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Abstract 

This study explored the application of piezoelectric vibration absorbers (PVAs) equipped with 

synthetic circuits for the vibration control of cyclic symmetric structures. A cyclic symmetric 

electromechanical model (CSEM) integrated with PVAs was introduced to facilitate the design and 

optimization of the PVAs. This model was formulated analytically based on the circulant matrix theory, 

and the dynamic response was computed using the complex mode superposition method with explicit 

consideration of the intrinsic resistance within the PVA. A case study involving a simplified blisk model 

and an experimental test rig was conducted to validate the proposed CSEM. The validity of the model 

was confirmed through a comparative analysis of both the natural and dynamic characteristics obtained 

using the finite element model and experimental results. Furthermore, the impact of synthetic circuit 

parameters (inductance and negative capacitance values) and the placement of piezoelectric patches on 

the vibration control performance of PVA were investigated. The results suggested that the optimal 

inductance coincide with the analytical value, whereas the optimal negative capacitance of the series was 

slightly greater than the intrinsic capacitance of the patch. Additionally, mounting the piezoelectric patch 

on the blade root improved the vibration control. 

Keywords: Vibration control, electromechanical coupling, cyclic symmetric modelling, piezoelectric 

vibration absorber, blisk structure. 
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1. Introduction 

Cyclic symmetric structures serve as the critical components in numerous rotating machines, 

including compressors (Yang et al., 2022), turbines (Bladh et al., 2000; Zhou et al., 2014), and helicopter 

engines (Anusonti-Inthra and Gandhi, 2000). These structures, engineered for high-pressure and high-

speed conditions, are prone to vibrations that may lead to high-cycle fatigue or substantial plastic 

deformation. Current control strategies primarily involve the implementation of damping technologies 

such as dry friction (Sun et al., 2021), constrained layer (Sun et al., 2020), and active control damping 

(Liu et al., 2017), which effectively attenuate peak dynamic responses to ensure operational safety (Ewins, 

2010). Furthermore, the integration of piezoelectric vibration absorbers (PVAs) has been explored to 

enhance the vibration control in these structures. 

PVAs have attracted considerable attention owing to their excellent properties, such as lightweight 

construction, broad operational bandwidths and ease of integration (Richardt et al., 2024; Soltani et al., 

2014). Typically, PVAs incorporate a piezoelectric transducer with an electrical impedance (Berardengo 

et al., 2020; Gripp and Rade, 2018; Yamada et al., 2010). The RL resonant shunt circuit, comprising an 

inductor (L) and a resistor (R), is most commonly employed in PVAs (Soltani et al., 2014). PVAs have 

been successfully applied to various structures such as beams (Qi et al., 2023; Thomas et al., 2009), shells 

(Dai et al., 2023; Jamshidi and Jafari, 2022) and plates (Zhou et al., 2021), demonstrating effective 

vibration control. For cyclic symmetric structures, Cross and Fleeter (2002) explored the application of 

PVAs in turbomachine blades through a series of experiments. Tang and Wang (2003) demonstrated the 

effectiveness of PVA in eliminating the vibration localisation in cyclic symmetric structures owning to 

minor mistuning. Additional applications include helicopter rotors (Shevtsov et al., 2009) and circular 

saws (Pohl and Rose, 2016). These instances suggest that the application of PVAs to cyclic symmetric 

structures is likely to yield significant vibration reduction benefits. 

Although traditional RL shunt circuits are effective, their scalability is constrained by the 

considerable inductance required to achieve resonance (Fleming et al., 2000; Shen et al., 2023). Several 

researchers have introduced synthetic circuits to enhance the vibration control capabilities of shunt 

circuits and simplify the construction of PVAs (Alfahmi and Erturk, 2024; Fleming et al., 2000; Luo et 

al., 2024). Synthetic RLNC shunt circuits, with negative capacitances (NCs) have proven to be highly 

effective for vibration control (Berardengo et al., 2021). Numerous studies have been conducted on the 

effect of NC on vibration control in PVAs applied to simple structures (Mosquera-Sánchez et al., 2024; 

Neubauer et al., 2006). For instance, Berardengo et al., (2016, 2021) provided practical guidelines and 

an analytical formula for NC implementation, with experimental evidence confirming its vibration 

damping benefits. However, the application of NC to cyclic symmetric structures has received less 

attention in literature. 

To optimise the design of PVAs with synthetic circuits for cyclic symmetric structures, it is essential 

to develop a robust electromechanical model of cyclic symmetric structures integrated with PVAs. As 

reported in the literature, the lumped-parameter modelling method (Liu et al., 2017; Zhou et al., 2014) is 

widely used to create electromechanical models of cyclic symmetric structures with PVAs. Although this 

method effectively captures the vibration features, its simplified approach limits its utility in designing 

PVAs for cyclic symmetric structures. Recently, Shen et al. (2023) introduced a semi-analytical dynamic 

modelling approach for blisk structures with PVAs, exploring the optimal parameters for resistance and 

RL series circuits. Despite offering insights into the design of PVA in cyclic symmetric structures, this 



method may fall short of precisely portraying the complex cyclic symmetric structures encountered in 

practical scenarios. 

Cyclic symmetric structures lead to block-circulant dynamic matrices in the finite element method 

(FEM) (Olson et al., 2014; Pourkiaee et al., 2022). This characteristic allows for the decomposition of 

cyclic symmetric systems into a set of uncoupled systems through appropriate coordinate transformations. 

Early studies on cyclic symmetric structures focussed on the modes of vibration (Ewins, 1973) and the 

steady-state response under harmonic excitation (Ewins, 2010; Yuan et al., 2017) of turbomachinery. 

Bladh et al. (2000) established a cyclic symmetric model of the bladed disk and appleied the component 

mode synthesis techniques to reduce the computational effort. Petrov (2004) developed an effective 

method based on the cyclic symmetric theory to calculate the nonlinear dynamic response of blade disk. 

Pourkiaee et al. (2022) presented a novel reduced-order modelling technique for the nonlinear dynamics 

of mistuned bladed disks with friction interfaces. These studies underscore the significant computational 

savings achieved when cyclic symmetric is exploited. However, current studies have primarily addressed 

the mechanical aspects of cyclic symmetric structures, highlighting the lack of methods for modelling 

electromechanical systems with PVAs. This gap underscores the need for research that integrates the 

mechanical and electrical domains to develop more effective vibration control strategies. 

In this study, a cyclic symmetric electromechanical model (CSEM) is proposed to evaluate the 

vibration characteristics of cyclic symmetric structures with PVA. The key contributions of this study are 

as follow: (1) A general and accurate electromechanical model for cyclic symmetric structures with PVAs 

was developed by integrating the complex mode superposition method to simulate dynamic responses. 

(2) A PVA with a synthetic circuit, including a negative capacitor, was designed to control the vibration 

of the cyclic symmetric structures. (3) A case study on a simplified blisk equipped with PVAs was 

conducted, involving numerical validation through FEM and experimental verification of the vibration 

control performance using a dedicated test rig. 

This paper is organised as follows. In Section 2, an electromechanical modelling method for cyclic 

symmetric structures with PVAs is introduced, and the dynamic response of the electromechanical system 

is derived. In Section 3, the verification of the proposed model is verified by comparing the natural 

characteristics and vibration responses with the FEM and experiments. in Section 4, the effects of the 

circuit parameters and placement of the piezoelectric patch on the vibration control performance of PVA 

are investigated in Section 4, respectively. The conclusions are summarised in the last section. 

2. Formulation of electromechanical modelling 

Cyclic symmetric systems have block-circulant dynamic matrices. A notable characteristic of these 

matrices is their ability to be pseudo-diagonalized using real quasi-equivalent block Fourier matrices. In 

this section the CSEM method is formulated by analysing a cyclic symmetric structure equipped with 

PVA. Furthermore, a vibration analysis method that integrates CSEM with the complex mode 

superposition method is presented. 



 

Figure 1. Model of the cyclic symmetric structure with PVA labelled with coordinate system: (a) Entire model; (b) 

the 𝑗-th sector of the system. 

2.1. Electromechanical model of single sector 

As illustrated in Figure 1, the model exhibits a typical cyclically symmetric structure when each 

sector is uniformly attached to an identical piezoelectric patch. The FEM of one sector attached to the 

piezoelectric patch is established as follows: 
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where uj, vj and qj are the nodal DOFs, denoting the displacement, voltage, and charge generated from 

the patch, respectively, and j denotes the index number. 𝐦𝑢𝑢
𝑗

, 𝒄𝑢𝑢
𝑗

 and 𝐤𝑢𝑢
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 denote the structure mass 

and stiffness matrices, respectively; the piezoelectric stiffness matrix 𝐤𝑢𝑣
𝑗

= 𝐤𝑣𝑢
𝑗𝑇

 couples the structural 

and electric behaviour, and 𝑘𝑣𝑣
𝑗

 is the dielectric stiffness matrix. Because electrical variables are used, 

this equation is convenient for introducing realistic electrical boundaries. 

 

Figure 2. Piezoelectric patch with different shunt circuit: (a) series RL without NC (b) series RL with NC 

In this study, two circuit layouts, as shown in Figure 2, were investigated using a CSEM. 

Considering that every sector in an electromechanical system is connected to a series circuit as shown in 

Figure 2(a), the relationship between q and v is as follows (Berardengo et al., 2016; Thomas et al., 2009). 

 𝐿𝑞̈𝑗 + 𝑅𝑞̇𝑗 − 𝑣𝑗 = 0 (2) 

where L and R represent inductance and resistance respectively. By substituting voltage vj into Eq. (1), 

the second line can be rewritten as follows. 

 𝐿𝑞̈𝑗 + 𝑅𝑞̇𝑗 + 𝑘𝑣𝑣
−1𝑞𝑗 − 𝑘𝑣𝑣

−1𝑘𝑣𝑢𝐮𝑗 = 0 (3) 

Thus, the FEM of a single sector with a series RL shunt circuit is obtained as follows. 
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When the NC is added to the circuit, as shown in Figure 2(b), the relationship between q and v 

becomes (Berardengo et al., 2021; Zhou and Hu, 2023): 



 𝐿𝑞̈𝑗 + 𝑅𝑞̇𝑗 +
1

𝐶𝑛𝑒𝑔
𝑞𝑗 − 𝑣𝑗 = 0 (6) 

The electromechanical model has the same form as that in (4), with the following exception: 

 𝑘̃𝑣𝑣
𝑗

= (𝑘𝑣𝑣
𝑗

)
−1

+ 1/𝐶𝑛𝑒𝑔 (7) 

where Cneg represents the NC value. The shunt circuit parameters must be tuned for specific-mode 

vibration control. The tuned formulations are presented in the Appendix. 

2.2. Cycle symmetric electromechanical model (CSEM) and vibration analysis 

Subsequently, by assembling the structural matrices of each sector in sequence, the resulting 

matrices for the cyclic symmetric structure take the form of circulant matrices. A block circulant 

dynamics matrix with generating elements C1, C2, …, CN can be represented by the matrix sums (Olson 

et al., 2014): 

 𝜌(𝜎𝑁 , 𝑪𝑘) = ∑ 𝜎𝑁
𝑘−1𝑁

𝑗=1 ⊗ 𝐂𝑘 = circ(𝐂1, 𝐂2, … , 𝐂𝑁) (8) 

where 𝜌( ), 𝜎𝑁, and ⊗denote the finite sum of the direct products, the N N cyclic forward-shift matrix, 

and the Kronecker product, respectively. Using real quasi-equivalent block Fourier matrices (Bladh et 

al., 2000; Olson et al., 2014), all the matrices can be transformed into pseudo-block diagonal matrices. 

The matrices of a single sector established in their own coordinates are consistent, and the 

displacement of the interface DOFs algorithms with adjacent sectors is shown in Figure 1. The interface 

DOFs must be described using the same coordinates (Sun et al., 2020). Consequently, the matrices can 

be transformed as follows. 

 𝐊 = circ(𝐊1, 𝐊2, … , 𝐊𝑁),    𝐊1 = [
𝐑T𝐤𝑝𝑝𝐑 + 𝐤𝑡𝑡 𝐤𝑡𝑔̄

𝐤𝑔̄𝑡 𝐤𝑔̄𝑔̄
]，   𝐊2 = [

𝐤𝑡𝑝𝐑 𝟎

𝐤𝑔̄𝑝𝐑 𝟎
] (9) 

 𝐊𝑁 = (𝐊2)T，   𝐊3 = 𝐊4 = ⋯ = 𝐊𝑁−1 = 𝟎 (10) 

where, R is a linear transformation matrix. Thus, the dynamic model of the entire system can be written 

as: 

 𝐌𝐮̈ + 𝐂𝐮̇ + 𝐊𝐮 = 𝐅 (11) 

The obtained block circulant matrix can be pseudo-diagonalised using the real quasi-equivalent 

block Fourier matrices ℱ, considering the sector angle 𝛼 = 2𝜋/𝑁 (Olson et al., 2014): 

 𝐔 = [𝐮1 𝐮2 ⋯ 𝐮𝑁] = ℱ[𝐱0 𝐱𝑐
1 𝐱𝑠

1 ⋯ 𝐱𝑁/2] = ℱ𝐗 (12) 

 ℱ = [ℱ0 … ℱ𝑁,𝑐 ℱ𝑁,𝑠 … ℱ𝑁

2
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1
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1 √2 𝑐𝑜𝑠 2𝛼 √2 𝑠𝑖𝑛 2 𝛼 ⋯ −1
⋮ ⋮ ⋮ ⋱ ⋮

1 √2 𝑐𝑜𝑠(𝑁 − 1)𝛼 √2 𝑠𝑖𝑛(𝑁 − 1)𝛼 ⋯ −1]
 
 
 
 
 

⊗ 𝑰𝑘 (13) 

Substitute (12) into (11) and left multiplicate the transpose of ℱ to obtain the following. 

 𝐌̃𝐱̈ + 𝐂̃𝐱̇ + 𝐊̃𝐱 = 𝐅̃ (14) 

 

𝐌̃ = ℱ𝑇𝐌ℱ = 𝑑𝑖𝑎𝑔(𝐌̃0, 𝐌̃1, ⋯ , 𝐌̃𝑁/2),

𝐂̃ = ℱ𝑇𝐂ℱ = 𝑑𝑖𝑎𝑔(𝐂̃0, 𝐂̃1, ⋯ , 𝐂̃𝑁/2),

𝐊̃ = ℱ𝑇𝐊ℱ = 𝑑𝑖𝑎𝑔(𝐊̃0, 𝐊̃1, ⋯ , 𝐊̃𝑁/2)

 (15) 

Thus, the total stiffness matrix can be transformed into a pseudo-block matrix, wherein every diagonal 

element represents one nodal diameter characteristic. 



When the damping matrix is ignored, the eigenfrequencies for cyclic symmetric structures under 

open- and short-circuit can be obtained using the following equations: 

 [𝐊̃𝑟 − (𝜔𝑟)2𝐌̃𝑟]𝚽𝑟 = 0，𝐊̃𝑟 = {
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𝑁

2

 (16) 

where r denotes the harmonic order. Henceforth, the structural matrices 𝐌̃𝑟  and 𝐂̃𝑟 have the same form 

as the stiffness matrix 𝐊̃𝑟in (16). 

Considering the presence of a damping matrix within a system, the complex mode superposition 

method is highly effective for calculating the vibration response (Rao, 2019). Because the dynamic 

matrices of the entire system are decoupled, the equation of motion in wavenumber space is written as 

 𝐌̃𝑟𝐗̈𝑟 + 𝐂̃𝑟𝐗̇𝑟 + 𝐊̃𝑟𝐗𝑟 = 𝐅̃𝑟  (17) 

The characteristic equation of complex mode is given by 

 𝐀𝑟 𝐗̇̄ + 𝐁𝑟𝐗̄ = 𝟎 (18) 

 𝐀𝑟 = [ 𝐂̃
𝑟 𝐌̃𝑟

𝐌̃𝑟 𝟎
] ,    𝐁𝑟 = [𝐊̃

𝑟 ⬚
⬚ 𝐌̃𝑟

]  ,   𝐗̄𝑟 = [
𝚿𝑟

𝚿𝑟𝜆𝑟] 𝑒𝜆𝑡 (19) 

Supposing 𝑎𝑘
𝑟 = (𝚿̄𝑘

𝑟)𝑇𝐀𝑘
𝑟 𝚿̄𝑘

𝑟, the transfer function can be written as 

 𝐇𝑟(𝜔) = ∑ [
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𝑟(𝚿̄𝑘
𝑟)𝑇
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𝑘=1  (20) 

The response of every nodal diameter can be written as: 

 𝐗𝑟 = [𝐗𝑐
𝑟 𝐗𝑠

𝑟]𝑇 = 𝐇𝑟(𝜔)𝐅̃𝑟  (21) 

Using (12), the total response of the cyclic symmetric structure with a piezoelectric vibration absorber 

can be obtained. The algorithm pseudo-code for vibration response of the CSEM is shown in Algorithm 

1. 

  



Algorithm 1: Vibration response of the cyclic symmetric electromechanical model 

Input: 

 geometrical and mechanical properties of one sector in the cyclic symmetric structure and the 

piezoelectric patch 

 the total number of the sectors N and the position of piezoelectric patch 𝑥𝑝 

 the circuit parameters L, R, 𝐶𝑛𝑒𝑔 

Initialization 

calculate the matrices and vectors of the CSEM (ℱ, 𝐌̃𝑟 , 𝐂̃𝑟 , 𝐊̃𝑟 , 𝐅̃𝑟); 

calculate 𝜔𝑠𝑐 and 𝜔𝑜𝑐; 

for 𝜔 = 𝜔𝑠: 𝜔𝑒 do 

   for r = 1:N/2+1 do 

      0ra = ; 

      if 𝜔𝑠𝑐(𝑖) < 2𝜔𝑒 then 𝑎𝑖
𝑟 = 𝚿̄𝑖

𝑟𝑇
𝐀𝑖

𝑟𝚿̄𝑖
𝑟; end 

      sum( )r r

ia a= ; update the transfer function 𝐇𝑟; 

computation of dynamic equation 𝐗𝑟 = [𝐗𝑐
𝑟 𝐗𝑠

𝑟]𝑇 = 𝐇𝑟𝐅𝑟; 

wave number increment; 

end 

update the total response U of the CSEM; 

frequency increment; 

end 

Output: 

 eigenfrequencies and the modal shape 

 vibration responses of coupling system (𝒖, 𝒖̇, 𝒖̈) 

3. Validation of theoretical analysis by simulations and experiments 

In this section, the vibration characteristics of the proposed CSEM are compared with those of the 

FEM without cyclic reduction and with the experimental results for validation. First, an experimental test 

rig for electromechanical coupling system vibration was established. As shown in Figure 3, a simplified 

blisk equipped with a piezoelectric vibration absorber was used as an example. Based on this system, 

natural frequency comparisons between the CSEM, entire FEM, and experiment were carried out. To 

assess the vibration control effect, the performance of PVA with various shunt circuits were numerically 

evaluated and compared. 

 

Figure 3. Schematic of the simplified blisk with piezoelectric vibration absorber. 

3.1. Experimental set-up 

As shown in Figure 3, a piezoelectric patch was attached to each sector in the blisk. The material of 

the blisk was AL6061 and the elastic modulus, density and Passion’s ratio was E = 69 GPa, ρb = 2750 

Kg/m3 and υ = 0.33, respectively. The thickness of the blisk and length of the blade were tb = 3 mm and 

lb = 70 mm. MFC (M2814) was selected as the piezoelectric transducer, and elastic, piezoelectric, and 

permittivity constants were c11 = 69.48 GPa, c12 = 24.32 Gpa, c66 = 22.57 GPa, e31 = -16.04 C/m2, and ε33 



= 9.5610-9 nF/m, respectively. The length, width, and thickness of the selected piezoelectric patch are 

chosen as lp = 28 mm, wp = 14 mm, tp = 0.3 mm, respectively. 

 

Figure 4. Test rig for the electromechanical coupling system in vibration control. 

 

Figure 5. Modified synthetic circuit composing synthetic inductor and negative capacitor (Wangenheim, 1996; 

Zhou and Hu, 2023). 

A test rig for coupling the system vibrations was set up as shown in Figure 4. Subsequently, a blisk 

was fixed to the platform through the inner hole, and piezoelectric patches were glued to the structure at 

the end of the sectors. Two accelerometers (YZW-A17C01) were used to measure the system response. 

Furthermore, an additional force hammer (KISTLER 9724A5000) was used in the hammering test. In 

the vibration test, an electromagnetic coil was used as the contactless vibration exciter, and a force sensor 

(PCB 208C01) was used to monitor the magnitude of the excitation force. Additionally, a distributed data 

acquisition system (LMS, SCADASIII) was employed to collect the dynamic response and output 

excitation signals. 



The PVA used in this study comprised an MFC piezoelectric patch and a synthetic circuit. A 

piezoelectric patch was glued to the end of each sector. The synthetic circuit comprised a synthetic 

inductor (Wangenheim, 1996) and a negative capacitor (Zhou and Hu, 2023) as shown in Figure 5. The 

equivalent inductance, negative capacitance, and resistance were calculated using the following 

equations: 

 𝐿𝑒𝑞 =
𝐶2𝑅8𝑅5

𝑅6
𝑅9,    𝑅𝑒𝑞 = 𝑅4 −

𝑅5

𝑅6
𝑅7,    𝐶𝑛𝑒𝑔 = −

𝑅2

𝑅1
𝐶1 (22) 

A transfer switch 'S1' was used to change the circuit form between the series RL and RLNC circuits. 

As shown in Figure 5, R2, R4, and R9 were set as potentiometers to adjust the values of the series 

resistance (R), inductance (L), and NC (Cneg). 

3.2. Verification of natural characteristic 

An FEM without cyclic reduction of a blisk was integrated with a piezoelectric vibration absorber. 

Solid elements (SOLID45 and SOLID5for the host structure and piezoelectric patches, respectively) 

were used to simulate the coupling system. The entire FE model was simulated using COMSOL 

Multiphysics, wherein the upper and lower surfaces of the piezoelectric patches were arranged as 

electrodes (Sun et al., 2020). A total of 13983 elements were identified. The roving hammer method was 

employed for modal tests. Two accelerometers were fixed at specific locations on the blisk, and 

excitations were applied at 67 points across the structure using an impact hammer, excluding the 

accelerometer positions, and targeting six specific points on one sector of the blisk. At each impact 

location, the structural response was recorded using accelerometers and the corresponding frequency 

response functions were calculated. 

Table 1 Comparison of natural frequencies of blisk with PVA obtained by entire model, CSEM and experiments. 

Order CSEM (Hz) FEM (Hz) Experiment (Hz) Error 1 (%) Error 2 (%) 

f1 227.92 228.50 214.45 0.25% 5.90% 

f2 227.92 228.55 217.16 0.28% 4.72% 

f3 240.47 239.96 248.35 0.21% 3.28% 

f4 262.15 261.76 257.57 0.15% 1.75% 

f5 262.15 261.76 258.34 0.15% 1.45% 

The resulting natural frequencies of the system obtained through the FEM, CSEM, and experimental 

tests are listed in Table 1. The findings revealed that the CSEM results aligned closely with the 

experimental results, with the maximum deviation of the first five undamped natural frequencies of the 

blisk between the CSEM and experimental results being less than 5%, except for the first-order frequency 

(note that these frequencies pertain to undamped conditions). However, Error 1 was smaller than Error 

2, indicating that the CSEM results more closely resembled the FEM results than the experimental 

findings. Notably, potential factors such as minor mistuning during the blisk and piezoelectric patch 

manufacturing processes and inconsistencies in the applied hammering force during the experiment, 

could have impacted these results. Error 2 of the first order was likely caused by the influence of the 

accelerometers on the blade. 

The resulting natural frequencies of the system obtained through entire FEM, CSEM, and 

experimental tests, are provided in Table 1. The findings reveal that the CSEM results align closely with 



the experimental results, with the maximum deviation of the first five undamped natural frequencies of 

the blisk between the CSEM and experimental results being less than 5% except the first order (It is 

important to note that these frequencies pertain to undamped conditions). However, Error 1 is smaller 

than Error 2, indicating that the CSEM results exhibit a closer resemblance to the FEM results compared 

to the experimental findings. It is worth mentioning that potential factors such as minor mistuning during 

the blisk and piezoelectric patch manufacturing process, as well as inconsistencies in the applied 

hammering force during the experiment, could contribute to these results. And the Error 2 in the first 

order may be caused by the influence of the accelerometers in the blade. 

3.3. Circuit parameters identification 

In this experiment, a shunt circuit was constructed using a synthetic circuit, making direct 

measurements impracticable. Consequently, an indirect measurement method was employed to 

determine the synthetic inductance and negative capacitance. As shown in Figure 6, the synthetic inductor 

is connected in series with an auxiliary resistor Rc = 104 Ω, with an AC signal of varying frequency 

generated by a signal generator. The voltage across the inductor vL and the output voltage v from the 

signal generator were measured using an LMS system, and their frequency response functions (FRFs) 

are: 

 
𝑣

𝑣𝐿
= −𝑗

𝑅𝑐

𝜔𝐿
+ 1 (23) 

Considering the reciprocal of the imaginary part, the slope of the curve is denoted by sL, and the 

inductance can be calculated using L = sLRc. The inductance results of the RL and RLNC circuits are 

shown in Figure 6(a). The inductance values calculated from the slopes are 14.84 and 3.64 H in RL and 

RLNC circuit, respectively. The identification process of Cneg is similar to that of the synthetic inductance, 

as shown in Figure 6(b). Furthermore, Cneg is calculated to be 38.58 nF. 

 

Figure 6. identification of circuit parameters: (a) Synthetic inductance; (b) NC. 

3.4. Verification of vibration response with different circuit designs 

To further validate the accuracy of the CSEM, the vibration responses were compared with those 

obtained from the FEM and the experimental results. As listed in Table 2, three distinct scenarios were 



examined: PVA with short circuits, RL shunt circuits, and RLNC shunt circuits. In the simulation, 

Rayleigh damping was employed, with α = 7.3522 and β = 3.3979× 10−6. The frequency step was set to 

0.5 Hz, and an external force amplitude of 0.005 N was applied, corresponding to parameters derived 

from the calibration experiments utilising a non-contact excitation system. 

Table 2 External electric boundary types and specific values in different cases. 

Case External electric boundary types Values 

Case 1 Short circuit Without control 

Case 2 RL resonant circuit R = 14300 Ω, L= 14.84 H 

Case 3 RLNC circuit R = 7295 Ω, L = 3.64 H, Cneg = 38.58 nF 

As shown in Figure 7, the results obtained by the CSEM and FEM exhibit a high degree of 

agreement, numerically validating the proposed model. In this study, vibration mode f3 (240.47 Hz) in 

Table 1 is considered the targeted mode to be controlled because it has the same shape for each sector, 

and the same method can be extended to other modes. The vibration responses around the target mode 

obtained by the CSEM and FEM were compared to investigate the applicability of the proposed model 

under different electrical boundaries. The frequency step was set to 0.1 Hz, and the results are shown in 

Figure 7. The results based on the CSEM agreed with those based on the FEM. 

The comparison results with the experimental results presented in Figure 8 indicate the efficacy of 

PVA in attenuating the vibration amplitude of the blisk. Notably, the vibration response decreased 

substantially with the incorporation of the shunt circuit. The simulated results show a 54.9% and 66.3% 

reduction in the vibration response in the RL and RLCN shunt circuits, respectively. The experimental 

data corroborate these findings, with an observed decrease of 28.5% and 35.4% for the RL and RLNC 

shunt circuits, respectively. 

 

Figure 7. Vibration response comparison between FEM and CSEM under different shunt circuits. 



 

Figure 8. Vibration control effect of PVA connected with different shunt circuits. 

4. Further parametric analysis 

Based on the proposed CSEM established in Section 2, the parameter analysis consisted of two parts 

to study the vibration control effect of the PVA: the effect of circuit parameters, including the inductance 

and NC, and the positioning of the piezoelectric patches on the blades. The vibration suppression effect 

was used to quantify the performance of the PVA (Pourkiaee et al., 2022): 

 The suppression effect of PVA ⇒
Reduction of Peak

The peak of open circuit state
× 100% (24) 

4.1. The effect of circuit parameters L and Cneg  

A previously established CSEM was utilised to analyse the effects of L and Cneg on the vibration 

control of the blisk, with parameters corresponding to those detailed in Section 3. For RL shunt circuits, 

attention is focused primarily on circuit detuning resulting from variations in the inductance parameters. 

The resistance is maintained at 14300 Ω, while the inductance varies from 5 H to 45 H. The vibration 

response of the target mode before and after the implementation of the PVA is shown in Figure 9. For the 

current system, the optimal inductance was 15 H, which coincides with the value calculated using 

Equation (A.1). Figure 9 also illustrates that the PVA achieves a maximum suppression effect of 54.9%, 

beyond which the performance deteriorates notably owing to circuit detuning, particularly when the 

inductance exceeds 25 H. 

 

Figure 9. Vibration control performance of PVA with different inductance. 



 

Figure 10. Vibration response of blisk calculated by CSEM: (a) Vibration control performance of PVA with 

different NC; (b) vibration responses variations with NC. 

For the RLNC shunt circuit, the value of the NC is investigated. Considering the stability of PVA, 

the absolute value of NC must be greater than the inherent capacitance of the piezoelectric patch 

(Berardengo et al., 2016). In this study, the NC is set from -40 nF to -120 nF and the other parameters 

are the same as those in Section 3. Consistent with the parameter analysis of the inductor, the response 

amplitude of the target mode with and without control, as calculated by CSEM, is shown in Figure 10. 

According to the calculations, the vibration response with control increased with an increase in the 

absolute value of NC. The best performance of the PVA with a series RLNC circuit was observed at NC 

= 40 nF, with a suppression effect of 64.8%. This demonstrates that, provided the system remains stable, 

an increase in NC in the external circuit cancelling the inherent capacitance of the piezoelectric patch, 

enhances the vibration control performance. 

Comparing the results depicted in Figure 9, the suppression effect is close to that of the series RL 

circuit with an increase in the absolute value of NC (especially when it is greater than 80 nF). This makes 

NC less effective in cancelling the inherent capacitance of the piezoelectric patch. 

4.2. Effect of piezoelectric patch placement 

Based on the CSEM image of the blisk with PVA, the effect of the position of the piezoelectric patch 

on the vibration suppression effect of PVA was analysed. The position of the piezoelectric patch was 

denoted by its distance from the blade root. The distance was set from 0–40 mm, and the other parameters 

were the same as those described in Section 3. The response results calculated by the CSEM are shown 

in Figure 11. The PVA evidently exhibits vibration suppression effect when arranged in different 

positions. For both the RL and RLNC circuits, the closer the blade roots, the better the vibration control 

performance. 

 



Figure 11. Vibration response and suppression effect of blisk with PVA calculated by CSEM. 

To examine into the underlying reasons for the effect of piezoelectric patch placement on vibration 

suppression, the modal electromechanical coupling factor (MEMCF) was calculated based on the CSEM 

in this study, as shown in Figure 12. The suppression performance of the PVA under different circuits 

changes with the placement variation, as illustrated in Figure 12. 

 

Figure 12. Changes in MEMCF and vibration suppression effect with the variation of piezoelectric patch 

placement: (a) Suppression effect; (b) Vibration response. 

MEMCF serves as a reliable measure of the energy transformation capability of piezoelectric 

transducers. For the controlled mode, the calculations indicate that positioning the piezoelectric patch 

closer to the blade root increases the MEMCF and enhances the vibration control effect. In other words, 

the vibration control performance is positively related to the ability of the piezoelectric transducer to 

convert electrical energy. Moreover, the results indicate that the enhancement effect of NC on the 

vibration reduction performance of PVA is weakened with the decrease in MEMCF. 

5. Conclusions 

This study presented a novel and comprehensive CSEM for evaluating the vibration characteristics 

of structures with PVA. The integration of the complex mode superposition method with the CSEM offers 

a robust approach for analysing dynamic responses. Numerical simulations and experimental results 

validate the accuracy and effectiveness of the proposed model. The analysis focused on a simplified blisk 

equipped with PVA to investigate the effects of the synthetic circuit parameters and the placement of 

piezoelectric transducers on the effectiveness of vibration control. The main conclusions drawn from this 

study are as follows: 

(1) A novel CSEM integrated with PVAs was proposed based on circulant matrix theory. The vibration 

characteristics derived from this model aligned closely with the results obtained through the FEM 

and experimental findings, thus validating the model's efficacy. 

(2) A synthetic circuit consisting of a negative capacitor was utilised in the PVAs for vibration control 

of the simplified blisk. The suppression effect for the target mode was 28.5% and 35.4% for the RL 

and RLNC shunt circuits, respectively. 

(3) Parameter analysis indicated that the optimal inductance is coincided with the analytical value. 

Additionally, the optimal value for NC was slightly larger than the inherent capacitance the 

piezoelectric transducer for both the RL and RLNC circuit, positioning the piezoelectric patch closer 

to the blade root improved the vibration control. 
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Appendix 

The optimal values of R and L in the series RL shunt circuit (as shown in Figure 2(a)) can be obtained 

using the following equations (Thomas et al., 2009; Yamada et al., 2010): 

 𝐿𝑠
𝑜𝑝𝑡

=
1

(1+𝜅2)𝜔𝑠𝑐
2 𝐶𝑝𝑒

,    𝑅𝑠
𝑜𝑝𝑡

= √
3𝜅2

(1+𝜅2)(2+𝜅2)

1

𝜔𝑠𝑐𝐶𝑝𝑒
 (A.1) 

 𝜅 = √(𝜔𝑜𝑐
2 − 𝜔𝑠𝑐

2 )/𝜔𝑠𝑐
2  (A.2) 

where sc   and oc   are the eigenfrequencies of the short and open circuits, respectively. And   

denotes the modal electromechanical coupling factor (MEMCF). 

When the NC is connected to the series RL circuit (as shown in Figure 2(b)), the optimal parameters 

for the RLNC circuit is given by (Berardengo et al., 2021; Thomas et al., 2009; Yamada et al., 2010): 

 𝐿𝑠,𝑁𝐶
𝑜𝑝𝑡

=
𝛼

(1+𝛼)(1+𝜅2)𝜔𝑠𝑐
2 𝐶𝑝𝑒

,    𝑅𝑠,𝑁𝐶
𝑜𝑝𝑡

= √
3𝛼2𝜅2

(1+𝛼)(1+𝜅2)(𝛼𝜅2−𝜅2+2𝛼)

1

𝜔𝑠𝑐𝐶𝑝𝑒
 (A.3) 

It is assumed that (1 )neg peC C= − +  and the NC must be higher than the inherent capacitance of the 

piezoelectric patch 
peC  for stability condition (Berardengo et al., 2016). 
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