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A New Class of Analog Precoding for
Multi-Antenna Multi-User Communications over

High-Frequency Bands
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Abstract—A network relying on a large antenna-array-aided
base station is designed for delivering multiple information
streams to multi-antenna users over high-frequency bands such
as the millimeter-wave and sub-Terahertz bands. The state-of-
the-art analog precoder (AP) dissipates excessive circuit power
due to its reliance on a large number of phase shifters. To mitigate
the power consumption, we propose a novel AP relying on a con-
trolled number of phase shifters. Within this new AP framework,
we design a hybrid precoder (HP) for maximizing the users’
minimum throughput, which poses a computationally challenging
problem of large-scale, nonsmooth mixed discrete-continuous log-
determinant optimization. To tackle this challenge, we develop
an algorithm which iterates through solving convex problems
to generate a sequence of HPs that converges to the max-
min solution. We also introduce a new framework of smooth
optimization termed soft max-min throughput optimization.
Additionally, we develop another algorithm, which iterates by
evaluating closed-form expressions to generate a sequence of HPs
that converges to the soft max-min solution. Simulation results
reveal that the HP soft max-min solution approaches the Pareto-
optimal solution constructed for simultaneously optimizing both
the minimum throughput and sum-throughput. Explicitly, it
achieves a minimum throughput similar to directly maximizing
the users’ minimum throughput and it also attains a sum-
throughput similar to directly maximizing the sum-throughput.

Index Terms—Millimeter-wave and terahertz bands, multi-
stream delivery, power-efficiency, hybrid precoding, analog pre-
coding, digital precoding, log-determinant optimization, mixed
discrete continuous optimization.

I. INTRODUCTION

Wireless communications over high-frequency bands, in-
cluding the millimeter-wave (mmWave) and the sub-Terahertz
(sTHz) [1], as well as the Terahertz (THz) bands [2]–[4],
are currently considered the only viable means of meeting
the demands of high-volume data delivery in next generation
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communication networks and beyond. To compensate for the
substantial path loss associated with these frequency bands, it
is necessary to harness a large number of transmit antennas at
the base station (BS) for signal transmission. Hybrid precoding
(HP) composed of analog precoding (AP) and baseband digital
precoding (DP) plays a pivotal role as the essential signal
processing technique designed for focusing the desired signal
and for mitigating the interference at the receiver end. It is
worth noting that AP relies on radio frequency chains (RFs)
of phase shifters, which can result in excessive circuit power
consumption. As an illustrative example, an AP with 8 RFs
connected to 144 transmit antennas requires 144 × 8 = 1152
phase shifters in a full-connected (FC) structure, where each
of the 8 RFs is connected to all transmit antennas. Alter-
natively, 144 phase shifters may be harnessed in an array-
of-subarray (AoSA) structure [5], where each of the 8 RFs
is connected to 144/8 = 16 transmit antennas only. For a
circuit power consumption of 20 mW per phase shifter [6],
such an AP consumes 1152×20 = 23040 mW under FC, and
144×20 = 2880 mW under AoSA, making its implementation
infeasible. Additionally, it is important to note that the circuit
power consumption of a phase shifter increases significantly
in higher frequency bands. Given the current state-of-the-art
in HP, which requires a number of phase shifters that is
no less than that of transmit antennas, it appears unlikely
that extra-high bandwidth communications relying on extra-
large antenna arrays can be practically implemented in the
foreseeable future.

Another notable challenge in the realm of wireless commu-
nications over high-frequency bands is that they are mostly
studied within the context of either a single multi-antenna
user [7]–[13] or multiple single-antenna users [14]–[21]. This
previous focus tends to overlook the more practical scenario
of multiple multi-antenna users. In single-user communi-
cation, the interference is negligible, making high-volume
data delivery relatively straightforward. When dealing with
multiple single-antenna users, improving their throughputs
is equivalent to improving their signal-to-interference-plus-
noise ratios (SINRs), which can be effectively addressed
using fractional programming. However, when it comes to
enhancing the throughputs of multi-antenna users, things be-
come considerably more intricate. The user throughputs are
the log-determinant (log-det) functions of nonlinear matrix
expressions composed of signal and interference covariances.
This intricate enhancement presents a unique matrix optimiza-
tion challenge that cannot be adequately addressed using the
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conventional tools of applied optimization.

The aim of the present paper is to introduce a new class of
AP to control the number of phase shifters for maintaining a
realistic power consumption for wireless communications over
high-frequency bands. Our contributions are as follows:

• We develop a new class of APs, which control the number
of phase shifters by linking any phase shifter to multiple
antennas. As a result, each RF component can efficiently
exploit a controlled number of phase shifters as their link
to a predefined set of antennas;

• Within this new class of APs, our primary focus is on
designing a HP for maximizing the minimum throughput
of multi-antenna users, thereby ensuring uniform quality
of information delivery (QoD) to all users. Again, the user
throughputs are characterized by the log-det function of
nonlinear matrix expressions involving both signal and
interference covariances. Due to the practical constraints
of low-resolution phase shifters, maximizing this mini-
mum log-det function poses a significant computational
challenge within the context of nonsmooth, large-scale
mixed discrete optimization. To tackle this challenge,
we develop a nonsmooth max-min log-det algorithm
that iterates by solving convex problems to generate a
sequence of HPs, which converges towards the max-min
solution. Extensive numerical simulations demonstrate
that under the same transmit power budget, HP within
this new AP framework achieves the users’ minimum
throughput comparable to that delivered by HP associated
with the conventional AP, which consumes much more
circuit power by utilizing excessive numbers of phase
shifters for implementation. Remarkably, under the same
power consumption, the HPs associated with this new AP
attain a much higher users’ minimum throughput than that
achieved by HP using the conventional AP. In fact, the
minimum user throughput attained by the latter is notably
lower compared to that achieved by the former;

• The computational complexity associated with solving
convex problems in the nonsmooth max-min log-det
algorithm is a cubic function of the number of decision
variables, resulting in particularly high computational
demands due to the large scale of these convex prob-
lems. To mitigate this issue, we introduce the concept
of soft max-min log-det optimization. The concept aims
for maximizing a soft and smooth approximation of the
nonsmooth minimum log-det function. We develop a soft
max-min log-det algorithms that iterates by evaluating
closed-form expressions having scalable complexity to
generate a sequence of HPs, which converges toward the
soft max-min solution. Notably, numerical simulations
demonstrate that this HP solution is Pareto-optimal in
the context of multi-objective optimization. Explicitly, it
not only achieves a users’ minimum throughput similar to
that attained by direct max-min throughput optimization,
but also has a sum-throughput similar to that achieved
by direct sum-throughput maximization. Consequently,
soft max-min throughput optimization presents a new
HP design framework for computationally efficient multi-

objective optimization.
Table I demonstrates the advancements and distinctive con-

tributions of this work in comparison to the existing related
literature.

The paper is organized as follows. Section II introduces a
new class of APs designed for mitigated power consumption.
Section III focuses on the computational solution of designing
HP to maximize the users’ minimum throughput, while Sec-
tion IV addresses the computational solution of designing HPs
for maximizing the soft users’ minimum throughput. Section
V provides numerical simulation results, while the appendix
provides some mathematical ingredients for the developments
in Sections III and IV.

Notation. Only the optimization variables are boldfaced.
For a complex number x, ∠x presents its argument. Then
ex , (ex1 , . . . , exN )T ∈ CN for x = (x1, . . . , xN )T ∈ RN .
The inner product between vectors x and y is defined as
〈x, y〉 = xHy. Analogously, 〈X,Y 〉 , trace(XHY ) for the
matrices X and Y . diag[X1, . . . , XN ] is a block diagonal
matrix of the diagonal blocks Xn, n = 1, . . . , N , while[
Xm,n

]
(m,n)∈M×N or

[
X(m,n)

]
(m,n)∈M×N is a partitioned

matrix of the submatrices Xm,n or X(m,n). We also use
〈X〉 for the trace of X when X is a square matrix. X � 0
(X � 0, resp.) means that X is Hermitian symmetric and
positive semi-definite (positive definite, resp.). Accordingly,
X � Y (X � Y , resp.) means that X − Y � 0 (X − Y � 0,
resp.). ||X|| is the Frobenius norm of the matrix X , which
is defined by

√
〈XHX〉. [X]2 stands for XXH � 0, so

||X||2 = 〈[X]2〉. Then lnX is the natural logarithm of the
determinant (log-det) of X � 0. Whenever X � 0,

√
X is

a positive semi-definite matrix such that [
√
X]2 = X and√

X(m,n) is the (m,n)-th entry of
√
X . 1N ∈ RN is a

N -dimensional vector with all entries equal to 1, while IN
is the N × N identity matrix. When the size of the identity
matrix is clear from the context, we may omit the subscript
N in expressions. Lastly, RN+ is the set of N -dimensional real
vectors with positive entries.

II. NEW ANALOG PRECODERS BASED ON REDUCED
NUMBERS OF PHASE SHIFTERS

Let us consider a downlink (DL) scenario, where a base
station (BS) serves K users, each identified by k ∈ K ,
{1, 2, . . . ,K}. In this set up, the BS is equipped with a massive
Ne × Na-element circular cylindrical array, while each user
(UE) k is equipped with an Nt-antenna array. Thus, the total
number of transmit antennas is N , NeNa.

Let Nc be the number of RF chains that the BS uses
for its AP. Considering the BS as an N -antenna array, we
partition it into Nc-antenna subarrays, with each of which
comprising L = N/Nc antennas, forming what is known
as an array of subarrays (AoSA) [22]. Subsequently, the
nc-th RF chain is connected to the nc-th subarray, where
nc ∈ Nc , {1, . . . , Nc} (see Fig. 1a). The AP is defined
by a matrix VA ∈ CN×Nc in the following form

VA , diag[z̃nc ]nc∈Nc , (1)

with

z̃nc , (z̃nc,1, . . . , z̃nc,L)
T

= eθ̃θθnc ∈ CL, nc ∈ Nc, (2)
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TABLE I: Highlighting the distinctive contributions in comparison to the related literature

Contents
Literature This work [7]–[13] [15], [18] [14]–[16] [17] [20], [21]

Single multi-antenna user
√

Multiple single-antenna users
√ √ √ √

Cubic complexity
√

Scalable complexity
√ √

Fair quality of delivery
√ √

Multiple multi-antenna users
√

Power consumption efficiency
√

Phase shifter control
√

for

θ̃θθnc ,
(
θ̃θθnc,1, . . . , θ̃θθnc,L

)T
∈ RL. (3)

The AoSA-AP VA (1) relies on N phase shifters formulated
as eθθθl,nc , l ∈ L , {1, . . . , L};nc ∈ Nc for implementation.
More precisely, the l-th phase shifter eθθθl,nc in the nc-th RF
chain is linked to the l-th antenna within the nc-th subarray.
In essence, each RF chain relies on L phase shifters for its
connection to an L-antenna subarray. Recall that, with 20 mW
being the power consumption per phase shifter [6], for N =
12× 12 = 144 and Nc = 8, the AoSA (1) already consumes
2880 mW.

Our aim is to propose a new AP structure that relies on
significantly fewer phase shifters to facilitate practical imple-
mentation. To reduce the total number N = LNc of phase
shifters for implementing the AoSA-AP VA in (1), we have
to assign z̃nc ∈ CL in (2) a specific structure, which enables
the nc-th RF chain to rely on reduced number Lc << L of
phase shifters for its connection to the nc-th subarray. Let
A ∈ RL×Lc , so that for each ` ∈ L , {1, . . . , L}, we have
A(`, `c) = 1 only for a single `c ∈ Lc , {1, . . . , Lc} and
A(`, `′c) = 0 for all other `′c 6= `c. It is noteworthy that the
matrix A offers flexibility in selecting an arbitrary value for
Lc, as it effectively maps the reduced number Lc of phase
shifters to L phase shifters in the conventional AoSA-AP
structure. Therefore, it plays a crucial role in developing our
new AP structure. We propose the following structure defined
to as the new AoSA (nAOSA):

z̃nc = Aznc , nc ∈ Nc, (4)

with

znc , (znc,1, . . . , znc,Lc)
T

= eθθθnc ∈ CLc , nc ∈ Nc, (5)

for
θθθnc , (θθθnc,1, . . . , θθθnc,Lc)

T ∈ RLc , (6)

i.e. the nAoSA AP obeys

VA , diag[Aznc ]nc∈Nc . (7)

By letting

z ,

 z1
. . .
zNc

 ∈ CNcLc , θθθ ,

 θθθ1. . .
θθθNc

 ∈ RNcLc , (8)

we can rewrite (5) as
z = eθθθ. (9)

This structure allow the nc-th RF chain to rely only on
Lc phase shifters for its connection to the nc-th subarray.
Specifically, each phase shifter eθθθnc,`c in the nc-th RF chain is
connected to the `-th antenna of nc-th subarray ifA(`, `c) = 1.
For example, consider a scenario associated with L = 8 and
Lc = 4, where each RF chain uses 4 phase shifters to connect
to an 8-antenna subarray. Given that each phase shifter is
linked to two adjacent antennas, A can be formulated as:

A = diag[12, 12, 12, 12] ∈ R8×4, (10)

where 12 denotes a 2-dimensional vector with all entries equal
to 1. Here, the `c-th phase shifter eθθθnc,`c , `c ∈ Lc within the
nc-th RF chain is linked to two antennas: the (L(nc − 1) +
2`c − 1)-th and the (L(nc − 1) + 2`c)-th antennas of the nc-
th subarray. On the other hand, considering that each phase
shifter is linked to two spaced antennas, A can be alternatively
formulated as:

A =

[
I4
I4

]
∈ R8×4, (11)

where I4 denotes the 4 × 4 identity matrix. Here, the `c-th
phase shifter eθθθnc,`c within the nc-th RF chain is linked to
two antennas: the (L(nc − 1) + `c)-th and the (L(nc − 1) +
`c + 4)-th antennas of the nc-th subarray. Through numerical
simulations, we have found that the structure (10) outperforms
its counterpart (11). Fig. 1 contrasts the conventional AoSA
structure and our proposed nAoSA structure, where Fig. 1b
shows the nAoSA structure associated with A defined by (10).

Given that ABF relying on phase-shifters having an infinite
resolution is impractical for mmWave communication [23], we
opt for phase-shifters with of low b-bit resolution, i.e.

θθθnc,`c ∈ B , {b′ 2π
2b
, b′ = 0, 1, . . . , 2b − 1}. (12)

In what follows, the projection of α ∈ [0, 2π) into B denoted
by bαeb is referred to as its b-bit rounded version:

bαeb = να
2π

2b
(13)

with

να , arg min
ν=0,1,...,2b

∣∣∣∣ν 2π

2b
− α

∣∣∣∣ , (14)

which can be readily found, because we have να ∈ {ν, ν+ 1}
for α ∈ [ν 2π

2b
, (ν + 1) 2π

2b
]. We reset να = 0, when it is 2b.

When b =∞, it is true that α = bαe∞.
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N/Nc

N/Nc

1st RF1st RF

Nc-th RFNc-th RF

N

(a) Conventional AoSA structure

Lc
N/Nc

Lc
N/Nc

1st RF1st RF

Nc-th RFNc-th RF

N

N/(NcLc)

N/(NcLc)

N/(NcLc)

N/(NcLc)

(b) nAoSA structure

Fig. 1: a) The conventional AoSA: each of the N/Nc phase
shifter of an RF is connected to a single antenna; b) The

new AoSA (nAoSA): each of the Lc phase shifters of an RF
is connected to a set of N/(LcNc) antennas.

III. HYBRID PRECODING DESIGN UNDER NAOSA-AP

We encode n ∈ N , {1, . . . , N} by (ne(n), na(n)) ∈
Ne ×Na, so that n = na(n)Ne + ne(n), and let

CNt×N 3 Hk =
[
Hk,1 . . . Hk,Nc

]
,

Hk,nc =

 Hk,nc(1)
. . .

Hk,nc(Nt)

 ∈ CNt×L (15)

be the channel between the BS and UE k ∈ K. Let sk ∈
C(0, INt) be the information stream intended for UE k, which
is precoded by the HP VAVk, where VA is the nAOSA-AP
defined from (7), and

CNc×Nt 3 Vk ,

 Vk(1, 1) . . . Vk(1, Nt)
. . . . . .

Vk(Nc, 1) . . . Vk(Nc, Nt)

 (16)

is the digital baseband precoder (DP). The transmit signal
at the BS is formulated as

∑
k′∈KVAVk′sk′ . The signal

received at UE k is

CNt 3 yk = Hk

∑
k′∈K

VAVk′sk′ + nk, (17)

where nk ∈ C(0, σINt) with σ > 0 represents the noise,
which includes the background noise and channel error due to
imperfect channel estimation.

It follows from (17) that the signal received at UE k under
the nAoSA AP VA (7) is

CNt 3 yk = Hk(z)
∑
k′∈K

Vk′sk′ + nk, (18)

where we have

Hk(z) , Hkdiag[Aznc ]nc∈Nc
=
[
Hk,1Az1 . . . Hk,NcAzNc

]
∈ CNt×Nc , k ∈ K.

(19)

We will also use the representations (20)–(22) shown at the
top of next page. For V , {Vk, k ∈ K}, the throughput of
UE k is defined by the following log-det function:

rk(V, z) , ln
∣∣INt + [Hk(z)Vk]2Ψ−1k (V, z)

∣∣ (23)

= ln
∣∣∣INt + [H̃k(Vk, z)]2Ψ−1k (V, z)

∣∣∣ (24)

with

Ψk(V, z) ,
∑
k′ 6=k

[Hk(z)Vk′ ]
2 + σINt (25)

=
∑
k′ 6=k

[H̃k(Vk′ , z)]2 + σINt . (26)

Given the transmit power budget P , the BS’s transmit power
is constrained as∑

k∈K

||diag[Aznc ]nc∈NcVk||2 = L
∑
k∈K

||Vk||2 ≤ P

⇔
∑
k∈K

||Vk||2 ≤ PL, (27)

for PL , P/L, which is independent of z.
To ensure a uniform quality-of-delivery (QoD) for all users

in terms of their throughputs, our HP design is based on the
following problem of max-min log-det function optimization:

max
z,θθθ,V

f(V, z) , min
k∈K

rk(V, z) s.t. (6), (9), (12), (27).

(28)
The objective function in (28) is notably intricate and non-
smooth due to its reliance on the point-wise minimum of
the nonlinear log-det functions rk(V, z), k ∈ K involving
the matrix variables Vk, k ∈ K and vector variable z.
Furthermore, the constraints (6), (9), (12) in (28) exhibit
a blend of highly nonlinear and mixed discrete-continuous
characteristics. More particularly, the presence of the nonlinear
equality constraint (9) makes alternating optimization in z
and θθθ with the other variables held fixed still computationally
intractable. Consequently, (28) poses a formidable computa-
tional challenge within the domain of nonsmooth optimization.
To address this challenge, we embrace the popular penalized
optimization framework of [24]–[29] to have the following
penalized optimization reformulation for (28):

max
θθθ,V,z

Fγ(V, z, θθθ) ,
[
f(V, z)− γ||z− eθθθ||2

]
s.t. (12), (27), (29)

where γ > 0 is a penalty factor introduced to integrate the
nonlinear equality constraint (9) into the optimization objective
function. Note that the problem (29) is free from the nonlinear
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Hk(z)Vk′ =
∑
nc∈Nc

 Hk,nc(1)AzncVk′(nc, 1) . . . Hk,nc(1)AzncVk′(nc, Nt)
. . . . . . . . .

Hk,nc(Nt)AzncVk′(nc, 1) . . . Hk,nc(Nt)AzncVk′(nc, Nt)


=
∑
nc∈Nc

 Vk′(nc, 1)Hk,nc(1)Aznc . . . Vk′(nc, Nt)Hk,nc(1)Aznc
. . . . . . . . .

Vk′(nc, 1)Hk,nc(Nt)Aznc . . . Vk′(nc, Nt)Hk,nc(Nt)Aznc


=
[
H̃k,`,`′(Vk′)z

]
(`,`′)∈Nt×Nt

(20)

, H̃k(Vk′ , z) (21)

for
H̃k,`,`′(Vk′) ,

[
Vk′(1, `)Hk,1(`′)A . . . Vk′(Nc, `)Hk,Nc(`

′)A
]
. (22)

equality constraint (9), and a feasible point for (29) might not
be automatically feasible for (28), unless the penalty term in
the objective function in (29) is zero. As we will see shortly, in
contrast to (28), its penalized optimization reformulation (29)
facilitates computationally tractable alternating optimization in
either z or θθθ, with the other variables held fixed, although θθθ
is a discrete variable.

Initialized by (V (0), z(0), θ(0)) feasible for (29), let
(V (ι), z(ι), θ(ι)) be a feasible point for (29) that is found from
the (ι−1)-st iteration. The alternating optimization procedure
at the ι-th iteration to generate (V (ι+1), z(ι+1), θ(ι+1)) feasible
for (29) so that

Fγ(V (ι+1), z(ι+1), θ(ι+1)) > Fγ(V (ι), z(ι), θ(ι)) (30)

unfolds as follows.

A. DP alternating optimization

In the ι-th DP alternating optimization round, we seek
the next feasible point V (ι+1), while keeping (θθθ, z) fixed at
(θ(ι), z(ι)). To generate V (ι+1) so that

Fγ(V (ι+1), z(ι), θ(ι)) > Fγ(V (ι), z(ι), θ(ι))

⇔f(V (ι+1), z(ι)) > f(V (ι), z(ι)), (31)

we consider the following problem of alternating optimization
in DP V for (29) with (θθθ, z) held fixed at (θ(ι), z(ι)):1

max
V

f(V, z(ι)) , min
k∈K

r
(ι)
1,k(V) s.t. (27), (32)

where according to (23) and (25):

r
(ι)
1,k(V) , rk(V, z(ι))

= ln
∣∣∣INt + [H(ι)

1,kVk]2(Ψ
(ι)
1,k(V))−1

∣∣∣ (33)

for

Ψ
(ι)
1,k(V) , Ψk(z(ι),V) =

∑
k′ 6=k

〈H(ι)
1,k, [Vk′ ]

2〉+ σINt , (34)

with
H(ι)

1,k , Hk(z(ι)), k ∈ K. (35)

By applying the inequality (91) for (X,Y) =

(H(ι)
1,kVk,Ψ

(ι)
1,k(V)) and (X̄, Ȳ ) = (X

(ι)
1,k, Y

(ι)
1,k ) ,

1As the penalty term and the constraint (12) in (29) are independent on V,
they are omitted during the alternating optimization in V

(H(ι)
1,kV

(ι)
k ,Ψ

(ι)
1,k(V (ι))), the following tight concave quadratic

minorant of r(ι)1,k(V) at V (ι) is obtained:

r̃
(ι)
1,k(V) ,a(ι)1,k + 2<{〈(X(ι)

1,k)H(Y
(ι)
1,k )−1H(ι)

1,kVk〉}

− 〈Υ(ι)
1,k,

∑
j∈K

[H(ι)
1,kVj ]

2 + σINt〉 (36)

=a
(ι)
1,k + 2<{〈B(ι)1,kVk〉} − 〈C(ι)1,k,

∑
j∈K

[Vj ]
2〉, (37)

with

0 � Υ
(ι)
1,k , (Y

(ι)
1,k )−1 − (Y

(ι)
1,k + [X

(ι)
1,k]2)−1,

a
(ι)
1,k , r

(ι)
1,k(V (ι))− 〈[X(ι)

1,k]2(Y
(ι)
1,k )−1〉 − σ〈Υ(ι)

1,k〉,
B(ι)1,k , (X

(ι)
1,k)H(Y

(ι)
1,k )−1H(ι)

1,k,

C(ι)1,k , (H(ι)
1,k)HΥ

(ι)
1,kH

(ι)
1,k.

(38)

We thus solve the following nonsmooth convex problem of the
computational complexity order of O(K3N3

cN
3
t ) to generate

V (ι+1):

max
V

f̃ (ι)(V) , min
k∈K

r̃
(ι)
1,k(V) s.t. (27). (39)

Note that f(V (ι), z(ι)) = f̃ (ι)(V (ι)) and f̃ (ι)(V (ι+1)) >
f̃ (ι)(V (ι)) because V (ι+1) is the optimal solution of (39),
while f(V (ι+1), z(ι)) ≥ f̃ (ι)(V (ι+1)), so we have (31) as
desired.

B. AP alternating optimization

In the ι-th AP alternating optimization round, we seek
the next feasible point z(ι+1), while keeping (V, θθθ) fixed at
(V (ι+1), θ(ι)). To generate z(ι+1) so that

Fγ(V (ι+1), z(ι+1), θ(ι)) > Fγ(V (ι+1), z(ι), θ(ι)), (40)

we consider the following problem of alternating optimization
in z for (29) with (V, θθθ) held fixed at (V (ι+1), θ(ι)):

max
z
Fγ(V (ι+1), z, θ(ι)) =

[
f(V (ι+1), z)− γ||z− eθ

(ι)

||2
]
,

(41)
where by (24) and (26), f(V (ι+1), z) = mink∈K r

(ι)
2,k(z) with

r
(ι)
2,k(z) , rk(z, V (ι+1))

= ln
∣∣∣INt + [Ω

(ι)
k,k(z)]2(Ψ

(ι)
2,k(z))−1

∣∣∣, k ∈ K, (42)
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with

Ψ
(ι)
2,k(z) ,

∑
k′∈K\{k}[Ω

(ι)
k,k′(z)]2 + σINt ,

Ω
(ι)
k,k′(z) ,

[
Ω

(ι)
k,k′,nt,n′

t
z
]
(nt,n′

t)∈Nt×Nt
, (k, k′) ∈ K ×K,

Ω
(ι)
k,k′,`,`′ , H̃k,`,`′(V

(ι+1)
k′ ), (`, `′) ∈ Nt ×Nt.

(43)
By applying the inequality (91) for (X,Y) =

(Ω
(ι)
k,k(z),Ψ

(ι)
2,k(z)) and (X̄, Ȳ ) = (X

(ι)
2,k, Y

(ι)
2,k ) ,

(Ω
(ι)
k,k(z(ι)),Ψ

(ι)
2,k(z(ι))), the following tight concave quadratic

minorant of r(ι)2,k(z) at z(ι) is obtained:

r̃
(ι)
2,k(z) ,a(ι)2,k + 2<{〈(X(ι)

2,k)H(Y
(ι)
2,k )−1Ω

(ι)
k,k(z)〉}

− 〈Υ(ι)
2,k,

∑
k′∈K

[Ω
(ι)
k,k′(z)]2〉 (44)

=a
(ι)
2,k + 2<{b(ι)2,kz} − 〈C

(ι)
2,k, [z]2〉, (45)

with

0 � Υ
(ι)
2,k , (Y

(ι)
2,k )−1 − (Y

(ι)
2,k + [X

(ι)
2,k]2)−1,

C(ι)2,k ,
∑
k′∈K

∑
`∈Nt

∑
`′∈Nt(

√
Υ2,k(`, `′)Ω

(ι)
k,k′,`′,`)

H

×(
√

Υ2,k(`, `′)Ω
(ι)
k,k′,`′,`),

a
(ι)
2,k , r

(ι)
2,k(z(ι))− 〈[X(ι)

2,k]2(Y
(ι)
2,k )−1〉 − σ〈Υ(ι)

2,k〉,
b
(ι)
2,k ,

∑
`∈Nt

∑
`′∈Nt ξk,`,`′Ω

(ι)
k,k,`′,`,

(46)
where ξk,`,`′ are the entries of the matrix (X

(ι)
2,k)H(Y

(ι)
2,k )−1 ∈

CNt×Nt .
We thus solve the following nonsmooth convex problem of

the computational complexity order of O(L3
cN

3
c ) to generate

z(ι+1):

max
z
F̃γ(z) ,

[
min
k∈K

r̃
(ι)
2,k(z)− γ||z− eχ

(ι)

||2
]
. (47)

Note that Fγ(V (ι+1), z(ι), θ(ι)) = F̃γ(z(ι)) and F̃γ(z(ι+1)) >
F̃γ(z(ι)) because z(ι+1) is the optimal solution of (47), while
Fγ(V (ι+1), z(ι+1), θ(ι)) ≥ F̃γ(z(ι+1)), so we have (40) as
desired.

C. Low-resolution alternating optimization

To generate θ(ι+1) so that

Fγ(V (ι+1), z(ι+1), θ(ι+1)) > Fγ(V (ι+1), z(ι+1), θ(ι))

⇔||z(ι+1) − eθ
(ι+1)

||2 < ||z(ι+1) − eθ
(ι)

||2 (48)

we consider the following problem of alternating optimization
in θθθ for (29) with (V, z) held fixed at (V (ι+1), z(ι+1)):

min
θθθ
||z(ι+1) − eθθθ||2 s.t. (12), (49)

which admits the closed-form solution

θ
(ι+1)
nc,`c

= b∠z(ι+1)
nc,`

eb, (nc, `c) ∈ Nc × Lc. (50)

Algorithm 1 Nonsmooth max-min throughput optimization
algorithm

1: Initialization: Initialize (V (0), z(0), θ(0)) feasible for (29).
Set ι = 1.

2: Repeat until convergence: Generate V (ι+1) by solving
the convex problem (39) of the computational complexity
O(K3N3

cN
3
t ). Generate z(ι+1) by solving the convex

problem (47) of the computational complexity O(L3
cN

3
c ).

Generate θ(ι+1) by the closed-form (50). Reset ι← ι+ 1.
3: Output (V (ι), z(ι), θ(ι)) and the resultant rk(z(ι), V (ι)).

D. Max-min log-det algorithm and its convergence

Clearly, (30) follows from (31), (40), and (48), i.e.
the alternating optimization procedure generates a sequence
{V (ι), z(ι), θ(ι)} of progressively improved feasible points for
(29) by solving the convex problems (39), (47) and (49),
ultimately converging to a feasible point (V̄ , z̄, θ̄) by Cauchy’s
theorem. Moreover, with the penalty factor γ sufficiently large,
z(ι) − eθ(ι) converges to zero, indicating that (z̄, θ̄) satisfies
the nonlinear constraint (9). Thus, (V̄ , z̄, θ̄) is also a feasible
point for (28). For further insights into the optimality of the
penalized optimization approach, the reader is referred to [24,
Chapter 16] and [25], [26]. The pseudo-code for implementing
this alternating optimization procedure is provided by Algo-
rithm 1.

E. Smooth sum-throughput maximization algorithm

Instead of the max-min log-det optimization problem (28),
we now consider the following problem of sum log-det max-
imization

max
z,θθθ,V

∑
k∈K

rk(V, z) s.t. (6), (9), (12), (27), (51)

which is then reformulated to the following penalized opti-
mization problem

max
V,z,θθθ

Fγ,S(V, z, θθθ) ,

[∑
k∈K

rk(V, z)− γ||z− eθθθ||2
]

s.t. (12), (27), (52)

where like (29), γ > 0 is the penalty factor. Initialized by
(V (0), z(0), θ(0)) feasible for (52), let (V (ι), z(ι), θ(ι)) be a
feasible point for (52) that is found from the (ι−1)-st iteration.
To generate V (ι+1) so that

Fγ,S(V (ι+1), z(ι), θ(ι)) > Fγ,S(V (ι), z(ι), θ(ι)) (53)

we consider the following counterpart of (32):

max
V

∑
k∈K

r
(ι)
1,k(V) s.t. (27), (54)

where r(ι)1,k(V) is defined from (33). Using the tight minorant
r̃
(ι)
1,k(V) of r(ι)1,k(V) defined from (37), a tight minorant of∑
k∈K r

(ι)
1,k(V) is obtained as

g
(ι)
1 (V) ,

∑
k∈K

r̃
(ι)
1,k(V)
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=
∑
k∈K

a
(ι)
1,k + 2

∑
k∈K

<{〈B(ι)1,kVk〉} −
∑
k∈K

〈C(ι)1 , [Vk]2〉,

(55)

for
C(ι)1 ,

∑
k∈K

C(ι)1,k. (56)

We thus solve the following convex quadratic problem of the
computational complexity order of O(KNcNt) to generate
V (ι+1) verifying (53):

max
V

[
2
∑
k∈K

<{〈B(ι)1,kVk〉} −
∑
k∈K

〈C(ι)1 , [Vk]2〉

]
s.t. (27),

(57)
which admits the closed form solution

V
(ι+1)
k =


(C(ι)1 )−1(B(ι)1,k)H

if
∑
k∈K ||(C

(ι)
1 )−1(B(ι)1,k)H ||2 ≤ PL,

(C(ι)1 + µINc)
−1(B(ι)1,k)H

otherwise,

(58)

where µ > 0 is found by bisection so that
∑
k∈K ||(C

(ι)
1 +

µINc)
−1(B(ι)1,k)H ||2 = PL.

To generate z(ι+1) for ensuring

Fγ,S(V (ι+1), z(ι+1), θ(ι)) > Fγ,S(V (ι+1), z(ι), θ(ι)) (59)

we consider the following counterpart of (41):

max
z

∑
k∈K

r
(ι)
2,k(z)− γ||z− eθ

(ι)

||2, (60)

with r(ι)2,k(z) defined from (42)-(43). Using the tight minorant
r̃
(ι)
2,k(z) of r

(ι)
2,k(z) defined from (45), a tight minorant of∑

k∈K r
(ι)
2,k(z) is obtained as

g
(ι)
2 (z) ,

∑
k∈K

r̃
(ι)
2,k(z)

=
∑
k∈K

a
(ι)
2,k + 2<{b(ι)2 z} − 〈C(ι)2 , [z]2〉, (61)

for
b
(ι)
2 ,

∑
k∈K

b
(ι)
2,k & C(ι)2 ,

∑
k∈K

C(ι)2,k. (62)

We thus solve the following convex quadratic problem of
the computational complexity order of O(LcNc) to generate
z(ι+1) verifying (59):

max
z

[
2<{b(ι)2 z} − 〈C(ι)2 , [z]2〉 − γ||z− eθ

(ι)

||2
]
, (63)

which admits the closed form solution

z(ι+1) = (C(ι)2 + γINcLc)
−1
(

(b
(ι)
2 )H + γeθ

(ι)
)
. (64)

Lastly, using the closed-form expression of θ(ι+1) in (50), it
becomes clear that

Fγ,S(V (ι+1), z(ι+1), θ(ι+1)) > Fγ,S(V (ι+1), z(ι+1), θ(ι)).
(65)

The pseudo-code for implementing the alternating optimiza-
tion procedure based on (58), (64), and (50) is provided
by Algorithm 2. It follows from (53), (59), and (65) that
Fγ,S(V (ι+1), z(ι+1), θ(ι+1)) > Fγ,S(V (ι), z(ι), θ(ι)), which
ensures the convergence of Algorithm 2.

Algorithm 2 Scalable-complexity sum-throughput maximiza-
tion algorithm

1: Initialization: Initialize (V (0), z(0), θ(0)) feasible for (52).
Set ι = 1.

2: Repeat until convergence: Generate V (ι+1) by the
closed-form (58) of the computational complexity
O(KNcNt). Generate z(ι+1) by the closed-form (64) of
the computational complexity O(LcNc). Generate θ(ι+1)

by the closed-form (50). Reset ι← ι+ 1.
3: Output (V (ι), z(ι), θ(ι)), the resultant rates rk(V (ι), z(ι))

and their sum.

IV. SOFT MAX-MIN OPTIMIZATION FOR PARETO
OPTIMIZATION

Algorithm 2 conceived for solving the sum log-det maxi-
mization problem (51) is much more computationally efficient
and thus practical than Algorithm 1 conceived for the max-min
log-det optimization problem (28). This is because the former
iterates the convex quadratic problems (57) and (63), which
admit the closed form solutions (58) and (64) with scalable
complexity while the latter iterates the nonsmooth convex
problems (39) and (47) associated with cubic complexities.
However, the sum log-det is maximized by differentiating the
individual log-det values and thus it is not capable of ensuring
the target QoD for all users. In this section, following [30], we
scale up the log-det function rk(V, z) defined from (23)-(24)
as

rk,δ(V, z) , ln

∣∣∣∣INt +
1

δ
[Hk(z)Vk]HΨ−1k (V, z)[Hk(z)Vk]

∣∣∣∣
(66)

with 0 < δ ≤ 1. For fδ(V, z) , mink∈K rk,δ(V, z),
it may be seen that fδ(V, z) > f(V, z) for 0 <
δ < 1, and maxV,z fδ(V, z) ⇔ maxV,z f(V, z) for
Nt = 1. Instead of maximizing f(V, z) in (28),
we opt for maximizing the function fδ(V, z), which is
still nonsmooth, but admits the two-sided approximation
fδ(V, z) ≥ −fSA(V, z) ≥ fδ(V, z) − lnK, with
fSA(V, z) , ln

∑
k∈K

∣∣INt + 1
δ [Hk(z)Vk]2Ψ−1k (V, z)

∣∣−1,
which is a smooth function. Thus, the smooth function
−fSA(V, z) is regarded as a soft-min function [31]. Instead
of the problem (28) of nonsmooth max-min optimization, we
now consider the following problem of smooth soft max-min
optimization:

max
z,θθθ,V

[−fSA(V, z)] s.t. (6), (9), (12), (27). (67)

More importantly, we will demonstrate through simulations in
the next section that our HP based on (67) is Pareto-optimal,
as it finds the min log-det value as effectively as the HP based
on the max min problem (28), while also attaining the sum
log-det value competently as the HP based on the sum log-det
problem (51).

Observe that the problem (67) is equivalent to the following
problem

min
V,z

ϕ(V, z) , ln Ξδ(V, z) s.t. (6), (9), (12), (27), (68)
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where

Ξδ(V, z) ,
∑
k∈K

(
INt − [Hk(z)Vk]H

×
(
[Hk(z)Vk]2 + δΨk(z,V)

)−1
[Hk(z)Vk]

)
.

(69)

The penalized optimization reformulation for (68) is

min
V,z

Φγ(V, z, θθθ) ,
[
ln Ξδ(V, z) + γ||z− eθθθ||2

]
s.t. (3), (27), (70)

where γ > 0 is the penalty factor. Initialized by
(V (0), z(0), θ(0)) feasible for (70), let (V (ι), z(ι), θ(ι)) be a
feasible point for (70) that is found from the (ι−1)-st iteration.
The alternating optimization procedure at the ι-th-th iteration
to generate (V (ι+1), z(ι+1), θ(ι+1)) feasible for (70) unfolds
as follows.

A. DP alternating optimization
Like (32) and (54), we consider the following problem to

generate V (ι+1):

min
V

ϕ(V, z(ι)) = ln Ξ
(ι)
1,δ(V) s.t. (27) (71)

where

Ξ
(ι)
1,δ(V) ,Ξδ(V, z

(ι))

=
∑
k∈K

(
INt − [H(ι)

1,kVk]H

×
(

[H(ι)
1,kVk]2 + δΨ

(ι)
1,k(V)

)−1
[H(ι)

1,kVk]

)
(72)

with Ψ
(ι)
1,k(V) defined from (34) and H(ι)

1,k defined from (35).
Applying the inequality (94) for (Xk,Yk) =

(H(ι)
1,kVk, [H(ι)

1,kVk]2 + δΨ
(ι)
1,k(V)), k ∈ K, and (X̄k, Ȳk) =

(X
(ι)
1,k, Y

(ι)
1,k ) , (H(ι)

1,kV
(ι)
k , [H(ι)

1,kV
(ι)
k ]2 + δΨ

(ι)
1,k(V (ι))), yields

the following tight majorant of ln Ξ
(ι)
1,δ(V) at V (ι):

ϕ̃
(ι)
1 (V) ,a(ι)1 − 2

∑
k∈K

<{〈B(ι)1,kVk〉}

+
∑
k∈K

〈C̃(ι)1,k, [H
(ι)
1,kVk]2 + δ

∑
j∈K\{k}

[H(ι)
1,kVj ]

2〉

(73)

=a
(ι)
1 − 2

∑
k∈K

<{〈B(ι)1,kVk〉}+
∑
k∈K

〈C(ι)1,k, [Vk]2〉,

(74)

where we have (75) shown at the top of next page. We thus
solve the following problem of tight majorant minimization of
the computational complexity order of O(KNcNt) to generate
V (ι+1):

min
V

ϕ̃
(ι)
1 (V) s.t. (27), (76)

which admits the closed-form solution

V
(ι+1)
k =


(C(ι)1,k)−1(B(ι)1,k)H

if
∑
k∈K ||(C

(ι)
1,k)−1(B(ι)1,k)H ||2 ≤ PL,

(C(ι)1,k + µINc)
−1(B(ι)1,k)H

otherwise,

(77)

where µ > 0 is found by bisection so that
∑
k∈K ||(C

(ι)
1,k +

µINc)
−1(B(ι)1,k)H ||2 = PL. Like in (31), we have

Φγ(V (ι+1), z(ι), θ(ι)) < Φγ(V (ι), z(ι), θ(ι)). (78)

B. AP alternating optimization

Similarly to (41) and (60), we consider the following
problem to generate z(ι+1)

min
z

Φγ(V (ι+1), z, θ(ι)) =
[
ln Ξ

(ι)
2,δ(z) + γ||z− eθ

(ι)

||2
]
,

(79)
where we have

Ξ
(ι)
2,δ(z) ,Ξδ(V

(ι+1), z)

=
∑
k∈K

(
INt − [Ω

(ι)
k,k(z)]H

×
(

[Ω
(ι)
k,k(z)]2 + δΨ

(ι)
2,k(z)

)−1
[Ω

(ι)
k,k(z)]

)
(80)

with Ψ
(ι)
2,k(z) and Ω

(ι)
k,k(z) defined from (43).

Using the inequality (94) for (Xk,Yk) =

(Ω
(ι)
k,k(z), [Ω

(ι)
k,k(z)]2 + δΨ

(ι)
2,k(z)), and (X̄k, Ȳk) =

(X
(ι)
2,k, Y

(ι)
2,k ) , (Ω

(ι)
k,k(z(ι)), [Ω

(ι)
k,k(z(ι))]2 + δΨ

(ι)
2,k(z(ι))),

k ∈ K, yields the following tight majorant of ln Ξ
(ι)
2,δ(z) at

z(ι):

ϕ̃
(ι)
2 (z) ,a(ι)2 − 2

∑
k∈K

<{〈B(ι)2,kΩ
(ι)
k,k(z)〉}

+
∑
k∈K

〈Υ(ι)
2,k, [Ω

(ι)
k,k(z)]2 + δ

∑
k′∈K\{k}

[Ω
(ι)
k,k′(z)]2〉

(81)

=a
(ι)
2 − 2

∑
k∈K

<{b(ι)2,kz}+
∑
k∈K

〈C(ι)2,k, [z]2〉 (82)

=a
(ι)
2 − 2<{b(ι)2 z}+ 〈C(ι)2 , [z]2〉, (83)

where we have (84) shown at the top of next page.
We thus solve the following problem of tight majorant

minization of the computational complexity order of O(LcNc)
to generate z(ι+1):

min
z

[
ϕ̃
(ι)
2 (z) + γ||z− eθ

(ι)

||2
]
, (85)

which admits the closed-form solution

z(ι+1) = (C(ι)2,k + γINcLc)
−1
(

(b
(ι)
2 )H + γeθ

(ι)
)
. (86)

Similarly to (40), we have

Φγ(V (ι+1), z(ι+1), θ(ι)) < Φγ(V (ι+1), z(ι), θ(ι)). (87)

C. Soft max-min algorithm and convergence

Lastly, upon using θ(ι+1) generated by (50), it is seen that

Φγ,S(V (ι+1), z(ι+1), θ(ι+1)) < Φγ,S(V (ι+1), z(ι+1), θ(ι)).
(88)

The pseudo-code of implementing the alternating optimization
procedure for solving problem (70) based on the closed forms
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a
(ι)
1 , ln Ξ

(ι)
1,δ(V

(ι)) +
∑
k∈K〈[Ξ

(ι)
1,δ(V

(ι))]−1(X
(ι)
1,k)H(Y

(ι)
1,k )−1X

(ι)
1,k〉+ δσ

∑
k∈K〈C̃

(ι)
1,k〉,

B(ι)1,k , [Ξ
(ι)
1,δ(V

(ι))]−1(X
(ι)
1,k)H(Y

(ι)
1,k )−1H(ι)

1,k,

C̃(ι)1,k , (Y
(ι)
1,k )−1X

(ι)
1,k[Ξ

(ι)
1,δ(V

(ι))]−1(X
(ι)
1,k)H(Y

(ι)
1,k )−1, k ∈ K,

C(ι)1,k , (H(ι)
1,k)H C̃(ι)1,kH

(ι)
1,k + δ

∑
j∈K\{k}(H

(ι)
1,j)

H C̃(ι)1,jH
(ι)
1,j , k ∈ K.

(75)

a
(ι)
2 , ln Ξ

(ι)
2,δ(z

(ι)) +
∑
k∈K〈[Ξ

(ι)
2,δ(z

(ι))]−1(X
(ι)
2,k)H(Y

(ι)
2,k )−1X

(ι)
2,k〉

+δ
∑
k∈K σ

(ι)
2,k〈Υ

(ι)
2,k〉,

B(ι)2,k , [Ξ
(ι)
2,δ(z

(ι))]−1(X
(ι)
2,k)H(Y

(ι)
2,k )−1,

Υ
(ι)
2,k , (Y

(ι)
2,k )−1X

(ι)
2,k[Ξ

(ι)
2,δ(z

(ι))]−1(X
(ι)
2,k)H(Y

(ι)
2,k )−1, k ∈ K,

b
(ι)
2,k ,

∑
`∈Nt

∑
`′∈Nt ξk,`,`′Ω

(ι)
k,k,`′,`,

C(ι)2,k ,
∑
`∈Nt

∑
`′∈Nt(

√
Υ2,k(`, `′)Ω

(ι)
k,k,`′,`)

H(
√

Υ2,k(`, `′)Ω
(ι)
k,k,`′,`)

+δ
∑
k′∈K\{k}

∑
`∈Nt

∑
`′∈Nt(

√
Υ2,k(`, `′)Ω

(ι)
k,k′,`′,`)

H(
√

Υ2,k(`, `′)Ω
(ι)
k,k′,`′,`),

b
(ι)
2 ,

∑
k∈K b

(ι)
2,k,

C(ι)2 ,
∑
k∈K C

(ι)
2,k,

(84)

where ξk,`,`′ are the entries of B(ι)2,k ∈ CNt×Nt .

Algorithm 3 Scalable-complexity soft max-min throughput
optimization algorithm

1: Initialization: Initialize (z(0), V (0), θ(0)) feasible for (70).
Set ι = 1.

2: Repeat until convergence: Generate V (ι+1) by (77)
of the computational complexity O(KNcNt). Generate
z(ι+1) by (86) of the computational complexity O(LcNc).
Generate θ(ι+1) by (50). Reset ι← ι+ 1.

3: Output (V (ι), z(ι), θ(ι)) and the resultant rates.

(77), (86), and (50) is provided by Algorithm 3. It follows
from (78), (87), and (88) that Φγ(V (ι+1), z(ι+1), θ(ι+1)) <
Φγ(V (ι), z(ι), θ(ι)), which ensures the convergence of Algo-
rithm 3. The sequence {V (ι), z(ι), θ(ι)} of improved feasible
points for (70) converges to (V̄ , z̄, θ̄), which is a feasible point
for (68).

V. NUMERICAL RESULTS

This section evaluates the performance of our proposed
algorithms in the scenario of a 12 × 12-element uniform
circular cylindrical array (UCyA) at the BS and 8 UEs ran-
domly distributed within a cell having 200-meter radius. The
mmWave channel Hk ∈ CNt×N connecting the BS to UE k

is modelled as Hk =
√

NNt
NclNsc

√
10−ρk/10

∑Ncl
c=1

∑Nsc
`=1 αk,c,`

ar

(
φrk,c,`

)
aHt

(
φtk,c,`, θ

t
k,c,`

)
. The path-loss ρk for the BS-to-

UE k link at distance dk is expressed as 36.72+35.3 log 10(dk)
(in dB). The complex gain αk,c,` follows Rayleigh fading.
The azimuth angle of departure (arrival, resp.) φtk,c,` (φrk,c,`,
resp.), as well as the elevation angle of departure θtk,c,` are
generated using the Laplacian distribution with random mean
cluster angles in the interval [0, 2π) and a spread of 10
degrees for each cluster, with the number of clusters Ncl set
to 5 and the number Nsc of scatters within each cluster set
to 10 according to [32]. Furthermore, the transmit antenna

array response vector is expressed as at

(
φtk,c,`, θ

t
k,c,`

)
=

aat

(
φtk,c,`, θ

t
k,c,`

)
⊗ aet

(
θtk,c,`

)
, where the azimuth and ele-

vation components of the antenna array response, denoted as
aat

(
φtk,c,`, θ

t
k,c,`

)
and aet

(
θtk,c,`

)
, respectively, are defined as

follows:

aat
(
φtk,c,`, θ

t
k,c,`

)
=

1√
Na

[
ej

2π
λ r sin(θ

t
k,c,`) cos(φ

t
k,c,`−ϕ1),

· · · , ej 2π
λ r sin(θ

t
k,c,`) cos(φ

t
k,c,`−ϕNa )

]T
,

aet
(
θtk,c,`

)
=

1√
Ne

[
1, e−j

2π
λ h cos(θtk,c,`),

· · · , e−j 2π
λ h(Ne−1) cos(θ

t
k,c,`)

]T
.

(89)
We set the radius of UCyA to r = 2λ, and the vertical spacing
between the adjacent uniform circular arrays (UCAs) to h =
0.5λ according to [33], with λ representing the wavelength.
Furthermore, ϕna = 2π(na − 1)/Na represents the angular
difference between the central angle of the na-th antenna and
the first antenna within each UCA. Additionally, the receive
antenna array response vector is given by

ar
(
φrk,c,`

)
=

1√
Nt

[
1, ejπ sin(φrk,c,`), · · · , ejπ(Nt−1) sin(φ

r
k,c,`)

]T
,

(90)
under the assumption that each UE uses a uniform linear array
(ULA) with antennas spaced at half-wavelength intervals.

The number of RF chains is set to 8 unless otherwise
specified. The noise power density is set to −174 dBm/Hz. For
practical implementation, we employ a b = 3-bit resolution
phase shifters. The algorithms terminate when the penalty term
value drops below 10−1.

We use the following legends to specify the proposed
implementations:
• For the conventional AoSA AP associated with A =
IL in (4), “AoSA-MM” refers to the nonsmooth max-
min throughput optimization Algorithm 1;“AoSA-SMM”
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refers to the scalable-complexity soft max-min through-
put optimization Algorithm 3; “AoSA-ST” refers to the
scalable-complexity sum-throughput maximization Algo-
rithm 2;

• For the nAoSA AP with A in (4) defined by (10),
“nAoSA-MM” refers to the nonsmooth max-min through-
put optimization Algorithm 1;“nAoSA-SMM” refers to
the scalable-complexity soft max-min throughput op-
timization Algorithm 3; “nAoSA-ST” refers to the
scalable-complexity sum-throughput maximization Algo-
rithm 2.

A. Algorithmic convergence

Selecting an appropriate penalty factor γ is crucial for ensur-
ing the convergence of our proposed algorithms. A high value
of γ may lead to premature termination of the iterations, while
a low value of γ could slow down convergence. To achieve a
satisfactory convergence speed along with the penalty factor
γ, we commence with a γ so that the magnitude of the penalty
term aligns with that of the objective. Then in the subsequent
iterations, we gradually increase the value of γ. For illustra-
tion, when considering the penalty parameter γ for implement-
ing Algorithm 1, we generate z(0) with the modulus of its
entries lower than 1, and V (0) satisfying the power constraint
(27). Then the triplet (V (0), z(0), θ(0)) associated with θ(0)nc,`c =

b∠z(0)nc,`
eb, (nc, `c) ∈ Nc×Lc (refer to (50)) presents a feasible

point for the problem (29). For implementing the first iteration,
we set γ = mink∈K rk(V (0), z(0))/||z(0) − eθ(0) ||2, ensuring
that the objective function mink∈K rk(V (0), z(0)) corresponds
in magnitude to the penalty term γ||z(0) − eθ

(0) ||2. As the
iterative process continues, we use the update γ → 1.2γ,
whenever ||z(ι+1) − eθ

(ι+1) ||2 > 0.9||z(ι) − eθ
(ι) ||2. This

procedure can lead to a gradual reduction of the penalty term
to zero and facilitate the convergence of the objective function.

Fig. 2 characterizes the convergence performance of the
proposed algorithms when using 80 phase shifters in nAoSA
for Nt = 2 at P = 100 mW. To provide a more concise
depiction of the convergence behaviors of all the proposed
algorithms, we use the mean throughput value within the ob-
jective function for sum-throughput optimization, as shown in
Fig. 2a. The convergence of the proposed algorithms recorded
for Nt = 1 exhibits a similar pattern but a faster convergence
due to the reduced number of decision variables.

Table II demonstrates the impact of adjusting the coefficient
δ in the scalable-complexity soft max-min optimization Algo-
rithm 3 on the users’ minimum throughput achieved with the
aid of 80 phase shifters in nAoSA and P = 100 mW, where
δ = 0.5 yields the highest users’ minimum throughput, which
is then used for the next simulations.

B. Approaching the AoSA performance by nAoSA at the same
transmit power budget

To start with, we present a comparative analysis of the
nAoSA and the conventional AoSA to demonstrate the follow-
ing outcomes: (i) Within the same transmit power budget P ,
nAoSA achieves performances comparable to AoSA, despite
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Fig. 2: Convergence performance of the proposed algorithms
by using nAoSA at Nt = 2.

using fewer phase shifters; (ii) The scalable-complexity soft
max-min throughput optimization Algorithm 3 attains both
excellent users’ minimum throughput and sum-throughput,
as it optimizes an approximation of the minimum through-
put objective, resulting in a near-optimal solution. Moreover,
it achieves significant enhancements in both the minimum
throughput and sum-throughput simultaneously, without ex-
tensively sacrificing one objective to improve the other.

Specifically, a comparison between the nAoSA and AoSA in
terms of the users’ minimum throughput achieved by the max-
min throughput optimization Algorithm 1 and the soft max-
min throughput optimization Algorithm 3 at a transmit power
of 100 mW is presented in Fig. 3. The dashed line represents
the minimum user throughput achieved by the AoSA structure
employing Algorithm 1 equipped with an excessive number
of 144 phase shifters, serving as the reference. When using
the max-min throughput optimization Algorithm 1, employing
32 phase shifters in nAoSA yields approximately 80% of the
minimum throughput achieved in AoSA. This approximation
increases to around 98% when 80 phase shifters are employed.
Regarding the soft max-min throughput optimization Algo-
rithm 3, the approximations are around 70% and 95% when
employing 32 and 80 phase shifters in nAoSA, respectively.
Clearly, there is only a modest performance erosion when em-
ploying 80 phase shifters in nAoSA, which is approximately
half the number of phase shifters used in AoSA. Furthermore,
the minimum user throughputs obtained by the soft max-
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TABLE II: The users’ minimum throughput (bps/Hz) vs. δ for the soft max-min optimization algorithms achieved by nAoSA
and AoSA at P = 100 mW.

δ = 1 δ = 0.5 δ = 0.1 δ = 0.05 δ = 0.01
nAoSA-SMM (Nt = 1) 2.50 2.57 2.44 2.19 1.31
nAoSA-SMM (Nt = 2) 2.80 2.92 2.16 1.39 1.18
AoSA-SMM (Nt = 1) 2.62 2.70 2.57 2.26 1.24
AoSA-SMM (Nt = 2) 2.77 3.02 2.16 1.41 1.19
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Fig. 3: The minimum throughput achieved by nAoSA vs. the
number of phase shifters used at equal transmit power P

(number of phase shifters and RF chains used by AoSA is
fixed at 144 and 8, respectively).

min throughput optimization Algorithm 3 are near to those
obtained by the max-min throughput optimization Algorithm
1. Additionally, the users’ minimum throughput achieved for
Nt = 2 exhibits an improvement over the Nt = 1 scenario
due to the increased spatial diversity gleaned at the UEs.

In Fig. 4, we compare the sum-throughput performances of
the soft max-min throughput optimization Algorithm 3 against
the sum-throughput maximization Algorithm 2, evaluated at
P = 100 mW. The sum-throughput achieved by the soft max-
min throughput maximization Algorithm 3 approaches that
obtained by the sum-throughput maximization Algorithm 2.
Similar to the observations inferred from Fig. 3, employing
32 phase shifters in nAoSA achieves approximately 88% of
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with 144 phase shifters and 8 RF chains, Nt = 2

Fig. 4: The sum-throughput achieved by nAoSA vs. the
number of phase shifters used at equal transmit power P

(number of phase shifters and RF chains used by AoSA is
fixed at 144 and 8, respectively).

the sum-throughput obtained by AoSA, when using 80 phase
shifters, nAoSA achieves approximately 95% of the sum-
throughput obtained by AoSA.

C. Surpassing the AoSA performance by the nAoSA at equal
total power

Next, we demonstrate the superiority of nAoSA in compar-
ison to the conventional AoSA under a fixed total power bud-
get. This advantage originates from the controlled number of
phase shifters employed by our new structure for AP, allowing
for a larger portion of power to be allocated to DP. To clarify,
we define the total power as Ptotal = P+Nc×118+NPS×20,
where P represents the transmit power, NPS represents the
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TABLE III: Total power consumption of nAoSA under different numbers of phase shifters NPS and AoSA with NPS = 144
(Nc = 8, P = 100 mW)

NPS = 32 NPS = 48 NPS = 64 NPS = 80
nAoSA 1684 mW 2004 mW 2324 mW 2644 mW
AoSA (NPS = 144) 3924 mW

TABLE IV: Transmit power allocation by nAoSA under different numbers of phase shifters NPS and AoSA with
NPS = 144 (Nc = 8, Ptotal = 3924 mW)

NPS = 32 NPS = 48 NPS = 64 NPS = 80
nAoSA 2340 mW 2020 mW 1700 mW 1380 mW
AoSA (NPS = 144) 100 mW
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(b) Minimum throughput achieved by the nAoSA under
different numbers of phase shifters used vs. the AoSA

with 144 phase shifters and 8 RF chains, Nt = 2

Fig. 5: The minimum throughput achieved by nAoSA vs. the
number of phase shifters used at equal total power Ptotal

(number of phase shifters and RF chains used by AoSA is
fixed at 144 and 8, respectively).

number of phase shifters, and the power consumption per RF
chain is set to 118 mW, while the power consumption per
phase shifter is set to 100 mW [34]. In the AoSA structure
associated with NPS = 144, Nc = 8 and P = 100 mW,
following the parameter settings used in the aforementioned
simulations, we establish a reference total power Ptotal of
3924 mW. By reducing NPS in the nAoSA AP, we assign
a power budget exceeding 1000 mW to DP, which in turn
leads to enhanced users’ throughputs.
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Fig. 6: The sum-throughput achieved by nAoSA vs. the
number of phase shifters used at equal total power Ptotal

(number of phase shifters and RF chains used by AoSA is
fixed at 144 and 8, respectively).

We commence by evaluating the users’ minimum through-
put performance, and compare it to the result of the max-min
throughput optimization Algorithm 1 and to the soft max-min
throughput optimization Algorithm 3 under the same total
power budget, as depicted in Fig. 5. Given the similarity
in performance between the nAoSA structure and the AoSA
structure at the same transmit power, the former significantly
outperforms the latter at the same total power. When analyzing
the sum-throughput achieved by the soft max-min throughput
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Fig. 7: Throughput distributions by nAOSA.

optimization Algorithm 3 and the sum-throughput maximiza-
tion Algorithm 2 under an equivalent total power, as depicted
in Fig. 6, an important observation can be made. Specifically,
the nAoSA-SMM algorithm has the potential to outperform
the nAoSA-ST algorithm.

Table III presents the total power Ptotal necessary for
simulating Fig. 3 and Fig. 4 along with 8 RF chains and a
transmit power P of 100 mW, comparing the nAoSA structure
associated with varying number of phase shifters to the AoSA
structure having an excessive number of 144 phase shifters.
Increasing the number of phase shifters in nAoSA allows for a
closer approximation of AoSA in terms of both the minimum
throughput and sum-throughput. However, this improvement
comes at the expense of an increased total power budget, albeit
still lower than that required by AoSA. Additionally, Table IV
presents the transmit power P assigned to DP by nAoSA and
AoSA in simulating Fig. 5 and Fig. 6 along with 8 RF chains
and a total power Ptotal of 3924 mW. The transmit power P
achieved by nAoSA significantly surpasses that achieved by
AoSA, showing its potential to enhance the user throughput by
reducing the circuit power at the AP and allocating additional
power to DP.

To clarify the observations gleaned from Fig. 6, the dis-
tribution patterns of the individual user throughputs achieved
by Algorithm 1-3, for Nt = 1 and Nt = 2, using 80 phase
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Fig. 8: The minimum throughput achieved by nAoSA and
AoSA vs. the number of RF chains used at equal total power
Ptotal for Nt = 2 (number of phase shifters used by AoSA

and nAoSA is fixed at 144 and 72, respectively).
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Fig. 9: The sum-throughput achieved by nAoSA and AoSA
vs. the number of RF chains used at equal total power Ptotal

for Nt = 2 (number of phase shifters used by AoSA and
nAoSA is fixed at 144 and 72, respectively).

shifters and a total power of 3924 mW are illustrated in Fig.
7. It is worth noting that: (i) When sufficient transmit power
is available, the soft max-min throughput optimization Algo-
rithm 32 manages to achieve a notable sum-throughput gain
by realizing increased and balanced individual throughputs
among the UEs; (ii) Through conventional sum-throughput
maximization, certain UEs may be assigned near-zero through-
puts, rendering the sum-throughput algorithm unsuitable for
multi-user services. Although maximizing the sum-throughput
assigns higher throughputs to UEs with favorable channel con-
ditions, the overall throughput loss caused by zero throughput
allocations can occasionally outweigh the gains, which results
in a diminished sum-throughput compared to that achieved
by the soft max-min thoughput optimization Algorithm 3.
Therefore, the latter can be viewed as a beneficial near
Pareto solutions simultaneously satisfying users’ minimum
throughput and sum-throughput targets.

Lastly, we evaluate the performance in terms of the min-
imum throughput and sum-throughput for different number

2As the transmit power budget P for nAoSA DP exceeds 1000 mW, given
a total power of 3924 mW, δ = 1 performs best
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of RF chains and Nt = 2. The AoSA structure uses 144
phase shifters, while the the nAoSA structure uses 72 phase
shifters, allowing for the implementation of 4, 6 and 8 RF
chains. These assessments are conducted under a fixed total
power of Ptotal = 3924 mW to highlight the trade-off between
the number of RF chains and the transmit power P . Fig. 8
compares the minimum throughput achieved by the max-min-
based Algorithm 1 and the soft max-min-based Algorithm
3. With 8 RF chains, the minimum throughput significantly
outperforms that achieved with 4 and 6 RF chains, despite
the latter having higher transmit power P . This demonstrates
the benefits of employing more RF chains to enhance DP.
Furthermore, Fig. 9 compares the sum-throughput achieved by
the soft max-min-based Algorithm 3 and the sum-throughput
maximization Algorithm 2. Similar to the observations gleaned
from Fig. 8, employing more RF chains leads to increased
sum-throughput, even under reduced transmit power P .

VI. CONCLUSIONS

In response to the challenge of excessive power consump-
tion associated with the state-of-the-art analog precoders (APs)
used in large antenna-array-aided base stations for delivering
multiple information streams to multi-antenna users, this paper
has proposed a novel AP structure, which relies on a judi-
ciously controlled number of low-resolution phase shifters.
Based on the new AP, we have developed an optimiza-
tion algorithm for designing hybrid precoders to maximize
the users’ minimum throughput for ensuring their quality-
of-delivery. Furthermore, we conceived a new framework
of optimizing hybrid precoders by relying on sophisticated
computational solutions. This framework achieves a similar
users’ minimum throughput as to that obtained by directly
maximizing the users’ minimum throughput as well as a sum-
throughput matching that obtained by directly maximizing the
sum-throughput.

APPENDIX: MATHEMATICAL INGREDIENT

Recall that [35, p. 366], a function f̄ is said to be a tight
minorant (tight majorant, resp.) of a function f over the
domain dom(f) at a point z̄ ∈ dom(f), if it satisfies the
conditions of global bounding f(z) ≥ f̄(z) ∀ z ∈ dom(f)
(f(z) ≤ f̄(z) ∀ z ∈ dom(f), resp.) and matching at z̄:
f(z̄) = f̄(z̄).

The following inequality for all X and X̄ of size n × m
and Y � 0 and Ȳ � 0 of size n× n has been established in
[36], [37]:

ln
∣∣In + [X]2Y−1

∣∣ ≥ln
∣∣In + [X̄]2Ȳ −1

∣∣− 〈[X̄]2Ȳ −1〉
+ 2<{〈X̄H Ȳ −1X〉}
−
〈
Ȳ −1 − (Ȳ + [X̄]2)−1, [X]2 + Y

〉
.

(91)

For
Π(X,Y) ,

∑
k∈K

(INt −XH
k Y−1k Xk), (92)

in the domain constrained by{
[Xk]2 ≺ Yk, k = 1, . . . ,K

}
, (93)

the following inequality holds for all (X,Y) and (X̄, Ȳ ) [30]

ln Π(X,Y) ≤ ln Π(X̄, Ȳ ) +
∑
k∈K

〈Π−1(X̄, Ȳ )X̄H
k Ȳ

−1
k X̄k〉

− 2
∑
k∈K

<{〈Π−1(X̄, Ȳ )X̄H
k Ȳ

−1
k Xk〉}

+
∑
k∈K

〈Ȳ −1k X̄kΠ−1(X̄, Ȳ )X̄H
k Ȳ

−1
k Yk〉.

(94)

Considering both sides of (91) ((94), resp.) as functions of
the variables (X,Y), they match at (X̄, Ȳ ), i.e. the function
defined by the RHS provides a tight minorant (tight majorant,
resp.) of the log-determinant function defined by the LHS at
(X̄, Ȳ ).
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