clear that there is variation in the population averaged percent
fat beyond this piecewise linear model. On average, there is relatively little change in percent
body fat until around 6 months before menarche. From there until around 2 years after menarche
there is a rapid increase in average percent body fat. From 2 to 4 years after menarche, percent
body fat is still increasing on average, but at a slower rate.

The population averaged percent body fat doesn’t tell us anything about variation between
subjects. We might be interested in such variation, as well as the average behaviour. Figure 14
summarises the diversity of estimated rates of fat growth between different subjects, showing the
median estimated rate of fat growth, and bands covering the central 50% and 90% of subjects.

Nearly all subjects are estimated to have increasing percent body fat from shortly before
menarche until 2 years after, with rapid growth (at least 2 percentage points per year) around 6
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Figure 12: Percentage body fat against time, for the first twenty girls in the fat data, with fitted
curves and 95% confidence intervals overlaid.
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Figure 13: The population-averaged percent body fat over time, with 95% confidence intervals.
The dashed line is the estimated population-averaged curve using the piecewise linear model from
Fitzmaurice et al. (2011).
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Figure 14: The distribution of the estimated rate of change in body fat across subjects. The
solid line shows the median, the darker shaded region is 25th to 75th quantile, the lighter shaded
region is 5th to 95th quantile.
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Figure 15: The distribution of change of body fat across subjects, during each of three time
intervals (times are in years relative to menarche). The solid line is the estimated cumulative
distribution function, and the shaded region gives a 95% confidence interval.

months after menarche. There is far more diversity among subjects before menarche, with three
quarters of subjects estimated to have decreasing body fat around 2 years before menarche.

Figure 14 does not incorporate uncertainty in our estimates. We can show the uncertainty in
subject-specific behaviour if we instead focus on what happens in a fixed time interval, and look
at the distribution of change in body fat during that interval, across subjects. We split the time
of the study into three time intervals: 4 years to 6 months before menarche (where the average
body fat is approximately constant), 6 months before to 2 years after menarche (where there is a
rapid growth in average body fat) and 2 to 4 years after menarche (where there is a slower growth
in average body fat). We can consider the distribution of subject-specific changes in body fat over
each of these intervals. Figure 15 shows an estimated cumulative distribution function for change
of body fat in each time interval across subjects, with associated 95% confidence intervals. In
each case, the cumulative distribution function at x is the proportion of subjects with fat growth
in the interval ≤ x.

In the time 4 years to 6 months before menarche, there is a lot of variation between subjects: we
can be confident that some experience large increases in percent body fat while others experience
large decreases (of at least 5 percentage points either way) in this time. The vast majority (91–99%)
have increasing percent body fat 6 months before to 2 years after menarche, with most (69–85%)
increasing by more than 5 percentage points in this interval. Most subjects continue to increase in
body fat 2–4 years post menarche, though at a slower rate, with considerable uncertainty about
the proportion of subjects who have decreasing body fat in this time (7–25%).

7 Discussion and Future Work

The setup of this paper was simple: modelling subject-specific response over time, without addi-
tional explanatory variables. Despite the simplicity of the setup, all existing methods considered
failed in some of the cases we studied. Simple mixed-effects models make strong assumptions
about the relationship between the subject-specific mean curves (e.g. that they vary only in inter-
cept or slope). Functional principal components analysis allows for general relationships between
the curves, but existing methods, such as PACE, do not work well in many of our simulated ex-
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amples, particularly when the truth is a simple mixed-effects model. Our new penalised likelihood
approach to functional principal components analysis offers much improved inference.

Future work will focus on extensions to make the methodology more widely applicable, by
allowing for dependence on additional explanatory variables in the model, and generalising to
different types of response distribution (for instance to allow for binary or count data).

This paper described models for longitudinal data, but all of these models may also be used
for clustered data, with clusters i, and any continuous explanatory variable in place of time t.
Mixed-effects models are also used for more complex clustered data, such as multiple nested levels
of clustering. Another avenue for future work is to consider the extension of these models to allow
for more complex clustering.

Code availability

The new penalised likelihood method is implemented in R package flexl, available at
https://github.com/heogden/flexl
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A Proofs

Proof of Claim 1. By differentiating (10) twice, we have

µ′′
i (t) = f ′′

0 (t) +

K∑
k=1

uikf
′′
k (t),

so

[µ′′
i (t)]

2
= (f ′′

0 (t))
2
+ 2f ′′

0 (t)

K∑
k=1

uikf
′′
k (t) +

K∑
k=1

K∑
l=1

uikuilf
′′
k (t)f

′′
l (t).

So

w(µi) = w(f0) + 2

K∑
k=1

uik

∫ ∞

−∞
f ′′
0 (t)f

′′
k (t)dt+

K∑
k=1

K∑
l=1

uikuil

∫ ∞

−∞
f ′′
k (t)f

′′
l (t)dt

and

wE = E[w(µi)]

= w(f0) + 2

K∑
k=1

E(uik)

∫ ∞

−∞
f ′′
0 (t)f

′′
k (t)dt+

K∑
k=1

K∑
l=1

E(uikuil)

∫ ∞

−∞
f ′′
k (t)f

′′
l (t)dt

= w(f0) +

K∑
k=1

E(u2
ik)

∫ ∞

−∞
(f ′′

k (t))
2dt

since uik are independent, with mean zero

= w(f0) +

K∑
k=1

w(fk),

since E(u2
ik) = Var(uik) = 1, as required.

Proof of Claim 2. For any i and j, we have

⟨fi, fj⟩ = ⟨
nB∑
k=1

βikbk,

nB∑
l=1

βjlbl⟩

=

nB∑
k=1

nB∑
l=1

βikβjl⟨bk, bl⟩

=

nB∑
l=1

βilβjl = ⟨βi, βj⟩

since ⟨bk, bl⟩ = 0 if k ̸= l and ⟨bl, bl⟩ = 1.
So ⟨fi, fj⟩ = 0 if and only if βi, βj⟩ = 0, and the result follows.
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B Tables from simulation studies

Table 1: Root Mean Integrated Squared Errors for a variety of estimation methods in the random
intercept simulations.

σu σ d ni Di Di Di PACE PACE PACE PACE PACE PL RI RS

95 99 Oracle 95 99 AIC BIC Oracle

0.5 0.1 20 5 0.92 459.57 0.18 0.27 0.29 0.29 0.29 0.20 0.05 0.05 0.05

0.5 0.1 50 5 0.22 942.96 0.12 0.18 0.20 0.20 0.20 0.14 0.05 0.05 0.05

0.5 0.1 20 10 0.12 0.13 0.13 0.10 0.10 0.11 0.11 0.10 0.03 0.03 0.03

0.5 0.1 50 10 0.10 0.12 0.09 0.09 0.12 0.12 0.12 0.09 0.03 0.03 0.03

1 0.1 20 5 0.68 57.03 0.34 0.48 0.55 0.55 0.55 0.36 0.05 0.05 0.05

1 0.1 50 5 0.49 967.64 0.22 0.44 0.47 0.47 0.47 0.33 0.05 0.05 0.05

1 0.1 20 10 0.22 0.24 0.25 0.20 0.22 0.22 0.22 0.20 0.03 0.03 0.03

1 0.1 50 10 0.17 0.19 0.18 0.17 0.21 0.21 0.21 0.16 0.03 0.03 0.03

0.5 0.5 20 5 0.52 2.71 0.29 0.41 0.42 0.42 0.42 0.31 0.23 0.22 0.23

0.5 0.5 50 5 174.17 0.45 0.24 0.23 0.23 0.23 0.23 0.23 0.22 0.21 0.22

0.5 0.5 20 10 0.23 0.24 0.21 0.19 0.19 0.19 0.19 0.19 0.16 0.16 0.16

0.5 0.5 50 10 0.21 0.21 0.18 0.17 0.17 0.17 0.17 0.17 0.16 0.15 0.15

1 0.5 20 5 1.31 687.29 0.41 0.95 1.01 1.01 1.01 0.72 0.25 0.23 0.25

1 0.5 50 5 2.21 5355.53 0.31 0.28 0.29 0.28 0.28 0.28 0.23 0.23 0.23

1 0.5 20 10 0.33 0.38 0.30 0.29 0.30 0.30 0.30 0.26 0.17 0.16 0.17

1 0.5 50 10 0.28 0.34 0.24 0.50 0.60 0.60 0.60 0.34 0.16 0.16 0.16
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Table 2: Root Median Integrated Squared Errors for a variety of estimation methods in the
random intercept simulations.

σu σ d ni Di Di Di PACE PACE PACE PACE PACE PL RI RS

95 99 Oracle 95 99 AIC BIC Oracle

0.5 0.1 20 5 0.13 0.14 0.11 0.09 0.09 0.09 0.09 0.09 0.04 0.03 0.04

0.5 0.1 50 5 0.09 0.11 0.08 0.07 0.07 0.07 0.07 0.07 0.03 0.03 0.03

0.5 0.1 20 10 0.08 0.09 0.09 0.07 0.07 0.07 0.07 0.07 0.03 0.02 0.03

0.5 0.1 50 10 0.07 0.08 0.06 0.05 0.06 0.06 0.06 0.05 0.02 0.02 0.02

1 0.1 20 5 0.21 0.22 0.20 0.14 0.14 0.14 0.14 0.15 0.04 0.03 0.04

1 0.1 50 5 0.15 0.18 0.14 0.12 0.12 0.12 0.12 0.12 0.03 0.03 0.03

1 0.1 20 10 0.14 0.14 0.16 0.13 0.12 0.12 0.12 0.13 0.02 0.02 0.03

1 0.1 50 10 0.11 0.12 0.12 0.09 0.09 0.09 0.09 0.09 0.02 0.02 0.02

0.5 0.5 20 5 0.26 0.26 0.23 0.20 0.20 0.20 0.20 0.19 0.17 0.15 0.17

0.5 0.5 50 5 0.19 0.19 0.17 0.17 0.17 0.17 0.17 0.17 0.15 0.14 0.15

0.5 0.5 20 10 0.19 0.18 0.16 0.14 0.14 0.14 0.14 0.14 0.12 0.11 0.12

0.5 0.5 50 10 0.17 0.17 0.14 0.13 0.13 0.13 0.13 0.13 0.11 0.10 0.11

1 0.5 20 5 0.35 0.37 0.29 0.25 0.25 0.25 0.25 0.25 0.18 0.16 0.18

1 0.5 50 5 0.30 0.31 0.24 0.21 0.21 0.21 0.21 0.21 0.17 0.16 0.17

1 0.5 20 10 0.26 0.27 0.23 0.19 0.19 0.19 0.19 0.19 0.12 0.11 0.12

1 0.5 50 10 0.22 0.24 0.19 0.16 0.17 0.16 0.16 0.16 0.11 0.11 0.11

Table 3: Coverage of 95% confidence
intervals for a variety of methods in the

random intercept simulations.

σu σ d ni Di Di Di PL

95 99 Oracle

0.5 0.1 20 5 0.26 0.26 0.39 0.94

0.5 0.1 50 5 0.29 0.27 0.45 0.95

0.5 0.1 20 10 0.27 0.25 0.34 0.95

0.5 0.1 50 10 0.31 0.28 0.48 0.95

1 0.1 20 5 0.21 0.20 0.31 0.93

1 0.1 50 5 0.20 0.17 0.34 0.94

1 0.1 20 10 0.20 0.19 0.28 0.95

1 0.1 50 10 0.23 0.16 0.35 0.95

0.5 0.5 20 5 0.73 0.74 0.73 0.94

0.5 0.5 50 5 0.87 0.89 0.86 0.95

0.5 0.5 20 10 0.85 0.87 0.82 0.95

0.5 0.5 50 10 0.91 0.92 0.88 0.96

1 0.5 20 5 0.46 0.46 0.59 0.94

1 0.5 50 5 0.61 0.61 0.73 0.95

1 0.5 20 10 0.60 0.61 0.69 0.95

1 0.5 50 10 0.74 0.73 0.79 0.96
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Table 4: Root Mean Integrated Squared Errors for a variety of estimation methods in the random slope
simulations.

ρ σu σ d ni Di Di Di PACE PACE PACE PACE PACE PL RI RS

95 99 Oracle 95 99 AIC BIC Oracle

0 0.5 0.1 20 5 7.58 4914.53 0.27 0.37 0.39 0.39 0.39 0.34 0.08 0.16 0.08

0 0.5 0.1 50 5 0.66 192.77 0.20 0.34 0.36 0.36 0.36 0.33 0.08 0.17 0.08

0 0.5 0.1 20 10 0.17 0.20 0.17 0.18 0.19 0.19 0.19 0.16 0.05 0.15 0.05

0 0.5 0.1 50 10 0.15 0.16 0.15 0.17 0.18 0.18 0.18 0.16 0.05 0.15 0.05

0 1 0.1 20 5 0.99 4212.21 0.40 0.56 0.58 0.58 0.58 0.53 0.08 0.16 0.08

0 1 0.1 50 5 0.69 401.69 0.31 0.33 0.38 0.39 0.39 0.37 0.08 0.17 0.08

0 1 0.1 20 10 0.27 0.29 0.27 0.29 0.34 0.34 0.34 0.31 0.05 0.15 0.05

0 1 0.1 50 10 0.22 0.23 0.22 0.24 0.25 0.26 0.26 0.23 0.05 0.15 0.05

0 0.5 0.5 20 5 5.98 9609.34 0.39 0.34 0.40 0.40 0.40 0.34 0.27 0.27 0.26

0 0.5 0.5 50 5 0.31 0.32 0.30 0.27 0.27 0.27 0.27 0.27 0.26 0.27 0.25

0 0.5 0.5 20 10 0.28 0.29 0.27 0.23 0.23 0.23 0.23 0.23 0.20 0.22 0.20

0 0.5 0.5 50 10 0.24 0.25 0.24 0.21 0.21 0.21 0.21 0.21 0.19 0.21 0.19

0 1 0.5 20 5 2.03 543.89 0.49 0.95 1.45 1.45 1.45 1.08 0.28 0.27 0.28

0 1 0.5 50 5 4.83 1358.93 0.47 0.32 0.32 0.32 0.32 0.32 0.27 0.28 0.27

0 1 0.5 20 10 0.35 0.42 0.34 0.33 0.36 0.36 0.36 0.33 0.20 0.22 0.20

0 1 0.5 50 10 0.31 0.37 0.30 0.42 0.46 0.46 0.46 0.42 0.20 0.22 0.20

0.5 0.5 0.1 20 5 3.62 44.83 0.30 0.34 0.38 0.38 0.38 0.35 0.07 0.16 0.07

0.5 0.5 0.1 50 5 0.50 19019.98 0.21 0.30 0.35 0.35 0.35 0.30 0.07 0.17 0.07

0.5 0.5 0.1 20 10 0.19 0.19 0.18 0.18 0.19 0.19 0.19 0.18 0.05 0.15 0.05

0.5 0.5 0.1 50 10 0.15 0.16 0.15 0.17 0.20 0.20 0.20 0.17 0.05 0.15 0.05

0.5 1 0.1 20 5 3.96 1057.61 0.48 0.61 0.63 0.63 0.64 0.59 0.08 0.16 0.07

0.5 1 0.1 50 5 0.47 356.50 0.31 0.41 0.45 0.45 0.45 0.43 0.08 0.17 0.07

0.5 1 0.1 20 10 0.28 0.30 0.28 0.28 0.35 0.35 0.35 0.30 0.05 0.15 0.05

0.5 1 0.1 50 10 0.21 0.24 0.22 0.25 0.27 0.27 0.28 0.24 0.05 0.15 0.05

0.5 0.5 0.5 20 5 1.81 861.11 0.47 0.53 0.57 0.57 0.57 0.49 0.26 0.27 0.26

0.5 0.5 0.5 50 5 0.37 0.74 0.32 0.27 0.27 0.27 0.27 0.27 0.25 0.27 0.25

0.5 0.5 0.5 20 10 0.29 0.30 0.27 0.23 0.23 0.23 0.23 0.23 0.19 0.22 0.19

0.5 0.5 0.5 50 10 0.25 0.25 0.24 0.21 0.21 0.20 0.20 0.21 0.18 0.22 0.18

0.5 1 0.5 20 5 1.73 205.65 0.59 0.77 1.17 1.17 1.17 1.04 0.27 0.27 0.27

0.5 1 0.5 50 5 3.64 1338.11 0.51 0.91 0.92 0.92 0.92 0.91 0.26 0.28 0.26

0.5 1 0.5 20 10 0.36 0.43 0.36 0.34 0.38 0.38 0.38 0.34 0.20 0.22 0.19

0.5 1 0.5 50 10 0.32 0.38 0.31 0.45 0.53 0.53 0.53 0.45 0.19 0.22 0.19
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Table 5: Root Median Integrated Squared Errors for a variety of estimation methods in the random
slope simulations.

ρ σu σ d ni Di Di Di PACE PACE PACE PACE PACE PL RI RS

95 99 Oracle 95 99 AIC BIC Oracle

0 0.5 0.1 20 5 0.17 0.20 0.17 0.12 0.11 0.12 0.12 0.11 0.06 0.11 0.06

0 0.5 0.1 50 5 0.15 0.16 0.13 0.12 0.11 0.11 0.11 0.11 0.06 0.12 0.06

0 0.5 0.1 20 10 0.12 0.12 0.13 0.11 0.10 0.10 0.10 0.10 0.04 0.11 0.04

0 0.5 0.1 50 10 0.11 0.11 0.11 0.10 0.08 0.08 0.08 0.08 0.04 0.11 0.04

0 1 0.1 20 5 0.25 0.30 0.24 0.18 0.16 0.17 0.17 0.17 0.06 0.11 0.06

0 1 0.1 50 5 0.20 0.22 0.20 0.17 0.16 0.16 0.16 0.16 0.06 0.12 0.06

0 1 0.1 20 10 0.18 0.18 0.18 0.16 0.15 0.16 0.16 0.15 0.04 0.11 0.04

0 1 0.1 50 10 0.16 0.16 0.16 0.14 0.13 0.14 0.14 0.13 0.04 0.11 0.04

0 0.5 0.5 20 5 0.27 0.26 0.26 0.23 0.23 0.23 0.23 0.23 0.22 0.21 0.21

0 0.5 0.5 50 5 0.25 0.25 0.25 0.22 0.22 0.22 0.22 0.22 0.20 0.21 0.20

0 0.5 0.5 20 10 0.23 0.23 0.23 0.19 0.18 0.19 0.19 0.18 0.16 0.18 0.16

0 0.5 0.5 50 10 0.21 0.21 0.20 0.18 0.18 0.18 0.18 0.18 0.16 0.17 0.15

0 1 0.5 20 5 0.36 0.37 0.35 0.27 0.27 0.27 0.27 0.27 0.22 0.22 0.22

0 1 0.5 50 5 0.32 0.33 0.31 0.26 0.25 0.25 0.25 0.25 0.21 0.22 0.21

0 1 0.5 20 10 0.29 0.30 0.29 0.22 0.22 0.22 0.22 0.22 0.16 0.18 0.16

0 1 0.5 50 10 0.26 0.27 0.25 0.22 0.21 0.21 0.21 0.21 0.16 0.18 0.16

0.5 0.5 0.1 20 5 0.17 0.18 0.17 0.12 0.12 0.12 0.12 0.12 0.06 0.11 0.06

0.5 0.5 0.1 50 5 0.14 0.16 0.14 0.12 0.11 0.11 0.11 0.11 0.06 0.12 0.06

0.5 0.5 0.1 20 10 0.13 0.13 0.13 0.11 0.10 0.11 0.11 0.10 0.04 0.11 0.04

0.5 0.5 0.1 50 10 0.11 0.11 0.11 0.10 0.09 0.10 0.10 0.09 0.04 0.11 0.04

0.5 1 0.1 20 5 0.27 0.30 0.24 0.18 0.18 0.18 0.18 0.18 0.06 0.11 0.06

0.5 1 0.1 50 5 0.19 0.22 0.19 0.17 0.16 0.17 0.17 0.17 0.06 0.11 0.06

0.5 1 0.1 20 10 0.19 0.19 0.19 0.16 0.15 0.16 0.16 0.15 0.04 0.11 0.04

0.5 1 0.1 50 10 0.15 0.16 0.16 0.14 0.13 0.14 0.14 0.13 0.04 0.10 0.04

0.5 0.5 0.5 20 5 0.28 0.28 0.27 0.22 0.22 0.22 0.22 0.22 0.20 0.22 0.20

0.5 0.5 0.5 50 5 0.26 0.26 0.25 0.21 0.21 0.21 0.21 0.21 0.19 0.21 0.19

0.5 0.5 0.5 20 10 0.23 0.24 0.23 0.18 0.19 0.18 0.18 0.19 0.15 0.17 0.15

0.5 0.5 0.5 50 10 0.21 0.21 0.20 0.16 0.16 0.16 0.16 0.17 0.15 0.17 0.14

0.5 1 0.5 20 5 0.39 0.41 0.37 0.27 0.27 0.27 0.27 0.27 0.21 0.22 0.21

0.5 1 0.5 50 5 0.33 0.33 0.33 0.25 0.25 0.25 0.25 0.25 0.20 0.22 0.20

0.5 1 0.5 20 10 0.30 0.32 0.30 0.22 0.22 0.22 0.22 0.23 0.16 0.18 0.15

0.5 1 0.5 50 10 0.25 0.28 0.25 0.21 0.21 0.21 0.21 0.21 0.15 0.18 0.15
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Table 6: Coverage of 95% confidence intervals
for a variety of methods in the random slope

simulations.

ρ σu σ d ni Di Di Di PL

95 99 Oracle

0 0.5 0.1 20 5 0.25 0.26 0.29 0.94

0 0.5 0.1 50 5 0.30 0.28 0.33 0.94

0 0.5 0.1 20 10 0.24 0.23 0.27 0.95

0 0.5 0.1 50 10 0.26 0.26 0.29 0.95

0 1 0.1 20 5 0.19 0.19 0.22 0.94

0 1 0.1 50 5 0.24 0.24 0.26 0.94

0 1 0.1 20 10 0.24 0.24 0.26 0.95

0 1 0.1 50 10 0.20 0.20 0.22 0.95

0 0.5 0.5 20 5 0.76 0.78 0.76 0.93

0 0.5 0.5 50 5 0.86 0.87 0.86 0.94

0 0.5 0.5 20 10 0.80 0.83 0.80 0.93

0 0.5 0.5 50 10 0.87 0.90 0.86 0.94

0 1 0.5 20 5 0.49 0.51 0.54 0.93

0 1 0.5 50 5 0.61 0.63 0.66 0.94

0 1 0.5 20 10 0.63 0.64 0.66 0.93

0 1 0.5 50 10 0.68 0.68 0.71 0.94

0.5 0.5 0.1 20 5 0.26 0.26 0.28 0.93

0.5 0.5 0.1 50 5 0.27 0.26 0.30 0.94

0.5 0.5 0.1 20 10 0.23 0.24 0.25 0.94

0.5 0.5 0.1 50 10 0.22 0.22 0.24 0.95

0.5 1 0.1 20 5 0.22 0.22 0.24 0.94

0.5 1 0.1 50 5 0.24 0.23 0.26 0.94

0.5 1 0.1 20 10 0.23 0.23 0.25 0.95

0.5 1 0.1 50 10 0.21 0.19 0.22 0.95

0.5 0.5 0.5 20 5 0.69 0.71 0.72 0.93

0.5 0.5 0.5 50 5 0.82 0.83 0.83 0.94

0.5 0.5 0.5 20 10 0.77 0.79 0.77 0.93

0.5 0.5 0.5 50 10 0.86 0.89 0.86 0.95

0.5 1 0.5 20 5 0.43 0.45 0.47 0.93

0.5 1 0.5 50 5 0.56 0.57 0.61 0.94

0.5 1 0.5 20 10 0.58 0.58 0.61 0.93

0.5 1 0.5 50 10 0.64 0.62 0.67 0.94
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Table 7: Root Mean Integrated Squared Errors for a variety of estimation methods in the
one-dimensional variation simulations.

σu σ d ni Di Di Di PACE PACE PACE PACE PACE PL RI RS

95 99 Oracle 95 99 AIC BIC Oracle

0.5 0.1 20 5 0.38 256.90 0.23 0.35 0.42 0.42 0.42 0.31 0.08 0.40 0.42

0.5 0.1 50 5 0.22 0.85 0.16 0.34 0.40 0.40 0.40 0.28 0.06 0.41 0.42

0.5 0.1 20 10 0.15 0.15 0.15 0.17 0.19 0.19 0.19 0.16 0.05 0.38 0.39

0.5 0.1 50 10 0.11 0.12 0.11 0.19 0.21 0.21 0.21 0.15 0.04 0.39 0.39

1 0.1 20 5 2.63 247.51 0.45 0.53 0.62 0.62 0.62 0.48 0.08 0.65 0.70

1 0.1 50 5 0.40 10.10 0.30 0.56 0.66 0.66 0.66 0.45 0.07 0.67 0.69

1 0.1 20 10 0.27 0.26 0.29 0.29 0.32 0.33 0.33 0.27 0.05 0.63 0.65

1 0.1 50 10 0.20 0.20 0.21 0.28 0.32 0.32 0.32 0.24 0.04 0.63 0.64

0.5 0.5 20 5 1.12 123.34 0.35 0.65 0.75 0.75 0.75 0.53 0.30 0.45 0.47

0.5 0.5 50 5 2.20 309.59 0.30 0.30 0.30 0.30 0.30 0.29 0.27 0.45 0.46

0.5 0.5 20 10 0.27 0.28 0.24 0.24 0.24 0.24 0.24 0.23 0.21 0.41 0.42

0.5 0.5 50 10 0.23 0.33 0.20 0.47 0.58 0.58 0.58 0.33 0.19 0.41 0.41

1 0.5 20 5 1.37 1766.13 0.50 2.59 3.15 3.15 3.15 2.18 0.34 0.69 0.72

1 0.5 50 5 1.89 1833.27 0.40 1.90 2.32 2.32 2.32 1.36 0.29 0.70 0.71

1 0.5 20 10 0.37 0.40 0.34 0.56 0.69 0.69 0.69 0.47 0.22 0.65 0.66

1 0.5 50 10 0.31 0.36 0.27 0.98 1.11 1.11 1.11 0.69 0.20 0.65 0.65

Table 8: Root Median Integrated Squared Errors for a variety of estimation methods in the
one-dimensional variation simulations.

σu σ d ni Di Di Di PACE PACE PACE PACE PACE PL RI RS

95 99 Oracle 95 99 AIC BIC Oracle

0.5 0.1 20 5 0.15 0.17 0.15 0.16 0.17 0.17 0.17 0.15 0.06 0.29 0.30

0.5 0.1 50 5 0.12 0.13 0.12 0.13 0.13 0.13 0.13 0.13 0.05 0.29 0.30

0.5 0.1 20 10 0.10 0.10 0.11 0.10 0.10 0.10 0.10 0.10 0.04 0.27 0.27

0.5 0.1 50 10 0.08 0.08 0.08 0.08 0.09 0.09 0.09 0.08 0.03 0.27 0.28

1 0.1 20 5 0.25 0.27 0.26 0.24 0.25 0.25 0.25 0.24 0.06 0.47 0.47

1 0.1 50 5 0.18 0.20 0.19 0.20 0.22 0.22 0.22 0.20 0.05 0.46 0.47

1 0.1 20 10 0.17 0.16 0.18 0.17 0.16 0.17 0.17 0.16 0.04 0.41 0.43

1 0.1 50 10 0.13 0.12 0.14 0.14 0.14 0.14 0.14 0.14 0.04 0.43 0.43

0.5 0.5 20 5 0.29 0.29 0.27 0.27 0.27 0.26 0.26 0.26 0.23 0.36 0.37

0.5 0.5 50 5 0.24 0.24 0.22 0.22 0.22 0.22 0.22 0.21 0.19 0.36 0.36

0.5 0.5 20 10 0.20 0.20 0.18 0.19 0.19 0.19 0.18 0.18 0.16 0.31 0.32

0.5 0.5 50 10 0.17 0.18 0.16 0.16 0.17 0.16 0.16 0.15 0.14 0.32 0.32

1 0.5 20 5 0.41 0.44 0.36 0.38 0.38 0.38 0.38 0.35 0.27 0.50 0.51

1 0.5 50 5 0.33 0.36 0.29 0.31 0.31 0.31 0.31 0.30 0.22 0.50 0.51

1 0.5 20 10 0.26 0.28 0.24 0.23 0.24 0.23 0.23 0.23 0.18 0.45 0.45

1 0.5 50 10 0.23 0.25 0.21 0.22 0.23 0.22 0.22 0.20 0.15 0.46 0.46
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Table 9: Coverage of 95% confidence
intervals for a variety of methods in the
one-dimensional variation simulations.

σu σ d ni Di Di Di PL

95 99 Oracle

0.5 0.1 20 5 0.39 0.41 0.47 0.95

0.5 0.1 50 5 0.46 0.48 0.55 0.96

0.5 0.1 20 10 0.41 0.43 0.42 0.96

0.5 0.1 50 10 0.37 0.37 0.45 0.96

1 0.1 20 5 0.38 0.40 0.46 0.94

1 0.1 50 5 0.46 0.48 0.54 0.95

1 0.1 20 10 0.38 0.40 0.40 0.94

1 0.1 50 10 0.34 0.35 0.40 0.93

0.5 0.5 20 5 0.65 0.67 0.64 0.94

0.5 0.5 50 5 0.76 0.79 0.75 0.96

0.5 0.5 20 10 0.76 0.81 0.71 0.95

0.5 0.5 50 10 0.82 0.86 0.79 0.97

1 0.5 20 5 0.47 0.48 0.54 0.94

1 0.5 50 5 0.57 0.58 0.63 0.96

1 0.5 20 10 0.53 0.56 0.56 0.96

1 0.5 50 10 0.59 0.61 0.63 0.97
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