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Broadie and Glasserman (2004) proposed a Monte Carlo algorithm they named

_“stochastic mesh” for pricing high-dimensional Bermudan options. Based on
simulated states of the assets underlying the option at each exercise opportu-

_ nity, the method produces an estimator of the option value at each sampled
state, We derive an asymptotic upper bound on the probability of error of the
mesh estimator under the mild assumption of the finiteness of certain
moments. Both the error size and the probability bound are functions that
vanish with increasing sample size. Moreover, we report the mesh method’s
empirical performance on test problems taken from the recent literature.
We find that the mesh estimator has large positive bias that decays slowly with
the sample size.

1 Introduction

In the financial markets, sophisticated, complex products are continuously
offered and traded. There are many financial products whose values depend on
more than one underlying asset. Examples include basket options (options on the
average of several underlying assets), out-performance options (options on the
maximum of several assets), spread options (options on the difference between
two assets), and quantos (options whose payoff is adjusted by some stochastic
variable, typically an exchange rate). Even when there is a single underlying
asset, there is trend towards models with multiple stochastic factors (sources of
uncertainty), eg, single-asset model with stochastic volatility. In addition, multi-
factor models are gaining more acceptance and use for modeling interest rates,
where models with two to four factors are common and models with up to ten
factors are being tested (Broadie and Glasserman, 1997a). As computing power is
steadily increasing, multifactor option-pricing models are likely to become more
prevalent.

In this paper, we are concerned with the numerical pricing of Bermudan
options. Bermudan options have a close relationship with American options, as
the latter can be seen as the limit of Bermudan options with increasing frequency
of exercise. The literature on numerical methods for option pricing often blurs the
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difference between Bermudan and American options. Thus, although the work
we refer to addresses directly the Bermudan problem, the work titles often use
the term “American”. In this paper, we use the term “Bermudan” throughout.
The mathematical problem involved in pricing Bermudan options is an optimal
stopping problem, where the stopping can occur on finitely many time points
(stopping corresponds to exercising the option). The solution is characterized by
a dynamic programming recursion. Analytical pricing formulas are available for
some simple option payoffs, typically by approximation of the Bermudan by
the American (continuous-time exercise) case, but practitioners design payoff
structures that generally do not have known closed-form prices. The computation
of prices in higher dimensions is generally a difficult task. Deterministic numer-
ical schemes (based on partial differential equation methods) require work that
grows geometrically with the number of factors (problem dimension). This work
requirement renders these methods ineffective in dimensions higher than three

"+ or four,

. For the higher-dimensional Bermudan option-pricing problems, Monte Carlo
simulation techniques are attractive, being conceptually simple, yet able to
address problems of great complexity, whether the complexity arises from the
stochastic process driving the assets or from the structure of the payoff. The com-
mon theme of these techniques is to estimate the conditional expectations and the
optimal stopping policy in the dynamic programming recursion via Monte Carlo
sampling. We briefly review recent work in this area and its limitations,

Barraquand and Martineau (1995) partition the state space into a manageable
number of cells and estimate, via Monte Carlo, a stopping policy that is constant
over each cell and hence only approximately optimal. A serious drawback of this
method is that it does not yield consistent estimates (in the probabilistic sense)
of the optimal policy and option price. Broadie and Glasserman (1997b) use a
simulated tree of the state variables and obtain convergent estimates for
Bermudan option prices. The main drawback of their method is that the work is
exponential in the number of exercise opportunities. Broadie and Glasserman
(2004) developed a Monte Carlo algorithm they termed “stochastic mesh” for
valuing Bermudan options and derived certain properties, including convergence
results (a full description and comments is deferred until Section 2.2). More
recently, Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy (2001)
proposed algorithms using Monte Carlo sampling and regression that involve two
distinct types of error in approximating the option price. First, the conditional
expectations in the dynamic programming recursion are approximated by their
projections on a finite set of functions. Second, the optimal stopping policy cor-
responding to the projections (instead of the true value functions) is estimated via
Monte Carlo sampling and yields and estimate of the option price. This algorithm
was found accurate in extensive experiments in Longstaff and Schwartz (2001)
(outperforming the mesh algorithm) and is becoming the method of choice
among practitioners. Moreover, the convergence of regression-type algorithms
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has been established and characterized by Clément, Lamberton and Protter
(2002). In practice, the regression algorithms’ weakness is that care should be
exercised in selecting a “good” set of functions on which to project.

In this paper we establish the convergence of the Broadie-Glasserman mesh
estimator. Our main result is an asymptotic upper bound on the probability of
error of the mesh estimator with respect to mesh size b, where both the error size
and the upper bound on the probability of error are functions of b that vanish as
b — . Our assumptions are different from those in the analysis in Broadie and
Glasserman (2004) and are fairly mild — we require the finiteness of certain
moments. Moreover, we report the mesh method’s performance for test problems
taken from Broadie and Glasserman (2004) and Longstaff and Schwartz (2001).

We wish to emphasize the difference in theoretical support for the mesh and
regression algorithms. The convergence of the regression algorithms requires
both the cardinality of the set of functions on which to project and the Monte
Carlo sample size to go to infinity. On the other hand, the mesh algorithm does
- not involve projection error, and its convergence is with respect to just the Monte
Carlo sample size. This suggests that mesh-type algorithms should still be of
interest to practitioners. In addition, our convergence result lends support and
motivates further study for enhanced mesh-type algorithms that were found
empirically viable (Broadie and Glasserman, 2004; Avramidis and Hyden, 1999;
Avramidis et al., 2000; Boyle, Kolkiewicz and Tan, 2002). '

This paper is organized as follows. Section 2 contains brief background on the
problem of pricing Bermudan options and a description of the stochastic mesh
method. Section 3 contains the convergence results and the supporting analysis.
In Section 4, we present computational results on a subset of the test problems
in Broadie and Glasserman (2004) and Longstaff and Schwartz (2001), and in
Section 5 we offer conclusions. An earlier version of this work appeared in
Avramidis and Matzinger (2002).

2 Background
2.1 Bermudan option pricing

Let?=0,1,2,...,T be the set of times when the Bermudan option is exercisable,
also referred to as exercise opportunities or simply stages. Except for Section 4,
all references to “time” ¢ correspond to the rth exercise opportunity, and not to
time measured in the usual continuous sense. Let S, denote the state of the sto-
chastic factors at time (exercise opportunity) 7, for r=0,1,2,...,T. The random
variable S, takes values in R? with d a positive integer, allowing for the general
multifactor setting. We assume that S, is Markovian, so that the conditional
distributions of future states depend only on the current state. Let hi(t,x) denote
the payoff to the option holder from exercise at time ¢ in state x, discounted to
time zero with the possibly stochastic discount factor contained in x (the view of
h(t,x) as the discounted-to-time-zero payoff is adopted to simplify the notation).
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The Bermudan option-pricing problem is to compute
q(0,xp) = max E[(1,5) (S, = x,]

where 7 is a stopping time taking values in the finite set {0, 1,..., T}). It is well
known from arbitrage pricing theory that the arbitrage-free price of the option is
obtained when expectations are taken with respect to the risk-neutral measure;
see, for example, Duffie (1996) and Harrison and Pliska (1981). By the dynamic
programming principle, the option value satisfies the following recursion:

h(t,x) t=T, allx
q(t,x) = _
max{h(t,x),c(t,x)} 0<t<T-1, allx
where
c(t,x) = E[q(t + 1,S,+1)|S,=x] ¢))

is called the continuation value at (1, x).

: 2.2 The stochastic mesh method

In reviewing the method, we follow Broadie and Glasserman (2004). To begin,
we generate randomly a set of mesh points (states) {$/},j=1,2,...,b for each
future exercise opportunity r=1,..., T. We emphasize that throughout the paper,
superscripts on points S, denote the generation index (ranging in {1,2,..., b})
and not powers. For notational convenience, we define b non-random mesh
| points at stage zero, S§ =xp, j=1,2,...,b. Fort=1,2,..., T, let 8,(+) denote the
!3 probability density from which the points {S,f}j.’=1 are sampled (to be specified

later), and let f,(x,-) denote the conditional risk-neutral density of S,,1 given
S, = x. We assume throughout the paper the existence of these risk-neutral densi-
ties. For notational convenience, we let € = {0,1,...,T— 1} denote the index set
of early-exercise opportunities and we let ] = {1,2,..., b} denote the index set of
sampled points per stage. The Broadie-Glasserman mesh estimator is calculated
i as a backwards recursion over the set of early exercise opportunities:

L h(t,S7) jel, t=T
(](t,S[I) = L ,
max{h(¢,S/),¢(t,8/)}) jel, t=T-1,T-2,...1,0

where the estimate of the continuation value function, ¢(z, x), is

&t,x) 1= i qee+1, S:J;x)J;, (x,S%)
Jj=1 & (S

Note that each forward-stage value g(f + l,S,j“) is weighed by the likeliood
: ratio (mathematically, Radon-Nikodym derivative) f(x, S/, ,)/g,, ,(S., ).

(2
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FIGURE | Stratified mesh implementation illustrated for T=4 and b = 3. An arrow
points from a parent point to a child point in each simulated path.A line (including
arrows) between two points at stages t and t+ | indicates that a computation of
the one-step transition density, f,, between the points is required by the mesh
algorithm.

State

Stage

Broadie and Glasserman (2004) argued that the choice of sampling densities,
8,+1(+), is crucial to the success of the method, and they recommended sampling
as follows. We generate independently b paths of S, starting from x; at time 0 and
let S/ denote the state of the jth path at time ¢; and then we “forget” the path to
which each point belongs. This is called by the authors the stratified implemen-
tation. For any t, j, we call the ordered pair (S/,S/, ) a parent and child, respec-
tively. A visual illustration of the mesh is given in Figure 1.

The authors also propose and analyze a path estimator. A single replication of
the path estimator simulates one path of the stochastic factors underlying the
option and applies a stopping policy implied by a previously estimated entire
mesh; see Broadie and Glasserman (2004) for the details. Clearly, an analysis of
the mesh estimator is a prerequisite for analyzing the path estimator. In this
paper, our analysis is focused on the mesh estimator.

3 Convergence results

This section contains our results on the convergence of the stratified implemen-
tation of the mesh estimator. Under an assumption on the finiteness of certain
moments, we will show that g(0,x,) converges in probability to g(0,x,) as
b — <. More precisely, we derive an asymptotic upper bound on the probability
of error of the mesh estimator with respect to b, where both the error size and the
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upper bound on the probability of error are functions of & that vanish as b — oo,
We maintain all the notation established in Section 2.

We begin by observing some distributional properties of the stratified imple-
mentation. Let it be a random permutation of the integers in {1,2,...,b0} chosen
with equal probability from all possible such permutations, and let F, be the
o-field F, = o(S},52,...,8?). Then

conditional on F,,

b
S:i(ll)’ Stn+(12)’ Stﬁ(lb) ~ g() = Zf;(Sti ) 3)

where =% means “are identically distributed with density ...”. Note that the
density g, ,(-) is defined conditionally on ;. Also note that Sﬁ(ll), S,’i(lz), . S,’i({’)

are conditionally dependent random vectors. On the other hand,

conditional on ,,

S,H, 5%,,..., S& are 1ndependent @
Also note that SH, S,H, SJrl are conditionally not identically distributed;

they are unconditionally independent and identically distributed.

Our upper bound depends on a constant, C, bounding certain moments as
follows. Let {(SJ t=0,1,. 7’)}3“I denote the mesh points along three paths
which are independent and ldentlcally distributed (with S§ = x;), as prescribed by
the path-generation step of the stratified implementation of the mesh algorithm.
We make the following assumptions:

IN
oo | O

max E
te€

x_{h*(r, SZ)}

4 Sl, 2
[—f‘ i, Six) for£=1,2,3 )

fﬁ(,glf, S:2+ ) l+l<r<T

ax {hi(r, s')} <o for{=1,2,3 (6)

S A )
1e€ £ (Stl, Sl D l+l<r<T

[ r4 Sl
maxE —f'4( [’S”)
SRR RACHR NS

IN
o | O

for/=1,2,3 @)

[ ra sl gl T
maxE EACHET) <o foré=1,2,3 8)
e | fHS], Sh)

In words, condition (5) says that the constant C/8 is a simultaneous upper bound
(taken over all early-exercise stages, f) on the expectation of the fourth power of
the random variable defined as the ratio of the one-step transition density
f,(Sl S+1) (ie, going from S1 to its non-child, S+1) to the one-step transition
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density £,(SX,5%,) (k=1,2,3 yield distinct cases) times the maximum future
payoff over a path that starts at S,2+1. The role of Cin (7) has a similar interpreta-
tion. Our main result is as follows.

THEOREM | Suppose that b mesh paths {(S’ t=0,1,. T)} j=1 are generated
independently with S§ = x, for all j, where xye R? is the I\noun state at time 0.
Under assumptions (. 5 )—(8),

- &\
P{ 1900, x,) - q(0,x9)| > (HF) —1}

6CT
- Sipl-4v

1
+ O(b~2**Y)  forany §>0, O<Y<Z

PrROOF We start with a few definitions. The time index f €€, unless explicitly
stated otherwise. Let

iqmm%vm&o

c(t,x) = r
j=1 gr+l(St+l)

9)

Q-I»—-

That is, if the function g(t+1, -) were known (which of course is not the case),
then ¢(t,x) would be a natural estimate of ¢(#,x). Fix § >0 and 0 <y< 174, and
define the events

Ar) = {(0:|E(I,S,i)(0))—c(t,S,’)((x))lS%, forallie]} (10)

A,(t) = {

where ® denotes a generic point in the sample space. Let A, be the event that
A, (1) holds for each €€, ie,

and

lifﬂﬁm _
b =1 81+ +1)

o .
<—, foralliel (11)
bY

Api=0A(0)

Similarly, define A,:= N, .A,(¢). Finally, define the event of direct interest

teE

T
A= {m:ﬁ(O, x0)(@) — (0, xp) | < (H' ':—y) - 1}

For notational simplicity, we will suppress the dependence of all random vari-
ables on o for the remainder of the paper.
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CLaM 1 ADANA,

PROOF OF CLAIM 1 We assume that events A 1 and A, hold and show by a recur-
sive argument going backwards in time that event A must hold. We start by show-
ing that an error bound that holds uniformly over all estimates at time ¢ + | can be
iterated backwards in time. Fix € > 0 and suppose that for some ¢ O<tsT-1)
the error of the estimates at the forward points satisfies

|GG+ 1,8/ )-qu+ 1,55 )| <e  for alljer (12)

Then

[c(t,x)=c(t,x)|

1 Ebl q(+1, 54,01, (x, S,) _i g +1, S 1, (x, S)
b T 7 &1(Sih1) j=1 81 (S)
o~ J INRACTD)
= Y (qa+1,8%,) - qt+1,8},))
j=

1 g1+l(StJ+l)

& f(x, Shy)

€
b i3 g:+1(S:J;L1)

IA

o
< E(l+b—7) forallx e (S}, s?,..., 5%} (13)

where the last inequality follows since A, holds. So if (12) holds, then the error of
q at stage 1 (0 <t < T-1) is bounded uniformly on j as follows:

llq\(t’S/)—(I(t,Stj)l
= ,max{h(t, sH, e, SH}-max{n(s, 8/, e (1, S,j)}]
< e, 85~ (1, 87|

< ]E(t,s,f)—c(z,s,f)| + IC(I,S,j)—c(t,S,j)l

b
s.s(1+—J+i forallje T (14)
br) b

where in the last inequality we used (13) and that event A | holds.
Now the recursive bounding is as follows. We start the error bounding with the
special case 1=7T - 1, where we observe that ¢(T - 1,84 ) -a(T- LS, D=0
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for all j, and so the definition of the event A (T - 1) implies that (14) holds for
t=T-1 with £ =0. Iterating the bounding argument in (14) with r=7T-2,
T-3,...,0, we get

~ § ! sV
1300, 0) — (0, x0)| < EZ(”_}

-
o\ b

8 T
= (1+—) ~1
bY
which completes the proof of Claim 1. [l

Letting A® denote the complement of the event A, we have P(A°) < P(A]) +
P(A$). To complete the proof, we will show that

c 3CT =2+4y
and
3CT
P(AE) < W + O(b_2+47) (16)

We first obtain the upper bound for P(Af). Define the event

A(,0) = {co: |e(t, SH(w)—c(t, Si)(w)| < -:—Y

—

Recall that A, = 123 A, () = N33 NE_ A (4,0), s0

7-1 b T-1
P <Y Y P(AT(, i) = b)Y P(Af (1, D) (17)
t=0 i=1 =0

the equality holding because (S, i {S’} _1)» i=1,..., b, the paths are uncondition-
ally identically distributed. We will show that

P(Af(1, D) < +0(b™3*) forallte€ (18)

84112_47

which, in view of (17), proves (15).
The key for proving (18) is that c(#, Stl) —c(t, S,l) can be written as the sum of b
random variables which, conditional on F,, have mean zero and are independent.
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Cam 2 &(,5)) - c(t,8)) = (1/b) X5 _, Z/(1), where

Zi):=

g+, S50 f(Sh Sh) E[qm L SL)(S! Shy
8t+1 (St]+1) 81 (Stj+l)

(19)
where we recall that [, is the o-field F, = (S}, S2,...,SP).

Proor or CLAIM 2

%zb‘tzj(t) _1 i[Q(I+I,S;j+1)f(S,', S/ i E[Q(I'I'I’Sr{rl)f(S}, Si)
j=1

b5 81 (St 81 (S

d)

[1& 1,55 )f(S) S/
A=E(I,S;l)—E _zq(t'*' ,+|)_);( v Ste1) _7:, .
: V _b Jj=1 gl+l(sl+1) A

1 &g +1, 579 £(S), SEO)
=E(I,S,l)—E -—‘Zq( t+l )f((j)l i) F
_b i=1 gr+l(Sz+1 )
[ t+1/,X SLx
=c(1,5)-E a( )f(S;5 X) .T;:l
8i11(X)

where X represents a random variable obtained by choosing one of the points
St 1 SA1s-» b, at random with equal probability. The key behind the third step
is the invariance of the sum inside the expectation with respect to permutations of
the {S/,, }f=1. The conditional distribution of X when conditioned under F, has

the density g, ,(+) in (3), so

qt+1L,X) (S, X)
E "\ F|=E[lat+1,8)| F]
8 (X)
=c(t,8)
which completes the proof of Claim 2. O

Our upper bound for the probability P(A{(z, 1)) will use Markov’s inequality with
the fourth moment of the deviation ¢(z, Stl) —c(t, S,'). We will show that this
fourth moment goes to zero sufficiently fast with b. First, we need two lemmas.

LEMMA 1 Suppose that Y is a non-negative random variable with E[Y?*] < eo,
Then E[(Y — E[Y|F1)*] < 8E[Y?], where Fis an arbitrary o-field.
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PROOF
E[(Y-ELY|F1)*]
= E(Y* - 4Y3E[Y|F1+6Y2E2[Y|F1-4YE3[Y|F1+E*[Y|F])

< E[Y*]+6E(Y2E2[Y|F1)+E(E*[Y|F1)
< E[Y*]+ 6+ E[Y*]JE(E*[Y|F]) +E(E[Y*|F])
< 2E[Y*]+6yE[Y*]JE[Y"]

= 8E[Y*]

In the second step, we dropped non-positive random variables from the expecta-
tion. In the third step, we used the Cauchy—Schwartz inequality for the second
term and Jensen’s inequality for the third term, and in the fourth step we used
“again Jensen’s inequality inside the second square root. [l

LEMMA 2 Let [F denote an arbitrary c-field, and let Zl,Zz,A...,Zb be random
variables which, conditional on [F, have mean zero, are conditionally independ-
ent of each other, and such that E[Z}] < e and E[ij‘] < C for each j # 1, where
the expectations are unconditional and C is a constant. Then

PROOF E[(Zj=12j)4] = X.E[ElZ Z;Z;7Z;, | F11, where the four indices are rang-
ing independently from 1 to b. Since E[Z; | F1 =0, the conditional independence
of the Z's implies that the summand vanishes if there is one index different from
the three others. This leaves terms of the form E[E[Zj4 | F11, of which there are b,
and terms of the form E[E[Z22}| F1] for j, #jy, of which there are 3b(b — 1).
For each of the two different forms, the number of terms with any index equal to
1 is O(b~1) of the total number of such terms, and so the finiteness of E[Z{]
implies that the relative contribution of these terms to the total is O(b~1). Now

focusing on terms where all indices are different than 1, we have
B[E[z}| ]| = E[z}]=<C

and

B[E[22 23 | F]| = E[2}23,] < JE[2}] {E[2,] < C
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Hence
b 4
E ,IZ ZjJ J <bC(1+ O(b™) +3b(b-1) c(1+ o(b™))
j=1 _
which completes the proof of Lemma 2. (]

CramM 3 For each ¢ e €, the conditions of Lemma 2 are valid for Zj = Zj(t) and

F=F.

PRrOOF OF CLAIM 3 Fix r € €. The Zj(t) have conditional mean zero by definition
(19). Moreover, conditional on F,, each of the variables Zl(t),Z2(t), cees Zb(t) isa

!
function of the single random variable §! S2,, ..»SP, . respectively. Thus the

- +1°
- Z(r) are conditionally independent, in view of (4). To bound the unconditional t
fourth moments, we apply Lemma 1 with ¥ = g+ 1,8/, 18,8}, )/ 8,415, )

and F= F;:

E[(Z0)] < SE[ g +‘1,S/;1>ﬁ4(s,',sx;l)]

gttl(szj;-l) :
. 8E[ Max i, <r {h3(r, s,f)}ﬁ*(s,',s,’;l)
g;‘H(SzJH)

] foralljeT
(20)

First, we will prove the finite upper bound for j # 1. The {Zj(t)}j=2 are uncondi-
tionally identically distributed and, continuing from (20), we have

E[(z*0)"] < SE[ max, e, 57 )}ﬁ(S},S,il)%Z;J

b
1+1<r<T = (S,"', Sr2+1)
<C
,+1(St2+l) by expand-

ing g,,,(-) according to (3) and using the fact (Jensen’s inequality) that for any
X} Xpseeey Xy >0

To obtain the first inequality, we upper-bounded the factor g

The second inequality then follows from assumption (5). An analogous argument
combined with assumption (6) shows that E[(Z l(1‘))4] < oo, O
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Now we have

P(A[(t, 1) = UC(I,S,‘)— c(t,S,‘)|27)87J
1

=P 7|z —
sl

1 4
E[[ 22(:) :lb”
bFl

3C
<
84b2—4y

21

+0(b73*Y) forallte€ (22)

In step three, we used Markov’s inequality with power 4, and in step four we
applied Lemma 2 for Z Zi(@t) and F= JF; (which is valid, as proved in Claim 3).
This is precisely what was required in (18), and completes the proof of (15).

To prove the probability bound P(AS) < 3CT/(3*b!-4Y) + O(b72+4Y), we simply
observe that the event A, in (11) can be written in the form of event A, in (10) by
choosing g(-,-) =1 in (9) (implying c(-,-) = 1). Then we argue as we did to
obtain the bound for the event A¢, using assumptions (7) and (8) in place of (5)
and (6), respectively. This completes the proof of Theorem 1. U

The following result shows that the rate of convergence may be sharpened using
moments analogous to (5)-(8) but of higher order.

THEOREM 2 Suppose that the mesh paths {SJ }5’ | are generated independently
with SO =Xy for all j, where xy€ R is the known state at time 0. Under assump-
tions (5)~(8) where we replace the power 4 by the power 8 and let C| be the
corresponding constant,

~ Y
P{I (0, x0) — g0, x) | > (H?F) - 1}

2520C,T s
< — -6+8Y >
S Sapisy + 0 ) foranyd>0, O<y< :

SKETCH OF PROOF One can show that P(A$(t, 1)) < 1260C, /(88b3-3Y) + O(b-6+3Y)
by arguing analogously to (21)-(22), using Markov’s inequality with power 8
instead of power 4 and a result analogous to Lemma 2 for the eighth moment.
The other steps in the proof parallel the proof of Theorem 1. O
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4 Empirical performance

We report empirical results on the performance of the mesh estimator. The first
set of test problems is a subset of those in Broadie and Glasserman (2004). Under
the risk-neutral measure, the d assets are independent, and each follows a geo-
metric Brownian motion process:

dS,(k) = S,(K)[(r - B)dt + 6dW,(K)],  k=1,....d 23)

where W,(k), k=1,...,d are independent Brownian motions, r is the riskless
interest rate, & is the dividend rate, and ¢ is the constant volatility. Exercise
opportunities occur at the set of calendar times T, = tT/T, t=0,1,..., T, where
T is the calendar option expiration time. Under the risk-neutral measure, the
random variables'log(S,l(k)/ST'_l(k)) for k=1,...,d are independent and nor-

- “mally distributed with mean (r— 8 - 6%/2)(z,— t,_;) and variance 621, -1, y).
" We consider two types of option payoff. A maximum call option is a call option

on the maximum of the assets with payoff equal to

+
h(t, (SCk),k=1,...,d))=e"™ ( max S(k)— K)
1<ksd
where (x)* := max(x,0). A geometric average call option is a call option on the
geometric average of the assets with payoff equal to

+

1
d —_
h(t,(S(k), k=1,...,d)) =e™"™ (HS(k))d -K
k=1

The second set of test problems is a subset of those in Longstaff and Schwartz
(2001) for a put option on a single asset. The dynamics of the asset are as in (23).

Tables 1, 2 and 3 contain results for the maximum call, geometric average call,
and put option, respectively. For each choice of parameter values, we consider
both out-of-the-money and in-the-money cases. Within each table, each of several
different panels (separated by horizontal lines) shows the estimator accuracy as
the mesh size b takes increasing values in the set {200,400,800,1600}. Our
performance measures are the relative bias (RB), relative standard error (RSE),
and relative root mean square error (RRMSE) of g, defined as the bias, standard
error, and root mean square error divided by the true option value, respectively.
We approximated the true option values using the results in Broadie and
Glasserman (2004) as follows. For the max option, we used the most accurate
estimates in that paper, which have a relative error less than 0.35% with 99%
confidence. For the geometric average option, the values are calculated from a
single-asset binomial tree, presumably with negligible error. For the put option,
we used the values from Longstaff and Schwartz (2001), which were calculated
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~ e

with negligible error with a finite-difference algorithm. The estimates RB, RSE
and RRMSE in these tables are based on 64 independent replications of g. For
brevity, we omit the standard errors of these estimates; relative to the magnitude
of the estimated quantities our own estimation error is negligible.

TABLE | Maximum call option on five assets.The short-term interest rate is r = 0.05,
the dividend rate is & = 0.1, the volatility is ¢ = 0.2, the strike price is K= 100, and
the time to expiration is 7= 3 years.The number of exercise opportunities is T+ I.
The value of all assets at time zero is x;.“CPU” refers to CPU time in seconds per
replication of the mesh estimator § on a SUN Ultra 5 workstation.The columns RB,
RSE, and RRMSE refer to estimates of the relative bias, relative standard error, and
relative root mean square error of . The option values for the six cases (in order of
appearance) are 16.006, 35.695, 16.474,36.497, 16.659 and 36.782.

. Number of . - .
T X mesh points CPU RB RSE RRMSE
3 9% 200 33 0.175 10.093 0.198
400 84 0.127 . 0.052 0.137

800 . 24.1 0.089 - 0.038 0.097

1600 78.1 0.064 0.023 0.068

110 200 33 0.149 0.044 0.155

400 84 0.115 0.036 0.121

800 243 0.074 0.02i 0.077

1600 78.0 0.054 0.015 0.056

6 90 200 6.6 0.402 0.098 0414
400 17.0 0.337 0.066 0.343

800 49.0 0.288 0.043 0.291

1600 158.5 0.231 0.029 0.233

110 200 6.6 0.370 0.066 0.376

400 16.9 0.331 0.038 0.333

800 48.7 0.256 0.023 0.257

1600 158.5 0.203 0.018 0.204

9 90 200 9.9 0.557 0.096 0.566
400 25.6 0.521 0.064 0.525

800 732 0.466 0.042 0.468

1600 2384 0.402 0.032 0.403

1o 200 9.8 0.556 0.061 0.559

400 25.5 0.503 0.040 0.505

800 732 0.445 0.026 0.446

1600 2394 0.368 0.021 0.368
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TABLE 2 Geometric average call option on d assets.The short-term interest rate is
r=0.03, the dividend rate is § = 0.05, the volatility is ¢ = 0.4, the strike price is
K'=100, and the time to expiration is 7= | year. There are || exercise opportuni-
ties. The value of all assets at time zero is Xo.“CPU"” refers to CPU time in seconds
per replication of the mesh estimator G on a SUN Ultra 5 workstation. The columns
RB, RSE, and RRMSE refer to estimates of the relative bias, relative standard error,
and relative root mean square error of q. The option values for the four cases
(in order of appearance) are 1.362, 10.211,0.76] and 10.
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PR

Number of R e e
d X mesh points CPU RB RSE RRMSE
5 90 200 10.9 0.621] 0.320 0.699 ?
400 28.4 0610 0218 0.647
800 80.7 0.584 0.139 0.601
1600 260.3 0.493 0.090 0.502 i
1o - 200 11.0 0.533 0.101 0.542
' © 400 28.6 0.460 ' 0.061 0.464
800 81.7 0.367 0.042 : 0.370
1600 : 260.4 0.277 0.032 0279 > |
7 90 200 154 0.628 0.336 0712
400 395 0.635 0.269 0.690
800 1129 0.605 0.198 0.636 ,
1600 362.9 0610 0.141 0.626
110 200 15.4 0.477 0.100 0.488
400 39.3 0.455 0.061 0.459
800 112.6 0.396 0.04] 0.398
1600 365.3 0.338 0.029 0.340

It is obvious that the mesh estimator is highly positively biased, with bias being
the dominant factor in the estimator’s overall error, as measured by root mean
square error. The most fatal flow of the algorithm illustrated by these results is
that the bias decays slowly with b, and this appears to be the general pattern over
further experiments that are not reported here. In view of the quadratic growth of
the algorithm work with b, extrapolation from these tables suggests that consid-
erable bias will persist for most feasible sample sizes.

Table 1 suggests that the bias and overall error increase rapidly with the number
of exercise opportunities, 7+ 1. This is expected in view of Theorem 1, where |
the upper bound on the estimator error grows geometrically with the number of i
. exercise opportunities. Contrasting Table 3 to Tables 1 and 2 suggests that the
ik estimation error generally increases with the problem dimension, d. Our results
shed some light on the effect of problem dimension via the moments that appear
in (5) and (7). :

——
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TABLE 3 Put option on single asset. The short-term interest rate is r = 0.06, the div-
idend rate is 8 = 0 (no dividends), the volatility is ¢ = 0.4, the strike price is K = 40,
and the time to expiration is 7 years.There are 50 exercise opportunities per year.
The value of the asset at time zero is X, “CPU” refers to CPU time in seconds per
replication of the mesh estimator g on a SUN Ultra 5 workstation.The columns RB,
RSE, and RRMSE refer to estimates of the relative bias, relative standard error, and
relative root mean square error of §.The option values for the four cases (in order
of appearance) are 7.101,3.948,8.508 and 5.647.

Number of . e g
T Xg mesh points CPU RB RSE RRMSE
! 36 200 38 0.315 0.069 0.322
400 10.8 0.207 0.047 0.212
800 352 0.129 0.032 0.133
1600 1383 0.085 0.021 0.088
44 200 38 0354 0.098 0.367
) 400 10.8 0.241 0.067 0.250
800 353 0.164 0.049 0.171
1600 - 1382 0.100 0.030 0.105
2 36 200 77 0.467 -0.082 0.475
400 215 0.306 0.050 0.310
800 70.8 0.187 0.033 0.189
1600 276.8 0.122 0.020 0.123
44 200 77 0.519 0.096 0.528
400 21.6 0.353 0.067 0.359
800 71.2 0.232 0.049 0.237
1600 287.3 0.154 0.031 0.157

5 Conclusion

We have established the convergence of the original version of the stochastic mesh
estimator proposed by Broadie and Glasserman (2004) for pricing Bermudan
options. In particular, we have derived an asymptotic upper bound on the proba-
bility of error with respect to the mesh size, b. Both the error size and the upper
bound on the probability of error are functions of b that vanish as b — e. Our
results hold under mild finiteness-of-moment assumptions and thus provide
support for the use of the algorithm in most situations of practical interest. We
note, however, that the method’s applicability may be limited by the requirement
that risk-neutral transition densities between exercise opportunities should be
easily computable.

Our computational experience with the original estimator (with no bias reduc-
tion and variance reduction enhancements) shows very poor behavior — specifically,
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large positive bias. The bias is present even for a small number of exercise oppor-
tunities, and decays slowly with the mesh size. The poor empirical performance
of the original mesh estimator reported here and elsewhere (Avramidis and Hyden,
1999; Boyle, Kolkiewicz and Tan, 2002) suggests that the constant C appearing
in our probability bound may be very large in typical applications. This observa-
tion is consistent with the experience of many researchers that likelihood ratios
are often highly variable random variables. Inspection of the relevant inequalities
suggests that C may grow fast with the problem dimension, underlying the inherent
difficulties of the computational problem in higher dimensions.

On a positive note, several computational enhancements of the mesh algorithm
have been proposed and studied experimentally. Broadie and Glasserman (2004)
reported successful implementations that yield acceptable error via careful adap-
tation of effective variance reduction techniques. Avramidis and Hyden (1999)
and Avramidis et al. (2000) reduced the bias and overall error to reasonable levels
by devising a biased-low estimator and averaging it with the biased-high mesh
estimator studied here and, further, by employing importance sampling. Boyle,

* Kolkiewicz and Tan (2002) developed further the bias-reduction technique, used

low-discrepancy sequences, and observed considerable error reduction. The analysis
presented in this paper can probably be adapted to establish convergence of some
of these enhanced mesh-type algorithms. Hence, there is reason to believe that
enhanced mesh-type algorithms that are convergent and have good small-sample
performance can be devised, thus adding a useful tool to the arsenal of computa-
tional techniques for pricing Bermudan options.
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