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ABSTRACT 
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by Joshua L. Harris 

This thesis investigates how self-supervised learning can be used to locate generalised 

three-dimensional articulated poses from images. We split this difcult problem into 

its constituent components, self-supervised keypoint detection to fnd two-dimensional 

keypoints from images, and self-supervised pose lifting to infer the depth of those points. 

We frame this problem as a representation learning problem, where keypoints are a spa-

tially constrained representation, and also consider the semantic properties of keypoints 

when applied to diferent use cases. We consider how priors are used to resolve an ill-

posed problem such as this, before devising a new prior which leverages the rigidity of 

limbs found in most articulated objects to both locate better keypoints and to improve 

the lifting of keypoints. We conclude by describing the wider applicability outside of 

this specifc approach, and suggest future work that logically follows on from this thesis. 
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Chapter 1 

Introduction 

This thesis looks at techniques for applying self-supervised learning to locate generalised 

three-dimensional articulation models. 

Intuitively, as humans, we can see an articulated object, be it a human, an animal, or 

a robot in just a few diferent poses and we can determine the articulation model that 

defnes its movement. Can a machine do the same? Our motivation behind taking a self-

supervised approach is that labelling data is expensive, and occasionally inconsistent, 

especially for pose estimation. It is common to see labelling issues when an image of an 

articulated model contains occlusion, making it difcult to place ground truth labels. 

Being able to take a single approach to determine the articulation model of a subject in 

an image without the need for labelling the dataset beforehand is not just of academic 

interest. We believe being able to determine 3D structures would be benefcial for many 

downstream applications including action recognition, surveillance and motion capture 

for media production. 

1.1 Articulation Models 

We defne articulation models as a general term for a set of keypoints based on an 

underlying model built of articulated elements with an additional restriction that points 

are connected by rigid limbs. We create an articulation model by combining an ordered 

set of keypoints, which represent joints and endpoints of limbs, and a connection matrix 

that defnes which keypoints are connected by a rigid spatial constraint. Through the 

majority of this thesis, we are interested in 3D articulation models as these not only 

contain more information about the world, but also give us more information to estimate 

connectivity. 

1 



2 Chapter 1 Introduction 

1.2 Thematic Breakdown 

This section breaks down the main themes contained within this thesis and gives an 

overview of each. This is not a comprehensive list of themes, but gives an outline of the 

ideas that will be discussed in detail later. 

1.2.1 Self-Supervised Learning 

Tsai et al. [103] state that self-supervised learning “adopts self-defned signals as super-

vision and uses the learned representation for downstream tasks”. Being able to train 

a network without requiring labelled data gives us the ability to use any suitable un-

labelled dataset, and greatly speeds up the data collection step required before we can 

start training a new model. 

There is an argument that it would be more appropriate to apply semi-supervised learn-

ing to this problem, as it can usually get better results by using a combination of a small 

labelled dataset and a larger unlabelled dataset. But as our focus is generalisability, we 

would like to remove any unnecessary priors that would be included via the labelling of 

data, and in turn this lets us apply our approach to any dataset. We are interested in 

applying self-supervised techniques throughout this thesis, so will be a common theme 

in Chapters 3, 4, 5, and 6. 

1.2.2 Keypoint and Landmark Detection 

Keypoints have long been an essential component in the computer vision feld, tradi-

tionally being used as an anchor point for local descriptor algorithms, but in recent 

years have become less critical due to the rise in popularity of learned convolutional 

approaches. But this is not to say that keypoints no longer have their uses. As they 

are lightweight and easily interpreted it makes keypoints ideal for capturing the shape 

of a given object in an image. Keypoints are trivial to work with and from them we can 

derive a wide variety of information about the structure of something in an image. 

Landmarks are keypoints with the dedicated purpose of locating a specifc feature, most 

commonly positions in a pose. Whereas a keypoint cannot be incorrect, a landmark is 

only correct if it aligns with a ground truth point. There are also other subtle diferences, 

usually we assume that landmarks are consistent in their ordering, meaning that we 

can correlate them between images, but this is not always the case with keypoints. 

Terminology of keypoints and landmarks are often confused, leading us to one of our 

research questions, RQ3, to clarify what we mean by keypoint in the context of each 

section of this thesis. We are primarily looking at this work, in a self supervised and 

multi-task environment, in Chapter 4. 



3 Chapter 1 Introduction 

1.2.3 Pose Estimation 

Pose estimation is an application of keypoint or landmark detection, which aims to 

locate consistent keypoints on a dynamic object. Most commonly objects of interest are 

humans, faces or hands, but occasionally animals or robots. Typically these approaches 

only work for the articulation model that is has been tailored for, as strong priors are 

often used to achieve good results. This thesis is interested in a generalised approach 

that uses self-supervised learning alongside weak prior knowledge that is not specifc 

to the underlying articulation model. We look at generalised keypoint detection, as an 

abstraction of pose estimation, in Chapter 4, but go deeper into pose estimation on 

articulation models in Chapters 5 and 6. 

1.2.4 2D to 3D Keypoint Lifting 

As humans, we can look at a 2D representation of a 3D structure and infer the depth 

to develop an internal 3D model. Contained within the human visual processing system 

are ways of using visual cues to determine the depth of an object, even though the world 

is primarily viewed as a 2D representation. Taking inspiration from this, we will be 

looking at how to learn to estimate depth using self-supervised learning, using only 2D 

inputs taken from single view, monocular images. Learning 3D points from 2D data 

has massive implications for downstream tasks over simply a two-dimensional pose, and 

can assist with problems such as occlusion. This thesis will primarily focus on keypoint 

depth estimation in Chapter 3, but will also continue on this theme in Chapters 5 and 6. 

1.2.5 Generative Adversarial Learning 

The use of a discriminator network that is optimised to detect real and fake data points 

is a powerful tool in deep learning. Our work applies this theory to solve the problem 

of self-supervised depth estimation by imagining 3D poses from diferent angles and 

using the discriminator to diferentiate the original 2D poses from our 3D estimated 

ones viewed from random angles, as shown in Chapter 3. This is not to be confused 

with Adversarial Machine Learning, which focuses on robustness against adversarial 

examples. 

1.2.6 Representation Learning 

Self-supervised representation learning has given us an insight into how we can use deep 

learning to extract information found within an image without the need for labelled 

data [17, 29, 72]. More specifcally, our interests for this thesis are in spatial representa-

tions, primarily using keypoints as a spatial constraint to capture structural information 
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about an image in a lightweight and interpretable representation. We can then map our 

spatial representation onto an articulation model by assigning concrete interpretation 

for each keypoint, and applying additional relationships between pairs of keypoints, dic-

tated by a connection matrix. Our spatial representations are frst defned and used in 

Chapter 4, but continue to be used later in Chapters 5 and 6. 

1.2.7 Multi-task Learning 

Multi-task learning has been proven to give impressive generalisation results across a va-

riety of domains, and we look to apply it within our research on self-supervised keypoint 

detection, covered in Chapter 4. We use a range of carefully selected, self-supervised 

tasks that use predicted keypoints and unlabelled images as an input, to provide multi-

ple training signals to the keypoint regressor network as intuitively, a varied set of tasks 

will allow for generalised keypoints to be estimated. The generalisation found using this 

approach has wider impact, but in our example, will allow us to determine keypoints 

on a wide range of articulation models, without overftting the keypoints to solve one 

specifc task. 

1.3 Motivation for Learning Self-Supervised Articulation 

Models 

Our motivations for generalising the detection of articulation models using self-supervised 

learning techniques are as follows: 

• Finding an approach that works for a wide range of articulated objects, including 
but not limited to, humans, animals and robots. 

• Leveraging only information found in images so that we can apply this technique 

to any dataset, without relying on labelled data. This can be clearly extended to 

image sequences, but in order to allow one method to apply to a wide range of 

datasets, we do not require sequential information. 

• Locating generalised spatial representations gives us the opportunity to transfer 
knowledge to solve novel downstream tasks, even if they are not used during train-

ing. 
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1.4 Research Questions 

Following on from our motivations and to frame this thesis, we will establish a set of 

research questions that we seek to answer throughout the content of the thesis. 

RQ1. How can we learn a self-supervised articulation model? 

Previous approaches for pose estimation rely on heavy prior knowledge of the world, 

commonly as predetermined articulation models such as Active Shape Models [20], or 

large labelled datasets [48]. But we are interested in estimating articulation models 

leveraging only self-defned signals, and using minimal prior knowledge. 

This research question is broad, but shapes the entire thesis. Naturally with a dif-

cult problem, we will break it down into smaller, and more manageable, sub-problems, 

discussing our approach to solving each, before combining each section into one full 

approach. 

RQ2. How can we efectively represent spatial constraints? 

In a generalised case, a spatial representation can be simply a set of keypoints. We can 

assign additional desirable qualities for our keypoints too, such as consistency between 

examples and robustness to textural change in the image space. We may also choose 

to represent a spatial constraint as a list, if the index that a keypoint lies in convey 

important information, or a set, if we deem two permutations of keypoints to be iden-

tical. When looking at other, more applied contexts, such as for articulation models, 

the relationships between keypoints convey essential information that we would like to 

capture too. 

RQ3. In the context of articulation models, what is a keypoint? 

Keypoints are one of the most basic spatial representations, but the term can vary 

greatly with context. In traditional contexts, a keypoint is the root for a local descriptor 

algorithm but in pose estimation it designates a landmark that we aim to identify, 

whereas in a self-supervised learning setting, keypoints can be used simply as a spatial 

representation. We also need to consider if we are looking for landmarks, where an ideal 

location is desired, or keypoints, where the most information captured about an image 

is desired. We will aim to answer this research question in each section to apply context 

to the term keypoint. 

RQ4. What is the minimum prior information required to solve self-supervised artic-

ulation model estimation? 
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In a self-supervised environment, we lack ground truth data to learn from, so it is 

common to supplement an approach with a prior in order to fnd good results. Selecting 

the correct prior is essential for success, but selecting the right one comes with difculties. 

Determining the best way to leverage the information contained within the dataset, 

without making too many assumptions about the data that would inhibit generalisability. 

We have selected these research questions because we know intuitively that as humans 

can determine a 3D articulation model without the requirement of ground truth 3D 

keypoints. This motivates the use of self-supervised learning, as biologically inspired 

algorithms should be able to operate with the same information that a human can use 

to solve the same problem. 

1.5 Contributions 

Here we will briefy discuss original contributions made during the course of this thesis: 

1.5.1 Pose Lifting with Bottlenecked Auto-Encoders 

As discussed in detail in Section 3.4, we take inspiration from similar approaches to 

pose lifting using generative adversarial learning and contributed a spatial bottleneck 

to compress information before estimating a 3D pose. We achieve good results, but 

fnd that training can be unreliable due to the nature of adversarial learning and the 

occasional occurrence of the inverse pose problem. 

1.5.2 Multi-Task Approach to Generalised Self-Supervised Keypoint 

Detection 

Our approach to generalised keypoint detection, leveraging the generalisability of multi-

task learning is a valuable contribution to spatially constrained representation learning, 

and is covered in detail in Section 4.4. The main contribution is the generalisability 

achieved when learning keypoints that satisfy multiple tasks, to the extent that we can 

test on a disjoint dataset to the training set and still achieve reliable results. 

1.5.3 Diferentiable Minimum Spanning Tree 

The minimum spanning tree algorithm is ubiquitous across many applications, but be-

ing able to pass gradients through it allows for more applications in the deep learning 

feld. As the standard implementation of the Prim’s algorithm is not diferentiable, our 

contribution found in Section 5.3.1 works around this using an approximation, enabling 

the ability for use within a neural network. 
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1.5.4 2D to 3D Pose Lifting using Rigid Bone Prior 

Existing 2D to 3D Pose Lifting approaches have shown success with adversarial learning, 

but can run into the inverse pose problem [61], and can be unreliable during training 

due to the nature of adversarial learning. Our approach using a self-consistency loss and 

a rigid bone prior, as covered in Section 5.4, allows for consistent lifting without the 

difcultly of using generative adversarial learning, and achieving good accuracy. 

1.6 Keypoint Clarifcation 

This section will briefy clarify the diferences between three key words used in this the-

sis; keypoint, landmark, and pose within the context of fnding generalised articulation 

models, and why the number of keypoints is a fxed parameter throughout the thesis. 

Defnitions of the keypoint related terms that will be used throughout the thesis are as 

follows: 

• Keypoint: A selected point within an image which is robust and repeatable, and 

can be used in a list or set to build a generalised spatial representation. 

• Landmark: A specialised keypoint that should be placed on a specifc feature or 

location within the image. 

• Pose: A collection of landmarks that represent an object in the image and is 

typically stored in a list where the index denotes the feature that each landmark 

correlates to. 

Throughout this thesis, we will be fxing the number of keypoints used for each experi-

ment (on a per-experiment basis), including those that should be found by our keypoint 

detection networks, and used in the lifting from 2D to 3D keypoints. The implications 

of this assumption is discussed in further detail in Section 7.4.2.1. 

1.7 Breakdown of Thesis Structure 

Tackling a tough problem such as this requires a logical approach. To make our aims 

achievable, we have decided to break down the problem into achievable sub-problems. 

Our pipeline for this project has a clear separation, between the stage that derives 

keypoints from images and the stage that infers depth from those 2D keypoints. There 

is also an intermediary step between the two, which is made simpler if we have derived 

an articulation model. Combining the two is not trivial, and our attempts at producing 

a full pipeline is covered in Chapter 6. 
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The remainder of this thesis is broken down into the following chapters: 

Chapter 2: Literature Review 

We will review the related literature in the areas that this thesis covers. We aim to cover 

a mix of traditional and modern approaches, and discuss the implications of previous 

work on the contents of this thesis. More specifc related work to each chapter will be 

covered at the start of the relevant chapter. 

Chapter 3: Inferring Depth of 2D Keypoints 

This chapter will look at existing approaches for inferring depth of dynamic objects, 

based on 2D keypoints, before contributing our new approach that lifts poses using an 

adversarial loss function alongside a spatial bottleneck. 

Chapter 4: Generalised Keypoint Detection using Self-Supervised Learning 

In this chapter, we look at formulating self-supervised keypoint detection as a represen-

tation learning problem using a spatial constraint. We look at locating keypoints in a 

generalised way, using them as a generic spatial representation that applies to any image, 

and implement a multi-task learning approach to encourage generalised keypoints. 

Chapter 5: Using Bone Rigidity as a Generic Prior 

After considering the results of the previous chapters, we aim to design and implement 

a generalised articulation prior to achieve better results without losing generalisability. 

We then look to return to the problems faced in Chapters 3 and 4, and implement 

solutions using this prior. 

Chapter 6: Towards Learning Articulation Models 

This chapter aims to link together the approaches used in Chapters 3, 4 and 5 to create 

a full pipeline that should be able to take an image and predict a 3D articulation model, 

all in a self-supervised manner. Results for an entire pipeline are not yet satisfactory, 

but good progress towards this aim has been made. 

Chapter 7: Conclusions and Future Work 

Finally, we will discuss the work covered in this thesis, draw conclusions and talk about 

future work that naturally follows on from this research. 



Chapter 2 

Related Work 

This chapter looks into related work across the range of sub-felds covered in this thesis. 

We look at existing approaches to solve pose estimation, including both supervised and 

unsupervised methods. We discuss both modern deep learning based pose estimation, 

as well as older approaches that apply probabilistic models including shape models. We 

then consider keypoints and their general role within computer vision and how they 

align with pose estimation and spatial representations. We then fnish this section by 

discussing representation learning and how spatially constrained representations can be 

located via keypoint detection. This chapter is necessarily broad to set the scene of the 

thesis. More focused reviews of relevant literature can be found within the following 

chapters. 

2.1 Pose Estimation 

The overarching goal of this thesis is generalising pose estimation in articulated models, 

taking heavy infuences from the sub-felds of self-supervised learning and generalisa-

tion. While pose estimation concerns the positioning and shape of any object, static 

or dynamic, there has historically been a large research focus on human, hand or face 

poses. This is mainly due to the downstream implications of locating the poses of human 

features, with numerous downstream applications including biometrics, surveillance, vir-

tual reality and healthcare [22]. Our interest in articulated objects will lead us to focus 

mostly on human pose estimation, before considering other types of articulation, includ-

ing animal poses. 

2.1.1 Classical Pose Estimation 

Pose estimation has classically been a well studied area of computer vision and has been 

tackled since the very early days of the feld. Fischler and Elschlager [30] in the early 

9 
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1970s aimed to compute an approach for locating a visual object, facial features in their 

examples, upon being given an image. Their images are represented as a low resolution 

matrix, due to computational restrictions of 1970s hardware, but they succeed to locate 

facial features when given specifc rules for the patterns that identify them. 

Published in 2015, Liu et al. [74] review traditional human pose estimation approaches 

that use body part parsing at their core. The scope of work covered in this review is 

vast, covering single and multi person estimation, in videos and in images, and using 

monocular or multi-view data. They identify the future trend using unsupervised and 

semi-supervised learning for parsing body parts. Their fnal take-away is that there 

is a large gap between theoretical research and real-world applications, a key point to 

consider as we implement approaches to fnding articulated poses. 

Bourdev and Malik [5] use poselets, described as “parts that are tightly clustered in both 

appearance and confguration space” for their 3D human pose estimation approach. This 

means they consider both structure of body parts, but also appearance when selecting 

their poselets. Their pipeline proposes poselets from each input image, and pass them 

through a Max Margin Hough Transform to learn to weight correctly located poselets. 

Their other main contribution is H3D, a 3D human pose dataset which provides 3D 

annotations for in-the-wild images of people. 

Other well established approaches to tackling this problem opt for using shape models. 

Traditional shape modelling techniques use Procrustes analysis to align a set of training 

examples before using PCA to learn the low-dimensional representation to capture valid 

shapes. Caunce et al. [8, 9], Rogez et al. [92] all look into using shape modelling to 

fnd accurate shape models of the human face, and capturing facial articulation. Hasler 

et al. [40] look at learning a shape model using high detailed 3D meshes, capturing both 

the pose and appearance of the subject, allowing for a generative model to create novel 

examples of 3D models with new shapes and poses, demonstrated in Figure 2.1. 

Cootes et al. [20] pioneered the concept of an Active Shape Model, which using the 

distribution of a relatively small training set learns a point distribution model of the 

shape of a dynamic object. This shape model can then be ft onto an image using an 

iterative search process, and is capable of robustly ftting to images and is tolerant to 

some occlusion. They demonstrate their approach on echocardiogram scans of hearts 

and hands, where a small labelled training set of each is used to learn a point distribution 

model, which can then be ft onto new unseen examples. 

2.1.2 Modern Approaches 

Recent attempts at pose estimation manage to tackle the problem with impressive re-

sults using deep learning. Typically in a supervised environment, pose estimation is a 

regression task where a network is trained to minimise the L1 or L2 error between the 
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Figure 2.1: Poses and shapes in the form of volumetric models that have been randomly 
sampled from a learnt distribution of poses from a dataset of people. Taken from Hasler 
et al. [40]. 

output and the labelled keypoints. Dang et al. [22] survey deep learning approaches to 

2D pose estimation, looking at both single-person and multi-person approaches, while 

also discussing datasets, metrics and unsolved challenges in this feld. They fnd that 

convolutional neural networks are typically used, with either linear layers fnishing with 

two times the number of keypoints [102] or a soft-arg-max function to derive numerical 

keypoints from the peaks of resultant heatmaps from the convolutional layers [77]. 

A review of monocular deep learning based human pose estimation approaches is car-

ried out by Chen et al. [15], who split the feld up into single- and multi-person pose 

estimation and in both two and three dimensions. They identify that while some pose 

estimation approaches are keypoint or skeletal based, other look for contour-based mod-

els that outline the person or people identifed or volumetric approaches which ft a 3D 

model onto the image to provide 3D pose estimation. They also identify two major 

strategies within the multi-person pose estimation space. The frst is top down, where 

object detection is used to identify how many people are in the image, cropping those 

with bounding boxes, and running pose estimation on each of those. The second is bot-

tom up where body parts are located across the whole image, and people are identifed 

via linking those parts together via joint candidate grouping. 

Toshev and Szegedy [102] were among the frst to apply deep learning techniques to 

pose estimation and laid the foundations for future deep learning based pose estimation 

approaches. Their implementation used simple convolutional neural networks with fully 

connected heads to regress directly to the desired number of keypoints, but cascade 

multiple networks and feed in a cropped version of the input image around each predicted 

keypoint in order to improve the accuracy of detection. At time of publication, their 

approach was state-of-the-art for the Frames Labelled in Cinema dataset [93] and the 
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Leeds Sports Dataset [57, 58], outperforming traditional approaches that did not leverage 

the power of deep learning. 

In the area of multi-person pose estimation, Cao et al. [6] have been successful for images 

with many humans, such as the MPII human multi-person dataset, while also running 

in real-time. They manage this by using part afnity felds to determine which body 

part belongs to which individual, making use of the image data around each point. 

Deep learning based pose estimation does not need to be through supervised learning. 

Jakab et al. [50] demonstrate a novel self-supervised approach to human pose estima-

tion that makes use of unaligned data, leveraging images and keypoints from unpaired 

datasets, allowing for the usage of any unlabelled image dataset as long as the un-

paired keypoints represent a good range of poses. They demonstrate state-of-the-art 

unsupervised landmark detection performance, while maintaining an approach that is 

applicable to a wide range of datasets, considering the strength of the prior used. While 

this approach demonstrates good performance without direct supervision, our focus is on 

generalisability, and requiring a labelled dataset of poses for each category of articulation 

model would take away from our fully self-supervised and generalised approach. 

2.1.3 3D Pose Estimation 

Wang et al. [107] have surveyed the space of 3D human pose estimation. They cover 

not only single human estimation, but also multi-person, and consider approaches that 

operate on singular frames and on sequences. Additionally, datasets, evaluation metrics 

and performance analysis comparing similar approaches have been detailed and future 

potential developments outlined. They make the distinction between skeleton based 

models, skinned multi-person linear model and surface-based models. 

Ji et al. [54] have also performed a survey of monocular 3D pose estimation. As part 

of their analysis, they break down the diferent approaches into two categories, direct 

regression of 3D pose and cascaded approaches that regress to 2D pose before performing 

3D pose lifting. They fnd that the general performance of the latter category performs 

best. This survey, along with other previous approaches to 3D pose estimation, combined 

with the knowledge of the difculties in training neural networks using self-supervised 

learning techniques, lead us to the decision to pursue an approach that splits the pipeline 

into 2D pose estimation and 2D-3D pose lifting. This will be covered in more detail in 

Chapter 6. 

Pavlakos et al. [88] use a supervised approach that manages to identify shape and 3D 

pose from a single colour image as a 3D mesh. This heavily supervised technique works 

as a pipeline, fnding the keypoints of joints as heatmaps, and then inferring the 3D 

structure. 
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Chen and Ramanan [11] show promising results in 3D pose estimation, and do so by 

estimating 2D keypoints from the image and then matching to the closest example from 

a dataset of known valid 3D human poses. This puts the emphasis on locating accurate 

2D poses in order to correctly make a match, and exemplar-based matching is done via 

a reprojection error on nearest matched 3D example. This method ensures that every 

prediction gives a realistic human pose, but does have limitations to the fnite set of 

known poses, so would perhaps not succeed if given novel examples of unusual looking 

poses, lacking robustness to out of distribution poses. This lack of generalisation means 

that there would be failure cases in downstream applications with high variance of poses 

such as analysing gymnastics data. 

Jenni and Favaro [53] solve the problem of self-supervised 3D pose estimation leverag-

ing the multi-view data found in the Human3.6m dataset, but also deviate from strict 

self-supervision by using a small annotated dataset to fne-tune their self-supervised net-

work. Their self-supervised training uses a classifcation task which aims to determine if 

a pair of frames are of the same scene but from a diferent angle, if a pair of frames are 

unsynchronised, or if one frame is a fipped version of the other, using a Siamese architec-

ture to derive representations from pairs of images. They then use the Siamese network 

trained on this self-supervised task as the initial step of a pipeline where representations 

are derived from images and those representations are regressed onto a small training 

set of ground truth 3D keypoints, fnding comparable results to similar approaches that 

use full supervision. 

When considering depth perception using deep learning, we may want to consider bio-

logically inspired approaches. As humans, our internal depth perception is not foolproof, 

optical illusions that play on our methods of inferring depth are numerous, many com-

mon optical illusions work around exploiting the cues that the human visual system 

uses to determine depth [108]. From this knowledge, we can see pitfalls of human vision, 

and may help explain and diagnose similar errors when developing and training a depth 

estimation neural network. This work has helped inform the addition of an additional 

self-consistency loss function as seen in Section 5.4, which aims to circumvent errors in 

depth perception that can occur when insufcient information is available to estimating 

depth. 

2.1.4 Animal Pose 

While a great research focus is on pose estimation for humans, being full body poses, 

faces and hands, because of their plentiful applications, our motivations are to generalise 

our approach to consider a wider range of articulation models, so we must also consider 

approaches that are not limited to human pose. Yu et al. [113] have recently collated a 

dataset for general pose estimation in the wild, taking a wide range of animals of diferent 

taxonomies and labelling them alongside providing a benchmark for their preliminary 

https://Human3.6m
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results. Such a dataset poses a challenge that is relatively unexplored within pose 

estimation research in a supervised scenario, so a fully optimised solution to the problem 

has yet to be found. Pereira et al. [89] look at how to quickly detect animal pose when 

dealing with new and limited data, fnding that with only 100 labelled images, they 

can achieve 90% of their baseline performance. This approach lends itself to unseen 

downstream applications as labelling a small set of images is a small overhead to get 

results on an unseen subject. A toolkit has been put together by Graving et al. [36] as 

a starting block for others who work in the area of animal pose estimation, operating 

both in the wild and in laboratory settings, with the additional capability to deal with 

multi-animal images. Liu et al. [73] look at leveraging video information and optical fow 

in their multi-frame approach for improving the performance of animal pose estimation. 

Their base model is fexible to the variance found within poses of animals, and once a pose 

is derived from a frame using their baseline model, multiple frames are passed through 

and optical fow model to derive the movement from each input video. The optical fow 

data is then able to correct mistakes in the pose estimation from the baseline model, 

resulting in a model capable of state-of-the-art results at time of publication. 

2.1.5 Challenges 

As briefy mentioned by Dang et al. [22], occlusion and self-occlusion are still challenges 

in human pose estimation. Jalal and Singh [52] have identifed three distinct types of 

occlusion; self-occlusion, where part of an object blocks itself, inter-object occlusion, 

where one object in the image occludes another, and background occlusion, in which 

some of the background occludes the object. 

While just one example of many, Chen et al. [12] fnd impressive results within 2D to 

3D pose lifting using a self consistency prior, but attribute most of their failure cases to 

self-occlusion. Solutions to adding robustness to 3D pose estimation when using deep 

heatmaps have been proposed by Oberweger et al. [86]. They note that convolutional 

based approaches are highly sensitive to occlusions, but they add robustness via aug-

menting training data with random occluding objects taken from the LineMOD dataset. 

This approach is agnostic to any training dataset, and has been demonstrated to be more 

efective in adding robustness than using random two-dimensional geometric occlusions. 

Another challenge in this space, also mentioned by Dang et al. [22], is that existing 

datasets are large but contain a lack of balance towards rare poses, and no approaches 

manage to fx this dataset imbalance. They mention data augmentation as a solution, 

with one option using GANs to generate new data points or unlabelled data to augment 

in a semi-supervised fashion. Another proposed solution uses special training procedures 

to learn a better network when using biased data. 
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Li et al. [65] use an evolutionary algorithm as an approach to remove data bias against 

extreme poses in 3D human pose estimation. They do this by representing poses as 

trees, and using evolutionary strategies, augmenting their pose dataset with new data 

points built from pairs of poses that have been crossed-over and mutated. Their results 

showed state-of-the-art performance on fully-supervised 3D pose estimation at time of 

publication, showing the power of enriching a dataset using this approach. 

Jiang et al. [55] take a similar strategy, but use a synthetic dataset to level the data bias. 

Using a conditional variational auto-encoder, they map an existing dataset into a smooth 

latent space, and then generate new plausible examples by sampling random points from 

that latent space within a given distribution. The authors of this paper were able to 

get state-of-the-art results on the Human3.6m dataset at time of publication. However, 

there is some concern that training a network using synthetic data will result in poor 

performance on real-world data, and as Human3.6m is data captured in a constrained 

environment, this approach may not generalise as well as other approaches. 

Another challenge identifed by Dang et al. [22] is real-time processing of information, 

which inhibits the usefulness of these approaches when used for real world problems that 

require the ability to run in real-time, especially when considering video data. To aid 

this, each stage of the pipeline must be carefully implemented to reduce processing time. 

2.1.6 Summary 

Pose estimation is a problem that has been researched for approximately 50 years, yet 

robustly locating poses remains a problem. We have looked at traditional, modern 

and 3D human pose estimation, while also considering animal poses and identifying 

the challenges faced when locating poses. When researching and implementing our 

generalised articulated pose estimation approach, we should consider these challenges 

and think how best to overcome them, and also take inspiration from previous successful 

approaches, notably splitting a 3D approach into 2D keypoint estimation before passing 

to a depth estimator. 

2.2 Keypoints 

The next major focus of our related work section considers keypoints and their usages 

both recently and historically, and their relevance to pose estimation. We introduced the 

idea of keypoints and the terminology used in Section 1.2.2, while outlining the nuanced 

diferences between keypoints and landmarks, the former being generic points and the 

latter being specifc areas on an image to identify. 

https://Human3.6m
https://Human3.6m
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2.2.1 Traditional Keypoint Detection 

Keypoint detection has been at the core of computer vision techniques throughout the 

history of the feld. Traditionally keypoint detection was the frst step in detecting local 

features [38, 76, 84, 94], before analysing these extracted features to solve a task. Typ-

ically, the algorithms used to locate keypoints are designed to look for interest points, 

which are areas of high saliency with the image, for example; corners [38], blobs [76] or 

regions [82]. Good keypoints should be robust to noise in the image, and repeatable, 

so similar points are found in similar images. While once ubiquitous, these techniques 

are much less common today, and focus has switched to using deep learning techniques 

to train networks to fnd keypoints. However, there are cases where keypoints are still 

relevant, albeit mostly in traditional computer vision pipelines where explainability is 

desired or in safety critical environments. But these traditional approaches are not re-

dundant in recent times, and further research is going into traditional keypoint detection. 

Cho et al. [16] have recently investigated the benefts of higher order Laplacian of Gaus-

sian keypoint detection techniques and fnd that when used in combination with higher 

order Diference of Gaussian, show improvements in multiple keypoint-based computer 

vision problems. 

2.2.2 Deep Learning Keypoint Detection 

Keypoint detection still has relevance in the current deep learning research climate. 

Typically when we consider deep learning based keypoint detection, we are interested 

in convolutional neural networks in which convolutional kernels have been learned via 

large amounts of data to identify desirable points. 

Neural network architectures of interest in the feld of keypoint detection are hour-

glass and stacked hourglass networks. Examples include unsupervised keypoint detec-

tion [118], fully supervised human pose estimation [85] and locating 3D human pose [14]. 

The power of an hourglass network comes from its ability to fuse local and global infor-

mation about an image to locate local image features while using the context of where 

the feature is located within the image. This is in contrast to traditional keypoint detec-

tion approaches which rely on local context only. Due to the merits of this architecture, 

this is something that we will be using as inspiration as we develop and implement our 

own solutions. 

There is a shifting focus towards capturing spatially constrained representations from 

images instead of selecting keypoints for the basis of a local descriptor algorithm. Thewlis 

et al. [98, 99, 100] have investigated capturing shape with unsupervised learning in 

multiple domains. The basis of this concept is to train a network to fnd invariant points 

between an original image and an artifcially warped version of it, with the aim of training 

a network to robustly locate keypoints. Zhang et al. [118] take this idea further by adding 
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a reconstruction task as a training objective that uses local descriptors to reconstruct the 

image alongside checking for consistency between non-linear image warps. Kulkarni et al. 

[63] apply a similar method to the control domain, leveraging sequential information to 

fnd robust points. A common technique used with self-supervised keypoint detection 

is to append a linear regressor to the network and training it with a small amount 

of ground truth data in order to convert keypoints into specifc landmarks for pose 

estimation tasks [100, 118]. While not strictly self-supervised, this additional step gives 

a good indication of how to convert a generalised representation into landmarks with 

the goal of locating specifc features on the object in the image. This step does however 

prove the saliency of the keypoints located from the images, regression would not be 

successful unless a good spatial representation had been identifed. 

Jakab et al. [51] present a semi-supervised solution that uses disjoint images and la-

bels that belong to the same category. While results are impressive, this technique 

requires keypoint shapes which are available for some categories of objects such as hu-

man pose [48], but fails to generalise to our desired extent, where we wish to fnd spatial 

representations of any given articulated object. 

While current unsupervised approaches work well, they typically require a lot of hyper-

parameter tweaking on a per-dataset basis in order to get satisfactory results [100, 118]. 

Some methods even require an entirely new network architecture when using a diferent 

dataset [118]. Our research in this thesis aims to improve upon this, with the goal 

of being able to locate robust and reliable keypoints with minimal hyper-parameter 

tweaking between datasets. We also note that the generalisability of some of these 

approaches only allows for structures in one category of object to be found at once, 

opposed to an ideal domain-agnostic scenario. 

Bojanić et al. [3] perform an analysis comparing traditional keypoint approaches to deep 

learning based approaches. They compare the performance of a wide range of keypoint 

detection algorithms on keypoint verifcation, image matching and keypoint retrieval. 

Their fndings were that, while deep learning based approaches typically perform better, 

some combinations of traditional detectors and descriptors outperform deep models. 

2.2.3 Applications of Keypoint Detection 

There are a wide variety of downstream tasks that use keypoint detection as a founda-

tion. These range from local descriptor algorithms for image recognition [69] to image 

stitching tasks like panorama creation [97]. A case where the exact locations of key-

points is required, or typically landmarks in this context, is in pose estimation and 

shape modelling. Cootes et al. [20] have historically looked at the problem of mapping 

shapes onto images to ft landmarks using Active Shape Models. While these techniques 

are pre-CNN era, this method is still strong and can be used to reliably add robustness 
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to a landmark detector. Modern uses of keypoints include pose estimation [6, 23, 111], 

which is most commonly applied to locating landmarks on people, but hands and faces 

are also common, as discussed in further detail in Section 2.1. But aside from the literal 

use of keypoints as landmarks, or as interest points for descriptor algorithms, another 

major use case is as a generalised spatial representation, which we will discuss further 

in Section 2.3.1. 

2.2.4 Where this feld is moving 

Recently, there has been research interest in combined deep-learning based keypoint 

detectors and descriptors, to mimic the keypoint detection and description section found 

in pre-deep-learning computer vision pipelines. One such approach by Christiansen et al. 

[18] is UnsuperPoint, building of the previous SuperPoint work [24], which aims to 

create a self-supervised deep learning based keypoint detector and descriptor. They use 

a multi-task network architecture, with a common backbone which splits of into separate 

branches for scores, point locations and descriptors. During optimisation, their approach 

learns to optimise four loss functions, an unsupervised keypoint consistency loss between 

transformed pairs of images, a uniform point predictions loss that encourages each image 

patch to have uniform point placement, a descriptor loss and a de-correlation loss for 

descriptors to reduce overftting. The resultant model fnds keypoints for any image with 

real-time speed, making it suitable at the start of a computer vision pipeline, all without 

the requirement for labelled training data. However, as Bojanić et al. [3] found in their 

study, the supervised SuperPoint model does not exceed the performance of classical 

keypoint detector and descriptor approaches when used in verifcation, matching and 

retrieval, but does manage to outperform in terms of speed. 

As can be seen from other deep learning disciplines, especially Natural Language Pro-

cessing, huge pre-trained transformer models are becoming the backbone of deep learning 

pipelines. Computer vision has already started to follow suit, as seen in vision transform-

ers [26]. But in contexts where regions of information should be considered, a keypoint 

detector and descriptor based transformer may allow for a wide range of downstream 

tasks while being generalised such that it works with any image dataset. 

Another research direction that keypoints have been essential to is point clouds, allow-

ing 3D shapes to be encoded into a set of keypoints. Guo et al. [37] have developed a 

transformer for converting images into point clouds representing the 3D structure found 

within the image. This point cloud can then be used for downstream 3D tasks, in-

cluding part segmentation and 3D model classifcation. Hui et al. [45] demonstrate one 

way 3D point clouds can be further refned by converting them into Superpoints which 

group together similar points with local geometric structures. They demonstrate the 

power of this technique in point cloud semantic segmentation, achieving state-of-the-art 

performance. 
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2.2.5 Summary 

This section has discussed how keypoints have traditionally been located using interest 

point detectors, identifying small patches of interest with the intended purpose of sam-

pling the local context descriptors for downstream tasks. We then discussed how deep 

learning has changed the landscape of keypoints due to the lack of requirement when 

using a convolutional flter approach, and the new role of keypoints as either the goal of 

a pose estimation task or a spatially constrained representation of an image. We fnally 

theorised where the feld of keypoint detection is moving in the future, with respects to 

deep learning, transfer learning and transformer networks, where a pre-trained model 

can be used or fne-tuned to extract generic spatial information about an image. Our 

deep learning approach should also take inspiration from previously network architec-

tures including hourglass networks, which fuse together local and global contexts for 

keypoint estimation. Robustness should be added to our trained keypoint detectors via 

an image transformation consistency task, and our estimated self-supervised keypoints 

can be evaluated using a semi-supervised metric in which estimated points are passed 

through a linear regressor to provide a distance error. 

2.3 General Representations 

Representations are at the core of data science. How we represent our data has impli-

cations on the approaches we take and the algorithms we use. But with deep learning, 

we can also learn representations, which is important for this thesis within the spatial 

domain, especially with respect to Chapter 4. We will be looking at the most efective 

ways of capturing learnt spatial representations, as a method for answering RQ2. 

2.3.1 Representation Learning 

Representation Learning is at the core of many diferent machine learning techniques 

and keypoints can be viewed as a representation using a strong spatial constraint. Ben-

gio et al. [2] in their high-level survey of representation learning, identify three main 

categories within representation learning; probabilistic models, reconstruction-based al-

gorithms, and geometrically motivated manifold-learning. While the majority of ap-

proaches that we consider in this thesis are reconstruction-based, probabilistic models 

and geometrical manifold-learning have the ability to capture more nuanced representa-

tions of data. Narrowing their scope, Jing and Tian [56] survey visual feature learning 

using deep neural networks, and consider representations from both images and videos, 

while also discussing common pre-text and downstream tasks, neural network architec-

tures, and datasets. They identify that within images, context and spatial information 

are important features to distil into a representation, and videos should contain these 
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alongside temporal features. Kolesnikov et al. [60] break down the factors that impact 

the efectiveness of self-supervised visual representation learning, with the key fnding 

that both neural network architectures and methods of training must not be considered 

in isolation, due to inter-dependency between the two elements when learning represen-

tations. 

Self-supervised learning is a common method for learning representations from an unla-

belled dataset. Choi et al. [17] use a simple training task of predicting image rotations 

to learn representations of images. Despite being a simple task, the semantic features 

learnt using this approach allow the researchers to get state-of-the-art performance at 

time of publication for unsupervised feature learning on ImageNet classifcation, PAS-

CAL classifcation, detection and segmentation, and CIFAR-10 classifcation. Doersch 

and Zisserman [25] apply multi-task learning for self-supervised visual feature extrac-

tion, using supervised tasks where data can be collected without the use of manual 

labelling. They fnd that deeper networks improve the ability to extract representa-

tions in a self-supervised fashion over shallow networks, and that using multiple training 

tasks improves performance over only using a singular task, while also speeding up 

training. Their results show a shrinking of the gap in ImageNet classifcation perfor-

mance between supervised and self-supervised learning. Self-supervised representation 

learning also aids in model robustness as demonstrated by Hendrycks et al. [44], who 

show increased robustness to adversarial examples, label corruption, and common in-

put corruptions. Additionally, classifcation of out-of-, but near-distribution outliers is 

improved, allowing for a fnal model that exceeds supervised approaches. 

One important research area within representation learning is in evaluation of repre-

sentations. Goodfellow et al. [34] claim that a “good representation is one that makes 

a subsequent learning task easier” and that the “choice of representation will usually 

depend on the choice of the subsequent learning task”. As a general rule, a good rep-

resentation is one that maximises the amount of information extracted from the input 

data, if a system exists for measuring the information captured. This will be considered 

later when we discuss how to represent spatial constraints in order to answer RQ2. 

Typically, techniques look to learn a global representation for each image, typically in 

the form of a vector, but our application requires a spatial constraint to be applied. This 

operates as a bottleneck and one option for deriving keypoints is to use the soft arg-max 

function, discussed further in Section 4.5.2, to locate the highest pixel activation in a 

heatmap [100]. As this spatial representation is simply a list or set of X and Y pairs, 

it removes non-spatial information while being highly interpretable and generalised for 

compatibility with any image. 

Constrastive learning [72, 101] aims to fnd representations where the magnitude of dif-

ference between representations is proportionate to the diference between data points 

while maintaining similar representations between similar data points. When applied 
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to a spatially constrained representation such as keypoints, we would like objects with 

diferent structures to be captured with diferent shapes of keypoints, but similar struc-

tured objects with diferent textural appearances to have similar keypoints. In a keypoint 

detection context, this is typically considered when we discuss robustness and repeata-

bility. 

2.4 Summary 

This chapter has explored existing work in the areas concerned by this thesis. We have 

discussed approaches to solving the problem of pose estimation, ranging from traditional 

methods using shape models to newer methods using neural networks. We have also 

seen that 3D pose estimation can be simplifed by solving two separate tasks, fnding 

keypoints that relate to joints on an image and inferring depth from those points, to 

predict a three-dimensional skeletal model. 

With previous work in this feld in mind, our approach to solving this problem will draw 

inspiration from some of these methods and techniques. We will split the approach into 

two composite sub-problems, and fnd generalised self-supervised approaches for solving 

both, before building a full pipeline that attempts to solve both sections simultane-

ously. Framing keypoint detection as a representation learning problem allows us to 

generalise keypoint detection while endeavouring to maximise information captured by 

our points. Our keypoint detector network architecture will take inspiration from hour-

glass networks, which fuse local and global information, and using consistency between 

transformed images as a self-supervised training signal will be used to locate robust 

keypoints. 





Chapter 3 

Inferring Depth from 2D 

Keypoints using Self-Supervised 

Learning 

This chapter covers the stage in the articulation model estimation pipeline that infers 

the depth of 3D keypoints from 2D inputs. Necessary for our objectives, monocular 

2D to 3D lifting is a powerful tool, as single-view image datasets do not contain any 

explicit depth. The depth of each keypoint must be inferred from the limited information 

contained within the 2D data if we are to maintain a self-supervised learning approach. 

3.1 Introduction 

2D to 3D Pose Lifting aims to infer the three-dimensional structure given an input of 

two-dimensional keypoints. This objective is complicated further by the dynamic nature 

of our articulated subjects. The subject can be represented in many diferent poses, thus 

shows the need to learn to represent the dynamic pose and the 3D structure concur-

rently. We must also consider the difculties of locating the structure of a symmetrical 

articulated object, can all this be done using only 2D information? 

Finding the 3D keypoints that are defned by an articulation model is a step towards 

answering RQ1, and doing this in a self-supervised environment is the challenging step in 

this process. While there is a large feld of work that considers only 2D keypoints for pose 

estimation, the benefts of learning a 3D model gives a large amount of information when 

considering occluded points. Reconsidering RQ3, the term keypoint in this chapter is 

specifcally to resemble the landmarks that designate joints within our articulated model. 

The order of the keypoints is also important here, with each index corresponding to a 

specifc articulation point, and must be consistent between examples. Considering the 

23 



24 Chapter 3 Inferring Depth from 2D Keypoints using Self-Supervised Learning 

spatial constraints in RQ2, this chapter looks at using a bottlenecked auto-encoder, to 

compress spatial information, before estimating 3D information from a smaller latent 

space. 

3.2 Related Work 

This section will cover related work to the specifc areas covered in this chapter. We 

break the section down into three sections: traditional depth lifting that predate the 

deep learning revolution, deep learning approaches, and datasets that we can use to 

both train our model and test our approach. 

3.2.1 Traditional Pose Lifting 

Traditional approaches to estimating 3D from 2D data required multiple viewpoints, 

in order to create a well-formed problem which can be solved numerically as shown in 

Hartley and Zisserman [39]. While this is both elegant and efective, it requires one of 

two constraints. The frst is at least two cameras with a signifcant distance between 

them, and for those cameras to have their parameters known, which creates limitations 

for this approach outside of a laboratory setting. The second constraint is one camera 

with multiple snapshots of the same object or scene taken while the camera is in motion. 

Monocular pose lifting is preferable, and early work in this includes Shape from Shading, 

using lighting cues within the image to estimate depth of a surface [78]. 

Cootes et al. [20] introduced Active Shape Models as a simple statistical method for 

capturing the variance of poses, and is easily extended into three-dimensions [7, 9, 46]. 

The simplicity of aligning the given data and capturing variance about it follows our 

self-supervised methodology, and the results give robust and reliable pose estimation in 

both two and three dimensions. 

But as we are looking at solving this problem without the use of multiple views, a more 

appropriate approach would apply deep learning to this problem. We are interested in 

how subtle information can be found from diferent scales, give us a system of estimating 

the depth of keypoints when we have monocular image data to work with. 

3.2.2 Deep Learning based Lifting 

The problem of fnding a 3D pose assumes that we have 2D keypoints of a pose, which 

requires the other section of the pipeline to determine these from an image. Another 

option is to simply leverage the accuracy of 2D ground truth data, creating a semi-

supervised approach if we are interested in 3D points but only have 2D labels. Martinez 
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et al. [79] give a good benchmark for a solution to this problem by using a neural network 

and a dataset of 2D and 3D training examples. They get successful results with a simple 

neural network architecture by using a few well known tricks such as skip connections [43] 

and batch norm [47]. Kudo et al. [61] have shown that this task can be solved using 

unsupervised learning, although their approach does require a strong prior on the angles 

between joints in order to prevent the inverse pose problem. As this prior is specifc to 

the articulation of humans, it would not generalise beyond human pose lifting. Their 

successes come from adversarial learning, and the use of a discriminator to determine 

if the given pose is from the dataset or generated from their pose lifting network. A 

very similar approach was devised by Drover et al. [27], but using weakly-supervised 

learning, with an interest in training a supervised 2D keypoint detector alongside the 3D 

pose lifting. In addition to adversarial learning, Chen et al. [13] use a self-consistency 

loss function to create an approach that improves upon the accuracy found in other 

unsupervised and self-supervised pose lifting approaches. Another approach by Wandt 

et al. [106] achieves monocular self-supervised pose lifting using noisy data taken from 

an of-the-shelf joint estimator, but requires multiple views at the training stage to 

prevent an ill-posed problem from occurring. While not a comprehensive study of all 

pose lifting via deep neural networks, these previous approaches show the applicability 

of deep learning to the pose lifting problem, especially when we have only 2D keypoints 

from monocular images. 

3.2.3 Datasets 

These approaches are reliant on having data to both train a network, but also test its 

performance. A number of datasets of articulated dynamic objects, primarily humans 

but also animals. Ionescu et al. [48] created the popular Human3.6m dataset, which 

contains videos of actors from 4 diferent angles, along with 2D keypoints for 32 body 

parts for each video, and 3D keypoints derived from the 2D data. Charles et al. [10] 

put together a dataset of sign language poses, taken from BBC footage with the aim 

of human pose estimation. Due to the nature of this data source, there is a constraint 

of the image subject always facing towards the camera and only having the upper half 

of their body visible. There is also a dynamic background, being the footage that is 

being interpreted is sign language, which can add a lot of noise to the images. However, 

we may want to train or test our network on data that is less constrained than these 

two datasets which have many fxed parameters. Von Marcard et al. [104] address these 

concerns and have created a 3D pose in-the-wild dataset, giving 3D pose data outside 

of a laboratory setting. 

While we have focused on human poses, we aim to design an approach that is generalised 

to any articulated object. The 3D menagerie dataset [120] gives us the option to test the 

generalisability of our approach on an articulated model that is not just human beings. 

https://Human3.6m
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While this would be a good dataset for testing our approach, we have not been able to 

get access to the labelled images with keypoints used to build this dataset. 

We must also consider that the datasets that we have identifed for use with our research 

may be biased and using a data-driven technique for solving this problem will learn the 

biases found in our dataset. These biases can lead to potentially discriminatory models, 

which is a consideration we must bear in mind. 

Bias in the selection of subjects in Human3.6m means that a model will likely overft 

to lighter skin colours. This is an issue in the image space, and specifcally applies to 

the keypoint detection stage of the pipeline. The Human3.6m dataset also contains no 

subjects that have any visible disabilities. This may lead to model failures at inference 

time if provided with an example of a person with a diferent skeletal structure. 

3.3 Factorised Auto-Encoding 

To solve the problem of 2D to 3D Pose Lifting, we will attempt to factorise the 2D 

keypoint data into 3D keypoints and camera parameters, which project the 3D keypoints 

back into the 2D keypoints. As our keypoints are derived from an underlying model based 

on an articulated subject, we should be able to represent the our underlying articulation 

model using a smaller number of parameters than the raw 3D point data. From this 

assumption, we have devised a lifting approach that uses a bottlenecked auto-encoder, to 

compress our joint information into a smaller latent space and learning depth from those 

latent vectors. The rationale for this is that we hope to leverage the reconstruction loss 

function as an encoding approach for our keypoints, and if our latent space has encoded 

the necessary information to reconstruct an input with compressed data, then we hope 

that depth is also implicitly represented within that latent space as depth should be an 

integral parts of the underlying articulation model. 

3.3.1 Concept 

The underlying concept behind this section of work is a factorisation based auto-encoder 

(FAE). This is a type of auto-encoder network that aims to split the input data into 

its logical components. These components should be selected such that they can be 

intuitively recombined to create a reconstruction of the input, which naturally lends 

itself to a simple self-supervised reconstruction loss to train the network via gradient 

descent. This is similar to a standard auto-encoder, but rather than a single latent space 

that can have little restriction on the data format stored, we aim to assign meaning to 

the latent spaces and not require a learnt decoder to convert back into the input data 

format. 

https://Human3.6m
https://Human3.6m
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This idea has many potential applications beyond pose lifting, including factorising 

shape from texture and disentangling image and temporal factors in video. However, 

we will be using this concept to solve the problem of fnding 3D keypoints and camera 

positions that correspond to 2D data. 

3.3.2 Applying Factorised Auto-Encoding to 3D Pose Lifting 

Now we have introduced the idea of Factorised Auto-Encoding, we will demonstrate how 

it can be used to solve the 3D Pose Lifting problem. In the context of factorisation, we 

can view real-life images as a two-dimensional representation of our three-dimensional 

world. One three dimensional object could be represented by many two-dimensional 

images, where we can adjust the position and rotation, or other parameters such as 

aperture and lens shape, of the camera used to produce the fnal image. In order to 

learn the structure, we are required to disentangle the 3D world from the 2D examples. 

If we can isolate the parameters of the camera from the 3D world, then it is intuitive 

to combine the two to get a reconstruction of the 2D ground truth, giving a simple self-

supervised loss function, as outlined in Figure 3.1. However, difculties in this approach 

quickly become apparent: there are many diferent mappings from a 2D pose to a 3D 

representation and thus some restriction on this 3D space is required to get an accurate 

3D pose. 

To enforce this restriction, we will train a neural network to take the 3D estimation 

and fatten it into a 2D pose with diferent camera parameters, essentially imagining the 

object from a diferent angle. This new 2D view is then passed through the network again 

to obtain the 3D estimation from this angle. If our network is successful then this 3D 

estimation will be identical to the one that was fattened in the frst place. This provides 

a reconstruction loss function for our neural network, minimising the Euclidean distance 

between the two 2D structures. This simple idea was theoretically good, but in practice 

did not give accurate results, as the network could get similar 2D reconstructions but 

they would not be realistic as a 3D pose. 

An attempted solution to the problem of poor 3D poses was a restriction that applies 

small changes to the camera parameters before fattening back to 2D, which should give 

a very similar 2D reconstruction if the 3D space was accurate. 

3.3.3 Implementation 

Our deep learning based keypoint lifting implementation uses only fully connected layers 

with non-linear activation functions, owing to the data format of numerical keypoints. 

Our implementation also opted for learning a mean 3D pose along with a pose residual 

that converts the mean pose to a specifc example. Our approach splits the spatial 
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Figure 3.1: A block diagram showing how the components of this approach are linked 
together to create a trainable auto-encoder. 2D keypoints sampled from the source data 
are fed into two diferent networks, one to estimate the 3D points and one to estimate 
the camera parameters used to capture the 3D structure in that specifc view. These 
are then combined with a projection to create a reconstruction of the 2D data, which is 
used with the original 2D data in a mean squared error loss function in order to provide 
gradients to optimise the networks. Blocks in green are trainable neural networks, and 
blocks in dashed boxes are data at each stage of processing. 

representation like this as to more clearly distill the pose information in the latent space 

vector, theoretically simplifying the depth inference. Part of the rationale behind this 

implementation choice is that being a derivative from a base pose should prevent major 

errors in depth inference. 

2D keypoints are fed into the camera parameter network, the mean pose network and 

the pose residual encoder network. The pose residual encoder then produces a latent 

vector of size l, which we in turn pass into our pose residual decoder, and sum with the 

output of the mean pose network to get the estimated 3D pose. Projecting this with the 

estimated camera parameters will then produce a reconstruction of the 2D input, which 

we then use with a mean squared error function to produce a fnal reconstruction loss 

for backpropagation. 

We also require other losses to break the ill-formed problem that we face when factorising 

the camera from the 3D keypoints. The summed magnitude of the pose residuals are 

used as an additional loss, forcing the mean pose to learn a good mean pose structure 

which requires the minimum amount of other information to achieve the fnal poses. As 
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previously discussed we also have added another loss function that adds marginal noise 

to the camera parameters in the hope that it will prevent the network from learning a 

very large range of depth values, stretching the pose out in the z dimension. 

Full details of the network parameters can be found in Appendix A. 

3.3.4 Initial Experiments 

The results from this experiment show promise, but are not yet satisfactory. While we 

were able to successfully reconstruct the 2D inputs from the latent space, showing spatial 

information has been preserved through a bottleneck, the 3D structures produced were 

implausible. This has occurred as there is no restriction on the 3D space to represent 

the correct pose, only to encode the pose in an arbitrary set of points, which can then 

be used to reconstruct the original 2D pose, as shown in Table 3.1. Moving forward 

from this point, we can assume that greater restrictions will need to placed on the 3D 

structures to see improved results. 

3.3.5 Required Modifcations 

The idea behind this approach has potential, but the problem we are trying to solve 

is difcult. While we are able to produce accurate 2D reconstructions using a simple 

Factorised Auto-Encoder, the 3D estimations are far from realistic. Inspired by Kudo 

et al. [61], we have attempted to use an adversarial approach to apply a restriction to 

the generated 3D poses. 

Discriminator networks have proven to be successful for many applications in self-

supervised deep learning, particularly in generative models, but by changing the gen-

erative network to a depth estimator, we can leverage the power of a discriminator 

network for predicting if a pose is from the original dataset or created using predicted z 

co-ordinates. 
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Table 3.1: Results showing 3D estimations taken from the Factorised Auto-encoder 
network trained on 2D data from the Human3.6m dataset [48]. Results show that 2D 
reconstructions are successful, but depth estimations do not align with the 3D data 
found in the input. 

3D Ground Truth 3D Estimation 

Front View Side View Front View Side View 

https://Human3.6m
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3.4 Applying Adversarial Learning 

Popularised by Generative Adversarial Networks [35], adversarial learning typically con-

sists of adding a discriminator network that is trained to identify real and fake training 

examples. We train it in tandem with the generator network, with a separate optimiser 

for both the depth estimation and discriminator networks. Our training objective for 

the discriminator network is to correctly identify the real and fake examples, and our 

objective for the generator is to produce fake examples that the discriminator classifes 

as being real. 

An adversarial loss applies to this scenario as we can use the discriminator network to 

learn valid 2D poses. Our real examples are taken as our inputs to the network, 2D poses 

sampled as random rotations from the 3D dataset. We then generate a 3D structure 

using the generator network, and sample it from new random angles to generate our fake 

2D poses. We are choosing to do this to force the generator network learn to generate 

a 3D structure that looks realistic when viewed from any angle. 

3.4.1 Motivation 

Solving this problem using a discriminator has already been shown to work by Kudo 

et al. [61], but our approach difers in a few ways. We do not require strict constraints 

to the 3D human pose due to the bottleneck in the pose encoder which forces a latent 

space with spatial constraints between the points in three dimensions. We also do not 

use such heavy normalisation on the dataset in order to train efectively. 

We take inspiration from the factorised auto-encoder in this design by factorising the 

3D shape into a mean shape, pose residuals, and pose rotation, which is simplifed from 

the camera parameters as used initially. We fnd that this gives the freedom to learn 

the shape, pose and alignment independently and combines the three in order to create 

a 2D reconstruction. 

Our discriminator network takes our 2D reconstructions and the ground truth data, and 

is given the task of identifying the real and fake examples. Our pipeline has two separate 

optimisers, one for the discriminator network and the other for the keypoint lifting 

network. The discriminator network is trained to minimise the errors of the adversarial 

predictions for both real and fake examples. The keypoint lifting network has two loss 

terms, the frst is a simple reconstruction loss using our fattened 2D reconstructions. 

The second loss term is to maximise the error rate of the discriminator when a fake 

example is the input. These losses are summed together with a multiplier applied to the 

reconstruction loss to balance the terms. Figure 3.2 shows an outline of our approach. 
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Figure 3.2: Outline of the network architectures for the components of this method. A 
dataset of 2D data is split into two networks, one to learn a mean shape and one to learn 
a pose residual, which are summed to create an estimated 3D pose. This 3D pose is 
fattened to create a reconstruction loss, and fattened from a random angle to be used 
with the discriminator network to create the adversarial loss function. 

3.4.2 Implementation 

Our PyTorch[87] based approach is comprised of several sub-networks built from fully 

connected layers. The frst of these sub-networks aims to fnd the mean 3D pose, pushing 

the 2D point data through a bottleneck of size 1, leaving a small amount of freedom 

for scale. The second network fnds the pose residuals, and also has a bottleneck with 

variable size which is a hyper-parameter to be optimised during experimentation, as the 

size of this bottleneck would vary with diferent underlying articulation models. Finally, 

we use a network to predict the rotation of the 2D input, and outputs a numerical value 

representing the number of radians to rotate the 3D structure before fattening to 2D. 

As this is an adversarial approach, we also need a discriminator network. This is simply 

a network that takes a set of 2D keypoints and gives an output of size 2 that is then 

passed through the softmax operation, giving the networks prediction confdence that 

an input is real or fake respectively. 

The pose bottleneck in the generator is a key part of this design and choosing the value 

for its size is a trade-of. If the bottleneck is too narrow then the network is unable to 

locate good reconstructions of the vast number of valid poses, but if too wide then there 
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is too much fexibility such that compressed skeletal constraints will not be learnt. The 

optimal value varies with the complexity of the underlying articulation mode that we 

are learning to represent, but from experimentation, a good starting value is half the 

number of keypoints. 

Balancing the two loss terms is another difcult problem. If we focus too much on getting 

a good 2D reconstruction then we fnd the 3D estimation becomes less accurate. If we 

focus too much on the 3D estimation then we fnd that the poses are realistic, but difer 

from the ground truth. This is due to our information bottleneck having to encode our 

skeletal information into a compressed latent space. We are assuming that our model is 

learning to encode the pose as a set of points which are restricted in distance to other 

connected points, inferring the skeleton as a set of joints with rigid bones between them. 

This will naturally cause some issues with accuracy due to the large variance in our 

dataset of poses. Balancing multiple loss terms is investigated further in Chapter 4. 

3.4.2.1 Network Architectures 

This network architecture is split into two sections, the generator and the discriminator. 

The generator network has a few diferent components in order to recreate a 3D pose 

from a 2D input. The frst part learns a mean shape for the subjects. This network 

takes n inputs and fattens the 2D input into a vector of size 2n, it then passes through 

4 fully connected layers, each with ReLU activation apart from the fnal layer which has 

a TanH activation so that the mean shape lies in the range [−1, 1]. These layers have 

sizes 25n, 1, 25n, 3n respectively and the fnal output is shaped into a matrix of size 

(3, n) to represent points in 3D space. 

The network then also learns the pose residuals which are summed with the mean shape 

above to generate the fnal pose. This network also has an input of size 2n and passes 

through 6 fully connected layers. Layers 4 and 6 have TanH activation so that our 

latent space and outputs are both in range [−1, 1], and the other layers have ReLU 

activations. The layers for this network have the following sizes; 25n, 50n, 25n, λp, 25n, 

3n. λp represents the chosen latent space size, which for experiments on the human3.6m 

dataset, is set to 7. Further hyperparameters relating to the training of this network are 

available in Appendix A. 

The discriminator network consists of 4 fully connected layers, all with ReLU activation 

apart from the fnal layer, and the output from the network has softmax applied to it. 

These layers have sizes 50n, 25n, 5n, 2, where the output is the prediction of real or 

fake. 

https://human3.6m
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3.4.3 Experiments 

Using this implementation, we run our experiments using the Human3.6M dataset [49], 

sampling only 16 of the 32 keypoints to get a simple outline of human pose. We do not 

use the 2D data included in this dataset, instead we take the 3D data and sample from 

random angles to create a larger 2D dataset with no bias towards seeing poses from 

only the four viewpoints as found in the dataset. Each epoch we shufe the dataset and 

rotate each example by a new randomly selected angle. The hyper-parameters used for 

this experiment are shown in Table A.1, found in Appendix A. 

3.4.3.1 Qualitative Results 

Our results are shown in Table 3.2, showing the ground truth 3D data alongside our 3D 

predictions. 

3.4.3.2 Quantitative Results 

Following previous approaches to this problem [61, 79], we evaluate our approach quan-

titatively by measuring distance from our predicted 3D keypoints to the ground truth. 

Our self-supervised approach obtains a higher error than the weakly supervised and su-

pervised approaches, and a slightly higher error than similar self-supervised approaches. 

The reason for a drop in accuracy most likely stems from the bottlenecking and factori-

sation losing some accuracy in the X and Y dimensions, along with the expected error 

in the Z dimension. 

https://Human3.6M
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Table 3.2: Results showing 3D estimations from sets of 2D keypoints. Both 2D recon-
structions and 3D depth estimation resemble the inputs used when using the adversarial 
pose lifting approach. 

3D Ground Truth 3D Estimation 

Front View Side View Front View Side View 
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Approach Mean accuracy (mm) 

Martinez et al. [79] (supervised) 
Drover et al. [27] (weakly supervised) 

Kudo et al. [61] (self-supervised) 
Chen et al. [12] (self-supervised) 

45.5 
64.6 
130.9 
51.0 

Ours (self-supervised) 155.5 

Table 3.3: Mean distance between predicted and ground truth poses in the human3.6m 
dataset. 

3.5 Discussion 

We have shown the application of factorised auto-encoding to the area of 2D to 3D 

keypoint lifting, where data is split into composite components before being recombined 

to create a reconstruction loss. Upon fnding that we have an ill-posed problem, the 

addition of a discriminator network to diferentiate between real and predicted poses 

allows for a strong enough constraint to be applied to our problem to achieve good 

results. 

However, adversarial learning as an approach to solving the ill-posed problem is not 

foolproof. Training time for a generator and discriminator pair is generally higher, and 

can be unreliable. In addition, there are a greater number of hyper-parameters required 

to be tailored in order to successfully train our network. 

3.5.1 The Inverse Pose Problem 

Another problem that is commonly faced when using adversarial learning to lift sym-

metrical dynamic objects such as human poses is the Inverse Pose Problem. Inferring 

3D structure from 2D examples with no supervision is a challenge due to multiple vi-

able 3D structures that could represent one 2D pose. Due to the natural symmetry of 

human poses, but also many other articulated objects found in nature, self-supervised 

pose lifting can lead to valid looking poses, but the order of points show an inverted 

skeleton. This problem was encountered by Kudo et al. [61] and solved by enforcing 

certain restraints in angles between pairs of joints. This approach to solving the issue 

goes against the end goal of general pose estimation, so we have used a diferent solution 

to the problem. During our research, we found that this problem sometimes arose when 

training our adversarial pose lifting network, but was an unpredictable occurrence. Our 

fnal results do not show the inverted pose problem, but no explicit steps were taken to 

remove this problem from our fnal model. The rationale behind this not being present 

is, as discussed in our implementation section, the additional loss term to minimise the 

absolute values in the pose residuals. If we assume that our average shape is truly the 

average pose in the 3D space, then the true 3D pose will be closer to the average than 

the inverted version. 

https://human3.6m
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Figure 3.3: Figure taken from Kudo et al. [61], a visual demonstration of the inverse 
pose problem. 

3.5.2 More Applications of Factorised Auto-Encoding 

The concept of a factorised auto-encoder has many potential applications; further re-

searching may yield interesting research possibilities. 

• Factorising grammar from vocabulary to learn sentence structures 

• Factorising shape from texture in both 2D and 3D scenarios 

• Factorising voice from the words in speech recording 

• Factorising facial appearance from visual emotions 

As seen by potential applications, this conceptual idea is promising for a wide range 

of disciplines and applications. It is also clear how these can be used for generative 

models; creating previously unseen novel examples by combining diferent components. 

These novel examples could be applied to the creation of artifcial datasets, for data 

augmentation purposes. 

Constraints on one or more factorised elements may be required in most cases, where 

there may be multiple sets of elements that give the correct output when recombined, 
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but individually are not correct solutions, as is the case in our initial 3D pose estimator 

approach. 

3.6 Summary 

In this chapter we have discussed the concept of a factorised auto-encoder and attempted 

to apply it to solving our problem of fnding 3D keypoints from a 2D dataset. Upon 

fnding that it does not give satisfactory results, we have modifed the design to use 

an adversarial approach to get promising results. However, as discussed earlier in this 

section, this approach is not ideal and could be improved. We will revisit this problem 

in Chapter 5, and look to create a solution with the addition of a generalised prior to 

add a suitable restriction on the 3D points that are predicted, with the aim of improving 

these results. 

This is only one part of the articulation model estimation pipeline, as we do not always 

have 2D keypoints available to us. In the next section, we will look at how we can 

capture 2D keypoints from images in a self-supervised fashion, with the aim of piecing 

2D keypoint estimation with this section to create a full image to 3D keypoint pipeline. 



Chapter 4 

Self-Supervised Learning of 

Generalised Spatial 

Representations 

Self-supervised keypoint detection is an important part of representation learning, with 

the aim to learn a spatially constrained representation of an object in an image. This 

problem is an abstraction of the initial stage of our articulation model pipeline, where 

we look for landmarks placed on points of articulation in images, but in learning an 

abstraction, we can later enforce properties using prior knowledge to meet our aims. 

Previous approaches have come close to being able to distill solid keypoints with no 

supervision, but typically lack generalisability to diferent datasets and tasks. After 

extensive research of diferent approaches to solve this problem, we propose a new tech-

nique for self-supervised keypoint detection that leverages the generalisability benefts 

of multi-task learning, selecting a small set of downstream tasks to aid in the training 

process. We fnd that our keypoints can capture a wide variety of structures and are 

generalised to a much greater extent, such that we can test on a diferent dataset to the 

one trained on with no noticeable drop in performance. Finally, we present a detailed 

discussion on the state of the feld of keypoint detection, analysing some common pitfalls 

and suggest some areas of interest for future research. 

4.1 Introduction 

Keypoints have long been an essential component in the computer vision feld, tradi-

tionally being used as an anchor point for local descriptor algorithms, but in recent 

years, have become less critical due to the rise in popularity of learned convolutional 

approaches. But this is not to say that keypoints no longer have their uses. They are 

easily interpreted so are ideal for capturing the shape of a given object in an image, and 

39 
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as discussed when introducing RQ2, can be used as a spatial bottleneck. Keypoints are 

trivial to work with and from them we can derive a wide variety of information about 

the spatial properties of the object in an image. 

Pose estimation and face tracking are areas where keypoints are still ubiquitous to this 

day, and keypoints are contextually interpreted as landmarks, as they locate features 

on the object. As discussed in RQ3, the usage of the term keypoints varies greatly on 

the context. While sometimes used synonymously, keypoints and landmarks are subtly 

diferent: landmarks represent a desired feature, for example an eye on a face or a hand 

on a body. In the context of this chapter, we defne keypoints as a way of capturing 

the shape of an object but do not necessarily line up with any specifc features. This 

implicitly means that keypoints taken from an image cannot be incorrect, but simply 

sub-optimal in terms of spatial information captured. However, we may want to enforce 

that they should not lie outside of the bounds of the object that the shape is aiming 

to capture. Because of this, evaluation of self-supervised generalised keypoints remains 

difcult and we discuss this further in Section 4.6. 

Locating landmarks when provided with labelled data poses a relatively simple regression 

problem, whereas a self-supervised method for fnding landmarks is a greater challenge. 

Previous self-supervised approaches [98, 99, 100, 118] use a semi-supervised approach, 

learning keypoints with no supervision before training a simple linear regressor with a 

small amount of ground truth data in order to translate rough keypoints into landmarks. 

The benefts of a semi-supervised approach combines some of the benefts of both the 

supervised and self-supervised approaches, where less labelled data is required but a 

representation is still learnt from a larger unlabelled dataset. 

When keypoints are found using a self-supervised deep learning approach, we tend to 

see that the points capture the required information to solve the downstream task, but 

we are at risk of overftting our keypoints to optimise this task over locating generalised 

keypoints that capture strong structure. To circumvent this, we propose an approach 

that leverages multi-task learning for its ability to fnd generalised solutions that satisfy 

a set of tasks, preventing the likelihood of overftting one single task. If a set of keypoints 

is able to be used to solve a range of tasks, then we would expect these points to capture 

the structure of an object in a generalised way. 

This chapter proposes a novel approach to self-supervised keypoint detection using multi-

task training after fnding failures with simple and näıve implementations. We show how 

training with more tasks can lead to better generalisation than single task training. We 

also studied diferent approaches to multi-task learning and settled on an approach that 

we have identifed that consistently provides good results. Finally, we hypothesise the 

qualities of tasks required in a multi-task learning scenario for learning to detect desirable 

keypoints. 
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4.2 Related Work 

Chapter 2 gives a further outline of related work, but this section will cover a focused 

analysis of related work specifc to this chapter. 

4.2.1 Multi-Task Learning 

The problem of self-supervised keypoint detection is non-trivial, so we aim to leverage 

the power of multi-task learning to aid in the discovery of points that not only repre-

sent our structures but do so in a generalised way. Zhang and Yang [117, 116] survey 

the area of multi-task learning and identify a wide range of domains that multi-task 

learning has been applied to. Hassani and Haley [41] show how using a combination of a 

reconstruction task, a clustering task and a prediction task can learn features on point 

clouds in an unsupervised setting, outperforming prior unsupervised approaches. In the 

area of supervised multi-task learning, Zhang et al. [119] have shown the efectiveness 

of leveraging classifcation style tasks alongside keypoint regression tasks to fnd facial 

landmarks, observing greater robustness in cases with occlusion and larger pose vari-

ance. A study by Standley et al. [96] looks at which tasks should be learned together 

using multi-task learning, given a limited computation budget with a goal to maximise 

the efciency of the learning operation. 

However, training in a multi-task environment can be difcult due to the requirement 

of balancing multiple losses; care must be taken so that one task is not over-optimised 

while the others are ignored. Sener and Koltun [95] balance multiple tasks using an 

approach that searches for the Pareto optimal of each objective function. This is then 

applied to the gradient of each parameter in order to optimise the network towards 

all tasks at once. Cipolla et al. [19] use an alternative approach that learns an extra 

parameter for each task which represents the uncertainty for that task. These are learnt 

alongside the parameters of the network and losses are balanced using this term before 

the backpropagation step. Another approach to managing losses by Yu et al. [114] looks 

at conficting gradients and for any pair found, projects one onto the other such that they 

no longer confict. A simpler but still efective technique proposed by Liang and Zhang 

[68] simply passes each loss through a non-linear monotonically increasing function to 

map each loss into a diferent range, with the aim of minimising large discrepancies 

between the loss values. We explore the merits of these approaches in Section 4.4.2.2 

before selecting the best method for our application in Section 4.6.1. 
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4.3 Initial Ideas and Tests 

This section covers initial attempts at training a neural network to detect robust, re-

peatable and meaningful keypoints with no supervision. Supervised keypoint detection 

is a well researched feld, especially in the context of pose estimation [6, 22, 85]. But 

when given no ground truth data, the challenge is fnding keypoints that are relevant 

for the context of the application. When the context is not known, our approach is 

reshaped into one that aims to locate strong spatial representations that can be used for 

downstream tasks, or even regressed to ground truth points in a semi-supervised fashion. 

Our initial approaches did not manage to get satisfactory results in fnding robust and 

repeatable points, but we manage to fnd some success when re-implementing a previous 

approach. 

4.3.1 Keypoint Detection by Image Triangulation 

We propose an approach that aims to locate consistent keypoints between two sequential 

video frames. We aim to train a keypoint regressor using a loss function based around 

keypoints consistency via image triangulation to fnd consistent pixel-wise triangles. If 

we take two sequential video frames, we would expect there to be a small amount of 

diference between the appearance of those frames, meaning that a keypoint detector 

should predict similar points, but following the natural change found in that frame 

change. We aim to capture this frame change by splitting the images into meshes 

of triangles, assuming keypoints are aligned between each example, and applying the 

necessary afne transform to align those two triangles. The meshes are determined by 

the Delaunay triangulation algorithm using a set of points regressed from an image with 

our keypoint detector network, resulting in a set of triangular segments of the image. 

We are able to create a simple loss function that calculates the per pixel mean squared 

error after aligning corresponding triangles using a simple afne transform. 

If our keypoints were found to be consistent between both images, then we would expect 

a small loss. While the objects in our video sequences will be dynamic, this movement 

can be approximated by using many small triangles, giving a transform between the two 

images that should capture natural transformations. 

However, this approach is fundamentally fawed as can be seen from the results in Ta-

ble 4.1. With only the afne consistency loss, we observe a keypoint collapse in our 

network, where every point is placed on the same area of the image, and even with a 

keypoint separation constraint, our keypoints do not capture a good spatial representa-

tion. We also note that this approach is not invariant to lighting between video frames, 

which can be a big problem outside of laboratory conditions. Another problem with this 

approach is occlusion, or large jumps between frames, which might occur if either the 

camera or subject moves quickly. Finally, image blur could cause features in adjacent 
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Table 4.1: Results showing a failure to fnd robust, repeatable and meaningful keypoints 
using the triangulation method. Keypoints are clumped in the centre of the images and 
represent a static shape. 

frames to appear visually diferent, which would make this loss function fnd a high loss 

in cases that keypoints were placed correctly. 

From these failures, we see that we require a more sophisticated approach to capturing 

spatial representations. In the next section, we turn to other literature to re-implement 

a successful approach, so that we can learn what elements are required to solve this 

problem. 

4.3.2 Re-implementing an Existing Approach 

We look to re-implement the work introduced by Thewlis et al. [100], which was briefy 

discussed in Chapter 2. It explores detection of robust and repeatable keypoints on 

images with no supervision. The key idea is that if we take an image α1, and apply a 

random non-linear transformation to it to make a second image α2, we should be able 

to fnd keypoints on α1 that correspond to the same location of the image in α2. As we 

know the transformation applied, we can check if the predictions line up by applying 

the same transformation to the estimated keypoints and measuring the L2 loss between 

them. This naturally gives us an intuitive loss function for our neural network, as this 

loss function will reach 0 as keypoints perfectly align. 

While we can fnd pairs of points that correspond to each other using this theory, there 

is no guarantee that these points represent landmarks that contain an accurate spatial 

representation. To counter this, one approach used in the paper is to locate a large 

number of keypoints and then use a semi-supervised linear regression step to predict 

ground truth points using the self-supervised points as an input. While this does defy 

the concept of self-supervised learning, this approach gives good results and can do so 

with a very small number of labelled images from the dataset. 
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Table 4.2: Results showing consistency between pairs of images with the TPS transform 
applied. 

4.3.2.1 Thin Plate Splines 

Thewlis et al. [100] make use of Thin Plate Splines [28] as the non-linear transformation 

to both keypoints and image data. This algorithm uses a set of fxed control points 

with weights in which all pixels in the image are modifed by based on their distance 

to each control point. Any set of points can be used, but our implementation uses 25 

points arranged in an equally spaced 5 x 5 grid. The weights are sampled randomly 

from a Gaussian distribution with a mean of 0 and a standard deviation which can be 

modifed to change the intensity of the transform. Each pixel or keypoint is then warped 

corresponding to its distance from each control point and their corresponding weight. 

The efect is a transform that mimics a thin plate of metal being bent for a natural 

looking non-linear transformation, with no sudden changes in pixel translation. 

4.3.2.2 Results 

Table 4.2 shows some results from this implementation. As can be seen, the keypoints 

found are fairly consistent between pairs of images as well as between examples of faces. 

There are a few quirks though, rather than fnding object structure, it seems to be 

focusing on edges around the top of the head. This means that these located points are 

at the top of the head for bald people and are on the hairline for those with hair. The 

last example is a failure case, where the keypoints are not consistent between the pair 

of images, which is most likely due to the diferent viewpoint, as well as occlusion due 

to the hat. 

4.3.3 Discussion 

In this section we have discussed some initial attempted experiments to capture self-

supervised spatial representations through the use of a keypoint detector. Our trian-

gulation approach faces issues due to keypoint collapse, but we have been successful 

in re-implementing another paper with a similar aim, managing to get some promising 

results. 
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As our focus is on locating spatial representations, we will move forward from this point 

by formulating our problem in a diferent way, placing the focus on solving downstream 

tasks in order to train a keypoint detector to learn a strong generalised representation. 

4.4 Multi-task Learning: Motivation and Approach 

We are aiming to extract a generalised shape from an image as a list of keypoints 

s = ([xi, yi] | i = 1, 2, . . . , k), where s represents one shape, k is number of keypoints 

and xi, yi ∈ R represent the x and y coordinate of the i-th keypoint. We should be able 

to represent any image I as a list of keypoints and as it is a list and not a set, the order 

of points matter such that the feature in I at each index of s should correlate between 

examples. Ordering is not an inherent property of keypoints, but we are imposing this 

restriction for ease of analysis, however the importance of ordering keypoints is discussed 

in Section 4.7.1. 

While self-supervised keypoint detection is not a novel concept, similar approaches use 

multiple additional constraints to force the network to learn correctly and to avoid a 

collapse. An example of this is separation constraints that force keypoints apart to 

ensure that the points capture a good structure from all areas of the image. While 

we could copy these methods, we leverage multi-task learning to train a network to 

perform equally, naturally separating the keypoints as this captures the most amount of 

information to solve the range of tasks. Because of this, we do not require properties to 

be explicitly defned, as they emerge while the network optimises. 

4.4.1 Representation Learning 

We can think of keypoint detection as a representation learning problem, with a spatial 

restriction on the learnt representation in order to locate geometric semantics from an 

image. Representation learning naturally lends itself to self-supervised applications, due 

to the ability to use loss functions that do not rely on labelled data. In order for the 

network to fnd a good reconstruction, it must learn how to compress an image into a 

set of keypoints that describe the shape of the object. An auto-encoder is the simplest 

way of learning a representation in this fashion and by converting the latent space into 

a list of keypoints, we should be able to capture spatially signifcant information about 

an image. However, this method is prone to over-ftting, and an auto-encoder alone 

will fnd keypoints that do not resemble the desired shape, instead they appear to be 

hashing the image data into the keypoint data to minimise our reconstruction loss. To 

prevent our representation over-ftting, we will take inspiration from multi-task learning 

to increase generalisability in our representation, due to the criteria of solving multiple 

tasks with one representation. 
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Task A 

Subspace 

Task B Task C 

Figure 4.1: Venn Diagram showing how unrelated tasks can fnd an intersection that 
contains desirable solutions 

4.4.2 Multi-Task Learning 

As single-task learning for capturing shape semantics will certainly overft to the training 

task at the cost of fnding good keypoints, we look to multi-task learning to learn a good 

representation. If a list of keypoints can be used to solve a variety of tasks, then we 

can assume that those keypoints have captured a generalised structure found in the 

image and has not encoded the image into a specifc representation to optimise a single 

downstream task. If we imagine a space of keypoints that suitably solve a given self-

supervised task, there will be many valid solutions. The intersection of the space of 

solutions between a pair of tasks will narrow down to a smaller subset that contains 

keypoints that satisfy both tasks. As we add more tasks, assuming they have enough 

variety in order to minimise overlap between point spaces, then our optimisation has a 

limited set of shapes that can satisfy all of the tasks. This is demonstrated in Figure 4.1. 

The idea of a intersection of shapes that satisfy each task leads us towards the intuition 

of selecting tasks to train with. First, we need a good number of tasks and secondly, 

those tasks need to be varied such that the intersection covers a small area. The result is 

an optimisation that should have a small set global minima that satisfes all the chosen 

tasks. If the intersection is too small or does not exist then we may need to consider a 

trade of, where we use a solution that is suboptimal for some or all tasks but achieves 

the best results when losses from each task is given a weighted average. However we 

may fnd that optimising in a multi-task environment increases how difcult it is to fnd 

the optimal solution. 

4.4.2.1 Choice of Tasks 

Choosing the correct downstream tasks for the training signal for our keypoint regressor 

network is crucial to the success of this method as discussed later in Section 4.7. Below 
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is a brief description of which tasks we are using and why. 

Reconstruction with Global and Local Descriptors. Representation learning 

naturally lends itself to auto-encoder style architectures where the task given to the 

network is to reconstruct the input image from a learnt representation, which in our 

case is a set of points. Keypoints alone can encode sufcient information to successfully 

reconstruct the input image when the dataset of images contains little textural informa-

tion, such as MNIST, but when images have texture, extra information is required. For 

reconstructing images with texture, we use local descriptors taken from a circular crop 

around each keypoint and compressing that information through a simple learnt CNN 

into a small descriptor vector. We do the same process on the whole image to obtain a 

global descriptor and then reconstruct the image from the stacked local descriptors and 

the global descriptors. 

The aim of using a reconstruction task is to capture structure in the image and to bias 

the keypoints towards areas with more texture. An area with more texture is more likely 

to resemble a robust and repeatable point of interest. 

Choosing the hyper-parameters for the circular crop sizes and the global and local de-

scriptor vectors is essential for success using this method. If we select too large descrip-

tors or patches, then the information bottleneck is not tight enough to force the network 

into learning a solid representation. 

Referential Game using Distractor Images. Classifcation tasks typically require 

a labelled dataset, but by making a change to the formulation of the task, we can use 

this style of task without labelled data. Taking inspiration from Havrylov and Titov 

[42], we train a downstream network to decide which image was used to create the list 

of keypoints, and selecting an image from a stack of images alongside distractor images, 

taken from the same dataset. If our keypoints convey enough information about the 

input image, then we should be able to accurately predict which image corresponds to 

the found keypoints. This task varies in difculty based on the dataset that we are using, 

as some datasets have high variance in shapes in the images while others are aligned, so 

a hyper-parameter of how many distractor images can be modifed on a dataset basis. 

Middle Frame Predictor. While other approaches to self-supervised keypoint 

detection use sequential information or artifcial warps [99, 100, 118] to check keypoints 

consistency, we fnd that such a strong constraint is not required to distil robustness into 

our keypoint detector. While these techniques give good results, better generalisability 

can be obtained by learning tasks that are unrelated to the desirable keypoint properties 

and fnding emergent properties instead. We take inspiration from Misra et al. [83], 

who use the ordering of shufed video frames as an unsupervised training signal. Our 
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implementation of this task takes the input image and applies a random Thin Plate 

Spline warp [28], as previously discussed in Section 4.3.2.1, once to create the middle 

image, then applies the same warp to the warped image to create a third. Keypoints 

are extracted from each image and stacked before being shufed and then we train a 

downstream network to predict which is the middle of the three images. 

4.4.2.2 Loss Balancing 

As we are using tasks that have varying loss functions and diferent loss landscapes, in 

order to combine tasks such that no one task dominates, we must carefully balance our 

losses. The obvious way of doing this is manually selecting loss alphas to bring each 

loss into a similar scale, but this requires hyper-parameter searching and alphas will not 

always be optimal when we modify other hyper-parameters or when we use diferent 

data. 

Pareto Optimal Gradient Tweaking. One option for automatically balancing 

losses is a method described by Sener and Koltun [95] that aims to fnd a Pareto optimal 

solution. When we attempted this implementation, we found that even though this 

method optimises towards the Pareto front, this does not help to fnd a set of network 

parameters that give desirable keypoints. This method has the additional downside of 

being difcult to implement and cumbersome to train due to the requirement for two 

back-propagation steps. 

Learnable Task Uncertainty. To prevent lengthy hyper-parameter tweaking, 

Cipolla et al. [19] describe an approach that learns an extra parameter for each task 

that represents its uncertainty. By using the same optimiser for the network and these 

parameters, this approach strives to automatically balance tasks with varying loss func-

tions and with diferent loss variances and is shown to model the uncertainty with 

accuracy. In practice we have found that while we can balance tasks successfully, we 

observe a high variance in task performance over multiple runs, as shown in detail in 

Section 4.6.1. 

Balanced Multi-Task Learning. Another approach as described by Liang and 

Zhang [68] uses a fxed monotonically increasing function that is applied to the losses 

from every task in order to bring the loss values and training gradients into the same 
l/50region. They use e as their mapping function and we have found that this gives good 

results when used on simple datasets where our descriptor reconstructor task is not used. 

While intuitively log(1 + l) should similarly map all of our losses into the same region, 

our experiments would suggest that because the gradients of a log function accelerate 

towards zero as the loss tends to zero. This results in easier tasks being over-optimised 
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at the cost of the more difcult tasks, and the optimisation getting stuck in a local 

optima with poor keypoints. In a similar fashion to the Adaboost algorithm [31], the 

exponential function puts a greater emphasis on tasks with high losses, meaning the 

gradient descent for tasks that are struggling will have a greater signal to the network 

weights than that of tasks that are being solved easily. This technique helps us a lot 

as we are using a varied set of tasks where some will be easier to solve than others. In 

Section 4.6.1, we go into more detail about these techniques to determine which performs 

best in this scenario. 

4.4.3 Heatmap Concentration Constraint 

We use one additional constraint alongside our tasks that encourages the network to 

learn keypoints on images through patches of texture or though shapes and not learning 

vague shapes using image borders or random noise. We use the l2 loss between output 

heatmaps from the keypoint detector network and Gaussian blobs around the derived 

numerical keypoint. If this loss is minimised to zero, then it means that every heatmap 

is a perfect Gaussian blob around each keypoint. We discuss how this constraint is 

implemented in Section 4.5.6. 

4.4.4 Summary 

We have formulated our problem as a representation learning problem with a spatial 

constraint on our latent space and then have applied the theory of multi-task learning 

to aid in the discovery of generalised points. We have chosen a selection of tasks to 

optimise in parallel and methods of combining the losses from these tasks in order 

to learn keypoints that resemble a robust structure found in the image. Finally, we 

have introduced an additional constraint that assists our network in locating suitable 

keypoints. 

4.5 Implementation 

An outline of how our approach is implemented is as follows, and shown schematically 

in Figure 4.2): 

• Images are fed through a keypoint regressor and outputs k heatmaps. 

• Soft arg-max (described further in Section 4.5.2) turns heatmaps into keypoints 

as x, y pairs. 

• Each task then use the output keypoints and calculates a loss. 
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Figure 4.2: Outline of the components in our implementation. Input images are passed 
through a keypoint regressor using a soft arg-max operator to locate numerical keypoints. 
These points are passed into each task to derive a list of losses, which are then in turn 
balanced to create a fnal loss used for backpropagation. 

• The losses from all tasks are combined using a loss balancing method as described 

in Section 4.4.2.2. Weights in all networks are updated at once. 

All code has been written in Python and PyTorch has been used for the neural network 

implementation. 

4.5.1 Keypoint Detection Network 

As mentioned in Section 2.2.2, deep learning based keypoint detection and pose esti-

mation techniques commonly use hourglass style networks for extracting keypoints from 

images, whether or not supervision is available. The beneft of this network architecture 

is having multiple channels of convolutions that operate on diferent scales of feature 

maps. As a result, we gain the ability to fuse information derived from both local and 

global features found in the images. Local features can then learn to locate small image 

patches that resemble typical interest points while global information takes into account 

spatial context of each image patch. Stacking hourglass networks [85] has shown to fur-

ther improve accuracy for pose estimation, but we have chosen to use a single hourglass 

to aid in generalisation, as deeper networks can be prone to overftting. We have found 

that the keypoint detector hourglass network within this approach is very robust and 

manages to get good results with no fne-tuning between datasets. 
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4.5.2 Spatial Soft Arg-Max 

To convert the output of our feature detector, m, into a list of keypoints ([xi, yi] | i = 

1, 2, . . . , k), we need to use the spatial soft arg-max operator which approximates the 

arg-max function over two dimensions whilst retaining diferentiability, in order to train 

our network end-to-end. This allows us to fnd the numerical coordinates of the peak 

of each heatmap, which we will use for downstream tasks. This is done using Equation 

4.1, where β is an optional temperature parameter, which we have set β = 1 for all 

experiments in this chapter, and h is the activation heatmap taken from the output of 

the network. 

∑ βhije∑ 
βhij 

i (4.1) 
j e ij 

Equation 4.1 essentially calculates the mean of the activation within the two-dimensional 

input, converting a heatmap into a 2D keypoint. This process takes the dot product of 

a co-ordinate grid, our implementation uses a normalised grid with values between -1 

and 1, and fnds the mean over the x and y dimensions to produce a keypoint. 

As this is an approximation, we can see some undesirable qualities. The frst being 

when a heatmap does not have a peak, i.e. all pixel values are equal. In this case we 

will fnd that our keypoint defaults to the centre of the image, giving a keypoint of (0, 

0), assuming our image range is between -1 and 1. This can lead to the training of our 

network getting stuck in a local optima where all heatmaps are outputted as being fat 

and all keypoints being chosen at (0, 0). The second failure case is when we have more 

than two peaks, and in this case the soft arg-max algorithm will choose a keypoint that 

lies between the two peaks. This is problematic, especially when using datasets that 

have images containing symmetry, as we may place a keypoint between two areas that 

are likely features, resulting in an area with no feature present. An alternative to this 

algorithm would be to regress our keypoints in a method similar to Liu et al. [70], where 

the image and x, y coordinates are stacked. We believe that this spatially constrained 

information bottleneck has value in distilling object structure from a dataset of images, 

but found soft arg-max to also be an adequate solution. 

4.5.3 Heatmap Cleaning 

The output of our keypoint regressor network is a set of heatmaps which we then convert 

into keypoints using the soft arg-max function. As we are aiming to distil a spatially 

restricted representation, using a numerical input in our downstream tasks does not 

guarantee a spatial bottleneck, so we must use a heatmap as the input for some of our 

tasks. However if we were to use the original heatmaps, we would be prone to information 
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leakage [51], where the heatmap can encode extra information as pixel values. To fx 

this issue, we reconstruct heatmaps using the keypoint locations as the means for a 

Gaussian peak placed on a blank heatmap, using a fxed standard deviation, which we 

could change dependent on dataset. The reason for fxing the standard variation for the 

Gaussian peak is primarily that it simplifes the training of the keypoint regressor. We 

acknowledge that the visual information that leads to discovery of a specifc keypoint 

may span either a wider or smaller area, and while this information may be ascertained 

by the activations in the feature map prior to the soft arg-max algorithm, as seen in 

Table 4.21 and Table 4.22. If we chose the standard deviation of the Gaussian peak to 

estimate a best ft to these feature maps, then this is an extra algorithmic step which adds 

complexity to our training. This complexity could assist in solving downstream tasks as 

the information captured would not only be the location of the point, but also the size of 

the feature at that keypoint. While this area could be part of a generalised representation 

of image-space size of the keypoint, this extra information does not necessarily adhere to 

the traditional defnition of a keypoint, which is no more than a location on an image. 

Additionally, we may observe a keypoint detector that identifes keypoints of poorer 

quality when trained using a variable standard deviation in this stage, as the spatial 

bottleneck is more relaxed. 

4.5.4 Keypoint Regressor Architecture 

The hourglass network we use for all datasets during this chapter is outlined graphically 

in Figure 4.3, with parameters for each layer specifed further in Table 4.5.4. 

1 2 3 4 5 6 7 8 9 10 11 

6b 

4b 

Figure 4.3: A diagram showing how each of the layers in the hourglass network are 

connected. Direct sum symbols are element wise additions on the feature maps being 

outputted from the previous layers. 
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# Layer Type Input Size Output Size Kernel Activation 

1 Conv2D 3 20 3x3 LeakyReLU 

2 Conv2D 20 48 3x3 LeakyReLU 

3 MaxPool - - 2x2 -

4 Conv2D 48 64 3x3 LeakyReLU 

4b Conv2D 48 48 3x3 LeakyReLU 

5 MaxPool - - 2x2 -

6 Conv2D 64 64 3x3 LeakyReLU 

6b Conv2D 64 64 3x3 LeakyReLU 

7 UnPool - - 2x2 -

8 Conv2D 64 48 3x3 LeakyReLU 

9 UnPool - - 2x2 -

10 Conv2D 48 20 3x3 LeakyReLU 

11 Conv2D 20 k 3x3 -

Table 4.3: A table of the parameters of each layer of the keypoint regressor network, 
specifying their layer type, input size, output size, kernel and activation. The number 
of each layer corresponds to the numbers shown graphically in Figure 4.3. For all 
LeakyReLU activations, the alpha value is set to α = 0.1. 

4.5.5 Downstream Task Implementations 

This subsection covers how we have implemented each of our downstream tasks that we 

wish to train with. 

4.5.5.1 Reconstruction Task 

Our reconstruction task has two modes, depending on the dataset used. The frst mode 

simply aims to reconstruct the input image from the set of keypoints, after being con-

verted into cleaned heatmaps. This process is shown in Figure 4.4. 

When reconstructing from cleaned heatmaps using only convolutions, each keypoint has 

a receptive feld surrounding it and if we use too few keypoints or have a reconstructor 

with receptive felds that are too small then the keypoints will spread out to maximise 

the receptive feld in order to get a good reconstruction, at the cost of capturing structure 

in the image. To circumvent this, we use a reconstruction network that splits the convo-

lutions into two channels, one for low (L) frequency, representing approximate colour in 

the background pixels, and one for high (H) frequency, representing more detailed re-

constructions in close proximity to each keypoint. Low frequency reconstruction is done 

with 5x5 convolutions and one application of 2x2 max pooling, before upsampling at the 

end when summed with high frequency channel, which only uses 3x3 convolutions. This 

architecture has an adequate receptive feld to reconstruct the input and also allows the 

reconstruction near keypoints to convey stronger high frequency information. The fnal 

reconstruction is made by interpolating L using a bilinear interpolation with scale factor 
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Figure 4.4: Outline of our approach to reconstructing images from keypoints. Input (s) 
is a list of keypoints, which is converted into Gaussian peaks (g) on a blank heatmap 
and then fed into the high frequency reconstructor (H) and low frequency reconstructor 
(L). The fnal reconstruction is made by summing the outputs of the two sun-networks 
and passing through a sigmoid function. We have an additional section used to convert 
Gaussian peaks into feature vectors and then reshaped back into Gaussian peaks with 
textural information (g ′ ) which are fed into H and L instead of the original Gaussian 
peaks. 

2 and summing with H, and then passed through a sigmoid activation layer to push the 

distribution into a valid pixel range of [0, 1] 

The reconstructor networks we use for both reconstruction modes are fully sequential 

networks, and the parameters for each layer are defned in Tables 4.4 and 4.5. 

High Frequency Information Reconstructor (H): 

Layer Type Input Size Output Size Kernel Activation 

Conv2D k 20 3x3 LeakyReLU 

Conv2D 20 48 3x3 LeakyReLU 

Conv2D 48 64 3x3 LeakyReLU 

Conv2D 64 32 3x3 LeakyReLU 

Conv2D 32 3 3x3 -

Table 4.4: A table of the parameters of each layer of the high frequency reconstructor 

network, specifying their layer type, input size, output size, kernel and activation. Where 

k is the number of keypoints, which changes dependent on dataset, and LeakyReLU uses 

α = 0.1. 

Low Frequency Information Reconstructor (L): 
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Layer Type Input Size Output Size Kernel Activation 

Conv2D k 5 5x5 LeakyReLU 

Conv2D 5 10 5x5 LeakyReLU 

Conv2D 10 12 5x5 LeakyReLU 

Conv2D 12 12 5x5 LeakyReLU 

Conv2D 12 12 5x5 LeakyReLU 

MaxPool - - 2x2 -

Conv2D 12 5 5x5 LeakyReLU 

Conv2D 5 3 5x5 -

Table 4.5: A table of the parameters of each layer of the low frequency reconstructor 

network, specifying their layer type, input size, output size, kernel and activation. Where 

k is the number of keypoints and LeakyReLU uses α = 0.1. 

In the second reconstruction mode, we train an additional local descriptor extractor so 

that we are able to reconstruct datasets that contain more detailed textures. Inspired 

by traditional local descriptor algorithms, we take a circular crop from each keypoint, 

located via a square crop with diameter = h = w, and pixels outside of the circle with 

diameter of h are zeroed out. This is then fed into a small descriptor extractor network 

with a bottleneck that is trained from scratch in an end-to-end fashion alongside the 

other networks. The output of this descriptor network is the same size as the input 

and these outputs are then shifted back into the locations that the crops were taken 

from to create textured heatmaps. These textured heatmaps are then fed into the same 

reconstructor network as we used in the simple reconstruction case. 

The descriptor extractor network is implemented as a sequential network and the details 

of the network parameters for each layer is defned in Table 4.6. 

Layer Type Input Size Output Size Kernel Activation 

Linear 23p 512 - ReLU 

Linear 512 256 - ReLU 

Linear 256 v - ReLU 

Linear v 8v - ReLU 

Linear 8v 16v - ReLU 

Linear 16v 2p - Sigmoid 

Table 4.6: A table of the parameters of each layer of the local descriptor extractor 

network, specifying their layer type, input size, output size, kernel and activation. Where 

p is the size of the circular crop patch and v is the size of the feature vector. 
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Layer Type Input Size Output Size Kernel Activation 

Conv2D k + 3d 64 3x3 ReLU 

Conv2D 64 128 3x3 ReLU 

Conv2D 128 32 3x3 ReLU 

Conv2D 32 4 3x3 ReLU 

Data viewed as b vectors of size 4 ∗ h ∗ w 
Linear 4 ∗ h ∗ w 4096 - ReLU 

Linear 4096 256 - ReLU 

Linear 256 d - -

Table 4.7: A table of the parameters of each layer of the distractor predictor network, 
specifying their layer type, input size, output size, kernel and activation. Where d is the 
number of images used, b is batch size, h is image height and w is image width. 

4.5.5.2 Distractor Image Prediction Task 

This task operates as an alternative to a supervised classifcation, where no labels are 

required. The idea is to train a network to identify which image the keypoints were 

extracted from when provided with the true image along with some distractor images. 

A simple downstream network, is then given the task of looking at the stacked keypoints 

and images and selecting which index contains the image that corresponds to the key-

points given. We use a multi-margin loss for the classifcation stage as we fnd it trains 

more reliably than using a negative log-likelihood loss. 

This task is difcult for our predictor to learn, so typically we use only one distractor 

image in the prediction. This gives a binary decision for which image the keypoints 

belong to. 

The distractor predictor network we use is a sequential network with layers defned as 

per Table 4.7. 

4.5.5.3 Middle Frame Prediction Task 

Predicting which frame is the middle of a sequence is a common task in self-supervised 

learning, but is normally applied to sequential frames taken from a video. As we would 

like to use non-sequential data, we mimic the efect of video frames using the TPS 

warp [28], discussed previously in Section 4.3.2.1, to apply non-linear transforms to our 

keypoints. We use a non-linear warp instead of a simple afne transform as we gives 

the network a more difcult job in deciding which frame is the middle. For each image, 

we apply two warps, where the parameters of the frst warp are half of the second, to 

obtain a set of three images, the original and two warped versions. We then pass all 

three images through our keypoint detector to get three sets of keypoints, which are 
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Layer Type Input Size Output Size Kernel Activation 

Linear 6k 512 - ReLU 

Linear 512 1024 - ReLU 

Linear 1024 2048 - ReLU 

Linear 2048 512 - ReLU 

Linear 512 3 - -

Table 4.8: A table of the parameters of each layer of the middle frame predictor network, 
specifying their layer type, input size, output size, kernel and activation. Where k is the 
number of keypoints. 

then shufed and passed into a simple linear MLP to predict which index contains the 

middle frame of the warps. A cross entropy loss is used with these predictions and the 

true indices to obtain our loss. 

The reason we use a task to predict a middle frame of the warp instead of a hard 

constraint on keypoints aligning between warps is to encourage better generalisability 

by learning the same behaviour as an emergent property. 

The middle frame predictor network we use is a sequential network with layers as defned 

by Table 4.8. 

4.5.6 Concentration Constraint 

For this additional constraint, we are minimising Equation 4.2 where m is the heatmap 

prior to the soft arg-max function and g is our cleaned heatmaps. This constraint is 

only used to discourage the soft arg-max algorithm from exploiting any random noise 

or border pixels when selecting keypoints, thus encouraging the discovery of a peaky 

Gaussian heatmap. 

∑ 
)2(hx,y − gx,y (4.2) 

x,y 

4.5.7 Hyper-Parameters 

We have selected a few hyper-parameters manually to aid our network in the training 

process. We set our batch size to 64 and train for a total of 15 epochs. We train using 

the Adam optimiser, with a initial learning rate of 0.001, which is reduced every 5 epochs 

by a factor of 10. The number of keypoints is selected per dataset and is selected based 

on the complexity of the shapes found in the dataset. 
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4.6 Experiments 

This section covers the experiments undertook to decide the best loss balancing approach 

to use, followed by experiments demonstrating success on diferent datasets and in dif-

ferent scenarios. Further experiments are undertaken to improve our understanding of 

what the keypoint regressor network has learnt and testing how well our method can 

generalise to new data. 

To evaluate the proposed approach we have selected a range of diferent datasets with 

varying properties, including MNIST [64], FashionMNIST [110], Shoes from UT Zap-

pos50k [112], Chairs [1] and Human3.6m [48]. 

Section 4.6.1 compares diferent approaches to balancing the range of losses used in our 

multi-task approach. Section 4.6.2 shows comparison between how our network optimises 

using single tasks against multiple tasks. Section 4.6.3 looks at the performance of our 

technique on simplistic toy datasets as a proof of concept. Section 4.6.4 looks at complex 

datasets that would have real-life applications. Quantitative analysis of our keypoints 

is detailed in Section 4.6.5. We look into the inputs for the soft-arg-max algorithms 

in Section 4.6.6, in order to analyse how confdent the keypoint detector network is for 

each keypoint. Finally, Section 4.6.7 is verifying the generalisability of our approach by 

analysing results out of the training data distribution. Further implementation details 

can be found in Appendix B. 

4.6.1 Loss Balancing Method Selection 

As discussed in section 4.4.2.2, we have found multiple diferent techniques for balancing 

the losses of each task. After initial experiments found that the Pareto Optimal method 

[95] gave poor results, as well as being far slower as we require two back-propagation 

passes, we narrowed down our selection to two approaches, uncertainty estimation and 

balanced learning with an exponential function mapping. 

To test which approach fnds better solutions, we have trained a network on the MNIST 

dataset using the three tasks and one constraint described above, for 15 epochs. We 

drop the learning rate every 5 epochs and to test reliability, we have completed 10 runs 

for each approach. The results from this comparison can be seen in Figure 4.5. We 

have plotted training loss against epoch with a 95% confdence interval, and we can 

clearly see that the exponential function mapping not only gives a lower loss for all 

tasks, but also gives more consistent results. To validate these results, we have run 

the same experiment but using the Fashion MNIST dataset [110] as seen in Figure 4.6. 

While the results here are not as clear cut, we still see that the overall loss is lower 

when we train using the exponential function mapping and that we fnd more reliable 

results over the 10 runs, with the confdence interval being signifcantly narrower. We 

https://Human3.6m
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Distractor Prediction Middle Frame Prediction 

Reconstruction Concentration Constraint 

Figure 4.5: Comparisons of task losses when using diferent loss balancing options, where 
learnt uncertainty is in orange and exponential function mapping is in blue. 

do see that the uncertainty parameter technique does get a slightly lower loss for the 

concentration constraint, perhaps over optimising this constraint over the reconstruction 

task. While this may not be an issue, we may fnd that the keypoints do not capture 

as much information about the image as the focus is on the feature heatmap constraint 

instead of solving one of the given tasks. 

4.6.2 Single and Multi Task Comparison 

Table 4.9 shows how our network optimises to fnd keypoints to solve the given tasks 

when solving each single task and when solving multiple tasks at the same time. When 

using only the distractor task, our found keypoints barely represent that shape which 

implies that our network is operating like a hashing function for the image as a whole, 

which is then used to identify the correct image. 

The reconstruction task gives the best single task performance, distributing the key-

points more evenly than the other single task methods, but still has issues with clumping 

points in smaller regions. The middle frame prediction task gives keypoints that have 
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Distractor Prediction Middle Frame Prediction 

Reconstruction Concentration Constraint 

Figure 4.6: Comparisons of task losses when using diferent loss balancing options on 
FashionMNIST, where learnt uncertainty is in orange and exponential function mapping 
is in blue. 

little travel from the centre of each image, but are not completely central. This is due 

to our network needing to place points in areas that move to capture the transform but 

this capture has no need to be in diverse areas of the image, so simply fnds a solution 

that locates one easy to locate feature near the centre of the image. Finally we have 

our combined multi-task method that spreads the keypoints evenly around the shapes 

in the image and also represent the image with enough detail to select correctly in our 

distractor task. These keypoints are also able to trace the transforms to accurately 

predict our middle frames. 

Not only are the qualitative results showing an improvement on found keypoints, multi-

task learning leverages extra information so solve the individual tasks, we observe better 

task performance when all tasks are trained together as seen in Table 4.10. The same 

pattern can be seen in Table 4.11, which compares training losses in the single and multi 

task cases. 
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Distractor Reconstruction Middle Frame Combined 

Table 4.9: Comparisons of keypoints found to solve diferent tasks individually and when 
located using multi-task learning. Qualitatively, the multi-task learning approach shows 
keypoints that capture the best structure, followed by the reconstruction task. Colours 
are a scale between blue for keypoint at index 0 to red for keypoint at index k, and are 
consistent between examples. 

Table 4.10: Comparisons of task performance when the network is trained on the indi-
vidual tasks and when trained on all tasks combined. 

Distractor Reconstruction Middle Frame 
Accuracy (%) Error Accuracy (%) 

Single 98.75 0.0588 98.30 
Multi 99.75 0.0291 99.65 

Table 4.11: Comparisons of training losses of single task training and multi task training. 
Distractor Loss Reconstruction Loss Middle Frame Loss 

Single 
Multi 

0.0089 
0.000518 

3.7941 
1.8487 

0.0506 
0.0109 
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Table 4.12: Examples of keypoints found on the MNIST dataset. Colours are a scale 
between blue for keypoint at index 0 to red for keypoint at index k. Further examples 
available in Appendix B.1.1 

4.6.3 Results on Toy Datasets 

This subsection looks into our results when we use simple datasets, which consist of 

greyscale pixels and are small in size (28x28 pixels). Due to the simple nature of the 

data, we do not require the feature extractor in the reconstruction task. We are using a 

value of σ = 0.9 for constructing Gaussian blob heatmaps for these simple datasets. 

4.6.3.1 MNIST 

The MNIST dataset gives us a good insight into how useful this technique can be. We 

train our keypoint detector as described above using the entire dataset rather than 

training on individual characters. As a result, we are not just optimising for one single 

structure, but a wide variety of shapes, giving the network a much harder problem to 

solve. As seen in Table 4.12, we have managed to fnd a convincing set of keypoints that 

convey the shape of each and every diferent digit in the dataset. 

4.6.3.2 Fashion MNIST 

Just as we have done with the MNIST dataset, we are aiming to fnd keypoints that 

represent the structures of all of the diferent types of clothing in the Fashion MNIST 

dataset. We show in Table 4.13 that while there is a massive variance of shapes, each 

item of clothing has keypoints that successfully represents their structure. 

4.6.3.3 Quantitative Evaluation 

To validate our qualitative results shown above, we have used a novel downstream clas-

sifcation task. We train a simple neural network to classify our learnt keypoints using 



63 Chapter 4 Self-Supervised Learning of Generalised Spatial Representations 

Table 4.13: Examples of keypoints found on the Fashion MNIST dataset. Colours are 
a scale between blue for keypoint at index 0 to red for keypoint at index k. Further 
examples available in Appendix B.1.2 

labels found in the dataset and we are able to classify 7 keypoints taken from MNIST 

with 97.7% accuracy and 9 keypoints from FashionMNIST with 84.5% accuracy. 

4.6.4 Results on Complex Datasets 

The previous experiments were run on datasets that had no colour and limited textural 

information, which meant we could use a simple reconstruction task that requires only 

keypoints to reconstruct the image. However, most datasets are not as easy to work with 

and require extra information in order to solve our reconstruction task. For the following 

examples, we have extracted patches around the keypoints and learnt descriptor vectors 

for each to feed into the reconstructor network. We are using a value of σ = 1.0 for 

constructing Gaussian blob heatmaps for these real world datasets. 

4.6.4.1 Shoes 

We can train our network using shoes from the UT-Zap50k dataset [112], as seen in 

Table 4.14, to fnd keypoints on a variety of diferent shoes that represent the shape of 

the individual image. Individual keypoints are well matched between the shoes, and we 

are clearly able to implicitly learn the generalised structure and how to ft that structure 

to any example. 

4.6.4.2 Human3.6m 

This approach also gives good results for human pose estimation, using the Human3.6m 

dataset [48], as seen in Table 4.15. We can see that this technique consistently locates 

body parts, such as the head with the purple keypoint, and spreads the keypoints suf-

fciently to capture the structure of the human body. Although these are not perfect 

results, with the most obvious error being the issue of where to place the keypoints on 

https://Human3.6m
https://Human3.6m
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Table 4.14: Examples of keypoints found on the Shoes dataset. Colours are a scale 
between blue for keypoint at index 0 to red for keypoint at index k. Further examples 
available in Appendix B.1.3 

Table 4.15: Examples of self-supervised keypoints found on the Human3.6m dataset. 
Colours are a scale between blue for keypoint at index 0 to red for keypoint at index k. 
Further examples available in Appendix B.1.4 

a human who is only showing their back. The labels in the dataset invert the keypoint 

order over the y-axis when the back of a subject is shown, but this is not the case using 

this approach as no prior informs the network that these are three-dimensional objects. 

4.6.4.3 Semi-supervised Regression Metric 

In line with Zhang et al. [118] and Thewlis et al. [100], we have tested our approach 

using a semi-supervised step that regresses our predicted keypoints to ground truth poses 

using a simple linear regressor. We then measure the error as a percentage of image size 

per keypoint. As our keypoint detector network cannot deal with the diferentiating 

https://Human3.6m
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Table 4.16: Comparison of regression errors with comparable papers. Distances are 
measured as % error of image size. 

Human3.6M 

Thewlis et al. [100] 7.51 

Zhang et al. [118] 4.14 

Ours 6.35 

Landmark 
Location 

Mean 
Error 

Standard 
Deviation 

Middle Hip 5.26 4.96 
Left Hip 5.69 5.12 
Left Knee 5.94 4.93 
Left Foot 8.59 7.06 
Right Hip 5.46 5.00 
Right Knee 6.59 5.50 
Right Foot 8.61 7.17 
Mid Back 3.81 2.82 
Head 4.86 4.75 

Mid Shoulder 3.37 2.96 
Right Shoulder 3.77 3.09 
Right Elbow 6.94 5.27 
Right Hand 10.94 7.55 
Left Shoulder 3.54 3.00 
Left Elbow 6.75 5.11 
Left Hand 11.53 7.51 

Table 4.17: Mean regression errors on a per landmark basis. Errors are measured as % 
of image size. 

front/back in our images, we are manually fipping the input images and corresponding 

ground truth points in examples where the left shoulder keypoint is further right in the 

image than the right shoulder. 

We can further break this down to a mean error on a per keypoint basis, as shown in 

Table 4.17. We also show these results visually in Table 4.18, comparing the regressed 

keypoints to their ground truth counterparts. 

4.6.4.4 Action Recognition Metric 

For the Human3.6m dataset, we do a similar classifcation task to the novel task classif-

cation as described in Section 4.6.3.3. But as the dataset only contains action recognition 

labels, we classify on sequences of keypoints taken from the video frames and feed the 

sequence through an LSTM before classifying based on the hidden state of the fnal 

LSTM layer. Figure 4.7 shows the action recognition accuracy using this approach with 

our predicted keypoints taken from our keypoint regressor compared to the ground truth 

keypoints taken from the dataset. 

https://Human3.6m
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Ground Truth Keypoints Regressed Keypoints 

Table 4.18: Examples of regressed keypoints found on the Human3.6m dataset compared 
to their ground truth counter parts. Colours are a scale between blue for keypoint at 
index 0 to red for keypoint at index k, and are consistent between columns. Further 
examples available in Appendix B.1.5 

We train on sequences of 32 samples of keypoint shapes, sampled with frame striding 

of 20 frames, and starting at a random point through each video. The action recog-

nition labels included in the dataset are from 17 diferent classes, giving the accuracy 

of randomly guessing at 5.88%. Our results give a mean accuracy of 56.2% showing 

our keypoints have clearly captured a good amount of information from the images, 

not being far behind the 62.1% mean accuracy found using ground truth data. It is 

worth noting that our regressed keypoints do not leverage any sequential information, 

keypoints are taken from each video frame in isolation making these results even more 

impressive. 

https://Human3.6m
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Figure 4.7: Box plot showing action recognition accuracy when we train an LSTM 
based classifer on the keypoints taken from our keypoint detector and from the ground 
truth points from the Human3.6m dataset. Data is showing distribution of results from 
training 10 LSTM based classifers. 

Table 4.19: Comparisons of task performance for each dataset being tested 
Distractor Reconstruction Middle Frame 

Accuracy (%) Error Accuracy (%) 

MNIST 99.75 0.0291 99.65 
FashionMNIST 99.97 0.0340 99.80 

Shoes 89.82 0.2183 99.86 
Human3.6m 98.21 0.0138 99.54 

4.6.5 Further Quantitative Results 

While we have seen in the previous section the locations where our networks have placed 

keypoints on images, we would also like to know how well our networks can solve the tasks 

that we have given them using those keypoints. Table 4.19 shows the task performance 

for each of the networks and we can see that on the whole, the tasks have been solved 

well. Notable outliers are the performance of the shoes dataset on the distractor and 

reconstruction tasks, which we believe is due to the large variance in the textural data 

but low variance in the shape data in this dataset, making both of these tasks difcult 

to solve. 

4.6.6 Keypoint Confdence 

By looking at the outputs from the keypoint detection network before the soft arg-max 

algorithm is used to extract numerical keypoints, we can learn more about how the 

network is locating points. In Table 4.21, we can see heatmaps for some of the found 

keypoints on the Human3.6m dataset. The second column shows a point that roughly 

tracks the hip of the target, either left or right depending on the orientation of the 

person in the image, and does so with a relatively strong confdence as seen by the small 

range of bright pixels in the heatmap. An example of a less confdent point is in the 

third column, where our heatmap covers the majority of the person in the image. We 

https://Human3.6m
https://Human3.6m
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Table 4.20: Means and standard deviations of eigenvalue ratios taken from covariance 
matrices of Gaussians ft to heatmaps from the Human3.6m dataset. Columns align 
with those in Table 4.21. 

1 2 3 4 5 6 7 8 

Mean 0.7947 0.6136 0.2110 0.4382 0.3647 0.5373 0.3878 0.4302 

SD 0.0817 0.0637 0.1214 0.0913 0.1686 0.1753 0.1797 0.2205 

see another error case in the fnal column, where we normally fnd a confdent point on 

the left hand, however in the second and ffth row, we fnd the back and the knee with 

a wider heatmap range. 

Table 4.22 shows keypoint confdence for all 8 keypoints learnt on the shoes dataset. 

Compared to the results in Table 4.21, we can see that the network appears to be 

uncertain of the location for the majority of the shoe landmarks. The reason for this 

may be because of the high variance found in the textural information of this dataset, 

while the shape information has a relatively low variance. As we use an Hourglass 

network that leverages a combination of local and global information, the network is 

free to learn a global structure rather than searching for local features. Some local 

features have been successfully detected, but only those that are common for any kind 

of shoe such as the heel and the toe. 

For a deeper analysis of the shapes of the features heatmaps that our network has learnt, 

we have applied a Gaussian ftting technique to learn the mean covariance matrix for 

each keypoint over the batch. Table 4.20 shows the mean ratio between greatest and 

smallest eigenvalues taken from an eigen decomposition of the covariance matrices of 

Gaussians ft to our outputted heatmaps from the Human3.6m dataset. A small ratio 

here means that the heatmaps are stretched and resemble long features whereas high 

ratios resemble relatively circular heatmaps. The values at indices 3 and 5 resemble 

those keypoints that fnd the legs on our dataset which explains the low ratio here. 

https://Human3.6m
https://Human3.6m
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MNIST FashionMNIST 

NetA 98.4% 82.3% 

NetB 93.1% 84.5% 

Table 4.23: Classifcation Accuracy using Keypoints Detected from networks trained on 
each dataset. NetA has been trained using MNIST and NetB has been trained using 
FashionMNIST. 

4.6.7 Verifying Generalisability 

One of the aims of using a multi-task approach is to train a network to fnd generalised 

keypoints. How can we evaluate for generalisability in this self-supervised keypoint 

detection context? The ability for our keypoints to be used to solve arbitrary tasks 

gives us some idea but to push the limits of evaluating generalisability, we can attempt 

to use testing data that lies out of the training data distribution. Taking a pair of 

keypoint detector networks, one trained to locate 9 keypoints on MNIST characters 

and the other to fnd 9 keypoints on FashionMNIST, and swapping the inputs to each 

network, we can see how each react to data outside of the expected distribution. As seen 

in Table 4.23, accuracy for classifying each input using only their keypoints drop after 

switching datasets drops but remains high, especially on the network trained on MNIST. 

Table 4.24 shows the keypoints found overlaid onto the images and we can clearly see a 

reasonable structure captured in both of the cases after swapping. 

We also see successful generalisation in complex data. We have shown our results earlier 

of capturing structures of shoes, and we can use this network to identify structures of 

MNIST FashionMNIST 

NetA 

NetB 

Table 4.24: Comparisons of keypoints found on the MNIST and FashionMNIST datasets, 
where NetA has been trained using MNIST and NetB has been trained using Fashion-
MNIST. Colours are a scale between blue for keypoint at index 0 to red for keypoint at 
index k, and are consistent between examples from the same network. 



72 Chapter 4 Self-Supervised Learning of Generalised Spatial Representations 

Table 4.25: Examples of keypoints found on the Chairs dataset when the network was 
only trained on Shoes. Colours are a scale between blue for keypoint at index 0 to red 
for keypoint at index k, and are consistent between examples from the same network. 

Table 4.26: Comparisons of task performance for each task when tested on Shoes and 
Chairs using a model trained on Shoes 

Distractor Reconstruction Middle 
Accuracy (%) Error Frame (%) 

Shoes 89.82 0.218 99.86 
Chairs 56.12 0.226 98.15 

chairs [1] as seen in Table 4.25. We are helped here as both of these datasets have single 

objects in the foreground and a plain white background, however there is solid evidence 

of generalisation here. As classifcation of this dataset would be unreasonably difcult 

using just 8 derived keypoints, we have instead evaluated our generalisability success 

via downstream task performance. Table 4.26 shows the downstream task performance 

for each task when this model is tested on the Shoes and Chairs dataset. As could be 

expected, there is a drop in performance for all tasks, with the distractor task showing 

the greatest drop. 

4.7 Discussion 

As seen in the qualitative results from the experiments above, we are able to distil 

shape from a wide variety of image subjects with no prior knowledge. We fnd that our 

desirable properties emerge naturally as the network learns a general keypoint structure 

that can be used to solve all of our selected tasks. While these properties could have been 

obtained through creating losses that directly optimise these requirements, as shown by 

Zhang et al. [118], we have observed better generalisation by indirectly learning these 

properties. If a neural network is able to locate keypoints that contain a strong structure 

found in the data with absolutely no priors of what structure to look for, then we have 

distilled this information purely from image data. The power of applying multi-task 

learning to this problem is that the network must learn this strong generalised structure 

in order to be able to solve the set of varied tasks. 
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Similar approaches [100, 118] use a large amount of hyper-parameter tweaking, including 

selecting diferent neural networks based on which dataset is used, whereas we aim to 

generalise keypoint regression in a truly domain-agnostic approach. The result is being 

able to test on a diferent dataset to the one used in training and still detect a strong 

set of keypoints that capture structure seen in the image successfully. 

Standley et al. [96] study which tasks should be learnt together in a multi-task environ-

ment, but in the context of supervised tasks and with a time-accuracy trade-of. In the 

context of self-supervised learning, we face a diferent scenario where we would like to 

select tasks that help us learn a better representation and not focus solely on the single 

task performances. 

We theorise that the success of our technique corresponds to the choice of tasks that are 

selected to train with. A good set of tasks should be: 

1. Varied, the optimal solutions for each individual task must be contrasting enough 

that we cannot overft to all tasks at once. 

2. Difcult to optimise, easy tasks will either focus the optimisation in the down-

stream tasks to obtain good results using poorly chosen keypoints, but if we choose 

hard tasks, we require well placed keypoints to obtain good training performance. 

At the same time, overly difcult tasks will not be able to be solved using any 

keypoints, giving little to no training signal to the keypoint detector network. 

3. Balanced in how the tasks are oriented towards our objective. While we do not 

want them to be completely unrelated as there will be nothing to learn, we also 

do not want them to be so related such that we overft and lose generalisability. 

4.7.1 Common Pitfalls in Self-Supervised Keypoint Detection 

Training a network to discover keypoints that can successfully capture the structure of 

an object is by no means trivial. Keypoint detection is essentially a mapping from an 

image to a list of 2D coordinates that denote the pixel or sub-pixel location where a 

desired feature is. Traditionally keypoints have been described as having two desirable 

properties; robustness, how invariant keypoints are to changes, and repeatability, how 

successful we are at fnding the same feature between examples. Robustness can be 

tested by applying a transform to an image and observing if the keypoints to follow 

that transform but repeatability is more difcult due to the lack of labelled data. An 

additional desirable property is for the keypoints to disperse to capture areas over the 

entire image space. We observe that in some cases, the keypoints found are either 

erroneous or have undesirable features and some of the reasons for this are discussed 

below. 
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4.7.1.1 Local and Global Information 

It is common to fnd deep learning based techniques for pose estimation and keypoint 

regression to use an hourglass network, as it allows for leveraging both local and global 

shape information to decide where a keypoint should be. This tends to give us good 

results, especially in a supervised environment [85], however in the self-supervised case, 

we can see some undesirable behaviour. The balance between the reliance on local 

and global information can force our trained network to base keypoint detection almost 

entirely on where it is in the image and not on what textural information is at that point. 

We fnd a lack of robustness in difcult examples where the global structure difers from 

the expected range of poses learnt from the given data. If an image is rotated 90 degrees, 

then we would expect the keypoints to move with the image, but in almost all cases, we 

see a massive failure state. A successful keypoint detector should be able to deal with 

this case as the textural information is still available in the image. 

4.7.1.2 The Responsibility Problem 

The second failure state we see is relating to the responsibility problem [115]. How 

does the network decide which keypoint should capture information from each area of 

the image? We see more subtle failure states than before that are attributed to this 

problem, for example in Zhang et al. [118]’s results on the Human3.6m dataset. When 

the person in the image has raised a hand above their head, the keypoint that normally 

tracks the head is now responsible for tracking the hand. This gives us another clue 

about what we are actually learning in our hourglass network, and the local information 

about the head is less dominant than the global shape information marking the top 

of the structure. Perhaps taking inspiration from Zhang et al. [115], the solution in a 

self-supervised keypoint detection environment is in learning a set of keypoints instead 

of a list. With no prior knowledge, searching for ordered keypoints where each keypoint 

locates the same region of an object is unrealistic when we have datasets of real life 

objects that are free to move and rotate in a three dimensional world. If we learn 

keypoints that are deliberately unordered and order them if required for downstream 

tasks, we may expect to see a more accurate representation of shape, as a common 

structure can be learnt and then keypoints matched to features later. 

4.7.1.3 Bilateral Symmetry 

Bilateral symmetry creates a persistent issue when we have data of the object rotated, 

as is common in human pose estimation. We would like to keep consistency where we 

will have a keypoint that consistently tracks the left hand but we seen in our results 

and others [100, 118], this is not the case. The image information to work out the 

orientation of the subject is present, but our network is not correctly leveraging it and 

https://Human3.6m
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without supervision, struggles to know that we could be looking at the back of the 

object. 

4.7.1.4 Collapse During Training 

One common issue with learning keypoints with no supervision is the degenerate solution 

where all keypoints collapse to (0, 0) if trained without a prior that forces them to spread. 

In previous approaches, this is fxed with a specifc separation constraint that minimises 

overlap of keypoints. While this initially fxes the collapse, this sort of prior can lead to 

some undesirable properties such as being unable to fnd two features that are within 

the range of separation set by the constraint. Ideally, we would like a softer method, 

that aims to capture the most amount of information instead of specifcally spreading 

keypoints. This naturally fxes the collapse without adding any unforeseen consequences 

such as our keypoint detection failing to fnd two points in the same area. Our method 

aims to naturally solve this problem due to the multi-task nature of the optimisation, 

having multiple training signals aids in the training method by discouraging getting 

stuck in a local minima in our loss landscape. 

4.7.1.5 Occlusion 

Occlusion is a persistent challenge over a wide range of computer vision problems, with 

keypoint detection being no exception. Locating a keypoint that cannot be seen is 

naturally difcult, but some supervised approaches use shape models to predict hidden 

keypoints by using nearby visible landmarks [20]. When using self-supervision, we no 

longer have the prior knowledge of a strict structure but we can leverage information 

from other images in the dataset where occlusion does not occur. If we learn a solid 

representation, with the use of a carefully selected prior, then we may be able to take 

inspiration from Cootes et al. [20]’s work and infer where keypoints should be based on 

where we can fnd the neighbouring points. 

4.8 Conclusion 

In this chapter we have built keypoint detectors that are trained entirely through self-

supervised methods without any hard-coded constraints to avoid undesirable behaviour 

as seen in previous work and have shown the efectiveness of applying multi-task learning 

to this area. Our results show increased generalisation over using a single task based 

approach, to the extent that performance does not drastically drop if we train on one 

dataset and test on a completely disjoint dataset. We believe this technique has value 

in landmark detection applications where little to no ground truth data is available and 
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for general spatial information extraction in a self-supervised setting. Finally, we have 

addressed some of the common pitfalls in this area, and given some suggestions of how 

these can be solved. 

We have established a solid multi-task framework for keypoint detection but it is clearly 

adaptable by selecting diferent tasks. By using specifc tasks, we may fnd that we have 

new emergent properties which will be desirable in diferent applications. One example 

of this, which we will explore in Chapter 6, is in 3D pose estimation. We will attempt to 

add this property by adding another task that takes the learnt 2D points and predicts 

the z coordinates to add depth to the learnt spatial representations. Another potential 

task could be checking for keypoint consistency between video frames to track an object 

as it moves through the scene. Leveraging this temporal information may help us locate 

better keypoints, such as those that lie on points of articulation in pose estimation or 

pushing points closer to the edges of a shape to capture a stronger structure. There is 

more work to be done on the analysis of multi-task learning in this application. We know 

that our chosen tasks give us desirable properties, but it is not known what properties 

each of these tasks gives us, and how the combination of the tasks changes the outputted 

keypoints. How we optimise the combination of tasks is another area of future work that 

may help us improve our results, as discussed in Section 4.4.2.2, loss balancing is key to 

fnding a solution that satisfes all tasks. 

While this chapter has focused on an abstraction of keypoint detection, allowing for 

generalised keypoints to be located for any structure, the purposes of keypoint detection 

in this thesis are more specialised with the aim of locating articulation models. To fnd 

keypoints that capture articulated structures in images, we will be investigating how 

to apply a carefully selected prior. Our focus is still on fnding a generalised solution, 

so our prior cannot be too strong as to work for only one kind of articulation model, 

but also must not be too weak, as to not capture enough information. Chapter 5 will 

explore how priors can be applied to generalised spatial representation estimation, and 

additionally, its applications in keypoint lifting, as previously discussed in Chapter 3. 



Chapter 5 

Using Bone Rigidity as a Generic 

Prior 

The previous chapters have shown the applicability of self-supervised learning to both 

keypoint detection and pose lifting, without the requirement of any strong priors. But 

solving an ill-posed problem such as self-supervised estimation of a 3D articulation model 

from an image, comes with difculties without the use of some prior knowledge. 

Typically, approaches such as these use strong priors, as demonstrated by Jakab et al. 

[50]. These can achieve impressive results for human pose estimation, but do not gener-

alise to allow for generic articulation models. 

This chapter aims to answer RQ4, with the primary aim of identifying a suitable prior 

required to solve the generalised articulated 3D pose estimation problem, with the aim 

of using only the minimum required prior information, to prevent an approach that is 

overftted to a subset of articulation models. 

5.1 Introduction 

Careful selection of a prior is essential to the success of our generalised articulation 

models estimation approach. Too strong a prior will limit us to only a subset of the 

articulated models we are interested in, but too weak will not contain enough information 

to provide good results. 

This chapter will start with an analysis of existing priors before creation of a new 

generic prior. We then show how this simple prior can be used within a diferentiable 

operation to identify the connectivity of keypoints within a dataset, initially for two-

dimensional points before extending this to 3D. Using this diferentiable algorithm, we 

create an approach for pose lifting in which we look for keypoint connectivity and apply 

77 
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our prior to estimate depth. As this is only half of the 3D pose estimation pipeline, 

we also demonstrate how this prior can be used for the keypoint detection stage of the 

pipeline as an approach for placing points on articulation and limb end points. We fnish 

this section with a discussion of our prior and implementations, and highlight potential 

problems with using this prior. 

5.2 Designing a Generic Articulation Prior 

In the context of self-supervised learning, a prior is a restriction based on some knowledge 

of the data, before the data has been observed. We require a prior to train our network 

using self-supervised deep-learning, due to our requirements to use a variety of datasets 

that may not be labelled, but balancing the strength of such a prior is paramount to 

the success of our approach. We must be careful to select a prior that is generalised to 

such an extent that it can be applied to any articulated model, while providing enough 

information to solve a naturally ill-posed problem. 

Figure 5.1 is a visual demonstration of this trade-of. If a prior makes stronger assump-

tions about the world, the performance of the approach increases. But this is at the 

cost of the applicability of our approach, thus we may struggle to translate into a new 

domain or onto a new unseen dataset. 

But this is not unique to self-supervised articulation models, this theory applies to 

any self-supervised learning where a prior is required to fnd a satisfactory solution 

or to avoid an ill-posed problem. Even in supervised learning, some problems require 

additional knowledge about the world to supplement labelled data. Strong priors tend 

to be desirable due to the increase in performance, but it is apparent that this can 

often be essential to the generalisability and applicability of an approach. We must also 

Performance 

Applicability 

Weak Goldilocks 
Prior Prior 

Figure 5.1: A simple illustration of how increasing the strength of a prior both increases 
performance but reduces applicability of the approach. We aim for the ideal trade-of 
in the middle, which represents the Goldilocks Prior. 

Strong 
Prior 
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be careful to not select too weak a prior, as we need enough information to make the 

problem solvable. 

5.2.1 Requirements of our Prior 

Our prior must make assumptions that are common for all articulated models that may 

be subjects of images. The requirements for our prior are as follows: 

• Generic to all articulation models 

• Reliant only on information found within unlabelled monocular images 

• Contains knowledge of the 3D world to allow for location of three-dimensional 

models 

This small set of requirements will guide us as we design a prior that will assist in fnding 

generalised articulation models without making unnecessarily strong assumptions. 

5.2.2 Comparative Priors 

Previously, we used very weak prior knowledge of 3D articulation models, where the only 

assumption made is that every keypoint has a corresponding z co-ordinate, as it exists 

within a three-dimensional world. We have seen that this prior can give us a good 3D 

model when used as the basis of an adversarial pose lifting approach, but can sometimes 

be prone to the inverse pose problem and is both unreliable and slow to train. 

One option for providing the necessary knowledge is to add a second viewpoint of the 

same scene. Kocabas et al. [59] apply this theory to 3D pose estimation by predicting 

two views of the same subject using a supervised 2D keypoint detector, before combining 

them using Epipolar geometry to create an estimated 3D pose for use with their 3D pose 

estimation network. While they gain promising results, this style of approach requires 

multiple view data for training, which is an assumption about the data that we wish to 

avoid to maintain generalisability. 

A weakly-supervised approach by Chen et al. [14] introduces the injection of a robust 3D 

prior to locate 3D human poses from images. They use a pre-trained 2D pose estimator 

to obtain 2D skeleton maps which they regard to be a tree-structured kinematic graph 

representing a person, and group together multiple viewpoints into a shared representa-

tion in the latent space. Both multi-view geometry and pre-trained supervised models 

are elements that we are aiming to avoid when implementing our generalised system. 

Another prior used in multiple approaches considers the angles between pairs of points 

[61, 90], and encourages keypoints to be estimated such that they obey the range of 
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valid angles. This is simple but efective, however will not be applicable to our scenario, 

as we do not know the structure of the articulation model beforehand, so setting ranges 

of valid angles would not be possible. 

5.2.3 Bone Rigidity Prior 

Taking inspiration from properties common to any articulated object, we have designed 

a bone rigidity constraint as our prior assumption to base our approach. If we have 

keypoints that capture either articulation points or the endpoints of limbs, then our 

assumption is that we should have fxed distances between all pairs of joints that are 

connected by a rigid bone. We will also make the assumption that our joints, if viewed 

as a graph, are connected as a tree and thus contain no cycles. 

How can we exploit our bone rigidity prior to create a method for locating generalised 

articulation models? The remainder of this chapter will frstly design an algorithm 

based on this prior which identifes connectivity of keypoints, before demonstrating an 

implementation of both self-supervised 2D to 3D pose lifting, as shown in Section 5.4, 

and 2D keypoint detection in Section 5.5. We will show how this prior is suitable for 

proving sufcient information to solve both of these tasks, while not overftting to a 

single category of articulation model. 

5.3 Determining Joint Connectivity 

Knowing which keypoints are connected gives valuable information for downstream pro-

cessing and for creating a loss function to train a self-supervised network. While the 

joint connectivity information may be available in a labelled dataset, given our priority 

to learn in a self-supervised fashion, we will choose not to use this and aim to derive 

this information instead. Inferring connectivity helps with the generalisability of our 

approach as a new dataset of articulated subjects will function identically. 

Another approach for estimating the connectivity of our points is to learn a connectivity 

matrix via a neural network. However, if we are learning to place keypoint on an image 

and learning to estimate connectivity at the same time, we may fnd our problem does 

not have enough constraints, and thus we may fnd degenerate solutions. 

However, using deep learning to locate the connection matrix is not required as by using 

our bone rigidity prior, we can easily determine connectivity. This is because any two 

joints connected by a rigid limb will have a fxed distance between them. For this to 

hold, we must make the assumption that we have managed to estimate keypoints that 

lie on joints. This will be covered in more detail in 5.5. 
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Figure 5.2: An illustration of an elbow-like joint built of two rigid limbs with articulation 
connecting them. As demonstrated by the red lines, the distance between (0,1) remains 
constant as does the distance between (1,2), but the distance between (0,2) does not 
remain constant when the pose of the articulated joint changes. 

5.3.1 Limb Variance Minimum Spanning Tree 

Our novel approach is to derive keypoint connectivity in a non-learnt method, which 

has numerous advantageous, such as a lower reliance on locating this pattern from data. 

This method uses our bone rigidity prior to estimate which keypoints are connected by 

calculating a Minimum Spanning Tree (MST) using Prim’s algorithm [33] over a pairwise 

distance variance matrix. This idea is based on the fact that two points of articulation 

in a articulated model containing rigid bones will be located in three-dimensional space 

at an equal distance from each other when viewed over a batch of diferent examples. 

This simple idea is demonstrated in two-dimensions in Figure 5.2. Thus if we take a 

batch of data points, the variance across the pairwise distances will be smallest between 

points that are connected by a rigid limb. When we combine this knowledge with the 

assumption that the articulation models we are interested in are structured as a tree, it 

is clear that using a minimum spanning tree over this data will produce a matrix that 

represents the pairs of joints connected by limbs. 

We calculate this by taking our batch of keypoints [B, K, 3], and computing a pairwise 

distance matrix [B, K, K] which gives the distance between every pair of keypoints. 

Taking the variance of this matrix over the batch dimension gives us a [K, K] matrix 

of pairwise distance variance. With this matrix, we can now calculate the MST and if 

we make the assumption that our three dimensional keypoints lie on joints of a rigid 

articulated structure, this tree will have identifed our connectivity matrix. 

5.3.1.1 Implementation of a Diferentiable Minimum Spanning Tree 

Implementing a minimum spanning tree that is also diferentiable comes with difculty. 

The standard MST algorithm relies on an arg-min operator to locate the best index at 

each step, which is typically non-diferentiable. The relaxation of the arg-min operator, 
1used previously for converting heatmaps into keypoints in Section 4.5.2, can be used to 

1We previously used the soft-arg-max operator, but the negation of inputs is sufcient to re-use the 
algorithm. 
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estimate the arg-min function while continuing a gradient through our algorithm. We 

use a very low (0.000001) temperature parameter with the soft-arg-min operator to tend 

towards an integer value. But an unfortunate side-efect of the soft variant of the arg-min 

function is that it returns real values, which is useful in keypoint estimation for location 

of sub-pixel keypoints, but not when referencing an index of a matrix as required by the 

MST algorithm. To circumvent this, we have used a non-diferentiable rounding function 

with the addition of the gradient pass-through trick [2] to round the soft-arg-min output 

to the nearest index. This results in a good approximation of the minimum spanning 

tree but can still contain errors in the rare edge case that two values in the limb variance 

matrix are identical. We use a fnal workaround here that simply adds a small amount 

of random noise to the data in the matrix before we run the algorithm to circumvent 

this scenario. 

We implement our algorithm in Python using PyTorch, taking inspiration from Prim’s 

algorithm [33] for fnding a minimum spanning tree, but adapted to allow for gradients 

to fow through it. 

1 # A method for finding the minimum spanning tree from a matrix of weights 

2 # m of type Tensor and shape [K * K] where K is number of keypoints . 

Represents our weight matrix for a graph . 

3 def find_mst(m: torch . Tensor): 

4 n_kp = m. size()[0] 

5 # As we are actually re - using the soft -arg -max operator , we must 

first normalise and negate our input matrix 

6 m = torch .triu(1 - (m / m. max ()), diagonal =1) 

7 # Select an initial node as Primm ’s algorithm states , and as we do 

not allow for self loops , remove index (0, 0) 

8 rows = torch .ones((n_kp)) 

9 rows [0] = 0.0 

10 cols = torch . zeros ((n_kp)) 

11 cols [0] = 1.0 

12 # Initialise our Minimum Spanning Tree here 

13 mst = torch . zeros ((n_kp , n_kp)) 

14 # A tree has n -1 edges for graph with n nodes 

15 for i in range (n_kp -1): 

16 # Creating a mask from the currently selected nodes 

17 mask = cols .view(n_kp , 1) * rows .view(1, n_kp) 

18 # Apply that mask to the data to hide unselected edges 

19 masked_m = mask * m 

20 # Using the soft arg max algorithm with a very low temperature 

parameter , approximate the index containing the maximum value 

21 smax = (( soft_arg_max(masked_m) + 1) / 2) * ( n_kp - 1) 

22 # The next line implements the gradient passthrough trick to work 

around the not differentiable rounding operator 

23 inds = (( torch . round (smax) - smax). detach () + smax) 

24 # Select this index in our Minimum Spanning Tree 

25 inds = inds .long (). squeeze (0) 

26 mst[inds[1], inds [0]] = 1.0 

27 # Disable the selected row to prevent loops 
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28 rows [ inds [0]] = 0.0 

29 # Enable the selected column to search for neighbours of the 

newly selected node 

30 cols [ inds [0]] = 1.0 

31 return mst 

Listing 5.1: Diferentiable Minimum Spanning Tree Implementation using PyTorch 

5.3.2 Demonstration in Two-Dimensions 

To understand how we can use this prior to locate a suitable three dimensional articu-

lation model, we can see clearly how this works in two dimensions and the extension is 

then conceptually trivial. 

We have created a simple dataset of keypoints taken from the articulation points of a 2D 

stick fgure to demonstrate this algorithm, as shown in Figure 5.3. Using this, we would 

like to determine a connection matrix to see which points are connected to learn our 

articulation model. The frst step here is to calculate a pairwise distance matrix between 

every pair of keypoints. From this symmetric matrix we can see how far each point is 

from every other point, but this is not enough on its own to calculate connections. Next 

we need to calculate our variance matrix by taking a batch of these pairwise distance 

matrices, and calculating variance over these values. Assuming (1) that there is enough 

natural variance in the keypoints and (2) that we have a large enough sample size, then 

we will see a variance matrix that tends to 0 in positions where two joints are connected 

by a rigid bone. To determine connectivity now is trivial, and we calculate this using 

a minimum spanning tree (MST) over the values in the upper triangle of this variance 

matrix. The resultant tree from the MST algorithm now represents our connection 

matrix. 

Figure 5.3: A diagram demonstrating the steps used in the LVMST approach for locating 
a connection matrix from a simple 2D dataset. 
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5.3.3 Extending to Three-Dimensions 

Intuitively this extends into three dimensions as once we have derived the pairwise 

distances, the rest of this approach remains identical in 3D. The power of this method 

is now that we can take two-dimensional keypoints and predict the third dimension (the 

z-axis co-ordinate) to fulfl our rigid three-dimensional bone requirement in order to 

learn three dimensional articulation models from two-dimensional inputs without the 

need for ground-truth 3D keypoints. The next section will use this principle and apply 

it to the pose lifting problem as initially discussed in Chapter 3. 

5.4 Pose Lifting with Rigid Bones Prior 

With this prior, we can revisit the problem of lifting 2D poses into the third dimension 

as previously discussed in Chapter 3. We have briefy discussed in Section 5.3.3, how 

we can determine a connection matrix from 3D keypoints, but what if we only have 

2D keypoints that represent a 3D model and we want to estimate the corresponding z 

co-ordinates? 

As a simpler solution to depth inference, which does not require adversarial learning, 

we look to apply our rigid bones prior. When paired with a simple self-consistency loss, 

we are able to locate consistent 3D poses from a 2D dataset. This is in contrast to the 

weak 3D prior used in the original adversarial approach in Section 3.4, which is able to 

lift 2D poses into the third dimension, but as discussed previously, can be problematic. 

5.4.1 Minimising Limb Length Variance to Estimate Depth 

Given 2D keypoints, how can we use the rigid bones prior to estimate the keypoint depth? 

We know that lengths of limbs in three dimensions should be constant over a batch, so 

if we know two keypoints are connected by a rigid limb and the distance between them 

appears to be less than the limb length as observed in other examples, then it must 

either be going backwards into the image space plane or forwards out of it. We can 

develop a loss function to give a training signal to our depth estimation network using 

this knowledge, which simply minimises the variance of the three dimensional pairwise 

distances for pairs of connected keypoints as located by the LVMST connection matrix. 

By doing so, we should see that all pairwise distances tend towards being constant in 

three dimensions, as our network learns to estimate z co-ordinates that minimise the 

distance to the true keypoint depth. 

However, this loss function alone does not allow us to estimate depth consistently yet, 

the estimated z co-ordinates can be either positive or negative relative to its connected 
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Ground Truth Predicted 
Side Diagonal Front Side Diagonal Front 

Table 5.1: Demonstration of using our rigid bones prior for keypoint lifting, without the 
use of a self consistency loss. 

joint and still achieve a valid solution. We can see the results of using only this LVMST 

based loss function when training in Table 5.1. 

5.4.2 Self Consistency in the X and Z Dimensions 

To fx our initial issues found using the LVMST with our variance loss, we have intro-

duced a self-consistency check as an additional loss function. Depth estimation network 

takes Kxy and generates Kz, fundamentally training the network to infer a side-on view 

of a shape. If we then pass Kzy into the network, and we have learnt a consistent depth 

then we can expect our output to approximate −Kx. We form this into a simple mean 

squared error loss function between net(Kzy) and −Kx. 

We can visualise that our network is learning to rotate a structure by 90 degrees in either 

direction, and depending on the direction that it has learnt to rotate, our 3D structures 

are either learnt correctly or are learnt as the inverted pose, depending on initial network 
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Layer Type Input Size Output Size Activation 

Linear 2k 256 ReLU 

Linear 256 128 ReLU 

Linear 128 64 ReLU 

Linear 64 k -

Table 5.2: A table of the parameters of each layer of the pose lifting network, specifying 
their layer type, input size, output size, kernel and activation. For the experiments in 
this chapter, we use k = 16, using the simplifed keypoints from Human3.6m, and the 
output of the network is the predicted z co-ordinates. 

parameters. In either case, we achieve consistency over the batch of outputs, avoiding 

the occasional inverted pose problem seen when learning to infer depth using adversarial 

learning. 

5.4.3 Implementation 

We use a simple linear neural network, with input size of 2K, giving an output of size 
′ k, which we provide our x, y data and get an estimate of z as an output. Using Kxyz ′ , 

we can now predict a connection matrix using the LVMST algorithm and formulate 

our variance loss to minimise sum of the dot product of our batchwise keypoint distance 

variances and the connection matrix. We then apply the self-consistency loss as described 

previously and use a sum of the two loss functions as our fnal loss. 

The network architecture used for our pose lifting network in these experiments is a 

simple sequential MLP with parameters as defned by Table 5.2. To train the network, 

we train for 250 epochs, using a batch size of 256 and a learning rate of 1e-5. 

5.4.4 Experiments 

As this self-consistency check is much simpler than the adversarial technique for inferring 

3D as discussed in 3.4, our proof of concept experiments show that this method can be 

used to quickly and reliably estimate 3D poses from 2D inputs, without the difculty of 

balancing a generator and discriminator. 

We use the same experimental set up as in Section 3.4, using the ground truth 2D key-

point data from the Human3.6m dataset[48] as inputs and estimating the corresponding 

3D points. 

We show our quantitative results in Table 5.3. We show a large improvement in mm 

error when compared to our previous approach and comparative accuracy with respect 

to similar self-supervised and semi-supervised approaches. 

https://Human3.6m
https://Human3.6m
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Approach Mean accuracy (mm) 

Martinez et al. [79] (supervised) 
Drover et al. [27] (weakly supervised) 

Kudo et al. [61] (self-supervised) 
Chen et al. [12] (self-supervised) 

45.5 
64.6 
130.9 
51.0 

Ours (Chapter 1 - self-supervised) 155.5 

Ours (bone rigidity prior - self-supervised 108.8 

Table 5.3: Mean distance between predicted and ground truth poses in the human3.6m 
dataset. 

Ground Truth Predicted 

Side Diagonal Front Side Diagonal Front 

Table 5.4: Demonstration of using our rigid bones prior for keypoint lifting, using our 
self consistency loss to fx the issues demonstrated in 5.1. More examples can be seen 
in Appendix C. 

Qualitatively, we see that our poses are reasonable and represent the correct pose in 

most cases, as can be seen in Table 5.4. But we do have some errors, notably the leg 

points sometimes being at angles that are not feasible. 

https://human3.6m
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5.4.5 Discussion 

As we have previously discussed, our initial adversarial based pose lifting approach 

covered in Section 3.4 could lift poses into 3D, but not without some issues. If instead, 

we impose our rigid bone prior, we have enough information to determine consistent 

poses, avoiding the occasional issue of inverted poses, while achieving more accurate 

results. In addition, this approach locates which keypoints are connected, using that 

information to predict the depth of each point, and this richer representation could help 

us in the future to predict through occlusion of provide keypoint uncertainty information. 

Another major advantage we see is the ease of training and adjusting hyper-parameters 

in the self-consistency method. Adversarial learning comes with challenges due to the 

requirement for balancing the generator and the discriminator networks, but being able 

to leverage the depth information using self-consistency omits this requirement. This 

model also required far fewer parameters, 50640 compared to the 224962 used in the 

keypoint lifting network of the adversarial approach. Additionally, we would expect this 

approach to be more robust to any other changes that would usually inhibit the results 

found using an adversarial method. 

To answer RQ4, it is difcult to say from this experiment if this is defnitively the min-

imum prior required to solve this problem, but as this prior makes no assumptions that 

prevents our approach from working on pose datasets for any entity built of rigid bones, 

we are satisfed that we have chosen an appropriate prior for representing generalised 

articulation models. 

We must also address some potential concerns using this approach. In this case, with 

2D keypoints as an input, the z co-ordinates are estimated to match the maximum 

apparent length of each limb, so we must make the assumption that the dataset contains 

examples where the limb is perpendicular to the direction of the camera. Without this, 

the estimated depths will only be selected to match the maximum visible lengths of 

limbs which could possibly underestimate limb lengths. But as we expect our datasets 

to be large and diverse enough, this ought to never be a signifcant issue. 

But this section has been based around the assumption that keypoints can be located 

on points of articulation and ends of limbs as an approach for pose lifting. The next 

section will look at how we can learn such points by using our rigid bones prior. 

5.5 Encouraging Keypoints to Locate Joints 

In the previous section we have demonstrated the power of this prior for self supervised 

pose lifting. But this prior is not limited to applications within the depth estimation 

step of our articulation model pipeline, is also applicable to the keypoint detection stage. 
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As previously mentioned, for our bone rigidity constraint to hold, our keypoints must 

capture only joints between rigid limbs in order to exploit their fxed length as a prior. 

In our previous self-supervised multi-task learning approach, as described in Chapter 4, 

there were no objectives to encourage this behaviour. As we have generalised keypoint 

detection to look for keypoints in any structure, there is no reason why it should locate 

limbs over another arbitrary point that encodes similar information. To locate the ends 

of limbs, a new objective function is required. We will take inspiration from our previous 

reconstruction task and place a greater constraint on the reconstructions produced. 

Readdressing RQ3, we are now switching the context of the term keypoint from being 

a generic spatial representation as was used in Chapter 4, to representing landmarks on 

an articulated object. The ideal landmarks are those that locate points of articulation, 

and endpoints of limbs, such as hands and feet. However, as we are still restricted to 

self-supervised learning, the ordering of these keypoints will be arbitrary, as there is no 

implicit ordering contained within the data that informs which keypoint should represent 

each joint. The only criteria is internal consistency, so poses from our model contain 

joints that align, which can be difcult, especially with the natural symmetry found in 

many articulates objects. This will be discussed later in Section 5.6.3. 

5.5.1 Diferentiable Sketching 

Previously, we have been using a standard convolutional neural network for our recon-

structor, but the outputs from this network are unconstrained. For some applications 

this is advantageous as it allows for fne tuned learning to create highly detailed outputs, 

as is the case for a GAN[35]. But for this application we do not require high detailed 

reconstructions, only a good captured representation. For this reason, we believe re-

placing the reconstruction network with a constrained image renderer will aid in this. 

A standard convolutional reconstructor network can learn to create an image from a 

set of keypoints with some fexibility, whereas a diferentiable renderer has no way of 

inferring data that does not exist in the keypoint structure. This means that reducing 

the capability of our reconstruction network forces our keypoint detection network to 

locate stronger keypoints to reduce our reconstruction loss. 

Our main motivation for reconstructing using a renderer is to encourage keypoints to be 

placed on the endpoints of limbs. For this reason, the solution we use is a simple sketching 

renderer that sketches straight lines between pairs of points. Diferentiable Sketching 

[80] allows us to put such a substantial bottleneck on the ability of our reconstruction 

based losses. As the renderer works by drawing lines between keypoints, for a pixel to be 

drawn on the output image, it must be between a pair of keypoints and the connection 

matrix signify that the pair of points are connected. Intuitively, this means that to have 

good reconstructions, we must have keypoints selected at the end of a line and in the 

case of an articulated structure, this means it must be a joint or a limb endpoint. 
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For a wider range of applications, Li et al. [66] have developed an approach that uses a 

vector graphics based renderer, while maintaining diferentiability. For use as a down-

stream renderer that uses keypoints as an input, this would allow for greater accuracy 

in recreating input images than a basic sketch. 

Diferentiable sketching builds upon our designed prior, following simple rules of key-

points that are connected only by straight lines. It allows for sketching images based on 

a set of keypoints and a connection matrix, which can be derived as demonstrated in 

Section 5.3. Combining and mapping these two elements back into image space, using 

diferentiable operations, gives us the ideal framework for creating a self-supervised loss 

function that allows for training our network to locate ideal keypoints for articulation 

models. 

5.5.2 Implementation 

For a proof of concept, we have implemented a simple keypoint regressor network to 

derive keypoints from images and uses diferentiable sketching to train the regressor in a 

self-supervised fashion. We use a simple linear encoder-decoder style network consisting 

of two linear layers to create an encoded space, and two layers to decode the latent 

vectors into a list of keypoints. 

With these output keypoints, we are able to sketch the image for use with the recon-

struction loss. Diferentiable sketching is done via a rasterisation step, which creates a 

raster for every pair of keypoints. This raster calculates the pixel intensities by their 

distance away from a line drawn between the pair of points. We then create a composite 

image using these rasters alongside the LVMST derived connection matrix, which se-

lects which rasters to use. These are then composed into the fnal image by overlapping 

rasters and capping the pixel intensities at 1. 

Training using a LVMST derived connection matrix presents some interesting decisions. 

We have already established a multi-task keypoint detection approach in Chapter 4, but 

adding this as an extra task may lead to degenerate solutions where limb variance is 

minimised to create keypoints stacked on a single location. We instead train without 

this task for the frst portion of the training time, and then add this task once we have 

started to locate some basic structure from the images. 

The network architecture used for the 2D stickman experiments is defned in Table 5.5.2 

We trained this model with batch size of 96 and for 30 epochs, without the use of the 

variance minimisation loss for the frst 5 epochs. We balance our losses using the expo-

nential function approach proposed by Liang and Zhang [68] with a manual multiplier 

of 10 to the reconstruction loss prior to this function. 
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Layer Type Input Size Output Size Activation 

Linear 2w 512 ReLU 

Linear 512 256 ReLU 

Linear 256 512 ReLU 

Linear 512 2k TanH 

Table 5.5: A table of the parameters of each layer of the keypoint detector adapted to 
locate ends of joints on the 2D stickman data, specifying their layer type, input size, 
output size, kernel and activation. We set k = 7, representing the keypoints used to 
build the simple toy stickman dataset and w = 64, representing the width and height of 
our input images. 

Layer Type Input Size Output Size Kernel Activation 

Data viewed as b vectors of size h ∗ w 
Linear h ∗ w h ∗ w - -

Data viewed as b 3D tensors of size 1, h, w 

Conv2D 1 16 3x3 LeakyReLU(α = 0.1) 

Conv2D 16 k 3x3 -

Table 5.6: A table of the parameters of each layer of the keypoint detector adapted to 
locate ends of joints on the Human3.6m stickmen data, specifying their layer type, input 
size, output size, kernel and activation. We set k = 16, representing the keypoints used 
to build the simple toy stickman dataset and h, w = 72, representing the width and 
height of our input images. Output is passed through soft-arg-max to receive predicted 
keypoints of size k, 2. 

Our keypoint detection network architecture for the human3.6m stickmen experiment 

is as defned in Table 5.6. We trained this model with batch size of 96 and for only 

1 epoch, as the dataset contains 1.877e6 images. We balance our losses as in the 2D 

stickmen example. 

5.5.3 Experiments 

To initially test this approach for locating superior keypoints for downstream processing 

with regards to articulation models, we have created some simplifed datasets as a proof 

of concept. 

5.5.3.1 Creating a Simple Sketched Dataset 

As a proof of concept for applying diferentiable sketching to the problem of gener-

alised articulation, we will demonstrate how this approach fnds keypoints on simple 

datasets with articulation. We have created an artifcial articulation model dataset in 

two-dimensions that resembles a stickman with limbs of rigid length, sampled at ran-

dom angles. The root point at the mid shoulder area is sampled at random and the 

mid-hip point is set to a fxed distance directly below and head point is placed directly 

https://human3.6m
https://Human3.6m
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Table 5.7: Examples of images generated in our artifcial two-dimensional articulation 
dataset. 

above. Arms and legs are randomly sampled within a limited range of acceptable angles. 

Examples of images from this dataset are shown in Table 5.7. 

5.5.3.2 Proof of Concept: Artifcial Two-Dimensional Stick Figures 

In the simplest case, we are looking to learn keypoints on an image and learn the 

underlying articulation model. As a proof of concept we have used our artifcial dataset 

as shown in Table 5.7, that limits the articulation points to rotate only in two dimensions. 

Our network must learn where to place keypoints on the image to create a connection 

matrix via the LVMST method. 

As we have created this dataset artifcially, we have ground truth labels, and we can use 

these labels to quantitatively measure the distance between our predicted keypoints and 

the ground truth points. But as the ordering of our keypoints is unrestricted, before 

measuring distances we must use the Hungarian algorithm [62], to align the indices 

that contain keypoints in the ground truth and the predicted cases. This is applied to 

the predicted points and done on a batch-wise basis to enforce keypoint consistency, 

doing on a per-example basis would artifcially infate our result if any of our estimated 

keypoints were inconsistent. A numerical comparison of these keypoints is found in 

Table 5.8, showing the mean L2 distance between predicted and ground truth keypoints. 

Additionally, a qualitative analysis is shown in Table 5.9, to visually see where keypoints 

are placed in either case. 

We note, both qualitatively and qualitatively that the LVMST approach with diferen-

tiable sketching is superior when our goal is locating keypoints that sit on articulation 

points or the ends of limbs, even if the multi-task approach is equally consistent. We 

believe that this is due to a greater restriction on the downstream task used for training, 

which cannot achieve low reconstruction losses unless a keypoint is placed on limb ends 

and articulation points. Our generalised keypoint detector has no such restriction as 

this would not maintain generalisability, as was a key aim of this approach. 
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Multi-Task 
Keypoint 
Detector 

LVMST 
Keypoint 
Detector 

Centre Shoulder 0.2048 0.0003 

Centre Hip 0.1993 0.0003 

Head 0.2102 0.0006 

Left Arm 0.2741 0.0005 

Right Arm 0.2229 0.0024 

Left Leg 0.7425 0.0023 

Right Leg 0.4418 0.0024 

Mean 0.2651 0.0006 

Table 5.8: Comparison of mean Mean Squared Errors between Ground Truth and pre-
dicted landmarks, on a per landmark basis, from the artifcial 2D stickman dataset. 

Multi-Task Keypoint Detector LVMST Keypoint Detector 

Table 5.9: Comparison of placement of keypoints between Multi-Task generalised key-
point detector and LVMST with Diferentiable Sketching on the artifcial 2D stickman 
dataset. 
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Table 5.10: Examples of images generated in our artifcial three-dimensional articulation 
dataset, using ground truth points from the Human3.6m dataset. 

This result will be advantageous when we look to apply this keypoint detector to harder 

examples where the articulation and end points are not as obvious, and will allow for 

better estimation of depth, as discussed previously in Section 5.4. 

5.5.3.3 Toy Dataset: Human3.6m Stick Figures 

We have shown the previous section how we can solve this task when dealing with two-

dimensional articulated objects. The next step is to extend the previous solution into 

the third dimension in order to infer the depth of a structure. Can we locate keypoints 

on shapes that are not just two-dimensional and will thus likely contain self-occlusion? 

We create a dataset in a similar format to the 2d stickman dataset as shown in Table 5.7, 

but with realistic poses taken from the 3d keypoints contained within the Human3.6m 

dataset[48]. Examples of images contained within this dataset are shown in Table 5.10. 

It is also worth noting that when we use these images for an input to our model, we 

apply a Gaussian blur onto them to help create a smooth gradient through our network. 

We demonstrate the results of this experiment in Table 5.11. We see that we are now 

able to place keypoints near the ends of limbs as desired. However, fnding consistent 

keypoints in this more complex case seems to be more of a challenge. This may be 

attributed to a couple of reasons. Firstly, the scale of the features that we are looking 

for is much smaller, especially in the case of the hip and shoulder keypoints where only 

a few pixels separate those points in the best case scenario. In a worst case scenario, 

these points may be overlapping in the image-space and thus our model must allow for 

this. 

Secondly, self-occlusion makes fnding consistent keypoints in highly dynamic areas such 

as the arms, especially as we are using self-supervised learning and the model is learning 

entirely from the image data. 

Because of this lack of consistency, it is difcult to evaluate these results quantitatively, 

as distances from ground truth points are difcult to calculate when the Hungarian al-

gorithm will produce highly variable alignments for each example. While one approach 

https://Human3.6m
https://Human3.6m
https://Human3.6m
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Ground Truth Predicted 

Table 5.11: Comparison of placement of keypoints between in the ground truth Hu-
man3.6m stickmen dataset and the diferentiable sketching approach at placing key-
points. 

could be to assume the nearest point is the best match and allowing for duplicate as-

signments, we run into issues around the arm areas in this case, as the distribution of 

keypoints are sparse in the upper half of the pose. 

5.5.4 Discussion 

In this section we have shown how we can use our rigid bones prior along with difer-

entiable sketching to encourage our keypoint detector model to learn to select points 
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near areas of articulation and limb end points. This is desirable for our needs in de-

termining articulation models, but we have only demonstrated success on toy datasets. 

This simplifes the task as it is much easier to sketch the output to match the format of 

the input images, meaning a simple mean squared error between the sketch and input 

images provides a sufcient training gradient. The difculty will now be in translating 

this approach onto real world images. 

One way could be by taking inspiration from Mihai and Hare [81], where sketching is used 

to communicate information from images between a pair of neural networks. Instead of 

a mean squared error loss based on the input images, we could make use of a referential 

game, where a diferentiable renderer is used to communicate articulation between two 

networks. By restricting the data to examples that contain the same subject in diferent 

poses, our network should fnd an optimal solution by sketching an articulated object, 

by drawing a stick fgure that resembles the object in order for another network to solve 

the referential game. 

This approach may require an extra loss function to prevent the network from using 

the sketch like a hashing function, where the sketching network will output unique 

shapes for each image that do not follow the structure of the articulation model but 

still provide sufcient information to uniquely identify each pose. A structure-wise loss 

may be required, such as a Chamfer distance loss between a foreground/background 

segmentation and the sketch used in communication. Another solution would be to 

solve a similar game based on simple afne transforms of the same input image. This 

would prevent the network from communicating appearance information over structural 

information as the only change in the image will be structural between transforms. 

5.6 Discussion 

This chapter has introduced a simple yet powerful prior and we have subsequently 

demonstrated its usefulness in both stages of the self-supervised 3D pose estimation 

pipeline. But as the problem we are aiming to solve is very complex, this prior is not 

fawless in solving every problem in this space. This section will discuss issues with the 

prior and implementations that leverage the prior, and discuss other possible priors that 

could also be used to solve this difcult problem. 

5.6.1 Problems with Limb Variance Minimum Spanning Tree 

LVMST is a simple and elegant way of deriving the connectivity of an articulated model 

but it is not without its limitations. Using the absolute distances quickly breaks down 

when the scale of our subject can vary due to distance between camera and subject. 

Normalisation of limb lengths is the obvious solution, but with a number of unknown 
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parameters, of both the camera and subject, there is no obvious way of normalising the 

data without more information. We also acknowledge that at inference time, we require 

a batch to derive a connectivity, which means if this were a real-time application, we 

would require either a rolling batch of video frames, thus a short time delay before we 

can compute an articulated model while frames are batched, or a way of circumventing 

the batch requirement. One such way would be to train a simple network to imitate 

the output of the LVMST algorithm given a set of keypoints, assuming there is enough 

information in those points to make the inference. 

Another issue we see with this algorithm is during the training stage. If the LVMST 

algorithm selects the wrong connection matrix, then that will be enforced later in train-

ing, as our loss that minimises variance makes the chosen connection matrix more likely 

to appear at the next training step. 

A necessary improvement for the future is a training scheme that allows for greater 

fexibility for discovery of new connection matrices. One option could be train using 

only the other losses frst, and introduce our minimising variance loss at a later stage. 

This would scope the dataset for suitable keypoints for solving the other tasks, with 

the hope that they capture some structure in the process. After a portion of training 

time, we would then introduce the loss that minimises variance and attempts to move 

the estimated keypoints onto suitable articulation locations. 

5.6.2 Robustness to Errors in Training Data 

We have demonstrated the ability to learn a connected articulation model when given 

high quality data, but in a scenario where high quality data is not available, modif-

cations still need to be made. One such approach to add robustness when confronted 

with imperfect training data, is to provide each batch with a pre-processing step once 

keypoints have been detected from each image. This pre-processing could include out-

lier detection to remove any shapes that sit far outside of the expected range, and only 

deriving an articulation model from the remaining data. As we also require robustness 

in our system, which in deep learning is often provided with difcult training examples, 

in this case extreme poses, so careful tweaking of an outlier detection algorithm would 

also be required to maintain the robustness derived from difcult dataset examples. 

5.6.3 Consistent Keypoints in Symmetric Models 

Symmetry is a recurring problem in this space, as a lot of articulated objects that we 

are interested in are naturally symmetrical and determining if we are looking at the 

front or the back of our subject is not trivial. We observe symmetry issues in keypoint 

detection where our network will place keypoints in the same regions of the image, and 
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not fip left with right when we are looking at the back instead of the front. We briefy 

discussed this issue in Section 4.7.1.3. We also see issues in keypoint lifting, where 

depending on the network initialisation, we derive either all inverted poses or all correct 

poses. However, this is easily resolved by rerunning the network training with new 

initialisation parameters, or if we were happy to lose some generalisation, then a joint 

angle prior similar to that used by Kudo et al. [61] would resolve this issue. 

5.6.4 Other Possible Priors 

In this chapter we selected bone rigidity as our prior to assist the self-supervised model in 

learning articulation, but this is not the only prior that we considered. Careful selection 

of a self-supervised prior is required as too strong a prior would remove the generalisation 

advantages of using self-supervised learning, or may require information that we cannot 

take for granted in all articulated datasets. We must also think about edge cases where 

our prior knowledge may break down and lead to erroneous results. 

5.6.4.1 Centre of Mass Estimation 

A potentially simple and powerful prior would be to estimate a centre of gravity to make 

sure that our pose obeys an estimated physics model. This would assist in the depth 

inferring step as our z co-ordinates would have to be balanced when combined with our 

x and z co-ordinates, eliminating a range of poses that would no longer be possible. 

One issue with this is knowing the estimated mass of the real world parts that our 

keypoints represent. Estimating the weights of each articulated component purely from 

the image data with enough accuracy would be difcult in this approach, but number 

of surrounding pixels in the foreground object may provide a rough heuristic for mass. 

Some more fringe cases also exist that will skew the success of such a prior such as when 

the subject is sitting or leaning. Other cases such as being mid-fall or in low gravity 

may occur but certainly outside of the expected range of poses that we would expect to 

see. 

5.6.4.2 Limiting Joint Angles 

Intuitively we can see that joints in an articulated model can only bend so far before they 

have hit a limit and cannot bend any further without damage. This is a prior that could 

help remove erroneous examples, and provide additional information for estimating the 

connection matrix by assuming consistent range of angles between pairs of connected 

points. While Kudo et al. [61] and Raaj [90] both use a similar prior to add consistency 

to their approaches, both rely on knowing a real world model of joint angles. A proposed 

tweak to this prior, which makes the assumption that there is a range of valid angles 
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for each joint, should not remove generalisability and could perform outlier detection as 

a self-checking tool. By learning the distribution of each articulation point purely by 

observation in the data, it would be possible to apply expected these expected values 

to add consistency to the keypoint prediction. However, the implementation might 

require careful balancing to ensure it gives the model enough freedom to learn the 

correct distribution of points from the data before it restricts estimation of keypoints to 

these observed distributions. 

5.6.4.3 Symmetry 

It is common for articulated models, especially those in nature, to contain symmetry 

which is something we can potentially leverage to assist in pose estimation. Wu et al. 

[109] do this by assuming the image contains a 3D deformable object that is also sym-

metrical, and take an auto-encoder and renderer based approach to estimate the depth 

of human faces, cat faces and cars. A symmetrical approach would help in our articu-

lated model case too, and error checking via left and right side correspondence, such as 

checking that limb lengths were consistent across the symmetrical plane, would help to 

add robustness in cases that estimated keypoints were erroneous. However this could 

lack the generalisability that we are looking for in our model, as some articulated mod-

els, such as robotic arms, do not contain symmetry that would allow for this approach 

to work. 

5.7 Conclusion 

This Chapter has introduced a prior that can be used to assist in fnding self-supervised 

articulation models. Determining the correct prior is aiming to answer RQ4, and fnd-

ing the balance between a very applicable prior and a very powerful prior is essential 

for locating generalised articulation models. We believe that this prior contains enough 

information to assist in locating articulation models without making too strong assump-

tions to inhibit the generalisability of this approach. 





Chapter 6 

Towards Self-Supervised Learning 

of 3D Articulation 

This chapter aims to combine the work done in Chapters 3 and 4 into one pipeline that 

is able to convert a 2D image of an articulated object into a list of 3D keypoints. As 

discussed previously, this problem is ill-posed. Additional prior knowledge is required 

to solve this, thus we look to implement the bone rigidity prior from Chapter 5, to aid 

in determining the underlying articulation model. This chapter also aims to answer 

RQ1, as we pull together the knowledge learnt from all of the previous chapters into 

one pipeline that attempts to go from an input of an image to an output of a list of 3D 

keypoints. 

6.1 Introduction 

Self-supervised 3D pose estimation is a difcult task, thus it is unlikely that training 

a network without the use sufcient prior information will yield good results, and we 

demonstrate this in Sections 6.3 and 6.4. The use of a prior will frstly aim to improve 

our keypoint detector to place our keypoints on articulation points as demonstrated pre-

viously in Section 5.5. Articulation points contain more information about our structure 

than arbitrary points as found via a generic keypoint detector as previously discussed in 

Chapter 4, and thus contain more information for solving downstream tasks, especially 

when considering depth estimation. We have demonstrated previously, in Section 5.4, 

how we can exploit bone rigidity to infer depth in the articulated model when given 

ground truth 2D keypoints, but can we estimate keypoints to a close enough extent to 

achieve the same depth inference? 

101 
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Extracting 3D information from a 2D image in a self-supervised way traditionally re-

quires strong prior knowledge to know how to extract 3D information from a 2D rep-

resentation of the world, commonly done using multiple viewpoints [67, 106, 4] to infer 

depth from information found in the input. 

The following sections will investigate what happens when we try to learn 3D points 

with no prior, using a näıve method that combines the work of Chapters 3 and 4. We 

show that there is more information required than simply encouraging keypoints to fnd 

articulation as demonstrated previously in Section 5.5, with a simple approach combining 

diferentiable sketching with adversarial keypoint lifting. We then explore how we can 

introduce our carefully designed bone rigidity prior in an attempt to determine 3D 

articulation. We fnish this chapter by discussing the obstacles that still need to be 

overcome to complete a self-supervised 3D articulation model approach using a bone 

rigidity prior to achieve reliable results. 

6.2 Related Work 

A common approach to self-supervised 3D keypoint estimation relies on multi-view ge-

ometry. Using multiple views of unlabelled images, Wandt et al. [106] train a self-

supervised monocular 3D pose estimator using multi-view consistency constraints to 

disentangle the 3D pose and the camera parameters. Their novel contribution in this 

space is being able to work without calibrated cameras, and thus allows for non-static 

cameras that are pointed at the same person. They also make use of an of-the-shelf 2D 

pose estimator for the initial stage of the 3D pose estimation pipeline, which is some-

thing that we are aiming to avoid, attempting to learn a 2D keypoint detector using 

purely self-supervised techniques. 

Another approach by Li et al. [67] looks into applying geometric knowledge to solve the 

self-supervised 3D pose estimation problem. To reduce errors from self-occlusion, they 

use confdence values for each 2D keypoint and integrate losses from diferent viewpoints 

as an efective way of creating a 3D structure when some part of the structure cannot 

be seen from all angles. In a similar fashion to Wandt et al. [106], they also use a 

state-of-the-art 2D pose estimator at the frst stage of their pipeline, breaking the strict 

self-supervised restriction that we have imposed for this thesis. 

In a similar multi-view environment to the two approaches discussed above, Bouazizi 

et al. [4] use self-supervised learning to estimate 3D human pose with a high degree of 

accuracy without the use of a pre-trained 2D pose estimator. Their algorithm trian-

gulates the 2D pose estimates from each viewpoint, while additionally implementing a 

re-projection loss and imposing geometric constraints, looking for a consistent 3D model 

across every viewpoint. At time of publication, their approach was state of the art for 

purely self-supervised approaches to 3D pose estimation on the Human3.6m dataset. 

https://Human3.6m
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In a 3D hand-pose specifc implementation, Wan et al. [105] aim to train a pose estimator 

through a ftting function using a dataset of hand depth maps. Their approach uses a 

diferentiable renderer to approximate the surface of hand found in the depth map, and 

by leveraging a simple reconstruction loss to train in a self-supervised fashion. Their 

approach makes use of a heavy prior in the form of a hand model that is ft to each 

depth map, which is a hand crafted model built of 41 spheres that estimates the shape 

of a human hand. Naturally this lacks the generalisability to any articulated object that 

we desire in this thesis. 

Unlike the majority of these approaches, our aim is to remove the requirement for 

multiple views of the same object, any semi-supervised learning, or using a pre-trained 

keypoint detector. Our approach should only use a monocular dataset and our generic 

articulation prior as previously introduced in Chapter 5. 

6.3 Näıve Combination of Previous Approaches 

In this section, we will demonstrate how learning self-supervised 3D articulation models 

from images is ill-posed when we do not use a strong enough prior. This approach for an 

end-to-end pipeline is to leverage the multi-task framework, introduced in Chapter 4, to 

learn 2D keypoints, before introducing an additional keypoint lifting task, that is trained 

via our adversarial loss from the frst section, to infer the depth of each point. We have 

previously demonstrated that structure can be derived from images with a multi-task 

trained keypoint detector, and that adversarial learning can lift a two-dimensional pose 

into 3D, but can both these steps be trained simultaneously? 

6.3.1 Motivation 

The idea behind this approach is simple as both sections are established in Chapters 3 

and 4, so logically training both sections end-to-end would give a simple solution to 

this difcult problem. While it was unrealistic to assume that this approach would be 

successful, experimenting in the simplest case and observing where the failures occur 

gives valuable insight into the nature of the problem at hand. 

6.3.2 Implementation 

A quick implementation of this, adapted from the implementation discussed in Sec-

tion 4.5, quickly shows the issues with trying to solve the problem in this way. 

Figure 6.1 outlines this approach, similar to the layout for capturing spatial representa-

tions in Chapter 4, but with an additional pose lifting task, which feeds into the balanced 
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Figure 6.1: Diagram outlining this näıve approach to a full 3D articulation model estima-
tion pipeline. The losses from the three keypoint estimation training tasks are summed 
with the adversarial loss function (typically known as the generator loss function), with 
a separate loss to train the discriminator network. 

multi-task learning loss balancing function [68]. The discriminator is also trained in the 

same way as in Chapter 3. 

6.3.3 Experiments 

In Table 6.1, we can clearly see that our 2D keypoints capture the two-dimensional 

structure, but the learnt 3D structures are mostly degenerate solutions or ambiguous 

shapes with no discernible structure. The experiments using this technique show us 

quickly that this approach will not work. We hypothesise that the reasoning for the 

inability to learn 3D information is that our 2D keypoints found from self-supervised 

learning do not contain enough of the fne nuanced details required to infer the 3D 

structure. 
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Input Image Front View Diagonal View Side View 

Table 6.1: Results when attempting this näıve method on the Human3.6m dataset. 
While some basic structure has been captured, it is clear to see that keypoints have not 
located articulation points or ends of limbs, and keypoints fail to adequately cover the 
entire subject in each image. 

https://Human3.6m
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6.3.4 Discussion and Analysis 

A key part of this failure is that the keypoints found from this self-supervised multi-

task approach do not always sit on points of articulation as they are not required to by 

any of our objective functions in order to minimise our overall losses. Without locating 

articulation points, we have little in the way of information required for inferring depth in 

the image with self-supervised techniques. The inability to learn 3D articulation models 

without the use of a prior demonstrates the requirement for stronger prior knowledge. 

We have two solutions to overcome the spatial bottleneck problem, we either create 

better keypoints that capture articulation with more efciency, or we pass through image 

information along with the keypoints to give context to our keypoint, such that depth 

can be learnt. When considering the power and simplicity of the bone rigidity prior, as 

introduced in Chapter 5, we naturally would like to infer stronger keypoints. Referring 

back to RQ3, we notice a semantic gap between the keypoints learnt by our generalised 

keypoint detector and the keypoints (sometimes called landmarks in this context) that 

were previously used to infer depth in Chapter 3. This gap is caused by the amount 

of information that each keypoint posses, even though both are numerically identical, 

as a list of X, Y co-ordinates. Switching our context of keypoints from arbitrary points 

capturing spatial information to points that capture articulation, allows us not only to 

correctly implement our bone rigidity prior, but to specialise into a system that considers 

the spatial relationships between keypoints in three-dimensions. 

6.4 Full Pipeline with Adversarial Learning and Diferen-

tiable Sketching 

As we have established in Section 5.5 and seen again within Section 6.3, locating key-

points that sit on articulation points or ends of joints is difcult. As before, we are 

helping our self-supervised keypoint detector to locate the correct points of articulation 

through a diferentiable sketching technique to replace our previous standard reconstruc-

tion task. If keypoints are closer to the true articulation points, then our depth estima-

tion using adversarial learning should be able to correctly estimate the z-coordinates, as 

shown when using ground truth 2D keypoints in Chapter 3. 

6.4.1 Motivation 

As introduced in Section 5.5, we can use a diferentiable sketching based reconstruc-

tion loss to place keypoints in desirable locations such as articulation points and ends 

of limbs within the two-dimensional space. We aim to concurrently learn to estimate 

articulation points as 2D keypoints, and lift those points into the third dimension using 

the adversarial keypoint lifting approach described in Section 3.4. While we introduced 
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the idea of using the Limb Variance Minimum Spanning Tree in Section 5.5, for simplic-

ity in this experiment, we estimate the connection matrix using the keypoint detector 

network, learning both keypoints and connections through the same latent space vector. 

6.4.2 Implementation 

Our implementation for the experiments in this section is a fusion of the adversarial 

keypoint lifting found in Section 3.4 and the keypoint detection approach as discussed in 

Section 5.5. The output of the latter is fed into the former to estimate 3D keypoints using 

images as the original input. By training a pipeline to perform these both simultaneously, 

we hope to be able to locate good 2D keypoints while also estimating their depths. 

Our implementation consists of two sections, each with their own optimiser. The frst 

contains a 3D keypoint detector using an auto-encoder to encode each image into a latent 

space, before predicting the 3D keypoints and a connection matrix which determines if 

two keypoints should be connected. The second network used in this approach is a 

discriminator that determines if the viewpoint of the keypoints is as originally found 

within the data or a side-on viewpoint using the estimated depth. 

We then use these the estimated keypoints to create a reconstruction loss via the dif-

ferentiable rendering approach, by projecting the 3D keypoints into a 2D shape at a 

fxed rotation θ = 0. For our adversarial loss function, we randomly sample values for θ 

between −π and π, and project our 3D data using that value as a rotation parameter, 

around a fxed y-axis. The frst network is optimised to maximise the error rate of this 

prediction while the discriminator is optimised to minimise the error rate. The fnal 

loss functions we use are an L2 reconstruction loss between input images and rendered 

images, adversarial loss for our keypoint detector and lifter, and an adversarial loss for 

our discriminator. 

6.4.3 Experiments 

Using the toy dataset frst established in Section 5.5.3.3, we experiment to see if we are 

able to not only predict articulation points, but also simultaneously estimate the corre-

sponding z co-ordinates. Our results, shown in Table 6.2, demonstrate that encouraging 

keypoints towards articulation gives a good model for reconstructing the input images 

using diferentiable rendering. However, when it comes to the depth inference, this ap-

proach is not enough to learn sensible 3D articulated structures as shown in Table 6.3. 

As can be seen in these results, while 2D keypoints are somewhat placed in good locations 

and leads to decent reconstructions, the lifted points do not represent a reasonable 

structure. It can also be seen that the placement of keypoints not required for the 

reconstruction are placed around the edges with no connections predicted between them. 
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Ground Truth Reconstructions 

Table 6.2: Demonstration of input images and sketches that aim to reproduce the input 
using regressed keypoints, connection matrix and the diferentiable sketching module. 

Presumably, this is learnt by the encoder in part to minimise the generator’s loss for the 

adversarial learning section. 

6.4.4 Discussion 

As we have seen, this approach succeeds in pushing keypoints onto articulation and end 

points, and achieving decent results in terms of two-dimensional reconstructions, but this 

is not sufcient to convincingly lift our estimated 2D keypoints into the third dimension. 

While selecting articulation and end points as keypoints should work, there is still further 

information required to piece together fully self-supervised keypoint detection and lifting. 
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Ground Truth Predicted 

Front Diagonal Side Front Diagonal Side 

Table 6.3: Demonstration of 3D keypoints found when concurrently learning to place 
keypoints and lift them into three dimensions using diferentiable sketching. More ex-
amples can be seen in Appendix D. 

6.5 Full Pipeline with Bone Rigidity Prior 

In the previous section we have shown that an image-to-3D approach with minimal 

prior knowledge is too ill-posed to learn a solution to the generalised articulated pose 

estimation problem. As demonstrated in Chapter 5, a bone rigidity prior can be used to 

both locate the articulated model and infer the depth of each two-dimensional keypoint 

to create a 3D articulation model. We also show how it can help to locate better 

2d keypoints, aiming to locate points of articulation when used in conjunction with a 

constrained diferentiable sketching module in place of a reconstruction network. 

Our goal is to leverage the bone rigidity prior to simultaneously infer the depth of each 

keypoint, and to assist in location of two-dimensional keypoints, especially in cases with 

occlusion. 
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Figure 6.2: A diagram outlining the full approach using the bone rigidity prior. 2D key-
points are regressed from input images, before being lifted into 3D. The lifted keypoints 
are used to predict the connection matrix via the LVMST algorithm, which is then used 
in combination with the 2D keypoints to create a rendered sketch. The three losses, 
L0, L1, L2 are summed using the Balanced Multi-task Learning framework to train the 
learnable parameters in the system. 

6.5.1 Motivation 

Putting all of these elements together into one pipeline is now the fnal step required 

for our generalised articulation model detection approach. This pipeline is best shown 

in Figure 6.2. 

The following sections will break down the approach into the stages of the pipeline and 

describe the aim of each stage. 

6.5.1.1 Keypoint Detection 

Our pipeline starts with a keypoint regressor network which takes a batch of images of 

shape B, C, X, Y , and returns a batch of keypoint shapes B, K, 2, where each element 

represents K x, y co-ordinates. For basic datasets, a simple MLP sufces, but for complex 

datasets a convolutional network followed by a soft-arg-max operator is used. 

6.5.1.2 Depth Estimation 

Depth estimation is a simple step that uses a standard MLP as a depth inference network. 

Our estimated 2D keypoints from the keypoint regressor are fed through the depth 

inference network and output corresponding Z co-ordinates for each X, Y pair, and we 

append each Z co-ordinate to the inputs to get the estimated 3D keypoints. 
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6.5.1.3 Connection Matrix Estimation 

Using the previously discussed LVMST algorithm, we can derive a connection matrix 

using this batch of estimated 3D keypoints. Our second loss function to give a training 

signal to our depth estimation network is then formulated by summing the result of an 

element-wise multiplication between our connection matrix and our pairwise distance 

variance matrix. Minimising this loss encourages our network to learn Z co-ordinates 

that maintain our bone rigidity consistency over the batch. 

6.5.1.4 Diferentiable Sketching 

Our diferentiable renderer then takes our 2D keypoints and connection matrix and ren-

ders a sketch where lines are drawn between the X,Y co-ordinates of every keypoint pair 

as determined by the derived connection matrix. We can now establish our reconstruc-

tion loss as a mean squared error between input images and these sketches. 

6.5.1.5 Loss Functions 

The loss functions required to minimise concurrently are as follows: 

Reconstruction Loss (L0) 

Our reconstruction loss is simply formulated as the mean squared error between the 

input images and the reconstruction images generated by the diferentiable renderer 

using the 2D keypoints and the connection matrix. 

LVMST Variance Loss (L1) 

We would additionally like to impose a loss to enforce constant pairwise distances over 

the batch of the pairs of points connected by rigid bones. Our loss function to meet 

this aim is simply to minimise the sum of the dot product of our connection matrix and 

pairwise distance variance matrix. 

Self-Consistency Loss (L2) 

Finally, we impose a self-consistency loss, as introduced in Section 5.4. The Z co-

ordinates are then attached to the Y co-ordinates and Z,Y is then fed back through the 

depth inference network to estimate X co-ordinates for our self-consistency loss, which is 

calculated using mean squared error between the original value for X and the prediction 

of X. 

We are also required to balance these losses using a monotonically increasing transfor-

mation function [68], and sum the transformed losses to get a fnal combined loss. 
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6.5.2 Implementation 

The implementation for this approach is a combination of numerous elements from 

previous sections. The keypoint lifting implementation was previously discussed in Sec-

tion 5.4 and re-used for this implementation. Likewise, our keypoint detection approach, 

where diferentiable sketching was used to encourage keypoints to fnd articulation and 

end points, is unchanged from Section 5.5. During our experimentation, we have tried 

multiple neural network architectures for our keypoint regressor including a simple lin-

ear network when using images from our toy articulation dataset, and a convolutional 

network where images have greater complexity. 

6.5.3 Experiments 

As can be seen in Table 6.4, we are able to generate realistic two-dimensional sketches of 

the input images, which appear to capture the articulation of the subject with success, 

especially visible in the knee keypoints. The areas around the arms appear to be less 

successful but still manage to contain some convincing articulation. This is likely due 

to the increased complexity of the arm poses as seen in the dataset. 

However, as can be seen in Table 6.5, we have not managed to capture the desired three 

dimensional structure. It is not intuitive to say exactly why this is failing, however it is 

likely to be due to faws in the two-dimensional keypoints, and 2D keypoint errors will 

propagate and accentuate errors when points are lifted using the LVMST-based lifting. 

6.5.4 Discussion 

As we have seen, the complete pipeline when being trained end-to-end does not grant 

satisfactory results. One reason for this could be that it is difcult to simultaneously 

learn to place 2D keypoints when given an image of an articulated object, while also 

lifting those points into three dimensions. In an attempt to alleviate this problem, in 

the next section we will demonstrate the same pipeline but with the two sections being 

trained independently. 
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Ground Truth Reconstructions 

Table 6.4: Demonstration of input images and sketches that aim to reproduce the input 
using regressed keypoints, connection matrix and the diferentiable sketching module. 
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Ground Truth Predicted 

Front Diagonal Side Front Diagonal Side 

Table 6.5: Demonstration of 3D keypoints found when concurrently learning to place 
keypoints and lift them into three dimensions using our rigid bones prior. More examples 
can be seen in Appendix D. 
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6.6 Simplifcation via Pipeline Splitting 

We have shown the failure case when attempting to learn the entire pipeline in an end-

to-end fashion. In an attempt to derive success using these approaches, we have split 

the pipeline into its two components, keypoint detection and keypoint lifting, using the 

diferentiable sketching based approach to fnd keypoints before lifting them using the 

LVMST approach. 

6.6.1 Motivation 

We have previously demonstrated success using the two individual approaches, but the 

combination of them into one system that is trained in an end-to-end fashion comes with 

difculties. By splitting into two separate parts, keypoint detection and keypoint lifting, 

saving regressed keypoints from the former, before using those as the input to train the 

latter, we aim to avoid some of the problems that occur when training concurrently. 

If the predicted keypoints are an exact match to the ground truth points, then we can 

expect success, but any errors in the found keypoints will inhibit the results of the lifting 

stage. 

6.6.2 Experiments 

The frst stage of this pipeline is shown in Table 6.6 as a recap, these results are no 

diferent to those initially discussed in Chapter 5. We then use these two-dimensional 

keypoints as the ground truth inputs for the keypoint lifting stage. 

As can be seen in Table 6.7, this approach does not achieve satisfactory results for 

estimating three-dimensional structure correctly. However this approach does manage 

to derive some features in the structure, convincing articulation has been identifed in 

the leg area. 

The results of this further reveal the extent to which the limb variance minimum span-

ning tree approach to 2D to 3D keypoint lifting relies upon good quality 2D data that 

correctly captures the underlying three dimensional structure. However, this does not 

completely invalidate the usage of this algorithm in a self-supervised environment. We 

will discuss possible adaptations and future directions of the LVMST algorithm in more 

detail in the following section. 
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Ground Truth Reconstructions 

Table 6.6: Demonstration of input images and sketches that aim to reproduce the input 
using regressed keypoints, connection matrix and the diferentiable sketching module. 

Predicted Ground Truth 

Front Diagonal Side Front Diagonal Side 

Table 6.7: Demonstration of 3D keypoints found when using our rigid bones prior, but 
the full pipeline is split into keypoint detection and depth estimation. More examples 
can be seen in Appendix D. 
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6.7 Discussion 

We have made some strong progress towards locating generalised articulation models, 

but there is still some way to go before we can be satisfed with these results. While we 

have shown we can both locate good keypoints from images and estimate depth from 

ground truth keypoints, doing both concurrently comes with difculties. 

The key take-away from our experiments concerning the keypoint lifting section of the 

pipeline is that using a bone rigidity prior for depth estimation is very sensitive to noise 

in the two-dimensional data. Small errors found at the keypoint detection stage will 

lead to large errors when we attempt to lift those points into three dimensions. The 

rationale for this is that bone rigidity based lifting is based purely on consistent limb 

lengths through-out a batch of data and exploiting that consistency to predict the depth 

of each point. Noise breaks that consistency and thus inhibits the ability to estimate 

depth. 

Theoretically, this means that our approach could still work with further research. The 

requirement to obtain good results relies on a large increase in accuracy at the keypoint 

detection stage. While out of scope for this thesis, one approach could be to leverage a 

supervised or semi-supervised keypoint detection stage, using paired images and ground 

truth keypoints, to create an accurate and reliable keypoint detector. Integrating this 

into our pipeline with keypoint lifting and training in an end-to-end fashion could allow 

for a 3D keypoint detector which requires only 2D keypoints, and in a semi-supervised 

case, only a small number of labelled examples. We discuss semi-supervised learning 

relaxations further in Section 7.3.3. 

6.7.1 Limitations 

We note that our generalised self-supervised articulation estimation model has limita-

tions, and we highlight these here. 

6.7.1.1 Limb Variance Minimum Spanning Trees 

Our LVMST method for fnding connect-ability does have some limitations. We no-

tice there are difculties in balancing exploration and exploitation, we need to be able 

to explore for better points in the gradient descent optimisation while restricting our 

keypoints to a shape that captures some structure. 

We also note that our diferentiable implementation requires workarounds, and while 

these allow for the minimum spanning tree to be used within a deep learning system, 

there are edge cases where we may fnd errors. If the variance of two limbs is identical 

across the batch then errors can occur in the soft-arg-max function, selecting the index 
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that lies half-way between the pair of minimum values. This is hugely unlikely, and can 

be ignored in most cases, however if this were to be used in safety critical environments, 

then this is a problem that must be addressed. 

We have also not implemented any outlier detection within our LVMST algorithm, 

which could potentially cause misclassifed keypoints from the keypoint detection stage 

to break later stages of the pipeline. Outlier detection could be used to discard individual 

poses from the connection matrix calculation to ensure an error in the batch does not 

propagate to other poses. A sophisticated error correction approach could then be used 

to reverse engineer the keypoints in the erroneous poses, using the expected limb length 

to better estimate the keypoints. This could aid in examples where occlusion is present 

in an image. 

6.7.1.2 Diferentiable Sketching 

Diferentiable sketching gives us the power to restrain the capacity of the downstream 

network, enforcing stronger keypoints which are more likely to lie on joints and the 

ends of limbs. However, when dealing with real world images, we must make some 

adjustments to create a strong gradient between the sketched and input images. 

Adding learnt colours to our sketched lines is an initial step, but in real life, it is un-

realistic that this gives enough power to draw the articulated object in the image. A 

common example of a failure state is a fore-arm on a person wearing a T-shirt, where 

the top half will be coloured by the T-shirt and the lower half as the colour of their skin. 

Colouring each end of the line with a gradient between the two could be one option to 

allow for this to be learnt. 

Learning the widths of each line is also essential for sketching real world images, as not 

all sections of an articulated object will be the same width. Adding a constraint for the 

maximum and minimum line widths would be essential for this adaption, as the network 

could learn to use the lines as large brush strokes to colour areas of the image, or setting 

the line width to zero if a keypoint is redundant for a reconstruction. 

In all, if we would like the diferentiable sketching approach to be widely applicable for 

learning articulation, we must carefully balance the capabilities such that we can draw 

a coloured articulated model, without allowing for too much control, so that the found 

keypoints are still required to capture a strong structure. 

Another consideration is diferentiable sketching in three dimensions, which we will 

discuss in the future work section, found in Section 7.4. 
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6.7.2 Challenges when using Real (In the Wild) Images 

When applying this theory into practical applications, there are numerous uncontrolled 

variables that we may encounter, and could cause issues within our approaches. 

The frst is the camera perspective, which could be managed using a disentangled camera 

and simulating the projection matrix. Distance between camera and person currently 

breaks the pairwise distance assumption, and would require a more sophisticated data 

normalisation stage to solve. Occlusion, in both self-occlusion and object occlusion, will 

add uncertainty to any hidden keypoints. Multi-subject images could potentially be 

solved by appending an object detector to the start of the pipeline and running with 

the cropped frames containing individual subjects. And fnally, extreme poses that lie 

out of training data distribution would require better generalisation or a better training 

dataset to create satisfactory robustness. 

6.7.3 Occlusion in Self-Supervised Learning 

Occlusion has long been a challenge in computer vision [32] but in our self-supervised 

learning case, it can lead to problems at both training and inference time. As all the data 

are able to work with is contained within the image itself and not labels or annotations, 

occlusion can remove that data from our training images leaving us with data points 

that are useless at best and damaging to training at worst. Some work by Reddy et al. 

[91] has begun to look into self-supervised 3D keypoint detection with occlusion, but do 

not extend their solution to dynamic objects such as those containing articulation. As 

discussed by Jalal and Singh [52], there are three diferent sorts of occlusion that must 

be considered; self-occlusion, where part of an object blocks itself, inter-object occlusion, 

where two objects in the image overlap, and background occlusion, where part of the 

background occludes the object. 

To work around this, a simple idea is to select a dataset that contains no occlusion, but 

in our case, articulation naturally leads to occlusion, especially self-occlusion, and even 

with an easier dataset, we would result in a network with no robustness to occlusion. 

6.8 Conclusions 

Finding a good articulation model in 3D, using only self-supervised methods comes 

with many difculties. Prior knowledge is essential when training with no ground truth 

keypoints, as shown in Section 6.5, but selecting the right prior is important. Too strong 

a prior will overft our approach to a subset of articulation models and too weak will 

yield poor results. As we have shown with the bone rigidity prior in easy examples, 
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we manage to achieve good 2D results without overftting, but applying this theory to 

complex datasets comes with difculty. 

Referring back to RQ1, fnding a self-supervised articulation model comes with dif-

culty, but we have made strides of progress towards achieving this aim. The individual 

components that build up an articulation model can be achieved using self-supervised 

learning and by employing a suitable prior we can fnd a further improvement in our 

results. 



Chapter 7 

Conclusions 

The original aims of this thesis were ambitious. Self-supervised deep learning is still 

relatively in its infancy which leads to difculty in fnding satisfactory solutions, but 

that is not to dismiss the original contributions towards the feld. 

In this chapter we will conclude the work covered in this thesis and look at the wider 

picture of how it contributes to the felds of self-supervised learning and articulation 

models. We will discuss issues that have remained unsolved within the time-frame of 

this thesis, work that lies outside of the scope and future directions this work could take. 

7.1 Broader Impact 

The merits of our research in this thesis are not solely to solve the problem of determining 

three-dimensional articulation models using self-supervised learning. In this section we 

will discuss how our approaches have a broader impact to other felds of research, and 

how this work can be translated into solutions for other domains. 

7.1.1 Pose Lifting in Dynamic Shapes 

While our approaches to inferring depth through lifting are specifc to articulation mod-

els, there are elements that could be repurposed in other domains, for example the batch 

lifting consistency via the LVMST algorithm. The advantage of this approach over pre-

vious approaches, such as adversarial based pose lifting, is that we simultaneously learn 

the average lengths of the rigid bones of the articulation model captured by the data, 

while also applying those learnt lengths to the task of pose lifting. There is a caveat 

that the dynamic shapes must contain a structure of rigid bones for this approach to 

be successful, which may limit usage of this approach outside of articulation models. 

Additionally, there cannot be too much variance in the bone lengths of the data points 
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within the dataset, but small amounts of variance should not afect performance of the 

algorithm. 

7.1.2 Potential Articulation Modelling Applications 

Deriving a 3D articulated pose will realistically never be the fnal goal of an image pro-

cessing pipeline. Other downstream tasks that may require articulation model keypoints 

include, but are not limited to: 

• Action detection 

• Tracking for medical diagnostics 

• Augmented/virtual reality 

• Security or surveillance 

Generalising the detection of articulated poses will allow for these applications, which 

are typically restrained to only human poses, to be applied to any subject containing 

rigid boned articulation regardless of its skeletal structure, without needing a customised 

pose estimation approach to be devised. 

7.1.3 Diferentiable Minimum Spanning Tree (DMST) 

Our diferentiable implementation of the Minimum Spanning Tree algorithm, covered 

in detail in Section 5.3.1.1, has been shown to be useful for our purposes of learning 

articulation models. But locating minimum spanning trees is ubiquitous across many 

felds, and if any of these applications are being used in deep learning, our diferentiable 

approach could solve the problem of passing gradients through a minimum spanning tree 

algorithm. Research interest in Graph Neural Networks (GNNs) has recently grown, 

owing to the power of deep learning and representing data in the form of graphs [21]. 

A minimum spanning tree has many applications within any graph, but is typically 

a non-diferentiable operation due to the use of an arg-max function. As Loukas [75] 

states, a graph neural network cannot learn a minimum spanning tree, however we have 

created an implementation that allows for a relaxation of the MST algorithm to allow 

for gradients to pass through. While our implementation does not use a GNN, we see 

no reason why it cannot be extended for use within a GNN environment. 

7.1.4 Spatially Constrained Representation Learning 

Our approach to keypoint detection using multi-task learning, as covered in Section 4.4, 

gives an insight into learning spatially constrained representations from images. We 
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show that multi-task learning gives an increased level of generalisation when detecting 

keypoints on an image, locating stronger representations when the downstream task is 

unknown and generalised to the extend of being transferable between similar datasets. 

7.2 Unsolved Issues 

Within the scope of this thesis, we were not able to solve every issue brought up during 

our work or research every element in this feld. This section will outline some of the 

issues we have faced along the way and describe our initial thoughts on how they could 

be approached in the future. 

7.2.1 Improving Downstream Rendering 

The diferentiable sketching used in our implementations was a simple and näıve ap-

proach to creating sketches based on a set of keypoints and a connection matrix, but 

this limits the variety of datasets that can be used to derive an articulation model. If 

instead we used a more sophisticated renderer, similar to Li et al. [66], and use our 

derived keypoints to control more complex parameters instead of simply endpoints of 

sketched lines, then theoretically a larger range of datasets could be used given a suf-

fcient approach to diferentiable rendering. But we would have to carefully select the 

parameters that a network has the power to learn. As discussed in Section 5.5, the rea-

son why better keypoints are located using diferentiable sketching is due to a restriction 

on the reconstruction ability, requiring more information to be encoded in the points in 

order to get a low reconstruction loss. If we had too much fexibility then we may return 

to the problem found using a standard reconstructor network where keypoints do not 

capture the articulation of an object. 

7.2.2 Self-Supervised Keypoint Metrics 

What is the best way of evaluating keypoints found with a self-supervised method? We 

are yet to determine the best way of measuring the efectiveness of our keypoints in an 

ideal way. For landmarks in pose estimation, a distance metric from the estimated to 

the ground truth is traditional, and efectively measures the accuracy against the tar-

get. But as we are interested in general keypoints, that capture a spatially constrained 

representation, this is not always suitable due to lack of data availability. In our evalu-

ation in Section 4.6, we attempted to use a few novel metrics, including performance on 

an unseen downstream task, but this it not without issues. The difculty comes when 

we must select a downstream task that efectively measures our keypoints performance 

without bias. There is the risk of selecting a metric which we then overft our keypoint 

detector to, so a range of varied unseen downstream tasks may be one possible solution. 
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7.2.3 Non-Rigid Limbs 

Our rigid bones prior breaks down in the scenario that we wish to learn an articu-

lated pose that does not have rigid limbs, for example an articulated machine that uses 

hydraulics that are able to extend or retract. This feature breaks our assumption of 

rigid pairwise distances when two joints are connected. How would we derive three-

dimensional keypoints when the distance between two fxed joints can change between 

poses? There may be some image cues where the articulation mechanism changes ap-

pearance based on how extended the hydraulic section is. Additionally, with enough 

image examples we should be able to derive a maximum and minimum limb length 

based on the physical limitations of the hydraulic module. This could then be used to 

give a range of values for the depth of our articulation points, and expected values can 

be estimated from that range. The image data could also be used as a visual cue to 

work out if a limb is in its extended or retracted state. 

7.2.4 Vertebrae 

While the discs that connect to create a vertebrae do obey our assumptions of rigidity, 

their scale compared to the image space shape will lead to some variance in distance 

between either ends of the vertebrae. For our experiments we have assumed that in most 

cases, this variance will be marginal but in some scenarios this may not be the case. 

One solution is to learn many more keypoints such that they approximate a one-to-one 

mapping between disc and keypoint, but in practice this would be difcult. Another 

solution would be to model fexibility, such that the limb length is fxed but does not 

have to be a straight line, so a backbone could be modelled with more realism while 

maintaining the fxed length. 

7.2.5 Pipeline Section Interdependence 

As discussed in Section 5.3.1, to determine a good 3D model using our LVMST approach, 

we need good keypoints that lie on the articulation points of our subject. But we rely 

on a good learnt 3D model to encourage our keypoints to be placed in the correct 

locations, especially when we have difcult examples such as those with occlusion and 

self-occlusion. This means that the performance of both elements of our pipeline require 

the other to be accurate to correctly train. Other possible solutions fx this sort ill-posed 

problem would use a strong prior, such as 3D poses taken from a separate dataset [51] 

or ground truth 2D points which then gives a simpler task of 2D to 3D lifting. 
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7.3 Work that Lies out of Scope 

This thesis considered a range of topics, but with limited time, there were some logical 

extensions that we were not able to be included in the scope of this work. 

7.3.1 Video Sequences 

It may be the case that the cues we require to determine a three dimensional articulation 

model without using labelled data is found within sequential data. As humans we 

experience a world that moves, so it is possible that we identify articulation through 

movement rather than through examples of an object in diferent poses. Using video 

data still keeps this solution as a self-supervised approach and although this will prevent 

the usage of any non-video datasets, we still have a variety of video datasets available 

to use, for example Human3.6m[48], as well as an ever increasing amount of video data 

available from the internet. The use of self-supervised techniques through this thesis 

allows for transfer-ability to new datasets without costly and time consuming labelling 

being required for each new dataset. 

7.3.2 Diferentiable Rendering in Three Dimensions 

As seen in Section 5.5, we can use diferentiable sketching to turn a spatial represen-

tation back into image space for use with a reconstruction loss, but näıvely extending 

this into three dimensions quickly runs into memory issues. This is only the case as 

the simplest extension uses voxels instead of pixels, and other rendering methods with 

lower computational complexity would be preferable in this case. Liu et al. [71] imple-

mented one such 3D diferentiable renderer, which rasterises based on 3D meshes with 

camera parameters. But in our generalised, self-supervised environment, a diferentiable 

renderer using a coloured 3D mesh would be difcult unless given a strong prior before-

hand. Deriving a satisfactory complex 3D mesh using self-supervised learning may be 

an option, but will certainly be difcult to optimise. 

7.3.3 Semi-Supervised Relaxation 

Self-supervised learning is currently of academic interest and has applications in many 

areas where labelling data is difcult, costly or time-consuming. However, there are clear 

benefts of supervised and semi-supervised learning for applications in the real world, 

when practically creating a reliable deep learning based system. 

In many cases, semi-supervised learning is a more feasible solution than either supervised 

or self-supervised as it requires much less labelled training data than supervised learning 
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approaches while achieving superior performance than purely self-supervised. We have 

identifed some possible strategies for transferring these self-supervised techniques into 

semi-supervised approaches and discuss the implications of using a small amount of 

labelled data. 

7.3.3.1 Semi-Supervised Multi-Task Approach 

As we have established a multi-task framework, the addition of a supervised task to 

enrich the training is a feasible solution to creating a semi-supervised training approach. 

The implementation is simple, taking our existing self-supervised training losses and 

adding an additional supervised loss to the multi-task framework that aims to regress 

to a target taken from labels in the dataset. The loss could be one of two options, two-

dimensional keypoints for our keypoint regressor to aim towards, or three-dimensional 

keypoints for our pose lifting network to predict. 

As we are considering semi-supervised learning, we would not expect to have keypoints 

for every data point, but this should not matter as we can only include the loss in batches 

that contain corresponding labelled keypoints. If required, we can artifcially infate the 

supervised loss to put greater priority to its training signal over the self-supervised losses 

to compensate for the sparse signals generated from the supervised loss. 

7.3.3.2 Post-Processed Semi-Supervised Approach 

As described in Section 4.6, and used as an evaluation metric, one approach to adapt-

ing our approach to semi-supervised learning is to regress the self-supervised keypoints 

towards the ground truth using a smaller set of labelled points. We have demonstrated 

this for two-dimensional keypoints but extending to 3D would also be viable, and would 

be just as simple to implement. With a small amount of training data, we may be able 

to dramatically increase the 3D results, as long as the data we have is unbiased and 

covers a wide enough range of poses. 

Another option in this area would be having a base self-supervised model that provides 

unspecialised keypoints on a wide range of articulated structures, and using a diferent 

semi-supervised regressor, perhaps a neural network with a greater level of complexity, 

for each dataset. This approach, becoming more popular with transformer models, 

could allow for a singular powerful model to be trained once, and quick training for the 

regressor to specialise to datasets at a later stage. 
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7.4 Future Work 

This section aims to look at the future work that logically fows from the content of 

this thesis. It will consider improvements to the approaches taken, but also extensions 

that are currently a distant goal for self-supervised articulated pose estimation. Self-

supervised learning is still relatively in its infancy, but has big potential to tap into 

the vast quantity of unlabelled data that exists. However, implementing successful ap-

proaches that use self-supervised learning comes with difculties, and care must be taken 

to add enough prior knowledge and create loss functions that manage to successfully train 

a network. 

7.4.1 Diferentiable Sketching in 3D 

Images that contain information in the depth dimension, representing three-dimensional 

poses, are inherently more complex than those that are two-dimensional. It would be 

advantageous to give our diferentiable sketching component the option to exploit depth 

so that sketches can replicate occlusion present in images. As the memory requirements 

of sketching in 3D using voxels and fattening down into a 2D image are much too high, 

we propose a method for learning a permutation for our simple renderer to order the 

lines drawn, such that those at the back of the scene are identifed to be drawn frst. 

Then by using composite function that overlaps pixels with those at high indices in the 

permuted tensor. The permutation we use can either be learnt by the neural network, 

so that for a better sketch to be made, the lines must be ordered as they appear in the 

image, or we can derive it by the depth of our points located from our 3D estimation. 

If we choose to learn our raster permutation, we require a diferentiable way of reordering 

each line raster into the learnt permutation. Ideally our permutation matrix will contain 

only 0s and 1s, and each row and each column will sum to 1, giving a linear assignment 

from input to output permutation. However, as this is a learnt matrix, we must relax this 

constraint and approximate the assignment such that we maintain a gradient through 

the permutation re-ordering step. In this case, the Sinkhorn operator could help to 

convert our learnt permutation matrix into one that is approximately doubly stochastic. 

A side-efect of this is that rasters will no longer contain a singular line, but darkened 

pixels of multiple rasters, in the case that the permutation matrix contains values that 

are continuous between 0 and 1 exclusive. In our output renderers, this can give a soft 

estimation of occlusion, as pixels of overlapping lines are blended to create a sliding scale 

of occlusion. 

Another avenue of research to consider could take inspiration from Wan et al. [105] 

and similar work, which uses diferentiable rendering of a simplifed shape in three-

dimensions, and projecting into two-dimensions using the silhouette of the shape to 

create a reconstruction loss with the original input image. This approach may sufer 
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when it comes to self-occlusion, and their approach used a fxed articulation model that 

approximates a hand. In order to generalise this approach, it would be necessary to 

learn the 3D model to ft to the images from the data which could lead to difculty in 

learning a suitable model. 

7.4.2 Further Generalisation of Articulation Models 

One common trend we see in unsupervised and self-supervised techniques is the require-

ment for heavy hyper-parameter tweaking [118] and our approach does not entirely avoid 

this. We must set the number of keypoints we are looking for prior to training, which 

ideally would not be a requirement. The difculty here is simultaneously training a 

network to fnd keypoints while also selecting the optimal number of keypoints to match 

the articulated structures found in the dataset. 

7.4.2.1 Dealing with Unknown Number of Articulation Points 

Currently we restrict our implementations to a static number of keypoints that is man-

ually chosen beforehand, meaning a small amount of hyper-parameter tweaking before 

training on a new dataset. One consideration in selecting this parameter before training 

a model is based not only on the type of articulated objects that we are interested in, 

but also the scale of the object within each image. While calculating this using the 

number of bones found within an animal could be a sensible predictor, many of those 

bones are at too small a scale to be located within the image. 

Our initial thoughts are to select an upper bound of keypoints, above the realistic maxi-

mum number needed for any articulated structure and selecting a subset while training, 

aiming to both reduce data redundancy and maximising information captured in our 

spatial representation. From a brief survey of existing literature, this is an approach yet 

to be taken in the self-supervised 3D pose estimation space. This could be implemented 

using soft-arg-max, and then selecting the heatmaps that represent local maxima. Using 

these curated points, we can then build an articulated shape using this subset, assuming 

some consistency between structures in the batch. This may not be quite so simple 

in practice, our method for fnding connectivity based on a LVMST scales poorly with 

keypoints (O(n2)) due to the calculation of pairwise distances between every pair of 

points. This is exacerbated further as gradients must be calculated throughout for the 

backpropagation of our neural network. Because of this, the upper bound that can be 

chosen for this hyper-parameter is limited. 

Another option is to simply learn a large number of keypoints through-out the training 

stage, assuming there will be redundancy when capturing the desired structure, and 

then pruning at inference time. The pruning method should then remove redundancy 
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between keypoints, keeping only the most salient points that capture a desirable struc-

ture. Pruning could take the form of an optimisation problem, which keeps the minimum 

number of keypoints required, while maximising information. 

The choice of these proposed approaches may vary based on scenario. If the downstream 

task is not known then pruning later may help preserve relevant data, with a pruning 

technique specifc to the scenario. But if the downstream tasks used require fewer points, 

either for computational complexity or for a task specifc reason, then the keypoint 

selection will be best during training. 

7.4.2.2 Robustness to Variance in Articulated Structure 

Currently, our LVMST algorithm requires a batch of objects with identical articulation 

structure and limb lengths, as a prerequisite to infer connections and depth. But in 

some cases we may desire a solution that could infer the articulated structure in a mixed 

dataset containing a high variance of structures, either varying bone structure or varying 

limb lengths. This would be ideal from a generalisation perspective as it would no longer 

require us to retrain our network for each type of articulated object. Training to this 

level of generalisability would be very difcult however, as convolutional layers would 

need to be able to adapt to a range of shapes and appearances. This would possibly 

be easier to solve with the video data as described in 7.3.1, possibly leveraging optical 

fow to locate consistent points where fow changes direction, signifying an articulation 

point. If we were dealing with video data instead of image data, then we could still use 

the LVMST algorithm, but taking each batch as a set of frames from a video, assuming 

a video contains only one articulated object. Our derived connection matrix will then 

have the fexibility to change on a per video basis, allowing for a mixed batch, as long as 

our keypoint detector could deal with this higher level of variance. This implementation 

will also rely on the variable number of keypoints as discussed in Section 7.4.2.1. 

Another option for dealing with varying structures is to work from a bottom up ap-

proach, similar to traditional work around poselets [5], with a network that proposes an 

undefned number of body parts before using those to build up an articulation model 

via neighbouring end-points. An extra step is required to correlate batches of varying 

structures, with zero-ed out elements where no correlating limb was found within an 

image. 

7.4.3 Building Robust Models 

As with any computer vision system, we cannot rely on the image data being perfect 

examples of the object we are interested in. Whether occlusion is present and some 

elements are hidden, either by other objects or the object itself, or examples are visually 
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diferent to the expectation, building robustness is essential. As self-supervised learning 

is a data-centric approach, we must also be capable of developing robustness to imperfect 

training data. 

7.4.3.1 Robustness via Artifcial Noise 

One approach for adding robustness to models is to add noise through data augmentation 

with image transforms. While some noise could aid in robustness of keypoint detection, 

image skewing and non-linear transforms such as thin plate splines would break the rigid 

limb length assumption. Noise can also be added to the 2D keypoints to add robustness 

within the 3D lifting stage, but would have to be minimal to prevent breaking the 

LVMST algorithm. 

7.4.3.2 In the wild data 

Another element of robustness to consider, from both a training and testing dataset 

viewpoint is “in the wild” data. When images are captured in a lab environment, many 

properties such as camera angle, lighting, occlusion and positioning within the image are 

carefully controlled to allow for a constrained dataset to work with. But in reality, an 

implemented system cannot reasonably make the assumption that any of these properties 

are carefully controlled. As discussed previously, adding robustness to a model will allow 

it to better deal with “in the wild” data, but we can also consider using those datasets 

to train our models to instil robustness in a data driven way. In addition, using self-

supervised learning means that we do not require labels on these datasets, so images 

and videos can be quickly scraped from a web source and used to train a model. 

7.5 Revisiting the Research Questions 

In Section 1.4 we introduced our research questions for this thesis, and have referred 

back to these throughout. We will now conclude and explain how we have answered, or 

attempted to answer each research question. 

RQ1. How can we learn a self-supervised articulation model? 

We have demonstrated in this thesis the components required to take an image and 

learn a 3D articulation model. While a full self-supervised pipeline that learns to lift 3D 

poses from images was unsuccessful, the individual components were able to locate 2D 

keypoints and able to lift 2D keypoints to 3D. We also demonstrated how our LVMST 
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algorithm was able to infer the connectivity of 2D keypoints, while also lifting them into 

3D. 

RQ2. In the context of articulation models, what is a keypoint? 

The semantic defnition of a keypoint varies depending on the context. We have demon-

strated keypoints as a generalised spatial constraint in Chapter 4, but also as landmarks 

that signify points of articulation and limb end-points in Chapters 3, 5 and 6. Par-

ticularly in Section 5.5, we demonstrated the diferences between capturing generalised 

keypoints and specifc landmark points. In the case of articulated pose models, landmark 

points of articulation and ends of limbs are the ideal keypoints to derive the articulation 

found within the object. 

RQ3. How can we efectively represent spatial constraints? 

We have demonstrated in Chapter 4 how keypoints are a suitable spatial constraint 

that manages to be generalised, interpretable and captures purely spatial information, 

compressing information into a small vector of keypoint coordinates. But when using 

keypoints, there are still design decisions that must be carefully considered. List and sets 

of keypoints are semantically diferent, as mentioned in Section 4.7.1, and in some cases 

a set of keypoints is the appropriate choice, even though they contain less information 

about keypoint correspondence than a list. We also need to consider if our keypoints 

are generalised points or are landmarks, in the latter case there exists a perfect keypoint 

for each point in each image, but this does not hold in the former case. 

RQ4. What is the minimum prior information required to solve self-supervised artic-

ulation model estimation? 

During this thesis, we have demonstrated the applicability of a simple limb rigidity prior 

to solve the constituent parts of the 3D pose estimation pipeline. But as we were not 

able to fully solve a self-supervised pipeline to locate articulation models from images, 

this prior may not be strong enough for this task. We believe that this approach has 

great promise, and possibly just more research to locate 3D keypoints in a self-supervised 

environment. 

These research questions have guided our approach throughout this thesis, and we have 

to produced answers or partial answers for each question. Some have been successful but 

some questions are yet to have a satisfactory answer. As is the nature of research some 

of these answers have brought to light new questions such as “how do we determine the 

best keypoint representation for each dataset?”. 



132 Chapter 7 Conclusions 

7.6 Final Concluding Remarks 

This thesis has investigated the discovery of generalised articulation models from images 

using self-supervised learning. Through the research process, we have contributed orig-

inal research to 2D-3D keypoint lifting, self-supervised multi-task keypoint estimation, 

and invention of a simple but efective generalised articulation prior. The fnal approach 

to estimating 3D models of articulation with no labelled data and no strong priors did 

not manage to provide satisfactory results, but that is owing to the difculty of the 

problem over the lack of original contributions to the feld. Future work in this feld 

should take inspiration from our advancements in generalisation through both multi-

task learning and designing of generic priors that elegantly solve difcult self-supervised 

problems. 



Appendix A 

A.1 Factorised Auto-encoder based keypoint lifting 

A.1.1 Network Parameters 

Pose residual encoder: 

Layer Type Input Size Output Size Activation 

Linear 2k 25k ReLU 

Linear 25k 50k ReLU 

Linear 50k 25k ReLU 

Linear 25k l TanH 

Pose residual decoder: 

Layer Type Input Size Output Size Activation 

Linear l 50k ReLU 

Linear 50k 3k TanH 

Camera Parameter encoder: 

Layer Type Input Size Output Size Activation 

Linear 2k 25k ReLU 

Linear 25k 30k ReLU 

Linear 30k 25k ReLU 

Linear 25k 3 TanH 

Mean 3D pose network (latent space of 1 approximates a very simple scaling parameter): 

Layer Type Input Size Output Size Activation 

Linear 2k 25k ReLU 

Linear 25k 1 ReLU 

Linear 1 25k ReLU 

Linear 25k 3k TanH 
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Where k represents the number of keypoints and lp represents the pose latent space size. 

A.2 Adversarial 2D-to-3D Estimation 

A.2.1 Hyper-Parameters 

Parameter 

Number of Keypoints 

Pose Latent Size 

Batch Size 

Keypoint Lifting Learning Rate 

Discriminator Learning Rate 

Epochs 

Value 

16 

7 

512 

1e-5 (multiplied by 0.1 after every 100 epochs) 

1e-6 (multiplied by 0.1 after every 100 epochs) 

1500 

Table A.1: Hyper-parameters used to train keypoint lifting network using adversarial 

approach. 
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A.2.2 More examples using Adversarial Approach 

Table A.2: Results showing 3D estimations from our adversarial pose lifting approach 

using 2D data from the Human3.6m dataset [48] as inputs. 

3D Ground Truth 3D Estimation 

Front View Side View Front View Side View 

https://Human3.6m
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B.1 More Keypoint Examples 

Below are more examples of keypoints on each of the testing datasets 
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B.1.1 MNIST 

Table B.1: More examples of keypoints found on the MNIST dataset 
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B.1.2 Fashion MNIST 

Table B.2: More examples of keypoints found on the Fashion MNIST dataset 
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B.1.3 Shoes 

Table B.3: More examples of keypoints found on the Shoes dataset 
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B.1.4 Human3.6m 

Table B.4: More examples of keypoints found on the Human3.6m dataset 

https://Human3.6m
https://Human3.6m
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B.1.5 Regressed Human3.6m 

Ground Truth Keypoints Regressed Keypoints 

Table B.5: More examples of regressed keypoints found on the Human3.6m dataset 

compared to their ground truth counter parts. Colours are a scale between blue for 

keypoint at index 0 to red for keypoint at index k, and are consistent between columns. 

https://Human3.6m
https://Human3.6m
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Appendix C 

C.1 Pose Lifting with Rigid Bones Prior 

C.1.1 Further Experimental Results 

Ground Truth Predicted 

Side Diagonal Front Side Diagonal Front 

Table C.1: More examples of pose lifting outputs when using self-consistency loss. 
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Ground Truth Predicted 

Side Diagonal Front Side Diagonal Front 

Table C.2: More examples of pose lifting outputs when using self-consistency loss. 

C.2 End-of-limb Keypoint Detection 

C.2.1 2D Stickmen 

This section includes further experiment results of the toy 2D stickmen keypoint de-

tection where points are encouraged to fnd the ends of limbs via use of the LVMST 

algorithm and a diferentiable sketching reconstruction task. 
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C.2.1.1 Further Experimental Results 

Multi-Task Keypoint Detector LVMST Keypoint Detector 

Table C.3: More examples of comparisons of placement of keypoints between Multi-Task 

generalised keypoint detector and LVMST with Diferentiable Sketching on the artifcial 

2D stickman dataset. 

C.2.2 Human3.6m Stickmen 

This section includes further experiment results of the Human3.6m stickmen keypoint 

detection where points are encouraged to fnd the ends of limbs via use of the LVMST 

algorithm and a diferentiable sketching reconstruction task. 

https://Human3.6m
https://Human3.6m
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C.2.2.1 Further Experiment Results 

Ground Truth Predicted 

Table C.4: Additional comparison of placement of keypoints between in the ground 

truth Human3.6m stickmen dataset and the diferentiable sketching approach at placing 

keypoints. 

https://Human3.6m




Appendix D 

This appendix contains further details for the implementations of experiments in Chap-

ter 6, along with further qualitative results. 

D.1 Diferentiable Sketching with Adversarial Lifting 

D.1.1 Depth Estimation Network Architecture 

The depth estimation network we use is a sequential network with layers defned below: 

Layer Type Input Size Output Size Activation 

Linear 2k 128 ReLU 

Linear 128 64 ReLU 

Linear 64 32 ReLU 

Linear 32 k ReLU 

Where k is set as the number of keypoints. 

D.1.2 Hyper-Parameters 

Here we outline the hyper-parameters used for this experiment. We learn 16 keypoints 

from 32x32 images in batches of 64. We optimise using two Adam optimisers, one 

for the generator and one for the discriminator, both using learning rate of 1e-3. The 

discriminator is updated once every 5 iterations, whereas the generation is updated 

every iteration. We use exponential function loss balancing (section 4.4.2.2) for our 

losses where the reconstruction loss has an additional multiplier of 7500. 
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D.1.3 Further Experiment Results 

Ground Truth Predicted 

Front Diagonal Side Front Diagonal Side 

Figure D.1: Further demonstration of 3D keypoints found when concurrently learning to 

place keypoints using diferentiable sketching and lift them into three dimensions using 

adversarial learning. 
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D.2 Full Pipeline with Rigid Bones Prior 

D.2.1 Further Experiment Results 

Ground Truth Predicted 

Front Diagonal Side Front Diagonal Side 

Table D.1: More examples of 3D keypoints found when concurrently learning to place 

keypoints and lift them into three dimensions using our rigid bones prior. 
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D.3 Split Pipeline with Rigid Bones Prior 

D.3.1 Further Experiment Results 

Ground Truth Predicted 

Front Diagonal Side Front Diagonal Side 

Table D.2: More examples of 3D keypoints found when concurrently learning to place 

keypoints and lift them into three dimensions using our rigid bones prior. 
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works. Advances in Neural Information Processing Systems, 32, 2019. 

[116] Yu Zhang and Qiang Yang. An overview of multi-task learning. National Science 

Review, 5(1):30–43, 2018. 

[117] Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions 

on Knowledge and Data Engineering, 2021. 

[118] Yuting Zhang, Yijie Guo, Yixin Jin, Yijun Luo, Zhiyuan He, and Honglak Lee. 

Unsupervised discovery of object landmarks as structural representations. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 

pages 2694–2703, 2018. 

[119] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Facial Land-

mark Detection by Deep Multi-task Learning. European Conference on Computer 

Vision, 2014. 

[120] Silvia Zuf, Angjoo Kanazawa, David Jacobs, and Michael J. Black. 3D menagerie: 

Modeling the 3D shape and pose of animals. Proceedings - 30th IEEE Conference 

on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January:5524– 

5532, 2017. 


	Acknowledgements
	1 Introduction
	1.1 Articulation Models
	1.2 Thematic Breakdown
	1.2.1 Self-Supervised Learning
	1.2.2 Keypoint and Landmark Detection
	1.2.3 Pose Estimation
	1.2.4 2D to 3D Keypoint Lifting
	1.2.5 Generative Adversarial Learning
	1.2.6 Representation Learning
	1.2.7 Multi-task Learning

	1.3 Motivation for Learning Self-Supervised Articulation Models
	1.4 Research Questions
	1.5 Contributions
	1.5.1 Pose Lifting with Bottlenecked Auto-Encoders
	1.5.2 Multi-Task Approach to Generalised Self-Supervised Keypoint Detection
	1.5.3 Differentiable Minimum Spanning Tree
	1.5.4 2D to 3D Pose Lifting using Rigid Bone Prior

	1.6 Keypoint Clarification
	1.7 Breakdown of Thesis Structure

	2 Related Work
	2.1 Pose Estimation
	2.1.1 Classical Pose Estimation
	2.1.2 Modern Approaches
	2.1.3 3D Pose Estimation
	2.1.4 Animal Pose
	2.1.5 Challenges
	2.1.6 Summary

	2.2 Keypoints
	2.2.1 Traditional Keypoint Detection
	2.2.2 Deep Learning Keypoint Detection
	2.2.3 Applications of Keypoint Detection
	2.2.4 Where this field is moving
	2.2.5 Summary

	2.3 General Representations
	2.3.1 Representation Learning

	2.4 Summary

	3 Inferring Depth from 2D Keypoints using Self-Supervised Learning
	3.1 Introduction
	3.2 Related Work
	3.2.1 Traditional Pose Lifting
	3.2.2 Deep Learning based Lifting
	3.2.3 Datasets

	3.3 Factorised Auto-Encoding
	3.3.1 Concept
	3.3.2 Applying Factorised Auto-Encoding to 3D Pose Lifting
	3.3.3 Implementation
	3.3.4 Initial Experiments
	3.3.5 Required Modifications

	3.4 Applying Adversarial Learning
	3.4.1 Motivation
	3.4.2 Implementation
	3.4.2.1 Network Architectures

	3.4.3 Experiments
	3.4.3.1 Qualitative Results
	3.4.3.2 Quantitative Results


	3.5 Discussion
	3.5.1 The Inverse Pose Problem
	3.5.2 More Applications of Factorised Auto-Encoding

	3.6 Summary

	4 Self-Supervised Learning of Generalised Spatial Representations
	4.1 Introduction
	4.2 Related Work
	4.2.1 Multi-Task Learning

	4.3 Initial Ideas and Tests
	4.3.1 Keypoint Detection by Image Triangulation
	4.3.2 Re-implementing an Existing Approach
	4.3.2.1 Thin Plate Splines
	4.3.2.2 Results

	4.3.3 Discussion

	4.4 Multi-task Learning: Motivation and Approach
	4.4.1 Representation Learning
	4.4.2 Multi-Task Learning
	4.4.2.1 Choice of Tasks
	Reconstruction with Global and Local Descriptors.
	Referential Game using Distractor Images.
	Middle Frame Predictor.

	4.4.2.2 Loss Balancing
	Pareto Optimal Gradient Tweaking.
	Learnable Task Uncertainty.
	Balanced Multi-Task Learning.


	4.4.3 Heatmap Concentration Constraint
	4.4.4 Summary

	4.5 Implementation
	4.5.1 Keypoint Detection Network
	4.5.2 Spatial Soft Arg-Max
	4.5.3 Heatmap Cleaning
	4.5.4 Keypoint Regressor Architecture
	4.5.5 Downstream Task Implementations
	4.5.5.1 Reconstruction Task
	4.5.5.2 Distractor Image Prediction Task
	4.5.5.3 Middle Frame Prediction Task

	4.5.6 Concentration Constraint
	4.5.7 Hyper-Parameters

	4.6 Experiments
	4.6.1 Loss Balancing Method Selection
	4.6.2 Single and Multi Task Comparison
	4.6.3 Results on Toy Datasets
	4.6.3.1 MNIST
	4.6.3.2 Fashion MNIST
	4.6.3.3 Quantitative Evaluation

	4.6.4 Results on Complex Datasets
	4.6.4.1 Shoes
	4.6.4.2 Human3.6m
	4.6.4.3 Semi-supervised Regression Metric
	4.6.4.4 Action Recognition Metric

	4.6.5 Further Quantitative Results
	4.6.6 Keypoint Confidence
	4.6.7 Verifying Generalisability

	4.7 Discussion
	4.7.1 Common Pitfalls in Self-Supervised Keypoint Detection
	4.7.1.1 Local and Global Information
	4.7.1.2 The Responsibility Problem
	4.7.1.3 Bilateral Symmetry
	4.7.1.4 Collapse During Training
	4.7.1.5 Occlusion


	4.8 Conclusion

	5 Using Bone Rigidity as a Generic Prior
	5.1 Introduction
	5.2 Designing a Generic Articulation Prior
	5.2.1 Requirements of our Prior
	5.2.2 Comparative Priors
	5.2.3 Bone Rigidity Prior

	5.3 Determining Joint Connectivity
	5.3.1 Limb Variance Minimum Spanning Tree
	5.3.1.1 Implementation of a Differentiable Minimum Spanning Tree

	5.3.2 Demonstration in Two-Dimensions
	5.3.3 Extending to Three-Dimensions

	5.4 Pose Lifting with Rigid Bones Prior
	5.4.1 Minimising Limb Length Variance to Estimate Depth
	5.4.2 Self Consistency in the X and Z Dimensions
	5.4.3 Implementation
	5.4.4 Experiments
	5.4.5 Discussion

	5.5 Encouraging Keypoints to Locate Joints
	5.5.1 Differentiable Sketching
	5.5.2 Implementation
	5.5.3 Experiments
	5.5.3.1 Creating a Simple Sketched Dataset
	5.5.3.2 Proof of Concept: Artificial Two-Dimensional Stick Figures
	5.5.3.3 Toy Dataset: Human3.6m Stick Figures

	5.5.4 Discussion

	5.6 Discussion
	5.6.1 Problems with Limb Variance Minimum Spanning Tree
	5.6.2 Robustness to Errors in Training Data
	5.6.3 Consistent Keypoints in Symmetric Models
	5.6.4 Other Possible Priors
	5.6.4.1 Centre of Mass Estimation
	5.6.4.2 Limiting Joint Angles
	5.6.4.3 Symmetry


	5.7 Conclusion

	6 Towards Self-Supervised Learning of 3D Articulation
	6.1 Introduction
	6.2 Related Work
	6.3 Naïve Combination of Previous Approaches
	6.3.1 Motivation
	6.3.2 Implementation
	6.3.3 Experiments
	6.3.4 Discussion and Analysis

	6.4 Full Pipeline with Adversarial Learning and Differentiable Sketching
	6.4.1 Motivation
	6.4.2 Implementation
	6.4.3 Experiments
	6.4.4 Discussion

	6.5 Full Pipeline with Bone Rigidity Prior
	6.5.1 Motivation
	6.5.1.1 Keypoint Detection
	6.5.1.2 Depth Estimation
	6.5.1.3 Connection Matrix Estimation
	6.5.1.4 Differentiable Sketching
	6.5.1.5 Loss Functions

	6.5.2 Implementation
	6.5.3 Experiments
	6.5.4 Discussion

	6.6 Simplification via Pipeline Splitting
	6.6.1 Motivation
	6.6.2 Experiments

	6.7 Discussion
	6.7.1 Limitations
	6.7.1.1 Limb Variance Minimum Spanning Trees
	6.7.1.2 Differentiable Sketching

	6.7.2 Challenges when using Real (In the Wild) Images
	6.7.3 Occlusion in Self-Supervised Learning

	6.8 Conclusions

	7 Conclusions
	7.1 Broader Impact
	7.1.1 Pose Lifting in Dynamic Shapes
	7.1.2 Potential Articulation Modelling Applications
	7.1.3 Differentiable Minimum Spanning Tree (DMST)
	7.1.4 Spatially Constrained Representation Learning

	7.2 Unsolved Issues
	7.2.1 Improving Downstream Rendering
	7.2.2 Self-Supervised Keypoint Metrics
	7.2.3 Non-Rigid Limbs
	7.2.4 Vertebrae
	7.2.5 Pipeline Section Interdependence

	7.3 Work that Lies out of Scope
	7.3.1 Video Sequences
	7.3.2 Differentiable Rendering in Three Dimensions
	7.3.3 Semi-Supervised Relaxation
	7.3.3.1 Semi-Supervised Multi-Task Approach
	7.3.3.2 Post-Processed Semi-Supervised Approach


	7.4 Future Work
	7.4.1 Differentiable Sketching in 3D
	7.4.2 Further Generalisation of Articulation Models
	7.4.2.1 Dealing with Unknown Number of Articulation Points
	7.4.2.2 Robustness to Variance in Articulated Structure

	7.4.3 Building Robust Models
	7.4.3.1 Robustness via Artificial Noise
	7.4.3.2 In the wild data


	7.5 Revisiting the Research Questions
	7.6 Final Concluding Remarks

	A 
	A.1 Factorised Auto-encoder based keypoint lifting
	A.1.1 Network Parameters

	A.2 Adversarial 2D-to-3D Estimation
	A.2.1 Hyper-Parameters
	A.2.2 More examples using Adversarial Approach


	B 
	B.1 More Keypoint Examples
	B.1.1 MNIST
	B.1.2 Fashion MNIST
	B.1.3 Shoes
	B.1.4 Human3.6m
	B.1.5 Regressed Human3.6m


	C 
	C.1 Pose Lifting with Rigid Bones Prior
	C.1.1 Further Experimental Results

	C.2 End-of-limb Keypoint Detection
	C.2.1 2D Stickmen
	C.2.1.1 Further Experimental Results

	C.2.2 Human3.6m Stickmen
	C.2.2.1 Further Experiment Results



	D 
	D.1 Differentiable Sketching with Adversarial Lifting
	D.1.1 Depth Estimation Network Architecture
	D.1.2 Hyper-Parameters
	D.1.3 Further Experiment Results

	D.2 Full Pipeline with Rigid Bones Prior
	D.2.1 Further Experiment Results

	D.3 Split Pipeline with Rigid Bones Prior
	D.3.1 Further Experiment Results


	Bibliography



