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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Joshua L. Harris

This thesis investigates how self-supervised learning can be used to locate generalised
three-dimensional articulated poses from images. We split this difficult problem into
its constituent components, self-supervised keypoint detection to find two-dimensional
keypoints from images, and self-supervised pose lifting to infer the depth of those points.
We frame this problem as a representation learning problem, where keypoints are a spa-
tially constrained representation, and also consider the semantic properties of keypoints
when applied to different use cases. We consider how priors are used to resolve an ill-
posed problem such as this, before devising a new prior which leverages the rigidity of
limbs found in most articulated objects to both locate better keypoints and to improve
the lifting of keypoints. We conclude by describing the wider applicability outside of

this specific approach, and suggest future work that logically follows on from this thesis.
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Chapter 1

Introduction

This thesis looks at techniques for applying self-supervised learning to locate generalised

three-dimensional articulation models.

Intuitively, as humans, we can see an articulated object, be it a human, an animal, or
a robot in just a few different poses and we can determine the articulation model that
defines its movement. Can a machine do the same? Our motivation behind taking a self-
supervised approach is that labelling data is expensive, and occasionally inconsistent,
especially for pose estimation. It is common to see labelling issues when an image of an
articulated model contains occlusion, making it difficult to place ground truth labels.
Being able to take a single approach to determine the articulation model of a subject in
an image without the need for labelling the dataset beforehand is not just of academic
interest. We believe being able to determine 3D structures would be beneficial for many
downstream applications including action recognition, surveillance and motion capture

for media production.

1.1 Articulation Models

We define articulation models as a general term for a set of keypoints based on an
underlying model built of articulated elements with an additional restriction that points
are connected by rigid limbs. We create an articulation model by combining an ordered
set of keypoints, which represent joints and endpoints of limbs, and a connection matrix
that defines which keypoints are connected by a rigid spatial constraint. Through the
majority of this thesis, we are interested in 3D articulation models as these not only
contain more information about the world, but also give us more information to estimate

connectivity.
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1.2 Thematic Breakdown

This section breaks down the main themes contained within this thesis and gives an
overview of each. This is not a comprehensive list of themes, but gives an outline of the

ideas that will be discussed in detail later.

1.2.1 Self-Supervised Learning

Tsai et al. [103] state that self-supervised learning “adopts self-defined signals as super-
vision and uses the learned representation for downstream tasks”. Being able to train
a network without requiring labelled data gives us the ability to use any suitable un-
labelled dataset, and greatly speeds up the data collection step required before we can

start training a new model.

There is an argument that it would be more appropriate to apply semi-supervised learn-
ing to this problem, as it can usually get better results by using a combination of a small
labelled dataset and a larger unlabelled dataset. But as our focus is generalisability, we
would like to remove any unnecessary priors that would be included via the labelling of
data, and in turn this lets us apply our approach to any dataset. We are interested in
applying self-supervised techniques throughout this thesis, so will be a common theme
in Chapters 3, 4, 5, and 6.

1.2.2 Keypoint and Landmark Detection

Keypoints have long been an essential component in the computer vision field, tradi-
tionally being used as an anchor point for local descriptor algorithms, but in recent
years have become less critical due to the rise in popularity of learned convolutional
approaches. But this is not to say that keypoints no longer have their uses. As they
are lightweight and easily interpreted it makes keypoints ideal for capturing the shape
of a given object in an image. Keypoints are trivial to work with and from them we can

derive a wide variety of information about the structure of something in an image.

Landmarks are keypoints with the dedicated purpose of locating a specific feature, most
commonly positions in a pose. Whereas a keypoint cannot be incorrect, a landmark is
only correct if it aligns with a ground truth point. There are also other subtle differences,
usually we assume that landmarks are consistent in their ordering, meaning that we
can correlate them between images, but this is not always the case with keypoints.
Terminology of keypoints and landmarks are often confused, leading us to one of our
research questions, RQ3, to clarify what we mean by keypoint in the context of each
section of this thesis. We are primarily looking at this work, in a self supervised and

multi-task environment, in Chapter 4.
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1.2.3 Pose Estimation

Pose estimation is an application of keypoint or landmark detection, which aims to
locate consistent keypoints on a dynamic object. Most commonly objects of interest are
humans, faces or hands, but occasionally animals or robots. Typically these approaches
only work for the articulation model that is has been tailored for, as strong priors are
often used to achieve good results. This thesis is interested in a generalised approach
that uses self-supervised learning alongside weak prior knowledge that is not specific
to the underlying articulation model. We look at generalised keypoint detection, as an
abstraction of pose estimation, in Chapter 4, but go deeper into pose estimation on

articulation models in Chapters 5 and 6.

1.2.4 2D to 3D Keypoint Lifting

As humans, we can look at a 2D representation of a 3D structure and infer the depth
to develop an internal 3D model. Contained within the human visual processing system
are ways of using visual cues to determine the depth of an object, even though the world
is primarily viewed as a 2D representation. Taking inspiration from this, we will be
looking at how to learn to estimate depth using self-supervised learning, using only 2D
inputs taken from single view, monocular images. Learning 3D points from 2D data
has massive implications for downstream tasks over simply a two-dimensional pose, and
can assist with problems such as occlusion. This thesis will primarily focus on keypoint

depth estimation in Chapter 3, but will also continue on this theme in Chapters 5 and 6.

1.2.5 Generative Adversarial Learning

The use of a discriminator network that is optimised to detect real and fake data points
is a powerful tool in deep learning. Our work applies this theory to solve the problem
of self-supervised depth estimation by imagining 3D poses from different angles and
using the discriminator to differentiate the original 2D poses from our 3D estimated
ones viewed from random angles, as shown in Chapter 3. This is not to be confused
with Adversarial Machine Learning, which focuses on robustness against adversarial

examples.

1.2.6 Representation Learning

Self-supervised representation learning has given us an insight into how we can use deep
learning to extract information found within an image without the need for labelled
data [17, 29, 72]. More specifically, our interests for this thesis are in spatial representa-

tions, primarily using keypoints as a spatial constraint to capture structural information
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about an image in a lightweight and interpretable representation. We can then map our
spatial representation onto an articulation model by assigning concrete interpretation
for each keypoint, and applying additional relationships between pairs of keypoints, dic-
tated by a connection matrix. Our spatial representations are first defined and used in

Chapter 4, but continue to be used later in Chapters 5 and 6.

1.2.7 Multi-task Learning

Multi-task learning has been proven to give impressive generalisation results across a va-
riety of domains, and we look to apply it within our research on self-supervised keypoint
detection, covered in Chapter 4. We use a range of carefully selected, self-supervised
tasks that use predicted keypoints and unlabelled images as an input, to provide multi-
ple training signals to the keypoint regressor network as intuitively, a varied set of tasks
will allow for generalised keypoints to be estimated. The generalisation found using this
approach has wider impact, but in our example, will allow us to determine keypoints
on a wide range of articulation models, without overfitting the keypoints to solve one

specific task.

1.3 Motivation for Learning Self-Supervised Articulation
Models

Our motivations for generalising the detection of articulation models using self-supervised

learning techniques are as follows:

e Finding an approach that works for a wide range of articulated objects, including

but not limited to, humans, animals and robots.

e Leveraging only information found in images so that we can apply this technique
to any dataset, without relying on labelled data. This can be clearly extended to
image sequences, but in order to allow one method to apply to a wide range of

datasets, we do not require sequential information.

e Locating generalised spatial representations gives us the opportunity to transfer
knowledge to solve novel downstream tasks, even if they are not used during train-

ing.
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1.4 Research Questions

Following on from our motivations and to frame this thesis, we will establish a set of

research questions that we seek to answer throughout the content of the thesis.
RQ1. How can we learn a self-supervised articulation model?

Previous approaches for pose estimation rely on heavy prior knowledge of the world,
commonly as predetermined articulation models such as Active Shape Models [20], or
large labelled datasets [48]. But we are interested in estimating articulation models

leveraging only self-defined signals, and using minimal prior knowledge.

This research question is broad, but shapes the entire thesis. Naturally with a diffi-
cult problem, we will break it down into smaller, and more manageable, sub-problems,
discussing our approach to solving each, before combining each section into one full

approach.
RQ2. How can we effectively represent spatial constraints?

In a generalised case, a spatial representation can be simply a set of keypoints. We can
assign additional desirable qualities for our keypoints too, such as consistency between
examples and robustness to textural change in the image space. We may also choose
to represent a spatial constraint as a list, if the index that a keypoint lies in convey
important information, or a set, if we deem two permutations of keypoints to be iden-
tical. When looking at other, more applied contexts, such as for articulation models,
the relationships between keypoints convey essential information that we would like to

capture too.
RQ3. In the context of articulation models, what is a keypoint?

Keypoints are one of the most basic spatial representations, but the term can vary
greatly with context. In traditional contexts, a keypoint is the root for a local descriptor
algorithm but in pose estimation it designates a landmark that we aim to identify,
whereas in a self-supervised learning setting, keypoints can be used simply as a spatial
representation. We also need to consider if we are looking for landmarks, where an ideal
location is desired, or keypoints, where the most information captured about an image
is desired. We will aim to answer this research question in each section to apply context

to the term keypoint.

RQ4. What is the minimum prior information required to solve self-supervised artic-

ulation model estimation?
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In a self-supervised environment, we lack ground truth data to learn from, so it is
common to supplement an approach with a prior in order to find good results. Selecting
the correct prior is essential for success, but selecting the right one comes with difficulties.
Determining the best way to leverage the information contained within the dataset,

without making too many assumptions about the data that would inhibit generalisability.

We have selected these research questions because we know intuitively that as humans
can determine a 3D articulation model without the requirement of ground truth 3D
keypoints. This motivates the use of self-supervised learning, as biologically inspired
algorithms should be able to operate with the same information that a human can use

to solve the same problem.

1.5 Contributions

Here we will briefly discuss original contributions made during the course of this thesis:

1.5.1 Pose Lifting with Bottlenecked Auto-Encoders

As discussed in detail in Section 3.4, we take inspiration from similar approaches to
pose lifting using generative adversarial learning and contributed a spatial bottleneck
to compress information before estimating a 3D pose. We achieve good results, but
find that training can be unreliable due to the nature of adversarial learning and the

occasional occurrence of the inverse pose problem.

1.5.2 Multi-Task Approach to Generalised Self-Supervised Keypoint
Detection

Our approach to generalised keypoint detection, leveraging the generalisability of multi-
task learning is a valuable contribution to spatially constrained representation learning,
and is covered in detail in Section 4.4. The main contribution is the generalisability
achieved when learning keypoints that satisfy multiple tasks, to the extent that we can

test on a disjoint dataset to the training set and still achieve reliable results.

1.5.3 Differentiable Minimum Spanning Tree

The minimum spanning tree algorithm is ubiquitous across many applications, but be-
ing able to pass gradients through it allows for more applications in the deep learning
field. As the standard implementation of the Prim’s algorithm is not differentiable, our
contribution found in Section 5.3.1 works around this using an approximation, enabling

the ability for use within a neural network.
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1.5.4 2D to 3D Pose Lifting using Rigid Bone Prior

Existing 2D to 3D Pose Lifting approaches have shown success with adversarial learning,
but can run into the inverse pose problem [61], and can be unreliable during training
due to the nature of adversarial learning. Our approach using a self-consistency loss and
a rigid bone prior, as covered in Section 5.4, allows for consistent lifting without the

difficultly of using generative adversarial learning, and achieving good accuracy.

1.6 Keypoint Clarification

This section will briefly clarify the differences between three key words used in this the-
sis; keypoint, landmark, and pose within the context of finding generalised articulation
models, and why the number of keypoints is a fixed parameter throughout the thesis.
Definitions of the keypoint related terms that will be used throughout the thesis are as

follows:

e Keypoint: A selected point within an image which is robust and repeatable, and

can be used in a list or set to build a generalised spatial representation.

e Landmark: A specialised keypoint that should be placed on a specific feature or

location within the image.

e Pose: A collection of landmarks that represent an object in the image and is
typically stored in a list where the index denotes the feature that each landmark

correlates to.

Throughout this thesis, we will be fixing the number of keypoints used for each experi-
ment (on a per-experiment basis), including those that should be found by our keypoint
detection networks, and used in the lifting from 2D to 3D keypoints. The implications

of this assumption is discussed in further detail in Section 7.4.2.1.

1.7 Breakdown of Thesis Structure

Tackling a tough problem such as this requires a logical approach. To make our aims
achievable, we have decided to break down the problem into achievable sub-problems.
Our pipeline for this project has a clear separation, between the stage that derives
keypoints from images and the stage that infers depth from those 2D keypoints. There
is also an intermediary step between the two, which is made simpler if we have derived
an articulation model. Combining the two is not trivial, and our attempts at producing

a full pipeline is covered in Chapter 6.
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The remainder of this thesis is broken down into the following chapters:
Chapter 2: Literature Review

We will review the related literature in the areas that this thesis covers. We aim to cover
a mix of traditional and modern approaches, and discuss the implications of previous
work on the contents of this thesis. More specific related work to each chapter will be

covered at the start of the relevant chapter.
Chapter 3: Inferring Depth of 2D Keypoints

This chapter will look at existing approaches for inferring depth of dynamic objects,
based on 2D keypoints, before contributing our new approach that lifts poses using an

adversarial loss function alongside a spatial bottleneck.
Chapter 4: Generalised Keypoint Detection using Self-Supervised Learning

In this chapter, we look at formulating self-supervised keypoint detection as a represen-
tation learning problem using a spatial constraint. We look at locating keypoints in a
generalised way, using them as a generic spatial representation that applies to any image,

and implement a multi-task learning approach to encourage generalised keypoints.
Chapter 5: Using Bone Rigidity as a Generic Prior

After considering the results of the previous chapters, we aim to design and implement
a generalised articulation prior to achieve better results without losing generalisability.
We then look to return to the problems faced in Chapters 3 and 4, and implement

solutions using this prior.
Chapter 6: Towards Learning Articulation Models

This chapter aims to link together the approaches used in Chapters 3, 4 and 5 to create
a full pipeline that should be able to take an image and predict a 3D articulation model,
all in a self-supervised manner. Results for an entire pipeline are not yet satisfactory,

but good progress towards this aim has been made.
Chapter 7: Conclusions and Future Work

Finally, we will discuss the work covered in this thesis, draw conclusions and talk about

future work that naturally follows on from this research.
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Related Work

This chapter looks into related work across the range of sub-fields covered in this thesis.
We look at existing approaches to solve pose estimation, including both supervised and
unsupervised methods. We discuss both modern deep learning based pose estimation,
as well as older approaches that apply probabilistic models including shape models. We
then consider keypoints and their general role within computer vision and how they
align with pose estimation and spatial representations. We then finish this section by
discussing representation learning and how spatially constrained representations can be
located via keypoint detection. This chapter is necessarily broad to set the scene of the
thesis. More focused reviews of relevant literature can be found within the following

chapters.

2.1 Pose Estimation

The overarching goal of this thesis is generalising pose estimation in articulated models,
taking heavy influences from the sub-fields of self-supervised learning and generalisa-
tion. While pose estimation concerns the positioning and shape of any object, static
or dynamic, there has historically been a large research focus on human, hand or face
poses. This is mainly due to the downstream implications of locating the poses of human
features, with numerous downstream applications including biometrics, surveillance, vir-
tual reality and healthcare [22]. Our interest in articulated objects will lead us to focus
mostly on human pose estimation, before considering other types of articulation, includ-

ing animal poses.

2.1.1 Classical Pose Estimation

Pose estimation has classically been a well studied area of computer vision and has been

tackled since the very early days of the field. Fischler and Elschlager [30] in the early
9
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1970s aimed to compute an approach for locating a visual object, facial features in their
examples, upon being given an image. Their images are represented as a low resolution
matrix, due to computational restrictions of 1970s hardware, but they succeed to locate

facial features when given specific rules for the patterns that identify them.

Published in 2015, Liu et al. [74] review traditional human pose estimation approaches
that use body part parsing at their core. The scope of work covered in this review is
vast, covering single and multi person estimation, in videos and in images, and using
monocular or multi-view data. They identify the future trend using unsupervised and
semi-supervised learning for parsing body parts. Their final take-away is that there
is a large gap between theoretical research and real-world applications, a key point to

consider as we implement approaches to finding articulated poses.

Bourdev and Malik [5] use poselets, described as “parts that are tightly clustered in both
appearance and configuration space” for their 3D human pose estimation approach. This
means they consider both structure of body parts, but also appearance when selecting
their poselets. Their pipeline proposes poselets from each input image, and pass them
through a Max Margin Hough Transform to learn to weight correctly located poselets.
Their other main contribution is H3D, a 3D human pose dataset which provides 3D

annotations for in-the-wild images of people.

Other well established approaches to tackling this problem opt for using shape models.
Traditional shape modelling techniques use Procrustes analysis to align a set of training
examples before using PCA to learn the low-dimensional representation to capture valid
shapes. Caunce et al. [8, 9], Rogez et al. [92] all look into using shape modelling to
find accurate shape models of the human face, and capturing facial articulation. Hasler
et al. [40] look at learning a shape model using high detailed 3D meshes, capturing both
the pose and appearance of the subject, allowing for a generative model to create novel

examples of 3D models with new shapes and poses, demonstrated in Figure 2.1.

Cootes et al. [20] pioneered the concept of an Active Shape Model, which using the
distribution of a relatively small training set learns a point distribution model of the
shape of a dynamic object. This shape model can then be fit onto an image using an
iterative search process, and is capable of robustly fitting to images and is tolerant to
some occlusion. They demonstrate their approach on echocardiogram scans of hearts
and hands, where a small labelled training set of each is used to learn a point distribution

model, which can then be fit onto new unseen examples.

2.1.2 Modern Approaches

Recent attempts at pose estimation manage to tackle the problem with impressive re-
sults using deep learning. Typically in a supervised environment, pose estimation is a

regression task where a network is trained to minimise the L or Lo error between the
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Figure 2.1: Poses and shapes in the form of volumetric models that have been randomly
sampled from a learnt distribution of poses from a dataset of people. Taken from Hasler
et al. [40].

output and the labelled keypoints. Dang et al. [22] survey deep learning approaches to
2D pose estimation, looking at both single-person and multi-person approaches, while
also discussing datasets, metrics and unsolved challenges in this field. They find that
convolutional neural networks are typically used, with either linear layers finishing with
two times the number of keypoints [102] or a soft-arg-max function to derive numerical

keypoints from the peaks of resultant heatmaps from the convolutional layers [77].

A review of monocular deep learning based human pose estimation approaches is car-
ried out by Chen et al. [15], who split the field up into single- and multi-person pose
estimation and in both two and three dimensions. They identify that while some pose
estimation approaches are keypoint or skeletal based, other look for contour-based mod-
els that outline the person or people identified or volumetric approaches which fit a 3D
model onto the image to provide 3D pose estimation. They also identify two major
strategies within the multi-person pose estimation space. The first is top down, where
object detection is used to identify how many people are in the image, cropping those
with bounding boxes, and running pose estimation on each of those. The second is bot-
tom up where body parts are located across the whole image, and people are identified

via linking those parts together via joint candidate grouping.

Toshev and Szegedy [102] were among the first to apply deep learning techniques to
pose estimation and laid the foundations for future deep learning based pose estimation
approaches. Their implementation used simple convolutional neural networks with fully
connected heads to regress directly to the desired number of keypoints, but cascade
multiple networks and feed in a cropped version of the input image around each predicted
keypoint in order to improve the accuracy of detection. At time of publication, their

approach was state-of-the-art for the Frames Labelled in Cinema dataset [93] and the
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Leeds Sports Dataset [57, 58], outperforming traditional approaches that did not leverage

the power of deep learning.

In the area of multi-person pose estimation, Cao et al. [6] have been successful for images
with many humans, such as the MPII human multi-person dataset, while also running
in real-time. They manage this by using part affinity fields to determine which body

part belongs to which individual, making use of the image data around each point.

Deep learning based pose estimation does not need to be through supervised learning.
Jakab et al. [50] demonstrate a novel self-supervised approach to human pose estima-
tion that makes use of unaligned data, leveraging images and keypoints from unpaired
datasets, allowing for the usage of any unlabelled image dataset as long as the un-
paired keypoints represent a good range of poses. They demonstrate state-of-the-art
unsupervised landmark detection performance, while maintaining an approach that is
applicable to a wide range of datasets, considering the strength of the prior used. While
this approach demonstrates good performance without direct supervision, our focus is on
generalisability, and requiring a labelled dataset of poses for each category of articulation

model would take away from our fully self-supervised and generalised approach.

2.1.3 3D Pose Estimation

Wang et al. [107] have surveyed the space of 3D human pose estimation. They cover
not only single human estimation, but also multi-person, and consider approaches that
operate on singular frames and on sequences. Additionally, datasets, evaluation metrics
and performance analysis comparing similar approaches have been detailed and future
potential developments outlined. They make the distinction between skeleton based

models, skinned multi-person linear model and surface-based models.

Ji et al. [54] have also performed a survey of monocular 3D pose estimation. As part
of their analysis, they break down the different approaches into two categories, direct
regression of 3D pose and cascaded approaches that regress to 2D pose before performing
3D pose lifting. They find that the general performance of the latter category performs
best. This survey, along with other previous approaches to 3D pose estimation, combined
with the knowledge of the difficulties in training neural networks using self-supervised
learning techniques, lead us to the decision to pursue an approach that splits the pipeline
into 2D pose estimation and 2D-3D pose lifting. This will be covered in more detail in
Chapter 6.

Pavlakos et al. [88] use a supervised approach that manages to identify shape and 3D
pose from a single colour image as a 3D mesh. This heavily supervised technique works
as a pipeline, finding the keypoints of joints as heatmaps, and then inferring the 3D

structure.
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Chen and Ramanan [11] show promising results in 3D pose estimation, and do so by
estimating 2D keypoints from the image and then matching to the closest example from
a dataset of known valid 3D human poses. This puts the emphasis on locating accurate
2D poses in order to correctly make a match, and exemplar-based matching is done via
a reprojection error on nearest matched 3D example. This method ensures that every
prediction gives a realistic human pose, but does have limitations to the finite set of
known poses, so would perhaps not succeed if given novel examples of unusual looking
poses, lacking robustness to out of distribution poses. This lack of generalisation means
that there would be failure cases in downstream applications with high variance of poses

such as analysing gymnastics data.

Jenni and Favaro [53] solve the problem of self-supervised 3D pose estimation leverag-
ing the multi-view data found in the Human3.6m dataset, but also deviate from strict
self-supervision by using a small annotated dataset to fine-tune their self-supervised net-
work. Their self-supervised training uses a classification task which aims to determine if
a pair of frames are of the same scene but from a different angle, if a pair of frames are
unsynchronised, or if one frame is a flipped version of the other, using a Siamese architec-
ture to derive representations from pairs of images. They then use the Siamese network
trained on this self-supervised task as the initial step of a pipeline where representations
are derived from images and those representations are regressed onto a small training
set of ground truth 3D keypoints, finding comparable results to similar approaches that

use full supervision.

When considering depth perception using deep learning, we may want to consider bio-
logically inspired approaches. As humans, our internal depth perception is not foolproof,
optical illusions that play on our methods of inferring depth are numerous, many com-
mon optical illusions work around exploiting the cues that the human visual system
uses to determine depth [108]. From this knowledge, we can see pitfalls of human vision,
and may help explain and diagnose similar errors when developing and training a depth
estimation neural network. This work has helped inform the addition of an additional
self-consistency loss function as seen in Section 5.4, which aims to circumvent errors in
depth perception that can occur when insufficient information is available to estimating
depth.

2.1.4 Animal Pose

While a great research focus is on pose estimation for humans, being full body poses,
faces and hands, because of their plentiful applications, our motivations are to generalise
our approach to consider a wider range of articulation models, so we must also consider
approaches that are not limited to human pose. Yu et al. [113] have recently collated a
dataset for general pose estimation in the wild, taking a wide range of animals of different

taxonomies and labelling them alongside providing a benchmark for their preliminary
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results. Such a dataset poses a challenge that is relatively unexplored within pose
estimation research in a supervised scenario, so a fully optimised solution to the problem
has yet to be found. Pereira et al. [89] look at how to quickly detect animal pose when
dealing with new and limited data, finding that with only 100 labelled images, they
can achieve 90% of their baseline performance. This approach lends itself to unseen
downstream applications as labelling a small set of images is a small overhead to get
results on an unseen subject. A toolkit has been put together by Graving et al. [36] as
a starting block for others who work in the area of animal pose estimation, operating
both in the wild and in laboratory settings, with the additional capability to deal with
multi-animal images. Liu et al. [73] look at leveraging video information and optical flow
in their multi-frame approach for improving the performance of animal pose estimation.
Their base model is flexible to the variance found within poses of animals, and once a pose
is derived from a frame using their baseline model, multiple frames are passed through
and optical flow model to derive the movement from each input video. The optical flow
data is then able to correct mistakes in the pose estimation from the baseline model,

resulting in a model capable of state-of-the-art results at time of publication.

2.1.5 Challenges

As briefly mentioned by Dang et al. [22], occlusion and self-occlusion are still challenges
in human pose estimation. Jalal and Singh [52] have identified three distinct types of
occlusion; self-occlusion, where part of an object blocks itself, inter-object occlusion,
where one object in the image occludes another, and background occlusion, in which

some of the background occludes the object.

While just one example of many, Chen et al. [12] find impressive results within 2D to
3D pose lifting using a self consistency prior, but attribute most of their failure cases to
self-occlusion. Solutions to adding robustness to 3D pose estimation when using deep
heatmaps have been proposed by Oberweger et al. [86]. They note that convolutional
based approaches are highly sensitive to occlusions, but they add robustness via aug-
menting training data with random occluding objects taken from the LineMOD dataset.
This approach is agnostic to any training dataset, and has been demonstrated to be more

effective in adding robustness than using random two-dimensional geometric occlusions.

Another challenge in this space, also mentioned by Dang et al. [22], is that existing
datasets are large but contain a lack of balance towards rare poses, and no approaches
manage to fix this dataset imbalance. They mention data augmentation as a solution,
with one option using GANs to generate new data points or unlabelled data to augment
in a semi-supervised fashion. Another proposed solution uses special training procedures

to learn a better network when using biased data.
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Li et al. [65] use an evolutionary algorithm as an approach to remove data bias against
extreme poses in 3D human pose estimation. They do this by representing poses as
trees, and using evolutionary strategies, augmenting their pose dataset with new data
points built from pairs of poses that have been crossed-over and mutated. Their results
showed state-of-the-art performance on fully-supervised 3D pose estimation at time of

publication, showing the power of enriching a dataset using this approach.

Jiang et al. [55] take a similar strategy, but use a synthetic dataset to level the data bias.
Using a conditional variational auto-encoder, they map an existing dataset into a smooth
latent space, and then generate new plausible examples by sampling random points from
that latent space within a given distribution. The authors of this paper were able to
get state-of-the-art results on the Human3.6m dataset at time of publication. However,
there is some concern that training a network using synthetic data will result in poor
performance on real-world data, and as Human3.6m is data captured in a constrained

environment, this approach may not generalise as well as other approaches.

Another challenge identified by Dang et al. [22] is real-time processing of information,
which inhibits the usefulness of these approaches when used for real world problems that
require the ability to run in real-time, especially when considering video data. To aid

this, each stage of the pipeline must be carefully implemented to reduce processing time.

2.1.6 Summary

Pose estimation is a problem that has been researched for approximately 50 years, yet
robustly locating poses remains a problem. We have looked at traditional, modern
and 3D human pose estimation, while also considering animal poses and identifying
the challenges faced when locating poses. When researching and implementing our
generalised articulated pose estimation approach, we should consider these challenges
and think how best to overcome them, and also take inspiration from previous successful
approaches, notably splitting a 3D approach into 2D keypoint estimation before passing

to a depth estimator.

2.2 Keypoints

The next major focus of our related work section considers keypoints and their usages
both recently and historically, and their relevance to pose estimation. We introduced the
idea of keypoints and the terminology used in Section 1.2.2, while outlining the nuanced
differences between keypoints and landmarks, the former being generic points and the

latter being specific areas on an image to identify.
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2.2.1 Traditional Keypoint Detection

Keypoint detection has been at the core of computer vision techniques throughout the
history of the field. Traditionally keypoint detection was the first step in detecting local
features [38, 76, 84, 94], before analysing these extracted features to solve a task. Typ-
ically, the algorithms used to locate keypoints are designed to look for interest points,
which are areas of high saliency with the image, for example; corners [38], blobs [76] or
regions [82]. Good keypoints should be robust to noise in the image, and repeatable,
so similar points are found in similar images. While once ubiquitous, these techniques
are much less common today, and focus has switched to using deep learning techniques
to train networks to find keypoints. However, there are cases where keypoints are still
relevant, albeit mostly in traditional computer vision pipelines where explainability is
desired or in safety critical environments. But these traditional approaches are not re-
dundant in recent times, and further research is going into traditional keypoint detection.
Cho et al. [16] have recently investigated the benefits of higher order Laplacian of Gaus-
sian keypoint detection techniques and find that when used in combination with higher
order Difference of Gaussian, show improvements in multiple keypoint-based computer

vision problems.

2.2.2 Deep Learning Keypoint Detection

Keypoint detection still has relevance in the current deep learning research climate.
Typically when we consider deep learning based keypoint detection, we are interested
in convolutional neural networks in which convolutional kernels have been learned via

large amounts of data to identify desirable points.

Neural network architectures of interest in the field of keypoint detection are hour-
glass and stacked hourglass networks. Examples include unsupervised keypoint detec-
tion [118], fully supervised human pose estimation [85] and locating 3D human pose [14].
The power of an hourglass network comes from its ability to fuse local and global infor-
mation about an image to locate local image features while using the context of where
the feature is located within the image. This is in contrast to traditional keypoint detec-
tion approaches which rely on local context only. Due to the merits of this architecture,
this is something that we will be using as inspiration as we develop and implement our

own solutions.

There is a shifting focus towards capturing spatially constrained representations from
images instead of selecting keypoints for the basis of a local descriptor algorithm. Thewlis
et al. [98, 99, 100] have investigated capturing shape with unsupervised learning in
multiple domains. The basis of this concept is to train a network to find invariant points
between an original image and an artificially warped version of it, with the aim of training

a network to robustly locate keypoints. Zhang et al. [118] take this idea further by adding
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a reconstruction task as a training objective that uses local descriptors to reconstruct the
image alongside checking for consistency between non-linear image warps. Kulkarni et al.
[63] apply a similar method to the control domain, leveraging sequential information to
find robust points. A common technique used with self-supervised keypoint detection
is to append a linear regressor to the network and training it with a small amount
of ground truth data in order to convert keypoints into specific landmarks for pose
estimation tasks [100, 118]. While not strictly self-supervised, this additional step gives
a good indication of how to convert a generalised representation into landmarks with
the goal of locating specific features on the object in the image. This step does however
prove the saliency of the keypoints located from the images, regression would not be

successful unless a good spatial representation had been identified.

Jakab et al. [51] present a semi-supervised solution that uses disjoint images and la-
bels that belong to the same category. While results are impressive, this technique
requires keypoint shapes which are available for some categories of objects such as hu-
man pose [48], but fails to generalise to our desired extent, where we wish to find spatial

representations of any given articulated object.

While current unsupervised approaches work well, they typically require a lot of hyper-
parameter tweaking on a per-dataset basis in order to get satisfactory results [100, 118].
Some methods even require an entirely new network architecture when using a different
dataset [118]. Our research in this thesis aims to improve upon this, with the goal
of being able to locate robust and reliable keypoints with minimal hyper-parameter
tweaking between datasets. We also note that the generalisability of some of these
approaches only allows for structures in one category of object to be found at once,

opposed to an ideal domain-agnostic scenario.

Bojani¢ et al. [3] perform an analysis comparing traditional keypoint approaches to deep
learning based approaches. They compare the performance of a wide range of keypoint
detection algorithms on keypoint verification, image matching and keypoint retrieval.
Their findings were that, while deep learning based approaches typically perform better,

some combinations of traditional detectors and descriptors outperform deep models.

2.2.3 Applications of Keypoint Detection

There are a wide variety of downstream tasks that use keypoint detection as a founda-
tion. These range from local descriptor algorithms for image recognition [69] to image
stitching tasks like panorama creation [97]. A case where the exact locations of key-
points is required, or typically landmarks in this context, is in pose estimation and
shape modelling. Cootes et al. [20] have historically looked at the problem of mapping
shapes onto images to fit landmarks using Active Shape Models. While these techniques

are pre-CNN era, this method is still strong and can be used to reliably add robustness
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to a landmark detector. Modern uses of keypoints include pose estimation [6, 23, 111],
which is most commonly applied to locating landmarks on people, but hands and faces
are also common, as discussed in further detail in Section 2.1. But aside from the literal
use of keypoints as landmarks, or as interest points for descriptor algorithms, another
major use case is as a generalised spatial representation, which we will discuss further
in Section 2.3.1.

2.2.4 Where this field is moving

Recently, there has been research interest in combined deep-learning based keypoint
detectors and descriptors, to mimic the keypoint detection and description section found
in pre-deep-learning computer vision pipelines. One such approach by Christiansen et al.
[18] is UnsuperPoint, building off the previous SuperPoint work [24], which aims to
create a self-supervised deep learning based keypoint detector and descriptor. They use
a multi-task network architecture, with a common backbone which splits off into separate
branches for scores, point locations and descriptors. During optimisation, their approach
learns to optimise four loss functions, an unsupervised keypoint consistency loss between
transformed pairs of images, a uniform point predictions loss that encourages each image
patch to have uniform point placement, a descriptor loss and a de-correlation loss for
descriptors to reduce overfitting. The resultant model finds keypoints for any image with
real-time speed, making it suitable at the start of a computer vision pipeline, all without
the requirement for labelled training data. However, as Bojani¢ et al. [3] found in their
study, the supervised SuperPoint model does not exceed the performance of classical
keypoint detector and descriptor approaches when used in verification, matching and

retrieval, but does manage to outperform in terms of speed.

As can be seen from other deep learning disciplines, especially Natural Language Pro-
cessing, huge pre-trained transformer models are becoming the backbone of deep learning
pipelines. Computer vision has already started to follow suit, as seen in vision transform-
ers [26]. But in contexts where regions of information should be considered, a keypoint
detector and descriptor based transformer may allow for a wide range of downstream

tasks while being generalised such that it works with any image dataset.

Another research direction that keypoints have been essential to is point clouds, allow-
ing 3D shapes to be encoded into a set of keypoints. Guo et al. [37] have developed a
transformer for converting images into point clouds representing the 3D structure found
within the image. This point cloud can then be used for downstream 3D tasks, in-
cluding part segmentation and 3D model classification. Hui et al. [45] demonstrate one
way 3D point clouds can be further refined by converting them into Superpoints which
group together similar points with local geometric structures. They demonstrate the
power of this technique in point cloud semantic segmentation, achieving state-of-the-art

performance.
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2.2.5 Summary

This section has discussed how keypoints have traditionally been located using interest
point detectors, identifying small patches of interest with the intended purpose of sam-
pling the local context descriptors for downstream tasks. We then discussed how deep
learning has changed the landscape of keypoints due to the lack of requirement when
using a convolutional filter approach, and the new role of keypoints as either the goal of
a pose estimation task or a spatially constrained representation of an image. We finally
theorised where the field of keypoint detection is moving in the future, with respects to
deep learning, transfer learning and transformer networks, where a pre-trained model
can be used or fine-tuned to extract generic spatial information about an image. Our
deep learning approach should also take inspiration from previously network architec-
tures including hourglass networks, which fuse together local and global contexts for
keypoint estimation. Robustness should be added to our trained keypoint detectors via
an image transformation consistency task, and our estimated self-supervised keypoints
can be evaluated using a semi-supervised metric in which estimated points are passed

through a linear regressor to provide a distance error.

2.3 General Representations

Representations are at the core of data science. How we represent our data has impli-
cations on the approaches we take and the algorithms we use. But with deep learning,
we can also learn representations, which is important for this thesis within the spatial
domain, especially with respect to Chapter 4. We will be looking at the most effective

ways of capturing learnt spatial representations, as a method for answering RQ2.

2.3.1 Representation Learning

Representation Learning is at the core of many different machine learning techniques
and keypoints can be viewed as a representation using a strong spatial constraint. Ben-
gio et al. [2] in their high-level survey of representation learning, identify three main
categories within representation learning; probabilistic models, reconstruction-based al-
gorithms, and geometrically motivated manifold-learning. While the majority of ap-
proaches that we consider in this thesis are reconstruction-based, probabilistic models
and geometrical manifold-learning have the ability to capture more nuanced representa-
tions of data. Narrowing their scope, Jing and Tian [56] survey visual feature learning
using deep neural networks, and consider representations from both images and videos,
while also discussing common pre-text and downstream tasks, neural network architec-
tures, and datasets. They identify that within images, context and spatial information

are important features to distil into a representation, and videos should contain these
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alongside temporal features. Kolesnikov et al. [60] break down the factors that impact
the effectiveness of self-supervised visual representation learning, with the key finding
that both neural network architectures and methods of training must not be considered
in isolation, due to inter-dependency between the two elements when learning represen-

tations.

Self-supervised learning is a common method for learning representations from an unla-
belled dataset. Choi et al. [17] use a simple training task of predicting image rotations
to learn representations of images. Despite being a simple task, the semantic features
learnt using this approach allow the researchers to get state-of-the-art performance at
time of publication for unsupervised feature learning on ImageNet classification, PAS-
CAL classification, detection and segmentation, and CIFAR-10 classification. Doersch
and Zisserman [25] apply multi-task learning for self-supervised visual feature extrac-
tion, using supervised tasks where data can be collected without the use of manual
labelling. They find that deeper networks improve the ability to extract representa-
tions in a self-supervised fashion over shallow networks, and that using multiple training
tasks improves performance over only using a singular task, while also speeding up
training. Their results show a shrinking of the gap in ImageNet classification perfor-
mance between supervised and self-supervised learning. Self-supervised representation
learning also aids in model robustness as demonstrated by Hendrycks et al. [44], who
show increased robustness to adversarial examples, label corruption, and common in-
put corruptions. Additionally, classification of out-of-, but near-distribution outliers is

improved, allowing for a final model that exceeds supervised approaches.

One important research area within representation learning is in evaluation of repre-
sentations. Goodfellow et al. [34] claim that a “good representation is one that makes
a subsequent learning task easier” and that the “choice of representation will usually
depend on the choice of the subsequent learning task”. As a general rule, a good rep-
resentation is one that maximises the amount of information extracted from the input
data, if a system exists for measuring the information captured. This will be considered

later when we discuss how to represent spatial constraints in order to answer RQ2.

Typically, techniques look to learn a global representation for each image, typically in
the form of a vector, but our application requires a spatial constraint to be applied. This
operates as a bottleneck and one option for deriving keypoints is to use the soft arg-max
function, discussed further in Section 4.5.2, to locate the highest pixel activation in a
heatmap [100]. As this spatial representation is simply a list or set of X and Y pairs,
it removes non-spatial information while being highly interpretable and generalised for

compatibility with any image.

Constrastive learning [72, 101] aims to find representations where the magnitude of dif-
ference between representations is proportionate to the difference between data points

while maintaining similar representations between similar data points. When applied
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to a spatially constrained representation such as keypoints, we would like objects with
different structures to be captured with different shapes of keypoints, but similar struc-
tured objects with different textural appearances to have similar keypoints. In a keypoint
detection context, this is typically considered when we discuss robustness and repeata-
bility.

2.4 Summary

This chapter has explored existing work in the areas concerned by this thesis. We have
discussed approaches to solving the problem of pose estimation, ranging from traditional
methods using shape models to newer methods using neural networks. We have also
seen that 3D pose estimation can be simplified by solving two separate tasks, finding
keypoints that relate to joints on an image and inferring depth from those points, to

predict a three-dimensional skeletal model.

With previous work in this field in mind, our approach to solving this problem will draw
inspiration from some of these methods and techniques. We will split the approach into
two composite sub-problems, and find generalised self-supervised approaches for solving
both, before building a full pipeline that attempts to solve both sections simultane-
ously. Framing keypoint detection as a representation learning problem allows us to
generalise keypoint detection while endeavouring to maximise information captured by
our points. Our keypoint detector network architecture will take inspiration from hour-
glass networks, which fuse local and global information, and using consistency between
transformed images as a self-supervised training signal will be used to locate robust

keypoints.






Chapter 3

Inferring Depth from 2D
Keypoints using Self-Supervised

Learning

This chapter covers the stage in the articulation model estimation pipeline that infers
the depth of 3D keypoints from 2D inputs. Necessary for our objectives, monocular
2D to 3D lifting is a powerful tool, as single-view image datasets do not contain any
explicit depth. The depth of each keypoint must be inferred from the limited information

contained within the 2D data if we are to maintain a self-supervised learning approach.

3.1 Introduction

2D to 3D Pose Lifting aims to infer the three-dimensional structure given an input of
two-dimensional keypoints. This objective is complicated further by the dynamic nature
of our articulated subjects. The subject can be represented in many different poses, thus
shows the need to learn to represent the dynamic pose and the 3D structure concur-
rently. We must also consider the difficulties of locating the structure of a symmetrical

articulated object, can all this be done using only 2D information?

Finding the 3D keypoints that are defined by an articulation model is a step towards
answering RQ1, and doing this in a self-supervised environment is the challenging step in
this process. While there is a large field of work that considers only 2D keypoints for pose
estimation, the benefits of learning a 3D model gives a large amount of information when
considering occluded points. Reconsidering RQ3, the term keypoint in this chapter is
specifically to resemble the landmarks that designate joints within our articulated model.
The order of the keypoints is also important here, with each index corresponding to a

specific articulation point, and must be consistent between examples. Considering the

23
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spatial constraints in RQ2, this chapter looks at using a bottlenecked auto-encoder, to
compress spatial information, before estimating 3D information from a smaller latent

space.

3.2 Related Work

This section will cover related work to the specific areas covered in this chapter. We
break the section down into three sections: traditional depth lifting that predate the
deep learning revolution, deep learning approaches, and datasets that we can use to

both train our model and test our approach.

3.2.1 Traditional Pose Lifting

Traditional approaches to estimating 3D from 2D data required multiple viewpoints,
in order to create a well-formed problem which can be solved numerically as shown in
Hartley and Zisserman [39]. While this is both elegant and effective, it requires one of
two constraints. The first is at least two cameras with a significant distance between
them, and for those cameras to have their parameters known, which creates limitations
for this approach outside of a laboratory setting. The second constraint is one camera
with multiple snapshots of the same object or scene taken while the camera is in motion.
Monocular pose lifting is preferable, and early work in this includes Shape from Shading,

using lighting cues within the image to estimate depth of a surface [78].

Cootes et al. [20] introduced Active Shape Models as a simple statistical method for
capturing the variance of poses, and is easily extended into three-dimensions [7, 9, 46].
The simplicity of aligning the given data and capturing variance about it follows our
self-supervised methodology, and the results give robust and reliable pose estimation in

both two and three dimensions.

But as we are looking at solving this problem without the use of multiple views, a more
appropriate approach would apply deep learning to this problem. We are interested in
how subtle information can be found from different scales, give us a system of estimating

the depth of keypoints when we have monocular image data to work with.

3.2.2 Deep Learning based Lifting

The problem of finding a 3D pose assumes that we have 2D keypoints of a pose, which
requires the other section of the pipeline to determine these from an image. Another
option is to simply leverage the accuracy of 2D ground truth data, creating a semi-

supervised approach if we are interested in 3D points but only have 2D labels. Martinez
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et al. [79] give a good benchmark for a solution to this problem by using a neural network
and a dataset of 2D and 3D training examples. They get successful results with a simple
neural network architecture by using a few well known tricks such as skip connections [43]
and batch norm [47]. Kudo et al. [61] have shown that this task can be solved using
unsupervised learning, although their approach does require a strong prior on the angles
between joints in order to prevent the inverse pose problem. As this prior is specific to
the articulation of humans, it would not generalise beyond human pose lifting. Their
successes come from adversarial learning, and the use of a discriminator to determine
if the given pose is from the dataset or generated from their pose lifting network. A
very similar approach was devised by Drover et al. [27], but using weakly-supervised
learning, with an interest in training a supervised 2D keypoint detector alongside the 3D
pose lifting. In addition to adversarial learning, Chen et al. [13] use a self-consistency
loss function to create an approach that improves upon the accuracy found in other
unsupervised and self-supervised pose lifting approaches. Another approach by Wandt
et al. [106] achieves monocular self-supervised pose lifting using noisy data taken from
an off-the-shelf joint estimator, but requires multiple views at the training stage to
prevent an ill-posed problem from occurring. While not a comprehensive study of all
pose lifting via deep neural networks, these previous approaches show the applicability
of deep learning to the pose lifting problem, especially when we have only 2D keypoints

from monocular images.

3.2.3 Datasets

These approaches are reliant on having data to both train a network, but also test its
performance. A number of datasets of articulated dynamic objects, primarily humans
but also animals. Ionescu et al. [48] created the popular Human3.6m dataset, which
contains videos of actors from 4 different angles, along with 2D keypoints for 32 body
parts for each video, and 3D keypoints derived from the 2D data. Charles et al. [10]
put together a dataset of sign language poses, taken from BBC footage with the aim
of human pose estimation. Due to the nature of this data source, there is a constraint
of the image subject always facing towards the camera and only having the upper half
of their body visible. There is also a dynamic background, being the footage that is
being interpreted is sign language, which can add a lot of noise to the images. However,
we may want to train or test our network on data that is less constrained than these
two datasets which have many fixed parameters. Von Marcard et al. [104] address these
concerns and have created a 3D pose in-the-wild dataset, giving 3D pose data outside

of a laboratory setting.

While we have focused on human poses, we aim to design an approach that is generalised
to any articulated object. The 3D menagerie dataset [120] gives us the option to test the

generalisability of our approach on an articulated model that is not just human beings.
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While this would be a good dataset for testing our approach, we have not been able to

get access to the labelled images with keypoints used to build this dataset.

We must also consider that the datasets that we have identified for use with our research
may be biased and using a data-driven technique for solving this problem will learn the
biases found in our dataset. These biases can lead to potentially discriminatory models,

which is a consideration we must bear in mind.

Bias in the selection of subjects in Human3.6m means that a model will likely overfit
to lighter skin colours. This is an issue in the image space, and specifically applies to
the keypoint detection stage of the pipeline. The Human3.6m dataset also contains no
subjects that have any visible disabilities. This may lead to model failures at inference

time if provided with an example of a person with a different skeletal structure.

3.3 Factorised Auto-Encoding

To solve the problem of 2D to 3D Pose Lifting, we will attempt to factorise the 2D
keypoint data into 3D keypoints and camera parameters, which project the 3D keypoints
back into the 2D keypoints. As our keypoints are derived from an underlying model based
on an articulated subject, we should be able to represent the our underlying articulation
model using a smaller number of parameters than the raw 3D point data. From this
assumption, we have devised a lifting approach that uses a bottlenecked auto-encoder, to
compress our joint information into a smaller latent space and learning depth from those
latent vectors. The rationale for this is that we hope to leverage the reconstruction loss
function as an encoding approach for our keypoints, and if our latent space has encoded
the necessary information to reconstruct an input with compressed data, then we hope
that depth is also implicitly represented within that latent space as depth should be an

integral parts of the underlying articulation model.

3.3.1 Concept

The underlying concept behind this section of work is a factorisation based auto-encoder
(FAE). This is a type of auto-encoder network that aims to split the input data into
its logical components. These components should be selected such that they can be
intuitively recombined to create a reconstruction of the input, which naturally lends
itself to a simple self-supervised reconstruction loss to train the network via gradient
descent. This is similar to a standard auto-encoder, but rather than a single latent space
that can have little restriction on the data format stored, we aim to assign meaning to
the latent spaces and not require a learnt decoder to convert back into the input data

format.
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This idea has many potential applications beyond pose lifting, including factorising
shape from texture and disentangling image and temporal factors in video. However,
we will be using this concept to solve the problem of finding 3D keypoints and camera

positions that correspond to 2D data.

3.3.2 Applying Factorised Auto-Encoding to 3D Pose Lifting

Now we have introduced the idea of Factorised Auto-Encoding, we will demonstrate how
it can be used to solve the 3D Pose Lifting problem. In the context of factorisation, we
can view real-life images as a two-dimensional representation of our three-dimensional
world. One three dimensional object could be represented by many two-dimensional
images, where we can adjust the position and rotation, or other parameters such as
aperture and lens shape, of the camera used to produce the final image. In order to
learn the structure, we are required to disentangle the 3D world from the 2D examples.
If we can isolate the parameters of the camera from the 3D world, then it is intuitive
to combine the two to get a reconstruction of the 2D ground truth, giving a simple self-
supervised loss function, as outlined in Figure 3.1. However, difficulties in this approach
quickly become apparent: there are many different mappings from a 2D pose to a 3D
representation and thus some restriction on this 3D space is required to get an accurate

3D pose.

To enforce this restriction, we will train a neural network to take the 3D estimation
and flatten it into a 2D pose with different camera parameters, essentially imagining the
object from a different angle. This new 2D view is then passed through the network again
to obtain the 3D estimation from this angle. If our network is successful then this 3D
estimation will be identical to the one that was flattened in the first place. This provides
a reconstruction loss function for our neural network, minimising the Euclidean distance
between the two 2D structures. This simple idea was theoretically good, but in practice
did not give accurate results, as the network could get similar 2D reconstructions but

they would not be realistic as a 3D pose.

An attempted solution to the problem of poor 3D poses was a restriction that applies
small changes to the camera parameters before flattening back to 2D, which should give

a very similar 2D reconstruction if the 3D space was accurate.

3.3.3 Implementation

Our deep learning based keypoint lifting implementation uses only fully connected layers

with non-linear activation functions, owing to the data format of numerical keypoints.

Our implementation also opted for learning a mean 3D pose along with a pose residual

that converts the mean pose to a specific example. Our approach splits the spatial
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Figure 3.1: A block diagram showing how the components of this approach are linked
together to create a trainable auto-encoder. 2D keypoints sampled from the source data
are fed into two different networks, one to estimate the 3D points and one to estimate
the camera parameters used to capture the 3D structure in that specific view. These
are then combined with a projection to create a reconstruction of the 2D data, which is
used with the original 2D data in a mean squared error loss function in order to provide
gradients to optimise the networks. Blocks in green are trainable neural networks, and
blocks in dashed boxes are data at each stage of processing.

representation like this as to more clearly distill the pose information in the latent space
vector, theoretically simplifying the depth inference. Part of the rationale behind this
implementation choice is that being a derivative from a base pose should prevent major

errors in depth inference.

2D keypoints are fed into the camera parameter network, the mean pose network and
the pose residual encoder network. The pose residual encoder then produces a latent
vector of size [, which we in turn pass into our pose residual decoder, and sum with the
output of the mean pose network to get the estimated 3D pose. Projecting this with the
estimated camera parameters will then produce a reconstruction of the 2D input, which
we then use with a mean squared error function to produce a final reconstruction loss

for backpropagation.

We also require other losses to break the ill-formed problem that we face when factorising
the camera from the 3D keypoints. The summed magnitude of the pose residuals are
used as an additional loss, forcing the mean pose to learn a good mean pose structure

which requires the minimum amount of other information to achieve the final poses. As
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previously discussed we also have added another loss function that adds marginal noise
to the camera parameters in the hope that it will prevent the network from learning a

very large range of depth values, stretching the pose out in the z dimension.

Full details of the network parameters can be found in Appendix A.

3.3.4 Initial Experiments

The results from this experiment show promise, but are not yet satisfactory. While we
were able to successfully reconstruct the 2D inputs from the latent space, showing spatial
information has been preserved through a bottleneck, the 3D structures produced were
implausible. This has occurred as there is no restriction on the 3D space to represent
the correct pose, only to encode the pose in an arbitrary set of points, which can then
be used to reconstruct the original 2D pose, as shown in Table 3.1. Moving forward
from this point, we can assume that greater restrictions will need to placed on the 3D

structures to see improved results.

3.3.5 Required Modifications

The idea behind this approach has potential, but the problem we are trying to solve
is difficult. While we are able to produce accurate 2D reconstructions using a simple
Factorised Auto-Encoder, the 3D estimations are far from realistic. Inspired by Kudo
et al. [61], we have attempted to use an adversarial approach to apply a restriction to

the generated 3D poses.

Discriminator networks have proven to be successful for many applications in self-
supervised deep learning, particularly in generative models, but by changing the gen-
erative network to a depth estimator, we can leverage the power of a discriminator
network for predicting if a pose is from the original dataset or created using predicted z

co-ordinates.



30 Chapter 3 Inferring Depth from 2D Keypoints using Self-Supervised Learning

Table 3.1: Results showing 3D estimations taken from the Factorised Auto-encoder
network trained on 2D data from the Human3.6m dataset [48]. Results show that 2D
reconstructions are successful, but depth estimations do not align with the 3D data

found in the input.

3D Ground Truth

3D Estimation

Front View Side View

Front View Side View
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3.4 Applying Adversarial Learning

Popularised by Generative Adversarial Networks [35], adversarial learning typically con-
sists of adding a discriminator network that is trained to identify real and fake training
examples. We train it in tandem with the generator network, with a separate optimiser
for both the depth estimation and discriminator networks. Our training objective for
the discriminator network is to correctly identify the real and fake examples, and our
objective for the generator is to produce fake examples that the discriminator classifies

as being real.

An adversarial loss applies to this scenario as we can use the discriminator network to
learn valid 2D poses. Our real examples are taken as our inputs to the network, 2D poses
sampled as random rotations from the 3D dataset. We then generate a 3D structure
using the generator network, and sample it from new random angles to generate our fake
2D poses. We are choosing to do this to force the generator network learn to generate

a 3D structure that looks realistic when viewed from any angle.

3.4.1 Motivation

Solving this problem using a discriminator has already been shown to work by Kudo
et al. [61], but our approach differs in a few ways. We do not require strict constraints
to the 3D human pose due to the bottleneck in the pose encoder which forces a latent
space with spatial constraints between the points in three dimensions. We also do not

use such heavy normalisation on the dataset in order to train effectively.

We take inspiration from the factorised auto-encoder in this design by factorising the
3D shape into a mean shape, pose residuals, and pose rotation, which is simplified from
the camera parameters as used initially. We find that this gives the freedom to learn
the shape, pose and alignment independently and combines the three in order to create

a 2D reconstruction.

Our discriminator network takes our 2D reconstructions and the ground truth data, and
is given the task of identifying the real and fake examples. Our pipeline has two separate
optimisers, one for the discriminator network and the other for the keypoint lifting
network. The discriminator network is trained to minimise the errors of the adversarial
predictions for both real and fake examples. The keypoint lifting network has two loss
terms, the first is a simple reconstruction loss using our flattened 2D reconstructions.
The second loss term is to maximise the error rate of the discriminator when a fake
example is the input. These losses are summed together with a multiplier applied to the

reconstruction loss to balance the terms. Figure 3.2 shows an outline of our approach.



32 Chapter 3 Inferring Depth from 2D Keypoints using Self-Supervised Learning

2D Data — Reconstruction

— 3D Pose

. || —p
#

Generator —

Discriminator

Figure 3.2: Outline of the network architectures for the components of this method. A
dataset of 2D data is split into two networks, one to learn a mean shape and one to learn
a pose residual, which are summed to create an estimated 3D pose. This 3D pose is
flattened to create a reconstruction loss, and flattened from a random angle to be used
with the discriminator network to create the adversarial loss function.

3.4.2 Implementation

Our PyTorch[87] based approach is comprised of several sub-networks built from fully
connected layers. The first of these sub-networks aims to find the mean 3D pose, pushing
the 2D point data through a bottleneck of size 1, leaving a small amount of freedom
for scale. The second network finds the pose residuals, and also has a bottleneck with
variable size which is a hyper-parameter to be optimised during experimentation, as the
size of this bottleneck would vary with different underlying articulation models. Finally,
we use a network to predict the rotation of the 2D input, and outputs a numerical value

representing the number of radians to rotate the 3D structure before flattening to 2D.

As this is an adversarial approach, we also need a discriminator network. This is simply
a network that takes a set of 2D keypoints and gives an output of size 2 that is then
passed through the softmax operation, giving the networks prediction confidence that

an input is real or fake respectively.

The pose bottleneck in the generator is a key part of this design and choosing the value
for its size is a trade-off. If the bottleneck is too narrow then the network is unable to

locate good reconstructions of the vast number of valid poses, but if too wide then there
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is too much flexibility such that compressed skeletal constraints will not be learnt. The
optimal value varies with the complexity of the underlying articulation mode that we
are learning to represent, but from experimentation, a good starting value is half the

number of keypoints.

Balancing the two loss terms is another difficult problem. If we focus too much on getting
a good 2D reconstruction then we find the 3D estimation becomes less accurate. If we
focus too much on the 3D estimation then we find that the poses are realistic, but differ
from the ground truth. This is due to our information bottleneck having to encode our
skeletal information into a compressed latent space. We are assuming that our model is
learning to encode the pose as a set of points which are restricted in distance to other
connected points, inferring the skeleton as a set of joints with rigid bones between them.
This will naturally cause some issues with accuracy due to the large variance in our

dataset of poses. Balancing multiple loss terms is investigated further in Chapter 4.

3.4.2.1 Network Architectures

This network architecture is split into two sections, the generator and the discriminator.
The generator network has a few different components in order to recreate a 3D pose
from a 2D input. The first part learns a mean shape for the subjects. This network
takes n inputs and flattens the 2D input into a vector of size 2n, it then passes through
4 fully connected layers, each with ReLLU activation apart from the final layer which has
a TanH activation so that the mean shape lies in the range [—1,1]. These layers have
sizes 25n, 1, 25n, 3n respectively and the final output is shaped into a matrix of size

(3,7n) to represent points in 3D space.

The network then also learns the pose residuals which are summed with the mean shape
above to generate the final pose. This network also has an input of size 2n and passes
through 6 fully connected layers. Layers 4 and 6 have TanH activation so that our
latent space and outputs are both in range [—1,1], and the other layers have ReLU
activations. The layers for this network have the following sizes; 25n, 50n, 25n, Ap, 25n,
3n. A, represents the chosen latent space size, which for experiments on the human3.6m
dataset, is set to 7. Further hyperparameters relating to the training of this network are

available in Appendix A.

The discriminator network consists of 4 fully connected layers, all with ReLLU activation
apart from the final layer, and the output from the network has softmax applied to it.
These layers have sizes 50n, 25n, 5n, 2, where the output is the prediction of real or
fake.
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3.4.3 Experiments

Using this implementation, we run our experiments using the Human3.6M dataset [49],
sampling only 16 of the 32 keypoints to get a simple outline of human pose. We do not
use the 2D data included in this dataset, instead we take the 3D data and sample from
random angles to create a larger 2D dataset with no bias towards seeing poses from
only the four viewpoints as found in the dataset. Each epoch we shuflie the dataset and
rotate each example by a new randomly selected angle. The hyper-parameters used for

this experiment are shown in Table A.1, found in Appendix A.

3.4.3.1 Qualitative Results

Our results are shown in Table 3.2, showing the ground truth 3D data alongside our 3D

predictions.

3.4.3.2 Quantitative Results

Following previous approaches to this problem [61, 79], we evaluate our approach quan-
titatively by measuring distance from our predicted 3D keypoints to the ground truth.
Our self-supervised approach obtains a higher error than the weakly supervised and su-
pervised approaches, and a slightly higher error than similar self-supervised approaches.
The reason for a drop in accuracy most likely stems from the bottlenecking and factori-
sation losing some accuracy in the X and Y dimensions, along with the expected error

in the Z dimension.
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Table 3.2: Results showing 3D estimations from sets of 2D keypoints. Both 2D recon-
structions and 3D depth estimation resemble the inputs used when using the adversarial

pose lifting approach.
3D Ground Truth 3D Estimation
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Approach Mean accuracy (mm)
Martinez et al. [79] (supervised) 45.5
Drover et al. [27] (weakly supervised) 64.6
Kudo et al. [61] (self-supervised) 130.9
Chen et al. [12] (self-supervised) 51.0
Ours (self-supervised) 155.5

Table 3.3: Mean distance between predicted and ground truth poses in the human3.6m
dataset.

3.5 Discussion

We have shown the application of factorised auto-encoding to the area of 2D to 3D
keypoint lifting, where data is split into composite components before being recombined
to create a reconstruction loss. Upon finding that we have an ill-posed problem, the
addition of a discriminator network to differentiate between real and predicted poses
allows for a strong enough constraint to be applied to our problem to achieve good

results.

However, adversarial learning as an approach to solving the ill-posed problem is not
foolproof. Training time for a generator and discriminator pair is generally higher, and
can be unreliable. In addition, there are a greater number of hyper-parameters required

to be tailored in order to successfully train our network.

3.5.1 The Inverse Pose Problem

Another problem that is commonly faced when using adversarial learning to lift sym-
metrical dynamic objects such as human poses is the Inverse Pose Problem. Inferring
3D structure from 2D examples with no supervision is a challenge due to multiple vi-
able 3D structures that could represent one 2D pose. Due to the natural symmetry of
human poses, but also many other articulated objects found in nature, self-supervised
pose lifting can lead to valid looking poses, but the order of points show an inverted
skeleton. This problem was encountered by Kudo et al. [61] and solved by enforcing
certain restraints in angles between pairs of joints. This approach to solving the issue
goes against the end goal of general pose estimation, so we have used a different solution
to the problem. During our research, we found that this problem sometimes arose when
training our adversarial pose lifting network, but was an unpredictable occurrence. Our
final results do not show the inverted pose problem, but no explicit steps were taken to
remove this problem from our final model. The rationale behind this not being present
is, as discussed in our implementation section, the additional loss term to minimise the
absolute values in the pose residuals. If we assume that our average shape is truly the
average pose in the 3D space, then the true 3D pose will be closer to the average than

the inverted version.
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Input 2D pose Correct 3D pose Wrong 3D pose

a

Figure 3.3: Figure taken from Kudo et al. [61], a visual demonstration of the inverse
pose problem.

3.5.2 More Applications of Factorised Auto-Encoding

The concept of a factorised auto-encoder has many potential applications; further re-
searching may yield interesting research possibilities.

e Factorising grammar from vocabulary to learn sentence structures

e Factorising shape from texture in both 2D and 3D scenarios

e Factorising voice from the words in speech recording

e Factorising facial appearance from visual emotions
As seen by potential applications, this conceptual idea is promising for a wide range
of disciplines and applications. It is also clear how these can be used for generative
models; creating previously unseen novel examples by combining different components.

These novel examples could be applied to the creation of artificial datasets, for data

augmentation purposes.

Constraints on one or more factorised elements may be required in most cases, where

there may be multiple sets of elements that give the correct output when recombined,
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but individually are not correct solutions, as is the case in our initial 3D pose estimator

approach.

3.6 Summary

In this chapter we have discussed the concept of a factorised auto-encoder and attempted
to apply it to solving our problem of finding 3D keypoints from a 2D dataset. Upon
finding that it does not give satisfactory results, we have modified the design to use
an adversarial approach to get promising results. However, as discussed earlier in this
section, this approach is not ideal and could be improved. We will revisit this problem
in Chapter 5, and look to create a solution with the addition of a generalised prior to
add a suitable restriction on the 3D points that are predicted, with the aim of improving

these results.

This is only one part of the articulation model estimation pipeline, as we do not always
have 2D keypoints available to us. In the next section, we will look at how we can
capture 2D keypoints from images in a self-supervised fashion, with the aim of piecing

2D keypoint estimation with this section to create a full image to 3D keypoint pipeline.



Chapter 4

Self-Supervised Learning of
Generalised Spatial

Representations

Self-supervised keypoint detection is an important part of representation learning, with
the aim to learn a spatially constrained representation of an object in an image. This
problem is an abstraction of the initial stage of our articulation model pipeline, where
we look for landmarks placed on points of articulation in images, but in learning an
abstraction, we can later enforce properties using prior knowledge to meet our aims.
Previous approaches have come close to being able to distill solid keypoints with no
supervision, but typically lack generalisability to different datasets and tasks. After
extensive research of different approaches to solve this problem, we propose a new tech-
nique for self-supervised keypoint detection that leverages the generalisability benefits
of multi-task learning, selecting a small set of downstream tasks to aid in the training
process. We find that our keypoints can capture a wide variety of structures and are
generalised to a much greater extent, such that we can test on a different dataset to the
one trained on with no noticeable drop in performance. Finally, we present a detailed
discussion on the state of the field of keypoint detection, analysing some common pitfalls

and suggest some areas of interest for future research.

4.1 Introduction

Keypoints have long been an essential component in the computer vision field, tradi-
tionally being used as an anchor point for local descriptor algorithms, but in recent
years, have become less critical due to the rise in popularity of learned convolutional
approaches. But this is not to say that keypoints no longer have their uses. They are

easily interpreted so are ideal for capturing the shape of a given object in an image, and

39
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as discussed when introducing RQ2, can be used as a spatial bottleneck. Keypoints are
trivial to work with and from them we can derive a wide variety of information about

the spatial properties of the object in an image.

Pose estimation and face tracking are areas where keypoints are still ubiquitous to this
day, and keypoints are contextually interpreted as landmarks, as they locate features
on the object. As discussed in RQ3, the usage of the term keypoints varies greatly on
the context. While sometimes used synonymously, keypoints and landmarks are subtly
different: landmarks represent a desired feature, for example an eye on a face or a hand
on a body. In the context of this chapter, we define keypoints as a way of capturing
the shape of an object but do not necessarily line up with any specific features. This
implicitly means that keypoints taken from an image cannot be incorrect, but simply
sub-optimal in terms of spatial information captured. However, we may want to enforce
that they should not lie outside of the bounds of the object that the shape is aiming
to capture. Because of this, evaluation of self-supervised generalised keypoints remains

difficult and we discuss this further in Section 4.6.

Locating landmarks when provided with labelled data poses a relatively simple regression
problem, whereas a self-supervised method for finding landmarks is a greater challenge.
Previous self-supervised approaches [98, 99, 100, 118] use a semi-supervised approach,
learning keypoints with no supervision before training a simple linear regressor with a
small amount of ground truth data in order to translate rough keypoints into landmarks.
The benefits of a semi-supervised approach combines some of the benefits of both the
supervised and self-supervised approaches, where less labelled data is required but a

representation is still learnt from a larger unlabelled dataset.

When keypoints are found using a self-supervised deep learning approach, we tend to
see that the points capture the required information to solve the downstream task, but
we are at risk of overfitting our keypoints to optimise this task over locating generalised
keypoints that capture strong structure. To circumvent this, we propose an approach
that leverages multi-task learning for its ability to find generalised solutions that satisfy
a set of tasks, preventing the likelihood of overfitting one single task. If a set of keypoints
is able to be used to solve a range of tasks, then we would expect these points to capture

the structure of an object in a generalised way.

This chapter proposes a novel approach to self-supervised keypoint detection using multi-
task training after finding failures with simple and naive implementations. We show how
training with more tasks can lead to better generalisation than single task training. We
also studied different approaches to multi-task learning and settled on an approach that
we have identified that consistently provides good results. Finally, we hypothesise the
qualities of tasks required in a multi-task learning scenario for learning to detect desirable

keypoints.
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4.2 Related Work

Chapter 2 gives a further outline of related work, but this section will cover a focused

analysis of related work specific to this chapter.

4.2.1 Multi-Task Learning

The problem of self-supervised keypoint detection is non-trivial, so we aim to leverage
the power of multi-task learning to aid in the discovery of points that not only repre-
sent our structures but do so in a generalised way. Zhang and Yang [117, 116] survey
the area of multi-task learning and identify a wide range of domains that multi-task
learning has been applied to. Hassani and Haley [41] show how using a combination of a
reconstruction task, a clustering task and a prediction task can learn features on point
clouds in an unsupervised setting, outperforming prior unsupervised approaches. In the
area of supervised multi-task learning, Zhang et al. [119] have shown the effectiveness
of leveraging classification style tasks alongside keypoint regression tasks to find facial
landmarks, observing greater robustness in cases with occlusion and larger pose vari-
ance. A study by Standley et al. [96] looks at which tasks should be learned together
using multi-task learning, given a limited computation budget with a goal to maximise

the efficiency of the learning operation.

However, training in a multi-task environment can be difficult due to the requirement
of balancing multiple losses; care must be taken so that one task is not over-optimised
while the others are ignored. Sener and Koltun [95] balance multiple tasks using an
approach that searches for the Pareto optimal of each objective function. This is then
applied to the gradient of each parameter in order to optimise the network towards
all tasks at once. Cipolla et al. [19] use an alternative approach that learns an extra
parameter for each task which represents the uncertainty for that task. These are learnt
alongside the parameters of the network and losses are balanced using this term before
the backpropagation step. Another approach to managing losses by Yu et al. [114] looks
at conflicting gradients and for any pair found, projects one onto the other such that they
no longer conflict. A simpler but still effective technique proposed by Liang and Zhang
[68] simply passes each loss through a non-linear monotonically increasing function to
map each loss into a different range, with the aim of minimising large discrepancies
between the loss values. We explore the merits of these approaches in Section 4.4.2.2

before selecting the best method for our application in Section 4.6.1.
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4.3 Initial Ideas and Tests

This section covers initial attempts at training a neural network to detect robust, re-
peatable and meaningful keypoints with no supervision. Supervised keypoint detection
is a well researched field, especially in the context of pose estimation [6, 22, 85]. But
when given no ground truth data, the challenge is finding keypoints that are relevant
for the context of the application. When the context is not known, our approach is
reshaped into one that aims to locate strong spatial representations that can be used for
downstream tasks, or even regressed to ground truth points in a semi-supervised fashion.
Our initial approaches did not manage to get satisfactory results in finding robust and
repeatable points, but we manage to find some success when re-implementing a previous

approach.

4.3.1 Keypoint Detection by Image Triangulation

We propose an approach that aims to locate consistent keypoints between two sequential
video frames. We aim to train a keypoint regressor using a loss function based around
keypoints consistency via image triangulation to find consistent pixel-wise triangles. If
we take two sequential video frames, we would expect there to be a small amount of
difference between the appearance of those frames, meaning that a keypoint detector
should predict similar points, but following the natural change found in that frame
change. We aim to capture this frame change by splitting the images into meshes
of triangles, assuming keypoints are aligned between each example, and applying the
necessary affine transform to align those two triangles. The meshes are determined by
the Delaunay triangulation algorithm using a set of points regressed from an image with
our keypoint detector network, resulting in a set of triangular segments of the image.
We are able to create a simple loss function that calculates the per pixel mean squared

error after aligning corresponding triangles using a simple affine transform.

If our keypoints were found to be consistent between both images, then we would expect
a small loss. While the objects in our video sequences will be dynamic, this movement
can be approximated by using many small triangles, giving a transform between the two

images that should capture natural transformations.

However, this approach is fundamentally flawed as can be seen from the results in Ta-
ble 4.1. With only the affine consistency loss, we observe a keypoint collapse in our
network, where every point is placed on the same area of the image, and even with a
keypoint separation constraint, our keypoints do not capture a good spatial representa-
tion. We also note that this approach is not invariant to lighting between video frames,
which can be a big problem outside of laboratory conditions. Another problem with this
approach is occlusion, or large jumps between frames, which might occur if either the

camera or subject moves quickly. Finally, image blur could cause features in adjacent
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Table 4.1: Results showing a failure to find robust, repeatable and meaningful keypoints

using the triangulation method. Keypoints are clumped in the centre of the images and
represent a static shape.

frames to appear visually different, which would make this loss function find a high loss

in cases that keypoints were placed correctly.

From these failures, we see that we require a more sophisticated approach to capturing
spatial representations. In the next section, we turn to other literature to re-implement
a successful approach, so that we can learn what elements are required to solve this

problem.

4.3.2 Re-implementing an Existing Approach

We look to re-implement the work introduced by Thewlis et al. [100], which was briefly
discussed in Chapter 2. It explores detection of robust and repeatable keypoints on
images with no supervision. The key idea is that if we take an image a7, and apply a
random non-linear transformation to it to make a second image «ao, we should be able
to find keypoints on a7 that correspond to the same location of the image in ay. As we
know the transformation applied, we can check if the predictions line up by applying
the same transformation to the estimated keypoints and measuring the L2 loss between
them. This naturally gives us an intuitive loss function for our neural network, as this

loss function will reach 0 as keypoints perfectly align.

While we can find pairs of points that correspond to each other using this theory, there
is no guarantee that these points represent landmarks that contain an accurate spatial
representation. To counter this, one approach used in the paper is to locate a large
number of keypoints and then use a semi-supervised linear regression step to predict
ground truth points using the self-supervised points as an input. While this does defy
the concept of self-supervised learning, this approach gives good results and can do so

with a very small number of labelled images from the dataset.
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Table 4.2: Results showing consistency between pairs of images with the TPS transform
applied.

4.3.2.1 Thin Plate Splines

Thewlis et al. [100] make use of Thin Plate Splines [28] as the non-linear transformation
to both keypoints and image data. This algorithm uses a set of fixed control points
with weights in which all pixels in the image are modified by based on their distance
to each control point. Any set of points can be used, but our implementation uses 25
points arranged in an equally spaced 5 x 5 grid. The weights are sampled randomly
from a Gaussian distribution with a mean of 0 and a standard deviation which can be
modified to change the intensity of the transform. Each pixel or keypoint is then warped
corresponding to its distance from each control point and their corresponding weight.
The effect is a transform that mimics a thin plate of metal being bent for a natural

looking non-linear transformation, with no sudden changes in pixel translation.

4.3.2.2 Results

Table 4.2 shows some results from this implementation. As can be seen, the keypoints
found are fairly consistent between pairs of images as well as between examples of faces.
There are a few quirks though, rather than finding object structure, it seems to be
focusing on edges around the top of the head. This means that these located points are
at the top of the head for bald people and are on the hairline for those with hair. The
last example is a failure case, where the keypoints are not consistent between the pair
of images, which is most likely due to the different viewpoint, as well as occlusion due
to the hat.

4.3.3 Discussion

In this section we have discussed some initial attempted experiments to capture self-
supervised spatial representations through the use of a keypoint detector. Our trian-
gulation approach faces issues due to keypoint collapse, but we have been successful
in re-implementing another paper with a similar aim, managing to get some promising

results.
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As our focus is on locating spatial representations, we will move forward from this point
by formulating our problem in a different way, placing the focus on solving downstream

tasks in order to train a keypoint detector to learn a strong generalised representation.

4.4 Multi-task Learning: Motivation and Approach

We are aiming to extract a generalised shape from an image as a list of keypoints
s = ([zi,yi]|i = 1,2, ..., k), where s represents one shape, k is number of keypoints
and x;,y; € R represent the x and y coordinate of the i-th keypoint. We should be able
to represent any image I as a list of keypoints and as it is a list and not a set, the order
of points matter such that the feature in I at each index of s should correlate between
examples. Ordering is not an inherent property of keypoints, but we are imposing this
restriction for ease of analysis, however the importance of ordering keypoints is discussed
in Section 4.7.1.

While self-supervised keypoint detection is not a novel concept, similar approaches use
multiple additional constraints to force the network to learn correctly and to avoid a
collapse. An example of this is separation constraints that force keypoints apart to
ensure that the points capture a good structure from all areas of the image. While
we could copy these methods, we leverage multi-task learning to train a network to
perform equally, naturally separating the keypoints as this captures the most amount of
information to solve the range of tasks. Because of this, we do not require properties to

be explicitly defined, as they emerge while the network optimises.

4.4.1 Representation Learning

We can think of keypoint detection as a representation learning problem, with a spatial
restriction on the learnt representation in order to locate geometric semantics from an
image. Representation learning naturally lends itself to self-supervised applications, due
to the ability to use loss functions that do not rely on labelled data. In order for the
network to find a good reconstruction, it must learn how to compress an image into a
set of keypoints that describe the shape of the object. An auto-encoder is the simplest
way of learning a representation in this fashion and by converting the latent space into
a list of keypoints, we should be able to capture spatially significant information about
an image. However, this method is prone to over-fitting, and an auto-encoder alone
will find keypoints that do not resemble the desired shape, instead they appear to be
hashing the image data into the keypoint data to minimise our reconstruction loss. To
prevent our representation over-fitting, we will take inspiration from multi-task learning
to increase generalisability in our representation, due to the criteria of solving multiple

tasks with one representation.
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Task A

Subspace

Task B Task C

Figure 4.1: Venn Diagram showing how unrelated tasks can find an intersection that
contains desirable solutions

4.4.2 Multi-Task Learning

As single-task learning for capturing shape semantics will certainly overfit to the training
task at the cost of finding good keypoints, we look to multi-task learning to learn a good
representation. If a list of keypoints can be used to solve a variety of tasks, then we
can assume that those keypoints have captured a generalised structure found in the
image and has not encoded the image into a specific representation to optimise a single
downstream task. If we imagine a space of keypoints that suitably solve a given self-
supervised task, there will be many valid solutions. The intersection of the space of
solutions between a pair of tasks will narrow down to a smaller subset that contains
keypoints that satisfy both tasks. As we add more tasks, assuming they have enough
variety in order to minimise overlap between point spaces, then our optimisation has a

limited set of shapes that can satisfy all of the tasks. This is demonstrated in Figure 4.1.

The idea of a intersection of shapes that satisfy each task leads us towards the intuition
of selecting tasks to train with. First, we need a good number of tasks and secondly,
those tasks need to be varied such that the intersection covers a small area. The result is
an optimisation that should have a small set global minima that satisfies all the chosen
tasks. If the intersection is too small or does not exist then we may need to consider a
trade off, where we use a solution that is suboptimal for some or all tasks but achieves
the best results when losses from each task is given a weighted average. However we
may find that optimising in a multi-task environment increases how difficult it is to find

the optimal solution.

4.4.2.1 Choice of Tasks

Choosing the correct downstream tasks for the training signal for our keypoint regressor

network is crucial to the success of this method as discussed later in Section 4.7. Below
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is a brief description of which tasks we are using and why.

Reconstruction with Global and Local Descriptors.  Representation learning
naturally lends itself to auto-encoder style architectures where the task given to the
network is to reconstruct the input image from a learnt representation, which in our
case is a set of points. Keypoints alone can encode sufficient information to successfully
reconstruct the input image when the dataset of images contains little textural informa-
tion, such as MNIST, but when images have texture, extra information is required. For
reconstructing images with texture, we use local descriptors taken from a circular crop
around each keypoint and compressing that information through a simple learnt CNN
into a small descriptor vector. We do the same process on the whole image to obtain a
global descriptor and then reconstruct the image from the stacked local descriptors and

the global descriptors.

The aim of using a reconstruction task is to capture structure in the image and to bias
the keypoints towards areas with more texture. An area with more texture is more likely

to resemble a robust and repeatable point of interest.

Choosing the hyper-parameters for the circular crop sizes and the global and local de-
scriptor vectors is essential for success using this method. If we select too large descrip-
tors or patches, then the information bottleneck is not tight enough to force the network

into learning a solid representation.

Referential Game using Distractor Images. Classification tasks typically require
a labelled dataset, but by making a change to the formulation of the task, we can use
this style of task without labelled data. Taking inspiration from Havrylov and Titov
[42], we train a downstream network to decide which image was used to create the list
of keypoints, and selecting an image from a stack of images alongside distractor images,
taken from the same dataset. If our keypoints convey enough information about the
input image, then we should be able to accurately predict which image corresponds to
the found keypoints. This task varies in difficulty based on the dataset that we are using,
as some datasets have high variance in shapes in the images while others are aligned, so

a hyper-parameter of how many distractor images can be modified on a dataset basis.

Middle Frame Predictor. While other approaches to self-supervised keypoint
detection use sequential information or artificial warps [99, 100, 118] to check keypoints
consistency, we find that such a strong constraint is not required to distil robustness into
our keypoint detector. While these techniques give good results, better generalisability
can be obtained by learning tasks that are unrelated to the desirable keypoint properties
and finding emergent properties instead. We take inspiration from Misra et al. [83],

who use the ordering of shuffled video frames as an unsupervised training signal. Our
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implementation of this task takes the input image and applies a random Thin Plate
Spline warp [28], as previously discussed in Section 4.3.2.1, once to create the middle
image, then applies the same warp to the warped image to create a third. Keypoints
are extracted from each image and stacked before being shuffled and then we train a

downstream network to predict which is the middle of the three images.

4.4.2.2 Loss Balancing

As we are using tasks that have varying loss functions and different loss landscapes, in
order to combine tasks such that no one task dominates, we must carefully balance our
losses. The obvious way of doing this is manually selecting loss alphas to bring each
loss into a similar scale, but this requires hyper-parameter searching and alphas will not
always be optimal when we modify other hyper-parameters or when we use different
data.

Pareto Optimal Gradient Tweaking. One option for automatically balancing
losses is a method described by Sener and Koltun [95] that aims to find a Pareto optimal
solution. When we attempted this implementation, we found that even though this
method optimises towards the Pareto front, this does not help to find a set of network
parameters that give desirable keypoints. This method has the additional downside of
being difficult to implement and cumbersome to train due to the requirement for two

back-propagation steps.

Learnable Task Uncertainty. To prevent lengthy hyper-parameter tweaking,
Cipolla et al. [19] describe an approach that learns an extra parameter for each task
that represents its uncertainty. By using the same optimiser for the network and these
parameters, this approach strives to automatically balance tasks with varying loss func-
tions and with different loss variances and is shown to model the uncertainty with
accuracy. In practice we have found that while we can balance tasks successfully, we
observe a high variance in task performance over multiple runs, as shown in detail in
Section 4.6.1.

Balanced Multi-Task Learning. Another approach as described by Liang and
Zhang [68] uses a fixed monotonically increasing function that is applied to the losses
from every task in order to bring the loss values and training gradients into the same

I/50 a5 their mapping function and we have found that this gives good

region. They use e
results when used on simple datasets where our descriptor reconstructor task is not used.
While intuitively log(1 + ) should similarly map all of our losses into the same region,
our experiments would suggest that because the gradients of a log function accelerate

towards zero as the loss tends to zero. This results in easier tasks being over-optimised
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at the cost of the more difficult tasks, and the optimisation getting stuck in a local
optima with poor keypoints. In a similar fashion to the Adaboost algorithm [31], the
exponential function puts a greater emphasis on tasks with high losses, meaning the
gradient descent for tasks that are struggling will have a greater signal to the network
weights than that of tasks that are being solved easily. This technique helps us a lot
as we are using a varied set of tasks where some will be easier to solve than others. In
Section 4.6.1, we go into more detail about these techniques to determine which performs

best in this scenario.

4.4.3 Heatmap Concentration Constraint

We use one additional constraint alongside our tasks that encourages the network to
learn keypoints on images through patches of texture or though shapes and not learning
vague shapes using image borders or random noise. We use the ls loss between output
heatmaps from the keypoint detector network and Gaussian blobs around the derived
numerical keypoint. If this loss is minimised to zero, then it means that every heatmap
is a perfect Gaussian blob around each keypoint. We discuss how this constraint is

implemented in Section 4.5.6.

4.4.4 Summary

We have formulated our problem as a representation learning problem with a spatial
constraint on our latent space and then have applied the theory of multi-task learning
to aid in the discovery of generalised points. We have chosen a selection of tasks to
optimise in parallel and methods of combining the losses from these tasks in order
to learn keypoints that resemble a robust structure found in the image. Finally, we
have introduced an additional constraint that assists our network in locating suitable

keypoints.

4.5 Implementation

An outline of how our approach is implemented is as follows, and shown schematically
in Figure 4.2):
e Images are fed through a keypoint regressor and outputs k£ heatmaps.

e Soft arg-max (described further in Section 4.5.2) turns heatmaps into keypoints

as x,1y pairs.

e Each task then use the output keypoints and calculates a loss.
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Figure 4.2: Outline of the components in our implementation. Input images are passed
through a keypoint regressor using a soft arg-max operator to locate numerical keypoints.
These points are passed into each task to derive a list of losses, which are then in turn
balanced to create a final loss used for backpropagation.

e The losses from all tasks are combined using a loss balancing method as described

in Section 4.4.2.2. Weights in all networks are updated at once.

All code has been written in Python and PyTorch has been used for the neural network

implementation.

4.5.1 Keypoint Detection Network

As mentioned in Section 2.2.2, deep learning based keypoint detection and pose esti-
mation techniques commonly use hourglass style networks for extracting keypoints from
images, whether or not supervision is available. The benefit of this network architecture
is having multiple channels of convolutions that operate on different scales of feature
maps. As a result, we gain the ability to fuse information derived from both local and
global features found in the images. Local features can then learn to locate small image
patches that resemble typical interest points while global information takes into account
spatial context of each image patch. Stacking hourglass networks [85] has shown to fur-
ther improve accuracy for pose estimation, but we have chosen to use a single hourglass
to aid in generalisation, as deeper networks can be prone to overfitting. We have found
that the keypoint detector hourglass network within this approach is very robust and

manages to get good results with no fine-tuning between datasets.
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4.5.2 Spatial Soft Arg-Max

To convert the output of our feature detector, m, into a list of keypoints ([z;,y;] |i =
1,2, ..., k), we need to use the spatial soft arg-max operator which approximates the
arg-max function over two dimensions whilst retaining differentiability, in order to train
our network end-to-end. This allows us to find the numerical coordinates of the peak
of each heatmap, which we will use for downstream tasks. This is done using Equation
4.1, where § is an optional temperature parameter, which we have set § = 1 for all
experiments in this chapter, and h is the activation heatmap taken from the output of

the network.

eBhij '
= s "
ij

Equation 4.1 essentially calculates the mean of the activation within the two-dimensional
input, converting a heatmap into a 2D keypoint. This process takes the dot product of
a co-ordinate grid, our implementation uses a normalised grid with values between -1

and 1, and finds the mean over the x and y dimensions to produce a keypoint.

As this is an approximation, we can see some undesirable qualities. The first being
when a heatmap does not have a peak, i.e. all pixel values are equal. In this case we
will find that our keypoint defaults to the centre of the image, giving a keypoint of (0,
0), assuming our image range is between -1 and 1. This can lead to the training of our
network getting stuck in a local optima where all heatmaps are outputted as being flat
and all keypoints being chosen at (0, 0). The second failure case is when we have more
than two peaks, and in this case the soft arg-max algorithm will choose a keypoint that
lies between the two peaks. This is problematic, especially when using datasets that
have images containing symmetry, as we may place a keypoint between two areas that
are likely features, resulting in an area with no feature present. An alternative to this
algorithm would be to regress our keypoints in a method similar to Liu et al. [70], where
the image and x, y coordinates are stacked. We believe that this spatially constrained
information bottleneck has value in distilling object structure from a dataset of images,

but found soft arg-max to also be an adequate solution.

4.5.3 Heatmap Cleaning

The output of our keypoint regressor network is a set of heatmaps which we then convert
into keypoints using the soft arg-max function. As we are aiming to distil a spatially
restricted representation, using a numerical input in our downstream tasks does not
guarantee a spatial bottleneck, so we must use a heatmap as the input for some of our

tasks. However if we were to use the original heatmaps, we would be prone to information
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leakage [51], where the heatmap can encode extra information as pixel values. To fix
this issue, we reconstruct heatmaps using the keypoint locations as the means for a
Gaussian peak placed on a blank heatmap, using a fixed standard deviation, which we
could change dependent on dataset. The reason for fixing the standard variation for the
Gaussian peak is primarily that it simplifies the training of the keypoint regressor. We
acknowledge that the visual information that leads to discovery of a specific keypoint
may span either a wider or smaller area, and while this information may be ascertained
by the activations in the feature map prior to the soft arg-max algorithm, as seen in
Table 4.21 and Table 4.22. If we chose the standard deviation of the Gaussian peak to
estimate a best fit to these feature maps, then this is an extra algorithmic step which adds
complexity to our training. This complexity could assist in solving downstream tasks as
the information captured would not only be the location of the point, but also the size of
the feature at that keypoint. While this area could be part of a generalised representation
of image-space size of the keypoint, this extra information does not necessarily adhere to
the traditional definition of a keypoint, which is no more than a location on an image.
Additionally, we may observe a keypoint detector that identifies keypoints of poorer
quality when trained using a variable standard deviation in this stage, as the spatial

bottleneck is more relaxed.

4.5.4 Keypoint Regressor Architecture

The hourglass network we use for all datasets during this chapter is outlined graphically

in Figure 4.3, with parameters for each layer specified further in Table 4.5.4.

Figure 4.3: A diagram showing how each of the layers in the hourglass network are
connected. Direct sum symbols are element wise additions on the feature maps being

outputted from the previous layers.
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# | Layer Type | Input Size | Output Size | Kernel | Activation
1 Conv2D 3 20 3x3 LeakyReLU
2 Conv2D 20 48 3x3 LeakyReLU
3 MaxPool - - 2x2 -
4 Conv2D 48 64 3x3 LeakyReLLU
4b Conv2D 48 48 3x3 LeakyReLU
5 MaxPool - - 2x2 -
6 Conv2D 64 64 3x3 LeakyReLLU
6b Conv2D 64 64 3x3 LeakyReLU
7 UnPool - - 2x2 -
8 Conv2D 64 48 3x3 LeakyReLU
9 UnPool - - 2x2 -
10 Conv2D 48 20 3x3 LeakyReLU
11 Conv2D 20 k 3x3 -

Table 4.3: A table of the parameters of each layer of the keypoint regressor network,
specifying their layer type, input size, output size, kernel and activation. The number
of each layer corresponds to the numbers shown graphically in Figure 4.3. For all
LeakyReLU activations, the alpha value is set to a = 0.1.

4.5.5 Downstream Task Implementations

This subsection covers how we have implemented each of our downstream tasks that we

wish to train with.

4.5.5.1 Reconstruction Task

Our reconstruction task has two modes, depending on the dataset used. The first mode
simply aims to reconstruct the input image from the set of keypoints, after being con-

verted into cleaned heatmaps. This process is shown in Figure 4.4.

When reconstructing from cleaned heatmaps using only convolutions, each keypoint has
a receptive field surrounding it and if we use too few keypoints or have a reconstructor
with receptive fields that are too small then the keypoints will spread out to maximise
the receptive field in order to get a good reconstruction, at the cost of capturing structure
in the image. To circumvent this, we use a reconstruction network that splits the convo-
lutions into two channels, one for low (L) frequency, representing approximate colour in
the background pixels, and one for high (H) frequency, representing more detailed re-
constructions in close proximity to each keypoint. Low frequency reconstruction is done
with 5x5 convolutions and one application of 2x2 max pooling, before upsampling at the
end when summed with high frequency channel, which only uses 3x3 convolutions. This
architecture has an adequate receptive field to reconstruct the input and also allows the
reconstruction near keypoints to convey stronger high frequency information. The final

reconstruction is made by interpolating L using a bilinear interpolation with scale factor
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Figure 4.4: Outline of our approach to reconstructing images from keypoints. Input (s)
is a list of keypoints, which is converted into Gaussian peaks (g) on a blank heatmap
and then fed into the high frequency reconstructor (H) and low frequency reconstructor
(L). The final reconstruction is made by summing the outputs of the two sun-networks
and passing through a sigmoid function. We have an additional section used to convert
Gaussian peaks into feature vectors and then reshaped back into Gaussian peaks with
textural information (¢g’) which are fed into H and L instead of the original Gaussian
peaks.

2 and summing with H, and then passed through a sigmoid activation layer to push the

distribution into a valid pixel range of [0, 1]

The reconstructor networks we use for both reconstruction modes are fully sequential

networks, and the parameters for each layer are defined in Tables 4.4 and 4.5.

High Frequency Information Reconstructor (H):

Layer Type | Input Size | Output Size | Kernel | Activation
Conv2D k 20 3x3 LeakyReLU
Conv2D 20 48 3x3 LeakyReLU
Conv2D 48 64 3x3 LeakyReLU
Conv2D 64 32 3x3 LeakyReLU
Conv2D 32 3 3x3 -

Table 4.4: A table of the parameters of each layer of the high frequency reconstructor
network, specifying their layer type, input size, output size, kernel and activation. Where
k is the number of keypoints, which changes dependent on dataset, and LeakyReL.U uses
a=0.1.

Low Frequency Information Reconstructor (L):



Chapter 4 Self-Supervised Learning of Generalised Spatial Representations 55

Layer Type | Input Size | Output Size | Kernel | Activation
Conv2D k 5 5%X5 LeakyReLU
Conv2D 5 10 5x5 LeakyReLU
Conv2D 10 12 5x5 LeakyReLU
Conv2D 12 12 5xb LeakyReLU
Conv2D 12 12 5xb LeakyReLU
MaxPool - - 2x2 -
Conv2D 12 ) 55 &) LeakyReLU
Conv2D 5 3 5xb -

Table 4.5: A table of the parameters of each layer of the low frequency reconstructor
network, specifying their layer type, input size, output size, kernel and activation. Where

k is the number of keypoints and LeakyReLU uses o = 0.1.

In the second reconstruction mode, we train an additional local descriptor extractor so
that we are able to reconstruct datasets that contain more detailed textures. Inspired
by traditional local descriptor algorithms, we take a circular crop from each keypoint,
located via a square crop with diameter = h = w, and pixels outside of the circle with
diameter of h are zeroed out. This is then fed into a small descriptor extractor network
with a bottleneck that is trained from scratch in an end-to-end fashion alongside the
other networks. The output of this descriptor network is the same size as the input
and these outputs are then shifted back into the locations that the crops were taken
from to create textured heatmaps. These textured heatmaps are then fed into the same

reconstructor network as we used in the simple reconstruction case.

The descriptor extractor network is implemented as a sequential network and the details

of the network parameters for each layer is defined in Table 4.6.

Layer Type | Input Size | OQutput Size | Kernel | Activation
Linear 3p? 512 - ReLLU
Linear 512 256 - ReLU
Linear 256 v - ReLLU
Linear v 8v - ReLLU
Linear 8v 16w - ReLLU
Linear 16v p? - Sigmoid

Table 4.6: A table of the parameters of each layer of the local descriptor extractor
network, specifying their layer type, input size, output size, kernel and activation. Where

p is the size of the circular crop patch and v is the size of the feature vector.
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Layer Type | Input Size | Output Size | Kernel | Activation
Conv2D k+ 3d 64 3x3 ReLU
Conv2D 64 128 3x3 ReLU
Conv2D 128 32 3x3 ReLLU
Conv2D 32 4 3x3 ReLLU

Data viewed as b vectors of size 4 x h * w
Linear 4xh*xw 4096 - ReLLU
Linear 4096 256 - ReLLU
Linear 256 d - -

Table 4.7: A table of the parameters of each layer of the distractor predictor network,
specifying their layer type, input size, output size, kernel and activation. Where d is the
number of images used, b is batch size, h is image height and w is image width.

4.5.5.2 Distractor Image Prediction Task

This task operates as an alternative to a supervised classification, where no labels are
required. The idea is to train a network to identify which image the keypoints were
extracted from when provided with the true image along with some distractor images.
A simple downstream network, is then given the task of looking at the stacked keypoints
and images and selecting which index contains the image that corresponds to the key-
points given. We use a multi-margin loss for the classification stage as we find it trains

more reliably than using a negative log-likelihood loss.

This task is difficult for our predictor to learn, so typically we use only one distractor
image in the prediction. This gives a binary decision for which image the keypoints

belong to.

The distractor predictor network we use is a sequential network with layers defined as
per Table 4.7.

4.5.5.3 Middle Frame Prediction Task

Predicting which frame is the middle of a sequence is a common task in self-supervised
learning, but is normally applied to sequential frames taken from a video. As we would
like to use non-sequential data, we mimic the effect of video frames using the TPS
warp [28], discussed previously in Section 4.3.2.1, to apply non-linear transforms to our
keypoints. We use a non-linear warp instead of a simple affine transform as we gives
the network a more difficult job in deciding which frame is the middle. For each image,
we apply two warps, where the parameters of the first warp are half of the second, to
obtain a set of three images, the original and two warped versions. We then pass all

three images through our keypoint detector to get three sets of keypoints, which are



Chapter 4 Self-Supervised Learning of Generalised Spatial Representations 57

Layer Type | Input Size | Output Size | Kernel | Activation
Linear 6k 512 - ReLU
Linear 512 1024 - ReLU
Linear 1024 2048 - ReLU
Linear 2048 512 - ReLLU
Linear 512 3 - -

Table 4.8: A table of the parameters of each layer of the middle frame predictor network,
specifying their layer type, input size, output size, kernel and activation. Where k is the
number of keypoints.

then shuffled and passed into a simple linear MLP to predict which index contains the
middle frame of the warps. A cross entropy loss is used with these predictions and the

true indices to obtain our loss.

The reason we use a task to predict a middle frame of the warp instead of a hard
constraint on keypoints aligning between warps is to encourage better generalisability

by learning the same behaviour as an emergent property.

The middle frame predictor network we use is a sequential network with layers as defined
by Table 4.8.

4.5.6 Concentration Constraint

For this additional constraint, we are minimising Equation 4.2 where m is the heatmap
prior to the soft arg-max function and g is our cleaned heatmaps. This constraint is
only used to discourage the soft arg-max algorithm from exploiting any random noise
or border pixels when selecting keypoints, thus encouraging the discovery of a peaky

Gaussian heatmap.

Z (hay — gx,y)2 (4.2)

T,y

4.5.7 Hyper-Parameters

We have selected a few hyper-parameters manually to aid our network in the training
process. We set our batch size to 64 and train for a total of 15 epochs. We train using
the Adam optimiser, with a initial learning rate of 0.001, which is reduced every 5 epochs
by a factor of 10. The number of keypoints is selected per dataset and is selected based

on the complexity of the shapes found in the dataset.
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4.6 Experiments

This section covers the experiments undertook to decide the best loss balancing approach
to use, followed by experiments demonstrating success on different datasets and in dif-
ferent scenarios. Further experiments are undertaken to improve our understanding of
what the keypoint regressor network has learnt and testing how well our method can

generalise to new data.

To evaluate the proposed approach we have selected a range of different datasets with
varying properties, including MNIST [64], FashionMNIST [110], Shoes from UT Zap-
posbH0k [112], Chairs [1] and Human3.6m [48].

Section 4.6.1 compares different approaches to balancing the range of losses used in our
multi-task approach. Section 4.6.2 shows comparison between how our network optimises
using single tasks against multiple tasks. Section 4.6.3 looks at the performance of our
technique on simplistic toy datasets as a proof of concept. Section 4.6.4 looks at complex
datasets that would have real-life applications. Quantitative analysis of our keypoints
is detailed in Section 4.6.5. We look into the inputs for the soft-arg-max algorithms
in Section 4.6.6, in order to analyse how confident the keypoint detector network is for
each keypoint. Finally, Section 4.6.7 is verifying the generalisability of our approach by
analysing results out of the training data distribution. Further implementation details

can be found in Appendix B.

4.6.1 Loss Balancing Method Selection

As discussed in section 4.4.2.2, we have found multiple different techniques for balancing
the losses of each task. After initial experiments found that the Pareto Optimal method
[95] gave poor results, as well as being far slower as we require two back-propagation
passes, we narrowed down our selection to two approaches, uncertainty estimation and

balanced learning with an exponential function mapping.

To test which approach finds better solutions, we have trained a network on the MNIST
dataset using the three tasks and one constraint described above, for 15 epochs. We
drop the learning rate every 5 epochs and to test reliability, we have completed 10 runs
for each approach. The results from this comparison can be seen in Figure 4.5. We
have plotted training loss against epoch with a 95% confidence interval, and we can
clearly see that the exponential function mapping not only gives a lower loss for all
tasks, but also gives more consistent results. To validate these results, we have run
the same experiment but using the Fashion MNIST dataset [110] as seen in Figure 4.6.
While the results here are not as clear cut, we still see that the overall loss is lower
when we train using the exponential function mapping and that we find more reliable

results over the 10 runs, with the confidence interval being significantly narrower. We
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Figure 4.5: Comparisons of task losses when using different loss balancing options, where
learnt uncertainty is in orange and exponential function mapping is in blue.

do see that the uncertainty parameter technique does get a slightly lower loss for the
concentration constraint, perhaps over optimising this constraint over the reconstruction
task. While this may not be an issue, we may find that the keypoints do not capture
as much information about the image as the focus is on the feature heatmap constraint

instead of solving one of the given tasks.

4.6.2 Single and Multi Task Comparison

Table 4.9 shows how our network optimises to find keypoints to solve the given tasks
when solving each single task and when solving multiple tasks at the same time. When
using only the distractor task, our found keypoints barely represent that shape which
implies that our network is operating like a hashing function for the image as a whole,

which is then used to identify the correct image.

The reconstruction task gives the best single task performance, distributing the key-
points more evenly than the other single task methods, but still has issues with clumping

points in smaller regions. The middle frame prediction task gives keypoints that have
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Figure 4.6: Comparisons of task losses when using different loss balancing options on
FashionMNIST, where learnt uncertainty is in orange and exponential function mapping
is in blue.

little travel from the centre of each image, but are not completely central. This is due
to our network needing to place points in areas that move to capture the transform but
this capture has no need to be in diverse areas of the image, so simply finds a solution
that locates one easy to locate feature near the centre of the image. Finally we have
our combined multi-task method that spreads the keypoints evenly around the shapes
in the image and also represent the image with enough detail to select correctly in our
distractor task. These keypoints are also able to trace the transforms to accurately

predict our middle frames.

Not only are the qualitative results showing an improvement on found keypoints, multi-
task learning leverages extra information so solve the individual tasks, we observe better
task performance when all tasks are trained together as seen in Table 4.10. The same
pattern can be seen in Table 4.11, which compares training losses in the single and multi

task cases.
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Distractor

Reconstruction Middle Frame

Combined

Table 4.9: Comparisons of keypoints found to solve different tasks individually and when
located using multi-task learning. Qualitatively, the multi-task learning approach shows
keypoints that capture the best structure, followed by the reconstruction task. Colours
are a scale between blue for keypoint at index 0 to red for keypoint at index k, and are
consistent between examples.

Table 4.10: Comparisons of task performance when the network is trained on the indi-
d when trained on all tasks combined.

vidual tasks an

Distractor Reconstruction | Middle Frame

Accuracy (%) Error Accuracy (%)
Single 98.75 0.0588 98.30
Multi 99.75 0.0291 99.65

Table 4.11: Comparisons of training losses of single task training and multi task training.

Distractor Loss

Reconstruction Loss

Middle Frame Loss

Single
Multi

0.0089
0.000518

3.7941
1.8487

0.0506
0.0109
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Table 4.12: Examples of keypoints found on the MNIST dataset. Colours are a scale
between blue for keypoint at index 0 to red for keypoint at index k. Further examples
available in Appendix B.1.1

4.6.3 Results on Toy Datasets

This subsection looks into our results when we use simple datasets, which consist of
greyscale pixels and are small in size (28x28 pixels). Due to the simple nature of the
data, we do not require the feature extractor in the reconstruction task. We are using a

value of ¢ = 0.9 for constructing Gaussian blob heatmaps for these simple datasets.

4.6.3.1 MNIST

The MNIST dataset gives us a good insight into how useful this technique can be. We
train our keypoint detector as described above using the entire dataset rather than
training on individual characters. As a result, we are not just optimising for one single
structure, but a wide variety of shapes, giving the network a much harder problem to
solve. As seen in Table 4.12, we have managed to find a convincing set of keypoints that

convey the shape of each and every different digit in the dataset.

4.6.3.2 Fashion MNIST

Just as we have done with the MNIST dataset, we are aiming to find keypoints that
represent the structures of all of the different types of clothing in the Fashion MNIST
dataset. We show in Table 4.13 that while there is a massive variance of shapes, each

item of clothing has keypoints that successfully represents their structure.

4.6.3.3 Quantitative Evaluation

To validate our qualitative results shown above, we have used a novel downstream clas-

sification task. We train a simple neural network to classify our learnt keypoints using
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Table 4.13: Examples of keypoints found on the Fashion MNIST dataset. Colours are
a scale between blue for keypoint at index 0 to red for keypoint at index k. Further
examples available in Appendix B.1.2

labels found in the dataset and we are able to classify 7 keypoints taken from MNIST
with 97.7% accuracy and 9 keypoints from FashionMNIST with 84.5% accuracy.

4.6.4 Results on Complex Datasets

The previous experiments were run on datasets that had no colour and limited textural
information, which meant we could use a simple reconstruction task that requires only
keypoints to reconstruct the image. However, most datasets are not as easy to work with
and require extra information in order to solve our reconstruction task. For the following
examples, we have extracted patches around the keypoints and learnt descriptor vectors
for each to feed into the reconstructor network. We are using a value of ¢ = 1.0 for

constructing Gaussian blob heatmaps for these real world datasets.

4.6.4.1 Shoes

We can train our network using shoes from the UT-Zap50k dataset [112], as seen in
Table 4.14, to find keypoints on a variety of different shoes that represent the shape of
the individual image. Individual keypoints are well matched between the shoes, and we
are clearly able to implicitly learn the generalised structure and how to fit that structure

to any example.

4.6.4.2 Human3.6m

This approach also gives good results for human pose estimation, using the Human3.6m
dataset [48], as seen in Table 4.15. We can see that this technique consistently locates
body parts, such as the head with the purple keypoint, and spreads the keypoints suf-
ficiently to capture the structure of the human body. Although these are not perfect

results, with the most obvious error being the issue of where to place the keypoints on
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Table 4.14: Examples of keypoints found on the Shoes dataset. Colours are a scale
between blue for keypoint at index 0 to red for keypoint at index k. Further examples
available in Appendix B.1.3

Table 4.15: Examples of self-supervised keypoints found on the Human3.6m dataset.
Colours are a scale between blue for keypoint at index 0 to red for keypoint at index k.
Further examples available in Appendix B.1.4

a human who is only showing their back. The labels in the dataset invert the keypoint
order over the y-axis when the back of a subject is shown, but this is not the case using

this approach as no prior informs the network that these are three-dimensional objects.

4.6.4.3 Semi-supervised Regression Metric

In line with Zhang et al. [118] and Thewlis et al. [100], we have tested our approach
using a semi-supervised step that regresses our predicted keypoints to ground truth poses
using a simple linear regressor. We then measure the error as a percentage of image size

per keypoint. As our keypoint detector network cannot deal with the differentiating
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Table 4.16: Comparison of regression errors with comparable papers. Distances are
measured as % error of image size.

Human3.6M
Thewlis et al. [100] 7.51
Zhang et al. [118] 4.14
Ours 6.35

Landmark Mean | Standard

Location Error | Deviation
Middle Hip 5.26 4.96
Left Hip 5.69 5.12

Left Knee 5.94 4.93
Left Foot 8.59 7.06
Right Hip 5.46 5.00
Right Knee 6.59 5.50

Right Foot 8.61 7.17
Mid Back 3.81 2.82
Head 4.86 4.75

Mid Shoulder 3.37 2.96
Right Shoulder | 3.77 3.09
Right Elbow 6.94 5.27
Right Hand 10.94 7.55
Left Shoulder 3.54 3.00
Left Elbow 6.75 5.11
Left Hand 11.53 7.51

Table 4.17: Mean regression errors on a per landmark basis. Errors are measured as %
of image size.

front /back in our images, we are manually flipping the input images and corresponding
ground truth points in examples where the left shoulder keypoint is further right in the
image than the right shoulder.

We can further break this down to a mean error on a per keypoint basis, as shown in
Table 4.17. We also show these results visually in Table 4.18, comparing the regressed

keypoints to their ground truth counterparts.

4.6.4.4 Action Recognition Metric

For the Human3.6m dataset, we do a similar classification task to the novel task classifi-
cation as described in Section 4.6.3.3. But as the dataset only contains action recognition
labels, we classify on sequences of keypoints taken from the video frames and feed the
sequence through an LSTM before classifying based on the hidden state of the final
LSTM layer. Figure 4.7 shows the action recognition accuracy using this approach with
our predicted keypoints taken from our keypoint regressor compared to the ground truth

keypoints taken from the dataset.
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Ground Truth Keypoints Regressed Keypoints

Table 4.18: Examples of regressed keypoints found on the Human3.6m dataset compared
to their ground truth counter parts. Colours are a scale between blue for keypoint at
index 0 to red for keypoint at index k, and are consistent between columns. Further
examples available in Appendix B.1.5

We train on sequences of 32 samples of keypoint shapes, sampled with frame striding
of 20 frames, and starting at a random point through each video. The action recog-
nition labels included in the dataset are from 17 different classes, giving the accuracy
of randomly guessing at 5.88%. Our results give a mean accuracy of 56.2% showing
our keypoints have clearly captured a good amount of information from the images,
not being far behind the 62.1% mean accuracy found using ground truth data. It is
worth noting that our regressed keypoints do not leverage any sequential information,
keypoints are taken from each video frame in isolation making these results even more

impressive.
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Figure 4.7: Box plot showing action recognition accuracy when we train an LSTM
based classifier on the keypoints taken from our keypoint detector and from the ground
truth points from the Human3.6m dataset. Data is showing distribution of results from
training 10 LSTM based classifiers.

Table 4.19: Comparisons of task performance for each dataset being tested

Distractor Reconstruction | Middle Frame

Accuracy (%) Error Accuracy (%)
MNIST 99.75 0.0291 99.65
FashionMNIST 99.97 0.0340 99.80
Shoes 89.82 0.2183 99.86
Human3.6m 98.21 0.0138 99.54

4.6.5 Further Quantitative Results

While we have seen in the previous section the locations where our networks have placed
keypoints on images, we would also like to know how well our networks can solve the tasks
that we have given them using those keypoints. Table 4.19 shows the task performance
for each of the networks and we can see that on the whole, the tasks have been solved
well. Notable outliers are the performance of the shoes dataset on the distractor and
reconstruction tasks, which we believe is due to the large variance in the textural data
but low variance in the shape data in this dataset, making both of these tasks difficult

to solve.

4.6.6 Keypoint Confidence

By looking at the outputs from the keypoint detection network before the soft arg-max
algorithm is used to extract numerical keypoints, we can learn more about how the
network is locating points. In Table 4.21, we can see heatmaps for some of the found
keypoints on the Human3.6m dataset. The second column shows a point that roughly
tracks the hip of the target, either left or right depending on the orientation of the
person in the image, and does so with a relatively strong confidence as seen by the small
range of bright pixels in the heatmap. An example of a less confident point is in the

third column, where our heatmap covers the majority of the person in the image. We
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Table 4.20: Means and standard deviations of eigenvalue ratios taken from covariance
matrices of Gaussians fit to heatmaps from the Human3.6m dataset. Columns align

with those in Table 4.21.
1 2 3 4 5 6 7 8

Mean | 0.7947 | 0.6136 | 0.2110 | 0.4382 | 0.3647 | 0.5373 | 0.3878 | 0.4302
SD | 0.0817 | 0.0637 | 0.1214 | 0.0913 | 0.1686 | 0.1753 | 0.1797 | 0.2205

see another error case in the final column, where we normally find a confident point on
the left hand, however in the second and fifth row, we find the back and the knee with

a wider heatmap range.

Table 4.22 shows keypoint confidence for all 8 keypoints learnt on the shoes dataset.
Compared to the results in Table 4.21, we can see that the network appears to be
uncertain of the location for the majority of the shoe landmarks. The reason for this
may be because of the high variance found in the textural information of this dataset,
while the shape information has a relatively low variance. As we use an Hourglass
network that leverages a combination of local and global information, the network is
free to learn a global structure rather than searching for local features. Some local
features have been successfully detected, but only those that are common for any kind

of shoe such as the heel and the toe.

For a deeper analysis of the shapes of the features heatmaps that our network has learnt,
we have applied a Gaussian fitting technique to learn the mean covariance matrix for
each keypoint over the batch. Table 4.20 shows the mean ratio between greatest and
smallest eigenvalues taken from an eigen decomposition of the covariance matrices of
Gaussians fit to our outputted heatmaps from the Human3.6m dataset. A small ratio
here means that the heatmaps are stretched and resemble long features whereas high
ratios resemble relatively circular heatmaps. The values at indices 3 and 5 resemble

those keypoints that find the legs on our dataset which explains the low ratio here.
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MNIST | FashionMNIST
NetA | 98.4% 82.3%
NetB | 93.1% 84.5%

Table 4.23: Classification Accuracy using Keypoints Detected from networks trained on
each dataset. NetA has been trained using MNIST and NetB has been trained using
FashionMNIST.

4.6.7 Verifying Generalisability

One of the aims of using a multi-task approach is to train a network to find generalised
keypoints. How can we evaluate for generalisability in this self-supervised keypoint
detection context? The ability for our keypoints to be used to solve arbitrary tasks
gives us some idea but to push the limits of evaluating generalisability, we can attempt
to use testing data that lies out of the training data distribution. Taking a pair of
keypoint detector networks, one trained to locate 9 keypoints on MNIST characters
and the other to find 9 keypoints on FashionMNIST, and swapping the inputs to each
network, we can see how each react to data outside of the expected distribution. As seen
in Table 4.23, accuracy for classifying each input using only their keypoints drop after
switching datasets drops but remains high, especially on the network trained on MNIST.
Table 4.24 shows the keypoints found overlaid onto the images and we can clearly see a

reasonable structure captured in both of the cases after swapping.

We also see successful generalisation in complex data. We have shown our results earlier

of capturing structures of shoes, and we can use this network to identify structures of

MNIST FashionMNIST

NetA

NetB

Table 4.24: Comparisons of keypoints found on the MNIST and FashionMNIST datasets,
where NetA has been trained using MNIST and NetB has been trained using Fashion-
MNIST. Colours are a scale between blue for keypoint at index 0 to red for keypoint at
index k, and are consistent between examples from the same network.
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Table 4.25: Examples of keypoints found on the Chairs dataset when the network was
only trained on Shoes. Colours are a scale between blue for keypoint at index 0 to red
for keypoint at index k, and are consistent between examples from the same network.

+

Table 4.26: Comparisons of task performance for each task when tested on Shoes and
Chairs using a model trained on Shoes

Distractor Reconstruction Middle

Accuracy (%) Error Frame (%)
Shoes 89.82 0.218 99.86
Chairs 56.12 0.226 98.15

chairs [1] as seen in Table 4.25. We are helped here as both of these datasets have single
objects in the foreground and a plain white background, however there is solid evidence
of generalisation here. As classification of this dataset would be unreasonably difficult
using just 8 derived keypoints, we have instead evaluated our generalisability success
via downstream task performance. Table 4.26 shows the downstream task performance
for each task when this model is tested on the Shoes and Chairs dataset. As could be
expected, there is a drop in performance for all tasks, with the distractor task showing

the greatest drop.

4.7 Discussion

As seen in the qualitative results from the experiments above, we are able to distil
shape from a wide variety of image subjects with no prior knowledge. We find that our
desirable properties emerge naturally as the network learns a general keypoint structure
that can be used to solve all of our selected tasks. While these properties could have been
obtained through creating losses that directly optimise these requirements, as shown by
Zhang et al. [118], we have observed better generalisation by indirectly learning these
properties. If a neural network is able to locate keypoints that contain a strong structure
found in the data with absolutely no priors of what structure to look for, then we have
distilled this information purely from image data. The power of applying multi-task
learning to this problem is that the network must learn this strong generalised structure

in order to be able to solve the set of varied tasks.
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Similar approaches [100, 118] use a large amount of hyper-parameter tweaking, including
selecting different neural networks based on which dataset is used, whereas we aim to
generalise keypoint regression in a truly domain-agnostic approach. The result is being
able to test on a different dataset to the one used in training and still detect a strong

set of keypoints that capture structure seen in the image successfully.

Standley et al. [96] study which tasks should be learnt together in a multi-task environ-
ment, but in the context of supervised tasks and with a time-accuracy trade-off. In the
context of self-supervised learning, we face a different scenario where we would like to
select tasks that help us learn a better representation and not focus solely on the single

task performances.

We theorise that the success of our technique corresponds to the choice of tasks that are

selected to train with. A good set of tasks should be:

1. Varied, the optimal solutions for each individual task must be contrasting enough

that we cannot overfit to all tasks at once.

2. Difficult to optimise, easy tasks will either focus the optimisation in the down-
stream tasks to obtain good results using poorly chosen keypoints, but if we choose
hard tasks, we require well placed keypoints to obtain good training performance.
At the same time, overly difficult tasks will not be able to be solved using any

keypoints, giving little to no training signal to the keypoint detector network.

3. Balanced in how the tasks are oriented towards our objective. While we do not
want them to be completely unrelated as there will be nothing to learn, we also

do not want them to be so related such that we overfit and lose generalisability.

4.7.1 Common Pitfalls in Self-Supervised Keypoint Detection

Training a network to discover keypoints that can successfully capture the structure of
an object is by no means trivial. Keypoint detection is essentially a mapping from an
image to a list of 2D coordinates that denote the pixel or sub-pixel location where a
desired feature is. Traditionally keypoints have been described as having two desirable
properties; robustness, how invariant keypoints are to changes, and repeatability, how
successful we are at finding the same feature between examples. Robustness can be
tested by applying a transform to an image and observing if the keypoints to follow
that transform but repeatability is more difficult due to the lack of labelled data. An
additional desirable property is for the keypoints to disperse to capture areas over the
entire image space. We observe that in some cases, the keypoints found are either
erroneous or have undesirable features and some of the reasons for this are discussed

below.
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4.7.1.1 Local and Global Information

It is common to find deep learning based techniques for pose estimation and keypoint
regression to use an hourglass network, as it allows for leveraging both local and global
shape information to decide where a keypoint should be. This tends to give us good
results, especially in a supervised environment [85], however in the self-supervised case,
we can see some undesirable behaviour. The balance between the reliance on local
and global information can force our trained network to base keypoint detection almost
entirely on where it is in the image and not on what textural information is at that point.
We find a lack of robustness in difficult examples where the global structure differs from
the expected range of poses learnt from the given data. If an image is rotated 90 degrees,
then we would expect the keypoints to move with the image, but in almost all cases, we
see a massive failure state. A successful keypoint detector should be able to deal with

this case as the textural information is still available in the image.

4.7.1.2 The Responsibility Problem

The second failure state we see is relating to the responsibility problem [115]. How
does the network decide which keypoint should capture information from each area of
the image? We see more subtle failure states than before that are attributed to this
problem, for example in Zhang et al. [118]’s results on the Human3.6m dataset. When
the person in the image has raised a hand above their head, the keypoint that normally
tracks the head is now responsible for tracking the hand. This gives us another clue
about what we are actually learning in our hourglass network, and the local information
about the head is less dominant than the global shape information marking the top
of the structure. Perhaps taking inspiration from Zhang et al. [115], the solution in a
self-supervised keypoint detection environment is in learning a set of keypoints instead
of a list. With no prior knowledge, searching for ordered keypoints where each keypoint
locates the same region of an object is unrealistic when we have datasets of real life
objects that are free to move and rotate in a three dimensional world. If we learn
keypoints that are deliberately unordered and order them if required for downstream
tasks, we may expect to see a more accurate representation of shape, as a common

structure can be learnt and then keypoints matched to features later.

4.7.1.3 Bilateral Symmetry

Bilateral symmetry creates a persistent issue when we have data of the object rotated,
as is common in human pose estimation. We would like to keep consistency where we
will have a keypoint that consistently tracks the left hand but we seen in our results
and others [100, 118], this is not the case. The image information to work out the

orientation of the subject is present, but our network is not correctly leveraging it and
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without supervision, struggles to know that we could be looking at the back of the

object.

4.7.1.4 Collapse During Training

One common issue with learning keypoints with no supervision is the degenerate solution
where all keypoints collapse to (0, 0) if trained without a prior that forces them to spread.
In previous approaches, this is fixed with a specific separation constraint that minimises
overlap of keypoints. While this initially fixes the collapse, this sort of prior can lead to
some undesirable properties such as being unable to find two features that are within
the range of separation set by the constraint. Ideally, we would like a softer method,
that aims to capture the most amount of information instead of specifically spreading
keypoints. This naturally fixes the collapse without adding any unforeseen consequences
such as our keypoint detection failing to find two points in the same area. Our method
aims to naturally solve this problem due to the multi-task nature of the optimisation,
having multiple training signals aids in the training method by discouraging getting

stuck in a local minima in our loss landscape.

4.7.1.5 Occlusion

Occlusion is a persistent challenge over a wide range of computer vision problems, with
keypoint detection being no exception. Locating a keypoint that cannot be seen is
naturally difficult, but some supervised approaches use shape models to predict hidden
keypoints by using nearby visible landmarks [20]. When using self-supervision, we no
longer have the prior knowledge of a strict structure but we can leverage information
from other images in the dataset where occlusion does not occur. If we learn a solid
representation, with the use of a carefully selected prior, then we may be able to take
inspiration from Cootes et al. [20]’s work and infer where keypoints should be based on

where we can find the neighbouring points.

4.8 Conclusion

In this chapter we have built keypoint detectors that are trained entirely through self-
supervised methods without any hard-coded constraints to avoid undesirable behaviour
as seen in previous work and have shown the effectiveness of applying multi-task learning
to this area. Our results show increased generalisation over using a single task based
approach, to the extent that performance does not drastically drop if we train on one
dataset and test on a completely disjoint dataset. We believe this technique has value

in landmark detection applications where little to no ground truth data is available and
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for general spatial information extraction in a self-supervised setting. Finally, we have
addressed some of the common pitfalls in this area, and given some suggestions of how

these can be solved.

We have established a solid multi-task framework for keypoint detection but it is clearly
adaptable by selecting different tasks. By using specific tasks, we may find that we have
new emergent properties which will be desirable in different applications. One example
of this, which we will explore in Chapter 6, is in 3D pose estimation. We will attempt to
add this property by adding another task that takes the learnt 2D points and predicts
the z coordinates to add depth to the learnt spatial representations. Another potential
task could be checking for keypoint consistency between video frames to track an object
as it moves through the scene. Leveraging this temporal information may help us locate
better keypoints, such as those that lie on points of articulation in pose estimation or
pushing points closer to the edges of a shape to capture a stronger structure. There is
more work to be done on the analysis of multi-task learning in this application. We know
that our chosen tasks give us desirable properties, but it is not known what properties
each of these tasks gives us, and how the combination of the tasks changes the outputted
keypoints. How we optimise the combination of tasks is another area of future work that
may help us improve our results, as discussed in Section 4.4.2.2, loss balancing is key to

finding a solution that satisfies all tasks.

While this chapter has focused on an abstraction of keypoint detection, allowing for
generalised keypoints to be located for any structure, the purposes of keypoint detection
in this thesis are more specialised with the aim of locating articulation models. To find
keypoints that capture articulated structures in images, we will be investigating how
to apply a carefully selected prior. Our focus is still on finding a generalised solution,
so our prior cannot be too strong as to work for only one kind of articulation model,
but also must not be too weak, as to not capture enough information. Chapter 5 will
explore how priors can be applied to generalised spatial representation estimation, and

additionally, its applications in keypoint lifting, as previously discussed in Chapter 3.



Chapter 5

Using Bone Rigidity as a Generic

Prior

The previous chapters have shown the applicability of self-supervised learning to both
keypoint detection and pose lifting, without the requirement of any strong priors. But
solving an ill-posed problem such as self-supervised estimation of a 3D articulation model

from an image, comes with difficulties without the use of some prior knowledge.

Typically, approaches such as these use strong priors, as demonstrated by Jakab et al.
[50]. These can achieve impressive results for human pose estimation, but do not gener-

alise to allow for generic articulation models.

This chapter aims to answer RQ4, with the primary aim of identifying a suitable prior
required to solve the generalised articulated 3D pose estimation problem, with the aim
of using only the minimum required prior information, to prevent an approach that is

overfitted to a subset of articulation models.

5.1 Introduction

Careful selection of a prior is essential to the success of our generalised articulation
models estimation approach. Too strong a prior will limit us to only a subset of the
articulated models we are interested in, but too weak will not contain enough information

to provide good results.

This chapter will start with an analysis of existing priors before creation of a new
generic prior. We then show how this simple prior can be used within a differentiable
operation to identify the connectivity of keypoints within a dataset, initially for two-
dimensional points before extending this to 3D. Using this differentiable algorithm, we

create an approach for pose lifting in which we look for keypoint connectivity and apply

7
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our prior to estimate depth. As this is only half of the 3D pose estimation pipeline,
we also demonstrate how this prior can be used for the keypoint detection stage of the
pipeline as an approach for placing points on articulation and limb end points. We finish
this section with a discussion of our prior and implementations, and highlight potential

problems with using this prior.

5.2 Designing a Generic Articulation Prior

In the context of self-supervised learning, a prior is a restriction based on some knowledge
of the data, before the data has been observed. We require a prior to train our network
using self-supervised deep-learning, due to our requirements to use a variety of datasets
that may not be labelled, but balancing the strength of such a prior is paramount to
the success of our approach. We must be careful to select a prior that is generalised to
such an extent that it can be applied to any articulated model, while providing enough

information to solve a naturally ill-posed problem.

Figure 5.1 is a visual demonstration of this trade-off. If a prior makes stronger assump-
tions about the world, the performance of the approach increases. But this is at the
cost of the applicability of our approach, thus we may struggle to translate into a new

domain or onto a new unseen dataset.

But this is not unique to self-supervised articulation models, this theory applies to
any self-supervised learning where a prior is required to find a satisfactory solution
or to avoid an ill-posed problem. Even in supervised learning, some problems require
additional knowledge about the world to supplement labelled data. Strong priors tend
to be desirable due to the increase in performance, but it is apparent that this can

often be essential to the generalisability and applicability of an approach. We must also

A %OI‘IH&HCQ

Applicability
>

Weak  Goldilocks Strong
Prior Prior Prior

Figure 5.1: A simple illustration of how increasing the strength of a prior both increases
performance but reduces applicability of the approach. We aim for the ideal trade-off
in the middle, which represents the Goldilocks Prior.
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be careful to not select too weak a prior, as we need enough information to make the

problem solvable.

5.2.1 Requirements of our Prior

Our prior must make assumptions that are common for all articulated models that may

be subjects of images. The requirements for our prior are as follows:

e Generic to all articulation models
e Reliant only on information found within unlabelled monocular images

e Contains knowledge of the 3D world to allow for location of three-dimensional

models

This small set of requirements will guide us as we design a prior that will assist in finding

generalised articulation models without making unnecessarily strong assumptions.

5.2.2 Comparative Priors

Previously, we used very weak prior knowledge of 3D articulation models, where the only
assumption made is that every keypoint has a corresponding z co-ordinate, as it exists
within a three-dimensional world. We have seen that this prior can give us a good 3D
model when used as the basis of an adversarial pose lifting approach, but can sometimes

be prone to the inverse pose problem and is both unreliable and slow to train.

One option for providing the necessary knowledge is to add a second viewpoint of the
same scene. Kocabas et al. [59] apply this theory to 3D pose estimation by predicting
two views of the same subject using a supervised 2D keypoint detector, before combining
them using Epipolar geometry to create an estimated 3D pose for use with their 3D pose
estimation network. While they gain promising results, this style of approach requires
multiple view data for training, which is an assumption about the data that we wish to

avoid to maintain generalisability.

A weakly-supervised approach by Chen et al. [14] introduces the injection of a robust 3D
prior to locate 3D human poses from images. They use a pre-trained 2D pose estimator
to obtain 2D skeleton maps which they regard to be a tree-structured kinematic graph
representing a person, and group together multiple viewpoints into a shared representa-
tion in the latent space. Both multi-view geometry and pre-trained supervised models

are elements that we are aiming to avoid when implementing our generalised system.

Another prior used in multiple approaches considers the angles between pairs of points

[61, 90], and encourages keypoints to be estimated such that they obey the range of
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valid angles. This is simple but effective, however will not be applicable to our scenario,
as we do not know the structure of the articulation model beforehand, so setting ranges

of valid angles would not be possible.

5.2.3 Bone Rigidity Prior

Taking inspiration from properties common to any articulated object, we have designed
a bone rigidity constraint as our prior assumption to base our approach. If we have
keypoints that capture either articulation points or the endpoints of limbs, then our
assumption is that we should have fixed distances between all pairs of joints that are
connected by a rigid bone. We will also make the assumption that our joints, if viewed

as a graph, are connected as a tree and thus contain no cycles.

How can we exploit our bone rigidity prior to create a method for locating generalised
articulation models? The remainder of this chapter will firstly design an algorithm
based on this prior which identifies connectivity of keypoints, before demonstrating an
implementation of both self-supervised 2D to 3D pose lifting, as shown in Section 5.4,
and 2D keypoint detection in Section 5.5. We will show how this prior is suitable for
proving sufficient information to solve both of these tasks, while not overfitting to a

single category of articulation model.

5.3 Determining Joint Connectivity

Knowing which keypoints are connected gives valuable information for downstream pro-
cessing and for creating a loss function to train a self-supervised network. While the
joint connectivity information may be available in a labelled dataset, given our priority
to learn in a self-supervised fashion, we will choose not to use this and aim to derive
this information instead. Inferring connectivity helps with the generalisability of our

approach as a new dataset of articulated subjects will function identically.

Another approach for estimating the connectivity of our points is to learn a connectivity
matrix via a neural network. However, if we are learning to place keypoint on an image
and learning to estimate connectivity at the same time, we may find our problem does

not have enough constraints, and thus we may find degenerate solutions.

However, using deep learning to locate the connection matrix is not required as by using
our bone rigidity prior, we can easily determine connectivity. This is because any two
joints connected by a rigid limb will have a fixed distance between them. For this to
hold, we must make the assumption that we have managed to estimate keypoints that

lie on joints. This will be covered in more detail in 5.5.
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Figure 5.2: An illustration of an elbow-like joint built of two rigid limbs with articulation
connecting them. As demonstrated by the red lines, the distance between (0,1) remains
constant as does the distance between (1,2), but the distance between (0,2) does not
remain constant when the pose of the articulated joint changes.

5.3.1 Limb Variance Minimum Spanning Tree

Our novel approach is to derive keypoint connectivity in a non-learnt method, which
has numerous advantageous, such as a lower reliance on locating this pattern from data.
This method uses our bone rigidity prior to estimate which keypoints are connected by
calculating a Minimum Spanning Tree (MST) using Prim’s algorithm [33] over a pairwise
distance variance matrix. This idea is based on the fact that two points of articulation
in a articulated model containing rigid bones will be located in three-dimensional space
at an equal distance from each other when viewed over a batch of different examples.
This simple idea is demonstrated in two-dimensions in Figure 5.2. Thus if we take a
batch of data points, the variance across the pairwise distances will be smallest between
points that are connected by a rigid limb. When we combine this knowledge with the
assumption that the articulation models we are interested in are structured as a tree, it
is clear that using a minimum spanning tree over this data will produce a matrix that

represents the pairs of joints connected by limbs.

We calculate this by taking our batch of keypoints [B, K, 3], and computing a pairwise
distance matrix [B, K, K| which gives the distance between every pair of keypoints.
Taking the variance of this matrix over the batch dimension gives us a [K, K| matrix
of pairwise distance variance. With this matrix, we can now calculate the MST and if
we make the assumption that our three dimensional keypoints lie on joints of a rigid

articulated structure, this tree will have identified our connectivity matrix.

5.3.1.1 Implementation of a Differentiable Minimum Spanning Tree

Implementing a minimum spanning tree that is also differentiable comes with difficulty.
The standard MST algorithm relies on an arg-min operator to locate the best index at
each step, which is typically non-differentiable. The relaxation of the arg-min operator,

used previously for converting heatmaps into keypoints in Section 4.5.2,' can be used to

We previously used the soft-arg-max operator, but the negation of inputs is sufficient to re-use the
algorithm.
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estimate the arg-min function while continuing a gradient through our algorithm. We
use a very low (0.000001) temperature parameter with the soft-arg-min operator to tend
towards an integer value. But an unfortunate side-effect of the soft variant of the arg-min
function is that it returns real values, which is useful in keypoint estimation for location
of sub-pixel keypoints, but not when referencing an index of a matrix as required by the
MST algorithm. To circumvent this, we have used a non-differentiable rounding function
with the addition of the gradient pass-through trick [2] to round the soft-arg-min output
to the nearest index. This results in a good approximation of the minimum spanning
tree but can still contain errors in the rare edge case that two values in the limb variance
matrix are identical. We use a final workaround here that simply adds a small amount
of random noise to the data in the matrix before we run the algorithm to circumvent

this scenario.

We implement our algorithm in Python using PyTorch, taking inspiration from Prim’s
algorithm [33] for finding a minimum spanning tree, but adapted to allow for gradients

to flow through it.

# A method for finding the minimum spanning tree from a matrix of weights
# m of type Tensor and shape [K * K] where K is number of keypoints.
Represents our weight matrix for a graph.
def find_mst(m: torch.Tensor):
n_kp = m.size () [0]
# As we are actually re-using the soft-arg-max operator, we must
first normalise and negate our input matrix
m = torch.triu(l - (m / m.max()), diagonal=1)
# Select an initial node as Primm’s algorithm states, and as we do
not allow for self loops, remove index (0, 0)
rows = torch.ones ((n_kp))
rows [0] = 0.0
cols = torch.zeros ((n_kp))
cols[0] = 1.0
# Initialise our Minimum Spanning Tree here
mst = torch.zeros((n_kp, n_kp))
# A tree has n-1 edges for graph with n nodes
for i in range(mn_kp-1):
# Creating a mask from the currently selected nodes
mask = cols.view(n_kp, 1) * rows.view(l, n_kp)
# Apply that mask to the data to hide unselected edges
masked_m = mask * m
# Using the soft arg max algorithm with a very low temperature
parameter , approximate the index containing the maximum value
smax = ((soft_arg_max(masked_m) + 1) / 2) * (n_kp - 1)
# The next line implements the gradient passthrough trick to work
around the not differentiable rounding operator
inds = ((torch.round(smax) - smax).detach() + smax)
# Select this index in our Minimum Spanning Tree
inds = inds.long() .squeeze (0)
mst [inds [1], inds[0]] = 1.0

# Disable the selected row to prevent loops
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rows [inds [0]] = 0.0

# Enable the selected column to search for neighbours of the
newly selected node

cols[inds [0]] = 1.0

return mst

Listing 5.1: Differentiable Minimum Spanning Tree Implementation using PyTorch

5.3.2 Demonstration in Two-Dimensions

To understand how we can use this prior to locate a suitable three dimensional articu-
lation model, we can see clearly how this works in two dimensions and the extension is

then conceptually trivial.

We have created a simple dataset of keypoints taken from the articulation points of a 2D
stick figure to demonstrate this algorithm, as shown in Figure 5.3. Using this, we would
like to determine a connection matrix to see which points are connected to learn our
articulation model. The first step here is to calculate a pairwise distance matrix between
every pair of keypoints. From this symmetric matrix we can see how far each point is
from every other point, but this is not enough on its own to calculate connections. Next
we need to calculate our variance matrix by taking a batch of these pairwise distance
matrices, and calculating variance over these values. Assuming (1) that there is enough
natural variance in the keypoints and (2) that we have a large enough sample size, then
we will see a variance matrix that tends to 0 in positions where two joints are connected
by a rigid bone. To determine connectivity now is trivial, and we calculate this using
a minimum spanning tree (MST) over the values in the upper triangle of this variance
matrix. The resultant tree from the MST algorithm now represents our connection

matrix.
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Figure 5.3: A diagram demonstrating the steps used in the LVMST approach for locating
a connection matrix from a simple 2D dataset.
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5.3.3 Extending to Three-Dimensions

Intuitively this extends into three dimensions as once we have derived the pairwise
distances, the rest of this approach remains identical in 3D. The power of this method
is now that we can take two-dimensional keypoints and predict the third dimension (the
z-axis co-ordinate) to fulfil our rigid three-dimensional bone requirement in order to
learn three dimensional articulation models from two-dimensional inputs without the
need for ground-truth 3D keypoints. The next section will use this principle and apply
it to the pose lifting problem as initially discussed in Chapter 3.

5.4 Pose Lifting with Rigid Bones Prior

With this prior, we can revisit the problem of lifting 2D poses into the third dimension
as previously discussed in Chapter 3. We have briefly discussed in Section 5.3.3, how
we can determine a connection matrix from 3D keypoints, but what if we only have
2D keypoints that represent a 3D model and we want to estimate the corresponding z

co-ordinates?

As a simpler solution to depth inference, which does not require adversarial learning,
we look to apply our rigid bones prior. When paired with a simple self-consistency loss,
we are able to locate consistent 3D poses from a 2D dataset. This is in contrast to the
weak 3D prior used in the original adversarial approach in Section 3.4, which is able to

lift 2D poses into the third dimension, but as discussed previously, can be problematic.

5.4.1 Minimising Limb Length Variance to Estimate Depth

Given 2D keypoints, how can we use the rigid bones prior to estimate the keypoint depth?
We know that lengths of limbs in three dimensions should be constant over a batch, so
if we know two keypoints are connected by a rigid limb and the distance between them
appears to be less than the limb length as observed in other examples, then it must
either be going backwards into the image space plane or forwards out of it. We can
develop a loss function to give a training signal to our depth estimation network using
this knowledge, which simply minimises the variance of the three dimensional pairwise
distances for pairs of connected keypoints as located by the LVMST connection matrix.
By doing so, we should see that all pairwise distances tend towards being constant in
three dimensions, as our network learns to estimate z co-ordinates that minimise the

distance to the true keypoint depth.

However, this loss function alone does not allow us to estimate depth consistently yet,

the estimated z co-ordinates can be either positive or negative relative to its connected



Chapter 5 Using Bone Rigidity as a Generic Prior 85

Ground Truth Predicted
Side Diagonal Front Side Diagonal Front

o &
o m
o7 1 i 022
10 \ 4 Fosc
3 * . = == Loz
08,075 030 025 000-0.250.50.751.00 P0.25 58 15 0 09795020 o0 0.5 050 025 0.00-0.25:055:0 751,00

m L ] ) ;?: o c = >~ q Z?:
g S| { = | a2 Vs R
. A = J ) . S~ N /

= —_— = — = fors = —_— = — 075
87850 25 00 20 - -5 o285 5 Loc 08755028 00 2x o g0 2958 5 Loc
001075 050 025 000-0250500.75 100 80285, 1y 007 0795979 o0 075 030 025 000-025050075 100 001075 050 025 000-0250500.75 100 B3, 1y 07 0095879 o0 075 030025 000-025050075 100

il ug
o7 100 o7

o o] |
i N 3 ' B W= =5 =N
b "r\ il | f—-} - CER - oaE ez = =

o3t 10 o3¢
o7

. —_— —— o7 5 — _— <
,% B Jg oc P T “roc
00075 050 025 0.00-0.250.500751.00 2 592 800075 050 025 000-0250.560751.00 00,075 050 025 0.00-0.250.500751.00 2 592 FHo0 075 050 025 000-0250.560751.00
o X 3.00100.7 2 o o B 3.001007 2 o

100
o o1s
02
Yoo aso
021

(’P g =V | o = N - 5§
o ! ! oz o \ | ozt
L g e SEE
, — —— | — =
875 54, ——— 558 Lo 875 54, — 558 —Loc
2o, 50002 5 2, 002" 5

e =
or: 100 or: I ‘lnn
05 1 3 . osor - o

b \ N -
02 - » 0zs Py ; /,/ 0z
o 7 1 1 o0 o ) / 7\ o0
b / { \ oy { { e
i 1 o \ { osc
: = : = L Loz 5 = = > Loz
— —— ——— —
y?% Brrspr e o By 4 e e
5075 a0 038 ase o asasea 100 TR 500289, L. Syu——— ISP TR 5502895, L. Syu—————

Table 5.1: Demonstration of using our rigid bones prior for keypoint lifting, without the
use of a self consistency loss.

0s0

joint and still achieve a valid solution. We can see the results of using only this LVMST

based loss function when training in Table 5.1.

5.4.2 Self Consistency in the X and Z Dimensions

To fix our initial issues found using the LVMST with our variance loss, we have intro-
duced a self-consistency check as an additional loss function. Depth estimation network
takes K, and generates K., fundamentally training the network to infer a side-on view
of a shape. If we then pass K, into the network, and we have learnt a consistent depth
then we can expect our output to approximate —K,. We form this into a simple mean

squared error loss function between net(K,) and —K,.

We can visualise that our network is learning to rotate a structure by 90 degrees in either
direction, and depending on the direction that it has learnt to rotate, our 3D structures

are either learnt correctly or are learnt as the inverted pose, depending on initial network
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Layer Type | Input Size | Output Size | Activation
Linear 2k 256 ReLU
Linear 256 128 ReLU
Linear 128 64 ReLU
Linear 64 k -

Table 5.2: A table of the parameters of each layer of the pose lifting network, specifying
their layer type, input size, output size, kernel and activation. For the experiments in
this chapter, we use k = 16, using the simplified keypoints from Human3.6m, and the
output of the network is the predicted z co-ordinates.

parameters. In either case, we achieve consistency over the batch of outputs, avoiding
the occasional inverted pose problem seen when learning to infer depth using adversarial

learning.

5.4.3 Implementation

We use a simple linear neural network, with input size of 2K, giving an output of size
k, which we provide our z,y data and get an estimate of 2’ as an output. Using K./,
we can now predict a connection matrix using the LVMST algorithm and formulate
our variance loss to minimise sum of the dot product of our batchwise keypoint distance
variances and the connection matrix. We then apply the self-consistency loss as described

previously and use a sum of the two loss functions as our final loss.

The network architecture used for our pose lifting network in these experiments is a
simple sequential MLP with parameters as defined by Table 5.2. To train the network,

we train for 250 epochs, using a batch size of 256 and a learning rate of le-5.

5.4.4 Experiments

As this self-consistency check is much simpler than the adversarial technique for inferring
3D as discussed in 3.4, our proof of concept experiments show that this method can be
used to quickly and reliably estimate 3D poses from 2D inputs, without the difficulty of

balancing a generator and discriminator.

We use the same experimental set up as in Section 3.4, using the ground truth 2D key-
point data from the Human3.6m dataset[48] as inputs and estimating the corresponding

3D points.

We show our quantitative results in Table 5.3. We show a large improvement in mm
error when compared to our previous approach and comparative accuracy with respect

to similar self-supervised and semi-supervised approaches.
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Approach

Mean accuracy (mm)

Martinez et al. [79] (supervised)
Drover et al. [27] (weakly supervised)
Kudo et al. [61] (self-supervised)
Chen et al. [12] (self-supervised)

45.5
64.6
130.9
51.0

Ours (Chapter 1 - self-supervised)

155.5

Ours (bone rigidity prior - self-supervised

108.8

Table 5.3: Mean distance between predicted and ground truth poses in the human3.6m
dataset.
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Table 5.4: Demonstration of using our rigid bones prior for keypoint lifting, using our
self consistency loss to fix the issues demonstrated in 5.1. More examples can be seen
in Appendix C.

Qualitatively, we see that our poses are reasonable and represent the correct pose in

most cases, as can be seen in Table 5.4. But we do have some errors, notably the leg

points sometimes being at angles that are not feasible.
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5.4.5 Discussion

As we have previously discussed, our initial adversarial based pose lifting approach
covered in Section 3.4 could lift poses into 3D, but not without some issues. If instead,
we impose our rigid bone prior, we have enough information to determine consistent
poses, avoiding the occasional issue of inverted poses, while achieving more accurate
results. In addition, this approach locates which keypoints are connected, using that
information to predict the depth of each point, and this richer representation could help

us in the future to predict through occlusion of provide keypoint uncertainty information.

Another major advantage we see is the ease of training and adjusting hyper-parameters
in the self-consistency method. Adversarial learning comes with challenges due to the
requirement for balancing the generator and the discriminator networks, but being able
to leverage the depth information using self-consistency omits this requirement. This
model also required far fewer parameters, 50640 compared to the 224962 used in the
keypoint lifting network of the adversarial approach. Additionally, we would expect this
approach to be more robust to any other changes that would usually inhibit the results

found using an adversarial method.

To answer RQ4, it is difficult to say from this experiment if this is definitively the min-
imum prior required to solve this problem, but as this prior makes no assumptions that
prevents our approach from working on pose datasets for any entity built of rigid bones,
we are satisfied that we have chosen an appropriate prior for representing generalised

articulation models.

We must also address some potential concerns using this approach. In this case, with
2D keypoints as an input, the z co-ordinates are estimated to match the maximum
apparent length of each limb, so we must make the assumption that the dataset contains
examples where the limb is perpendicular to the direction of the camera. Without this,
the estimated depths will only be selected to match the maximum visible lengths of
limbs which could possibly underestimate limb lengths. But as we expect our datasets

to be large and diverse enough, this ought to never be a significant issue.

But this section has been based around the assumption that keypoints can be located
on points of articulation and ends of limbs as an approach for pose lifting. The next

section will look at how we can learn such points by using our rigid bones prior.

5.5 Encouraging Keypoints to Locate Joints

In the previous section we have demonstrated the power of this prior for self supervised
pose lifting. But this prior is not limited to applications within the depth estimation

step of our articulation model pipeline, is also applicable to the keypoint detection stage.
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As previously mentioned, for our bone rigidity constraint to hold, our keypoints must
capture only joints between rigid limbs in order to exploit their fixed length as a prior.
In our previous self-supervised multi-task learning approach, as described in Chapter 4,
there were no objectives to encourage this behaviour. As we have generalised keypoint
detection to look for keypoints in any structure, there is no reason why it should locate
limbs over another arbitrary point that encodes similar information. To locate the ends
of limbs, a new objective function is required. We will take inspiration from our previous

reconstruction task and place a greater constraint on the reconstructions produced.

Readdressing RQ3, we are now switching the context of the term keypoint from being
a generic spatial representation as was used in Chapter 4, to representing landmarks on
an articulated object. The ideal landmarks are those that locate points of articulation,
and endpoints of limbs, such as hands and feet. However, as we are still restricted to
self-supervised learning, the ordering of these keypoints will be arbitrary, as there is no
implicit ordering contained within the data that informs which keypoint should represent
each joint. The only criteria is internal consistency, so poses from our model contain
joints that align, which can be difficult, especially with the natural symmetry found in

many articulates objects. This will be discussed later in Section 5.6.3.

5.5.1 Differentiable Sketching

Previously, we have been using a standard convolutional neural network for our recon-
structor, but the outputs from this network are unconstrained. For some applications
this is advantageous as it allows for fine tuned learning to create highly detailed outputs,
as is the case for a GANJ[35]. But for this application we do not require high detailed
reconstructions, only a good captured representation. For this reason, we believe re-
placing the reconstruction network with a constrained image renderer will aid in this.
A standard convolutional reconstructor network can learn to create an image from a
set of keypoints with some flexibility, whereas a differentiable renderer has no way of
inferring data that does not exist in the keypoint structure. This means that reducing
the capability of our reconstruction network forces our keypoint detection network to

locate stronger keypoints to reduce our reconstruction loss.

Our main motivation for reconstructing using a renderer is to encourage keypoints to be
placed on the endpoints of limbs. For this reason, the solution we use is a simple sketching
renderer that sketches straight lines between pairs of points. Differentiable Sketching
[80] allows us to put such a substantial bottleneck on the ability of our reconstruction
based losses. As the renderer works by drawing lines between keypoints, for a pixel to be
drawn on the output image, it must be between a pair of keypoints and the connection
matrix signify that the pair of points are connected. Intuitively, this means that to have
good reconstructions, we must have keypoints selected at the end of a line and in the

case of an articulated structure, this means it must be a joint or a limb endpoint.
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For a wider range of applications, Li et al. [66] have developed an approach that uses a
vector graphics based renderer, while maintaining differentiability. For use as a down-
stream renderer that uses keypoints as an input, this would allow for greater accuracy

in recreating input images than a basic sketch.

Differentiable sketching builds upon our designed prior, following simple rules of key-
points that are connected only by straight lines. It allows for sketching images based on
a set of keypoints and a connection matrix, which can be derived as demonstrated in
Section 5.3. Combining and mapping these two elements back into image space, using
differentiable operations, gives us the ideal framework for creating a self-supervised loss
function that allows for training our network to locate ideal keypoints for articulation

models.

5.5.2 Implementation

For a proof of concept, we have implemented a simple keypoint regressor network to
derive keypoints from images and uses differentiable sketching to train the regressor in a
self-supervised fashion. We use a simple linear encoder-decoder style network consisting
of two linear layers to create an encoded space, and two layers to decode the latent

vectors into a list of keypoints.

With these output keypoints, we are able to sketch the image for use with the recon-
struction loss. Differentiable sketching is done via a rasterisation step, which creates a
raster for every pair of keypoints. This raster calculates the pixel intensities by their
distance away from a line drawn between the pair of points. We then create a composite
image using these rasters alongside the LVMST derived connection matrix, which se-
lects which rasters to use. These are then composed into the final image by overlapping

rasters and capping the pixel intensities at 1.

Training using a LVMST derived connection matrix presents some interesting decisions.
We have already established a multi-task keypoint detection approach in Chapter 4, but
adding this as an extra task may lead to degenerate solutions where limb variance is
minimised to create keypoints stacked on a single location. We instead train without
this task for the first portion of the training time, and then add this task once we have

started to locate some basic structure from the images.

The network architecture used for the 2D stickman experiments is defined in Table 5.5.2
We trained this model with batch size of 96 and for 30 epochs, without the use of the
variance minimisation loss for the first 5 epochs. We balance our losses using the expo-
nential function approach proposed by Liang and Zhang [68] with a manual multiplier

of 10 to the reconstruction loss prior to this function.
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Layer Type | Input Size | Output Size | Activation
Linear w? 512 ReLU
Linear 512 256 ReLU
Linear 256 512 ReLU
Linear 512 2k TanH

Table 5.5: A table of the parameters of each layer of the keypoint detector adapted to
locate ends of joints on the 2D stickman data, specifying their layer type, input size,
output size, kernel and activation. We set k£ = 7, representing the keypoints used to
build the simple toy stickman dataset and w = 64, representing the width and height of
our input images.

Layer Type ‘ Input Size ‘ Output Size ‘ Kernel ‘ Activation

Data viewed as b vectors of size h * w

Linear ‘ h *w h *xw ‘ - \ -

Data viewed as b 3D tensors of size 1, h, w
Conv2D 1 16 3x3 LeakyReLU(a = 0.1)
Conv2D 16 k 3x3 -

Table 5.6: A table of the parameters of each layer of the keypoint detector adapted to
locate ends of joints on the Human3.6m stickmen data, specifying their layer type, input
size, output size, kernel and activation. We set k = 16, representing the keypoints used
to build the simple toy stickman dataset and h,w = 72, representing the width and
height of our input images. Output is passed through soft-arg-max to receive predicted
keypoints of size k, 2.

Our keypoint detection network architecture for the human3.6m stickmen experiment
is as defined in Table 5.6. We trained this model with batch size of 96 and for only
1 epoch, as the dataset contains 1.877e6 images. We balance our losses as in the 2D

stickmen example.

5.5.3 Experiments

To initially test this approach for locating superior keypoints for downstream processing
with regards to articulation models, we have created some simplified datasets as a proof

of concept.

5.5.3.1 Creating a Simple Sketched Dataset

As a proof of concept for applying differentiable sketching to the problem of gener-
alised articulation, we will demonstrate how this approach finds keypoints on simple
datasets with articulation. We have created an artificial articulation model dataset in
two-dimensions that resembles a stickman with limbs of rigid length, sampled at ran-
dom angles. The root point at the mid shoulder area is sampled at random and the

mid-hip point is set to a fixed distance directly below and head point is placed directly
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Table 5.7: Examples of images generated in our artificial two-dimensional articulation
dataset.

above. Arms and legs are randomly sampled within a limited range of acceptable angles.

Examples of images from this dataset are shown in Table 5.7.

5.5.3.2 Proof of Concept: Artificial Two-Dimensional Stick Figures

In the simplest case, we are looking to learn keypoints on an image and learn the
underlying articulation model. As a proof of concept we have used our artificial dataset
as shown in Table 5.7, that limits the articulation points to rotate only in two dimensions.
Our network must learn where to place keypoints on the image to create a connection
matrix via the LVMST method.

As we have created this dataset artificially, we have ground truth labels, and we can use
these labels to quantitatively measure the distance between our predicted keypoints and
the ground truth points. But as the ordering of our keypoints is unrestricted, before
measuring distances we must use the Hungarian algorithm [62], to align the indices
that contain keypoints in the ground truth and the predicted cases. This is applied to
the predicted points and done on a batch-wise basis to enforce keypoint consistency,
doing on a per-example basis would artificially inflate our result if any of our estimated
keypoints were inconsistent. A numerical comparison of these keypoints is found in
Table 5.8, showing the mean L2 distance between predicted and ground truth keypoints.
Additionally, a qualitative analysis is shown in Table 5.9, to visually see where keypoints

are placed in either case.

We note, both qualitatively and qualitatively that the LVMST approach with differen-
tiable sketching is superior when our goal is locating keypoints that sit on articulation
points or the ends of limbs, even if the multi-task approach is equally consistent. We
believe that this is due to a greater restriction on the downstream task used for training,
which cannot achieve low reconstruction losses unless a keypoint is placed on limb ends
and articulation points. Our generalised keypoint detector has no such restriction as

this would not maintain generalisability, as was a key aim of this approach.
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Multi-Task | LVMST

Keypoint | Keypoint

Detector Detector
Centre Shoulder 0.2048 0.0003
Centre Hip 0.1993 0.0003
Head 0.2102 0.0006
Left Arm 0.2741 0.0005
Right Arm 0.2229 0.0024
Left Leg 0.7425 0.0023
Right Leg 0.4418 0.0024
Mean 0.2651 0.0006

Table 5.8: Comparison of mean Mean Squared Errors between Ground Truth and pre-

dicted landmarks, on a per landmark basis, from the artificial 2D stickman dataset.

Multi-Task Keypoint Detector

LVMST Keypoint Detector

Table 5.9: Comparison of placement of keypoints between Multi-Task generalised key-
point detector and LVMST with Differentiable Sketching on the artificial 2D stickman

dataset.
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Table 5.10: Examples of images generated in our artificial three-dimensional articulation
dataset, using ground truth points from the Human3.6m dataset.

This result will be advantageous when we look to apply this keypoint detector to harder
examples where the articulation and end points are not as obvious, and will allow for

better estimation of depth, as discussed previously in Section 5.4.

5.5.3.3 Toy Dataset: Human3.6m Stick Figures

We have shown the previous section how we can solve this task when dealing with two-
dimensional articulated objects. The next step is to extend the previous solution into
the third dimension in order to infer the depth of a structure. Can we locate keypoints

on shapes that are not just two-dimensional and will thus likely contain self-occlusion?

We create a dataset in a similar format to the 2d stickman dataset as shown in Table 5.7,
but with realistic poses taken from the 3d keypoints contained within the Human3.6m
dataset[48]. Examples of images contained within this dataset are shown in Table 5.10.
It is also worth noting that when we use these images for an input to our model, we

apply a Gaussian blur onto them to help create a smooth gradient through our network.

We demonstrate the results of this experiment in Table 5.11. We see that we are now
able to place keypoints near the ends of limbs as desired. However, finding consistent
keypoints in this more complex case seems to be more of a challenge. This may be
attributed to a couple of reasons. Firstly, the scale of the features that we are looking
for is much smaller, especially in the case of the hip and shoulder keypoints where only
a few pixels separate those points in the best case scenario. In a worst case scenario,
these points may be overlapping in the image-space and thus our model must allow for
this.

Secondly, self-occlusion makes finding consistent keypoints in highly dynamic areas such
as the arms, especially as we are using self-supervised learning and the model is learning

entirely from the image data.

Because of this lack of consistency, it is difficult to evaluate these results quantitatively,
as distances from ground truth points are difficult to calculate when the Hungarian al-

gorithm will produce highly variable alignments for each example. While one approach
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Ground Truth Predicted

Table 5.11: Comparison of placement of keypoints between in the ground truth Hu-
man3.6m stickmen dataset and the differentiable sketching approach at placing key-
points.

could be to assume the nearest point is the best match and allowing for duplicate as-

signments, we run into issues around the arm areas in this case, as the distribution of

keypoints are sparse in the upper half of the pose.

5.5.4 Discussion

In this section we have shown how we can use our rigid bones prior along with differ-

entiable sketching to encourage our keypoint detector model to learn to select points
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near areas of articulation and limb end points. This is desirable for our needs in de-
termining articulation models, but we have only demonstrated success on toy datasets.
This simplifies the task as it is much easier to sketch the output to match the format of
the input images, meaning a simple mean squared error between the sketch and input
images provides a sufficient training gradient. The difficulty will now be in translating

this approach onto real world images.

One way could be by taking inspiration from Mihai and Hare [81], where sketching is used
to communicate information from images between a pair of neural networks. Instead of
a mean squared error loss based on the input images, we could make use of a referential
game, where a differentiable renderer is used to communicate articulation between two
networks. By restricting the data to examples that contain the same subject in different
poses, our network should find an optimal solution by sketching an articulated object,
by drawing a stick figure that resembles the object in order for another network to solve

the referential game.

This approach may require an extra loss function to prevent the network from using
the sketch like a hashing function, where the sketching network will output unique
shapes for each image that do not follow the structure of the articulation model but
still provide sufficient information to uniquely identify each pose. A structure-wise loss
may be required, such as a Chamfer distance loss between a foreground/background
segmentation and the sketch used in communication. Another solution would be to
solve a similar game based on simple affine transforms of the same input image. This
would prevent the network from communicating appearance information over structural

information as the only change in the image will be structural between transforms.

5.6 Discussion

This chapter has introduced a simple yet powerful prior and we have subsequently
demonstrated its usefulness in both stages of the self-supervised 3D pose estimation
pipeline. But as the problem we are aiming to solve is very complex, this prior is not
flawless in solving every problem in this space. This section will discuss issues with the
prior and implementations that leverage the prior, and discuss other possible priors that

could also be used to solve this difficult problem.

5.6.1 Problems with Limb Variance Minimum Spanning Tree

LVMST is a simple and elegant way of deriving the connectivity of an articulated model
but it is not without its limitations. Using the absolute distances quickly breaks down
when the scale of our subject can vary due to distance between camera and subject.

Normalisation of limb lengths is the obvious solution, but with a number of unknown
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parameters, of both the camera and subject, there is no obvious way of normalising the
data without more information. We also acknowledge that at inference time, we require
a batch to derive a connectivity, which means if this were a real-time application, we
would require either a rolling batch of video frames, thus a short time delay before we
can compute an articulated model while frames are batched, or a way of circumventing
the batch requirement. One such way would be to train a simple network to imitate
the output of the LVMST algorithm given a set of keypoints, assuming there is enough

information in those points to make the inference.

Another issue we see with this algorithm is during the training stage. If the LVMST
algorithm selects the wrong connection matrix, then that will be enforced later in train-
ing, as our loss that minimises variance makes the chosen connection matrix more likely

to appear at the next training step.

A necessary improvement for the future is a training scheme that allows for greater
flexibility for discovery of new connection matrices. One option could be train using
only the other losses first, and introduce our minimising variance loss at a later stage.
This would scope the dataset for suitable keypoints for solving the other tasks, with
the hope that they capture some structure in the process. After a portion of training
time, we would then introduce the loss that minimises variance and attempts to move

the estimated keypoints onto suitable articulation locations.

5.6.2 Robustness to Errors in Training Data

We have demonstrated the ability to learn a connected articulation model when given
high quality data, but in a scenario where high quality data is not available, modifi-
cations still need to be made. One such approach to add robustness when confronted
with imperfect training data, is to provide each batch with a pre-processing step once
keypoints have been detected from each image. This pre-processing could include out-
lier detection to remove any shapes that sit far outside of the expected range, and only
deriving an articulation model from the remaining data. As we also require robustness
in our system, which in deep learning is often provided with difficult training examples,
in this case extreme poses, so careful tweaking of an outlier detection algorithm would

also be required to maintain the robustness derived from difficult dataset examples.

5.6.3 Consistent Keypoints in Symmetric Models

Symmetry is a recurring problem in this space, as a lot of articulated objects that we
are interested in are naturally symmetrical and determining if we are looking at the
front or the back of our subject is not trivial. We observe symmetry issues in keypoint

detection where our network will place keypoints in the same regions of the image, and
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not flip left with right when we are looking at the back instead of the front. We briefly
discussed this issue in Section 4.7.1.3. We also see issues in keypoint lifting, where
depending on the network initialisation, we derive either all inverted poses or all correct
poses. However, this is easily resolved by rerunning the network training with new
initialisation parameters, or if we were happy to lose some generalisation, then a joint

angle prior similar to that used by Kudo et al. [61] would resolve this issue.

5.6.4 Other Possible Priors

In this chapter we selected bone rigidity as our prior to assist the self-supervised model in
learning articulation, but this is not the only prior that we considered. Careful selection
of a self-supervised prior is required as too strong a prior would remove the generalisation
advantages of using self-supervised learning, or may require information that we cannot
take for granted in all articulated datasets. We must also think about edge cases where

our prior knowledge may break down and lead to erroneous results.

5.6.4.1 Centre of Mass Estimation

A potentially simple and powerful prior would be to estimate a centre of gravity to make
sure that our pose obeys an estimated physics model. This would assist in the depth
inferring step as our z co-ordinates would have to be balanced when combined with our
x and z co-ordinates, eliminating a range of poses that would no longer be possible.
One issue with this is knowing the estimated mass of the real world parts that our
keypoints represent. Estimating the weights of each articulated component purely from
the image data with enough accuracy would be difficult in this approach, but number
of surrounding pixels in the foreground object may provide a rough heuristic for mass.
Some more fringe cases also exist that will skew the success of such a prior such as when
the subject is sitting or leaning. Other cases such as being mid-fall or in low gravity
may occur but certainly outside of the expected range of poses that we would expect to

see.

5.6.4.2 Limiting Joint Angles

Intuitively we can see that joints in an articulated model can only bend so far before they
have hit a limit and cannot bend any further without damage. This is a prior that could
help remove erroneous examples, and provide additional information for estimating the
connection matrix by assuming consistent range of angles between pairs of connected
points. While Kudo et al. [61] and Raaj [90] both use a similar prior to add consistency
to their approaches, both rely on knowing a real world model of joint angles. A proposed

tweak to this prior, which makes the assumption that there is a range of valid angles
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for each joint, should not remove generalisability and could perform outlier detection as
a self-checking tool. By learning the distribution of each articulation point purely by
observation in the data, it would be possible to apply expected these expected values
to add consistency to the keypoint prediction. However, the implementation might
require careful balancing to ensure it gives the model enough freedom to learn the
correct distribution of points from the data before it restricts estimation of keypoints to

these observed distributions.

5.6.4.3 Symmetry

It is common for articulated models, especially those in nature, to contain symmetry
which is something we can potentially leverage to assist in pose estimation. Wu et al.
[109] do this by assuming the image contains a 3D deformable object that is also sym-
metrical, and take an auto-encoder and renderer based approach to estimate the depth
of human faces, cat faces and cars. A symmetrical approach would help in our articu-
lated model case too, and error checking via left and right side correspondence, such as
checking that limb lengths were consistent across the symmetrical plane, would help to
add robustness in cases that estimated keypoints were erroneous. However this could
lack the generalisability that we are looking for in our model, as some articulated mod-
els, such as robotic arms, do not contain symmetry that would allow for this approach

to work.

5.7 Conclusion

This Chapter has introduced a prior that can be used to assist in finding self-supervised
articulation models. Determining the correct prior is aiming to answer RQ4, and find-
ing the balance between a very applicable prior and a very powerful prior is essential
for locating generalised articulation models. We believe that this prior contains enough
information to assist in locating articulation models without making too strong assump-

tions to inhibit the generalisability of this approach.






Chapter 6

Towards Self-Supervised Learning
of 3D Articulation

This chapter aims to combine the work done in Chapters 3 and 4 into one pipeline that
is able to convert a 2D image of an articulated object into a list of 3D keypoints. As
discussed previously, this problem is ill-posed. Additional prior knowledge is required
to solve this, thus we look to implement the bone rigidity prior from Chapter 5, to aid
in determining the underlying articulation model. This chapter also aims to answer
RQ1, as we pull together the knowledge learnt from all of the previous chapters into
one pipeline that attempts to go from an input of an image to an output of a list of 3D

keypoints.

6.1 Introduction

Self-supervised 3D pose estimation is a difficult task, thus it is unlikely that training
a network without the use sufficient prior information will yield good results, and we
demonstrate this in Sections 6.3 and 6.4. The use of a prior will firstly aim to improve
our keypoint detector to place our keypoints on articulation points as demonstrated pre-
viously in Section 5.5. Articulation points contain more information about our structure
than arbitrary points as found via a generic keypoint detector as previously discussed in
Chapter 4, and thus contain more information for solving downstream tasks, especially
when considering depth estimation. We have demonstrated previously, in Section 5.4,
how we can exploit bone rigidity to infer depth in the articulated model when given
ground truth 2D keypoints, but can we estimate keypoints to a close enough extent to

achieve the same depth inference?

101
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Extracting 3D information from a 2D image in a self-supervised way traditionally re-
quires strong prior knowledge to know how to extract 3D information from a 2D rep-
resentation of the world, commonly done using multiple viewpoints [67, 106, 4] to infer

depth from information found in the input.

The following sections will investigate what happens when we try to learn 3D points
with no prior, using a naive method that combines the work of Chapters 3 and 4. We
show that there is more information required than simply encouraging keypoints to find
articulation as demonstrated previously in Section 5.5, with a simple approach combining
differentiable sketching with adversarial keypoint lifting. We then explore how we can
introduce our carefully designed bone rigidity prior in an attempt to determine 3D
articulation. We finish this chapter by discussing the obstacles that still need to be
overcome to complete a self-supervised 3D articulation model approach using a bone

rigidity prior to achieve reliable results.

6.2 Related Work

A common approach to self-supervised 3D keypoint estimation relies on multi-view ge-
ometry. Using multiple views of unlabelled images, Wandt et al. [106] train a self-
supervised monocular 3D pose estimator using multi-view consistency constraints to
disentangle the 3D pose and the camera parameters. Their novel contribution in this
space is being able to work without calibrated cameras, and thus allows for non-static
cameras that are pointed at the same person. They also make use of an off-the-shelf 2D
pose estimator for the initial stage of the 3D pose estimation pipeline, which is some-
thing that we are aiming to avoid, attempting to learn a 2D keypoint detector using

purely self-supervised techniques.

Another approach by Li et al. [67] looks into applying geometric knowledge to solve the
self-supervised 3D pose estimation problem. To reduce errors from self-occlusion, they
use confidence values for each 2D keypoint and integrate losses from different viewpoints
as an effective way of creating a 3D structure when some part of the structure cannot
be seen from all angles. In a similar fashion to Wandt et al. [106], they also use a
state-of-the-art 2D pose estimator at the first stage of their pipeline, breaking the strict

self-supervised restriction that we have imposed for this thesis.

In a similar multi-view environment to the two approaches discussed above, Bouazizi
et al. [4] use self-supervised learning to estimate 3D human pose with a high degree of
accuracy without the use of a pre-trained 2D pose estimator. Their algorithm trian-
gulates the 2D pose estimates from each viewpoint, while additionally implementing a
re-projection loss and imposing geometric constraints, looking for a consistent 3D model
across every viewpoint. At time of publication, their approach was state of the art for

purely self-supervised approaches to 3D pose estimation on the Human3.6m dataset.
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In a 3D hand-pose specific implementation, Wan et al. [105] aim to train a pose estimator
through a fitting function using a dataset of hand depth maps. Their approach uses a
differentiable renderer to approximate the surface of hand found in the depth map, and
by leveraging a simple reconstruction loss to train in a self-supervised fashion. Their
approach makes use of a heavy prior in the form of a hand model that is fit to each
depth map, which is a hand crafted model built of 41 spheres that estimates the shape
of a human hand. Naturally this lacks the generalisability to any articulated object that

we desire in this thesis.

Unlike the majority of these approaches, our aim is to remove the requirement for
multiple views of the same object, any semi-supervised learning, or using a pre-trained
keypoint detector. Our approach should only use a monocular dataset and our generic

articulation prior as previously introduced in Chapter 5.

6.3 Naive Combination of Previous Approaches

In this section, we will demonstrate how learning self-supervised 3D articulation models
from images is ill-posed when we do not use a strong enough prior. This approach for an
end-to-end pipeline is to leverage the multi-task framework, introduced in Chapter 4, to
learn 2D keypoints, before introducing an additional keypoint lifting task, that is trained
via our adversarial loss from the first section, to infer the depth of each point. We have
previously demonstrated that structure can be derived from images with a multi-task
trained keypoint detector, and that adversarial learning can lift a two-dimensional pose

into 3D, but can both these steps be trained simultaneously?

6.3.1 Motivation

The idea behind this approach is simple as both sections are established in Chapters 3
and 4, so logically training both sections end-to-end would give a simple solution to
this difficult problem. While it was unrealistic to assume that this approach would be
successful, experimenting in the simplest case and observing where the failures occur

gives valuable insight into the nature of the problem at hand.

6.3.2 Implementation

A quick implementation of this, adapted from the implementation discussed in Sec-

tion 4.5, quickly shows the issues with trying to solve the problem in this way.

Figure 6.1 outlines this approach, similar to the layout for capturing spatial representa-

tions in Chapter 4, but with an additional pose lifting task, which feeds into the balanced
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Figure 6.1: Diagram outlining this naive approach to a full 3D articulation model estima-
tion pipeline. The losses from the three keypoint estimation training tasks are summed
with the adversarial loss function (typically known as the generator loss function), with
a separate loss to train the discriminator network.

multi-task learning loss balancing function [68]. The discriminator is also trained in the

same way as in Chapter 3.

6.3.3 Experiments

In Table 6.1, we can clearly see that our 2D keypoints capture the two-dimensional
structure, but the learnt 3D structures are mostly degenerate solutions or ambiguous
shapes with no discernible structure. The experiments using this technique show us
quickly that this approach will not work. We hypothesise that the reasoning for the
inability to learn 3D information is that our 2D keypoints found from self-supervised
learning do not contain enough of the fine nuanced details required to infer the 3D

structure.
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6.3.4 Discussion and Analysis

A key part of this failure is that the keypoints found from this self-supervised multi-
task approach do not always sit on points of articulation as they are not required to by
any of our objective functions in order to minimise our overall losses. Without locating
articulation points, we have little in the way of information required for inferring depth in
the image with self-supervised techniques. The inability to learn 3D articulation models
without the use of a prior demonstrates the requirement for stronger prior knowledge.
We have two solutions to overcome the spatial bottleneck problem, we either create
better keypoints that capture articulation with more efficiency, or we pass through image
information along with the keypoints to give context to our keypoint, such that depth
can be learnt. When considering the power and simplicity of the bone rigidity prior, as
introduced in Chapter 5, we naturally would like to infer stronger keypoints. Referring
back to RQ3, we notice a semantic gap between the keypoints learnt by our generalised
keypoint detector and the keypoints (sometimes called landmarks in this context) that
were previously used to infer depth in Chapter 3. This gap is caused by the amount
of information that each keypoint posses, even though both are numerically identical,
as a list of X, Y co-ordinates. Switching our context of keypoints from arbitrary points
capturing spatial information to points that capture articulation, allows us not only to
correctly implement our bone rigidity prior, but to specialise into a system that considers

the spatial relationships between keypoints in three-dimensions.

6.4 Full Pipeline with Adversarial Learning and Differen-
tiable Sketching

As we have established in Section 5.5 and seen again within Section 6.3, locating key-
points that sit on articulation points or ends of joints is difficult. As before, we are
helping our self-supervised keypoint detector to locate the correct points of articulation
through a differentiable sketching technique to replace our previous standard reconstruc-
tion task. If keypoints are closer to the true articulation points, then our depth estima-
tion using adversarial learning should be able to correctly estimate the z-coordinates, as

shown when using ground truth 2D keypoints in Chapter 3.

6.4.1 Motivation

As introduced in Section 5.5, we can use a differentiable sketching based reconstruc-
tion loss to place keypoints in desirable locations such as articulation points and ends
of limbs within the two-dimensional space. We aim to concurrently learn to estimate
articulation points as 2D keypoints, and lift those points into the third dimension using

the adversarial keypoint lifting approach described in Section 3.4. While we introduced
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the idea of using the Limb Variance Minimum Spanning Tree in Section 5.5, for simplic-
ity in this experiment, we estimate the connection matrix using the keypoint detector

network, learning both keypoints and connections through the same latent space vector.

6.4.2 Implementation

Our implementation for the experiments in this section is a fusion of the adversarial
keypoint lifting found in Section 3.4 and the keypoint detection approach as discussed in
Section 5.5. The output of the latter is fed into the former to estimate 3D keypoints using
images as the original input. By training a pipeline to perform these both simultaneously,

we hope to be able to locate good 2D keypoints while also estimating their depths.

Our implementation consists of two sections, each with their own optimiser. The first
contains a 3D keypoint detector using an auto-encoder to encode each image into a latent
space, before predicting the 3D keypoints and a connection matrix which determines if
two keypoints should be connected. The second network used in this approach is a
discriminator that determines if the viewpoint of the keypoints is as originally found

within the data or a side-on viewpoint using the estimated depth.

We then use these the estimated keypoints to create a reconstruction loss via the dif-
ferentiable rendering approach, by projecting the 3D keypoints into a 2D shape at a
fixed rotation @ = 0. For our adversarial loss function, we randomly sample values for 6
between —m and m, and project our 3D data using that value as a rotation parameter,
around a fixed y-axis. The first network is optimised to maximise the error rate of this
prediction while the discriminator is optimised to minimise the error rate. The final
loss functions we use are an L2 reconstruction loss between input images and rendered
images, adversarial loss for our keypoint detector and lifter, and an adversarial loss for

our discriminator.

6.4.3 Experiments

Using the toy dataset first established in Section 5.5.3.3, we experiment to see if we are
able to not only predict articulation points, but also simultaneously estimate the corre-
sponding z co-ordinates. Our results, shown in Table 6.2, demonstrate that encouraging
keypoints towards articulation gives a good model for reconstructing the input images
using differentiable rendering. However, when it comes to the depth inference, this ap-

proach is not enough to learn sensible 3D articulated structures as shown in Table 6.3.

As can be seen in these results, while 2D keypoints are somewhat placed in good locations
and leads to decent reconstructions, the lifted points do not represent a reasonable
structure. It can also be seen that the placement of keypoints not required for the

reconstruction are placed around the edges with no connections predicted between them.
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Ground Truth Reconstructions

Table 6.2: Demonstration of input images and sketches that aim to reproduce the input
using regressed keypoints, connection matrix and the differentiable sketching module.

Presumably, this is learnt by the encoder in part to minimise the generator’s loss for the

adversarial learning section.

6.4.4 Discussion

As we have seen, this approach succeeds in pushing keypoints onto articulation and end
points, and achieving decent results in terms of two-dimensional reconstructions, but this
is not sufficient to convincingly lift our estimated 2D keypoints into the third dimension.
While selecting articulation and end points as keypoints should work, there is still further

information required to piece together fully self-supervised keypoint detection and lifting.
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Table 6.3: Demonstration of 3D keypoints found when concurrently learning to place
keypoints and lift them into three dimensions using differentiable sketching. More ex-

amples can be seen in Appendix D.

6.5

Full Pipeline with Bone Rigidity Prior

In the previous section we have shown that an image-to-3D approach with minimal

prior knowledge is too ill-posed to learn a solution to the generalised articulated pose

estimation problem. As demonstrated in Chapter 5, a bone rigidity prior can be used to

both locate the articulated model and infer the depth of each two-dimensional keypoint

to create a 3D articulation model.

We also show how it can help to locate better

2d keypoints, aiming to locate points of articulation when used in conjunction with a

constrained differentiable sketching module in place of a reconstruction network.

Our goal is to leverage the bone rigidity prior to simultaneously infer the depth of each

keypoint, and to assist in location of two-dimensional keypoints, especially in cases with

occlusion.
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Figure 6.2: A diagram outlining the full approach using the bone rigidity prior. 2D key-
points are regressed from input images, before being lifted into 3D. The lifted keypoints
are used to predict the connection matrix via the LVMST algorithm, which is then used
in combination with the 2D keypoints to create a rendered sketch. The three losses,
Lg, L1, Lo are summed using the Balanced Multi-task Learning framework to train the
learnable parameters in the system.

6.5.1 Motivation

Putting all of these elements together into one pipeline is now the final step required
for our generalised articulation model detection approach. This pipeline is best shown

in Figure 6.2.

The following sections will break down the approach into the stages of the pipeline and

describe the aim of each stage.

6.5.1.1 Keypoint Detection

Our pipeline starts with a keypoint regressor network which takes a batch of images of
shape B,C, X,Y, and returns a batch of keypoint shapes B, K, 2, where each element
represents K x, ¢y co-ordinates. For basic datasets, a simple MLP suffices, but for complex

datasets a convolutional network followed by a soft-arg-max operator is used.

6.5.1.2 Depth Estimation

Depth estimation is a simple step that uses a standard MLP as a depth inference network.
Our estimated 2D keypoints from the keypoint regressor are fed through the depth
inference network and output corresponding Z co-ordinates for each X,Y pair, and we

append each Z co-ordinate to the inputs to get the estimated 3D keypoints.
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6.5.1.3 Connection Matrix Estimation

Using the previously discussed LVMST algorithm, we can derive a connection matrix
using this batch of estimated 3D keypoints. Our second loss function to give a training
signal to our depth estimation network is then formulated by summing the result of an
element-wise multiplication between our connection matrix and our pairwise distance
variance matrix. Minimising this loss encourages our network to learn Z co-ordinates

that maintain our bone rigidity consistency over the batch.

6.5.1.4 Differentiable Sketching

Our differentiable renderer then takes our 2D keypoints and connection matrix and ren-
ders a sketch where lines are drawn between the X,Y co-ordinates of every keypoint pair
as determined by the derived connection matrix. We can now establish our reconstruc-

tion loss as a mean squared error between input images and these sketches.

6.5.1.5 Loss Functions

The loss functions required to minimise concurrently are as follows:

Reconstruction Loss (L)

Our reconstruction loss is simply formulated as the mean squared error between the
input images and the reconstruction images generated by the differentiable renderer

using the 2D keypoints and the connection matrix.

LVMST Variance Loss (L)

We would additionally like to impose a loss to enforce constant pairwise distances over
the batch of the pairs of points connected by rigid bones. Our loss function to meet
this aim is simply to minimise the sum of the dot product of our connection matrix and

pairwise distance variance matrix.

Self-Consistency Loss (L2)

Finally, we impose a self-consistency loss, as introduced in Section 5.4. The Z co-
ordinates are then attached to the Y co-ordinates and 7Z,Y is then fed back through the
depth inference network to estimate X co-ordinates for our self-consistency loss, which is
calculated using mean squared error between the original value for X and the prediction

of X.

We are also required to balance these losses using a monotonically increasing transfor-

mation function [68], and sum the transformed losses to get a final combined loss.
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6.5.2 Implementation

The implementation for this approach is a combination of numerous elements from
previous sections. The keypoint lifting implementation was previously discussed in Sec-
tion 5.4 and re-used for this implementation. Likewise, our keypoint detection approach,
where differentiable sketching was used to encourage keypoints to find articulation and
end points, is unchanged from Section 5.5. During our experimentation, we have tried
multiple neural network architectures for our keypoint regressor including a simple lin-
ear network when using images from our toy articulation dataset, and a convolutional

network where images have greater complexity.

6.5.3 Experiments

As can be seen in Table 6.4, we are able to generate realistic two-dimensional sketches of
the input images, which appear to capture the articulation of the subject with success,
especially visible in the knee keypoints. The areas around the arms appear to be less
successful but still manage to contain some convincing articulation. This is likely due

to the increased complexity of the arm poses as seen in the dataset.

However, as can be seen in Table 6.5, we have not managed to capture the desired three
dimensional structure. It is not intuitive to say exactly why this is failing, however it is
likely to be due to flaws in the two-dimensional keypoints, and 2D keypoint errors will

propagate and accentuate errors when points are lifted using the LVMST-based lifting.

6.5.4 Discussion

As we have seen, the complete pipeline when being trained end-to-end does not grant
satisfactory results. One reason for this could be that it is difficult to simultaneously
learn to place 2D keypoints when given an image of an articulated object, while also
lifting those points into three dimensions. In an attempt to alleviate this problem, in
the next section we will demonstrate the same pipeline but with the two sections being

trained independently.
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Ground Truth Reconstructions

Table 6.4: Demonstration of input images and sketches that aim to reproduce the input
using regressed keypoints, connection matrix and the differentiable sketching module.
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Table 6.5: Demonstration of 3D keypoints found when concurrently learning to place
keypoints and lift them into three dimensions using our rigid bones prior. More examples
can be seen in Appendix D.
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6.6 Simplification via Pipeline Splitting

We have shown the failure case when attempting to learn the entire pipeline in an end-
to-end fashion. In an attempt to derive success using these approaches, we have split
the pipeline into its two components, keypoint detection and keypoint lifting, using the
differentiable sketching based approach to find keypoints before lifting them using the
LVMST approach.

6.6.1 Motivation

We have previously demonstrated success using the two individual approaches, but the
combination of them into one system that is trained in an end-to-end fashion comes with
difficulties. By splitting into two separate parts, keypoint detection and keypoint lifting,
saving regressed keypoints from the former, before using those as the input to train the
latter, we aim to avoid some of the problems that occur when training concurrently.
If the predicted keypoints are an exact match to the ground truth points, then we can
expect success, but any errors in the found keypoints will inhibit the results of the lifting

stage.

6.6.2 Experiments

The first stage of this pipeline is shown in Table 6.6 as a recap, these results are no
different to those initially discussed in Chapter 5. We then use these two-dimensional

keypoints as the ground truth inputs for the keypoint lifting stage.

As can be seen in Table 6.7, this approach does not achieve satisfactory results for
estimating three-dimensional structure correctly. However this approach does manage
to derive some features in the structure, convincing articulation has been identified in

the leg area.

The results of this further reveal the extent to which the limb variance minimum span-
ning tree approach to 2D to 3D keypoint lifting relies upon good quality 2D data that
correctly captures the underlying three dimensional structure. However, this does not
completely invalidate the usage of this algorithm in a self-supervised environment. We
will discuss possible adaptations and future directions of the LVMST algorithm in more

detail in the following section.
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Ground Truth Reconstructions

Table 6.6: Demonstration of input images and sketches that aim to reproduce the input
using regressed keypoints, connection matrix and the differentiable sketching module.
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Table 6.7: Demonstration of 3D keypoints found when using our rigid bones prior, but
the full pipeline is split into keypoint detection and depth estimation. More examples
can be seen in Appendix D.
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6.7 Discussion

We have made some strong progress towards locating generalised articulation models,
but there is still some way to go before we can be satisfied with these results. While we
have shown we can both locate good keypoints from images and estimate depth from

ground truth keypoints, doing both concurrently comes with difficulties.

The key take-away from our experiments concerning the keypoint lifting section of the
pipeline is that using a bone rigidity prior for depth estimation is very sensitive to noise
in the two-dimensional data. Small errors found at the keypoint detection stage will
lead to large errors when we attempt to lift those points into three dimensions. The
rationale for this is that bone rigidity based lifting is based purely on consistent limb
lengths through-out a batch of data and exploiting that consistency to predict the depth
of each point. Noise breaks that consistency and thus inhibits the ability to estimate
depth.

Theoretically, this means that our approach could still work with further research. The
requirement to obtain good results relies on a large increase in accuracy at the keypoint
detection stage. While out of scope for this thesis, one approach could be to leverage a
supervised or semi-supervised keypoint detection stage, using paired images and ground
truth keypoints, to create an accurate and reliable keypoint detector. Integrating this
into our pipeline with keypoint lifting and training in an end-to-end fashion could allow
for a 3D keypoint detector which requires only 2D keypoints, and in a semi-supervised
case, only a small number of labelled examples. We discuss semi-supervised learning

relaxations further in Section 7.3.3.

6.7.1 Limitations

We note that our generalised self-supervised articulation estimation model has limita-

tions, and we highlight these here.

6.7.1.1 Limb Variance Minimum Spanning Trees

Our LVMST method for finding connect-ability does have some limitations. We no-
tice there are difficulties in balancing exploration and exploitation, we need to be able
to explore for better points in the gradient descent optimisation while restricting our

keypoints to a shape that captures some structure.

We also note that our differentiable implementation requires workarounds, and while
these allow for the minimum spanning tree to be used within a deep learning system,
there are edge cases where we may find errors. If the variance of two limbs is identical

across the batch then errors can occur in the soft-arg-max function, selecting the index
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that lies half-way between the pair of minimum values. This is hugely unlikely, and can
be ignored in most cases, however if this were to be used in safety critical environments,

then this is a problem that must be addressed.

We have also not implemented any outlier detection within our LVMST algorithm,
which could potentially cause misclassified keypoints from the keypoint detection stage
to break later stages of the pipeline. Outlier detection could be used to discard individual
poses from the connection matrix calculation to ensure an error in the batch does not
propagate to other poses. A sophisticated error correction approach could then be used
to reverse engineer the keypoints in the erroneous poses, using the expected limb length
to better estimate the keypoints. This could aid in examples where occlusion is present

in an image.

6.7.1.2 Differentiable Sketching

Differentiable sketching gives us the power to restrain the capacity of the downstream
network, enforcing stronger keypoints which are more likely to lie on joints and the
ends of limbs. However, when dealing with real world images, we must make some

adjustments to create a strong gradient between the sketched and input images.

Adding learnt colours to our sketched lines is an initial step, but in real life, it is un-
realistic that this gives enough power to draw the articulated object in the image. A
common example of a failure state is a fore-arm on a person wearing a T-shirt, where
the top half will be coloured by the T-shirt and the lower half as the colour of their skin.
Colouring each end of the line with a gradient between the two could be one option to

allow for this to be learnt.

Learning the widths of each line is also essential for sketching real world images, as not
all sections of an articulated object will be the same width. Adding a constraint for the
maximum and minimum line widths would be essential for this adaption, as the network
could learn to use the lines as large brush strokes to colour areas of the image, or setting

the line width to zero if a keypoint is redundant for a reconstruction.

In all, if we would like the differentiable sketching approach to be widely applicable for
learning articulation, we must carefully balance the capabilities such that we can draw
a coloured articulated model, without allowing for too much control, so that the found

keypoints are still required to capture a strong structure.

Another consideration is differentiable sketching in three dimensions, which we will

discuss in the future work section, found in Section 7.4.
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6.7.2 Challenges when using Real (In the Wild) Images

When applying this theory into practical applications, there are numerous uncontrolled

variables that we may encounter, and could cause issues within our approaches.

The first is the camera perspective, which could be managed using a disentangled camera
and simulating the projection matrix. Distance between camera and person currently
breaks the pairwise distance assumption, and would require a more sophisticated data
normalisation stage to solve. Occlusion, in both self-occlusion and object occlusion, will
add uncertainty to any hidden keypoints. Multi-subject images could potentially be
solved by appending an object detector to the start of the pipeline and running with
the cropped frames containing individual subjects. And finally, extreme poses that lie
out of training data distribution would require better generalisation or a better training

dataset to create satisfactory robustness.

6.7.3 Occlusion in Self-Supervised Learning

Occlusion has long been a challenge in computer vision [32] but in our self-supervised
learning case, it can lead to problems at both training and inference time. As all the data
are able to work with is contained within the image itself and not labels or annotations,
occlusion can remove that data from our training images leaving us with data points
that are useless at best and damaging to training at worst. Some work by Reddy et al.
[91] has begun to look into self-supervised 3D keypoint detection with occlusion, but do
not extend their solution to dynamic objects such as those containing articulation. As
discussed by Jalal and Singh [52], there are three different sorts of occlusion that must
be considered; self-occlusion, where part of an object blocks itself, inter-object occlusion,
where two objects in the image overlap, and background occlusion, where part of the

background occludes the object.

To work around this, a simple idea is to select a dataset that contains no occlusion, but
in our case, articulation naturally leads to occlusion, especially self-occlusion, and even

with an easier dataset, we would result in a network with no robustness to occlusion.

6.8 Conclusions

Finding a good articulation model in 3D, using only self-supervised methods comes
with many difficulties. Prior knowledge is essential when training with no ground truth
keypoints, as shown in Section 6.5, but selecting the right prior is important. Too strong
a prior will overfit our approach to a subset of articulation models and too weak will

yield poor results. As we have shown with the bone rigidity prior in easy examples,
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we manage to achieve good 2D results without overfitting, but applying this theory to

complex datasets comes with difficulty.

Referring back to RQ1, finding a self-supervised articulation model comes with diffi-
culty, but we have made strides of progress towards achieving this aim. The individual
components that build up an articulation model can be achieved using self-supervised
learning and by employing a suitable prior we can find a further improvement in our

results.



Chapter 7

Conclusions

The original aims of this thesis were ambitious. Self-supervised deep learning is still
relatively in its infancy which leads to difficulty in finding satisfactory solutions, but

that is not to dismiss the original contributions towards the field.

In this chapter we will conclude the work covered in this thesis and look at the wider
picture of how it contributes to the fields of self-supervised learning and articulation
models. We will discuss issues that have remained unsolved within the time-frame of

this thesis, work that lies outside of the scope and future directions this work could take.

7.1 Broader Impact

The merits of our research in this thesis are not solely to solve the problem of determining
three-dimensional articulation models using self-supervised learning. In this section we
will discuss how our approaches have a broader impact to other fields of research, and

how this work can be translated into solutions for other domains.

7.1.1 Pose Lifting in Dynamic Shapes

While our approaches to inferring depth through lifting are specific to articulation mod-
els, there are elements that could be repurposed in other domains, for example the batch
lifting consistency via the LVMST algorithm. The advantage of this approach over pre-
vious approaches, such as adversarial based pose lifting, is that we simultaneously learn
the average lengths of the rigid bones of the articulation model captured by the data,
while also applying those learnt lengths to the task of pose lifting. There is a caveat
that the dynamic shapes must contain a structure of rigid bones for this approach to
be successful, which may limit usage of this approach outside of articulation models.

Additionally, there cannot be too much variance in the bone lengths of the data points

121



122 Chapter 7 Conclusions

within the dataset, but small amounts of variance should not affect performance of the

algorithm.

7.1.2 Potential Articulation Modelling Applications

Deriving a 3D articulated pose will realistically never be the final goal of an image pro-
cessing pipeline. Other downstream tasks that may require articulation model keypoints

include, but are not limited to:

e Action detection
e Tracking for medical diagnostics
e Augmented/virtual reality

e Security or surveillance

Generalising the detection of articulated poses will allow for these applications, which
are typically restrained to only human poses, to be applied to any subject containing
rigid boned articulation regardless of its skeletal structure, without needing a customised

pose estimation approach to be devised.

7.1.3 Differentiable Minimum Spanning Tree (DMST)

Our differentiable implementation of the Minimum Spanning Tree algorithm, covered
in detail in Section 5.3.1.1, has been shown to be useful for our purposes of learning
articulation models. But locating minimum spanning trees is ubiquitous across many
fields, and if any of these applications are being used in deep learning, our differentiable
approach could solve the problem of passing gradients through a minimum spanning tree
algorithm. Research interest in Graph Neural Networks (GNNs) has recently grown,
owing to the power of deep learning and representing data in the form of graphs [21].
A minimum spanning tree has many applications within any graph, but is typically
a non-differentiable operation due to the use of an arg-max function. As Loukas [75]
states, a graph neural network cannot learn a minimum spanning tree, however we have
created an implementation that allows for a relaxation of the MST algorithm to allow
for gradients to pass through. While our implementation does not use a GNN, we see

no reason why it cannot be extended for use within a GNN environment.

7.1.4 Spatially Constrained Representation Learning

Our approach to keypoint detection using multi-task learning, as covered in Section 4.4,

gives an insight into learning spatially constrained representations from images. We
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show that multi-task learning gives an increased level of generalisation when detecting
keypoints on an image, locating stronger representations when the downstream task is

unknown and generalised to the extend of being transferable between similar datasets.

7.2 Unsolved Issues

Within the scope of this thesis, we were not able to solve every issue brought up during
our work or research every element in this field. This section will outline some of the
issues we have faced along the way and describe our initial thoughts on how they could

be approached in the future.

7.2.1 Improving Downstream Rendering

The differentiable sketching used in our implementations was a simple and naive ap-
proach to creating sketches based on a set of keypoints and a connection matrix, but
this limits the variety of datasets that can be used to derive an articulation model. If
instead we used a more sophisticated renderer, similar to Li et al. [66], and use our
derived keypoints to control more complex parameters instead of simply endpoints of
sketched lines, then theoretically a larger range of datasets could be used given a suf-
ficient approach to differentiable rendering. But we would have to carefully select the
parameters that a network has the power to learn. As discussed in Section 5.5, the rea-
son why better keypoints are located using differentiable sketching is due to a restriction
on the reconstruction ability, requiring more information to be encoded in the points in
order to get a low reconstruction loss. If we had too much flexibility then we may return
to the problem found using a standard reconstructor network where keypoints do not

capture the articulation of an object.

7.2.2 Self-Supervised Keypoint Metrics

What is the best way of evaluating keypoints found with a self-supervised method? We
are yet to determine the best way of measuring the effectiveness of our keypoints in an
ideal way. For landmarks in pose estimation, a distance metric from the estimated to
the ground truth is traditional, and effectively measures the accuracy against the tar-
get. But as we are interested in general keypoints, that capture a spatially constrained
representation, this is not always suitable due to lack of data availability. In our evalu-
ation in Section 4.6, we attempted to use a few novel metrics, including performance on
an unseen downstream task, but this it not without issues. The difficulty comes when
we must select a downstream task that effectively measures our keypoints performance
without bias. There is the risk of selecting a metric which we then overfit our keypoint

detector to, so a range of varied unseen downstream tasks may be one possible solution.
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7.2.3 Non-Rigid Limbs

Our rigid bones prior breaks down in the scenario that we wish to learn an articu-
lated pose that does not have rigid limbs, for example an articulated machine that uses
hydraulics that are able to extend or retract. This feature breaks our assumption of
rigid pairwise distances when two joints are connected. How would we derive three-
dimensional keypoints when the distance between two fixed joints can change between
poses? There may be some image cues where the articulation mechanism changes ap-
pearance based on how extended the hydraulic section is. Additionally, with enough
image examples we should be able to derive a maximum and minimum limb length
based on the physical limitations of the hydraulic module. This could then be used to
give a range of values for the depth of our articulation points, and expected values can
be estimated from that range. The image data could also be used as a visual cue to

work out if a limb is in its extended or retracted state.

7.2.4 Vertebrae

While the discs that connect to create a vertebrae do obey our assumptions of rigidity,
their scale compared to the image space shape will lead to some variance in distance
between either ends of the vertebrae. For our experiments we have assumed that in most
cases, this variance will be marginal but in some scenarios this may not be the case.
One solution is to learn many more keypoints such that they approximate a one-to-one
mapping between disc and keypoint, but in practice this would be difficult. Another
solution would be to model flexibility, such that the limb length is fixed but does not
have to be a straight line, so a backbone could be modelled with more realism while

maintaining the fixed length.

7.2.5 Pipeline Section Interdependence

As discussed in Section 5.3.1, to determine a good 3D model using our LVMST approach,
we need good keypoints that lie on the articulation points of our subject. But we rely
on a good learnt 3D model to encourage our keypoints to be placed in the correct
locations, especially when we have difficult examples such as those with occlusion and
self-occlusion. This means that the performance of both elements of our pipeline require
the other to be accurate to correctly train. Other possible solutions fix this sort ill-posed
problem would use a strong prior, such as 3D poses taken from a separate dataset [51]

or ground truth 2D points which then gives a simpler task of 2D to 3D lifting.
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7.3 Work that Lies out of Scope

This thesis considered a range of topics, but with limited time, there were some logical

extensions that we were not able to be included in the scope of this work.

7.3.1 Video Sequences

It may be the case that the cues we require to determine a three dimensional articulation
model without using labelled data is found within sequential data. As humans we
experience a world that moves, so it is possible that we identify articulation through
movement rather than through examples of an object in different poses. Using video
data still keeps this solution as a self-supervised approach and although this will prevent
the usage of any non-video datasets, we still have a variety of video datasets available
to use, for example Human3.6m[48], as well as an ever increasing amount of video data
available from the internet. The use of self-supervised techniques through this thesis
allows for transfer-ability to new datasets without costly and time consuming labelling

being required for each new dataset.

7.3.2 Differentiable Rendering in Three Dimensions

As seen in Section 5.5, we can use differentiable sketching to turn a spatial represen-
tation back into image space for use with a reconstruction loss, but naively extending
this into three dimensions quickly runs into memory issues. This is only the case as
the simplest extension uses voxels instead of pixels, and other rendering methods with
lower computational complexity would be preferable in this case. Liu et al. [71] imple-
mented one such 3D differentiable renderer, which rasterises based on 3D meshes with
camera parameters. But in our generalised, self-supervised environment, a differentiable
renderer using a coloured 3D mesh would be difficult unless given a strong prior before-
hand. Deriving a satisfactory complex 3D mesh using self-supervised learning may be

an option, but will certainly be difficult to optimise.

7.3.3 Semi-Supervised Relaxation

Self-supervised learning is currently of academic interest and has applications in many
areas where labelling data is difficult, costly or time-consuming. However, there are clear
benefits of supervised and semi-supervised learning for applications in the real world,

when practically creating a reliable deep learning based system.

In many cases, semi-supervised learning is a more feasible solution than either supervised

or self-supervised as it requires much less labelled training data than supervised learning
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approaches while achieving superior performance than purely self-supervised. We have
identified some possible strategies for transferring these self-supervised techniques into
semi-supervised approaches and discuss the implications of using a small amount of
labelled data.

7.3.3.1 Semi-Supervised Multi-Task Approach

As we have established a multi-task framework, the addition of a supervised task to
enrich the training is a feasible solution to creating a semi-supervised training approach.
The implementation is simple, taking our existing self-supervised training losses and
adding an additional supervised loss to the multi-task framework that aims to regress
to a target taken from labels in the dataset. The loss could be one of two options, two-
dimensional keypoints for our keypoint regressor to aim towards, or three-dimensional

keypoints for our pose lifting network to predict.

As we are considering semi-supervised learning, we would not expect to have keypoints
for every data point, but this should not matter as we can only include the loss in batches
that contain corresponding labelled keypoints. If required, we can artificially inflate the
supervised loss to put greater priority to its training signal over the self-supervised losses

to compensate for the sparse signals generated from the supervised loss.

7.3.3.2 Post-Processed Semi-Supervised Approach

As described in Section 4.6, and used as an evaluation metric, one approach to adapt-
ing our approach to semi-supervised learning is to regress the self-supervised keypoints
towards the ground truth using a smaller set of labelled points. We have demonstrated
this for two-dimensional keypoints but extending to 3D would also be viable, and would
be just as simple to implement. With a small amount of training data, we may be able
to dramatically increase the 3D results, as long as the data we have is unbiased and

covers a wide enough range of poses.

Another option in this area would be having a base self-supervised model that provides
unspecialised keypoints on a wide range of articulated structures, and using a different
semi-supervised regressor, perhaps a neural network with a greater level of complexity,
for each dataset. This approach, becoming more popular with transformer models,
could allow for a singular powerful model to be trained once, and quick training for the

regressor to specialise to datasets at a later stage.
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7.4 Future Work

This section aims to look at the future work that logically flows from the content of
this thesis. It will consider improvements to the approaches taken, but also extensions
that are currently a distant goal for self-supervised articulated pose estimation. Self-
supervised learning is still relatively in its infancy, but has big potential to tap into
the vast quantity of unlabelled data that exists. However, implementing successful ap-
proaches that use self-supervised learning comes with difficulties, and care must be taken
to add enough prior knowledge and create loss functions that manage to successfully train

a network.

7.4.1 Differentiable Sketching in 3D

Images that contain information in the depth dimension, representing three-dimensional
poses, are inherently more complex than those that are two-dimensional. It would be
advantageous to give our differentiable sketching component the option to exploit depth
so that sketches can replicate occlusion present in images. As the memory requirements
of sketching in 3D using voxels and flattening down into a 2D image are much too high,
we propose a method for learning a permutation for our simple renderer to order the
lines drawn, such that those at the back of the scene are identified to be drawn first.
Then by using composite function that overlaps pixels with those at high indices in the
permuted tensor. The permutation we use can either be learnt by the neural network,
so that for a better sketch to be made, the lines must be ordered as they appear in the

image, or we can derive it by the depth of our points located from our 3D estimation.

If we choose to learn our raster permutation, we require a differentiable way of reordering
each line raster into the learnt permutation. Ideally our permutation matrix will contain
only 0s and 1s, and each row and each column will sum to 1, giving a linear assignment
from input to output permutation. However, as this is a learnt matrix, we must relax this
constraint and approximate the assignment such that we maintain a gradient through
the permutation re-ordering step. In this case, the Sinkhorn operator could help to
convert our learnt permutation matrix into one that is approximately doubly stochastic.
A side-effect of this is that rasters will no longer contain a singular line, but darkened
pixels of multiple rasters, in the case that the permutation matrix contains values that
are continuous between 0 and 1 exclusive. In our output renderers, this can give a soft
estimation of occlusion, as pixels of overlapping lines are blended to create a sliding scale

of occlusion.

Another avenue of research to consider could take inspiration from Wan et al. [105]
and similar work, which uses differentiable rendering of a simplified shape in three-
dimensions, and projecting into two-dimensions using the silhouette of the shape to

create a reconstruction loss with the original input image. This approach may suffer
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when it comes to self-occlusion, and their approach used a fixed articulation model that
approximates a hand. In order to generalise this approach, it would be necessary to
learn the 3D model to fit to the images from the data which could lead to difficulty in

learning a suitable model.

7.4.2 Further Generalisation of Articulation Models

One common trend we see in unsupervised and self-supervised techniques is the require-
ment for heavy hyper-parameter tweaking [118] and our approach does not entirely avoid
this. We must set the number of keypoints we are looking for prior to training, which
ideally would not be a requirement. The difficulty here is simultaneously training a
network to find keypoints while also selecting the optimal number of keypoints to match

the articulated structures found in the dataset.

7.4.2.1 Dealing with Unknown Number of Articulation Points

Currently we restrict our implementations to a static number of keypoints that is man-
ually chosen beforehand, meaning a small amount of hyper-parameter tweaking before
training on a new dataset. One consideration in selecting this parameter before training
a model is based not only on the type of articulated objects that we are interested in,
but also the scale of the object within each image. While calculating this using the
number of bones found within an animal could be a sensible predictor, many of those

bones are at too small a scale to be located within the image.

Our initial thoughts are to select an upper bound of keypoints, above the realistic maxi-
mum number needed for any articulated structure and selecting a subset while training,
aiming to both reduce data redundancy and maximising information captured in our
spatial representation. From a brief survey of existing literature, this is an approach yet
to be taken in the self-supervised 3D pose estimation space. This could be implemented
using soft-arg-max, and then selecting the heatmaps that represent local maxima. Using
these curated points, we can then build an articulated shape using this subset, assuming
some consistency between structures in the batch. This may not be quite so simple
in practice, our method for finding connectivity based on a LVMST scales poorly with
keypoints (O(n?)) due to the calculation of pairwise distances between every pair of
points. This is exacerbated further as gradients must be calculated throughout for the
backpropagation of our neural network. Because of this, the upper bound that can be

chosen for this hyper-parameter is limited.

Another option is to simply learn a large number of keypoints through-out the training
stage, assuming there will be redundancy when capturing the desired structure, and

then pruning at inference time. The pruning method should then remove redundancy
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between keypoints, keeping only the most salient points that capture a desirable struc-
ture. Pruning could take the form of an optimisation problem, which keeps the minimum

number of keypoints required, while maximising information.

The choice of these proposed approaches may vary based on scenario. If the downstream
task is not known then pruning later may help preserve relevant data, with a pruning
technique specific to the scenario. But if the downstream tasks used require fewer points,
either for computational complexity or for a task specific reason, then the keypoint

selection will be best during training.

7.4.2.2 Robustness to Variance in Articulated Structure

Currently, our LVMST algorithm requires a batch of objects with identical articulation
structure and limb lengths, as a prerequisite to infer connections and depth. But in
some cases we may desire a solution that could infer the articulated structure in a mixed
dataset containing a high variance of structures, either varying bone structure or varying
limb lengths. This would be ideal from a generalisation perspective as it would no longer
require us to retrain our network for each type of articulated object. Training to this
level of generalisability would be very difficult however, as convolutional layers would
need to be able to adapt to a range of shapes and appearances. This would possibly
be easier to solve with the video data as described in 7.3.1, possibly leveraging optical
flow to locate consistent points where flow changes direction, signifying an articulation
point. If we were dealing with video data instead of image data, then we could still use
the LVMST algorithm, but taking each batch as a set of frames from a video, assuming
a video contains only one articulated object. Our derived connection matrix will then
have the flexibility to change on a per video basis, allowing for a mixed batch, as long as
our keypoint detector could deal with this higher level of variance. This implementation

will also rely on the variable number of keypoints as discussed in Section 7.4.2.1.

Another option for dealing with varying structures is to work from a bottom up ap-
proach, similar to traditional work around poselets [5], with a network that proposes an
undefined number of body parts before using those to build up an articulation model
via neighbouring end-points. An extra step is required to correlate batches of varying
structures, with zero-ed out elements where no correlating limb was found within an

image.

7.4.3 Building Robust Models

As with any computer vision system, we cannot rely on the image data being perfect
examples of the object we are interested in. Whether occlusion is present and some

elements are hidden, either by other objects or the object itself, or examples are visually
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different to the expectation, building robustness is essential. As self-supervised learning
is a data-centric approach, we must also be capable of developing robustness to imperfect

training data.

7.4.3.1 Robustness via Artificial Noise

One approach for adding robustness to models is to add noise through data augmentation
with image transforms. While some noise could aid in robustness of keypoint detection,
image skewing and non-linear transforms such as thin plate splines would break the rigid
limb length assumption. Noise can also be added to the 2D keypoints to add robustness
within the 3D lifting stage, but would have to be minimal to prevent breaking the
LVMST algorithm.

7.4.3.2 In the wild data

Another element of robustness to consider, from both a training and testing dataset
viewpoint is “in the wild” data. When images are captured in a lab environment, many
properties such as camera angle, lighting, occlusion and positioning within the image are
carefully controlled to allow for a constrained dataset to work with. But in reality, an
implemented system cannot reasonably make the assumption that any of these properties
are carefully controlled. As discussed previously, adding robustness to a model will allow
it to better deal with “in the wild” data, but we can also consider using those datasets
to train our models to instil robustness in a data driven way. In addition, using self-
supervised learning means that we do not require labels on these datasets, so images

and videos can be quickly scraped from a web source and used to train a model.

7.5 Revisiting the Research Questions

In Section 1.4 we introduced our research questions for this thesis, and have referred
back to these throughout. We will now conclude and explain how we have answered, or

attempted to answer each research question.
RQ1. How can we learn a self-supervised articulation model?

We have demonstrated in this thesis the components required to take an image and
learn a 3D articulation model. While a full self-supervised pipeline that learns to lift 3D
poses from images was unsuccessful, the individual components were able to locate 2D
keypoints and able to lift 2D keypoints to 3D. We also demonstrated how our LVMST
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algorithm was able to infer the connectivity of 2D keypoints, while also lifting them into
3D.

RQ2. In the context of articulation models, what is a keypoint?

The semantic definition of a keypoint varies depending on the context. We have demon-
strated keypoints as a generalised spatial constraint in Chapter 4, but also as landmarks
that signify points of articulation and limb end-points in Chapters 3, 5 and 6. Par-
ticularly in Section 5.5, we demonstrated the differences between capturing generalised
keypoints and specific landmark points. In the case of articulated pose models, landmark
points of articulation and ends of limbs are the ideal keypoints to derive the articulation

found within the object.

RQ3. How can we effectively represent spatial constraints?

We have demonstrated in Chapter 4 how keypoints are a suitable spatial constraint
that manages to be generalised, interpretable and captures purely spatial information,
compressing information into a small vector of keypoint coordinates. But when using
keypoints, there are still design decisions that must be carefully considered. List and sets
of keypoints are semantically different, as mentioned in Section 4.7.1, and in some cases
a set of keypoints is the appropriate choice, even though they contain less information
about keypoint correspondence than a list. We also need to consider if our keypoints
are generalised points or are landmarks, in the latter case there exists a perfect keypoint

for each point in each image, but this does not hold in the former case.

RQ4. What is the minimum prior information required to solve self-supervised artic-

ulation model estimation?

During this thesis, we have demonstrated the applicability of a simple limb rigidity prior
to solve the constituent parts of the 3D pose estimation pipeline. But as we were not
able to fully solve a self-supervised pipeline to locate articulation models from images,
this prior may not be strong enough for this task. We believe that this approach has
great promise, and possibly just more research to locate 3D keypoints in a self-supervised

environment.

These research questions have guided our approach throughout this thesis, and we have
to produced answers or partial answers for each question. Some have been successful but
some questions are yet to have a satisfactory answer. As is the nature of research some
of these answers have brought to light new questions such as “how do we determine the

best keypoint representation for each dataset?”.
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7.6 Final Concluding Remarks

This thesis has investigated the discovery of generalised articulation models from images
using self-supervised learning. Through the research process, we have contributed orig-
inal research to 2D-3D keypoint lifting, self-supervised multi-task keypoint estimation,
and invention of a simple but effective generalised articulation prior. The final approach
to estimating 3D models of articulation with no labelled data and no strong priors did
not manage to provide satisfactory results, but that is owing to the difficulty of the
problem over the lack of original contributions to the field. Future work in this field
should take inspiration from our advancements in generalisation through both multi-
task learning and designing of generic priors that elegantly solve difficult self-supervised

problems.
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Al

A.1.1 Network Parameters

Pose residual encoder:

Factorised Auto-encoder based keypoint lifting

Pose residual decoder:

Camera Parameter encoder:

Mean 3D pose network (latent space of 1 approximates a very simple scaling parameter):

Layer Type | Input Size | Output Size | Activation
Linear 2k 25k ReLU
Linear 25k 50k ReLU
Linear 50k 25k ReLLU
Linear 25k l TanH

Layer Type | Input Size | Output Size | Activation
Linear [ 50k ReLU
Linear 50k 3k TanH

Layer Type | Input Size | Output Size | Activation
Linear 2k 25k ReLU
Linear 25k 30k ReLU
Linear 30k 25k ReLU
Linear 25k 3 TanH

Layer Type | Input Size | Output Size | Activation
Linear 2k 25k ReLU
Linear 25k 1 ReLU
Linear 1 25k ReLLU
Linear 25k 3k TanH
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Where £ represents the number of keypoints and [, represents the pose latent space size.

A.2 Adversarial 2D-to-3D Estimation

A.2.1 Hyper-Parameters

Parameter Value
Number of Keypoints 16
Pose Latent Size 7
Batch Size 512

Keypoint Lifting Learning Rate | le-5 (multiplied by 0.1 after every 100 epochs)
Discriminator Learning Rate | le-6 (multiplied by 0.1 after every 100 epochs)
Epochs 1500

Table A.1: Hyper-parameters used to train keypoint lifting network using adversarial

approach.
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A.2.2 More examples using Adversarial Approach

Table A.2: Results showing 3D estimations from our adversarial pose lifting approach
using 2D data from the Human3.6m dataset [48] as inputs.

3D Ground Truth 3D Estimation
Front View Side View Front View Side View
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B.1 More Keypoint Examples

Below are more examples of keypoints on each of the testing datasets
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B.1.1 MNIST

Table B.1: More examples of keypoints found on the MNIST dataset
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B.1.2 Fashion MNIST

Table B.2: More examples of keypoints found on the Fashion MNIST dataset
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B.1.4 Human3.6m

Table B.4: More examples of keypoints found on the Human3.6m dataset
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B.1.5 Regressed Human3.6m

Ground Truth Keypoints

Regressed Keypoints

Table B.5: More examples of regressed keypoints found on the Human3.6m dataset

compared to their ground truth counter parts. Colours are a scale between blue for

keypoint at index 0 to red for keypoint at index k, and are consistent between columns.
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Appendix C

Appendix C

C.1 Pose Lifting with Rigid Bones Prior

C.1.1 Further Experimental Results
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Table C.1: More examples

of pose lifting outputs when

using self-consistency loss.
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Ground Truth Predicted
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Table C.2: More examples of pose lifting outputs when using self-consistency loss.

C.2 End-of-limb Keypoint Detection

C.2.1 2D Stickmen

This section includes further experiment results of the toy 2D stickmen keypoint de-
tection where points are encouraged to find the ends of limbs via use of the LVMST

algorithm and a differentiable sketching reconstruction task.
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C.2.1.1 Further Experimental Results

Multi-Task Keypoint Detector LVMST Keypoint Detector

Table C.3: More examples of comparisons of placement of keypoints between Multi-Task
generalised keypoint detector and LVMST with Differentiable Sketching on the artificial
2D stickman dataset.

C.2.2 Human3.6m Stickmen

This section includes further experiment results of the Human3.6m stickmen keypoint
detection where points are encouraged to find the ends of limbs via use of the LVMST

algorithm and a differentiable sketching reconstruction task.


https://Human3.6m
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C.2.2.1 Further Experiment Results

Ground Truth

Predicted

Table C.4: Additional comparison of placement of keypoints between in the ground

truth Human3.6m stickmen dataset and the differentiable sketching approach at placing

keypoints.


https://Human3.6m




Appendix D

This appendix contains further details for the implementations of experiments in Chap-

ter 6, along with further qualitative results.

D.1 Differentiable Sketching with Adversarial Lifting

D.1.1 Depth Estimation Network Architecture

The depth estimation network we use is a sequential network with layers defined below:

Layer Type | Input Size | Output Size | Activation
Linear 2k 128 ReLU
Linear 128 64 ReLU
Linear 64 32 ReLU
Linear 32 k ReLU

Where £ is set as the number of keypoints.

D.1.2 Hyper-Parameters

Here we outline the hyper-parameters used for this experiment. We learn 16 keypoints
from 32x32 images in batches of 64. We optimise using two Adam optimisers, one
for the generator and one for the discriminator, both using learning rate of le-3. The
discriminator is updated once every 5 iterations, whereas the generation is updated
every iteration. We use exponential function loss balancing (section 4.4.2.2) for our

losses where the reconstruction loss has an additional multiplier of 7500.
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D.1.3 Further Experiment Results

Ground Truth
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Figure D.1: Further demonstration of 3D keypoints found when concurrently learning to

place keypoints using differentiable sketching and lift them into three dimensions using
adversarial learning.
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D.2

D.2.1 Further Experiment Results

Full Pipeline with Rigid Bones Prior
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Table D.1: More examples of 3D keypoints found when concurrently learning to place

keypoints and lift them into three dimensions using our rigid bones prior.
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D.3 Split Pipeline with Rigid Bones Prior

D.3.1 Further Experiment Results
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Table D.2: More examples of 3D keypoints found when concurrently learning to place

keypoints and lift them into three dimensions using our rigid bones prior.
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