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Abstract 

While the importance of in silico experiments for the scientific discovery 
process increases, state-of-the-art software engineering practices are 
rarelyadopted in computational science. To understand the underlying 
causes for this situation and to identify ways for improving the current 
situation, we conduct a literature survey on software engineering 
practices in computational science. As a result of our survey, we identified 
13 recurring key characteristics of scientific software development that can 
be divided into three groups: characteristics that results (1) from the 
nature of scientific challenges, (2) from limitations of computers, and (3) from the 
cultural environment of scientific software development. Our findings allow 
us to point out shortcomings of existing approaches for bridging the gap 
between software engineering and computational science and to provide 
an outlook on promising research directions that could contribute to 
improving the current situation. 

1 Introduction 
With the constantly increasing capabilities of modern computers, in silico 
experiments are becoming more complex and play a more and more 
important role in the scientific discovery process (Post, 2013). As a 
consequence, the complexity and lifespan of scientific software is growing as 
well as the necessity for its output to be reproducible and verifiable. This 
increases the importance of employing sound software engineering practices 
in the development of scientific software to guarantee reliable and accurate 
scientific results. However, surveys show that state-of-the-art software 
engineering methods are rarely adopted in computational science (Heaton and 
Carver, 2015; Prabhu et al., 2011). In order to understand the underlying causes 
for this and to identify ways for improving the current situation, in this paper, 
we survey literature on software engineering in computational science and 
identify key characteristics that are unique to scientific software development. 

To provide a basis for our survey, we outline the historical development of the 
relationship between the disciplines of software engineering and computational 
science (Section 2, describing the Past). This relationship is, to a large extent, 
characterized by an isolation between the two disciplines which resulted in a 
productivity and credibility crisis of computational science. Based on this 
viewpoint, we review about 50 publications on case studies and surveys 
conducted among computational scientists to identify 13 key characteristics of 
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scientific software development that explain why state-of-the-art software 
engineering techniques are poorly adopted in computational science (Section 3, 
portraying the Present). The findings of our literature survey allow us to identify 
shortcomings of existing approaches for bridging the gap between software 
engineering and computational science and to provide an outlook on 
promising research directions that could contribute to improving the current 
situation (Section 4, indicating the Future). Concluding remarks are given in 
Section 5. 

 

2 Software Engineering and Computational Science: 
Review of the Historical Development 

When software engineers started to examine the software development practice 
in computational science, they noticed a “wide chasm” (Hannay et al., 2009) 
between how these two disciplines view software development. Faulk et al. 
(2009) describe this chasm between the two subjects using an allegory which 
depicts computational science as an isolated island that has been colonized but 
then was left abandoned for decades: 

“Returning visitors (software engineers) find the inhabitants (scientific 
programmers) apparently speaking the same language, but 
communication— and thus collaboration—is nearly impossible; the 
technologies, culture, and language semantics themselves have evolved 
and adapted to circumstances unknown to the original colonizers.” 

The fact that these two cultures are “separated by a common language” created a 
communication gap that inhibits knowledge transfer between them. As a result, 
modern software engineering practices are rarely employed in computational 
science. 

 
2.1 The Origins of the Chasm 
The origins of the rift between computational science and software engineering 
can be traced back as far as the dawn of modern computing in the 1940s. At 
that time, “scientific computing” was a pleonasm: the electronic digital computer 
was invented solely to solve complex mathematical problems for the 
advancement of science and engineering (Ceruzzi, 2003). As the discipline of 
computer science emerged in the late 1950s and early 60s, it struggled to 
distinguish itself from electrical engineering and applied mathematics—the 
disciplines traditionally engaged in the “study of computers” (Newell et al., 
1967). To differentiate itself from these applied disciplines, computer science 
invented the “stigma of all things ‘applied’” and aimed for generality in all its 
methods and techniques (Vessey, 1997). This approach was supposed to ensure 
that “the core of computer science [. . .] will remain a field of its own, ahead of, 
and separate from the application domain specialists” (George E. Forsyth, 
President of ACM in 1965, as quoted by Vessey (1997)). This first estrangement 
of computer science from the field that would later on become computational 
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science was adopted and even reinforced by software engineering. 
The term software engineering—and at the same time the corresponding 

subdiscipline of computer science—was institutionalized by a conference 
with the aforementioned title organized by NATO in 1968 (Naur and Randell, 
1969). That NATO was the sponsor of this conference marks the relative 
distance of software engineering from computation in the academic context. 
The perception was that while errors in scientific data processing applications 
may be a “hassle,” they are all in all tolerable. In contrast, failures in 
mission-critical military systems may cost lives and substantial amounts of 
money (Ceruzzi, 2003, chap. 3). 

Based on this attitude, software engineering—like computer science as a 
whole— aimed for generality in its methods, techniques, and processes and 
focused almost exclusively on business and embedded software (Kelly, 2007). 
Because of this ideal of generality, the question of how specifically 
computational scientists should develop their software in a well-engineered 
way, would probably have perplexed a software engineer and the answer 
might have been: “Well, just like any other application software.” 

For some time, the coexistence of computational science and software 
engineering in relative ignorance of one another continued without greater 
interruptions. One noteworthy exception from this is a paper from Hatton 
and Roberts (1994) in which they examine the accuracy of over 15 large 
commercial software libraries of numerical algorithms. Their findings 
disagree with the typical assumption of computational scientists that their 
software is accurate to the precision of the machine arithmetic. Hatton and 
Roberts discovered that in their sample the numerical discrepancy between 
expected and computed results increases about 1 % per 4000 Lines of Code 
(LOC). These results, however, did at first not find a larger echo in both 
communities. 

 
2.2 The Productivity Crisis of Computational Science 
In general, computational scientists did not see a reason to be concerned 
about the quality of their software. This attitude started to change roughly 
ten years ago, when more and more deficiencies regarding the productivity 
of scientific software development became apparent. These deficiencies, 
which led some to speak of a “productivity gridlock” (Faulk et al., 2009) in 
computational science, were revealed mostly by two parallel developments: 

1. The encounter of the clock speed limit for single-core processors and, with 
it, the introduction of multi-core and heterogeneous, distributed computing 
systems. 

2. The integration of more and more effects into scientific simulations that 
govern the behavior of the system under study. 

Scientific software has a quite long life span (from years to decades) as it 
often encapsulates the accumulated knowledge and effort of scientists or 
research groups. Thus, it typically outlives the computing hardware for which it 
was originally designed. For more than two decades this was not a problem as 
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it could be taken for granted that each new generation of microprocessors 
would considerably increase the performance of the scientists’ software without 
greater modifications of the source code. With the encounter of the clock speed 
limit for single-core processors around the year 2004, this development came to a 
halt (Fuller and Millett, 2011). 

In order to achieve more processing power, chip designers started to scale the 
number of processor compute cores. At first, this was only realized for the 
Central Processing Unit (CPU) of the computer (multi-core era). The most recent 
step was to assist such multi-core CPUs by providing external accelerator devices 
with even greater numbers (on the order of magnitudes!) of compute cores 
that are inspired by the design of modern graphics processors (heterogeneous 
systems era). To harness the power that multi-core and especially 
heterogeneous systems provide for more and more detailed simulations, 
computational scientists are now faced with the challenge of adapting their 
software to exploit parallelism on ever-finer levels of granularity. The rapid 
push to massive distributed parallel machines in the late 1990’s caused similar 
productivity problems. A problem revealed in the course of this process is a 
lack of knowledge about software engineering among the scientists, which 
resulted in a poor maintainability of their “codes.” This lack of maintainability 
impedes the scientists’ ability to successfully scale their simulations through 
adaptation to new hardware architectures (Dongarra et al., 2007; Buttari et al., 
2007). 

The second development that prevents computational scientists from ignoring 
modern software engineering techniques if they want to stay—or become again— 
productive is related to the complexity of their models. For computation to fulfill 
its role as the “third pillar of scientific inquiry” (Benioff et al., 2005), the 
scientists have to increase the predictive capabilities of their models by 
integrating more and more scientific effects into them. This results in the need 
for coupling or even integrating contributions from a multidisciplinary team of 
scientists into a single simulation application. As earlier scientific software was 
developed by small teams of scientists primarily for their own research, 
modularity, maintainability, and team coordination could often be neglected 
without a large impact. The shift towards larger, interdisciplinary teams makes 
these often ignored aspects of software development important for the 
scientists and, again, exposes a knowledge gap among them that can only be 
overcome by engaging in a dialog with software engineering (Post, 2013). 

 
2.3 The Credibility Crisis of Computational Science 
The challenges regarding the quality of scientific software do not only lead to a 
decreased development performance but also interfere with the credibility of its 
results. This aspect becomes especially important as the societal impact of 
computer simulations has grown in recent times, which can be exemplified by 
the so-called “Climategate” scandal. The scandal erupted after hackers leaked 
the e-mail correspondence of scientists from the Climatic Research Unit at the 
University of East Anglia not long before the 2009 United Nations Climate 
Change Conference. While the accusations that data was forged for this 
conference turned out to be unfounded, the e-mails uncovered lacking 
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programming skills among the researchers and exposed to a large public 
audience the widely applied practice in climate science to not release simulation 
code and data together with corresponding publications (Merali, 2010). This in 
itself was, of course, enough to undermine the work of the scientists, as the 
predictive capabilities of simulations are only as good as their code quality 
(Hatton and Roberts, 1994) and their code was not even available for peer 
review—not to mention public review. 

Within the scientific community the “Climategate” scandal initiated a debate 
about the reproducibility of computational results that also attracted some 
attention of the software engineering community (for a discussion of this 
debate, see Section 4). 

 
2.4 Bridging the Gap 
Both the productivity and the credibility crisis, make it abundantly clear that 
the isolated coexistence of computational science and software engineering 
cannot continue. Problems with programming and the design of scientific 
software should not be dismissed as “just a hassle” anymore in order for 
computational science to advance and to keep its promise of fulfilling the role of 
a third paradigm for scientific discovery. But even though the events of the past 
decade have initiated a dialog between software engineering and computational 
science, progress is still slow. For example, Brown et al. (2015) in a recent 
publication give a quite sarcastic description of the current status of scientific 
software and the associated development practices: imagine scientific software 
as a web browser with no URL entry box—you enter the web address into a 
configuration file. The browser can use either http or https but not both at the 
same time, which is controlled by an switch requiring you to recompile 
the browser with the second to last version of a Fortran77 compiler by a 
specific vendor. In principle, you could change all that as the software is open 
source but, unfortunately, development is private and you would have to 
apply to be granted access to the source code, which you will only gain if your 
intentions are in agreement with those of the main developers. 

While such design choices seem absurd to us for modern-day applications, 
Brown et al. conclude that they “represent the status quo in many scientific 
software packages” and are often “vehemently defended.” However, the 
mistrust of computational science towards modern software engineering 
techniques is not totally ungrounded: as software engineering aimed for 
generality in all its methods and processes, it ignored the unique demands of 
computational science (Kelly, 2007). Therefore, scientists far too often 
experienced the methodological offerings of software engineering as being full 
of “accidental complexities” instead of being helpful (Wilson, 2006). 
Accordingly, distrust and prejudices are still regularly found on both sides of 
the “software chasm” that so far has not been closed up again (Storer, 2017). 

In order to understand which approaches might be suitable to bridge the gap 
between the two disciplines, we have to closely examine the characteristics of 
scientific software development and must take the distinctive requirements of 
computational science seriously. Only if we—from the perspective of software 
engineering—abandon the “stigma of all things ‘applied’” (Vessey, 1997) and end 
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the unconditional striving for generality that does not do computational science 
any justice, can we hope to improve the current situation. 

 

3 Characteristics of Scientific Software Development 
In this section, we survey literature from the software engineering community 
that examines the characteristics of scientific software development. Literature 
on this topic emerged only after an influential article by Post and Votta (2005), 
who found that the relatively new discipline of computational science was still 
“troublingly immature.” The topic was investigated mainly by conducting case 
studies and a few survey studies. Reviewing and integrating the observations of 
these different studies allows us to reduce the major risk that is commonly 
associated with case studies: their lack of generalizability. Combining and 
contrasting the findings of multiple studies in different environments makes it 
possible to identify a set of characteristics that is likely to be inherent to 
scientific software development in general. Although the majority of the 
literature on software development practices in computational science dates back 
to the years 2006 to 2009, the observations made by them appear to still hold true 
today, as is indicated by related newer publications (e.g., Brown et al., 2015; 
Carver and Epperly, 2014; Joppa et al., 2013). 

The papers included into our literature survey were identified by querying 
databases like the ACM Digital Library,1 the IEEE Computer Society Digital 
Library,2 and Google Scholar.3 Additionally, we searched the articles of 
journals we expected to be of specific interest, such as Computing in Science & 
Engineering as well as the proceedings of conferences and workshops like the 
International Conference on Software Engineering and the International Workshop on 
Software Engineering for Computational Science and Engineering from 2005 on. 
Some papers were suggested by peers or identified by references from other 
articles. A limitation of this strategy is that we necessarily have to rely on a 
limited number of keywords in our database queries. We tried to mitigate this 
risk by varying the search phrases and, e.g., using different synonyms (such as 
scientific computing for computational science etc.). 

Since the variety of scientific software and its applications is large (Segal and 
Morris, 2008), computational scientists do not form a homogeneous group. 
Scientists develop software ranging from scripts for small-scale data analysis to 
complex coupled multi-physics simulations executed on high-end hardware. In 
our literature survey, we focus mostly—though not exclusively—on the latter 
group which forms the High Performance Computing (HPC) community. The 
reason for directing our attention to this group is that it is most affected by the 
productivity and credibility crisis portrayed in the previous section. 

As a result of our literature survey, we identified 13 recurring key 
characteristics of scientific software development that can be divided into three 
groups: 
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1. Characteristics resulting from the nature of scientific challenges: 

1.a)  Requirements are not known up front 
1.b) Verification and validation is difficult and strictly scientific 
1.c)  Overly formal software processes restrict research 

2. Characteristics resulting from the limitations of computers: 

2.a) Development is driven and limited by hardware 
2.b) Use of “old” programming languages and technologies 
2.c)  Intermingling of domain logic and implementation details 
2.d) Conflicting software quality requirements (performance, portability, 

and maintainability) 

3. Characteristics resulting from the cultural environment of scientific software 
development: 

3.a)  Few scientists are trained in software engineering 
3.b) Different terminology 
3.c)  Scientific software in itself has no value but still it is long-lived 
3.d) Creating a shared understanding of a “code” is difficult 
3.e) Little code re-use 
3.f) Disregard of most modern software engineering methods 

In the following subsections, we detail our findings with regard to the three 
groups of key characteristics named above and describe how software 
engineering approaches for computational science can take these characteristics 
into account. 

3.1 Characteristics Resulting From the Nature of Scientific 
Challenges 

All characteristics of software development in computational science that are 
listed in this section result from the fact that scientific software is an integral 
part of a discovery process. When you develop software to explore previously 
unknown phenomena, it is hard to specify exactly up front what the software 
is required to do, how its output is supposed to look like, and how to proceed 
during its development. 

 
a) Requirements Are Not Known Up Front 
In science, software is used to make novel discoveries and to further our 
understanding of the world. Since scientific software is deeply embedded into 
an exploratory process, you never know where its development might take 
you. Thus, it is hard to specify the requirements for this kind of software up 
front as demanded by traditional software processes. Accordingly, most of the 
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requirements—except for the most obvious high-level ones—are discovered only 
during the course of development in a highly iterative process (Segal and 
Morris, 2008). The reason for this is that while the underlying scientific theory 
is well-established in most scientific software projects, it is unclear in advance 
how this theory can be applied to the specific problem at hand (Carver et al., 
2007). When the sole purpose of the project is to further domain understanding, 
the exact outcome of the project is—by definition—unknown. 

The primary intention of software development in computational science is 
not to produce software but to obtain scientific results. For this reason, it is 
unsurprising that scientific programmers say about themselves that they are 
“programming experimentally” (Segal, 2005). The scientific models as well as 
their implementations are treated as evolving theories to test specific hypotheses 
(East- erbrook and Johns, 2009). Thus, it is the insights gained from one version 
of the software that determine what is needed for the next version in 
relatively short iterations (Hochstein et al., 2005). This iterative nature of the 
scientific software development process does, therefore, not indicate a lack of 
programming skills among the scientists but mirrors the growing 
understanding of the requirements as the software evolves (Segal, 2007). 

That scientists rarely see design and requirements analysis as distinct steps in 
software development (Sanders and Kelly, 2008), is in part due to the fact that 
many scientific applications start out as very small projects and begin to grow 
only on the basis of their scientific success (Basili et al., 2008). Thus, the 
requirements for the first version of the software often stem from a single 
scientist’s experience and are usually not explicated by that person. If the 
software proves to be useful to a broader community, its members tend to 
make suggestions on features to incorporate into the software and, thereby, 
they add requirements. These requirements, however, are not explicated in a 
way that would be detailed enough to form the basis of a contractual document 
as it is required in established software engineering processes (Segal, 2008). In 
the case that a sponsor organization demands the documentation of the design 
and requirements analysis process, the scientists typically do not write these 
documents before the software is almost complete (Sanders and Kelly, 2008). 

b) Verification and Validation Is Difficult and Strictly Scientific 
In the context of scientific software, verification means to demonstrate that the 
implementation of algorithms and the equations embodied within them are 
correct. Thus, verification is purely concerned with theoretical constructs. In 
contrast, validation means to demonstrate that the software and the mathematical 
model represented by it succeed in capturing all relevant scientific effects 
correctly. Hence, validation has to ensure that the software output is in 
sufficient agreement with observations from the real world (Carver et al., 2007). 
Verification and validation pose serious challenges in all areas of software 
development but are especially difficult in computational science due to a lack 
of test oracles, because of complex distributed hardware environments with 
inadequate tool support, and due to the scientists’ undervaluation of software in 
general (Kanewala and Bieman, 2014). 

Validation is particularly challenging as the scientists frequently lack 
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observational data to compare their model results to—after all, they use 
simulations precisely because the subject at hand is “too complex, too large, too 
small, too dangerous, or too expensive to explore in the real world” (Segal and 
Morris, 2008). But even if observations are available, they can still be 
incomplete or incorrect and they never extend to the future, with which many 
simulations are concerned (Sanders and Kelly, 2008). Lastly, if deviations from 
observations occur, it is hard to trace down their causes which can lie in three 
distinct dimensions or even a combination of them (Carver et al., 2007): 

1. The mathematical model of reality can be insufficient, meaning that scientific 
aspects are wrong. 

2. The algorithm used to discretize the mathematical problem can be 
inadequate (e.g., have stability problems). 

3. The implementation of the algorithm can be wrong due to programming 
errors. 

4. When models for different physical processes are coupled, errors may 
propagate through the system such that it becomes difficult to trace the 
error causes. 

Therefore, extensive checks of the code and the scientific model have to take place 
during the development, which highlights the importance of proper verification 
(Shull et al., 2005). 

For the purpose of verification, computational scientists can rely on 
established testing methods (e.g., unit tests and assertions). In addition to 
these traditional approaches, they employ checks to test whether theoretically 
guaranteed results hold true (propositions regarding approximation stability 
and quality, conservation of certain physical quantities, etc.). However, 
especially system testing is complicated by the fact that simulation software 
often runs on distributed hardware that is poorly supported by tools for 
debugging and profiling (Basili et al., 2008). 

Because of the difficulties associated with testing and because of a general 
disregard for code quality (Section 3.3 c)), formal verification procedures are not 
common in computational science (Segal, 2007). Prabhu et al. (2011) report that 
according to their survey, scientists spent more than half of their programming 
time on finding and fixing errors but only employ “primitive” debugging and 
testing methods. The testing which is performed is only of cursory nature and 
consists in manually checking for the answer to questions like “does the software 
do what I expect it to do with inputs of the type I would expect to use?” (Se- 
gal, 2008). In this context, visualization of output data is the most common tool 
for verification and validation purposes. However, visualization can provide no 
more than a “sanity check” indicating that the code is behaving “reasonably” 
(Carver et al., 2006). 

A reason for this lack of disciplined testing can be seen in the scientists’ 
regarding their software as imperfect evolving theories that allow them to test 
hypotheses. From this point of view, they judge model and algorithmic defects 
to be of far greater significance than coding defects (Basili et al., 2008; 
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Easterbrook and Johns, 2009). This also explains why almost all testing 
strategies employed by the scientists are strictly scientific (Faulk et al., 2009). 
Since they do not perceive the source code to be an entity in its own right and 
view it as a more or less direct representation of the underlying scientific theory 
(Section 3.3 c)), they only look at the output of the software and check whether it 
is in agreement with their current theory. The scientists treat the software like 
any other (physical) experimentation apparatus that is usually expected to 
function well. This assumption is only questioned if the data is in conflict with 
what the scientists would roughly expect (Segal, 2008). For this reason, a 
software engineering approach for computational science should draw the 
programmers attention to the important role of the correctness of the source 
code (Hinsen, 2015). This can be accomplished, for example, by providing easy-
to-use methods to test assertions that are meaningful to the scientists on a 
scientific level. 

c) Overly Formal Software Processes Restrict Research 
Traditional software development processes that employ a “big design up front” 
approach—like the waterfall model (Royce, 1970)—are “a poor fit” for 
computational science (Easterbrook and Johns, 2009). The reason for this is that 
software development in science is deeply embedded into the scientific 
method, which makes the up-front specification of requirements impossible 
(Section 3.1 a)) and introduces challenges with the verification and validation of 
the implementation (Section 3.1 b)). As scientific software is evolving 
continuously, no clear-cut requirements analysis, design, or maintenance 
phases could be discerned (Segal, 2007) and the developers need the flexibility 
to quickly experiment with different solution approaches (Carver et al., 2007). 

Instead of established software engineering processes, scientists apply an 
informal, non-standard process that is depicted in Figure 1. Their method is 
highly iterative and starts from a vague idea of which scientific problem the 
software is supposed to solve and what the application, therefore, could be 
required to do. Based on this idea, a prototype is developed and is 
continuously improved guided by the questions “does it do what I want?” and 
“does it help solve the scientific problem at hand?” (Segal, 2008). When the 
software reaches a state of maturity which enables it to answer the research 
question under study, it is subjected to cursory testing as described in Section 
3.1 b). If the output of the software does not meet the expectations of the 
developers, modifications become necessary until “plausible” output is 
achieved. Note that these modifications almost always involve both the code 
and the underlying scientific theory (Sanders and Kelly, 2008). Therefore, and 
because the code is often perceived as a mere representation of the theory and 
not as an entity in its own right (Section 3.3 c)), the development method of the 
scientists could, in a certain sense, be considered primarily a theory 
development method rather than a software development method. The 
scientists regard their informal software process as necessarily following from 
applying the scientific method to scientific reasoning with the help of 
computing (Kendall et al., 2008). 

Several researchers point out that the development approach prevalent in 
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computational science bears some similarity to “agile” software engineering 
methods,4 such as Extreme Programming (Beck, 2000). Many computational 
scientists have been operating with an “agile philosophy” long before the term 
was even introduced in software engineering (Carver et al., 2007). However, all 
established development processes—even agile ones—are generally rejected by 
the community as too formal because the scientists feel that these processes 
constrain them in experimenting with their software (Segal, 2008). Therefore, 
any development approach to be adopted by the computational science 
community must be very lightweight and integrate well with the 
software/theory method depicted in Figure 1. 

 
Figure 1: A model of scientific software development (adapted from Segal 
and Morris (2008)). 

 
3.2 Characteristics Resulting From the Limitations of Computer 

Hardware 
In this section, we discuss characteristics of software development in 
computational science that are due to limitations regarding available computing 
resources and their efficient programming. 

a) Development Is Driven and Limited by Hardware 
Complex simulation software is never perceived as “finished” by the 
computational scientists. Since it always can only be an imperfect 
representation of the highly complex reality, one could constantly hope to 
improve the software and its output by modeling more of the relevant scientific 
processes or increasing the resolution of discretizations. Therefore, scientific 
software is typically not limited by theory but by the available computing 
resources and their efficient utilization (Easterbrook and Johns, 2009). 

The development of scientific software is not only limited but also driven by 
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the available compute hardware in two ways. First, every time new hardware 
that increases computational power by an order of magnitude becomes available, 
completely new types of coupled multi-physics simulations suddenly become 
possible. This necessitates the implementation of new simulation software or, at 
least, the coupling of simulations in a more complex way. Second, new hardware 
platforms regularly introduce changes in the underlying hardware architecture. 
Harnessing the power of these new architectures typically requires to adapt 
existing simulation software for performance optimization (Faulk et al., 2009). 

b) Use of “Old” Programming Languages and Technologies 
Especially legacy HPC applications tend to be written to older standards for 
programming languages such as Fortran and to low-level languages such as C 
and use long-established technologies like Message Passing Interface (MPI).5 

This is due to several reasons, one being the long lifetime of HPC software 
(see Section 3.3 c)). In this context, Fortran and C seem to be “safe choices” 
because it is likely that for many years to come every hardware platform is 
going to support these languages (Faulk et al., 2009). Scientific programmers 
are skeptical about new technologies because the history of HPC is full of tools 
and programming languages that promised productivity increases but were 
discontinued after a while. Additionally, the low abstraction level of C and older 
versions of Fortran implies that developers are operating closer to the 
underlying hardware platform. Therefore, these languages provide predictable 
performance and allow for more hand-crafted performance optimizations 
(Basili et al., 2008). It can also be observed that some large scientific 
communities move towards C++ frameworks such as Trilinos (Heroux et al., 
2005), or even Python frameworks such as Jupyter (Ragan-Kelley et al., 2014). 

The scientists do not see any reason to adopt newer programming languages 
as the established ones are easy to learn (which is important for self-teaching; 
see Section 3.3 a)) and there is a huge amount of legacy code written in those 
languages (Carver et al., 2007). Their decision is also highly influenced by 
cultural traditions and believes: interviewees of Sanders and Kelly (2008) 
reported that object orientation did not “buy [them] anything” and that “a 
couple lines of C would take a large amount of C++ code.” To be accepted by 
the computational science community, a new programming language would 
have to be easy to learn, offer reasonably high performance, exhibit stability, 
and transform language constructs into machine instructions in a predictable 
way (Carver et al., 2007). 

The HPC community uses higher-level languages such as Matlab almost 
exclusively for prototyping algorithms, which are later re-implemented for 
higher performance using lower-level languages (Kendall et al., 2008). In 
disciplines that are less technology-affine—such as biology or psychology—
newer languages such a Matlab and Python are more widely adopted for 
small-scale projects (Prabhu et al., 2011).  For larger projects, new technologies 
have better chances of being accepted if they can coexist with older ones and do 
not immediately require a full buy-in. This explains why frameworks that dictate 
the user how to structure their program are seldom used. The scientists prefer re-
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implementing a lot of existing functionality to giving up control over the code 
that they want to experiment with (Basili et al., 2008). 

When adapting software engineering methods for computational science, 
one has to take into consideration the reluctance especially of HPC developers 
regarding any technology that is not tested by time and that runs the risk of 
ceasing to be supported. Therefore, it is important to make all software aimed 
at scientific programmers available under open source licenses and not to force 
them to use newer programming languages. This allows the scientists to, at 
least in principle, keep maintaining discontinued software by themselves. Also 
a stepwise buy-in into proposed technologies should be made possible. 

c) Intermingling of Domain Logic and Implementation Details 
The use of older procedural programming languages in computational 
science (Section 3.2 b)) and a focus on performance (Section 3.2 d)) often impede 
the separation of domain logic and implementation details in the solution 
artifacts. This makes it difficult to evolve scientific theory and implementation-
specific aspects (such as optimizations for a particular hardware platform) 
independently of one another and ultimately leads to software that is hard to 
maintain. It also results in an expertise problem: if all aspects of the 
implementation are intermingled, the developer should be—but rarely is—
equally proficient in all those aspects ranging from the domain knowledge to 
numerical methods to the specifics of certain processor designs (Faulk et al., 
2009). Software engineering approaches, thus, should focus on separating 
these concerns without negatively affecting performance levels. 

d) Conflicting Software Quality Requirements 
The ISO/IEC 25010 standard lists eight categories of product quality 
characteristics that software can be evaluated for: functional suitability, 
reliability, performance efficiency, usability, security, compatibility, 
maintainability and portability (ISO 25010, 2011). In their field studies, Carver et 
al. (2007) find that scientific software developers rank the following 
characteristics as the most important ones in descending order: 

1. Functional correctness 
2. Performance 
3. Portability 
4. Maintainability 

It seems clear that scientists perceive the correctness of the results of their 
software as the topmost priority. After all, the results are supposed to 
accurately represent processes in the real world and are used as a starting point 
for scientific reasoning. 

Especially in the HPC context, it is also not surprising that the scientists value 
performance as large simulations can take days or even months to run. But 
however valuable performance is to the scientists, it is not an end in itself—the 
real goal is to do science. Therefore, the most adequate performance metric for 
scientific software is not given in Floating Point Operations Per Second 
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(FLOPS) but rather in “scientifically useful results per calendar time” (Basili et 
al., 2008; Carver et al., 2006). Furthermore, performance is in conflict with 
portability and maintainability because it is usually achieved by introducing 
hardware-specific optimizations that reduce the readability of the code. The 
additional quality attributes, portability and maintainability, are also of great 
importance to the scientists as scientific software is long-lived (Section 3.3 c)). 
During its long lifetime, hardware platforms change frequently, which limits the 
possibility for hardwarespecific performance tuning (Kendall et al., 2008). 

The conflict between performance and portability is experienced as 
problematic by the scientists. However, software engineering can, so far, offer 
little guidance in this aspect because performance and portability are among the 
least significant quality characteristics for most software engineering 
approaches (Faulk et al., 2009). Therefore, adaptations of software engineering 
techniques for computational science must pay special attention to alleviating 
the performance / portability issue. 

 
3.3 Characteristics Resulting From the Cultural Environment of 

Scientific Software Development 
The characteristics that are listed in this section result from the cultural 
environment in which scientific software development takes place. This 
environment is shaped, for example, by the training of computational scientists 
and the funding schemes of scientific research projects. 

 
a) Few Scientists Are Trained in Software Engineering 
Segal (2007) describes computational scientists as “professional end user 
developers” who work in very technical and “knowledge-rich” domains and 
typically develop software solely to advance their own professional goals. What 
they have in common with conventional end user developers is that most of 
them lack any kind of formal computer science training and do not perceive 
themselves as software engineers but as domain experts even though they 
spend a considerable amount of their research time on developing software.6 In 
contrast to most conventional end user developers, however, computational 
scientists rarely experience any difficulties learning general-purpose 
programming languages. 

The self-perception of scientific software developers as scientists rather than 
developers is grounded in the cultural values of the community: because the 
ultimate goal is to further scientific knowledge, domain expertise is seen as 
“intellectual capital,” whereas software development skills are just 
“techniques”—a means to an end. This also implies that possessing software 
engineering skills is not valued when it comes to recruitment and promotion 
decisions. Jobs are awarded to those candidates who are qualified best for 
what is usually viewed as the highest priority in computational science: 
scientific theory (Sanders and Kelly, 2008). 

Prabhu et al. (2011) in their study of 114 research scientists from diverse fields find that more than 
a third of their subjects’ research time is spent on software development tasks.
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In addition to not being appreciated, learning software engineering skills is 
perceived as an excessive demand by computational scientists as they already 
have enough to do with performing as a scientists (write papers and grants, 
give presentations, etc.) and keeping up with their fast-developing fields of study 
(Killcoyne and Boyle, 2009). This problem is reinforced by the fact that 
computational science is already becoming more and more interdisciplinary, 
and thus more complicated, purely from the scientific side. As more and more 
effects are to be considered by ever more complex simulations, computational 
scientists already have to be able to collaborate with researchers from other 
disciplines and “speak their language” (Carver et al., 2007). All of this leaves 
little room for software engineering education. The knowledge of 
programming languages that scientists possess—which is obviously not 
identical with software engineering knowledge—is usually acquired by self-
study or from co-workers (Carver et al., 2013; Basili et al., 2008). 

Even though software development is largely perceived as a burden, 
computational scientists do not like delegating it to others. They feel they 
possess the necessary technical skills and find it easier to do it themselves 
than to explain their needs to somebody else (Easterbrook and Johns, 2009).  
Furthermore, the development process critically depends on domain 
knowledge (Segal, 2009; Segal and Morris, 2008). It is perceived as easier to 
teach scientists how to program than to make software engineers understand 
the domain science because many of the applications “require a PhD in 
physics or a branch of engineering just to understand the problem” (Carver et 
al., 2007). This view is backed up by a study from Segal (2005) in which software 
engineers implemented a scientific software library based on requirement and 
specification documents written by scientists. Even though formal minuted 
meetings were held during the development process to establish a shared 
understanding between the scientists and the software engineers, the final 
product did not meet the requirements of the scientists. 

Although it seems neither desirable nor feasible to delegate the work of 
computational scientists to external software engineers, it is regarded 
beneficial to have a few software engineers working in scientific research 
institutions to provide development support (Killcoyne and Boyle, 2009). 
However, such positions have typically not been supported by funding agencies 
in the past (Carver et al., 2007). 

b) Different Terminology 
Due to the isolated development of computational science and software 
engineering, both fields have established distinct terminologies even for shared 
concepts (Faulk et al., 2009). The terms and metaphors of the computational 
scientists are typically drawn either from the scientific method itself or from 
rather low-level concepts of computation. For example, scientific programmers 
do not call their applications “software” but rather speak of “codes.” A “serial 
code” is a piece of software that does not utilize parallelism and “scaling” 
such a code means adapting it for parallel execution etc. 

Because of their distinct terminology, scientific programmers sometimes (have 
to) re-invent existing software engineering techniques: they just do not find the 
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existing methods that would fit their needs because they look for them using 
the “wrong” vocabulary. For them, these techniques are just “natural” aspects 
of a research method rather than being a general tool for software development. 
Therefore, scientists in some cases do not recognize that they are already using 
software engineering methods if they are confronted with them in the vocabulary 
of software engineering (Easterbrook and Johns, 2009). 

It appears that software engineers have to adapt their vocabulary in order to 
be understood and taken seriously in the domain of computational science. The 
terminology of software engineering is often regarded by computational 
scientists as consisting mostly of “glitzy” marketing terms that are nothing but 
empty promises (Killcoyne and Boyle, 2009). 

c) Scientific Software in Itself Has no Value but Still it Is Long-Lived 
For computational scientists, the software they produce has no value in itself; 
its value is solely based on its ability to efficiently solve problems at hand and 
make new scientific discoveries (Faulk et al., 2009). This focus on novelty and 
discovery leads to the perception that software skills are just a “necessary craft,” 
just a means to an end, and that acquiring them is not “real work” (Killcoyne 
and Boyle, 2009). While domain knowledge is considered “intellectual capital,” 
software development knowledge is merely a “technique,” which consequently 
renders all technical decisions comparably unimportant (Segal, 2007). 

Additionally, many computational scientists do not regard software as an 
entity in its own right. In their mind, source code is a more or less direct 
representation of the underlying scientific theory (Sanders and Kelly, 2008). 
Thus, the only value even a code that has been developed and maintained for 
decades has, does not stem from the engineering effort put into it but from the 
scientific knowledge accumulated in it. 

Such a perspective on software leads to a situation in which code quality is 
not considered important either—even though it is strongly related to the 
quality of the scientific results (Hatton and Roberts, 1994). Instead of defect 
rates, the only code metric that is applied to scientific software is that of 
novel, publishable results per LOC (Easterbrook and Johns, 2009). There are 
even cases in which non-trivial software is implemented for the mere purpose of 
getting a single article published. Because the time-to-solution has to be low in 
such cases, not much thought is spent on quality attributes like maintainability, 
extensibility, or reusability. If such a rather poorly engineered code happens to 
keep being extended—which is how many large codes emerge—, it is hard to 
remedy these deficiencies (Killcoyne and Boyle, 2009). 

Even though the scientists see no value in scientific software in itself, many 
codes have a long lifetime on the order of decades. The software may not be 
valuable as such but the accumulated knowledge of the researchers that is 
embodied in it makes it a long-time investment (Faulk et al., 2009). 

During such a long life cycle, the software continuously needs to be 
developed further in order to reflect the advances in scientific theory and 
computational hardware (Easterbrook and Johns, 2009; Carver et al., 2007). 
Because of the potentially very long lifetimes, many scientific software 
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developers try to avoid dependencies on technologies that could become 
unavailable. For this reason, the number of dependencies, such as software 
libraries, is kept to a minimum and only such tools and programming 
languages are used that have already withstood the ravages of time. This is 
especially true in the HPC community as their codes are those most likely to be 
long-lived. 

Despite the long life span of scientific software, the effort devoted to its 
maintenance is low because of a focus on the implementation of new features. 
Carrying out maintenance tasks is discouraged, firstly, by simply not being 
rewarded as it does not lead to new publishable results and, secondly, by 
putting the burden on the developers to demonstrate that their changes do not 
affect the accuracy of the simulation results (Easterbrook and Johns, 2009). 
Additionally, the grant-based funding schemes in many branches of science 
make it hard to assume a long-term perspective on “caring” for scientific 
software, which is why “quick and dirty” solutions are selectively favored 
(Howison and Herbsleb, 2011; Kil lcoyne and Boyle, 2009). Consequently, any 
software engineering approach for computational science should try to ensure 
that quality properties like maintainability are built into the software right from 
the beginning “quasi-automatically.” 

d) Creating a Shared Understanding of a “Code” Is Difficult 
While all scientists eagerly document their scientific results in papers and 
technical reports, they typically do not produce documentation for the software 
they implement. User guides are created only in the less frequent case that the 
software is intended to be used by a larger user base outside of the research 
group of the original developers (Sanders and Kelly, 2008). Instead of relying 
on documentation, the scientists prefer informal, collegial ways of knowledge 
transfer to create a shared understanding of a piece of software. As the users 
and developers of scientific codes usually overlap, they can rely on a shared 
background knowledge. Therefore, the scientists find it harder to read and 
understand documentation artifacts than to contact the author of a certain part of 
the software and discuss their questions with them (Segal, 2007). 

The high personnel turnover rates in scientific software development, 
however, render such an informal knowledge transfer problematic. Most 
developers in this area are novices (PhD students and early post docs) 
because scientists typically do not develop software for their whole careers. 
As they ascend the career ladder—and often move to other institutes—, their 
knowledge of the software becomes harder to access (Shull et al., 2005). This 
means that over and over again novices, without the help of any documentation 
material, have to familiarize themselves with codes that have not been written 
with program comprehension in mind (Carver et al., 2006; Segal, 2007). 
Therefore, software engineering methods for computational science should 
raise the abstraction level of the implementation artifacts produced by scientific 
developers to make these artifacts, at least to some extent, self-documenting. 

However, the situation is different at government labs in which long-living 
software is primarily developed by scientists that spend much of their career 
within that one institution. Such institutions often have resources for a team 
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of experts that are more focused on the software itself, with responsibilities for 
porting, optimization, and maintenance. For such long-living software, it is 
important to keep the documentation and knowlegde about the software up to 
date (Goltz et al., 2015). 

e) Little Code Re-Use 
Scientific software developers tend to rarely re-use code developed by others. 
Frameworks, for example for abstracting from the often tedious details of using 
MPI, are not adopted because they make certain assumptions as to how their 
users should structure their code. The scientists fear that later on in a project, 
these structural assumptions could turn out to be too restrictive but cannot be 
circumvented. Instead, the researchers tend to re-develop such frameworks by 
themselves for every application to make them exactly match their needs (Basili 
et al., 2008; Carver et al., 2006). The same is true even for the use of software 
libraries. For example, many scientists implement their own linear algebra 
libraries while there are numerous well-tested, cache-optimized, parallel 
implementations available under open source licenses. Thereby, these scientists 
waste much effort on re-inventing existing technologies and, very likely, re-
create them with inferior quality (Prabhu et al., 2011). 

Limited re-use of existing code cannot only be observed for software 
developed by others but is even prevalent when it comes to the scientists’ 
own. Because the majority of scientific codes is not programmed with 
comprehensibility in mind, scientists prefer re-writing code for new projects 
instead of spending a large amount of time on understanding the old one—
even if they are the author of the old code (Segal, 2007). Raising the level of 
abstraction in implementation artifacts could help to promote code re-use 
among scientists because it simplifies the comprehension process. 

f) Disregard of Most Modern Software Engineering Methods 
Surveys among scientific software developers show that they believe to have 
adequate software engineering knowledge to achieve their development goals. 
However, when asked about their knowledge and adoption of specific 
modern software engineering best practices and techniques (such as testing, 
profiling, and refactoring), both knowledge and adoption are relatively low. 
Therefore, it appears as if the scientists simply “don’t know what they don’t 
know” (Carver et al., 2013; Hannay et al., 2009). And even if the scientists are 
familiar with tools such as profilers, they rarely actually use most of them—
either because of prejudice against the tools (“will not help”) or because they 
think they do not really need them (“I know where time is spent in my code”) 
(Prabhu et al., 2011). 

But it is not just ignorance that leads to the non-adoption of software 
engineering methods. Many methods and tools are just not a good match for 
the scientists because their functioning is based on (often implicit) 
assumptions that are violated in the computational science context (Heaton 
and Carver, 2015). Or they do not fit because they ignore the specific 
requirements that the scientists have (especially when it comes to tools that 
could support them). An example of the first type of mismatch due to wrong 
assumptions are software engineering processes that do not adequately 
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consider the long life cycles of scientific software or the lack of up front 
requirements (Carver et al., 2007). Integrated Development Environments 
(IDEs) for the HPC community are an example of the second mismatch due to 
neglecting the specific requirements for tools. The use of IDEs is limited in 
this community because the development environments usually do not feature 
convenient support for building, profiling, and deploying HPC applications 
on large-scale distributed systems. Therefore, the scientists only feel 
constrained by IDEs and, hence, do not adopt them (Prabhu et al., 2011; Carver 
et al., 2006). 

The failure of software engineerings to adequately address the needs of 
computational science leads to a situation in which the scientists are suspicious 
about software engineers’ claims and overwhelmingly favor handcrafted 
solutions (Faulk et al., 2009). However, if the scientists are exposed to a certain 
software engineering technique that they find well-matched for their specific 
working environment, it is readily adopted.  Examples of this are version 
control systems, regression testing frameworks that can be adapted to the 
scientists’ needs for testing, and reuse in the small via libraries for equation 
solvers, mesh handling, etc.  (Basili et al., 2008). In order to be accepted by the 
scientists, these tools must introduce a minimum of technicalities as the 
scientists are busy enough following the fast developments in their own field 
(Killcoyne and Boyle, 2009). 

All in all, we can conclude that software engineering approaches will only 
be adopted by scientists if these approaches honor the distinct characteristics 
and constraints of scientific software development which we described above. 

 

4 What Software Engineering has to Offer to 
Computational Science 

Our detailed analysis of the specific characteristics of scientific software 
development enables us to identify some shortcomings of existing elaborated 
proposals that are concerned with bridging the “chasm” between software 
engineering and computational science in Section 4.1. Furthermore, we provide 
an overview on more recent attempts at closing the gap between the two 
disciplines in Section 4.2 and we give an outlook on possible research directions 
that could contribute to improving the current situation in Section 4.3 and 4.4. 

 
4.1 Bridging the Software Chasm 
Previous attempts at addressing the credibility and productivity crisis of 
computational science can be categorized into three groups: 

1. Publish and review source code along with scientific articles to ensure 
reproducibility or at least repeatability of in silico experiments. 

2. Let software engineers build or re-engineer (parts of) the scientific software. 

3. Train scientists to enable them to use state-of-the-art software engineering 
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methods. 

In the context of the credibility crisis of computational science, a discussion 
about the reproducibility of scientific results that rely on computation emerged 
both within science itself (Peng, 2011) and in the software engineering 
community (LeVeque et al., 2012). Being able to—at least in principle—validate 
the findings of other scientists by reproducing their experiments is at the 
heart of the scientific method. However, it is common practice in many areas 
of computational science not to release the source code on which the findings 
of a publication are based. This practice impedes the reproduction of 
published results or even renders it outright impossible. Therefore, several 
authors suggest to make public disclosure of the source code mandatory for 
peer-reviewed publications and some even propose to include the code itself in 
the peer review process (Ince et al., 2012; Morin et al., 2012; Barnes, 2010). In 
the software engineering community, for example, several large conferences 
recently started employing a peer-reviewed artifact evaluation process 
(Krishnamurthi and Vitek, 2015). 

These suggestions and efforts are certainly important steps in the right 
direction and could help to increase the appreciation of software and its quality 
in the computational science community. However, publishing source code 
alone does not adequately address the fundamental problem that the scientists 
lack the software engineering skills to tackle the underlying problems of both 
the credibility and the productivity crisis. 

A second attempt to a solution is to try to have software engineers implement 
the software for the scientists. The experiences of Segal (2005), who put this 
approach to test, and the considerations given in Section 3.3 a) suggest that this 
is not a practicable way. 

So far, the most promising attempt to solve the dual scientific software crisis 
seems to be education via workshop-based training programs focusing on PhD 
students, such as the ones organized by Wilson (2014) and Messina (2015). While 
the education approach does address the skill gap that is central to the 
“software chasm,” it does so with inadequate means. Our analysis in Section 3 
clearly indicates that just exposing scientists to software engineering methods 
will not be enough because these methods often fail to consider the specific 
characteristics and constraints of scientific software development. We therefore 
conclude that we have to select suitable software engineering techniques and 
adapt them specifically to the needs of computational scientists. 

 
4.2 Adapting Domain-Specific Engineering Approaches 
The results of our literature study clearly show that computational scientists are 
only “accidentally” involved in software development: ultimately, their goal is 
not to create software but to obtain novel scientific results (Section 3.3 c)). At the 
same time, however, they are very concerned about having full control over their 
applications and how these actually compute their results, which is why many 
prefer “older” programming languages with a relatively low level of abstraction 
from the underlying hardware (Section 3.2 b)). 
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Among the techniques and tools that software engineering has to offer, so-
called Domain-Specific Languages (DSLs) (Fowler, 2010) are a promising starting 
point for addressing the needs of computational scientists. Like General-Purpose 
Languages (GPLs), such as C or Java, DSLs are programming languages. 
However, unlike GPLs, which are designed to be able to implement any program 
that can be computed with a Turing machine, DSLs limit their expressiveness to a 
particular application domain. By featuring high-level domain concepts that 
enable to model phenomena at the abstraction level of the domain and by 
providing a notation close to the target domain, DSLs can be very concise. The 
syntax of a DSL can be textual or graphical and DSL programs can be executed 
either by means of interpretation or through generation of source code in existing 
GPLs. A popular example of a textual DSL are regular expressions, which 
target the domain of text pattern matching and allow to model search patterns 
independently from any concrete matching engine implementation. 

Since DSLs are designed to express solutions at the abstraction level of the 
domain, they allow the scientists to care about what matters most to them: doing 
science without having to deal with technical, implementation-specific details. 
While they use high-level domain abstractions, they still stay in full control over 
their development process as it is them who directly implement their solutions in 
formal and executable (e.g., through generation) programming languages. 
Additionally, generation from a formal language into a low-level GPL permits 
to examine the generated code to trace what is actually computed. 

DSLs can also help to overcome the conflict between the quality requirements 
of performance on the one hand and portability and maintainability on the other 
hand, which is responsible for many of the difficulties experienced in scientific 
software development (Section 3.2 d)). DSL source code is maintainable because 
it is often pre-structured and much easier to read than GPL code, which makes 
it almost self-documenting. This almost self-documenting nature of DSL source 
code and the fact that it can rely on an—ideally—well-tested generator for 
program translation ensure the reliability of scientific results based on the 
output of the software. Portability of DSL code is achieved by just replacing the 
generator for the language with one that targets another hardware platform. 
With DSLs, the high abstraction level does not have to result in performance 
losses because the domain-specificity first of all enables to apply—at compile 
time—domain-specific optimizations and greatly simplifies automatic 
parallelization (Stahl and Völter, 2006). 

In the way described above, DSLs integrated into a appropriate software 
engineering approach could help to overcome both the productivity and the 
credibility crisis of computational science. A first indicator that supports this 
hypothesis can be found in the survey report of Prabhu et al. (2011), who 
find that those scientists who program with DSLs “report higher productivity 
and satisfaction compared to scientists who primarily use general purpose, 
numerical, or scripting languages.” 

Existing research regarding the application of DSLs in computational science 
includes the design of several individual DSLs. Examples of this are Liszt (De- 
Vito et al., 2011), which is a DSL for mesh-based partial differential equation 
solvers with a focus on automatic parallelization, and SESSL (Ewald and Uhrma- 
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cher, 2014), which allows to model simulation experiments to ensure their 
reproducibility. Schnetter et al. (2015) describe a framework called Chemora for 
solving partial differential equations on modern HPC architectures. They use 
DSLs to separate the concerns of compute model design, model discretization, 
and the mapping to hardware resources (including performance optimization). 

In the examples named so far, DSLs are viewed as more or less isolated tools 
that scientists can employ to make software development easier for them. Other 
researchers integrate the use of DSLs into more holistic approaches that directly 
address the productivity crisis and/or the credibility crisis discussed above. For 
example, Palyart et al. (2012a) introduce a software engineering approach called 
MDE4HPC that uses the DSL HPCML (Palyart et al., 2012b) to help scientists with 
efficiently implementing HPC applications that are independent of any specific 
HPC hardware architecture. Almorsy et al. (2013) propose to employ suites of 
graphical DSLs to use graphical modeling in all aspects of the scientific software 
development process. They provide a web-based tool which aims at enabling 
scientists to define DSLs by themselves. Another software engineering approach 
for computational science is Sprat (Johanson et al., 2017; Johanson and 
Hasselbring, 2014), which integrates multiple DSLs in a hierarchical fashion to 
facilitate the collaboration of scientists from different disciplines in the 
development of complex simulation software. In this approach, every 
developer role in a software project is assigned a separate DSL, which is 
intended to lead to a clear separation of concerns, well-maintainable code, and a 
high productivity because the scientists only have to work with abstractions that 
they are already familiar with from their respective domain. 

Similar to the design of GPLs, the design of DSLs faces the problem of not 
knowing the requirements in advance. Thus, it is important to develop DSLs 
with agile methods (Gunther et al., 2010) and to involve end users into the design 
and evaluation process (Johanson and Hasselbring, 2017). 

 
4.3 Software Performance Engineering 
Another possible research direction would be to include techniques developed by 
Software Performance Engineering (SPE) (Bondi, 2014) into software engineering 
approaches for computational science. Often, performance optimization requires 
considerable changes in software design. Therefore, performance should already 
be considered in the design phase of software on an architectural level. 
However, as can be seen from Section 3.1 c), scientists typically develop 
software in a highly iterative manner with a focus on the scientific problems at 
hand, which implies that there usually is no distinct software design phase. This 
problem can be circumvented by employing DSLs to construct models of the 
scientific software to be implemented as discussed in the previous section. If 
the software is implemented using domain-level abstractions, model-based 
performance prediction and optimization techniques (Balsamo et al., 2004) can be 
employed without forcing the scientists to adopt rigid software processes. 

Since hardware resources are always limited and since especially in HPC 
performance really matters, the application of such SPE approaches to 
systematically optimize the runtime efficiency of scientific software is a 
promising area for future work. 
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4.4 Testing Scientific Software 
As discussed in Section 3.1 b), software engineering for computational science 
should draw the programmers attention to the important role of the correctness of 
the software (Hinsen, 2015). Software testing usually requires an oracle, which is 
a mechanism for checking whether the program under test produces the expected 
output when executed using a set of test cases. However, obtaining reliable 
oracles for scientific programs is challenging, because the requirements mostly 
are unclear up front due to the exploratory nature of scientific software 
development. Model-based testing (Schieferdecker, 2012) requires well-defined 
and stable requirements to develop the model; thus, model-based testing is not 
readily applicable to scientific software. Instead, approaches on performing 
effective testing without pre-defined oracles are required (Kelly et al., 2011). New 
approaches such as the so-called metamorphic testing intend to solve the 
challenge of testing non-deterministic programs that lack oracles (Guderlei and 
Mayer, 2007), for instance via machine learning techniques to automatically 
detect metamorphic relations (Kanewala and Bieman, 2013). 

Another challenge is to integrate automated regression and acceptance 
testing for scientific software, for instance in continuous integration setups 
(Meyer, 2014). Regression testing allows to compare the current output to 
previous outputs to identify faults or performance anomalies introduced 
when the code is modified. Various tools and approaches are under 
development that address the challenges of testing and debugging software 
designed to run on distributed systems. Some unit testing frameworks have 
direct support for MPI and have been successfully used my multiple 
communities. Another approach is to mock MPI and test/debug components 
of a simulation in isolation (Clune et al., 2015). 

For scientific software, a major difficulty for automated regression testing 
is caused by the high computational costs of tests. To ensure high code 
coverage, a potentially exponential set of test configurations must be executed. 
A solution to this challenge could be a proper modularization of the software 
such that the software components become testable in isolation. 
Modularization approaches such as microservices enable scalability 
(Hasselbring, 2016), as well as agility and reliability (Hasselbring and 
Steinacker, 2017). Such a modularization may also facilitate automated 
regression testing of scientific software. 

 
4.5 Requirements Engineering 
Some software engineering approaches for computational science, such as 
the Advises project by Thew et al. (2009) and the approach by Garcia et al. 
(2013), focus on requirements engineering techniques. Garcia et al. (2013) 
introduced a component-based and aspect-oriented method for scientific 
software development. Their approach focuses on formal requirements 
engineering to enable the reuse of existing software components and their 
integration via aspect-oriented programming techniques.  The idea is that 
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once the requirements of a scientific application are known, it can be constructed 
merely by identifying suitable functional components that already exist and 
the dependency relations between them. 

The Advises project (see also Thew et al., 2008; Sutcliffe et al., 2007) 
acknowledges that in scientific computing, it is usually impossible to specify 
detailed software requirements up front. In light of this situation, they propose a 
requirements engineering process in which software engineers use techniques 
such as unstructured interviews and user observation to iteratively derive 
detailed requirements. On the basis of these requirements, the software 
engineers are supposed to develop the software for the domain scientists. 

Despite the positive evaluation of the Advises project in the domain of 
epidemiology, it remains unclear whether such approaches, which focus on 
requirements engineering and software engineers implementing the software 
for domain scientists, are applicable to other branches of computational 
science. The results of the study of Segal (2005), which we cited above, indicate 
that this may not be the case for branches such as HPC. 

5 Concluding Remarks 
Based on an examination of the historical development of the relationship 
between software engineering and computational science (the Past), we 
identified 13 key characteristics of scientific software development by reviewing 
published literature (the Present). We found that the unique characteristics 
of scientific software development prevent scientists from using state-of-the-art 
software engineering tools and methods. This situation created a “chasm” 
between software engineering and computational science, which resulted in a 
productivity and credibility crisis of the latter discipline. We examined 
attempts at bridging the gap between software engineering and computational 
science to reveal shortcomings of existing solutions and to point out further 
research directions, such as the use of domain-specific languages and testing 
techniques without pre-defined oracles (the possible Future). However, more 
research on this topic is needed, especially to empirically evaluate the actual 
gains in productivity and quality achieved for scientific software by such 
software engineering approaches. 
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