The University of Southampton
University of Southampton Institutional Repository

Deep learning segmentation of the right ventricle in cardiac MRI: the M&Ms challenge

Deep learning segmentation of the right ventricle in cardiac MRI: the M&Ms challenge
Deep learning segmentation of the right ventricle in cardiac MRI: the M&Ms challenge

In recent years, several deep learning models have been proposed to accurately quantify and diagnose cardiac pathologies. These automated tools heavily rely on the accurate segmentation of cardiac structures in MRI images. However, segmentation of the right ventricle is challenging due to its highly complex shape and ill-defined borders. Hence, there is a need for new methods to handle such structure's geometrical and textural complexities, notably in the presence of pathologies such as Dilated Right Ventricle, Tricuspid Regurgitation, Arrhythmogenesis, Tetralogy of Fallot, and Inter-atrial Communication. The last MICCAI challenge on right ventricle segmentation was held in 2012 and included only 48 cases from a single clinical center. As part of the 12th Workshop on Statistical Atlases and Computational Models of the Heart (STACOM 2021), the M&Ms-2 challenge was organized to promote the interest of the research community around right ventricle segmentation in multi-disease, multi-view, and multi-center cardiac MRI. Three hundred sixty CMR cases, including short-axis and long-axis 4-chamber views, were collected from three Spanish hospitals using nine different scanners from three different vendors, and included a diverse set of right and left ventricle pathologies. The solutions provided by the participants show that nnU-Net achieved the best results overall. However, multi-view approaches were able to capture additional information, highlighting the need to integrate multiple cardiac diseases, views, scanners, and acquisition protocols to produce reliable automatic cardiac segmentation algorithms.

Cardiovascular magnetic resonance, data augmentation, image segmentation, multi-view segmentation, public dataset
2168-2194
3302-3313
Martin-Isla, Carlos
7501fb82-b913-4b2a-b0e0-19ccc9a4e60c
Campello, Victor M.
70b294e4-d5f3-4f65-9d26-d0d6c6c8227d
Izquierdo, Cristian
6aea4a1f-2fd5-4700-acf5-0c9c07a326a0
Kushibar, Kaisar
19fa8512-c58e-42df-a530-2efb730e6fdb
Sendra-Balcells, Carla
67a0a019-f65d-4d4e-9204-9f678ffe560d
Gkontra, Polyxeni
bf8e2eda-7fb2-4de0-b884-edd345e2712d
Sojoudi, Alireza
97b6089b-8af9-4e35-a63b-59e47a45aa5c
Fulton, Mitchell J.
38a9900f-6c1b-434f-9c1e-11d00a3c9129
Arega, Tewodros Weldebirhan
14816577-5929-411c-9217-5cc0973d80d7
Punithakumar, Kumaradevan
aa889b41-cf21-4d60-ad7e-299793a64d8b
Li, Lei
2da88502-0bd8-4e6b-8f7d-0c01a48b399e
Sun, Xiaowu
30ba583e-c171-4472-944f-7989e19ff0ef
Al Khalil, Yasmina
643e7f07-e83e-40b6-8745-e3981bb514fc
Liu, Di
fa317aa7-0f6d-4d60-9329-4b476debd724
Jabbar, Sana
4b7b5702-2ef2-4691-ad42-e32af97c465a
Queiros, Sandro
36c664ec-6379-4c69-8284-112e6c7ae4d6
Galati, Francesco
4feb0dc3-a275-43e8-ad77-640b134ec2ba
Mazher, Moona
267f0d57-feb3-41b7-ae98-a67887f8bbc3
Gao, Zheyao
bd439df9-e379-4080-b88c-0efee99cdb4d
Beetz, Marcel
8110d48b-e65e-408a-b126-6f63721dcc06
Tautz, Lennart
0f7f01ce-6f04-4af2-bc2e-4b8818e8939e
Galazis, Christoforos
e36fc947-2fcf-45eb-ba40-a66fdd61f12a
Varela, Marta
a9be8d53-044c-4341-a44c-af0eb346c85d
Hullebrand, Markus
b05fa48f-e52e-4f00-baf4-6597795f00a4
Grau, Vicente
c6992187-7840-45ce-93a0-d54d06031c7d
Zhuang, Xiahai
c58e977b-e70e-4b37-9acd-b7f8070d98a8
Puig, Domenec
6fdc583b-c168-47f0-85d3-6e52c313770b
Zuluaga, Maria A.
9a7f883d-7ec5-40a0-bc58-56936b7929a4
Mohy-Ud-Din, Hassan
311f6011-314b-4aa4-813e-99685bafa3d9
Metaxas, Dimitris
2b17682f-e2c9-4ec8-b40c-0804e59fd239
Breeuwer, Marcel
d53d8602-58bc-465d-84b5-6cd8d2d41bc6
Van Der Geest, Rob J.
48dafb3f-0ca0-4deb-bb95-3d058273ddf0
Noga, Michelle
72b9e812-66ee-401a-a280-32c5b10980eb
Bricq, Stephanie
050302ca-e64e-474f-badf-04dca3bb7db7
Rentschler, Mark E.
cb74b82f-b393-4beb-9719-f9ced4cc9573
Guala, Andrea
10d4a793-1a76-43b1-820c-8b2b1fbec662
Petersen, Steffen E.
04f2ce88-790d-48dc-baac-cbe0946dd928
Escalera, Sergio
56972ae3-d232-4b25-a451-abf7e0e0f2ca
Palomares, Jose F.Rodriguez
3e2b3f63-e545-4386-8870-8238e4a45ba6
Lekadir, Karim
b8de558a-869c-4574-b0d3-005dc52c3106
et al.
Martin-Isla, Carlos
7501fb82-b913-4b2a-b0e0-19ccc9a4e60c
Campello, Victor M.
70b294e4-d5f3-4f65-9d26-d0d6c6c8227d
Izquierdo, Cristian
6aea4a1f-2fd5-4700-acf5-0c9c07a326a0
Kushibar, Kaisar
19fa8512-c58e-42df-a530-2efb730e6fdb
Sendra-Balcells, Carla
67a0a019-f65d-4d4e-9204-9f678ffe560d
Gkontra, Polyxeni
bf8e2eda-7fb2-4de0-b884-edd345e2712d
Sojoudi, Alireza
97b6089b-8af9-4e35-a63b-59e47a45aa5c
Fulton, Mitchell J.
38a9900f-6c1b-434f-9c1e-11d00a3c9129
Arega, Tewodros Weldebirhan
14816577-5929-411c-9217-5cc0973d80d7
Punithakumar, Kumaradevan
aa889b41-cf21-4d60-ad7e-299793a64d8b
Li, Lei
2da88502-0bd8-4e6b-8f7d-0c01a48b399e
Sun, Xiaowu
30ba583e-c171-4472-944f-7989e19ff0ef
Al Khalil, Yasmina
643e7f07-e83e-40b6-8745-e3981bb514fc
Liu, Di
fa317aa7-0f6d-4d60-9329-4b476debd724
Jabbar, Sana
4b7b5702-2ef2-4691-ad42-e32af97c465a
Queiros, Sandro
36c664ec-6379-4c69-8284-112e6c7ae4d6
Galati, Francesco
4feb0dc3-a275-43e8-ad77-640b134ec2ba
Mazher, Moona
267f0d57-feb3-41b7-ae98-a67887f8bbc3
Gao, Zheyao
bd439df9-e379-4080-b88c-0efee99cdb4d
Beetz, Marcel
8110d48b-e65e-408a-b126-6f63721dcc06
Tautz, Lennart
0f7f01ce-6f04-4af2-bc2e-4b8818e8939e
Galazis, Christoforos
e36fc947-2fcf-45eb-ba40-a66fdd61f12a
Varela, Marta
a9be8d53-044c-4341-a44c-af0eb346c85d
Hullebrand, Markus
b05fa48f-e52e-4f00-baf4-6597795f00a4
Grau, Vicente
c6992187-7840-45ce-93a0-d54d06031c7d
Zhuang, Xiahai
c58e977b-e70e-4b37-9acd-b7f8070d98a8
Puig, Domenec
6fdc583b-c168-47f0-85d3-6e52c313770b
Zuluaga, Maria A.
9a7f883d-7ec5-40a0-bc58-56936b7929a4
Mohy-Ud-Din, Hassan
311f6011-314b-4aa4-813e-99685bafa3d9
Metaxas, Dimitris
2b17682f-e2c9-4ec8-b40c-0804e59fd239
Breeuwer, Marcel
d53d8602-58bc-465d-84b5-6cd8d2d41bc6
Van Der Geest, Rob J.
48dafb3f-0ca0-4deb-bb95-3d058273ddf0
Noga, Michelle
72b9e812-66ee-401a-a280-32c5b10980eb
Bricq, Stephanie
050302ca-e64e-474f-badf-04dca3bb7db7
Rentschler, Mark E.
cb74b82f-b393-4beb-9719-f9ced4cc9573
Guala, Andrea
10d4a793-1a76-43b1-820c-8b2b1fbec662
Petersen, Steffen E.
04f2ce88-790d-48dc-baac-cbe0946dd928
Escalera, Sergio
56972ae3-d232-4b25-a451-abf7e0e0f2ca
Palomares, Jose F.Rodriguez
3e2b3f63-e545-4386-8870-8238e4a45ba6
Lekadir, Karim
b8de558a-869c-4574-b0d3-005dc52c3106

Martin-Isla, Carlos, Campello, Victor M. and Izquierdo, Cristian , et al. (2023) Deep learning segmentation of the right ventricle in cardiac MRI: the M&Ms challenge. IEEE Journal of Biomedical and Health Informatics, 27 (7), 3302-3313. (doi:10.1109/JBHI.2023.3267857).

Record type: Article

Abstract

In recent years, several deep learning models have been proposed to accurately quantify and diagnose cardiac pathologies. These automated tools heavily rely on the accurate segmentation of cardiac structures in MRI images. However, segmentation of the right ventricle is challenging due to its highly complex shape and ill-defined borders. Hence, there is a need for new methods to handle such structure's geometrical and textural complexities, notably in the presence of pathologies such as Dilated Right Ventricle, Tricuspid Regurgitation, Arrhythmogenesis, Tetralogy of Fallot, and Inter-atrial Communication. The last MICCAI challenge on right ventricle segmentation was held in 2012 and included only 48 cases from a single clinical center. As part of the 12th Workshop on Statistical Atlases and Computational Models of the Heart (STACOM 2021), the M&Ms-2 challenge was organized to promote the interest of the research community around right ventricle segmentation in multi-disease, multi-view, and multi-center cardiac MRI. Three hundred sixty CMR cases, including short-axis and long-axis 4-chamber views, were collected from three Spanish hospitals using nine different scanners from three different vendors, and included a diverse set of right and left ventricle pathologies. The solutions provided by the participants show that nnU-Net achieved the best results overall. However, multi-view approaches were able to capture additional information, highlighting the need to integrate multiple cardiac diseases, views, scanners, and acquisition protocols to produce reliable automatic cardiac segmentation algorithms.

This record has no associated files available for download.

More information

e-pub ahead of print date: 17 April 2023
Published date: 1 July 2023
Keywords: Cardiovascular magnetic resonance, data augmentation, image segmentation, multi-view segmentation, public dataset

Identifiers

Local EPrints ID: 488806
URI: http://eprints.soton.ac.uk/id/eprint/488806
ISSN: 2168-2194
PURE UUID: 1ded41b0-53f1-4672-9601-28512ac96989
ORCID for Lei Li: ORCID iD orcid.org/0000-0003-1281-6472

Catalogue record

Date deposited: 05 Apr 2024 16:44
Last modified: 10 Apr 2024 02:14

Export record

Altmetrics

Contributors

Author: Carlos Martin-Isla
Author: Victor M. Campello
Author: Cristian Izquierdo
Author: Kaisar Kushibar
Author: Carla Sendra-Balcells
Author: Polyxeni Gkontra
Author: Alireza Sojoudi
Author: Mitchell J. Fulton
Author: Tewodros Weldebirhan Arega
Author: Kumaradevan Punithakumar
Author: Lei Li ORCID iD
Author: Xiaowu Sun
Author: Yasmina Al Khalil
Author: Di Liu
Author: Sana Jabbar
Author: Sandro Queiros
Author: Francesco Galati
Author: Moona Mazher
Author: Zheyao Gao
Author: Marcel Beetz
Author: Lennart Tautz
Author: Christoforos Galazis
Author: Marta Varela
Author: Markus Hullebrand
Author: Vicente Grau
Author: Xiahai Zhuang
Author: Domenec Puig
Author: Maria A. Zuluaga
Author: Hassan Mohy-Ud-Din
Author: Dimitris Metaxas
Author: Marcel Breeuwer
Author: Rob J. Van Der Geest
Author: Michelle Noga
Author: Stephanie Bricq
Author: Mark E. Rentschler
Author: Andrea Guala
Author: Steffen E. Petersen
Author: Sergio Escalera
Author: Jose F.Rodriguez Palomares
Author: Karim Lekadir
Corporate Author: et al.

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×