
1

Software Engineering for Computational Science:
Past, Present, Future

Arne N. Johanson, XING Marketing Solutions GmbH
Wilhelm Hasselbring, Kiel University

Abstract

While the importance of in silico experiments for the scientific discovery
process increases, state-of-the-art software engineering practices are
rarelyadopted in computational science. To understand the underlying
causes for this situation and to identify ways for improving the current
situation, we conduct a literature survey on software engineering
practices in computational science. As a result of our survey, we identified
13 recurring key characteristics of scientific software development that can
be divided into three groups: characteristics that results (1) from the
nature of scientific challenges, (2) from limitations of computers, and (3) from the
cultural environment of scientific software development. Our findings allow
us to point out shortcomings of existing approaches for bridging the gap
between software engineering and computational science and to provide
an outlook on promising research directions that could contribute to
improving the current situation.

1 Introduction
With the constantly increasing capabilities of modern computers, in silico
experiments are becoming more complex and play a more and more
important role in the scientific discovery process (Post, 2013). As a
consequence, the complexity and lifespan of scientific software is growing as
well as the necessity for its output to be reproducible and verifiable. This
increases the importance of employing sound software engineering practices
in the development of scientific software to guarantee reliable and accurate
scientific results. However, surveys show that state-of-the-art software
engineering methods are rarely adopted in computational science (Heaton and
Carver, 2015; Prabhu et al., 2011). In order to understand the underlying causes
for this and to identify ways for improving the current situation, in this paper,
we survey literature on software engineering in computational science and
identify key characteristics that are unique to scientific software development.

To provide a basis for our survey, we outline the historical development of the
relationship between the disciplines of software engineering and computational
science (Section 2, describing the Past). This relationship is, to a large extent,
characterized by an isolation between the two disciplines which resulted in a
productivity and credibility crisis of computational science. Based on this
viewpoint, we review about 50 publications on case studies and surveys
conducted among computational scientists to identify 13 key characteristics of

Preprint of: A. Johanson, W. Hasselbring: “Software Engineering for Computational Science: Past,
Present, Future”, In: Computing in Science & Engineering, pp. 90-109, March/April 2018.
https://doi.org/10.1109/MCSE.2018.108162940

2

scientific software development that explain why state-of-the-art software
engineering techniques are poorly adopted in computational science (Section 3,
portraying the Present). The findings of our literature survey allow us to identify
shortcomings of existing approaches for bridging the gap between software
engineering and computational science and to provide an outlook on
promising research directions that could contribute to improving the current
situation (Section 4, indicating the Future). Concluding remarks are given in
Section 5.

2 Software Engineering and Computational Science:
Review of the Historical Development

When software engineers started to examine the software development practice
in computational science, they noticed a “wide chasm” (Hannay et al., 2009)
between how these two disciplines view software development. Faulk et al.
(2009) describe this chasm between the two subjects using an allegory which
depicts computational science as an isolated island that has been colonized but
then was left abandoned for decades:

“Returning visitors (software engineers) find the inhabitants (scientific
programmers) apparently speaking the same language, but
communication— and thus collaboration—is nearly impossible; the
technologies, culture, and language semantics themselves have evolved
and adapted to circumstances unknown to the original colonizers.”

The fact that these two cultures are “separated by a common language” created a
communication gap that inhibits knowledge transfer between them. As a result,
modern software engineering practices are rarely employed in computational
science.

2.1 The Origins of the Chasm
The origins of the rift between computational science and software engineering
can be traced back as far as the dawn of modern computing in the 1940s. At
that time, “scientific computing” was a pleonasm: the electronic digital computer
was invented solely to solve complex mathematical problems for the
advancement of science and engineering (Ceruzzi, 2003). As the discipline of
computer science emerged in the late 1950s and early 60s, it struggled to
distinguish itself from electrical engineering and applied mathematics—the
disciplines traditionally engaged in the “study of computers” (Newell et al.,
1967). To differentiate itself from these applied disciplines, computer science
invented the “stigma of all things ‘applied’” and aimed for generality in all its
methods and techniques (Vessey, 1997). This approach was supposed to ensure
that “the core of computer science [. . .] will remain a field of its own, ahead of,
and separate from the application domain specialists” (George E. Forsyth,
President of ACM in 1965, as quoted by Vessey (1997)). This first estrangement
of computer science from the field that would later on become computational

3

science was adopted and even reinforced by software engineering.
The term software engineering—and at the same time the corresponding

subdiscipline of computer science—was institutionalized by a conference
with the aforementioned title organized by NATO in 1968 (Naur and Randell,
1969). That NATO was the sponsor of this conference marks the relative
distance of software engineering from computation in the academic context.
The perception was that while errors in scientific data processing applications
may be a “hassle,” they are all in all tolerable. In contrast, failures in
mission-critical military systems may cost lives and substantial amounts of
money (Ceruzzi, 2003, chap. 3).

Based on this attitude, software engineering—like computer science as a
whole— aimed for generality in its methods, techniques, and processes and
focused almost exclusively on business and embedded software (Kelly, 2007).
Because of this ideal of generality, the question of how specifically
computational scientists should develop their software in a well-engineered
way, would probably have perplexed a software engineer and the answer
might have been: “Well, just like any other application software.”

For some time, the coexistence of computational science and software
engineering in relative ignorance of one another continued without greater
interruptions. One noteworthy exception from this is a paper from Hatton
and Roberts (1994) in which they examine the accuracy of over 15 large
commercial software libraries of numerical algorithms. Their findings
disagree with the typical assumption of computational scientists that their
software is accurate to the precision of the machine arithmetic. Hatton and
Roberts discovered that in their sample the numerical discrepancy between
expected and computed results increases about 1 % per 4000 Lines of Code
(LOC). These results, however, did at first not find a larger echo in both
communities.

2.2 The Productivity Crisis of Computational Science
In general, computational scientists did not see a reason to be concerned
about the quality of their software. This attitude started to change roughly
ten years ago, when more and more deficiencies regarding the productivity
of scientific software development became apparent. These deficiencies,
which led some to speak of a “productivity gridlock” (Faulk et al., 2009) in
computational science, were revealed mostly by two parallel developments:

1. The encounter of the clock speed limit for single-core processors and, with
it, the introduction of multi-core and heterogeneous, distributed computing
systems.

2. The integration of more and more effects into scientific simulations that
govern the behavior of the system under study.

Scientific software has a quite long life span (from years to decades) as it
often encapsulates the accumulated knowledge and effort of scientists or
research groups. Thus, it typically outlives the computing hardware for which it
was originally designed. For more than two decades this was not a problem as

4

it could be taken for granted that each new generation of microprocessors
would considerably increase the performance of the scientists’ software without
greater modifications of the source code. With the encounter of the clock speed
limit for single-core processors around the year 2004, this development came to a
halt (Fuller and Millett, 2011).

In order to achieve more processing power, chip designers started to scale the
number of processor compute cores. At first, this was only realized for the
Central Processing Unit (CPU) of the computer (multi-core era). The most recent
step was to assist such multi-core CPUs by providing external accelerator devices
with even greater numbers (on the order of magnitudes!) of compute cores
that are inspired by the design of modern graphics processors (heterogeneous
systems era). To harness the power that multi-core and especially
heterogeneous systems provide for more and more detailed simulations,
computational scientists are now faced with the challenge of adapting their
software to exploit parallelism on ever-finer levels of granularity. The rapid
push to massive distributed parallel machines in the late 1990’s caused similar
productivity problems. A problem revealed in the course of this process is a
lack of knowledge about software engineering among the scientists, which
resulted in a poor maintainability of their “codes.” This lack of maintainability
impedes the scientists’ ability to successfully scale their simulations through
adaptation to new hardware architectures (Dongarra et al., 2007; Buttari et al.,
2007).

The second development that prevents computational scientists from ignoring
modern software engineering techniques if they want to stay—or become again—
productive is related to the complexity of their models. For computation to fulfill
its role as the “third pillar of scientific inquiry” (Benioff et al., 2005), the
scientists have to increase the predictive capabilities of their models by
integrating more and more scientific effects into them. This results in the need
for coupling or even integrating contributions from a multidisciplinary team of
scientists into a single simulation application. As earlier scientific software was
developed by small teams of scientists primarily for their own research,
modularity, maintainability, and team coordination could often be neglected
without a large impact. The shift towards larger, interdisciplinary teams makes
these often ignored aspects of software development important for the
scientists and, again, exposes a knowledge gap among them that can only be
overcome by engaging in a dialog with software engineering (Post, 2013).

2.3 The Credibility Crisis of Computational Science
The challenges regarding the quality of scientific software do not only lead to a
decreased development performance but also interfere with the credibility of its
results. This aspect becomes especially important as the societal impact of
computer simulations has grown in recent times, which can be exemplified by
the so-called “Climategate” scandal. The scandal erupted after hackers leaked
the e-mail correspondence of scientists from the Climatic Research Unit at the
University of East Anglia not long before the 2009 United Nations Climate
Change Conference. While the accusations that data was forged for this
conference turned out to be unfounded, the e-mails uncovered lacking

5

programming skills among the researchers and exposed to a large public
audience the widely applied practice in climate science to not release simulation
code and data together with corresponding publications (Merali, 2010). This in
itself was, of course, enough to undermine the work of the scientists, as the
predictive capabilities of simulations are only as good as their code quality
(Hatton and Roberts, 1994) and their code was not even available for peer
review—not to mention public review.

Within the scientific community the “Climategate” scandal initiated a debate
about the reproducibility of computational results that also attracted some
attention of the software engineering community (for a discussion of this
debate, see Section 4).

2.4 Bridging the Gap
Both the productivity and the credibility crisis, make it abundantly clear that
the isolated coexistence of computational science and software engineering
cannot continue. Problems with programming and the design of scientific
software should not be dismissed as “just a hassle” anymore in order for
computational science to advance and to keep its promise of fulfilling the role of
a third paradigm for scientific discovery. But even though the events of the past
decade have initiated a dialog between software engineering and computational
science, progress is still slow. For example, Brown et al. (2015) in a recent
publication give a quite sarcastic description of the current status of scientific
software and the associated development practices: imagine scientific software
as a web browser with no URL entry box—you enter the web address into a
configuration file. The browser can use either http or https but not both at the
same time, which is controlled by an switch requiring you to recompile
the browser with the second to last version of a Fortran77 compiler by a
specific vendor. In principle, you could change all that as the software is open
source but, unfortunately, development is private and you would have to
apply to be granted access to the source code, which you will only gain if your
intentions are in agreement with those of the main developers.

While such design choices seem absurd to us for modern-day applications,
Brown et al. conclude that they “represent the status quo in many scientific
software packages” and are often “vehemently defended.” However, the
mistrust of computational science towards modern software engineering
techniques is not totally ungrounded: as software engineering aimed for
generality in all its methods and processes, it ignored the unique demands of
computational science (Kelly, 2007). Therefore, scientists far too often
experienced the methodological offerings of software engineering as being full
of “accidental complexities” instead of being helpful (Wilson, 2006).
Accordingly, distrust and prejudices are still regularly found on both sides of
the “software chasm” that so far has not been closed up again (Storer, 2017).

In order to understand which approaches might be suitable to bridge the gap
between the two disciplines, we have to closely examine the characteristics of
scientific software development and must take the distinctive requirements of
computational science seriously. Only if we—from the perspective of software
engineering—abandon the “stigma of all things ‘applied’” (Vessey, 1997) and end

6

the unconditional striving for generality that does not do computational science
any justice, can we hope to improve the current situation.

3 Characteristics of Scientific Software Development
In this section, we survey literature from the software engineering community
that examines the characteristics of scientific software development. Literature
on this topic emerged only after an influential article by Post and Votta (2005),
who found that the relatively new discipline of computational science was still
“troublingly immature.” The topic was investigated mainly by conducting case
studies and a few survey studies. Reviewing and integrating the observations of
these different studies allows us to reduce the major risk that is commonly
associated with case studies: their lack of generalizability. Combining and
contrasting the findings of multiple studies in different environments makes it
possible to identify a set of characteristics that is likely to be inherent to
scientific software development in general. Although the majority of the
literature on software development practices in computational science dates back
to the years 2006 to 2009, the observations made by them appear to still hold true
today, as is indicated by related newer publications (e.g., Brown et al., 2015;
Carver and Epperly, 2014; Joppa et al., 2013).

The papers included into our literature survey were identified by querying
databases like the ACM Digital Library,1 the IEEE Computer Society Digital
Library,2 and Google Scholar.3 Additionally, we searched the articles of
journals we expected to be of specific interest, such as Computing in Science &
Engineering as well as the proceedings of conferences and workshops like the
International Conference on Software Engineering and the International Workshop on
Software Engineering for Computational Science and Engineering from 2005 on.
Some papers were suggested by peers or identified by references from other
articles. A limitation of this strategy is that we necessarily have to rely on a
limited number of keywords in our database queries. We tried to mitigate this
risk by varying the search phrases and, e.g., using different synonyms (such as
scientific computing for computational science etc.).

Since the variety of scientific software and its applications is large (Segal and
Morris, 2008), computational scientists do not form a homogeneous group.
Scientists develop software ranging from scripts for small-scale data analysis to
complex coupled multi-physics simulations executed on high-end hardware. In
our literature survey, we focus mostly—though not exclusively—on the latter
group which forms the High Performance Computing (HPC) community. The
reason for directing our attention to this group is that it is most affected by the
productivity and credibility crisis portrayed in the previous section.

As a result of our literature survey, we identified 13 recurring key
characteristics of scientific software development that can be divided into three
groups:

7

1. Characteristics resulting from the nature of scientific challenges:

1.a) Requirements are not known up front
1.b) Verification and validation is difficult and strictly scientific
1.c) Overly formal software processes restrict research

2. Characteristics resulting from the limitations of computers:

2.a) Development is driven and limited by hardware
2.b) Use of “old” programming languages and technologies
2.c) Intermingling of domain logic and implementation details
2.d) Conflicting software quality requirements (performance, portability,

and maintainability)

3. Characteristics resulting from the cultural environment of scientific software
development:

3.a) Few scientists are trained in software engineering
3.b) Different terminology
3.c) Scientific software in itself has no value but still it is long-lived
3.d) Creating a shared understanding of a “code” is difficult
3.e) Little code re-use
3.f) Disregard of most modern software engineering methods

In the following subsections, we detail our findings with regard to the three
groups of key characteristics named above and describe how software
engineering approaches for computational science can take these characteristics
into account.

3.1 Characteristics Resulting From the Nature of Scientific
Challenges

All characteristics of software development in computational science that are
listed in this section result from the fact that scientific software is an integral
part of a discovery process. When you develop software to explore previously
unknown phenomena, it is hard to specify exactly up front what the software
is required to do, how its output is supposed to look like, and how to proceed
during its development.

a) Requirements Are Not Known Up Front
In science, software is used to make novel discoveries and to further our
understanding of the world. Since scientific software is deeply embedded into
an exploratory process, you never know where its development might take
you. Thus, it is hard to specify the requirements for this kind of software up
front as demanded by traditional software processes. Accordingly, most of the

8

requirements—except for the most obvious high-level ones—are discovered only
during the course of development in a highly iterative process (Segal and
Morris, 2008). The reason for this is that while the underlying scientific theory
is well-established in most scientific software projects, it is unclear in advance
how this theory can be applied to the specific problem at hand (Carver et al.,
2007). When the sole purpose of the project is to further domain understanding,
the exact outcome of the project is—by definition—unknown.

The primary intention of software development in computational science is
not to produce software but to obtain scientific results. For this reason, it is
unsurprising that scientific programmers say about themselves that they are
“programming experimentally” (Segal, 2005). The scientific models as well as
their implementations are treated as evolving theories to test specific hypotheses
(East- erbrook and Johns, 2009). Thus, it is the insights gained from one version
of the software that determine what is needed for the next version in
relatively short iterations (Hochstein et al., 2005). This iterative nature of the
scientific software development process does, therefore, not indicate a lack of
programming skills among the scientists but mirrors the growing
understanding of the requirements as the software evolves (Segal, 2007).

That scientists rarely see design and requirements analysis as distinct steps in
software development (Sanders and Kelly, 2008), is in part due to the fact that
many scientific applications start out as very small projects and begin to grow
only on the basis of their scientific success (Basili et al., 2008). Thus, the
requirements for the first version of the software often stem from a single
scientist’s experience and are usually not explicated by that person. If the
software proves to be useful to a broader community, its members tend to
make suggestions on features to incorporate into the software and, thereby,
they add requirements. These requirements, however, are not explicated in a
way that would be detailed enough to form the basis of a contractual document
as it is required in established software engineering processes (Segal, 2008). In
the case that a sponsor organization demands the documentation of the design
and requirements analysis process, the scientists typically do not write these
documents before the software is almost complete (Sanders and Kelly, 2008).

b) Verification and Validation Is Difficult and Strictly Scientific
In the context of scientific software, verification means to demonstrate that the
implementation of algorithms and the equations embodied within them are
correct. Thus, verification is purely concerned with theoretical constructs. In
contrast, validation means to demonstrate that the software and the mathematical
model represented by it succeed in capturing all relevant scientific effects
correctly. Hence, validation has to ensure that the software output is in
sufficient agreement with observations from the real world (Carver et al., 2007).
Verification and validation pose serious challenges in all areas of software
development but are especially difficult in computational science due to a lack
of test oracles, because of complex distributed hardware environments with
inadequate tool support, and due to the scientists’ undervaluation of software in
general (Kanewala and Bieman, 2014).

Validation is particularly challenging as the scientists frequently lack

9

observational data to compare their model results to—after all, they use
simulations precisely because the subject at hand is “too complex, too large, too
small, too dangerous, or too expensive to explore in the real world” (Segal and
Morris, 2008). But even if observations are available, they can still be
incomplete or incorrect and they never extend to the future, with which many
simulations are concerned (Sanders and Kelly, 2008). Lastly, if deviations from
observations occur, it is hard to trace down their causes which can lie in three
distinct dimensions or even a combination of them (Carver et al., 2007):

1. The mathematical model of reality can be insufficient, meaning that scientific
aspects are wrong.

2. The algorithm used to discretize the mathematical problem can be
inadequate (e.g., have stability problems).

3. The implementation of the algorithm can be wrong due to programming
errors.

4. When models for different physical processes are coupled, errors may
propagate through the system such that it becomes difficult to trace the
error causes.

Therefore, extensive checks of the code and the scientific model have to take place
during the development, which highlights the importance of proper verification
(Shull et al., 2005).

For the purpose of verification, computational scientists can rely on
established testing methods (e.g., unit tests and assertions). In addition to
these traditional approaches, they employ checks to test whether theoretically
guaranteed results hold true (propositions regarding approximation stability
and quality, conservation of certain physical quantities, etc.). However,
especially system testing is complicated by the fact that simulation software
often runs on distributed hardware that is poorly supported by tools for
debugging and profiling (Basili et al., 2008).

Because of the difficulties associated with testing and because of a general
disregard for code quality (Section 3.3 c)), formal verification procedures are not
common in computational science (Segal, 2007). Prabhu et al. (2011) report that
according to their survey, scientists spent more than half of their programming
time on finding and fixing errors but only employ “primitive” debugging and
testing methods. The testing which is performed is only of cursory nature and
consists in manually checking for the answer to questions like “does the software
do what I expect it to do with inputs of the type I would expect to use?” (Se-
gal, 2008). In this context, visualization of output data is the most common tool
for verification and validation purposes. However, visualization can provide no
more than a “sanity check” indicating that the code is behaving “reasonably”
(Carver et al., 2006).

A reason for this lack of disciplined testing can be seen in the scientists’
regarding their software as imperfect evolving theories that allow them to test
hypotheses. From this point of view, they judge model and algorithmic defects
to be of far greater significance than coding defects (Basili et al., 2008;

10

Easterbrook and Johns, 2009). This also explains why almost all testing
strategies employed by the scientists are strictly scientific (Faulk et al., 2009).
Since they do not perceive the source code to be an entity in its own right and
view it as a more or less direct representation of the underlying scientific theory
(Section 3.3 c)), they only look at the output of the software and check whether it
is in agreement with their current theory. The scientists treat the software like
any other (physical) experimentation apparatus that is usually expected to
function well. This assumption is only questioned if the data is in conflict with
what the scientists would roughly expect (Segal, 2008). For this reason, a
software engineering approach for computational science should draw the
programmers attention to the important role of the correctness of the source
code (Hinsen, 2015). This can be accomplished, for example, by providing easy-
to-use methods to test assertions that are meaningful to the scientists on a
scientific level.

c) Overly Formal Software Processes Restrict Research
Traditional software development processes that employ a “big design up front”
approach—like the waterfall model (Royce, 1970)—are “a poor fit” for
computational science (Easterbrook and Johns, 2009). The reason for this is that
software development in science is deeply embedded into the scientific
method, which makes the up-front specification of requirements impossible
(Section 3.1 a)) and introduces challenges with the verification and validation of
the implementation (Section 3.1 b)). As scientific software is evolving
continuously, no clear-cut requirements analysis, design, or maintenance
phases could be discerned (Segal, 2007) and the developers need the flexibility
to quickly experiment with different solution approaches (Carver et al., 2007).

Instead of established software engineering processes, scientists apply an
informal, non-standard process that is depicted in Figure 1. Their method is
highly iterative and starts from a vague idea of which scientific problem the
software is supposed to solve and what the application, therefore, could be
required to do. Based on this idea, a prototype is developed and is
continuously improved guided by the questions “does it do what I want?” and
“does it help solve the scientific problem at hand?” (Segal, 2008). When the
software reaches a state of maturity which enables it to answer the research
question under study, it is subjected to cursory testing as described in Section
3.1 b). If the output of the software does not meet the expectations of the
developers, modifications become necessary until “plausible” output is
achieved. Note that these modifications almost always involve both the code
and the underlying scientific theory (Sanders and Kelly, 2008). Therefore, and
because the code is often perceived as a mere representation of the theory and
not as an entity in its own right (Section 3.3 c)), the development method of the
scientists could, in a certain sense, be considered primarily a theory
development method rather than a software development method. The
scientists regard their informal software process as necessarily following from
applying the scientific method to scientific reasoning with the help of
computing (Kendall et al., 2008).

Several researchers point out that the development approach prevalent in

11

computational science bears some similarity to “agile” software engineering
methods,4 such as Extreme Programming (Beck, 2000). Many computational
scientists have been operating with an “agile philosophy” long before the term
was even introduced in software engineering (Carver et al., 2007). However, all
established development processes—even agile ones—are generally rejected by
the community as too formal because the scientists feel that these processes
constrain them in experimenting with their software (Segal, 2008). Therefore,
any development approach to be adopted by the computational science
community must be very lightweight and integrate well with the
software/theory method depicted in Figure 1.

Figure 1: A model of scientific software development (adapted from Segal
and Morris (2008)).

3.2 Characteristics Resulting From the Limitations of Computer

Hardware
In this section, we discuss characteristics of software development in
computational science that are due to limitations regarding available computing
resources and their efficient programming.

a) Development Is Driven and Limited by Hardware
Complex simulation software is never perceived as “finished” by the
computational scientists. Since it always can only be an imperfect
representation of the highly complex reality, one could constantly hope to
improve the software and its output by modeling more of the relevant scientific
processes or increasing the resolution of discretizations. Therefore, scientific
software is typically not limited by theory but by the available computing
resources and their efficient utilization (Easterbrook and Johns, 2009).

The development of scientific software is not only limited but also driven by

12

the available compute hardware in two ways. First, every time new hardware
that increases computational power by an order of magnitude becomes available,
completely new types of coupled multi-physics simulations suddenly become
possible. This necessitates the implementation of new simulation software or, at
least, the coupling of simulations in a more complex way. Second, new hardware
platforms regularly introduce changes in the underlying hardware architecture.
Harnessing the power of these new architectures typically requires to adapt
existing simulation software for performance optimization (Faulk et al., 2009).

b) Use of “Old” Programming Languages and Technologies
Especially legacy HPC applications tend to be written to older standards for
programming languages such as Fortran and to low-level languages such as C
and use long-established technologies like Message Passing Interface (MPI).5

This is due to several reasons, one being the long lifetime of HPC software
(see Section 3.3 c)). In this context, Fortran and C seem to be “safe choices”
because it is likely that for many years to come every hardware platform is
going to support these languages (Faulk et al., 2009). Scientific programmers
are skeptical about new technologies because the history of HPC is full of tools
and programming languages that promised productivity increases but were
discontinued after a while. Additionally, the low abstraction level of C and older
versions of Fortran implies that developers are operating closer to the
underlying hardware platform. Therefore, these languages provide predictable
performance and allow for more hand-crafted performance optimizations
(Basili et al., 2008). It can also be observed that some large scientific
communities move towards C++ frameworks such as Trilinos (Heroux et al.,
2005), or even Python frameworks such as Jupyter (Ragan-Kelley et al., 2014).

The scientists do not see any reason to adopt newer programming languages
as the established ones are easy to learn (which is important for self-teaching;
see Section 3.3 a)) and there is a huge amount of legacy code written in those
languages (Carver et al., 2007). Their decision is also highly influenced by
cultural traditions and believes: interviewees of Sanders and Kelly (2008)
reported that object orientation did not “buy [them] anything” and that “a
couple lines of C would take a large amount of C++ code.” To be accepted by
the computational science community, a new programming language would
have to be easy to learn, offer reasonably high performance, exhibit stability,
and transform language constructs into machine instructions in a predictable
way (Carver et al., 2007).

The HPC community uses higher-level languages such as Matlab almost
exclusively for prototyping algorithms, which are later re-implemented for
higher performance using lower-level languages (Kendall et al., 2008). In
disciplines that are less technology-affine—such as biology or psychology—
newer languages such a Matlab and Python are more widely adopted for
small-scale projects (Prabhu et al., 2011). For larger projects, new technologies
have better chances of being accepted if they can coexist with older ones and do
not immediately require a full buy-in. This explains why frameworks that dictate
the user how to structure their program are seldom used. The scientists prefer re-

13

implementing a lot of existing functionality to giving up control over the code
that they want to experiment with (Basili et al., 2008).

When adapting software engineering methods for computational science,
one has to take into consideration the reluctance especially of HPC developers
regarding any technology that is not tested by time and that runs the risk of
ceasing to be supported. Therefore, it is important to make all software aimed
at scientific programmers available under open source licenses and not to force
them to use newer programming languages. This allows the scientists to, at
least in principle, keep maintaining discontinued software by themselves. Also
a stepwise buy-in into proposed technologies should be made possible.

c) Intermingling of Domain Logic and Implementation Details
The use of older procedural programming languages in computational
science (Section 3.2 b)) and a focus on performance (Section 3.2 d)) often impede
the separation of domain logic and implementation details in the solution
artifacts. This makes it difficult to evolve scientific theory and implementation-
specific aspects (such as optimizations for a particular hardware platform)
independently of one another and ultimately leads to software that is hard to
maintain. It also results in an expertise problem: if all aspects of the
implementation are intermingled, the developer should be—but rarely is—
equally proficient in all those aspects ranging from the domain knowledge to
numerical methods to the specifics of certain processor designs (Faulk et al.,
2009). Software engineering approaches, thus, should focus on separating
these concerns without negatively affecting performance levels.

d) Conflicting Software Quality Requirements
The ISO/IEC 25010 standard lists eight categories of product quality
characteristics that software can be evaluated for: functional suitability,
reliability, performance efficiency, usability, security, compatibility,
maintainability and portability (ISO 25010, 2011). In their field studies, Carver et
al. (2007) find that scientific software developers rank the following
characteristics as the most important ones in descending order:

1. Functional correctness
2. Performance
3. Portability
4. Maintainability

It seems clear that scientists perceive the correctness of the results of their
software as the topmost priority. After all, the results are supposed to
accurately represent processes in the real world and are used as a starting point
for scientific reasoning.

Especially in the HPC context, it is also not surprising that the scientists value
performance as large simulations can take days or even months to run. But
however valuable performance is to the scientists, it is not an end in itself—the
real goal is to do science. Therefore, the most adequate performance metric for
scientific software is not given in Floating Point Operations Per Second

14

(FLOPS) but rather in “scientifically useful results per calendar time” (Basili et
al., 2008; Carver et al., 2006). Furthermore, performance is in conflict with
portability and maintainability because it is usually achieved by introducing
hardware-specific optimizations that reduce the readability of the code. The
additional quality attributes, portability and maintainability, are also of great
importance to the scientists as scientific software is long-lived (Section 3.3 c)).
During its long lifetime, hardware platforms change frequently, which limits the
possibility for hardwarespecific performance tuning (Kendall et al., 2008).

The conflict between performance and portability is experienced as
problematic by the scientists. However, software engineering can, so far, offer
little guidance in this aspect because performance and portability are among the
least significant quality characteristics for most software engineering
approaches (Faulk et al., 2009). Therefore, adaptations of software engineering
techniques for computational science must pay special attention to alleviating
the performance / portability issue.

3.3 Characteristics Resulting From the Cultural Environment of

Scientific Software Development
The characteristics that are listed in this section result from the cultural
environment in which scientific software development takes place. This
environment is shaped, for example, by the training of computational scientists
and the funding schemes of scientific research projects.

a) Few Scientists Are Trained in Software Engineering
Segal (2007) describes computational scientists as “professional end user
developers” who work in very technical and “knowledge-rich” domains and
typically develop software solely to advance their own professional goals. What
they have in common with conventional end user developers is that most of
them lack any kind of formal computer science training and do not perceive
themselves as software engineers but as domain experts even though they
spend a considerable amount of their research time on developing software.6 In
contrast to most conventional end user developers, however, computational
scientists rarely experience any difficulties learning general-purpose
programming languages.

The self-perception of scientific software developers as scientists rather than
developers is grounded in the cultural values of the community: because the
ultimate goal is to further scientific knowledge, domain expertise is seen as
“intellectual capital,” whereas software development skills are just
“techniques”—a means to an end. This also implies that possessing software
engineering skills is not valued when it comes to recruitment and promotion
decisions. Jobs are awarded to those candidates who are qualified best for
what is usually viewed as the highest priority in computational science:
scientific theory (Sanders and Kelly, 2008).

Prabhu et al. (2011) in their study of 114 research scientists from diverse fields find that more than
a third of their subjects’ research time is spent on software development tasks.

15

In addition to not being appreciated, learning software engineering skills is
perceived as an excessive demand by computational scientists as they already
have enough to do with performing as a scientists (write papers and grants,
give presentations, etc.) and keeping up with their fast-developing fields of study
(Killcoyne and Boyle, 2009). This problem is reinforced by the fact that
computational science is already becoming more and more interdisciplinary,
and thus more complicated, purely from the scientific side. As more and more
effects are to be considered by ever more complex simulations, computational
scientists already have to be able to collaborate with researchers from other
disciplines and “speak their language” (Carver et al., 2007). All of this leaves
little room for software engineering education. The knowledge of
programming languages that scientists possess—which is obviously not
identical with software engineering knowledge—is usually acquired by self-
study or from co-workers (Carver et al., 2013; Basili et al., 2008).

Even though software development is largely perceived as a burden,
computational scientists do not like delegating it to others. They feel they
possess the necessary technical skills and find it easier to do it themselves
than to explain their needs to somebody else (Easterbrook and Johns, 2009).
Furthermore, the development process critically depends on domain
knowledge (Segal, 2009; Segal and Morris, 2008). It is perceived as easier to
teach scientists how to program than to make software engineers understand
the domain science because many of the applications “require a PhD in
physics or a branch of engineering just to understand the problem” (Carver et
al., 2007). This view is backed up by a study from Segal (2005) in which software
engineers implemented a scientific software library based on requirement and
specification documents written by scientists. Even though formal minuted
meetings were held during the development process to establish a shared
understanding between the scientists and the software engineers, the final
product did not meet the requirements of the scientists.

Although it seems neither desirable nor feasible to delegate the work of
computational scientists to external software engineers, it is regarded
beneficial to have a few software engineers working in scientific research
institutions to provide development support (Killcoyne and Boyle, 2009).
However, such positions have typically not been supported by funding agencies
in the past (Carver et al., 2007).

b) Different Terminology
Due to the isolated development of computational science and software
engineering, both fields have established distinct terminologies even for shared
concepts (Faulk et al., 2009). The terms and metaphors of the computational
scientists are typically drawn either from the scientific method itself or from
rather low-level concepts of computation. For example, scientific programmers
do not call their applications “software” but rather speak of “codes.” A “serial
code” is a piece of software that does not utilize parallelism and “scaling”
such a code means adapting it for parallel execution etc.

Because of their distinct terminology, scientific programmers sometimes (have
to) re-invent existing software engineering techniques: they just do not find the

16

existing methods that would fit their needs because they look for them using
the “wrong” vocabulary. For them, these techniques are just “natural” aspects
of a research method rather than being a general tool for software development.
Therefore, scientists in some cases do not recognize that they are already using
software engineering methods if they are confronted with them in the vocabulary
of software engineering (Easterbrook and Johns, 2009).

It appears that software engineers have to adapt their vocabulary in order to
be understood and taken seriously in the domain of computational science. The
terminology of software engineering is often regarded by computational
scientists as consisting mostly of “glitzy” marketing terms that are nothing but
empty promises (Killcoyne and Boyle, 2009).

c) Scientific Software in Itself Has no Value but Still it Is Long-Lived
For computational scientists, the software they produce has no value in itself;
its value is solely based on its ability to efficiently solve problems at hand and
make new scientific discoveries (Faulk et al., 2009). This focus on novelty and
discovery leads to the perception that software skills are just a “necessary craft,”
just a means to an end, and that acquiring them is not “real work” (Killcoyne
and Boyle, 2009). While domain knowledge is considered “intellectual capital,”
software development knowledge is merely a “technique,” which consequently
renders all technical decisions comparably unimportant (Segal, 2007).

Additionally, many computational scientists do not regard software as an
entity in its own right. In their mind, source code is a more or less direct
representation of the underlying scientific theory (Sanders and Kelly, 2008).
Thus, the only value even a code that has been developed and maintained for
decades has, does not stem from the engineering effort put into it but from the
scientific knowledge accumulated in it.

Such a perspective on software leads to a situation in which code quality is
not considered important either—even though it is strongly related to the
quality of the scientific results (Hatton and Roberts, 1994). Instead of defect
rates, the only code metric that is applied to scientific software is that of
novel, publishable results per LOC (Easterbrook and Johns, 2009). There are
even cases in which non-trivial software is implemented for the mere purpose of
getting a single article published. Because the time-to-solution has to be low in
such cases, not much thought is spent on quality attributes like maintainability,
extensibility, or reusability. If such a rather poorly engineered code happens to
keep being extended—which is how many large codes emerge—, it is hard to
remedy these deficiencies (Killcoyne and Boyle, 2009).

Even though the scientists see no value in scientific software in itself, many
codes have a long lifetime on the order of decades. The software may not be
valuable as such but the accumulated knowledge of the researchers that is
embodied in it makes it a long-time investment (Faulk et al., 2009).

During such a long life cycle, the software continuously needs to be
developed further in order to reflect the advances in scientific theory and
computational hardware (Easterbrook and Johns, 2009; Carver et al., 2007).
Because of the potentially very long lifetimes, many scientific software

17

developers try to avoid dependencies on technologies that could become
unavailable. For this reason, the number of dependencies, such as software
libraries, is kept to a minimum and only such tools and programming
languages are used that have already withstood the ravages of time. This is
especially true in the HPC community as their codes are those most likely to be
long-lived.

Despite the long life span of scientific software, the effort devoted to its
maintenance is low because of a focus on the implementation of new features.
Carrying out maintenance tasks is discouraged, firstly, by simply not being
rewarded as it does not lead to new publishable results and, secondly, by
putting the burden on the developers to demonstrate that their changes do not
affect the accuracy of the simulation results (Easterbrook and Johns, 2009).
Additionally, the grant-based funding schemes in many branches of science
make it hard to assume a long-term perspective on “caring” for scientific
software, which is why “quick and dirty” solutions are selectively favored
(Howison and Herbsleb, 2011; Kil lcoyne and Boyle, 2009). Consequently, any
software engineering approach for computational science should try to ensure
that quality properties like maintainability are built into the software right from
the beginning “quasi-automatically.”

d) Creating a Shared Understanding of a “Code” Is Difficult
While all scientists eagerly document their scientific results in papers and
technical reports, they typically do not produce documentation for the software
they implement. User guides are created only in the less frequent case that the
software is intended to be used by a larger user base outside of the research
group of the original developers (Sanders and Kelly, 2008). Instead of relying
on documentation, the scientists prefer informal, collegial ways of knowledge
transfer to create a shared understanding of a piece of software. As the users
and developers of scientific codes usually overlap, they can rely on a shared
background knowledge. Therefore, the scientists find it harder to read and
understand documentation artifacts than to contact the author of a certain part of
the software and discuss their questions with them (Segal, 2007).

The high personnel turnover rates in scientific software development,
however, render such an informal knowledge transfer problematic. Most
developers in this area are novices (PhD students and early post docs)
because scientists typically do not develop software for their whole careers.
As they ascend the career ladder—and often move to other institutes—, their
knowledge of the software becomes harder to access (Shull et al., 2005). This
means that over and over again novices, without the help of any documentation
material, have to familiarize themselves with codes that have not been written
with program comprehension in mind (Carver et al., 2006; Segal, 2007).
Therefore, software engineering methods for computational science should
raise the abstraction level of the implementation artifacts produced by scientific
developers to make these artifacts, at least to some extent, self-documenting.

However, the situation is different at government labs in which long-living
software is primarily developed by scientists that spend much of their career
within that one institution. Such institutions often have resources for a team

18

of experts that are more focused on the software itself, with responsibilities for
porting, optimization, and maintenance. For such long-living software, it is
important to keep the documentation and knowlegde about the software up to
date (Goltz et al., 2015).

e) Little Code Re-Use
Scientific software developers tend to rarely re-use code developed by others.
Frameworks, for example for abstracting from the often tedious details of using
MPI, are not adopted because they make certain assumptions as to how their
users should structure their code. The scientists fear that later on in a project,
these structural assumptions could turn out to be too restrictive but cannot be
circumvented. Instead, the researchers tend to re-develop such frameworks by
themselves for every application to make them exactly match their needs (Basili
et al., 2008; Carver et al., 2006). The same is true even for the use of software
libraries. For example, many scientists implement their own linear algebra
libraries while there are numerous well-tested, cache-optimized, parallel
implementations available under open source licenses. Thereby, these scientists
waste much effort on re-inventing existing technologies and, very likely, re-
create them with inferior quality (Prabhu et al., 2011).

Limited re-use of existing code cannot only be observed for software
developed by others but is even prevalent when it comes to the scientists’
own. Because the majority of scientific codes is not programmed with
comprehensibility in mind, scientists prefer re-writing code for new projects
instead of spending a large amount of time on understanding the old one—
even if they are the author of the old code (Segal, 2007). Raising the level of
abstraction in implementation artifacts could help to promote code re-use
among scientists because it simplifies the comprehension process.

f) Disregard of Most Modern Software Engineering Methods
Surveys among scientific software developers show that they believe to have
adequate software engineering knowledge to achieve their development goals.
However, when asked about their knowledge and adoption of specific
modern software engineering best practices and techniques (such as testing,
profiling, and refactoring), both knowledge and adoption are relatively low.
Therefore, it appears as if the scientists simply “don’t know what they don’t
know” (Carver et al., 2013; Hannay et al., 2009). And even if the scientists are
familiar with tools such as profilers, they rarely actually use most of them—
either because of prejudice against the tools (“will not help”) or because they
think they do not really need them (“I know where time is spent in my code”)
(Prabhu et al., 2011).

But it is not just ignorance that leads to the non-adoption of software
engineering methods. Many methods and tools are just not a good match for
the scientists because their functioning is based on (often implicit)
assumptions that are violated in the computational science context (Heaton
and Carver, 2015). Or they do not fit because they ignore the specific
requirements that the scientists have (especially when it comes to tools that
could support them). An example of the first type of mismatch due to wrong
assumptions are software engineering processes that do not adequately

19

consider the long life cycles of scientific software or the lack of up front
requirements (Carver et al., 2007). Integrated Development Environments
(IDEs) for the HPC community are an example of the second mismatch due to
neglecting the specific requirements for tools. The use of IDEs is limited in
this community because the development environments usually do not feature
convenient support for building, profiling, and deploying HPC applications
on large-scale distributed systems. Therefore, the scientists only feel
constrained by IDEs and, hence, do not adopt them (Prabhu et al., 2011; Carver
et al., 2006).

The failure of software engineerings to adequately address the needs of
computational science leads to a situation in which the scientists are suspicious
about software engineers’ claims and overwhelmingly favor handcrafted
solutions (Faulk et al., 2009). However, if the scientists are exposed to a certain
software engineering technique that they find well-matched for their specific
working environment, it is readily adopted. Examples of this are version
control systems, regression testing frameworks that can be adapted to the
scientists’ needs for testing, and reuse in the small via libraries for equation
solvers, mesh handling, etc. (Basili et al., 2008). In order to be accepted by the
scientists, these tools must introduce a minimum of technicalities as the
scientists are busy enough following the fast developments in their own field
(Killcoyne and Boyle, 2009).

All in all, we can conclude that software engineering approaches will only
be adopted by scientists if these approaches honor the distinct characteristics
and constraints of scientific software development which we described above.

4 What Software Engineering has to Offer to
Computational Science

Our detailed analysis of the specific characteristics of scientific software
development enables us to identify some shortcomings of existing elaborated
proposals that are concerned with bridging the “chasm” between software
engineering and computational science in Section 4.1. Furthermore, we provide
an overview on more recent attempts at closing the gap between the two
disciplines in Section 4.2 and we give an outlook on possible research directions
that could contribute to improving the current situation in Section 4.3 and 4.4.

4.1 Bridging the Software Chasm
Previous attempts at addressing the credibility and productivity crisis of
computational science can be categorized into three groups:

1. Publish and review source code along with scientific articles to ensure
reproducibility or at least repeatability of in silico experiments.

2. Let software engineers build or re-engineer (parts of) the scientific software.

3. Train scientists to enable them to use state-of-the-art software engineering

20

methods.

In the context of the credibility crisis of computational science, a discussion
about the reproducibility of scientific results that rely on computation emerged
both within science itself (Peng, 2011) and in the software engineering
community (LeVeque et al., 2012). Being able to—at least in principle—validate
the findings of other scientists by reproducing their experiments is at the
heart of the scientific method. However, it is common practice in many areas
of computational science not to release the source code on which the findings
of a publication are based. This practice impedes the reproduction of
published results or even renders it outright impossible. Therefore, several
authors suggest to make public disclosure of the source code mandatory for
peer-reviewed publications and some even propose to include the code itself in
the peer review process (Ince et al., 2012; Morin et al., 2012; Barnes, 2010). In
the software engineering community, for example, several large conferences
recently started employing a peer-reviewed artifact evaluation process
(Krishnamurthi and Vitek, 2015).

These suggestions and efforts are certainly important steps in the right
direction and could help to increase the appreciation of software and its quality
in the computational science community. However, publishing source code
alone does not adequately address the fundamental problem that the scientists
lack the software engineering skills to tackle the underlying problems of both
the credibility and the productivity crisis.

A second attempt to a solution is to try to have software engineers implement
the software for the scientists. The experiences of Segal (2005), who put this
approach to test, and the considerations given in Section 3.3 a) suggest that this
is not a practicable way.

So far, the most promising attempt to solve the dual scientific software crisis
seems to be education via workshop-based training programs focusing on PhD
students, such as the ones organized by Wilson (2014) and Messina (2015). While
the education approach does address the skill gap that is central to the
“software chasm,” it does so with inadequate means. Our analysis in Section 3
clearly indicates that just exposing scientists to software engineering methods
will not be enough because these methods often fail to consider the specific
characteristics and constraints of scientific software development. We therefore
conclude that we have to select suitable software engineering techniques and
adapt them specifically to the needs of computational scientists.

4.2 Adapting Domain-Specific Engineering Approaches
The results of our literature study clearly show that computational scientists are
only “accidentally” involved in software development: ultimately, their goal is
not to create software but to obtain novel scientific results (Section 3.3 c)). At the
same time, however, they are very concerned about having full control over their
applications and how these actually compute their results, which is why many
prefer “older” programming languages with a relatively low level of abstraction
from the underlying hardware (Section 3.2 b)).

21

Among the techniques and tools that software engineering has to offer, so-
called Domain-Specific Languages (DSLs) (Fowler, 2010) are a promising starting
point for addressing the needs of computational scientists. Like General-Purpose
Languages (GPLs), such as C or Java, DSLs are programming languages.
However, unlike GPLs, which are designed to be able to implement any program
that can be computed with a Turing machine, DSLs limit their expressiveness to a
particular application domain. By featuring high-level domain concepts that
enable to model phenomena at the abstraction level of the domain and by
providing a notation close to the target domain, DSLs can be very concise. The
syntax of a DSL can be textual or graphical and DSL programs can be executed
either by means of interpretation or through generation of source code in existing
GPLs. A popular example of a textual DSL are regular expressions, which
target the domain of text pattern matching and allow to model search patterns
independently from any concrete matching engine implementation.

Since DSLs are designed to express solutions at the abstraction level of the
domain, they allow the scientists to care about what matters most to them: doing
science without having to deal with technical, implementation-specific details.
While they use high-level domain abstractions, they still stay in full control over
their development process as it is them who directly implement their solutions in
formal and executable (e.g., through generation) programming languages.
Additionally, generation from a formal language into a low-level GPL permits
to examine the generated code to trace what is actually computed.

DSLs can also help to overcome the conflict between the quality requirements
of performance on the one hand and portability and maintainability on the other
hand, which is responsible for many of the difficulties experienced in scientific
software development (Section 3.2 d)). DSL source code is maintainable because
it is often pre-structured and much easier to read than GPL code, which makes
it almost self-documenting. This almost self-documenting nature of DSL source
code and the fact that it can rely on an—ideally—well-tested generator for
program translation ensure the reliability of scientific results based on the
output of the software. Portability of DSL code is achieved by just replacing the
generator for the language with one that targets another hardware platform.
With DSLs, the high abstraction level does not have to result in performance
losses because the domain-specificity first of all enables to apply—at compile
time—domain-specific optimizations and greatly simplifies automatic
parallelization (Stahl and Völter, 2006).

In the way described above, DSLs integrated into a appropriate software
engineering approach could help to overcome both the productivity and the
credibility crisis of computational science. A first indicator that supports this
hypothesis can be found in the survey report of Prabhu et al. (2011), who
find that those scientists who program with DSLs “report higher productivity
and satisfaction compared to scientists who primarily use general purpose,
numerical, or scripting languages.”

Existing research regarding the application of DSLs in computational science
includes the design of several individual DSLs. Examples of this are Liszt (De-
Vito et al., 2011), which is a DSL for mesh-based partial differential equation
solvers with a focus on automatic parallelization, and SESSL (Ewald and Uhrma-

22

cher, 2014), which allows to model simulation experiments to ensure their
reproducibility. Schnetter et al. (2015) describe a framework called Chemora for
solving partial differential equations on modern HPC architectures. They use
DSLs to separate the concerns of compute model design, model discretization,
and the mapping to hardware resources (including performance optimization).

In the examples named so far, DSLs are viewed as more or less isolated tools
that scientists can employ to make software development easier for them. Other
researchers integrate the use of DSLs into more holistic approaches that directly
address the productivity crisis and/or the credibility crisis discussed above. For
example, Palyart et al. (2012a) introduce a software engineering approach called
MDE4HPC that uses the DSL HPCML (Palyart et al., 2012b) to help scientists with
efficiently implementing HPC applications that are independent of any specific
HPC hardware architecture. Almorsy et al. (2013) propose to employ suites of
graphical DSLs to use graphical modeling in all aspects of the scientific software
development process. They provide a web-based tool which aims at enabling
scientists to define DSLs by themselves. Another software engineering approach
for computational science is Sprat (Johanson et al., 2017; Johanson and
Hasselbring, 2014), which integrates multiple DSLs in a hierarchical fashion to
facilitate the collaboration of scientists from different disciplines in the
development of complex simulation software. In this approach, every
developer role in a software project is assigned a separate DSL, which is
intended to lead to a clear separation of concerns, well-maintainable code, and a
high productivity because the scientists only have to work with abstractions that
they are already familiar with from their respective domain.

Similar to the design of GPLs, the design of DSLs faces the problem of not
knowing the requirements in advance. Thus, it is important to develop DSLs
with agile methods (Gunther et al., 2010) and to involve end users into the design
and evaluation process (Johanson and Hasselbring, 2017).

4.3 Software Performance Engineering
Another possible research direction would be to include techniques developed by
Software Performance Engineering (SPE) (Bondi, 2014) into software engineering
approaches for computational science. Often, performance optimization requires
considerable changes in software design. Therefore, performance should already
be considered in the design phase of software on an architectural level.
However, as can be seen from Section 3.1 c), scientists typically develop
software in a highly iterative manner with a focus on the scientific problems at
hand, which implies that there usually is no distinct software design phase. This
problem can be circumvented by employing DSLs to construct models of the
scientific software to be implemented as discussed in the previous section. If
the software is implemented using domain-level abstractions, model-based
performance prediction and optimization techniques (Balsamo et al., 2004) can be
employed without forcing the scientists to adopt rigid software processes.

Since hardware resources are always limited and since especially in HPC
performance really matters, the application of such SPE approaches to
systematically optimize the runtime efficiency of scientific software is a
promising area for future work.

23

4.4 Testing Scientific Software
As discussed in Section 3.1 b), software engineering for computational science
should draw the programmers attention to the important role of the correctness of
the software (Hinsen, 2015). Software testing usually requires an oracle, which is
a mechanism for checking whether the program under test produces the expected
output when executed using a set of test cases. However, obtaining reliable
oracles for scientific programs is challenging, because the requirements mostly
are unclear up front due to the exploratory nature of scientific software
development. Model-based testing (Schieferdecker, 2012) requires well-defined
and stable requirements to develop the model; thus, model-based testing is not
readily applicable to scientific software. Instead, approaches on performing
effective testing without pre-defined oracles are required (Kelly et al., 2011). New
approaches such as the so-called metamorphic testing intend to solve the
challenge of testing non-deterministic programs that lack oracles (Guderlei and
Mayer, 2007), for instance via machine learning techniques to automatically
detect metamorphic relations (Kanewala and Bieman, 2013).

Another challenge is to integrate automated regression and acceptance
testing for scientific software, for instance in continuous integration setups
(Meyer, 2014). Regression testing allows to compare the current output to
previous outputs to identify faults or performance anomalies introduced
when the code is modified. Various tools and approaches are under
development that address the challenges of testing and debugging software
designed to run on distributed systems. Some unit testing frameworks have
direct support for MPI and have been successfully used my multiple
communities. Another approach is to mock MPI and test/debug components
of a simulation in isolation (Clune et al., 2015).

For scientific software, a major difficulty for automated regression testing
is caused by the high computational costs of tests. To ensure high code
coverage, a potentially exponential set of test configurations must be executed.
A solution to this challenge could be a proper modularization of the software
such that the software components become testable in isolation.
Modularization approaches such as microservices enable scalability
(Hasselbring, 2016), as well as agility and reliability (Hasselbring and
Steinacker, 2017). Such a modularization may also facilitate automated
regression testing of scientific software.

4.5 Requirements Engineering
Some software engineering approaches for computational science, such as
the Advises project by Thew et al. (2009) and the approach by Garcia et al.
(2013), focus on requirements engineering techniques. Garcia et al. (2013)
introduced a component-based and aspect-oriented method for scientific
software development. Their approach focuses on formal requirements
engineering to enable the reuse of existing software components and their
integration via aspect-oriented programming techniques. The idea is that

24

once the requirements of a scientific application are known, it can be constructed
merely by identifying suitable functional components that already exist and
the dependency relations between them.

The Advises project (see also Thew et al., 2008; Sutcliffe et al., 2007)
acknowledges that in scientific computing, it is usually impossible to specify
detailed software requirements up front. In light of this situation, they propose a
requirements engineering process in which software engineers use techniques
such as unstructured interviews and user observation to iteratively derive
detailed requirements. On the basis of these requirements, the software
engineers are supposed to develop the software for the domain scientists.

Despite the positive evaluation of the Advises project in the domain of
epidemiology, it remains unclear whether such approaches, which focus on
requirements engineering and software engineers implementing the software
for domain scientists, are applicable to other branches of computational
science. The results of the study of Segal (2005), which we cited above, indicate
that this may not be the case for branches such as HPC.

5 Concluding Remarks
Based on an examination of the historical development of the relationship
between software engineering and computational science (the Past), we
identified 13 key characteristics of scientific software development by reviewing
published literature (the Present). We found that the unique characteristics
of scientific software development prevent scientists from using state-of-the-art
software engineering tools and methods. This situation created a “chasm”
between software engineering and computational science, which resulted in a
productivity and credibility crisis of the latter discipline. We examined
attempts at bridging the gap between software engineering and computational
science to reveal shortcomings of existing solutions and to point out further
research directions, such as the use of domain-specific languages and testing
techniques without pre-defined oracles (the possible Future). However, more
research on this topic is needed, especially to empirically evaluate the actual
gains in productivity and quality achieved for scientific software by such
software engineering approaches.

Short Biographies

Arne Johanson is as a data scientist at XING Marketing Solutions GmbH,
Germany. He received a Ph.D. in computer science from Kiel University,
Germany in 2016. For his Ph.D. studies, he was awarded a scholarship from the
Helmholtz Research School Ocean System Science and Technology (HOSST).
His research focuses on adapting software engineering techniques for

25

computational science. Contact him at arj@informatik.uni-kiel.de

Wilhelm Hasselbring is professor of Software Engineering at Kiel University,
Germany. In the excellence cluster Future Ocean, a large-scale collaborative
project of Kiel University, the GEOMAR Helmholtz Centre for Ocean Research
Kiel and others, he is principal investigator and coordinator of the research area
Digital Ocean. He is principal investigator of the Helmholtz Research School
Ocean System Science and Technology (HOSST). His research interests include
software engineering and distributed systems. He received his Ph.D. in
Computer Science from the University of Dortmund, Germany. He is a member
of the ACM, the IEEE Computer Society, and the German Association for
Computer Science. Contact him at hasselbring@email.uni-kiel.de

References
Mohamed Almorsy, John Grundy, Richard Sadus, Willem van Straten, David G.

Barnes, and Owen Kaluza. A suite of domain-specific visual languages for
scientific software application modelling. In Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), 2013, pages 91–94. IEEE, 2013.

Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni.
Model-based performance prediction in software development: A survey.
Software Engineering, 30(5):295–310, 2004.

Nick Barnes. Publish your computer code: it is good enough. Nature, 467(7317):
753–753, 2010.

Victor R. Basili, Daniela Cruzes, Jeffrey C. Carver, Lorin M. Hochstein, Jeffrey K.
Hollingsworth, Marvin V. Zelkowitz, and Forrest Shull. Understanding the
high-performance-computing community: A software engineer’s perspective.
IEEE Software, 25(4):29–36, 2008.

Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
2000.

Marc R. Benioff et al. Computational science: ensuring America’s
competitiveness. Technical report, President’s Information Technology
Advisory Committee (PITAC), 2005.

A. B. Bondi. Foundations of Software and System Performance Engineering: Process,
Performance Modeling, Requirements, Testing, Scalability, and Practice.
AddisonWesley, 2014.

J. Brown, M.G. Knepley, and B.F. Smith. Run-time extensibility and librarization
of simulation software. Computing in Science & Engineering, 17(1):38–45, 2015.

Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julien Langou, Piotr Luszczek, and

26

Stanimire Tomov. The impact of multicore on math software. In Applied Parallel
Computing. State of the Art in Scientific Computing, volume 4699 of LNCS, pages
1–10. Springer, 2007.

Jeffrey C. Carver and Tom Epperly. Software engineering for computational
science and engineering. Computing in Science & Engineering, 16(3):6–9, 2014.

Jeffrey C. Carver, Lorin Hochstein, Richard P. Kendall, Taiga Nakamura,
Marvin V. Zelkowitz, Victor R. Basili, and Douglass E. Post. Observations
about software development for high end computing. CTWatch Quarterly,
2(4A):33– 38, 2006.

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E. Post.
Software development environments for scientific and engineering software: A
series of case studies. In Software Engineering, 2007. ICSE 2007. 29th International
Conference on, pages 550–559. IEEE, 2007.

Jeffrey C. Carver, Dustin Heaton, Lorin Hochstein, and Roscoe Bartlett.
Selfperceptions about software engineering: A survey of scientists and
engineers. Computing in Science & Engineering, 15(1):7–11, 2013.

P.E. Ceruzzi. A History of Modern Computing. MIT Press, 2 edition, 2003.

Thomas Clune, Hal Finkel, and Michael Rilee. Testing and debugging exascale
applications by mocking mpi. In Proceedings of the 3rd International Workshop
on Software Engineering for High Performance Computing in Computational Science
and Engineering, SE-HPCCSE ’15, pages 5–8, New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-4012-0. doi: 10.1145/2830168.2830173.

Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos, E. Elsen,
F. Ham, A. Aiken, K. Duraisamy, et al. Liszt: a domain specific language for
building portable mesh-based PDE solvers. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis,
pages 1–12. ACM, 2011.

Jack Dongarra, Dennis Gannon, Geoffrey Fox, and Ken Kennedy. The impact
of multicore on computational science software. CTWatch Quarterly, 3(1):1–10,
2007.

S.M. Easterbrook and T.C. Johns. Engineering the software for understanding
climate change. Computing in science & engineering, 11(6):65–74, 2009.

Roland Ewald and Adelinde M. Uhrmacher. SESSL: A domain-specific language
for simulation experiments. ACM Transactions on Modeling and Computer
Simulation (TOMACS), 24(2):11, 2014.

Stuart Faulk, Eugene Loh, Michael L. Van De Vanter, Susan Squires, and
Lawrence G. Votta. Scientific computing’s productivity gridlock: How
software engineering can help. Computing in Science & Engineering, 11:30–39,
2009.

Martin Fowler. Domain-Specific Languages. Addison-Wesley, 2010.

27

Samuel H. Fuller and Lynette I. Millett. Computing performance: Game over or
next level? Computer, 44(1):31–38, 2011.

Javier Corral Garcia, César Gómez Martin, José Luis González Sánchez, and
David Cortés Polo. Development of scientific applications with high-
performance computing through a component-based and aspect-oriented
methodology. International Journal of Advanced Computer Science, 3(8):400–408,
2013.

Ursula Goltz, Ralf Reussner, Michael Goedicke, Wilhelm Hasselbring, Lukas
Märtin, and Birgit Vogel-Heuser. Design for future: managed software
evolution. Computer Science – Research and Development, 30(3):321–331, August
2015. doi: 10.1007/s00450-014-0273-9.

R.Guderlei and J. Mayer. Statistical metamorphic testing testing programs with
random output by means of statistical hypothesis tests and metamorphic
testing. In Seventh International Conference on Quality Software (QSIC 2007),
pages 404–409, 2007.

S. Gunther, M. Haupt, and M. Splieth. Agile engineering of internal
domainspecific languages with dynamic programming languages. In 2010
Fifth International Conference on Software Engineering Advances, pages 162–168,
August 2010. doi: 10.1109/ICSEA.2010.32.

J.E. Hannay, H.P. Langtangen, C. MacLeod, D. Pfahl, J. Singer, and G. Wilson.
How do scientists develop and use scientific software? In Software Engineering
for Computational Science and Engineering, 2009. SECSE’09. ICSE Workshop on,
pages 1–8. IEEE, 2009.

Wilhelm Hasselbring. Microservices for scalability: Keynote talk abstract. In
Proceedings of the 7th ACM/SPEC on International Conference on Performance
Engineering (ICPE 2016), pages 133–134, New York, NY, USA, 2016. ACM.
ISBN 978-1-4503-4080-9. doi: 10.1145/2851553.2858659.

Wilhelm Hasselbring and Guido Steinacker. Microservice architectures for
scalability, agility and reliability in e-commerce. In Proceedings 2017 IEEE
International Conference on Software Architecture Workshops (ICSAW), pages 243–
246, Gothenburg, Sweden, April 2017. IEEE. doi: 10.1109/ICSAW.2017.11.

Les Hatton and Andy Roberts. How accurate is scientific software? Software
Engineering, IEEE Transactions on, 20(10):785–797, 1994.

Dustin Heaton and Jeffrey C. Carver. Claims about the use of software
engineering practices in science: A systematic literature review. Information and
Software Technology, 67:207–219, 2015.

Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra,
Jonathan J. Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R. Long, Roger P.
Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K. Thornquist, Ray S.
Tuminaro, James M. Willenbring, Alan Williams, and Kendall S. Stanley. An
overview of the Trilinos project. ACM Trans. Math. Softw., 31(3):397–423,

28

September 2005. doi: 10.1145/1089014.1089021.

Konrad Hinsen. The approximation tower in computational science: Why testing
scientific software is difficult. Computing in Science & Engineering, 17(4):72–77,
2015.

Lorin Hochstein, Jeffrey Carver, Forrest Shull, Sima Asgari, Victor Basili,
Jeffrey K. Hollingsworth, and Marvin V. Zelkowitz. Parallel programmer
productivity: A case study of novice parallel programmers. In
Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference, pages
35–43. IEEE, 2005.

James Howison and James D. Herbsleb. Scientific software production:
incentives and collaboration. In Proceedings of the Conference on Computer
supported cooperative work 2011 (CSCW’11), pages 513–522. ACM, 2011.

Darrel C. Ince, Leslie Hatton, and John Graham-Cumming. The case for open
computer programs. Nature, 482(7386):485–488, 2012.

ISO 25010. Systems and software engineering—systems and software quality
requirements and evaluation (SQuaRE)—system and software quality
models. ISO 25010:2011, International Organization for Standardization,
Geneva, Switzerland, 2011.

Arne N. Johanson and Wilhelm Hasselbring. Hierarchical combination of internal
and external domain-specific languages for scientific computing. In Proceedings
of the 2014 European Conference on Software Architecture Workshops, ECSAW’14,
pages 17:1–17:8. ACM, 2014.

Arne N. Johanson and Wilhelm Hasselbring. Effectiveness and efficiency of a
domain-specific language for high-performance marine ecosystem simulation:
a controlled experiment. Empirical Software Engineering, 22(4):2206–2236,
August 2017. ISSN 1382-3256. doi: 10.1007/s10664-016-9483-z.

Arne N. Johanson, Andreas Oschlies, Wilhelm Hasselbring, and Boris Worm.
SPRAT: a spatially-explicit marine ecosystem model based on population
balance equations. Ecological Modelling, 349:11–25, 2017. doi:
http://dx.doi.org/ 10.1016/j.ecolmodel.2017.01.020.

Lucas N. Joppa, Greg McInerny, Richard Harper, Lara Salido, Kenji Takeda,
Kenton O’Hara, David Gavaghan, and Stephen Emmott. Troubling trends in
scientific software use. Science, 340(6134):814–815, 2013.

Upulee Kanewala and James M. Bieman. Using machine learning techniques to
detect metamorphic relations for programs without test oracles. In IEEE 24th
International Symposium on Software Reliability Engineering (ISSRE 2013), pages
1–10, November 2013.

Upulee Kanewala and James M. Bieman. Testing scientific software: A systematic
literature review. Information and software technology, 56(10):1219–1232, 2014.

29

Diane Kelly. A software chasm: Software engineering and scientific computing.
IEEE Software, 24(6):120–119, 2007.

Diane Kelly, Spencer Smith, and Nicholas Meng. Software engineering for
scientists. Computing in Science & Engineering, 13(5):7–11, 2011.

Richard Kendall, Jeffrey C. Carver, David Fisher, Dale Henderson, Andrew Mark,
Douglass Post, Clifford E. Rhoades, and Susan Squires. Development of a
weather forecasting code: A case study. Software, IEEE, 25(4):59–65, 2008.

Sarah Killcoyne and John Boyle. Managing chaos: Lessons learned developing
software in the life sciences. Computing in Science & Engineering, 11(6):20–29,
2009.

Shriram Krishnamurthi and Jan Vitek. The real software crisis: repeatability as a
core value. Communications of the ACM, 58(3):34–36, 2015.

Randall J. LeVeque, Ian M. Mitchell, and Victoria Stodden. Reproducible research
for scientific computing: Tools and strategies for changing the culture.
Computing in Science & Engineering, 14(4):13, 2012.

Z. Merali. Computational science: Error, why scientific programming does not
compute. Nature, 467(7317):775–777, 2010.

Paul Messina. Gaining the broad expertise needed for high-end computational
science and engineering research. Computing in Science & Engineering, 17(2):
89–90, 2015.

M. Meyer. Continuous integration and its tools. IEEE Software, 31(3):14–16, 2014.

A. Morin, J. Urban, P.D. Adams, I. Foster, A. Sali, D. Baker, and P. Sliz. Shining
light into black boxes. Science, 336(6078):159–160, 2012.

Peter Naur and Brian Randell. Software Engineering: Report of a Conference
Sponsored by the NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968,
Brussels, Scientific Affairs Division, NATO. NATO Scientific Affairs Division,
1969.

Newell, Perlis, and Simon. letter to the editor. Science, 157:1373–1374, 1967.

Marc Palyart, David Lugato, Ileana Ober, and Jean-Michel Bruel. MDE4HPC: An
approach for using model-driven engineering in high-performance computing.
In Proceedings SDL’11: Integrating System and Software Modeling, volume 7083 of
LNCS, pages 247–261, 2012a.

Marc Palyart, Ileana Ober, David Lugato, and Jean-Michel Bruel. HPCML: a
modeling language dedicated to high-performance scientific computing. In
Proceedings of the 1st International Workshop on Model-Driven Engineering for High
Performance and Cloud computing, pages 1–6, 2012b.

Roger D. Peng. Reproducible research in computational science. Science, 334
(6060):1226–1227, 2011.

30

Douglass E. Post. The changing face of scientific and engineering computing.
Computing in Science & Engineering, 15(6):4–6, 2013.

Douglass E. Post and Lawrence G. Votta. Computational science demands a new
paradigm. Physics today, 58(1):35–41, 2005.

Prakash Prabhu, Thomas B. Jablin, Arun Raman, Yun Zhang, Jialu Huang,
Hanjun Kim, Nick P. Johnson, Feng Liu, Soumyadeep Ghosh, Stephen Beard,
Taewook Oh, Matthew Zoufaly, David Walker, and David I. August. A
survey of the practice of computational science. In State of the Practice Reports,
SC’11, pages 19:1–19:12. ACM, 2011.

M Ragan-Kelley, F Perez, B Granger, T Kluyver, P Ivanov, J Frederic, and M
Bussonnier. The Jupyter/IPython architecture: a unified view of
computational research, from interactive exploration to communication and
publication. In AGU Fall Meeting Abstracts, 2014.

Winston W. Royce. Managing the development of large software systems. In
Proceedings of WESCON’70, pages 328–338. IEEE, 1970.

Rebecca Sanders and Diane F. Kelly. Dealing with risk in scientific software
development. Software, IEEE, 25(4):21–28, 2008.

Ina Schieferdecker. Model-based testing. IEEE Software, 29(1):14–18, 2012.

Erik Schnetter, Marek Blazewicz, Steven R. Brandt, David M. Koppelman, and
Frank Löffler. Chemora: A PDE-solving framework for modern high-
performance computing architectures. Computing in Science & Engineering,
17(2):53– 64, 2015.

Judith Segal. When software engineers met research scientists: A case study.
Empirical Software Engineering, 10(4):517–536, 2005.

Judith Segal. Some problems of professional end user developers. In Symposium
on Visual Languages and Human-Centric Computing, 2007. VL/HCC 2007., pages
111–118. IEEE, 2007.

Judith Segal. Models of scientific software development. In Proceedings of the
First International Workshop on Software Engineering for Computational Science and
Engineering, SECSE’08, pages 1–7, 2008.

Judith Segal. Some challenges facing software engineers developing software for
scientists. In Proceedings of the 2009 ICSE Workshop on Software Engineering for
Computational Science and Engineering, pages 9–14. IEEE, 2009.

Judith Segal and Chris Morris. Developing scientific software. Software, IEEE, 25
(4):18–20, 2008.

Forrest Shull, Jeffrey Carver, Lorin Hochstein, and Victor Basili. Empirical study
design in the area of high-performance computing (HPC). In Proceedings of
the International Symposium on Empirical Software Engineering 2005, pages 1–10.
IEEE, 2005.

31

Thomas Stahl and Markus Völter. Model-Driven Software Development: Technology,
Engineering, Management. Wiley, 2006.

Tim Storer. Bridging the chasm: A survey of software engineering practice in
scientific programming. ACM Comput. Surv., 50(4):47:1–47:32, August 2017.
doi: 10.1145/3084225.

A.G. Sutcliffe, Sarah Thew, Colin Venters, Oscar De Bruijn, John Mcnaught, Rob
Procter, and Iain Buchan. Advises project: Scenario-based requirements
analysis for e-Science applications. In UK e-Science All Hands Meeting, pages
142–149. UK e-Science, 2007.

Sarah Thew, Alistair Sutcliffe, Oscar De Bruijn, John McNaught, Rob Procter,
Colin Venters, and Iain Buchan. Experience in e-Science requirements
engineering. In 16th International Requirements Engineering Conference, 2008.
RE’08., pages 277–282. IEEE, 2008.

Sarah Thew, Alistair Sutcliffe, Rob Procter, Oscar De Bruijn, John McNaught,
Colin C. Venters, and Iain Buchan. Requirements engineering for e-Science:
experiences in epidemiology. IEEE Software, 26(1):80, 2009.

Iris Vessey. Problems versus solutions: the role of the application domain in
software. In Papers presented at the seventh workshop on Empirical studies of
programmers, pages 233–240. ACM, 1997.

Gregory V. Wilson. Where’s the real bottleneck in scientific computing? American
Scientist, 94(1):5–6, 2006.

Gregory V. Wilson. Software carpentry: lessons learned. F1000Research, 3:1–11,
2014.

