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A B S T R A C T

Context: The combination of distributed stream processing with microservice architectures is an emerging
pattern for building data-intensive software systems. In such systems, stream processing frameworks such
as Apache Flink, Apache Kafka Streams, Apache Samza, Hazelcast Jet, or the Apache Beam SDK are used
inside microservices to continuously process massive amounts of data in a distributed fashion. While all of
these frameworks promote scalability as a core feature, there is only little empirical research evaluating and
comparing their scalability.
Objective: The goal of this study to obtain evidence about the scalability of state-of-the-art stream processing
framework in different execution environments and regarding different scalability dimensions.
Method: We benchmark five modern stream processing frameworks regarding their scalability using a
systematic method. We conduct over 740 h of experiments on Kubernetes clusters in the Google cloud and in
a private cloud, where we deploy up to 110 simultaneously running microservice instances, which process up
to one million messages per second.
Results: All benchmarked frameworks exhibit approximately linear scalability as long as sufficient cloud
resources are provisioned. However, the frameworks show considerable differences in the rate at which
resources have to be added to cope with increasing load. There is no clear superior framework, but the ranking
of the frameworks depends on the use case. Using Apache Beam as an abstraction layer still comes at the cost
of significantly higher resource requirements regardless of the use case. We observe our results regardless of
scaling load on a microservice, scaling the computational work performed inside the microservice, and the
selected cloud environment. Moreover, vertical scaling can be a complementary measure to achieve scalability
of stream processing frameworks.
Conclusion: While scalable microservices can be designed with all evaluated frameworks, the choice of a
framework and its deployment has a considerable impact on the cost of operating it.
1. Introduction

Over the last decade, microservices became a frequently adopted
software architecture pattern for building scalable, cloud-native soft-
ware systems (Hasselbring and Steinacker, 2017; Soldani et al., 2018;
Fritzsch et al., 2019; Knoche and Hasselbring, 2019). More recently, a
shift toward adopting distributed stream processing techniques in mi-
croservice architectures can be observed (Laigner et al., 2021). In such
systems, different microservices communicate with each other through
asynchronous messages, which are sent via scalable messaging systems
such as Apache Kafka (Bellemare, 2020). Especially data-intensive
applications and big data analytics systems are increasingly designed as
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microservices building upon frameworks that process continuous data
streams in a scalable manner (Davoudian and Liu, 2020).

Combining microservice architectures and large-scale stream pro-
cessing leads to a new way of operating stream processing frameworks.
Whereas traditional big data systems rely on a single, heavyweight
stream processing platform, which runs several data analysis jobs,
microservice architectures allow running stream processing frameworks
inside individual microservices, embedded as a library. This allows
for choosing a suitable, usually more lightweight stream processing
framework for each microservice. From an operational perspective,
such microservices are deployed and scaled using established microser-
vice orchestration tooling such as Kubernetes. Internally, the stream
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processing frameworks perform the necessary coordination among mi-
croservice instances to (re)partition data streams for state locality and,
thus, enable scalability.

While there are several open-source stream processing frameworks
promoting scalability as a core feature, there is only little empirical
research evaluating and comparing their scalability. However, the need
for systematic scalability evaluations has been recognized (van Dongen
and van den Poel, 2020; Hesse et al., 2021). Benchmarking is a well-
established method in software engineering to assess and compare the
quality of software systems and services (Hasselbring, 2021). As such,
it is used both in research and engineering (Kounev et al., 2020) to
choose among competing software solutions, to evaluate the quality of
new ones, or to assure quality levels over time.

In previous work, we presented and empirically evaluated a scalabil-
ity benchmarking method for cloud-native applications in general (Hen-
ning and Hasselbring, 2022a) and stream processing frameworks in
particular (Henning and Hasselbring, 2021a). Further, we presented
specific benchmarks for stream processing frameworks (Henning and
Hasselbring, 2021b). In this work, we use the presented benchmarking
method and the benchmarks to experimentally evaluate the scalabil-
ity of stream processing frameworks, particularly suited to be used
within microservices. Specifically, we address the following research
questions:

RQ1: How do different stream processing frameworks deployed
as microservices compete regarding their scalability? Scal-
ability is a main driver for adopting microservices and stream
processing-based architectures. The choice of a stream process-
ing framework is thus likely to have a crucial impact on the
scalability of the overall system.

RQ2: Can the observed performance limitations of Apache Beam’s
abstraction layer be overcome with recently proposed per-
formance optimization configurations? Our results show that
Apache Beam scales with significantly higher resource demands,
which has also been reported in related work for an older
version of the framework (Hesse et al., 2019). Since a couple
of configuration settings have been proposed for improved per-
formance, we evaluate whether such configurations can improve
scalability.

RQ3: How do stream processing frameworks scale with increas-
ing computational work performed inside the microservice?
The most common way to assess scalability is by evaluating
how a system can handle increasing external load as addressed
by RQ 1. Likewise, however, it can be important to assess how
a framework scales with increasing the complexity of the per-
formed computation, for example, to improve the quality of its
results.

RQ4: Can vertical scaling be a complementary measure to
achieve scalability of stream processing frameworks? A
common way to scale microservices is to increase the number
of instances deployed, which may require additional underlying
cluster nodes (horizontal scaling). Within the bounds of the
individual cluster nodes, microservices can also be scaled by
increasing their provided resources, such as CPU cores or mem-
ory (vertical scaling). We benchmark both alternatives regarding
their scalability on a single large node.

RQ5: Do scalability results differ between public and private
clouds? Public clouds and private clouds are both represen-
tative environments for operating microservice-based systems.
We evaluate whether our scalability benchmark results differ
between both environments.
2
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RQ6: Can scalability limits be raised by using larger clusters? To
investigate whether observed scalability limits are due to the
frameworks or just due to high utilization of the underlying
cluster resources, we repeat selected experiments with clusters
of different sizes.

We address these research questions by conducting over 740 h of
scalability experiments on Kubernetes clusters in Google Cloud and in
a private cloud environment. We benchmark the frameworks Apache
Flink, Apache Kafka Streams, Hazelcast Jet, and Apache Beam with the
Flink and the Samza runners, for which we deploy up to 110 simulta-
neously running instances, which process up to one million messages
per second. We provide a replication package and the collected data
of all experiments as supplemental material (Henning and Hasselbring,
2023), allowing other researchers to repeat and extend our work.

Outline. The remainder of this work starts by discussing the relation
of microservices and stream processing as well as the foundations of
scalability benchmarking in Section 2. Section 3 introduces the stream
processing frameworks benchmarked in this study and Section 4 gives
an overview of the cloud environments for our experiments. Section 5
describes our experimental setup and Section 6 presents and discusses
the results of our experiments. Afterward, Section 7 discusses threats to
validity, followed by a discussion of related work in Section 8. Finally,
Section 9 concludes this works.

2. Background

In the following, we first discuss the concepts of stream process-
ing within microservice architectures before outlining our Theodolite
scalability benchmarking method used for this research.

2.1. Stream processing within microservice architectures

At the time of this research, combining microservice architectures
and distributed stream processing is covered only superficially in sci-
entific literature. While there are a couple of case studies reporting
on stream processing-based microservices, research is still lacking a
systematic evaluation of this new architectural style. On the other
hand, some textbooks for practitioners (Bellemare, 2020; Stopford,
2018) have recently been published, which also serve as references
for this work. Despite the lack of systematic studies, stream processing
within microservices is named an emerging trend (Davoudian and Liu,
2020; Fragkoulis et al., 2023; Karabey Aksakalli et al., 2021) and the
need for further research on this topic is recognized (Katsifodimos and
Fragkoulis, 2019; Laigner et al., 2021). Fig. 1 shows an exemplary ar-
chitecture with microservices applying stream processing frameworks.1
The following attributes can often be observed for such microservices
and are particularly relevant to this study.

Self-contained and loosely coupled. In microservice architectures, a soft-
ware system is composed of multiple small services that are built
around business capabilities (Hasselbring, 2018). Individual microser-
vices run in their own processes, may use different technology stacks,
and communicate via lightweight, fault-tolerant mechanisms over the
network. For microservices employing distributed stream processing
techniques, this means each service can use its own stream processing
framework. In contrast to traditional big data stream processing sys-
tems running on top of resource management systems such as Apache
Hadoop YARN or Apache Mesos, this also leads to smaller jobs and a
single job per stream processing cluster.

1 In practice, one can typically observe a combination of different com-
unication methods, such as additional HTTP-based communication (Karabey
ksakalli et al., 2021). Depending on the microservice-specific use case,
uch architectures may also include microservices relying on other mech-
nisms to process data streams, such as simple producers/consumers or

unction-as-a-Service deployments (Bellemare, 2020).
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Fig. 1. Example microservice architecture of a software system, in which microservices
communicate via asynchronous messages and process these messages using stream
processing frameworks. With such frameworks, the dataflow inside microservices
is modeled as directed graphs of (potentially stateful) operators. In this study, we
benchmark different state-of-the-art stream processing frameworks with task samples,
representing microservices such as those depicted in this example architecture.

Independently scalable. In contrast to monolithic systems, individual
microservices can be scaled independently due to their loose cou-
pling. In fact, scalability has been reported as one of the most im-
portant drivers for and benefits of adopting microservice architectures
in several systematic literature reviews (Pahl and Jamshidi, 2016; Li
et al., 2021; Kratzke and Quint, 2017; Soldani et al., 2018; Laigner
et al., 2021), interview studies (Taibi et al., 2017; Fritzsch et al.,
2019; Knoche and Hasselbring, 2019; Laigner et al., 2021; Zhou et al.,
2023), and experience reports (Balalaie et al., 2016b; Hasselbring and
Steinacker, 2017; Bucchiarone et al., 2018). Typically, horizontal dupli-
cation, data partitioning, and function decomposition are distinguished
as methods for scaling microservice architectures. From an operation’s
perspective, also microservices adopting stream processing frameworks
can be scaled by horizontal duplication. Internally, however, duplicat-
ing services leads to data partitioning, meaning that each instance of a
service handles only messages with certain keys. The actual data parti-
ioning as well as the necessary state management and fault tolerance
s managed by modern stream processing frameworks.

loud-native deployment. Microservice architectures are a pattern, par-
icularly suited for building cloud-native applications (Balalaie et al.,
016a; Gannon et al., 2017; Pahl et al., 2018). They are mostly de-
loyed as containers in public or private cloud environments, with
ubernetes (Burns et al., 2016) being the de-facto standard orches-

ration tool for cloud-native applications (Cloud Native Computing
oundation, 2022). With Kubernetes, microservice deployments in-
luding, for example, resource restrictions or numbers of replicas, are
efined purely declaratively.

synchronous communication via messaging system. Microservices that
rocess and consume streams of messages often employ log-based mes-
aging systems for their communication Karabey Aksakalli et al. (2021).
o eventually reach consistency among individual microservices, the

og must be durable, append-only, fault-tolerant, partitioned, and it
ust support sequential reads (Kleppmann et al., 2019). Probably the
ost prominent messaging system fulfilling these properties is Apache
afka (Kreps et al., 2011; Wang et al., 2015), which is intensively used

n industry.2 Log-based messaging systems such as Kafka are required

2 https://kafka.apache.org/powered-by.
3
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by modern stream processing frameworks to provide strict processing
guarantees and fault tolerance while scaling out (Fragkoulis et al.,
2023).

Adoption of distributed stream processing techniques. Modern stream pro-
cessing frameworks are designed to run in a distributed fashion on com-
modity hardware in order to scale with massive amounts of data (Fragk-
oulis et al., 2023). Besides high throughput, these systems focus on low
latency, fault tolerance, and coping with out-of-order streams. Modern
stream processing frameworks process data in jobs, where a job is
defined as a dataflow graph of processing operators. They can be started
with multiple instances (e.g., on different compute nodes, containers,
or with multiple threads). For each job, each instance processes only
a portion of the data. Whereas isolated processing of data records is
not affected by the assignment of data portions to instances, process-
ing that relies on previous data records (e.g., aggregations over time
windows) requires the management of state. Similar to the MapReduce
programming model, keys are assigned to records and the stream
processing frameworks guarantee that all records with the same key
are processed by the same instance. Hence, no state synchronization
among instances is required. When a processing operator changes the
record key and a subsequent operator performs a stateful operation, the
stream processing framework splits the dataflow graph into subgraphs
that can be processed independently by different instances. We refer to
the recent surveys of Fragkoulis et al. (2023) and Margara et al. (2022)
for detailed information on state-of-the-art stream processing models
and patterns.

2.2. Scalability benchmarking with theodolite

Our study builds upon our Theodolite scalability benchmarking
method for cloud-native applications (Henning and Hasselbring,
2022a). According to the ACM SIGSOFT Empirical Standard for bench-
marking as a software engineering research method (Ralph et al.,
2021; Hasselbring, 2021), we briefly summarize the quality, metric,
measurement method, and task samples used in this study.3

uality. The quality evaluated in this study is scalability. Scalability is
efined as ‘‘the ability of [a] system to sustain increasing workloads by
aking use of additional resources’’ (Herbst et al., 2013). It should not

e confused with elasticity, which describes how fast or how precise
system (automatically) adapts to varying workloads (Herbst et al.,

013; Lehrig et al., 2015).

etric. The Theodolite scalability benchmarking method provides two
lternative scalability metrics, the resource demand metric and the load
apacity metric. In this study, we focus on the resource demand metric. It
s a function, mapping the load intensity on a system under test (SUT) to
he minimal amount of resources that must be provisioned for the SUT
uch that the SUT fulfills all specified service-level objectives (SLOs).
n Section 5.3, we describe how load, resources, and SLOs are defined
n this study.

easurement method. To measure scalability according to the met-
ic, we chose discrete subsets of the load and resource domains and
un isolated performance experiments for different load and resource
ombinations to assess whether the specified SLOs can be fulfilled.
xperiment duration, warm-up periods, and the number of repetitions
re configurable and have to be adjusted to the context. By using ap-
ropriate search strategies, not all combinations of load and resources
ave to be executed.

3 https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=Bench
arking.
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Task samples. Our Theodolite benchmarking method is not restricted
to specific task samples, but allows also using existing benchmarks for
cloud-native applications. Based on real-world use cases for Industrial
Internet of Things analytics (Henning et al., 2021), we proposed four
task samples of different complexity for stream processing frameworks
in previous work (Henning and Hasselbring, 2021b). As we discuss in
Section 8, these are the only benchmarks focusing on modern stream
processing frameworks deployed as cloud-native microservices. In Sec-
tion 5.2, we describe how we configure these task samples for our
evaluation.

3. Evaluated stream processing frameworks

In their textbook, Bellemare (2020) distinguishes between
lightweight and heavyweight stream processing frameworks.
Lightweight frameworks are embedded as a programming library into
the source code of independently deployable components such as
microservices. This way, the stream processing framework does not
require any specific way to build or deploy the microservice. This
allows the service to also perform other tasks beyond stream processing
such as providing a REST API. Individual instances of a service discover
each other (e.g., via features of the messaging system or Kubernetes)
and perform the necessary coordination internally. Heavyweight frame-
works on the contrary are provided as deployable software systems,
which can be configured by one or more stream processing jobs to
be executed. They are typically designed as a master–worker architec-
ture. In this study, we mainly focus on lightweight frameworks. All
modern stream processing frameworks can be deployed containerized
on commodity hardware with Kubernetes. In the following, we give
a brief overview of frameworks, particularly suited to be deployed as
microservices and which we decided to benchmark in this study. For a
detailed comparison of the framework’s features, see the works of, for
example, Hesse and Lorenz (2015), Fragkoulis et al. (2023), and van
Dongen (2021).

Apache Flink. Originating from a scientific research project (Alexan-
drov et al., 2014), Apache Flink (Carbone et al., 2015) has been
extensively used, evaluated, and extended in research and became
increasingly popular in industry. It offers one of the most elaborated
dataflow models, providing precise control of time and state (Carbone
et al., 2015, 2017; Akidau et al., 2021). Moreover, Flink provides
different abstraction layers and a rich feature set regarding the inte-
gration with external systems. Flink clearly falls into the category of
heavyweight frameworks (Bellemare, 2020). Its deployment consists of
one or – for fault-tolerance – more coordinating JobManagers and a
scalable amount of TaskManagers. Although heavyweight, we consider
Flink in this study due to its widespread adoption and since we observe
recent trends to more lightweight deployments of Flink.

Apache Kafka Streams. Kafka Streams (Sax et al., 2018; Wang et al.,
2021) is a stream processing framework built on top of Apache Kafka.
It is available as a Java library and, thus, aligns with the idea of in-
corporating stream processing in standalone microservices. Compared
to most other stream processing frameworks, it has a restricted set
of features, in particular, concerning the integration with external
systems. Kafka Streams only supports Kafka topics as data sources and
sinks. Integrating external systems always requires transferring data via
Kafka topics.

Apache Samza. Similar to Kafka Streams, Apache Samza (Noghabi
et al., 2017) can be embedded as a library in standalone applications.
Individual instances of the same application use Apache Zookeeper and
Apache Kafka for coordination, data transfer, and fault tolerance. Al-
though still maintained, Samza is sometimes considered a predecessor
of Kafka Streams (Kleppmann and Kreps, 2015). In this study, we use
Samza as a runner for Apache Beam pipelines (see below), which allows
4

implementing more complex use cases (Zhang et al., 2020).
Hazelcast Jet. Hazelcast Jet (Gencer et al., 2021) is a stream processing
framework built on top of the Hazelcast IMDG distributed, in-memory
object store. It can be embedded into Java applications and does
not have any dependencies on an external system. Instead, individual
instances discover each other, form a cluster, and handle coordina-
tion and data replication internally. Hazelcast Jet differs from other
frameworks in its execution model, which is based on a concept similar
to coroutines and cooperative threads (Gencer et al., 2021). With the
release of Hazelcast 5.0 in 2021, Hazelcast Jet has been merged with
Hazelcast IMDG into one unified product.

Apache Beam. Apache Beam is not a stream processing system by itself,
but instead, an SDK to implement stream processing jobs in a uniform
model, which can be executed by several modern stream processing
systems. Apache Beam implements Google’s Dataflow model (Akidau
et al., 2015), which is also internally used by Google’s cloud service
Google Cloud Dataflow. A stream processing job implemented with
Apache Beam is executed by a so-called runner. Runners can be seen as
adapters for the actual stream processing systems. Besides a runner for
Google Cloud Dataflow, Apache Beam provides also runners for several
other systems, including the aforementioned Apache Flink, Apache
Samza, and Hazelcast Jet. Previous research found that using Apache
Beam as an abstraction layer comes with a significant negative impact
on performance (Hesse et al., 2019).

Other stream processing frameworks. Apache Spark (Zaharia et al.,
2016), Apache Storm (Toshniwal et al., 2014), and the successor
of the latter, Apache Heron (Kulkarni et al., 2015), are considered
heavyweight frameworks and, thus, fit less into the context of microser-
vices (Bellemare, 2020). Spark differs from the frameworks discussed
before in that it processes data streams in ‘‘micro-batches’’. Storm and
Heron provide less sophisticated programming models and weaker fault
tolerance mechanisms (Fragkoulis et al., 2023). Moreover, there are
several cloud services available for stream processing, which, however,
are out of scope of our study.

4. Evaluated cloud platforms

We run our experiments in a private and a public cloud, repre-
senting two common execution environments for microservice-based
software systems. On both platforms, we operate Kubernetes clusters.
For the public cloud infrastructure, we chose Google Cloud, represent-
ing one of the largest cloud vendors with a Kubernetes offering that
provides multiple configuration options. As private cloud infrastruc-
ture, we use the Software Performance Engineering Lab (SPEL) at Kiel
University. Table 1 summarizes the configuration of our Kubernetes
clusters for all experiments.

Google Cloud. The Google Cloud clusters consist of e2-standard virtual
machines. This machine type is promoted by Google as cost-optimized
and suitable for general purposes such as microservices. In the course
of our experiments, we use clusters with different numbers and sizes
of such VMs. All clusters are set up and managed with the Google
Kubernetes Engine (GKE) service and run in the us-central1 region.

Private cloud (SPEL). In the private cloud, a self-operated Kubernetes is
installed via Kubespray on five bare metal nodes, connected via 10 Gb
Ethernet. Each node is equipped with two 16-core CPUs and 384 GB of
memory.

5. Experimental setup

We run our experiments with our Theodolite scalability benchmark-
ing framework4 (version 0.9). Theodolite is installed as a Kubernetes
Operator inside the Kubernetes clusters and controls the execution of

4 https://www.theodolite.rocks/

https://www.theodolite.rocks/
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Table 1
Configuration of Kubernetes clusters used for our evaluation, running at Google Cloud and a private cloud (SPEL).

Sections 6.1–6.3 and 6.5 Section 6.4 Section 6.5 Section 6.6

Cloud platform Private cloud Private cloud Google Cloud Google Cloud
Nodes 5 5 5 8–12
CPU cores 2 × 16 2 × 16 32 16
RAM 384 GB 384 GB 128 GB 64 GB
Machine type Intel Xeon Gold 6130 Intel Xeon Gold 6130 e2-standard-32 e2-standard-16
Kubernetes 1.23.7 1.23.7 1.24.11-gke.1000 1.24.11-gke.1000
Kafka brokers 5 3 5 4
Fig. 2. Benchmark deployment illustrated for the case of benchmark UC3. Our
Theodolite load generator sends messages with a constant, but configurable frequency
to the input stream topic in Kafka. From there, our SUT microservice consumes the
messages, aggregates them and sends the results to the output stream topic in Kafka.
The actual processing inside the SUT microservice is implemented with a stream pro-
cessing framework. For each evaluated stream processing framework, we implemented
dedicated microservice. The implementation of Apache Flink requires an additional
coordinating instance running the Flink JobManager. The deployment for the other
task samples look similar, however, with different dataflow architectures (Henning and
Hasselbring, 2021b) and potentially different input and output streams.

benchmarks according to our scalability benchmarking method (Hen-
ning and Hasselbring, 2022b). Unless stated differently, we run 5 Kafka
brokers, one on each node, with Kafka version 3.2 and 100 parti-
tions per Kafka topic. All implementations of the benchmarks and the
benchmarking tool itself are available as open-source software.5 In
our replication package (Henning and Hasselbring, 2023), we provide
the declarative Theodolite files used for executing the benchmarks
and the collected data of all experiments along with analysis scripts,
allowing other researchers to repeat and extend our work. In the
following, we summarize the configuration of the benchmarked stream
processing frameworks, the selected benchmark task samples, and the
benchmarking method. Fig. 2 illustrates our benchmark deployment.

5.1. Configuration of stream processing frameworks

We benchmark the stream processing frameworks Apache Beam
(version 2.35) with the Flink (version 1.13) and the Samza runner
(version 1.5), Apache Flink (version 1.13), Hazelcast Jet (version 4.5),
and Apache Kafka Streams (version 3.1). For a fair comparison, we
evaluate all frameworks with mostly their default configuration.

We enable committing read offsets to Kafka in all frameworks. This
allows us to monitor the consumer lag via Kafka metrics, which is
required to evaluate our lag trend SLO. Enabling offset committing is
also often done in production deployments to increase observability.
We set the commit interval to 5 s for all frameworks, which is the
default configuration of Kafka consumers once offset committing is
enabled. Kafka Streams has a default commit interval of 30 s as in

5 https://github.com/cau-se/theodolite.
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Kafka Streams, the commit interval also controls fault tolerance (com-
parable to the checkpointing interval in other frameworks). For our
experiments with Apache Beam and the Flink runner, we enable the
FasterCopy option as we further discuss and evaluate in Section 6.2.
Each microservice instance runs as a container in its own Kubernetes
Pod with an additional sidecar container, exposing monitoring data
specific to the stream processing framework. Per default, we configure
1 CPU and 4 GB of memory for each Pod, which is a common ratio
of CPU and memory of cloud VMs. For Flink, we always have one
additional Pod running the JobManager (see Fig. 2).

5.2. Configuration of task samples

As benchmark task samples, we use dataflow architectures rep-
resenting typical use cases for analyzing IIoT sensor data streams.
The task samples consume messages representing simulated power
consumption measurements and produce messages with aggregation
results. Our previous publication (Henning and Hasselbring, 2021b)
describes our four benchmark task samples, named UC1–UC4, in detail.
Unless otherwise stated, we use the following configuration of our
benchmark dataflow architectures.

• Benchmark UC1 is configured to write each incoming message
as a log statement to the standard output stream to simulate
a database write operation (i.e., simulating a side effect in the
dataflow architecture).

• Benchmark UC2 aggregates incoming messages over tumbling
windows of one minute. Any out-of-order records arriving after
the window has been closed are discarded.

• Benchmark UC3 aggregates records by their hour of day attribute
over a time window of three days with a slide period of one day.
That means each incoming record belongs to three time windows.
Early results (i.e., before the end of the time window has passed)
are emitted every 5 s. For Kafka Streams, such emission cannot
explicitly be configured. However, Kafka Streams continuously
forwards aggregation results based on the configured commit
interval (which is 5 s as well).

• Benchmark UC4 aggregates incoming messages in nested groups
of sensors. In contrast to previous work, we benchmark a simpli-
fied version of benchmark UC4, which omits the feedback loop.
This allows for better predictability of the message volume and,
hence, more comparable results.

5.3. Configuration of the benchmarking method

Our Theodolite benchmarking method assesses scalability regarding
a configurable load type, a resource type, and SLOs.

Load type. If not stated differently, we evaluate scalability in regards to
increasing the number of simulated sensors as load type. In benchmark
UC4, this is indirectly controlled by increasing the number of nested
groups, with each group containing 4 sub-groups or sensors. This means
for 𝑛 nested groups, we simulate 4𝑛 sensors. Each simulated sensor
generates one measurement per second. When addressing RQ 3, we
evaluate scalability in regards to increasing the size of time windows

for which data is aggregated.

https://github.com/cau-se/theodolite
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a

Fig. 3. Illustration of the consumer lag trend metric for an exemplary benchmark execution (Theodolite’s UC3 benchmark implemented with Kafka Streams and 50 000 messages/s)
with different numbers of SUT instances. Independent of the number of instances, we can observe a variable lag. However, computing a trend line (without considering the
measurements from an initial warmup period), reveals that for 6 instances, the number of queued messages will steadily increase over time. Providing 7 instances leads to a
decrease in queued messages after the warmup period, while 8 instances yields an almost constant trend line.
Resource type. Unless otherwise stated, we use the number of instances
as resource type. When addressing RQ 4, we additionally use the CPU
and memory resources of a single instance as resource type.

SLOs. In all benchmark executions, we use an SLO based on our
consumer lag trend metric (Henning and Hasselbring, 2021b). The
consumer lag trend describes how many messages are queued in the
messaging system, which have not been processed. Our consumer lag
trend metric describes the average increase (or decrease) of the lag per
second. It can be measured by monitoring the lag and computing a
trend line using linear regression. The slope of this line is the lag trend.
Fig. 3 illustrates the concept of the lag trend. For our experiments, we
consider the SLO to be fulfilled if the lag trend does not increase by
more than 1% of the generated message volume. For Apache Samza,
we set this threshold to 5% of the generated message volume since
we observe a permanent slightly increase independent of the provided
resources.

In certain cases, we observed that under high load the consumer
lag does not substantially increase, but records were discarded due to
lateness. In most stream processing frameworks, operations on time
windows still accept out-of-order records for a configurable amount of
time. If this time has elapsed, records are discarded and not further
processed. Thus, records are still consumed from the messaging system,
not causing a consumer lag increase, but results become incorrect. To
detect these cases, our benchmarks UC2 and UC4 (which aggregate
data in short windows) contain a second SLO, which requires that no
more than 1% of the generated messages are discarded. For the Apache
Beam implementation with the Samza runner, no metrics concerning
the number of dropped records are provided. With Beam’s Flink run-
ner, these metrics are only unreliably available.6 This means that for
these two SUTs, we cannot definitely be sure whether the determined
resource demand for UC2 and UC4 is sufficient to process all records
successfully, but still indicates a lower bound.

Additional configuration. According to the previous experimental evalu-
ations of our benchmarking method (Henning and Hasselbring, 2022a),
we run our experiments with benchmark UC1–UC3 for a duration
of 5 min while considering the first 2 min as warm-up period. As
benchmark UC4 shows a higher variability in the results, we run its
experiments for 10 min including a 4-min warm-up period. We repeat
all our experiments 3 times, which we experimentally observed to be a
good trade-off between overall execution time (or costs in the public
cloud) and statistical grounding (Henning and Hasselbring, 2022a).
We provide a replication package (Henning and Hasselbring, 2023)
allowing to further repeat our experiments. We quantify scalability
with the resource demand metric and use the linear search strategy in
combination with the lower bound restriction (Henning and Hasselbring,
2022a).

6 We asked a corresponding question regarding the metrics of both runners
t Beam’s mailing list, but did not receive an answer.
6

6. Experimental results

In this section, we discuss and present the results of our benchmark
executions. Section 6.1 addresses RQ 1 by running baseline experiments
for each benchmark and framework. Section 6.2 addresses RQ 2 and
investigates the impact of recently proposed performance optimization
configurations for Apache Beam. Section 6.3 addresses RQ 3 and evalu-
ates how different stream processing frameworks scale when increasing
the duration of window aggregations. Section 6.4 addresses RQ 4 by
evaluating how stream processing frameworks scale on a single node.
Section 6.5 addresses RQ 5 and compares our baseline results in the
private cloud with those of a public cloud. Finally, Section 6.6 ad-
dresses RQ 6 and repeats the same experiments for benchmark UC3 in
Kubernetes clusters of different sizes.

6.1. Baseline comparison of frameworks

For our baseline experiments (RQ 1), we use the private cloud envi-
ronment (see Table 1). We benchmark load intensities between 100 000
and 1 000 000 simulated sensors (and, thus, generated messages per
second) for benchmark UC1 and UC2, 10 000 to 100 000 simulated
sensors for UC3, and 5 to 9 nested groups (1024–262 144 generated
messages per second) for benchmark UC4.

Fig. 4 shows the resource demand results for all evaluated frame-
works and benchmarks. The results for benchmark UC4 (in the follow-
ing figures as well) are visualized with an exponential scale with base
4 at the horizontal axis since the number of generated messages grows
exponentially with a linear increase in the number of nested groups.
We can observe that in almost all experiments, Flink, Hazelcast Jet,
and Kafka Streams, have a considerably lower resource demand than
the Beam deployments. Only Hazelcast Jet in UC4 and the Beam Flink
runner for low loads in UC1 are exceptions to this. As in some cases, the
generated load intensities were too high for the Beam deployments, we
repeat the corresponding experiments with lower load intensities (see
Figs. 5 and 8).

Despite some outliers (see Beam/Flink in UC1 and Beam/Samza
in UC4), all frameworks show linear scalability, yet with different
rates. Whereas both SUTs based on Beam show the steepest increase
in required resources, the results of Flink, Kafka Streams, and Hazel-
cast Jet vary depending on the benchmark. In UC1 (see Fig. 4(a)),
all frameworks behave similarly, with resource demands increasing
slightly steeper for Hazelcast Jet compared to Kafka Streams and for
Kafka Streams compared to Flink. For UC2 (see Fig. 4(b)), we see a
clear ranking with Hazelcast Jet showing the best results, followed
by Kafka Streams and Flink. For UC3 (see Fig. 4(c)), Hazelcast Jet
appears to be even more superior. A single Jet instance is sufficient
for all evaluated load intensities. On the other hand, Flink requires up
to 10 TaskManagers and Kafka Streams up to 18 instances. Overall,
Kafka Streams’ resource demand for UC3 increases at a steeper rate

compared to Flink. To further inspect the scalability of Hazelcast Jet
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Fig. 4. Scalability benchmark results according to our resource demand metric for the stream processing frameworks Apache Beam (with the Flink and Samza runners), Apache
Flink, Hazelcast Jet, and Apache Kafka Streams.
Fig. 5. Repetition of scalability experiments shown in Figs. 4(c)–4(d) with lower load
intensities for Apache Beam with the Flink and the Samza runners.

Fig. 6. Repetition of scalability experiments with Hazelcast Jet and benchmark UC3.
a) evaluates scalability regarding the number of simulated sensors with a 30 days
ggregation period in contrast to the 3 days period in Fig. 4(c). (b) evaluates scalability
egarding the aggregation period with a constant load of 100 000 simulated sensors in
ontrast to 10 000 simulated sensors in Fig. 9(a).

or UC3, we repeat these experiments with an aggregation duration of
0 days in contrast to 3 days as used in the other experiments. Fig. 6(a)
hows that Hazelcast Jet also scales linearly in this case. With UC4 (see
ig. 4(d)), we observe a comparable increase in resource demand for
afka Streams and Flink. In contrast to the other benchmarks, Hazelcast
et shows a significantly higher resource demand. Up to 30 instances
re not able to handle load from more than 7 nested sensor groups.

For the frameworks used with Apache Beam, we observe a signifi-
antly steeper increase in resource demand of Samza compared to Flink
7

in UC1 (cf. Fig. 4(a)) and UC2 (cf. Fig. 4(b)). For benchmark UC3 (see
Fig. 5(a)), both frameworks scale at similar rates with Samza requiring
slightly fewer instances. For benchmark UC4 (see Fig. 5(b)), it appears
that the resource demand of Flink increases at a steeper rate as well.
For lower load intensities (less than 5 nested groups), Flink requires
fewer instances than Samza.

Worth mentioning is also the significant difference between native
Apache Flink and the Flink runner of Apache Beam. In almost all
experiments, the resource demand of Apache Beam with Flink is at
least twice as high. For the more compute-intensive benchmarks UC3
and UC4, it is tremendously higher. The performance overhead of using
Apache Beam as an abstraction layer has also been observed in related
research (Hesse et al., 2019).

RQ1: All frameworks appear to be linearly scalable, how-
ever, with different resource usage. Depending on the task
sample, Flink, Hazelcast Jet, or Kafka Streams have the small-
est resource demand. In particular for the task samples of
medium complexity, Hazelcast Jet’s performance is outstand-
ing. Apache Beam implementations, executed by Samza or
Flink, are inferior, independent of the use case.

6.2. Impact of Apache Beam configuration

As we have seen in Section 6.1, Apache Flink and Apache Samza
in combination with Apache Beam have a significantly higher resource
demand compared to the other evaluated frameworks. In this section,
we address RQ 2 and take a closer look at the scalability of the Apache
Beam SUTs and evaluate how scalability is affected by different con-
figuration options. Again, we use the private cloud environment (see
Table 1). In the following, we first look at the Apache Flink runner
and, afterward, at the Apache Samza runner.

6.2.1. Apache Flink
In their master’s thesis, Spæren (2021) investigates possible reasons

for the performance overhead of the Flink runner found by Hesse et al.
(2019). They discovered unnecessary serialization and deserialization
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Fig. 7. Scalability benchmark results for different configurations of Apache Beam with
the Apache Flink runner.

between operators and introduced the FasterCopy option, which dis-
ables these copy operations. This option is integrated in Beam since
version 2.26. While the stream processing application must fulfill some
requirements to run with the FasterCopy option, Bensien (2021) found
that the Theodolite benchmarks fulfill these requirements. As addition-
ally this option might become the default in future releases, we decided
to turn on this option in our benchmark implementations by default. In
this section, we evaluate how enabling and disabling FasterCopy affects
scalability.

Additionally, we observed that Beam’s Kafka consumers generate
a lot of log messages if not configured differently. This contrasts with
the other frameworks. As extensive logging can actually have an impact
on performance (see the following Section 6.4), we evaluate whether
disabling all logging results in lower resource demand.

Fig. 7 shows our results of running the scalability benchmarks
with the FasterCopy option disabled and logging disabled compared
to the experiments from Section 6.1. We can see that enabling Faster-
Copy results in significantly lower resource demands for UC1–UC3 (see
Figs. 7(a)–7(c)). This is in line with the performance improvements
reported by Spæren (2021). For benchmark UC4 (see Fig. 7(d)), en-
abling FasterCopy seems not to have an effect on the resource demand.
A possible explanation is that the dataflow architecture of UC4 in-
volves more data transfer among instances and, hence, actually requires
serialization and deserialization between operators.

We can observe that disabling all logging only has a small impact
on the resource demand of benchmark UC2–UC4 (see Figs. 7(b)–7(d)),
but significantly reduces the resource demand of benchmark UC1 (see
Fig. 7(a)). The latter is expected since benchmark UC1 logs each
incoming message to simulate side effects such as writing records to a
database. We can conclude that the extensive logging of Beam’s Kafka
consumer contributes very little to the overhead introduced by Apache
Beam.

6.2.2. Apache Samza
In a blog post, software engineers at LinkedIn Zhang et al. (2020)

report how they tremendously improved the performance of Beam’s
Samza runner. Primarily, this was achieved by exporting Beam metrics
more efficiently. Moreover, the authors observed that performance
could further be improved when disabling the Beam metrics entirely.
Although this might not be an option in production (Zhang et al., 2020),
we are still interested in how much performance could be further
8

improved when disabling all Beam metrics.
Fig. 8. Scalability benchmark results for different configurations of Apache Beam with
the Apache Samza runner.

Fig. 8 shows our results for benchmarking scalability with Beam
metrics enabled and disabled. We can observe that independent of
the benchmark, disabling metrics results in a similar linear increase in
resource demand, yet at a lower level. However, also with metrics dis-
abled, the resource demand of Apache Beam with the Samza runner is
considerable higher compared to most other frameworks (with metrics
not disabled).

Worth mentioning is also the bachelor’s thesis of Bensien (2021),
who benchmarked Beam with the Samza runner in version 2.22 using
Theodolite’s UC1 benchmark. This Beam version did not include the
performance improvements by Zhang et al. (2020) (released in Beam
version 2.27). Bensien observed a resource demand more than twice as
high with metrics enabled, compared to disabling them.

RQ2: The previously discovered negative impact on perfor-
mance of using Apache Beam as abstraction layer persists.
Possible configuration options for improving performance
(Flink’s FasterCopy, disabling metrics, and disabling logging)
have no significant impact on our results.

6.3. Scaling the window aggregation duration

In Section 6.1, we configure benchmark UC3 with a window dura-
tion of 3 days to compute an average daily course. This is a trade-off
to still benchmark generated data volume of reasonable size. However,
it is likely that in practice, larger time windows are required to obtain
more reasonable results. Therefore, in this section, we evaluate, how
different stream processing frameworks scale with increasing bench-
mark UC3’s window duration. We increase the window duration from
3 days to 30 days, while keeping the number of simulated sensors
and, thus, the incoming message rate constant. For the benchmark
deployment depicted in Fig. 2, this means the message volume and the
state processed by the aggregate operation increases. Again, we use the
private cloud environment (see Table 1). This evaluation is an example
of benchmarking scalability with respect to the work performed for
each incoming message in contrast to scaling the load at the framework
and, thus, addresses RQ 3.

Fig. 9 shows the results of these experiments. According to our
previous results in Section 6.1, we simulate 10 000 sensors for our
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Fig. 9. Scalability benchmark results of all stream processing frameworks when
ncreasing the duration of aggregation windows and, thus the number of windows
aintained simultaneously.

xperiments with Flink, Hazelcast Jet, and Kafka Streams (see Fig. 9(a))
nd 2000 sensors for the Beam SUTs (see Fig. 9(b)). We can observe
hat again all frameworks scale approximately linearly. Remarkable is
gain the performance of Hazelcast Jet, which only requires a single
nstance, independently of the window size. We repeat these experi-
ents with a higher load of 100 000 sensors. As shown in Fig. 6(b),
azelcast Jet also scales approximately linearly in this case. In contrast

o scaling with the number of sensors (see Fig. 4(c)), Kafka Streams and
link scale now with about the same rate of resource demand increase.
imilar to the results shown in Fig. 5(a), Samza’s resource demand
ncreases less steeply compared to Beam’s Flink runner.

RQ3: Similar to scaling the load intensity the microservice
is subject to, all frameworks show linear scalability when
scaling the computational work performed inside the microser-
vice. Again, however, the increase in resource demand differs
noticeably between frameworks with Hazelcast Jet being supe-
rior for the studied case, followed by Flink and Kafka Streams,
and significantly higher resource demand of the Beam-based
deployments.

6.4. Scaling on a single node

In this section, we address RQ 4 and evaluate whether vertical
scaling can be a complementary measure to achieve scalability of
stream processing frameworks. We, therefore, scale our SUT vertically
by varying both the number of instances, which are all deployed to the
same cluster node, as well as the CPU and memory provided for a single
SUT pod.

For the experiments of this section, we slightly modify our exper-
imental setup (see Table 1). We only deploy 3 Kafka brokers, which
run on three different Kubernetes nodes. Of the other two nodes,
we dedicate one to run the load generators and one to run the SUT
instances. Although we only run 3 Kafka brokers and all load generator
instances on the same node, we can confirm that the configured load
is still successfully generated.

To not fully utilize the SUT node, which also runs some infrastruc-
ture and monitoring components, we deploy up to 20 instances with
one CPU core each or up to 20 CPU cores for a single instance. For
scaling with the number of instances, we keep the same configuration
as in the previous experiments. For scaling with the resources per
pod, we only refer to the number of CPU cores, but scale memory
proportionally. (However, in all our experiments we never observed
fully utilized pod memory.) In order to utilize multiple CPU cores, most
stream processing frameworks have to be configured accordingly. For
Flink, we scale the number of task slots of the TaskManager equally
9

to the number of CPU cores. In Kafka Streams, we equally scale the
number of threads to the number of CPU cores. For Samza, the docu-
mentation is inconsistent regarding scaling a standalone application on
a single node. We decided to equally scale the container thread pool size
to the number of CPU cores. Hazelcast Jet does not require additional
configuration as an instance configures its cooperative thread pool
automatically according to the number of CPU cores provided.

For most experiments, we generate the same load intensities as in
the first experiment. However, we use the smaller load intensities from
Section 6.2 for the Beam experiments and the 30 days window for
Hazelcast Jet with benchmark UC3 as introduced in Section 6.3.

Fig. 10 shows the results of our experiments with a single node.
Almost all frameworks show approximately linear scalability when
scaling the number of instances. We observe that Beam with the Samza
runner does not scale with increasing the CPU resources per pod.
Hence, we assume that scaling the container thread pool is not the
right option to increase capacity on a single node. Whether other
configuration options exist remains unclear. Further, we can observe
that no framework is able to process load intensities higher than
200 000 messages per second with a single instance for benchmark
UC1. The reason for this is that we simulate database writes by printing
all incoming records to the standard output stream. Running a single
instance of the frameworks causes all threads to write to the same
stream, which is synchronized and becomes the bottleneck of our
evaluation.

Kafka Streams seems to be more efficient when scaling with the
number of instances, compared to scaling with the number of cores.
For Flink and Hazelcast Jet, scaling with the number of cores is more
efficient for the more complex dataflows in UC3 and UC4, while with
benchmark UC2 both types of scaling yield similar results. Remarkable
are the results for scaling with the number of cores with Beam and
the Flink runner. In contrast to native Flink, Beam with the Flink
runner seems not to be scalable with respect to the number of cores.
Moreover, the Kafka Streams implementation of benchmark UC3 scales
with neither increasing the number of instances nor with increasing the
number of cores. As it scales linearly when running on multiple nodes
(see Fig. 5(a)), our results suggest that underlying hardware resources
become exhausted. However, from manually observing system-level
metrics, we cannot observe anything conspicuous.

RQ4: Despite some exceptions for specific task samples,
stream processing frameworks allow scaling them on a single
node, making vertical scaling a complementary measure to
achieve scalability of stream processing frameworks. For Flink
and Hazelcast Jet, it might be more resource efficient to scale
with the CPU cores per microservice instance instead of scaling
the number of instances. However, caution should be exercised
when accessing shared resources.

6.5. Comparing scalability in public and private clouds

Section 6.1 presented our baseline results of benchmarking scalabil-
ity in the private cloud Kubernetes cluster. We repeat these experiments
in an identically configured Kubernetes cluster in the Google cloud to
address RQ 5 (see Table 1). As in the previous section, we generate the
same load intensities as in the first experiment, yet using the smaller
load intensities from Section 6.2 for the Beam experiments and the
30 days window for Hazelcast Jet with benchmark UC3.

Fig. 11 compares the scalability results in the private and in the
public cloud for each benchmark and stream processing framework.
In general, we can observe that the results for both clouds are similar
and all frameworks show linear scalability, independent of the cloud
platform. We can see a tendency that for higher loads (Flink, Hazelcast
Jet, and Kafka Streams), the resource demand in the Google cloud
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Fig. 10. Scalability of stream processing frameworks on a single node.
increases at a slightly steeper rate. We expect that this is due to the
fact that we used Google’s general-purpose E2 virtual machines with
potentially less powerful resources. Our benchmark UC3 execution of
Hazelcast stands out as its resource demand increases at a lower rate for
the Google cloud. Further experiments would be required to investigate
whether this combination of framework and task sample is special in
some way.

RQ5: Our previous results apply independently of whether a
public or private cloud environment is used. In our experi-
ments, resource demand increases steeper in the public cloud,
yet we expect this to be due to the specific machine types
selected.
10
6.6. Scaling the cluster size

In the previous experiments, we deployed up to 30 SUT instances
since for larger numbers we observed interference of the SUT, load
generation, messaging system, and infrastructure components causing
unstable results. In this section, we address RQ 6 and evaluate whether
stream processing frameworks can be scaled further when also in-
creasing the underlying computing resources. To obtain a more stable
infrastructure, we modify our experimental setup in this section (see
Table 1). We compose our Kubernetes cluster of two node groups in
Google Cloud: The first consists of four 16-core machines, which run
the load generators, four Kafka brokers, and additional benchmarking
infrastructure. The second node group only runs the SUTs. We evaluate
two sizes of this node group, namely four and eight 16-core machines.
As we observed linear scalability for all frameworks and independent

of the benchmark, we focus on benchmark UC3 in these experiments.
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Fig. 11. Scalability of stream processing frameworks in our private cloud (SPEL) compared to the Google cloud (GCP).
e simulate up to 1 000 000 sensors for Flink, Hazelcast Jet, and Kafka
treams and up to 100 000 sensors for the Beam SUTs. For the cluster
ith four SUT nodes, we deploy up to 55 instances, while for the

luster with eight SUT nodes, we deploy up to 110 instances. For all
rameworks, we increase the number of instances in steps of five.

Fig. 12 shows our scalability benchmark results for larger clusters.
or Beam/Flink, Flink, and Kafka Streams, we can observe that the
aximum processable load increases when using a cluster of eight
odes instead of four nodes. For Hazelcast Jet, already the four-node
luster is able to process the highest generated load. For Beam with
he Samza runner, only 20 000 messages per second can be processed,
ndependent of the cluster size. We observe frequent crashes with large
eam/Samza deployments, but due to the many issues observed in
ur Samza experiments, do not further investigate this. An important
bservation is that for all frameworks, fewer SUT instances are required
hen using the larger Kubernetes cluster.
11
RQ6: Observed scalability limits seem to be caused by utilized
hardware and not by the streaming frameworks themselves.
Hence, limits can be raised by using larger clusters.

7. Threats to validity

Despite careful research design, there exist threats and limitations
to the validity of our evaluation, which we report below.

Threats to internal validity. Cloud platforms in general allow only mak-
ing little assumptions regarding the underlying hardware or software
infrastructure (Bermbach et al., 2017). Cloud-native containerized de-
ployments as in this study further abstract this. We consciously chose a
representative, Kubernetes-based execution environment, which, how-
ever, limits control of possible influences on our result. To obtain
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Fig. 12. Scalability benchmark results for benchmark UC3 in Google Cloud for different
luster sizes (machines × cores).

tatistically grounded benchmarking results, we build these evaluations
pon the results of our benchmarking method’s evaluation (Henning
nd Hasselbring, 2022a). Nevertheless, we only found that the se-
ected configuration options provide good estimates. Hence, resource
emands obtained in these evaluations should also only be considered
stimates. Repeating individual experiments more often and for longer
ime periods as well as using our full search strategy is likely to
roduce very similar, but not necessarily identical results. Moreover,
e evaluate a larger set of SUTs, load types, resource types, SLOs, and
enchmarks in this study compared to our method’s evaluation. We
ddress this limitation by carefully observing the benchmark execu-
ion but do not conduct as extensive experiments as in our method’s
valuation. We refer to our previous publication for further discus-
ion on balancing statistical grounding and time-efficient execution for
calability benchmarking (Henning and Hasselbring, 2022a).

hreats to external validity. We conduct all experiments in this eval-
ation with our Theodolite benchmark task samples. As discussed in
revious work (Henning and Hasselbring, 2021b), these benchmarks
epresent relevant use cases. However, we cannot directly generalize
ur findings to arbitrary other applications, where other frameworks,
onfiguration options, or deployment options might perform differently
han our experiments. We conduct all experiments in this evaluation in
ur private cloud environment and in Google Cloud. For the private
loud, we use comparatively large bare metal nodes, while for Google
loud we use large virtual machines. Although our evaluations in
ection 6.5 show only small deviations between both environments,
e cannot necessarily conclude that we would obtain the same results

n other cloud environments. We deliberately assess all frameworks
rimarily using their default configurations. This should mitigate any
ias stemming from different levels of our experience with the different
12
frameworks. However, it does not allow us to make any conclusions
about the potential performance and scalability improvements when
fine-tuned for specific scenarios. When choosing between different
stream processing frameworks, practitioners might also consider other
attributes beyond scalability, such as end-to-end latency, the ability to
recover from failures, or ease of use and development.

8. Related work

Over the last few years, several benchmarks for stream processing
frameworks have been proposed and stream processing benchmarking
studies have been conducted. The differentiation between benchmarks
and experimental studies applying them is sometimes blurry. Many
publications that present benchmarks perform also an experimental
study with them. On the other hand, many experimental studies utilize
existing benchmarks, but modify them. Nevertheless, we structure this
section into two parts: First, we give an overview of stream processing
benchmarks to justify our benchmark selection for this study. Second,
we discuss related stream processing benchmarking studies. For a sys-
tematic mapping of the literature on performance in stream processing,
we refer to the recent study by Vogel et al. (2023).

8.1. Related work on stream processing benchmarks

Besides the Theodolite stream processing benchmarks used in this
study, several other benchmarks for stream processing frameworks
have been proposed. Table 2 summarizes characteristics of the dis-
cussed benchmarks.

StreamBench (Lu et al., 2014) is one of the earliest benchmarks
for modern stream processing frameworks. While originally only im-
plemented for Spark and Storm, it has later been used to benchmark
Apache Apex, Beam, Flink, and Samza as well (Hesse et al., 2019; Qian
et al., 2016). As its name suggests, SparkBench (Li et al., 2015) is a
benchmark tailored to Apache Spark. The Yahoo Streaming Benchmark
(YSB) (Chintapalli et al., 2016) is frequently used and adapted in
research (Lopez et al., 2016; Yang et al., 2017; Karakaya et al., 2017;
Nasiri et al., 2019; Zeuch et al., 2019; Chu et al., 2020; van Dongen
and van den Poel, 2020). Worth highlighting is the work of Shahverdi
et al. (2019), who extend YSB with implementations for the frameworks
Kafka Streams and Hazelcast Jet. As discussed in Section 3, these
frameworks are particularly suited to be deployed as microservices.
RIoTBench (Shukla et al., 2017) provides four application benchmarks
for Storm composed of 27 small task samples. Nasiri et al. (2019)
adopt RIoTBench for Flink and Spark. Karimov et al. (2018) present
a benchmark with two task samples, derived from a real industrial
context, yet without providing open-source implementations.

More recently, DSPBench (Bordin et al., 2020), OSPBench (van
Dongen and van den Poel, 2020), and ESPBench (Hesse et al., 2021)
have been proposed. DSPBench contains 15 benchmarks, which re-
sample typical stream processing applications, derived from reviewing
the literature. OSPBench provides benchmarks for analyzing traffic
sensor data. Besides evaluations of latency, throughput, and resource
usage, van Dongen and van den Poel used OSPBench to also evaluate
scalability (van Dongen and van den Poel, 2021a) and fault recov-
ery (van Dongen and van den Poel, 2021b). In contrast to most other
benchmarks, OSPBench provides implementations for the rather new
framework Kafka Streams, which is also evaluated in this study. The
Enterprise Stream Processing Benchmark (ESPBench) builds upon the
Senska benchmark (Hesse et al., 2018). It is special in the sense that
it integrates a relational database management system. In contrast to
most other benchmarks, ESPBench’s task samples are implemented with
Apache Beam. While Hesse et al. (2021) only perform evaluations with
Spark, Flink, and Hazelcast Jet, we expect that also other Beam runners
can be used to run the benchmark.

The Nexmark benchmark (Tucker et al., 2010) has originally been
proposed as the Niagara Extension to the XMark benchmark addressed to
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Table 2
Overview of the characteristics and implementations of stream processing benchmarks (Henning, 2023).
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Theodolite (Henning and Hasselbring, 2021b) 4 ✓ ✓ ✓ ✓a ✓ ✓ ✓a b ✓ ✓

Beam Nexmark (Apache Software Foundation, 2022)c 13 ✓ ✓ ✓ ✓a ✓a ?a ?a ✓a

ESPBench (Hesse et al., 2021) 5 ✓ ✓ ✓a ✓a ?a ✓a ?a ✓

OSPBench (van Dongen and van den Poel, 2020) 5 ✓ ✓ ✓ ✓ ✓ ✓ ✓

DSPBench (Bordin et al., 2020) 5 ✓ ✓ ✓ ✓ ✓

Shahverdi et al. (2019) 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Karimov et al. (2018) 2 ✓ ✓ ✓ ✓

RIoTBench (Shukla et al., 2017) 4d ✓ ✓ ✓ ✓

YSB (Chintapalli et al., 2016) 1 ✓ ✓ ✓ ✓ ✓ ✓

SparkBench (Li et al., 2015) 10 ✓ ✓ ✓

StreamBench (Lu et al., 2014) 7 ✓ ✓ ✓

Linear Road (Arasu et al., 2004) 5 ✓ ✓

a Using Apache Beam.
b Optional.
c The Beam Nexmark benchmarks are based on the Nexmark paper (Tucker et al., 2010).
d RIoTBench’s 4 application benchmarks are composed of 27 microbenchmarks.
first-generation stream processing systems (see the survey of Fragkoulis
et al. (2023) for a discussion of first and second-generation stream
processing systems). The Apache Beam community adapted and ex-
tended Nexmark with implementations for Beam to benchmark the
performance of different runners (Apache Software Foundation, 2022).
Documentation and benchmark results are provided for the direct
runner as well as for the Flink, the Spark, and the Google Cloud
Dataflow runners. However, running the benchmark with other runners
should be possible as well. Recently, there seems to be an effort to
implement the Nexmark task samples with other frameworks in an
open-source project.7 However, currently this project only provides
mplementations for Apache Flink. Moreover, Gencer et al. (2021)
mplemented the Nexmark benchmark for their performance evaluation
f Hazelcast Jet.

Worth mentioning is also the Linear Road benchmark presented
y Arasu et al. (2004). Although published years before all modern
tream processing frameworks considered in this work have been re-
eased, it is still used in research (Zhang et al., 2017; Zeuch et al., 2019;
ax, 2020) and compared to newer benchmarks (Bordin et al., 2020;
esse et al., 2021). Pagliari et al. (2020) and Garcia et al. (2022b,a)
resent approaches to generate benchmarks.

From Table 2, we can see that a lot of open-source benchmarks
ave been proposed. Apart from the Theodolite benchmarks, none of
hese benchmarks is particularly addressed to scalability. Often origi-
ating in data management research, many benchmarks are defined as

‘queries’’ over data streams (Tucker et al., 2010; Karimov et al., 2018;
esse et al., 2021). Most benchmarks include a messaging system as a
iddleware component between workload generation and stream pro-

essing framework. In the vast majority of cases, this is Apache Kafka.
arimov et al. (2018) exclude such a system to not let it become the
enchmark’s bottleneck. Our Theodolite benchmarks purposely include
afka to represent more realistic microservice deployments (Henning
nd Hasselbring, 2021b). Flink, Spark, and Storm are by far the most
upported frameworks. Only a few benchmarks exist for Samza, Kafka
treams, and Hazelcast Jet, which are frameworks particularly suited to
e deployed as microservices. Our Theodolite benchmarks are the only
nes providing implementations for all of them. While some bench-
arks include an interaction with a database in their setup, others do
ot. With the Theodolite benchmarks, a database can optionally be used
s we did in a previous study (Pfandzelter et al., 2022). Besides our

7 https://github.com/nexmark/nexmark.
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Theodolite benchmarks, there is only one other benchmark (OSPBench)
that is provided as container images to be used in a cloud-native setting.
No other benchmark provides Kubernetes manifests.

8.2. Related work on stream processing benchmarking

Table 3 provides an overview of experimental performance evalua-
tion and benchmarking studies. It indicates the applied benchmark, the
evaluated stream processing, and information regarding the experiment
setup and method. The latter includes whether the respective study was
performed in a cloud environment, in a distributed fashion with multi-
ple instances of the framework deployed. Moreover, it shows whether
the benchmarks have been executed with different resource amounts
and different load intensities and whether different resource amounts
and load intensities are evaluated in isolated experiments. In previous
work, we argued that scalability should be evaluated with isolated
experiments for different combinations of load and resources (Henning
and Hasselbring, 2021a, 2022a).

We can observe that there is no established stream processing
benchmark. Only YSB is used in several studies. However, YSB can
be considered a micro-benchmark (Bermbach et al., 2017) and, hence,
is less suited to benchmark entire microservices. Except for the pre-
liminary evaluation of our Theodolite benchmarks (Henning and Has-
selbring, 2021b), there is no benchmarking study addressed to stream
processing frameworks employed within microservice architectures.

Flink, Spark, and Strom are by far the most frequently benchmarked
frameworks. Kafka Stream, Hazelcast Jet, and Samza, which are partic-
ularly suited to be deployed as microservices, are only benchmarked in
a few studies and there is no study benchmarking all of them.

9 out of 20 studies report on experiments in public or private
clouds. Except for this and our previous study (Pfandzelter et al.,
2022), there are no evaluations in Kubernetes. Likewise, there are no
further studies evaluating scalability with a systematic approach as we
do in this study. Vikash et al. (2020), Nasiri et al. (2019), Karakaya
et al. (2017), and van Dongen and van den Poel (2021a) explicitly
evaluate scalability, however, without testing different load intensities
against different resource amounts in isolated experiments. Nasiri et al.
(2019) conduct independent evaluations of scaling load and computing
resources and, thus, address another aspect than our study. Our previ-
ous study (Pfandzelter et al., 2022) applies our Theodolite method as
well, but benchmarks scalability with respect to costs and is addressed
to comparing stream processing deployments against Function-as-a-

Service offerings. While this work particularly addresses scalability,

https://github.com/nexmark/nexmark
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Table 3
Overview of employed benchmarks, frameworks, and experimental setup of stream processing benchmarking studies (Henning, 2023).
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This work ✓ ✓ ✓a ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Pfandzelter et al. (2022) ✓ ✓a ✓a ✓a ✓ ✓ ✓ ✓ ✓ ✓

Hesse et al. (2021) ✓ ✓a ✓a ✓a ✓ ✓ ✓

van Dongen and van den Poel (2021a) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

van Dongen and van den Poel (2021b) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Bordin et al. (2020) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Chu et al. (2020) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Vikash et al. (2020) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

van Dongen and van den Poel (2020) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Nasiri et al. (2019) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Shahverdi et al. (2019) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Zeuch et al. (2019) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Karimov et al. (2018) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Truong et al. (2018) ✓ ✓ ✓ ✓ ✓ ✓

Karakaya et al. (2017) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Shukla et al. (2017) ✓ ✓ ✓ ✓ ✓

Yang et al. (2017) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Chintapalli et al. (2016) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Lopez et al. (2016) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Qian et al. (2016) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Lu et al. (2014) ✓ ✓ ✓ ✓ ✓ ✓

a Using Apache Beam.
there are other recent studies that benchmark qualities such as through-
put (Bordin et al., 2020; Chu et al., 2020; van Dongen and van den
Poel, 2020), latency (Bordin et al., 2020; van Dongen and van den Poel,
2020; Hesse et al., 2021), and fault-tolerance (van Dongen and van den
Poel, 2021b).

9. Conclusions

In this study, we benchmark the scalability of distributed stream
processing frameworks particularly suited to be used within microser-
vices. We experimentally evaluate the frameworks Apache Flink,
Apache Kafka Streams, Hazelcast Jet, and Apache Beam with the
Apache Flink runner and the Apache Samza runner in a private cloud
environment and in the Google cloud. We find that all frameworks
show linear scalability for most use cases, however with partially
significantly different resource demands. There is no clear superior
framework. Instead, depending on the use case Flink, Hazelcast Jet,
or Kafka Streams show the lowest increase in resource demand. Using
Apache Beam as abstraction layer still comes with a significant negative
impact on performance, leading to a significantly steeper increase in
resource demand, independent of the use case. We observe our results
regardless of scaling load on a microservice, scaling the computational
work performed inside the microservice, the selected cloud environ-
ment, and whether the microservice is scaled over multiple nodes or
on a single node. The latter means that vertical scaling distributed
stream processing frameworks can – to some extent – also complement
horizontal scaling. In summary we found that while scalable microser-
vices can be designed with all evaluated frameworks, the choice of
14
a framework and its deployment has a considerable impact on the
cost of operating it. This emphasizes also a key benefit of designing
stream processing applications using microservice-based architectures:
the ability for each service to select the most suitable stream framework
based on its specific use case, requirements for scalability, and other
relevant considerations. Our findings leave room for future research
on exploring the multi-dimensional space of cloud deployment options
and finding an optimal one. Moreover, our work paves the way for
deeper analysis of the underlying reasons for our observed results by
benchmarking further task samples, deployments, and configuration
options.
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