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In lifetime data analysis, life testing for items under normal use conditions can often take a long time to 
obtain a reasonable number of failures. In this situation, accelerated life test (ALT) procedures are 
performed in order to obtain failure time data in a shorter time. In the step-stress accelerated life test 
(SSALT), which is a special class of ALT, the stress setting for survival units is changed step by step to 
higher stress levels at predetermined times during the experiment. In this way, information about the 
parameters of the life distribution is obtained quicker than would be possible under normal operating 
conditions. The censoring methodology is commonly used in planning the ALTs to reduce the cost and 
test time.   

Statistical inference of model parameters and optimum test plans are two main aspects in the SSALT 
studies. The main objectives of this thesis are to develop an optimal design for a simple SSALT model 
and to make statistical inferences for a simple SSALT model based on progressive type-II censoring 
schemes. It is assumed that the lifetimes at each stress level follow the generalized exponential 
distribution (GED) and a cumulative exposure model is assumed as a life-stress model. The study also 
compares the total test time of censored samples with complete samples. The maximum likelihood 
method is used to estimate three unknown parameters of the cumulative exposure model. Also, the 
asymptotic confidence intervals (CIs) for the parameters based on the observed Fisher information 
matrix are derived. Moreover, the bootstrap approach is used to obtain the CIs for the model parameters 
using two methods, percentile and bias-corrected and accelerated. The steps of obtaining asymptotic and 
bootstrap CIs based on two bootstrap methods are described. 

In ALT design, the optimal stress change time and optimal censoring schemes under the variance 
(V)-optimality criterion are studied in detail to provide the most precise estimates of percentile lifetime 
under the GED at the usage stress level. The optimal design is studied based on minimizing the 
asymptotic variance of the maximum likelihood estimate (MLE) of the 100𝓅𝑡ℎpercentile lifetime under 
the GED at the usage stress level. Different progressive censoring schemes are compared to find the 
optimal censoring scheme. 

Extensive simulation studies are conducted to investigate and compare the performance of the MLEs 
and CIs with associated precision for different values of sample size, failure percentage, stress change 
time and progressive censoring schemes using the Monte Carlo simulation technique. Also, numerical 
analysis is performed using the golden section search method to estimate the locally optimal stress 
change time. In addition, the optimal censoring scheme is also obtained and compared with the worst 
censoring scheme and the complete sample using relative efficiency and relative time. 
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Chapter 1  

Introduction 

Measuring the reliability characteristics of a product and investigating its lifetime distribution is vital to 

the design and manufacturing process. Understanding the reliability can help to improve product design 

to satisfy the consumer’s expectations and decrease the number of failures in a guarantee period. The 

life data analysis aims to quantify the reliability characteristics of the products. Life testing is usually 

designed to obtain lifetime data sets for components or products. Lifetime testing plays a vital role in 

many fields, such as industry, engineering and medicine. 

In order to cope with increasing market challenges and requirements, today’s manufacturers face strong 

pressure to develop high technology products with improved reliability and better overall quality 

designed to give long product life. Testing the lifetimes of products under normal use conditions is, 

however, rarely feasible in a short time because of long test duration and the consequent high cost. The 

accelerated life test (ALT) model is used to solve this problem by testing the products under accelerated 

conditions. It is designed to obtain sufficient amounts of information about highly reliable products with 

noticeable reductions in testing time and cost. In ALT experiments, failures are produced in a shorter 

time by exposing products to higher than usage stress level, such as a high temperature or pressure.  

ALTs are widely used and are an important experimental strategy in reliability and survival analysis. 

They consist of a variety of test methods for shortening the life of products by testing them at higher 

than usage stress level. The step-stress accelerated life test (SSALT) model is the most commonly used 

method of ALTs. It allows the stress level applied to each test unit to be changed step-by-step during 

the test. SSALTs have a wide application in the fields of science, engineering and medicine. The main 

advantage of this test strategy is that it can provide a noticeable increase in number of failure 

observations within a shortened testing period. The problems of designing optimum plans and drawing 

inferences from SSALTs have been extensively investigated by many researchers. Nelson (1990), for 

example, has provided a set of guidelines for planning SSALT. 

Although an ALT plan can be implemented to shorten the experiment time, waiting for all of the units 

to fail can still present practical and financial problems. Moreover, in life testing experiments, it is 

common for units to be either lost or withdrawn before failure. This may happen due to cost or time 

limitations. In these cases, censoring schemes can be useful strategies, in which the test is terminated 

before all products have run to failure, or where some items are withdrawn at specific points in the test. 

Several censoring schemes have been developed and discussed in the literature. One of the versatile 

types of censoring used is the progressive censoring scheme (PCS) proposed by Herd (1956). 

Balakrishnan and Aggarwala (2000) provide an exhaustive review of various PCSs. Since then, it has 

attracted the interest of several researchers, in addition to developing the equipment required for 

conducting ALT experiments, making it easier to conduct the experiments. 
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The PCSs can save time, effort and cost, due to its flexibility in removing units at various stages during 

the test. Using PCSs allows experimenters to be more flexible in the design stage by allowing the 

removal of test units at different points throughout the test. As a result, PCS is highly effective in 

utilizing the available resources. Progressive censoring is an umbrella term encompassing two forms 

known as Type-I and Type-II censoring schemes, in which units are censored only at the termination of 

the test either at a predetermined time or upon the occurrence of fixed number of failures.  

In SSALT experiments, failure time data collected in the accelerated conditions is analysed to predict 

the lifetime of units under normal operating conditions. SSALT models are generally developed based 

on determining an underlying life distribution and selecting a model which relates the life distributions 

of test units at different stress levels to each other. The most common model used in the literature is the 

cumulative exposure model (CEM) proposed by Sedyakin (1966). The CEM assumes that the remaining 

lifetime of a test unit depends only on the current cumulative fraction failed and current stress, regardless 

of how the fraction is accumulated see Nelson (1980, 1990). The next step after conducting the test is 

to apply statistical inference methods to estimate the unknown parameters of the model.  

Statistical methodology for SSALTs has been studied and developed extensively by many authors. In 

some situations, under a simple SSALT model, the hold time at low stress levels might be relatively 

short, resulting in few or no failure data and thus affecting the quality of the inference of the maximum 

likelihood estimate (MLE). Determining an optimal hold time of low stress, then, is important to obtain 

sufficient information at different stress levels. This will improve the efficiency of the statistical 

inference. Furthermore, in ALTs under PCS, it is important to choose the optimal censoring scheme that 

provides the maximum information regarding the parameter of interest. Therefore, the precision of the 

MLEs will be increased by using the optimal censoring scheme. 

Estimating the model parameters with the maximum precision has noticeable effect on the precision of 

reliability estimation which subsequently has directly impact on its related issues such as determining 

the warranty and scheduling the maintenance.  

1.1 The Research Problem 

The problem of designing an optimum plan and making inferences from SSALTs has been the subject 

of continuous interest and extensive study over the last few decades. However, few studies compared 

progressive Type-II censored samples with Type-II censored samples and complete samples for life 

testing, and they did not consider SSALT. Accordingly, there is a need to study the impact of different 

censoring schemes to better understand SSALT plans based on progressive Type-II censoring scheme 

and make more effective use of censoring schemes. This study, therefore, is designed to investigate the 

statistical impact of using different optimum plans on test efficiency and estimation precision of the 

MLEs. 
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In designing SSALT under progressive Type-II censoring scheme, the products are tested with respect 

to the cost of the experiment and test time. Therefore, one should carefully select the set of initial values 

in the designing stage, such as the sample size with the number of items to be censored and when they 

will be censored. So, an optimal design is utilized to balance design efficiency and total test time, which 

strongly relates to the cost of the experiment. 

1.2 Main Objectives 

In general, there are two major aspects related to the SSALT models: statistical inference of model 

parameters and the optimal test plan. The main objectives of this thesis are to develop an optimal test 

plan for a simple SSALT model and to make statistical inferences based on progressive type-II censoring 

schemes. 

To discuss the statistical analysis of the model parameters for SSALT under progressive Type-II 

censoring schemes, the generalized exponential distribution (GED) is considered as a lifetime 

distribution. In addition, the cumulative exposure model (CEM) is also assumed to relate the cumulative 

distribution function of failure times under different stress levels. The maximum likelihood (ML) 

method is used to estimate three unknown parameters of the CEM; 𝜃1, 𝜃2 and α. Also, the asymptotic 

confidence intervals (CIs) for the parameters based on the observed Fisher information matrix are 

derived. Moreover, the bootstrap approach is used to obtain CIs for the model parameters using two 

methods, percentile and bias-corrected and accelerated (BCa), based on bootstrap samples.  

In this thesis, the optimum ALT design is determined with respect to the variance(V)-optimality criterion 

for sets of initial values. The V-optimality criterion minimizes the asymptotic variance (𝐴𝑉𝑎𝑟) of the 

5th, 50th and 95th percentile life estimates at usage stress level. The design of ALT plans is studied with 

respect to choosing the optimal stress change time and optimal censoring scheme. Furthermore, a 

sensitivity study is conducted in order to identify the parameters that should be estimated with special 

care. 

Many tasks involving statistical analysis and the optimal plan are carried out in order to accomplish the 

suggested objectives. In the analysis part, the following tasks will be undertaken: 

1- The design of the steps and assumptions for modelling SSALT under progressive Type-II censored 

samples will be described and discussed in detail. The GED is assumed as a lifetime distribution and the 

CEM is also assumed as a life-stress model.  

2- Under the assumption of the CEM, the ML method will be implemented to obtain the estimators of 

the SSALT model parameters using numerical methods.  

3- Consequently, the observed Fisher information matrix will be derived to obtain the asymptotic 

variance-covariance (AV-C) matrix of the estimates, which is used to construct the asymptotic CIs. 
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4- CIs for the unknown parameters will be estimated, based on parametric bootstrap methods. Percentile 

and BCa bootstrap CIs will be obtained, and their performance will be compared with asymptotic CIs. 

The steps of obtaining bootstrap CIs based on two bootstrap methods will be described. 

5- The simulation study is performed to investigate the performance of the proposed algorithms with 

associated standard error based on different sets of initial values of model parameters, sample size and 

failure percentage. The influence of different censoring schemes, the sample size, the failure percentage 

and the stress change time on the performance of the MLEs and CIs will be investigated via a simulation 

study. The performance of these estimators will be studied using relevant statistical measures such as 

relative absolute bias, mean square error, interval length and coverage probability. Moreover, the 

precision of the performance of the MLEs and CIs will be described by the standard error. 

In the design part, the tasks are described as follows: 

1- The V-optimality criterion will be explained and utilized to identify an optimal design for sets of 

initial values, such that the estimates of the percentile under the usage stress level has the most precision. 

2- The optimal stress change time will be determined for the 5th, 50th and 95th percentiles using the V-

optimality criterion. The golden section search numerical method is used to determine the optimal stress 

change time based on a selected set of initial values of sample size, failure percentage, model parameters 

and different censoring schemes.  

3- The impact of changing the sample size, failure percentage, model parameters and different censoring 

schemes on the precision of parameter estimation along with the optimal stress change time will be 

investigated. 

4- A sensitivity analysis will be carried out to examine the robustness of the proposed plans and identify 

the sensitive parameters that must be estimated carefully. 

5- In addition, the optimal censoring scheme will be determined in two scenarios: one in which a large 

sample size with 11 proposed censoring schemes will be tested, and the other in which a small sample 

size with all possible censoring schemes will be investigated. The relative efficiency and relative time 

of the optimal censoring scheme with respect to the worst censoring scheme, the basic Type-II censoring 

scheme and the complete sample are calculated to compare different censoring schemes and find the 

nearly optimal censoring scheme in the case of a small sample size.  

6- The optimal censoring scheme is compared with the worst censoring scheme, Type-II censoring 

scheme and complete sample for different values of the sample size, failure percentage, model 

parameters and stress change time. 

7- Extensive Monte-Carlo simulation is carried out to understand the effectiveness of the proposed 

methods for determining the optimal censoring scheme based on different sets of initial values of the 

sample size, the failure percentage, the model parameters and the stress change time. 
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1.3 Thesis Organization 

This thesis is presented in four chapters, besides the introduction and discussion chapters. Chapter 1 

introduces the research and gives a general description of the ALT and its related design methods. The 

research problem is stated here, along with the purpose of the study and its objectives.  

The basic concepts of ALTs and a literature review form the basis of Chapter 2. We provide a detailed 

description of the concepts used in this thesis, which includes life testing, ALT, different censoring 

strategies, SSALT under different censoring strategies, life-stress relationship and life-stress model with 

the description of the CEM used in this thesis. Furthermore, we provide a brief review of the related 

literature on MLE, bootstrap CIs and optimum plans of SSALTs model under basic and progressive 

censoring schemes. In Chapter 3, we describe the baseline distribution used in this thesis. We discuss 

the characteristics of the GED and the performance of the MLEs of the model parameters. Then, the 

GED is compared with the Weibull and Gamma distributions. Also, previous studies and applications 

based on GED are briefly reviewed.  

In Chapter 4, we present general design steps and assumptions for modelling SSALTs of GED lifetimes 

under progressive Type-II censored samples. The ML procedure is then used to derive point and interval 

estimates of the unknown model parameters. Following that, two methods for constructing CIs for the 

model parameters are discussed: the asymptotic and bootstrap methods. The asymptotic CIs based on 

the observed Fisher information matrix are derived. Moreover, we use the bootstrap approach to obtain 

the CIs for the model parameters using two methods: percentile and BCa. Also, we use the bootstrap 

and jackknife methods to estimate the bias and variance of the estimators for the model parameters. 

Then, the performance of the MLEs and CIs will be estimated using Monte Carlo simulation under 

different sample sizes, percent of failures, stress change time and PCSs. The simulation study results are 

presented in Appendix A to compare the performance of the MLEs. 

We begin Chapter 5 with a description of the V-optimality criterion and how we utilize it to investigate 

the optimal stress change time and optimal scheme for the SSALT under progressive Type-II censoring 

scheme under the assumption of the CEM. The V-optimality criterion is used to estimate the 

100𝓅𝑡ℎpercentile lifetime under the GED at a usage stress level.  The optimum plan in this chapter is 

divided into two main components: optimal stress change time and optimal censoring scheme. The 

simulation studies are used to find the optimal stress change time and examine the influences of the 

sample size, the failure percentage, model parameters and different censoring schemes on the optimal 

stress change time and the corresponding 𝐴𝑉𝑎𝑟 of the 100𝓅𝑡ℎpercentile lifetime. Next, the 

determination of the optimal censoring scheme is discussed. The optimal censoring scheme is compared 

with the worst, Type-II censoring scheme and the complete sample. The impact of various sets of initial 

values of the sample size, the failure percentage, the model parameters and the stress change time is 

discussed in detail. Also, the robustness of the parameters will be investigated by considering the effect 

of parameter misspecification on the optimal stress change time and the optimal censoring scheme for a 
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small sample size. The simulation results of optimal design of SSALTs model are presented in Appendix 

B and Appendix C. 

The final chapter includes the summarization of the findings of this study and outlines some further 

problems of interest related to the objective of this thesis. 
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Chapter 2  

Fundamentals of Accelerated Life Tests and Literature 

Review 

This chapter introduces basic concepts and essential definitions used in this thesis, such as reliability 

and life testing, ALTs, censored samples and simple SSALTs with different censoring methods. In 

addition, the concept of the life-stress model is reviewed and the CEM is discussed in detail, along with 

its mathematical derivation. Section 2.8 presents a review of relevant literature for this research and 

discusses the methodology used in analysing SSALTs with advantages and drawbacks. 

2.1 Reliability and Life Testing 

The reliability function, also known as the survival function, is the probability that a component or 

system will perform its required functions under determined operating conditions for a specified period 

of time. Reliability testing is generally considered for life data analysis in which items are tested to 

failure in order to obtain failure-time data. The reliability function 𝑅(𝑡) complements the cumulative 

distribution function (CDF) F(𝑡). In order to model the time to failure, the CDF represents the probability 

that a failure time variable T is less than or equal 𝑡. The reliability function represents the probability 

that an item is continuously working until a specific time. For a given time 𝑡, 𝑅(𝑡) is the probability that 

the time to failure is greater than or equal to 𝑡. It is mathematically given as: 

𝑅(𝑡) = P(T > 𝑡) = 1 − F(𝑡). 

Over the last decades, life-testing has been of continuous interest due to its importance in many fields 

such as industry, engineering and medical experiments. Life-test experiments focus on recording the 

failure times or lifetimes of the items being tested. The lifetime of a product or individual is the time 

until a given event has occurred for the product or individual. It is worth mentioning that the failure 

times are not only when the product is failing; it is generally a time when an event occurs. This time of 

an event could be a time of getting recovered from a disease or a time until the product reaches some 

determined usage level. The lifetime of the item can be measured by metrics such as hours, years, or 

cycles. The distribution that represents those time points is called a lifetime distribution. In typical life 

data analysis, the experimenter examines the data collected from life testing, in which a sample of items 

is operated under normal use conditions, to investigate the life characteristics of the product (Meeker 

and Escobar, 1998). 



Chapter 2 

8 

2.2 Accelerated Life Tests 

ALTs are essential models in reliability and survival analysis. They consist of various test methods for 

shortening the product life or hastening the degradation of their performance by placing the test units 

under higher than normal stress conditions. Such testing aims to obtain data faster, thereby saving time 

and money. Under the ALT design, items fail one-by-one according to their weakness as the test time 

increases. Thus, the analysis of lifetime data for ALT designs depends on the theory of order statistics 

(Nelson, 1990). Generally, failure information from tests at high levels of one or more accelerating 

variables that affect the life of the products (e.g. temperature, voltage, humidity or pressure) is 

transformed, based on a physically reasonable statistical model, to obtain estimates of product life or 

performance at normal levels of the accelerating variable(s) (Nelson, 1990). 

There are many ways of accelerating tests to speed up the time to failure, such as applying high usage 

rates and overstressing the product. The stress loading in ALTs can be applied by various methods 

according to the time dependency of the stress variables, as shown in Figure 2.1, which follows Nelson’s 

(1990) description of these essential types of ALTs. Commonly used methods are constant stress, in 

which the stress is time-independent (i.e. the stress is kept at a constant higher-than-usual level of stress 

throughout the test), step-stress, in which the stresses are time-dependent or time-varying (i.e. the 

product is subjected to stress levels that vary at specified change points) and progressive stress (linearly 

increasing stress).  

 

Figure 2.1 Graphical representation of different types of ALT. 

In ALTs, the model under constant stress raises the problem of selecting the appropriate stress levels. 

Suppose the selected stress levels are too low. In that case, there will be few or no product failures during 

the limited test time, and the effectiveness of the accelerated testing will be consequently reduced. In 

order to address this problem, SSALTs can be used (Nelson, 1990). 
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2.3 Censored Samples 

In statistical analysis, it is preferable to have information about the complete sample to estimate the 

parameters accurately. However, removing items from an experiment may be preferable before they fail 

in a practical life testing experiment, or it may be important to terminate the test before all the failure 

times have been observed. For many reasons, such as cost reduction, time constraints and facility 

availability, the censored sample is used. It is a type of incomplete data that is commonly used in 

reliability and life testing. 

The life testing process involves recording the lifetimes of units undergoing the test. In life testing, data 

is recorded as either failure or censored. If the item is removed from the test before it stops working, it 

is referred to as censored data. If all units have failed by the end of the test, a complete sample is 

produced, while if some units survive longer than the test duration, the sample is then said to contain 

censored data. Figure 2.2 below is based on Nelson (1990, p.14, Figure 2.1). 

 

Figure 2.2 Graphical representations of complete and censored data. 

Censoring is commonly used in industrial and medical survival analysis; it is often the case that an item 

is lost or withdrawn before failure occurs. These methods have been linked to a variety of applications 

in different sciences. As a result, designing ALT models under different censoring schemes, such as 

Type-I, Type-II and progressive censoring, have received considerable attention over the years. For 

ALTs based on progressively censored data see for example; Aggarwala (2001), Balakrishnan et al 

(2011), Cramer et al (2021) and the references in Section 2.8. 

2.3.1 Progressive Censoring Schemes 

The progressive censoring scheme (PCS) provides a flexible life test design by allowing test units to be 

removed not only at the termination of the test but also at intermediate stages within the testing time. It 

is a generalization of the basic Type-I and Type-II censoring schemes where items are removed at single 

time point. In life testing under Type-I censoring, items are removed after a specified survival time, 



Chapter 2 

10 

while under Type-II censoring, items are removed after a predetermined number of observed failures 

have occurred. To generalize these two types of censoring, items are removed either at predetermined 

censoring times or upon the occurrence of observed failures; the former is called progressive Type-I 

censoring and the latter is called progressive Type-II censoring. The test continues for the remaining 

surviving items, either until they fail or until a further stage of censoring takes place. The concept of 

PCS was introduced initially by Herd (1956) and was developed by Cohen (1963). PCSs provide more 

flexibility in the design stage than basic censoring methods, as items are removed in multiple 

intermediate stages of the experiment based on the PCS. For a detailed explanation of PCS, see 

Balakrishnan and Cramer (2014). 

One of the drawbacks of Type-I and Type-II censoring schemes is that the items cannot be removed 

early. However, in some life-test experiments, observations are withdrawn from the test at various times 

during the experiment for reasons that are independent of the experimental factor of interest. For 

example, in a medical test, some patients may leave the test due to personal reasons before the 

appearance of the event of interest. Therefore, PCSs can be used to design a life test experiment where 

items would be removed at different times during the experiment. Furthermore, PCS is one of the 

preferred censoring methods as it allows the data to be censored in various steps during the test 

(Balakrishnan and Cramer, 2014). Therefore, PCSs provide the experimenter with more information 

than the basic Type-I and Type-II censoring, about the whole density curve.  

One of the important factors in designing life tests is keeping the experiment’s costs as low as possible. 

Generally, life testing is expensive, not only in terms of production costs but also in terms of test 

allocation, test time, test equipment, human costs and power costs. Censored items during the test will 

release the facilities used for testing the items early. Also, removing survival items from the test has 

benefits as these censored items can be used for other purposes. So, censoring items during the test is a 

way of reducing the total cost of the life testing. The comparison of the test cost under a complete sample 

and a progressive Type-II censored sample will be discussed in Section 2.5. 

Applying the PCSs in life tests is useful in many situations, for example: 

1- In some fields, such as industry, measuring the effect of human usage on the effectiveness of a 

product is required in order to improve its performance and, sequentially, increase its reliability. 

Removing products from life tests based on the PCS method can be utilized in order to measure 

specific characteristics of the product or for each part of it (Aggarwala, 2001). 

2- For reliability evaluation during the production prototype process, engineers can use the 

removed item to perform modifications depending on its reliability at the time of removal. They 

can determine which parts suffer more impact at certain times and which repairs are required to 

renovate the product (Balakrishnan and Cramer, 2014). 

3- In cases where facilities used for the experiment are limited or available for a short time, PCS 

is used to release facilities early before the test ends. Moreover, limited funds can lead to a 
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reduction in the usage time of test facilities. Using PCSs may free up some facilities in a shorter 

time than when using basic censoring schemes (Han, 2015). 

4- For the same reason of limited funds, studying the factors contributing to the reliability of items 

or complete systems is required as well as estimating the mean life time of the items. So, 

censored items can be used either to measure specific characteristics or as test items in related 

experiments that do not require the items to be in their original state (Balakrishnan , 2007). 

5- If the process of failure of an item has a negative effect, then it is preferable that items be 

removed during the early stages of the test. Also, in the case where failures cost more than 

censored items, ALT under PCS is preferable to use.  

Under standard environmental conditions for all test items, PCSs can be used in experiments to achieve 

two purposes: estimating the reliability of an item and determining the growth rate of specific 

characteristics of that item. To study the functionality of an item, it may be necessary to measure its 

functions at various times. Thus, the censored items can be used for this purpose. In addition, if the 

failure of items requires a sequential process, then progressively censoring the items from the 

experiment is the appropriate solution to reduce the consequent impact of removing all censored items 

at the end of the test. This may happen, for example, when the life test is performed for items that are a 

part of a complex system that has to function continuously. The maintenance should be done 

immediately when the item fails to keep the system working. So, censoring the items progressively will 

spread the workload of maintenance. 

2.4 Step-Stress Accelerated Life Tests 

The most common type of ALT is a step-stress model that can substantially shorten the test's duration 

by allowing the stress on each item to be increased step-by-step over time. This model is often preferred 

to constant stress ALTs because not only can the test time and expense be considerably decreased, but 

it could also avoid a high stress start point and possibly unrelated failure modes. If only two stress levels 

are used in a test, the step-stress test is called a simple step-stress test, while, in the multiple-step SSALT 

there is more than one change of stress level.   

In SSALTs, units usually start at a specified constant low stress level and continue either until a 

predetermined time or fixed number of failures. If the unit does not fail, the stress is increased and held 

constant for another specified time or number of failures. The first case is known as time step-stress test 

and the second case is known as failure step-stress test. Stress is then repeatedly increased and held 

constant, and the test continues. The test could be terminated when all units fail or at a predetermined 

time (see Kundu and Ganguly, 2017 for more details). 
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2.4.1 Simple Step-Stress Accelerated Life Tests 

The most used kind of SSALTs in the literature is the simple step-stress test. See for example: Xiong 

(2003), Nelson (2005), Han and Bai (2020), Ling and Hu (2020) and the references cited there. It has a 

single change of stress using only two stress levels 𝑥1 and 𝑥2, where 𝑥1 < 𝑥2. In a simple step-stress test, 

units are initially placed on test at a low stress level 𝑥1 and run for a previously specified time, at which 

point the stress is changed to the higher stress level 𝑥2. The test is continued until all units fail, or until 

a fixed censoring time or upon occurrence the number of failures. 

2.4.1.1 Simple Step-Stress with Type-I Censoring 

In a simple SSALT with Type-I censoring, the test is terminated at a specified censoring time 𝜏𝑐 before 

all 𝑛 test items have failed. Therefore, the length of the experiment 𝜏𝑐 is fixed but the number of failures 

𝑟 at that fixed time is a random variable. Even though fixing the test duration is generally an advantage, 

it may result in few failures or possibly none occurring before time 𝜏𝑐. The test procedure for this type 

is discussed by Nelson (1990) and can be summarized in the following steps: 

Step 1: Firstly, 𝑛 items are placed under a test at initial low stress level 𝑥1.  

Step 2: The test is continued at the low stress level 𝑥1 until a predetermined time 𝜏1 is reached, then the 

stress is increased to high stress level 𝑥2 for the survival items. 

Step 3: The test is continued until a predetermined censoring time 𝜏𝑐 is reached; see Figure 2.3. If 𝑛 =

𝑟, then a complete sample is produced. 

 

Figure 2.3 Simple SSALT model with Type-I censoring. 

2.4.1.2 Simple Step-Stress with Type-II Censoring 

In a simple SSALT with Type-II censoring, the test terminates when a specified number of failures 

(𝑟), (1 ≤ 𝑟 < 𝑛) occurs. If 𝑟 = 𝑛, then a complete sample is produced. It should be noted that in Type-

II censoring, the number of failures 𝑟 is fixed while the total time of the test is a random variable. Fixing 
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the number of failures makes Type-II censoring preferable to Type-I for many researchers, as a 

reasonable number of failures is fixed in advance. On the other hand, the randomness of the test period 

can make Type-II censoring less preferable. The test procedure for this type is the same as simple 

SSALTs with Type-I censoring, but with Step 3 changed to:  

Step 3-1 as shown in Figure 2.4 below, where the test is continued with stress level 𝑥2 until the total 𝑟 

items fail (Nelson, 1990). 

 

Figure 2.4 Simple SSALTs model with Type-II censoring. 

2.4.1.3 Simple Step-Stress with Progressive Type-I Censoring 

According to Balakrishnan and Cramer (2014), in simple SSALTs with progressive Type-I censoring, 

fixed numbers of items are withdrawn at multiple pre-specified times. The test will terminate at the fixed 

time of the last set of removals. The following steps can be used as a guide for implementing this scheme 

for SSALT design: (for a simple SSALT model, 𝑟 = 2): 

Step 1: determine 𝑟 censoring times 𝜏1, 𝜏2, … , 𝜏𝑟 with associated 𝑟 numbers of censored items 

𝑅1, 𝑅2, … , 𝑅𝑟, where 𝑟 is a specified number of censored stages. Under each stress level 𝑥𝑖, there is 

𝑛𝑖 failures occur. So, 𝑛 = ∑ 𝑛𝑖
𝑟
𝑖=1 + 𝑅1 + 𝑅2 + …+ 𝑅𝑟 

Step 2: 𝑛 items are placed on a test at initial low stress level 𝑥1. 

Step 3: When the first censoring time 𝜏1 occurs, the stress is changed to 𝑥2 and 𝑅1 of survival items are 

removed from the test. Following that, at the second censoring time 𝜏2, the stress is changed to 𝑥3 and 

𝑅2 surviving are removed from the test, and so on. The number of failures at each stress level 𝑥𝑖 is 

denoted by 𝑛𝑖, where 𝑖 = 1,… , 𝑟. The observed ordered failure time data 𝑡i:n are: 

 0 < 𝑡1:n < ⋯ < 𝑡n1:n ≤ 𝜏1 < 𝑡n1+1:n < ⋯ < 𝑡(n1+n2):n ≤ 𝜏2 < 𝑡(n1+n2)+1:n < ⋯ < 𝜏𝑐.  

Step 4: The test is continued until the time 𝜏𝑐 when the remaining 𝑅𝑟 survival items are removed. 

Figure 2.5 explains the SSALT model with progressive Type-II censoring. 



Chapter 2 

14 

 

Figure 2.5 Simple SSALT model with progressive Type-I censoring. 

It is worth noticing that the number of surviving items at each censored time is random, which may lead 

to lack of number of units to be removed. Therefore, the planned PCS may differ from the applied PCS 

(Balakrishnan and Cramer, 2014). The test could be terminated at any of the censoring times 𝜏𝑘 , 𝑘 =

1,… , 𝑟 − 1 before 𝜏𝑐, if the survival units at that time are less than the corresponding number of censored 

items 𝑅𝑘.  

2.4.1.4 Simple Step-Stress with Progressive Type-II Censoring 

According to Balakrishnan (2009), under the progressive Type-II censoring scheme, fixed numbers of 

items are removed from the test after each observed failure. The test is terminated when a specified 

number of failures are observed. Consequently, the time of the test is random, whereas the experimenter 

determines the number of observed items. Fixing the number of failures in advance makes Type-II 

censoring preferable to Type-I for many researchers. On the other hand, the randomness of the test 

period may make it undesirable. The test procedure for this type is: 

Step 1: sets 𝑟 number of censored items 𝑅1, 𝑅2, … , 𝑅𝑟, where 𝑟 is a specified number of failures and 

𝑛 = 𝑟 + 𝑅1 + 𝑅2 + …+ 𝑅𝑟 

Step 2: 𝑛 items are placed on a test at initial low stress level 𝑥1. 

Step 3: At the time of the first failure occurrence, 𝑅1 of survival items are removed from the test. 

Following that, when the second item fails, 𝑅2 of survival items are removed from the test, and so on. 

Simultaneously, the stress level is changed to the higher stress 𝑥2 at the stress change time 𝜏. 

Step 4: The test is terminated when the 𝑟𝑡ℎ failure is observed. 

Figure 2.6 presents the test procedures of SSALT model with progressive Type-II censored data. 
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Figure 2.6 Simple SSALT model with progressive Type-II censoring. 

2.5 Cost of ALTs 

The cost corresponding to a life test is an essential issue to be considered in designing ALT. The total 

cost of a life test experiment is affected by many factors, such as 

1- The cost of the facilities used in the test. This cost is affected by the test duration and the number of 

products to be tested. However, removing items from the experiments reduces this cost by stopping 

the usage of the facility, and these items can be used for another purpose. 

2- The cost of the products to be tested. However, this cost depends on the number of products under 

test and the number of observed failures. The cost of a failure is greater than that of a censored item. 

Removing products from the test before it fails allows the experimenter to use them for another 

purpose. Also, some parts of censored products could be recycled and used for other purposes. 

3- The cost of stress applied to the products. Also, this cost depends on the number of failures and 

censored data. For example, if the stress was the voltage, then more products mean more voltage 

units needed to run the ALT. 

The total cost is difficult to estimate as it depends on variable features based on specific circumstances. 

However, Han (2015) assumed that the total cost of a life test consists of 6 main parts. These parts are: 

1- The installation cost 𝐶𝑠𝑒𝑡, which is the cost of the experiment set-up. It is the cost of the installation 

of all items in the ALT experiment to be tested. This cost is constant with respect to 𝑛 and 𝑟.  

2- The product cost 𝐶𝑢, which is the cost of each item to be tested.  

3- The operation cost 𝐶𝑜𝑝(𝑥𝑠) per unit time, which is the cost of running an ALT for each item under 

the stress level that has been imposed.  
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4- The inspection cost 𝐶𝑖𝑛𝑠(𝑥𝑠) per unit time, which is the cost of the inspection tool used to examine 

the items under the test. This cost is calculated for each test unit. 

5- The failure cost 𝐶𝑓, which is the cost of waste management.  

6- The censored items cost 𝐶𝑐𝑒𝑛, it is the cost of recycling the product or repairing it so that it may be 

used for another test or purpose. 

These components are affected by the total sample size 𝑛 and the number of observed sample size 𝑟, 

which is the number of the observed sample. If 𝑛 or 𝑟 increases, then the total test cost will increase. It 

can be noticed that 𝐶𝑐𝑒𝑛 ≤ 𝐶𝑓 as the censored items can be used, unlike the failures. Also, the total 

operation’s cost and the total inspection’s cost for all items under the test reduce when items are censored 

in the early times of the test under Type-II progressive censoring. Under progressive type-II censoring, 

items are removed at various times during the test, unlike Type-II censoring, where items are removed 

at the end of the test. Thus, it can be concluded that the test cost of the ALTs based on progressive type-

II censoring is less than that of the ALTs based on type-II censoring or a complete sample. 

2.6 Life-Stress Model 

SSALTs are developed based on the underlying life distribution that describes the lifetime of items 

under each stress level and choosing the appropriate life-stress model that relates the life distribution of 

test units at different stress levels. It is necessary to estimate the PDF at the usage stress level using data 

collected at higher stress conditions based on the PDFs at each accelerated stress level. Because the units 

will be tested under more than one stress level in a SSALT, the cumulative effect of the applied stresses 

must be considered. To analyse the data from a SSALT, a model is needed to describe the effect of 

changing stress and to relate the life distribution of the units at a certain stress level to the distribution 

at the higher stress level. There are several kinds of life-stress model, such as the CEM, which is the 

most commonly used model proposed by Nelson (1980).  

2.6.1 Cumulative Exposure Model 

According to Nelson (1980, 1990), the CEM is based on the assumption that the remaining life of the 

test units depends only on the cumulative exposure the units have seen at the current stress level and 

that the units do not remember how such exposure was accumulated. Moreover, since the units are held 

at a constant stress at each step, the surviving units will fail according to the distribution at the current 

stress level, but with a starting age corresponding to the total accumulated time up to the beginning of 

the current stress level. However, the CEM relates the distribution under step-stressing to the distribution 

under constant stress. In other words, the model explains the cumulative effect of the applied stresses. 

Therefore, the distribution function of a random variable describing the lifetime in a SSALT is obtained 

from the CEM. 
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To explain the concept of the CEM for a failure mode, assume there are four prespecified stress levels 

within a certain life test, 𝑥1, 𝑥2, 𝑥3 and 𝑥4, with 𝑥1 < 𝑥2 < 𝑥3 < 𝑥4. The stress levels are increased step 

by step at the fixed stress change time 𝜏i, 𝑖 = 1,2,3. According to Nelson (1980, 1990), Figure 2.7 

clarifies the CEM for the four accelerated stress levels. Part (A) presents a step-stress pattern over time 

with four steps and the stress change times, 𝜏i , when the stress is increased to a higher level. 

In CEM, it is assumed that the data under test follow the distribution of the stress that they are being 

subjected. So, there are four different distribution functions F1(𝑡), F2(𝑡), F3(𝑡) and F4(𝑡), representing 

the lifetime distribution of items failing under constant stress; 𝑥1, 𝑥2, 𝑥3 and 𝑥4, respectively; see part 

(B) of Figure 2.7. These four lifetime distribution functions belong to the same family of distributions 

as it can be seen in part (C) of Figure 2.7.  

 

Figure 2.7 Cumulative exposure model for a SSALT. 

The life experiment starts at time 𝑡 = 0, when all test units are exposed to the stress level 𝑥1 and their 

failure times follow the CDF: 

 G(𝑡) = F1(𝑡), 0 ≤ 𝑡 < 𝜏1.  

    Part (B): CDF of lifetime at each stress level      Part (C): composite CDF of lifetime at SSALTs 

Part (A): Step-stress pattern 
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The failure times of failed units are observed, and the test is run continuously until time 𝜏1. At that time, 

the survival units will be exposed to the higher stress level 𝑥2 , where the CDF of the failures will be 

F2(𝑡). Hence, as shown in part (B) of Figure 2.7, the CDF F2(𝑡) will start at the previously accumulated 

fraction failed ε1 which is equivalent to the ending time (changing time) of the first stress level (Nelson, 

1980;1990). 

The equivalent time ε1 represents the exposure the units have seen at stress level 𝑥1. ε1 can be calculated 

by equating the probability of failure under 𝑥2 at the time ε1, with the probability of failure under 𝑥1 at 

the change time 𝜏1 as: 

 F2(ε1) =  F1(𝜏1). 

Consequently, the CDF of the units failing under the second level 𝑥2 is 

 G(𝑡) = F2(𝑡 − 𝜏1 + ε1), 𝜏1 ≤ 𝑡 < 𝜏2.  

Similarly, the stress level will be changed from 𝑥2 to 𝑥3 at a predetermined time 𝜏2. The test units under 

stress level 𝑥3 have the CDF: 

 G(𝑡) = F3(𝑡 − 𝜏2 + ε2),                𝜏2 ≤ 𝑡 < 𝜏3  

where ε2 is the accumulated fraction failed, and can be found by solving: 

 F3(ε2) =  F2(𝜏2 − 𝜏1 + ε1), 

where  F3(ε2) is the CDF under stress level 𝑥3 for the equivalent time ε2 and  F2(𝜏2 − 𝜏1 + ε1) is the is 

the CDF under stress level 𝑥2; see Figure 2.7 part (B). Similarly, the same steps are applied when the 

stress is increased from 𝑥3 to 𝑥4. 

Generally, the CEM defined by Nelson (1990) for k-step SSALTs can be expressed as follows: 

G(𝑡) =

{
 
 

 
 
F1(𝑡),                                             0 ≤ 𝑡 < 𝜏1,

 
 

F2(𝑡 − 𝜏1 + ε1),                         𝜏1 ≤ 𝑡 < 𝜏2,

F3(𝑡 − 𝜏2 + ε2),                         𝜏2 ≤ 𝑡 < 𝜏3,
⋮                                                     ⋮                    
Fk(𝑡 − 𝜏k−1 + εk−1),             𝜏k−1 ≤ 𝑡 < ∞,

                                  

and the corresponding PDF is given by: 

g(𝑡) =

{
 
 

 
 
f1(𝑡),                                             0 ≤ 𝑡 < 𝜏1,

f2(𝑡 − 𝜏1 + ε1),                         𝜏1 ≤ 𝑡 < 𝜏2,

f3(𝑡 − 𝜏2 + ε2),                         𝜏2 ≤ 𝑡 < 𝜏3,
⋮                                                     ⋮                    
fk(𝑡 − 𝜏k−1 + εk−1),             𝜏k−1 ≤ 𝑡 < ∞,
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where, 𝜏𝔰, 𝔰 = 1,2, … , k − 1, k ≥ 2 is the time of changing the stress from the 𝔰𝑡ℎ stress level to the 

(𝔰 + 1)𝑡ℎ stress level, F𝑥(𝑡), 𝑥 = 1,… , k is the CDF of the lifetime under the 𝑥𝑡ℎ stress level. Moreover, 

ε𝔰, 𝔰 = 1,2, … , k − 1 is the equivalent starting time for each step-stress, and can be calculated by solving:  

 F𝔰+1(ε𝔰) =  F𝔰(𝜏𝔰 − 𝜏𝔰−1 + ε𝔰−1),  

such that ε0 = 𝜏0 = 0. 

The resulting CDF of the lifetime under the CEM is presented in Figure 2.7 part (C), that consists of the 

segments of CDFs for four stress levels. 

2.7 Life-Stress Relationship 

In order to connect product lifetimes with life testing stress levels, Nelson (1990) presented several 

models for the life-stress relationship. These models describe a life characteristic of the distribution as 

the relationship between the lifetime and stress levels. These models are based on the type and number 

of accelerated stresses and how the stress affects the life characteristic. 

In this research, the GED is assumed as the underlying lifetime distribution for the ALT models. If 𝑇 is 

a random variable has a GED, then the distribution function of 𝑇 is as follows: 

F(𝑡; 𝛼, 𝜃) = {
[1 − exp(−(𝑡 𝜃)⁄ )]𝛼                                    𝑡 > 0  ,   𝛼, 𝜃 > 0

0                                                                      otherwise           
                                                         

where 𝛼 is the shape parameter and 𝜃 is the scale parameter.  

The log-linear acceleration model is assumed to model the relationship between stress and the scale 

parameter of the GED. The scale parameters 𝜃0, 𝜃1 and 𝜃2 at the usage stress level, lower stress level 

and higher stress level are assumed to be a log-linear function of stress levels. The relationship is defined 

as: 

𝑙𝑛(𝜃𝑘) = β0 + β1𝑥𝑘  ,      𝑘 = 0,1,2 ,                                                                                                                (2.1) 

where 𝑥0, 𝑥1 and 𝑥2 are usage, lower and higher stress levels, respectively. The life-stress model 

parameters β0 and  β1(< 0) are unknown parameters. 

Figure 2.8 shows the relationship between the stress level and the lifetime. The line shows that as the 

stress level increases, the failure time of the product decreases. Consequently, the product needs longer 

time to fail when it operates under usage stress level. This relationship provides an effective means for 

accelerating the test. 
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Figure 2.8 The relationship between stress level and lifetime. 

After estimating the CEM parameters under lower and higher stress levels, the life-stress relationship is 

utilized to estimate the model parameters under usage stress level to predict the lifetime under usage 

stress level; see Chapter 5. 

2.8 Review of Relevant Literature 

In this section, we will present an overview of relevant research to this thesis. The literature review will 

be presented regarding two categories: statistical inference of the SSALT model parameter and optimal 

test design problems based on progressive Type-II censoring scheme. 

The ALT is an experimental strategy that is widely used in product life testing by engineers, especially 

electrical and electronic engineers. It offers a significant reduction in the time and cost of the test. 

Chernoff (1962) and Bessler et al. (1962) were the first to study the optimum design of ALTs. A 

substantial number of articles have analyzed product lifetime by using a wide range of ALT mechanisms 

under different censoring schemes. In this thesis we study the SSALT which is a special case of ALT. 

There are a few publications on SSALTs with complete samples, but most publications involve censored 

samples. One reason for this is the cost reduction under censored samples. Also, it is not always possible 

to observe failure time in practical experiments.  

In a SSALT, the CEM describes the life distribution of test units at different stress levels. Most studies 

relating to the analysis of SSALTs use the CEM. The SS scheme with CEM was proposed by Sedyakin 

(1966) and was further discussed and generalized by Nelson (1980), who analyzed Weibull distributed 

lifetimes under the inverse power law as a selected life-stress relationship. The problems of designing 

an optimum plan and making inferences from the SSALTs have been studied widely, and a guideline 

for planning SSALTs has been published by Nelson (1990). Recently, Limon et al. (2017) provide a 

review of relevant research and books on various ALT designs and different optimal test plans. They 

provide an extensive guidance for researchers in this area and help the researchers to conduct a new 

study regarding ALTs. Also, Kundu and Ganguly (2017) provided a monograph for reviewing, in detail, 

the inference and optimum design of SSALT models and related topics. Moreover, a summarized review 
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of ALT models by Chen et al. (2018) focuses on designing an optimal plan for ALT models, and 

discusses problems and solutions related to ALTs. Using examples of engineering problems arising from 

ALT applications, the authors provide guidelines on selecting appropriate theories for designing ALTs 

and also suggest solutions.  

2.8.1 Statistical Inference of Simple SSALT 

In analysing the SSALT model, the bootstrap method invented by Efron (1979) is utilized for 

constructing CIs for unknown parameters. It is a well-known computational technique that is often used 

to estimate the CIs of unknown parameters. The early work by Efron (1982) and Efron and Tibshirani 

(1993) extensively discussed the Jackknife and the bootstrap technique and its properties. Also, various 

bootstrap methods have been presented to estimate the CIs of unknown parameters. Also, Efron (1981) 

used the bootstrap method to calculate point and interval estimates under Type-II censoring. 

Furthermore, Efron and Stein (1981) discussed using the Jackknife method to estimate the variance of 

the parameters. They argued that the bootstrap could be used to obtain the most robust estimate of bias 

and variance of the unknown parameters.  

In life testing, it is highly desirable to reduce the cost and time of the experiment. To achieve this, a 

scheme involving progressively censored items can be used. Analysis of lifetime distributions under 

PCSs, including generalized censoring schemes for Type-I and Type-II censoring schemes, was first 

proposed by Herd (1956) who named it ‘multi-censoring’. Seven years later, Cohen (1963) officially 

introduced progressive censoring schemes, which have attracted great interest in the last two decades 

due to their wide application in the fields of engineering, social sciences and medicine. Balakrishnan 

and Sandhu (1995) used an independent result regarding a progressive type-II censored sample from the 

uniform distribution to propose a simple simulation algorithm for generating a progressive type-II 

censored sample from any continuous distribution. This algorithm requires the generation of only the 

observed data instead of a complete sample size. The earlier works of Balakrishnan and Aggarwala 

(2000) and Balakrishnan (2007) provide a thorough overview of various PCSs. Balakrishnan and 

Cramer (2014) have published the most comprehensive research into various methods of progressive 

censoring models and their applications, particularly progressive Type-II censoring scheme. Their study 

provides a detailed introduction to progressive censoring with practical methodology, basic theory and 

examples, as well as developments in progressive censoring schemes.  

Data analysis problems and statistical inferences involve modelling progressive Type-II censoring 

schemes using various life distributions, have been studied by several authors. See, for example, Krishna 

and Kumar (2011), Dey and Dey (2014) and Mohie El-Din et al. (2016), Kotb and Raqab (2019), Zhang 

and Gui (2019) and references cited therein. 

Under progressive Type-II censoring, Xie et al. (2008) analyzed the SSALT model for exponential life 

distribution with a mean that is a log-linear function of the stress, and a CEM assumed. Parameter 

estimation used the ML method, and CIs were obtained using exact, approximate and bootstrap methods. 



Chapter 2 

22 

Based on a bootstrap sample, three bootstrap methods are used to estimate the CIs of the model 

parameters: studentized-t, percentile and BCa bootstrap. They study the performance of the proposed 

methods by Monte Carlo simulation for a small sample size of 20. They concluded that the asymptotic 

method is not proper to be used for a small sample size. While the exact CIs is the best method to use, 

unless it is difficult to calculate, then the BCa bootstrap method is advised to be used for estimating the 

CIs. Balakrishnan (2009) provided a comprehensive review of various studies focusing on exact 

inferential methods for the model parameters of simple SSALTs under different censoring schemes, 

including a progressive censoring scheme. The CEM with the exponential distribution as the underlying 

lifetime distribution was assumed.  

Pradhan and Kundu (2009) studied the statistical inference for the shape and scale parameters of the 

GED under progressively Type-II censored data. Three scenarios of censoring schemes were assumed: 

Type-II censoring scheme, reverse of Type-II censoring scheme and one random censoring scheme. 

They computed the MLEs and asymptotic CIs numerically as they realized that the MLEs can not 

obtained in closed-form expression. They concluded that the average bias and the standard deviation of 

the MLEs are smallest under reverse of Type-II censoring scheme. However, by comparing the 

distribution function of the three proposed schemes with the complete sample based on a real data set, 

they found that Type-II censoring offers an accurate estimate of the distribution function based on the 

complete sample. Chernick and LaBudde (2011) provided a detailed reference for researchers in the 

field of bootstrap techniques with applications using the R programming language and a guide for 

numerically estimating the CIs using bootstrap methods. 

In addition, Alkhalfan (2012) studied ML estimation with the optimal design of simple SSALTs under 

different censoring schemes, including: Type-I, Type-II, progressively Type-I and progressively Type-

II censoring based on CEM for different cases of stress levels. In addition, CIs for the unknown 

parameters were obtained using both the approximate and the parametric bootstrap methods. The 

Gamma distribution was assumed as a lifetime distribution with a mean that is a log-linear function of 

stress. A simulation study with illustrative examples was presented to examine the performance of the 

proposed models. For SSALT based on progressive Type-II censoring, he concluded that the mean 

squared error for the scale parameter of the lower stress level is larger than the scale parameter of the 

higher stress level. Based on the coverage probability of the CIs, he recommended using the bootstrap 

method for estimating the CIs for the model parameters. 

A simple SSALT model was studied by Abd El-Monem and Jaheen (2015) for data following the GED 

distribution based on Type-II censored data. The MLEs and bootstrap CIs of the parameters were 

obtained, and their performance was investigated. They concluded that the bias and the MSE of the scale 

parameter at the higher stress level are smaller than the bias and the MSE of the scale parameter at the 

lower stress level. Also, they noticed that the number of failures in each stress level affects the 

performance of MLEs. However, they assumed very large values of the sample size (200 and 300) with 

a large FP> 75%. 
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In a different method of reliability analysis, Cramer and Jorge (2015) established a relationship between 

the failure times of components under a coherent system and the progressively Type-II censored data. 

The aim was to use all information available in the system operation procedure. They presented various 

detailed examples of many systems, including a bridge system. The ML method was used to obtain the 

parameter estimates. 

In life testing experiments, especially in industrial and medical survival analysis, it is common to 

encounter censoring. Censoring schemes have been linked to a variety of applications. Simple SSALT 

models with Type-I and Type-II censoring have been studied extensively in the literature. These can 

overcome many difficulties in life testing, such as shortening the duration of testing time. Among the 

many publications on ALTs under Type-I and Type-II censoring, the following are worth mentioning.  

Miller and Nelson (1983) studied optimum plans for two types of simple SS: time-step and failure-step 

SSALT, based on complete samples assuming exponentially distributed lifetimes. The V-optimality 

criterion is used to minimize the 𝐴𝑉𝑎𝑟 of the MLE of the mean life at a usage stress level. The CEM 

and a log linear life-stress relationship were assumed. Bai et al. (1989) extended the results of Miller 

and Nelson (1983) to the case of Type-I censoring. They calculated the MLEs and the Fisher information 

matrix that is used to calculate optimal stress change time/failure for simple time-step and failure-step 

SSALTs, respectively. By conducting a sensitivity analysis, they found that the stress change point is 

not too sensitive to incorrect estimate of the model parameters. Similarly, Xiong (1998) presented three 

different scenarios of failures occurrence for simple SSALTs Type-II censoring. The MLEs with CIs of 

model parameters were constructed, and hypothesis tests of model parameters were then discussed. Bai 

and Kim (1993) provide extensions to both Miller and Nelson (1983) and Bai et al. (1989) to the case 

of Type-I censoring. They presented an optimum plan of stress change time for simple SSALTs for the 

Weibull distribution under Type-I censoring. They assumed that a log-linear relationship exists between 

the Weibull scale parameter and the stress, and the CEM holds. Khamis (1997) made the comparison 

between simple SSALTs and constant stress for a Weibull lifetime model by measuring the efficiencies 

using ratios of MSEs of the two suggested models. He concluded that a simple SS test plan is much 

more efficient than a constant-stress test plan under Type-I censoring for all sample sizes.  

One of the background sources for SSALTs is provided by Gouno and Balakrishnan (2001). They 

presented a brief overview of different methodologies for SSALTs, particularly in the case of Type-II 

censoring. A procedure to determine the optimum simple SSALT plan under type-I censoring was 

proposed by Elsayed and Zhang (2004) based on either CEM or a hazard rate function model.  

Balakrishnan et al. (2007) analyzed simple SSALTs under Type-II censoring, with lifetimes being 

exponentially distributed and the log-linear acceleration model assumed. They obtained MLEs of the 

parameters and their exact distributions assuming a CEM. They suggested three approaches to 

determining the CIs for the model parameters: exact, asymptotic, and parametric BCa bootstrap 

methods. They concluded that as the stress change time is increasing, the estimate of the scale parameter 

under lower stress level will be precise. They argued that the BCa bootstrap can be used as interval 
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estimate for the scale parameter of the higher stress level in all cases, whilst it can be used to estimate 

the CIs for the scale parameter at the lower stress level for large sample size. Also, it was concluded that 

a large observed sample size is required to use the asymptotic CIs. Interestingly, they obtained the CIs 

using a nonparametric bootstrap method, as well, and they found that the coverage probabilities were 

away from the nominal levels. Moreover, Balakrishnan et al. (2009) analyzed the same simple SSALTs 

model but under Type-I censoring. They also concluded that the approximate CIs for the model 

parameter is advised to be used only with large sample size. 

Kateri and Balakrishnan (2008) considered the simple SSALT model under Type-II censoring, assuming 

a Weibull lifetimes distribution. The MLEs of the model parameters and the corresponding observed 

Fisher information matrix were derived. Closed form MLEs cannot be obtained, therefore they used the 

Newton-Raphson algorithm to compute the MLEs numerically. The CIs based on asymptotic and 

bootstrap using percentile and BCa methods were obtained. From the simulation study, they found that 

for large sample size, the asymptotic CIs are narrower than the bootstrap CIs. They argued that the BCa 

bootstrap provide better estimate of the CIs in the case of small sample size. Srivastava and Shukla 

(2008) obtained an optimal simple SSALTs for the case of type-I censoring schemes. They discussed 

statistical inference including MLEs, CIs and hypotheses tests about model parameters of the life-stress 

relationship. The model was based on the log-logistic distribution with a median that is a log-linear 

function of stress.  

Based on simple SSALT under Type-I censoring, Abdel-Hamid and AL-Hussaini (2009) obtained the 

MLEs and the bootstrap CIs for the parameters when the CEM holds, assuming GED for the lifetime of 

products. Liu (2010) developed ML and Bayesian methods to analyze and plan a simple SSALT with 

type-I censoring and found the optimal stress change time and the optimal sample size. He assumed a 

log-linear acceleration model and that the failure times at each stress level follows the Weibull 

distribution. Yuan et al. (2012) proposed an optimal plan using two optimization algorithms for simple 

SSALTs of the Weibull lifetime distribution where the characteristic life and the stress have a 

logarithmically linear relationship. They used the Bayesian approach and assumed the CEM in the 

presence of type-I censoring. The proposed Bayesian approach is also extended to the design of three-

level SSALTs. 

2.8.2 Optimum Test Design 

Selecting the optimal censoring scheme has received considerable attention in the statistical literature. 

The ALT model is aimed to be improved by considering the optimal design with respect to different 

priorities such as minimizing the precision of the parameter estimates. There has been extensive research 

in the literature concerning the investigation of optimal design for SSALT models based on various 

methods of censoring. The V-optimality, A-optimality and D-optimality criteria are commonly used 

criteria for designing optimum SSALTs plans. After reviewing the work that have been done in SSALTs 

field, it can be noticed that the aim of most of the literature relevant to planning SSALT under a variety 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Tao%20Yuan.QT.&newsearch=partialPref
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of censoring methods is to determine the optimal stress changing time. On the other hand, the research 

related to planning simple SSALT under PCSs are interesting in selecting the optimal censoring scheme 

over a range of proposed censoring schemes. Since 2000, the statistical literature in SSALTs based on 

PCS has been interested in determining the optimal censoring scheme. One of the basic references for 

the optimal censoring scheme is Chapter 10 of Balakrishnan and Aggarwala (2000). Some literature on 

optimal design based on progressively censored data is: Han (2008), Salemi et al (2018) and Hakamipour 

(2020). 

Li (2009) studied the problem of estimation with optimal design of SSALTs under type-I censoring 

based on CEM. He used the exponential and Weibull as lifetime distributions for a simple SSALTs 

model. He used the V-optimality criterion to obtain the optimal stress change time. Two objective 

functions are assumed to minimize their variance: the percentile life and the reliability estimate under 

usage stress level. By using a numerical algorithm to calculate the optimal time, he concluded that the 

optimal stress change time is slightly sensitive to changing the model parameters. 

In addition to studying the statistical inference for the parameters of the GED, Pradhan and Kundu 

(2009) investigated, also, the optimal censoring scheme under progressive Type-II censoring schemes 

among all possible censoring schemes for small sample size ≤ 15. They utilized the optimization 

criterion that measures the information on the parameters that is gained under the censoring scheme. 

The proposed information measure depends only on the shape parameter. Also, it depends on the weight 

of percentile rank. They numerically compared the proposed criterion with V-optimality, A-optimality 

and D-optimality. They concluded that the proposed criterion gives the same optimal scheme as A-

optimality criterion. 

Xie et al. (2008) discussed an optimal plan where not only the optimal change time, but also, the best 

and the worst progressive censoring schemes were investigated. They used the V-optimality and MSE-

optimality criteria, assuming two objective functions, respectively, as follows: 

Objective1= 𝑣𝑎𝑟(𝜃1) + 𝑣𝑎𝑟(𝜃2), where 𝑣𝑎𝑟(𝜃1) and 𝑣𝑎𝑟(𝜃2) are the variances of the scale parameter 

under the lower and higher stress levels, respectively. 

Objective2= 𝑀𝑆𝐸(𝜃1) + 𝑣𝑎𝑟(𝜃2), where 𝑀𝑆𝐸(𝜃1) is the mean squared error of the scale parameter 

under the lower stress level. 

They tested all possible schemes under small sample sizes= 10,12,16,20 with failure percentages 

ranging between 50% and 80% to determine the optimal and the worst scheme. From the results 

conducted via Monte-Carlo simulation, it was observed that the optimal and worst schemes based on 

two optimality criteria are different in most cases. Also, the relative efficiency of the worst to the optimal 

scheme under V-optimality is decreasing, and then it is increasing as the stress change time increases. 

On the other hand, under the MSE-optimality, the relative efficiency always decreases with increasing 

the stress change time. These results mean the bias of 𝜃1 affects the selection of the progressive scheme.  
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Ng et al (2004) studied the optimal censoring scheme for a progressive Type-II censored sample from a 

Weibull distribution. The expected Fisher information matrix and the AV-C matrix were obtained. The 

optimal censoring scheme was investigated based on three methods: A-optimality, D-optimality and 

maximizing the trace of the Fisher information matrix. They investigated the sensitivity of the censoring 

scheme by choosing some schemes that are close to the optimal one. They found that the relative 

efficiency is slightly changed which indicates that the optimal censoring scheme is robust.  
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Chapter 3  

Generalized Exponential Distribution 

Adding one or more parameters to a distribution function makes the resulting distribution more flexible 

for modelling data. So, adding a parameter to a cumulative distribution function, 𝔻(𝑡; 𝜃) by 

exponentiating it, produces the class of exponentiated distributions (Gupta et al, 1998). It has the form 

 𝐹(𝑡; 𝛼, 𝜃) = [𝔻(𝑡; 𝜃)]
𝛼.   

Gupta and Kundu (1999) defined the GED, also known as the exponentiated exponential distribution, 

as a member of the class of exponentiated distributions by assuming 𝔻(𝑡; 𝜃) to be the CDF of the 

exponential distribution. In addition, it is a particular member of the three-parameter exponentiated 

Weibull distribution, introduced by Mudholkar and Srivastava (1993). The GED is one of the most 

commonly used generalizations of the standard exponential distribution. Since the beginning of this 

century, the GED has been studied quite extensively by many authors in the life testing field, especially 

in presence of censored samples, some of which will be reviewed in the last section of this chapter. 

Moreover, Chapter 2 reviewed research that assumes the GED as the underlying lifetime distribution in 

analysing ALT models. This chapter will concisely review the GED and its properties. Furthermore, the 

GED is compared to the Weibull and gamma distributions to investigate its similarity and distinction to 

these distributions. 

3.1 Description of the GED 

If 𝑇 is a GED random variable, then the distribution function of the two-parameter GED is as follows: 

F(𝑡; 𝛼, 𝜃) = {
[1 − exp(−(𝑡 𝜃)⁄ )]𝛼                                    𝑡 > 0  ,   𝛼, 𝜃 > 0

0                                                                      otherwise           
                                            (3.1) 

The corresponding density function is: 

𝑓(𝑡; 𝛼, 𝜃) = {

𝛼
𝜃 [1 − exp (−

𝑡
𝜃)]

𝛼−1

. exp (−
𝑡
𝜃)              𝑡 > 0  ,   𝛼, 𝜃 > 0

0                                                                        otherwise            
                                         (3.2) 

where 𝛼 is the shape parameter and 𝜃 is the scale parameter. If 𝛼 = 1, then the GED coincides with the 

exponential distribution with mean 𝜃 as a special case. This  property is shared with the Gamma and 

Weibull distributions. 

The shape of the GED density depends only on 𝛼. The scale parameter has an impact on the spread of 

the distribution. Some of the possible shapes of the GED density functions for different values of the 
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shape parameter 𝛼 at 𝜃 = 1 and for different values of the scale parameter at 𝛼 = 3 are provided in 

Figure 3.1 and Figure 3.2, respectively.  

 

Figure 3.1 A graphical comparison of the PDF of GED for different values of 𝛼 at 𝜃 = 1 

 

 

Figure 3.2 A graphical comparison of the PDF of GED for different values of 𝜃 at 𝛼 = 3 
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It can be seen from Figure 3.1, one important property of GED is that its PDF is always right skewed as 

we will see in Section 3.1.1. As a result, the GED can be considered for situations where a skewed 

distribution for a positive random variable is needed.  For this reason, it can be used effectively to 

analyze lifetime data, particularly in the presence of censoring; see Gupta and Kundu (2003, 2007). 

Based on the properties of the GED studied by Gupta and Kundu (1999) and from Figure 3.1, it is 

obvious that the PDF of the GED is strictly decreasing with a reverse “J” shape for 𝛼 ≤ 1 , whereas it 

is unimodal and right skewed for 𝛼 > 1. It becomes more symmetric as the shape parameter increases. 

In addition, it can be observed that even for a small value of the shape parameter, the distribution is not 

symmetric (Gupta and Kundu, 2007). It should be noted, see Gupta and Kundu (2007) for numerical 

details, that the skewness and kurtosis of the GED have an inverse relationship with the shape parameter; 

see Section 3.1.1 for more details. 

Figure 3.2 demonstrates that the distribution is denser according to the area related to the value of the 

scale parameter. Also, as the value of the scale parameter increases, the distribution becomes flatter.  

Basic functions used in reliability theory are the reliability and the hazard functions. The reliability of 

GED is:  

𝑅(𝑡; 𝛼, 𝜃) = 1 − [1 − exp(−(𝑡 𝜃)⁄ )]𝛼 ,                                                                                                         (3.3) 

and the hazard function is: 

ℎ(𝑡; 𝛼, 𝜃) =

𝛼
𝜃 [
1 − exp (−

𝑡
𝜃
)]
𝛼−1

. exp (−
𝑡
𝜃
)

1 − [1 − exp(−(𝑡 𝜃)⁄ )]𝛼
,                                                                                         (3.4) 

To illustrate how the hazard is influenced by the shape parameter, Figure 3.3 shows the hazard function 

for 𝜃 = 1 and various values of 𝛼. 

Figure 3.3 shows that the hazard function of a GED can be increasing, decreasing or constant depending 

on the shape parameter. The situation is similar with gamma and Weibull distributions. The hazard 

function is constant when 𝛼 = 1, and in this case the hazard function of the exponential distribution is 

achieved. Furthermore, if 𝛼 < 1, the hazard function is decreasing to a finite number (scale parameter 

𝜃), as for a gamma distribution. On the other hand, if 𝛼 > 1, it increases from zero to a finite number 

(scale parameter 𝜃), whereas in the Weibull distribution the hazard function increases from 0 → ∞. 
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Figure 3.3 A graphical comparison of hazard of GED for different values of 𝛼 at 𝜃 = 1 

3.1.1 Properties of the GED 

In this section, some of the main properties of the GED are presented. 

If T is a random variable that follows the GED in (3.1), then the moment generating function 𝑀𝑇(𝑦) of 

T can be expressed as: 

𝑀𝑇(𝑦) = 𝐸(𝑒
𝑦𝑇) =

Γ(𝛼 + 1)Γ(1 − 𝑦𝜃)

Γ(𝛼 − 𝑦𝜃 + 1)
,         𝑦 <

1

𝜃
 , 𝛼 > 0 

where Γ(𝑦) = ∫ 𝑒−𝑡
∞

0
𝑡𝑦−1  𝑑𝑡, 𝑦 > 0 is a gamma function (Gupta and Kundu, 2007). 

Consequently, the mean and the variance of the GED can be obtained based on 𝑀𝑇(𝑦). The mean of a 

random variable is the first derivative of the moment generating function at 𝑦 = 0. That is 

𝑀𝑒𝑎𝑛(𝑇) = 𝑀𝑇
′ (0) 

                 = 𝜃[𝜓(𝛼 + 1) − 𝜓(1)] 

where 𝜓(𝑧) = 𝑑

𝑑𝑧
ln(Γ(𝑧)) =

Γ′(𝑧)

Γ(𝑧)
 is a digamma function (Gupta and Kundu, 1999). 

Similarly, the variance can be obtained by calculating the first and second derivatives of the moment 

generating function at 𝑦 = 0; which can be given by: 
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𝑉𝑎𝑟(𝑇) = 𝑀𝑇
′′(0) − [𝑀𝑇

′ (0)]2 

              = 𝜃2[𝜓′(1) − 𝜓′(𝛼 + 1)]. 

The quantile function of the GED is: 

𝑄(𝓅; 𝛼, 𝜃) = −𝜃 log (1 − (𝓅)
1
𝛼)                 0 < 𝓅 < 1  ,   𝛼, 𝜃 > 0                                                         (3.5) 

So, the median can be calculated from the quantile function: 

𝑀𝑒𝑑𝑖𝑎𝑛(𝑇) = −𝜃 log (1 − (0.5)
1
𝛼) 

Moreover, the coefficient of skewness of the GED can be calculated as 

𝑆𝑘𝑒𝑤(𝑇) =
𝜇3

𝑉𝑎𝑟(𝑇)3/2
, 

where 𝜇3 is the third central moment (moment about the mean) can be obtained as 

𝜇3 = 𝐸[(𝑇 − 𝐸(𝑇))
3] = 𝜇3

∗ − 3𝜇1
∗𝜇2
∗ + 2(𝜇1

∗)3,  

where 𝜇1∗, 𝜇2∗ , 𝜇3∗  are the first, second and third raw moments (moment about the zero). 

Using the moment generating function, 𝑀𝑇(𝑦), the raw moments can be calculated as 

𝜇𝑖
∗ = 𝑀𝑇

(𝑖)(0) =
𝑑𝑖

𝑑𝑦𝑖
𝑀𝑇(𝑦)|𝑦=0 

Gupta and Kundu (2007) represented 𝑀𝑇
′′(0) and 𝑀𝑇

′′′(0) using the digamma and polygamma functions 

as follows 

𝑀𝑇
′′(0) = 𝜇2

∗ = 𝜃2 [𝜓′(1) − 𝜓′(𝛼 + 1) + (𝜓(𝛼 + 1) − 𝜓(1))
2
] 

𝑀𝑇
′′′(0) = 𝜇3

∗ = 𝜃3 [𝜓′′(𝛼 + 1) − 𝜓′′(1) + 3(𝜓(𝛼 + 1) − 𝜓(1))(𝜓′(1) − 𝜓′(𝛼 + 1))

+ (𝜓(𝛼 + 1) − 𝜓(1))
3
] 

The skewness of the GED will be numerically calculated and compared with Weibull and gamma 

distributions in Section 3.2.  

Figure 3.4 represents the mean, median, mode, variance and skewness of GED as a function of 𝛼, when 

𝜃 = 1. The mean, mode and median of the GED are functions of the shape and scale parameters of the 

distribution; see Gupta and Kundu (1999, 2007). As can be seen from Figure 3.4, for fixed 𝜃, the mean, 

median and mode increase and converge to a limit value = 𝜃 log(𝛼) as 𝛼 increases. Similarly, as 𝛼 
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increases, the variance of GED increases and approximates to (𝜃𝜋)
2

6
. In contrast, the skewness is a 

decreasing function of 𝛼. Gupta and Kundu (1999) numerically indicated that the skewness has a 

limiting value ≅ 1.1395, regardless of the value of 𝜃. 

 

Figure 3.4 The impact of 𝛼 on the mean, median, mode, variance and skewness of GED at 𝜃 = 1 

3.2 Comparison with Gamma and Weibull Distributions 

In this section the properties of the GED is compared to those of the Weibull and gamma distributions. 

These three distributions are commonly used in reliability and life testing, due to their distinct properties 

and preferred physical interpretations. The GED family has some interesting features and certain distinct 

properties compared to distributions. However, its properties are quite similar to those of the gamma 

and Weibull families. In fact, it has been observed that in certain situations, the GED has some specific 

features which make it more desirable to use in lifetime tests than the gamma and Weibull distributions 

(Gupta and Kundu, 2003; 2004). 

To do a comparison of GED, Weibull and gamma distributions, the skewness coefficient will be 

calculated for the three distribution based on the moment generating function. The skewness will be 

measured based on the central moments. Skewness is the third central moment of a random variable; it 

is measured as: 

𝑆𝑘𝑒𝑤(𝑇) =
𝜇3

𝑉𝑎𝑟(𝑇)3/2
, 

where 𝜇3 is the third central moment (moment about the mean). 
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The moment coefficient of skewness provides information about the amount and direction of the density 

curve from symmetry. If 𝑆𝑘𝑒𝑤 > 0, the density is positively skewed. In contrast, if 𝑆𝑘𝑒𝑤 < 0, the 

density is negative skewed. As the value of |𝑆𝑘𝑒𝑤| increases, it indicates an extremely asymmetric 

distribution. In contrast, as the value of |𝑆𝑘𝑒𝑤| → 0, it indicates that the distribution is symmetric. A 

symmetric distribution has 𝑠𝑘𝑒𝑤 = 0. However, the value of the standard skewness is invariant of the 

location and scale of the random variable. 

In the case that the random variable follows the Weibull distribution, its pdf is given as: 

𝑓𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑡; 𝛼, 𝜃) =
𝛼

𝜃
(
𝑡

𝜃
)
𝛼−1

. exp (−
𝑡

𝜃
)
𝛼

                                  𝑡 ≥ 0   

where  𝛼, 𝜃 > 0 are the shape and scale parameter, respectively. 

Based on Rinne (2009), by using the central moments, the skewness measure of Weibull distribution is 

given by 

𝑆𝑘𝑒𝑤𝑊(𝑇) =
Γ (1 +

3
𝛼) − 3Γ (1 +

2
𝛼) Γ (1 +

1
𝛼) + 2Γ (1 +

1
𝛼)

3

(Γ (1 +
2
𝛼) − (Γ (1 +

1
𝛼))

2

)

3/2
 

where Γ(. ) is the gamma function. 

Also, the skewness coefficient can be written as 

𝑆𝑘𝑒𝑤𝑊(𝑇) =
Γ (1 +

3
𝛼)𝜃

3 − 3𝜇1
∗σ2 − (𝜇1

∗)3

σ3
 

When 𝛼 ≈ 3.60, the Weibull distribution approximates to the normal distribution with 𝑆𝑘𝑒𝑤𝑊 ≅ 0. 

Consequently, Weibull distribution has a positive skewed curve for small values of the shape parameter. 

On the other hand, the distribution is negatively skewed for large values of the shape parameter (Rinne, 

2009). 

Let 𝑇 be a random variable which follows the gamma distribution. The pdf of the gamma distribution is 

shown below: 

𝑓𝑔𝑎𝑚𝑚𝑎(𝑡; 𝛼, 𝜃) =
1

𝜃𝛼𝛤(𝛼)
𝑡𝛼−1. 𝑒𝑥𝑝 (−

𝑡

𝜃
) ,                               𝑡 > 0  ,   𝛼, 𝜃 > 0 

where 𝛼, 𝜃 are the shape and scale parameter, respectively. 

The coefficient of skewness is: 

𝑆𝑘𝑒𝑤𝐺(𝑇) =
2

√𝛼
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To compare the skewness of the GED with that of the gamma and Weibull distributions, the standard 

skewness of each distribution are numerically calculated using “R” program. The results are shown in 

Figure 3.5 for scale parameter 𝜃 = 1 and various values of the shape parameter. 

 

Figure 3.5 The impact of 𝛼 on the skewness of GED, Weibull and gamma distributions. 

From Figure 3.5, it is obvious that the skewness of the three distributions converges to a constant value 

as 𝛼 ⟶ ∞. However, both gamma distribution and GED have positive skewness. On the other hand, 

the Weibull distribution has positive and negative skewed PDF for approximately 𝛼 < 3.6 and 𝛼 > 3.6, 

respectively. Furthermore, it can be clearly observed that, among the three distribution, the GED has the 

largest skewed distribution for all values of shape parameter. Thus, it is observed that the GED fits better 

than Weibull and gamma distributions for some lifetime data with highly right skewed as it has the 

largest value of skewness coefficient; (Gupta et al. (2002), Gupta and Kundu (2001a)). However, using 

the maximum likelihood ratio method, Gupta et al. (2002) concluded that the GED fitted better than 

Weibull and gamma distributions for two given real-life data sets.  

The variance of all three distribution: GED, Weibull and gamma increase as the shape parameter 

increases. In the case of the GED, Gupta and Kundu (1999, 2007) argued that the variance is increasing 

to (𝜃𝜋)
2

6
 as 𝛼 increases. Similarly, the variance of the Weibull distribution ≈ (𝜃𝜋)2

6𝛼2
 for large values of 𝛼. 

In contrast, the variance of the gamma distribution → ∞ for increasing values of 𝛼. 

The main disadvantage of the gamma distribution arises when the shape parameter is not an integer. In 

this circumstance, the distribution function or the reliability function cannot be expressed in a closed 

form (Gupta and Kundu, 2001a). In many survival analyses, the complexity of the gamma distribution 

leads to intractable analysis, especially in the presence of ALT models with censored data. Therefore, 
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GED can be a proper alternative due to its numerical simplicity and the fact that its distribution function 

is flexible, which make the numerical generating of samples from GED under different types of 

censoring, much easier to conduct for a Monte Carlo simulation, compared with gamma distribution.  

Moreover, Gupta and Kundu (2001a) discussed the ordering properties between GED, Weibull and 

gamma distributions. They noticed that the hazard ordering between the three distribution is: 

ℎ𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑡; 𝛼, 𝜃) ≥ ℎ𝐺𝐸𝐷(𝑡; 𝛼, 𝜃) ≥ ℎ𝑔𝑎𝑚𝑚𝑎(𝑡; 𝛼, 𝜃), if 𝛼 > 1 

ℎ𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑡; 𝛼, 𝜃) ≤ ℎ𝐺𝐸𝐷(𝑡; 𝛼, 𝜃) ≤ ℎ𝑔𝑎𝑚𝑚𝑎(𝑡; 𝛼, 𝜃), if 𝛼 < 1 

Unlike the Weibull distribution, which is used to represent the series system, the GED represents a 

parallel system (Gupta and Kundu, 2007). If each of the 𝑛 independent identical components in the 

parallel system follow the exponential distribution with reliability, 

𝑅𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑡, 𝜃) = exp(−(𝑡𝑖 𝜃)⁄ ),  

then the system reliability is given by: 

𝑅𝑠𝑦𝑠𝑡𝑒𝑚(𝑡; n, 𝜃) =∏(𝑅𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑡𝑖, 𝜃))

𝑛

𝑖=1

 

                              = [1 − exp(−(𝑡 𝜃)⁄ )]𝑛 

Obviously, the above equation represents the reliability function of GED in equation (3.3) with α = n. 

In other words, for the case where α is a positive integer, this can represent the lifetime of a parallel 

system of 𝑛 components each has exponential distribution. 

To sum up, if a set of data fit for a gamma distribution, then it will fit for the GED as well in most of 

the cases. However, the GED and Weibull distributions both have closed form expressions for CDF, 

reliability and hazard functions.  

3.3 Parameter Estimation and Simulation 

A brief discussion of the MLEs for the GED parameters will be presented in this section.  

Suppose 𝑡1, … , 𝑡𝑛 are independent identically random variables of size 𝑛 from GED, then, using the PDF 

from equation (3.2), the log-likelihood function ℓ(𝛼, 𝜃; 𝑡) is: 

ℓ(𝛼, 𝜃; 𝑡) = 𝑛 ln(𝛼) − n ln(𝜃) −∑(
𝑡i:n
𝜃
)

n

𝑖=1

+ (𝛼 − 1)∑ln [1 − exp (−
𝑡i:n
𝜃
)]

n

𝑖=1

                               (3.6) 

Consequently, the MLEs of the scale and shape parameters are obtained by setting the first partial 

derivatives of ℓ(𝛼, 𝜃; 𝑡) = 0 
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𝜕ℓ(𝛼, 𝜃; 𝑡)

𝜕𝜃
= −

𝑛

𝜃
+∑(

𝑡i:n
𝜃2
)

𝑛

𝑖=1

−
(𝛼 − 1)

𝜃2
∑

𝑡i:nexp(−
𝑡i:n
𝜃
)

[1 − exp (−
𝑡i:n
𝜃
)]

n

𝑖=1

= 0                                                   (3.7) 

𝜕ℓ(𝛼, 𝜃; 𝑡)

𝜕𝛼
=
𝑛

𝛼
+∑ln [1 − exp (−

𝑡i:n
𝜃
)]

𝑛

𝑖=1

= 0                                                                                        (3.8) 

As it can be seen, neither of the above equations has a closed form solution. Thus, the MLEs of 𝜃 and 

𝛼 can be obtained by numerically solving the above two equations (3.7) and (3.8).  

A simulation study is undertaken to investigate the impact of parameters changes on the performance of 

the estimation. This provides a starting point for estimating the values of the model parameters in the 

SSALT model under progressive type-II censoring in the next chapter. The equations (3.7) and (3.8) 

are solved, using the “maxLik” package (Henningsen and Toomet, 2011) in “R” program, to derive the 

MLEs of the parameters. 

To investigate the impact of the parameter values on the performance of the estimators, the estimated 

absolute bias (AB) and the estimated mean squared error (MSE) of the MLEs are plotted against various 

sample sizes; 𝑛 = (10, 20,…90, 100). The following steps demonstrate how to derive MLEs ϑ̂ =

(�̂�, 𝜃) for GED parameters ϑ = (𝛼, 𝜃).  

Step (1): The values of the shape parameter are chosen as 𝛼 = (0.3, 0.7, 1, 1.2, 1.5, 2). These values are 

tested based on two different values of the scale parameter 𝜃 = (0.5, 1).  

Step (2): Generate a random sample from the Uniform(0,1) distribution. 

Step (3): Using the equation (3.5), calculate the random variables 𝑡1:n < ⋯ < 𝑡n:n 

Step (4):  The maxBFGS built-in function from the maxLik package (Henningsen and Toomet, 2011) is 

utilized under constraints (α > 0 and 𝜃 > 0 ), for obtaining MLEs of GED parameters. This built-in 

function is used based on the logarithm of the likelihood function ℓ(𝛼, 𝜃; 𝑡) in equation (3.6) as well as 

the gradient functions in equations (3.7) and (3.8).  

Step (5): Repeat the above steps (2 to 4) 𝑝 = 1000 times. 

Step (6): The average of the MLEs of the model parameter ϑ = (𝛼, 𝜃) over the number of replications 

is calculated. Subsequently, estimated AB and estimated MSE for the MLEs are obtained, respectively, 

as follows 

𝐴𝐵(ϑ̂) = |ϑ̂ − ϑ| 𝑝⁄ ,                                                                                                    

𝑀𝑆𝐸(ϑ̂) = ((ϑ̂ − ϑ)
2
) 𝑝⁄ .   

The result of the investigation is shown in the following Figure 3.6 – Figure 3.7. 
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Figure 3.6 Estimated AB and estimated MSE of the MLEs of 𝜃 and 𝛼 obtained for different values of 

𝛼 and 𝜃 = 0.5 

From Figure 3.6 and Figure 3.7 it can be seen that the estimated AB and estimated MSE of both 

parameters decrease as the sample size increases. In other words, larger sample size results in more 

efficient MLEs of GED parameters. Also, as the shape parameter increase, the 𝑀𝑆𝐸(ϑ̂) and 𝐴𝐵(ϑ̂) 

decrease. Whereas, the performance of MLE �̂� is better for small values of 𝛼. 

Moreover, the increase in the shape parameter results in more efficient estimates of the scale parameter. 

Looking further, for 𝛼 < 1.5, the value of  𝑀𝑆𝐸(ϑ̂) and 𝐴𝐵(ϑ̂) is almost the same. As can be seen, 

there is a considerable increase of 𝑀𝑆𝐸(ϑ̂) and 𝐴𝐵(ϑ̂)  when 𝛼 < 1. In another words, the MLE ϑ̂ is 

more robust when 𝛼 ≥ 1.
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Figure 3.7 Estimated AB and estimated MSE of the MLEs of 𝜃 and 𝛼 obtained for different values 

of 𝛼 and 𝜃 = 1 

3.4 Review of GED in the Literature 

The GED has been studied extensively by many authors in different statistical fields. The properties of 

the GED were first studied by Gupta and Kundu (2001a). As mentioned earlier in this section, they 

observed that most of the properties of the GED are similar to those of the gamma and Weibull 

distributions, whilst the GED can fit better than both. Gupta and Kundu (2001b) investigated the effects 

of six estimating strategies on the performance of estimators for unknown parameters of the GED. From 

extensive simulation studies they argued that the ML method provides better estimates of the parameters 

than the other estimation methods; like method of moments estimators and least square estimators. They 

observed that for large sample sizes the different estimation methods behave in similar manner, while 

for small sample sizes the ML method performed better. Similarly, a recommendation to use the MLE 

was made, according to the comparison of three estimation procedures: MLE, estimation of method 

moments and the estimation based on the probability plot. This comparison has been done by Chen and 

Lio (2010) for estimating the model parameters under progressive type-I interval censoring. Moreover, 

https://www.google.com/search?q=literature+review&spell=1&sa=X&ved=0ahUKEwixmPf83aLfAhWPalAKHTaJACAQkeECCCooAA
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they studied a real data set of medical experiment and concluded that GED provides a better fit for this 

data than the Exponential, Weibull and Exponentiated Weibull distributions. 

Also, Gupta and Kundu (2002) presented different inference procedures for the parameters of the GED. 

They discussed the behaviour of MLEs of the unknown parameters from complete samples, type-I and 

type-II censored samples. Under GED, the MLEs of the parameters involved when SSALTs with a scale 

parameter which is a log-linear function of the stress is applied, based on type-I censored data, were 

obtained by Abdel-Hamid and AL-Hussaini (2009). For a comprehensive review of the mathematical 

aspects of the GED such as the moment generating function with some moments properties, mean 

deviation about the mean and the median, moments of order statistics, asymptotic distribution of the 

extreme order statistics and other statistical distributions, one may refer to Nadarajah (2011). 

Furthermore, Abd El-Monem and Jaheen (2015) examined the performance of the MLEs for lifetime 

data, following GED for the simple SSALT model under Type-II censoring for large sample sizes 𝑛 =

200,300 with failure percentage > 75%. They concluded that the bias and MSE of the MLE for the 

scale parameter under the higher stress level is smaller than the bias and MSE of the MLE for the scale 

parameter under the lower stress level. Moreover, they get the conclusion that the resulting information 

in each stress level, impacts the scale parameter of that level. 

The GED has been widely used for data modelling in different fields, such as biomedical, clinical and 

engineering. Some researchers find that the GED fits the data better than the other distributions they 

have considered. One of the applications of GED can be found in medical research by Khan et al (2014) 

for black Hispanic female breast cancer data. They used different criteria to measure the goodness of fit 

tests, such as Akaike information criterion, and concluded that GED model provided a better fit than 

either the Exponentiated Weibull, Beta generalized exponential or Beta inverse Weibull, for the breast 

cancer survival data. Also, Madi and Raqab (2007) observed that the GED fits well for Los Angeles 

rainfall data. In another technological application, Cota-Felix et al. (2009) estimated the mean life of 

power system equipment under censored data. The estimate was calculated based on GED as an 

alternative to Weibull and Normal distributions. Recently, research on sea clutter in the electronic 

engineering field evaluated the effectiveness of GED in fitting a data set, using a goodness-of-fit test. 

Li et al. (2020) conclude that the GED is the most suitable to model the given data set compared with 6 

other distributions. 
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Chapter 4  

Statistical Inference for a Simple Step-Stress Model Based 

on Progressive Type-II Censored Data 

4.1 Introduction 

The SSALT is an important ALT design that allows the experimenter to increase the stress level at pre-

specified times during the experiment to obtain failures quicker than would be possible under normal 

operating conditions. It provides a remarkable reduction in time and cost of testing as the cost is related 

to the test time. The simple SSALT uses only two stress levels. 

In this chapter, the objective is to address the problem of statistical inference of a SSALT plan under 

progressive Type-II censoring. It is assumed that the failure times follow the GED as a lifetime 

distribution. The model and assumptions for the CEM based on progressive Type-II censoring are 

described in Section 4.2. The MLEs of the scale and shape parameters are derived in Section 4.3. The 

observed Fisher information matrix is obtained in Section 4.4 in order to construct the AV-C matrix of 

the MLEs to be used to construct asymptotic CIs of the unknown parameters. Section 4.5 discusses 

obtaining the interval estimate of the model parameters based on the AV-C matrix along with percentile 

and bias-corrected and accelerated (BCa) bootstrap methods. The detailed description of simulation 

studies is provided in Section 4.6 to illustrate all the point and interval estimation methods discussed in 

this chapter. A summary of this chapter is provided finally in Section 4.7. 

4.2 Test Method and Model Description 

In this section, the steps for applying the simple SSALT model under progressive Type-II censoring are 

described in detail for failure time data that follow the GED. Suppose 𝑛 independent units are initially 

placed on a test at time 𝜏0 = 0 , and are subjected to an initial lower stress level 𝑥1 until a pre-specified 

time 𝜏. At that time, the stress level is increased to higher stress level 𝑥2 for the survived units. The test 

is terminated when a pre-specified number of failures 𝑟 are observed. Thus, the operation time at higher 

stress level 𝑥2 depends on the occurrence of the 𝑟𝑡ℎ failure while the time 𝜏 at lower stress level 𝑥1 is 

fixed. During the test, at the time of each failure t𝑗:n, 𝑗 = 1,… , 𝑟 , a predetermined number of censored 

items 𝑅𝑗 are randomly selected and removed from the test. Note that since 𝑛 = 𝑟 + ∑ 𝑅𝑗
𝑟
𝑗=1 , 𝑅𝑗 censored 

items are selected from (𝑛 − 𝑗 − ∑ 𝑅𝑘
𝑗−1
𝑘=1  ) survival items.  

The Type-II censoring is a special case of progressive Type-II censoring scheme, when all censored 

items are removed at the time of the last failure, i.e. 𝑅1 = 𝑅2 = ⋯ = 𝑅𝑟−1 = 0 and 𝑅𝑟 = 𝑛 − 𝑟. 
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Furthermore, if all 𝑅j = 0,  j = 1,… , 𝑟 i.e. there are no censored items and all 𝑛 units fail in the 

experiment, then the complete sample situation from the step-stress test is applying. 

Let 𝑛1, 0 ≤ n1 ≤ 𝑟 denote the number of failures that occur at lower stress level 𝑥1 before 𝜏. On the 

other hand, 𝑛2 = 𝑟 − 𝑛1 denotes the number of failures that occur at higher stress level 𝑥2 after 𝜏 and 

before the test is terminated.  

The simple SSALT based on progressive Type-II censoring scheme is illustrated in the following Figure. 

 

Figure 4.1 Representation of simple SSALT model under progressive Type-II censoring. 

The observed ordered failure time data ti:n (under lower and higher stresses) are: 

 0 < 𝑡1:n < ⋯ < 𝑡n1:n ≤ 𝜏 < 𝑡n1+1:n < ⋯ < 𝑡𝑟:n.  

The basic assumptions of CEM for simple SSALTs under the GED are: 

1) For any level of stress 𝑥𝑠, 𝑠 = 1,2, the lifetimes of test units are independent and follow the GED 

with CDF given by 

Fs(𝑡; 𝜃s, α) = {
[1 − exp[− 𝑡 𝜃s⁄ ]]

α
,        𝑡 > 0,        

0,                                       otherwise,
                                                                  (4.1)  

where 𝜃s > 0 and α are the scale and shape parameters respectively. The shape parameter α is 

assumed to be constant for all stress levels. 

The corresponding density function is: 

fs(𝑡; 𝜃s, α) = {

α
𝜃s
[1 − exp (−

𝑡
𝜃s
)]
α−1

. exp (−
𝑡
𝜃s
)          𝑡 > 0  ,   𝜃s, α > 0,

0                                                                          otherwise.            
                           (4.2)  
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2) The CEM holds. That is, the remaining life of a test unit depends only on the current cumulative 

failure probability and current stress level regardless of how the probability is accumulated 

(Nelson, 1990). 

Based on CEM (see Section 2.6.1), the cumulative exposure distribution of a test unit for a simple 

SSALT is given by: 

G(𝑡) = {
F1(𝑡),                                  0 ≤ 𝑡 < 𝜏,

F2(𝑡 − 𝜏 + ε1),                𝜏 ≤ 𝑡 < ∞,
            

where ε1 =
𝜃2

𝜃1
𝜏, is the solution of  F2(ε1) =  F1(𝜏). 

Therefore, 

G(𝑡) = {
F1(𝑡),                                       0 ≤ 𝑡 < 𝜏,

F2 (𝑡 − 𝜏 +
𝜃2
𝜃1
𝜏) ,                𝜏 ≤ 𝑡 < ∞.

                                                                                        (4.3) 

So, from (4.1) and (4.3), the generalized exponential cumulative exposure distribution of time to failure 

from a simple SSALT is:  

G(𝑡) = {

𝐺1(𝑡) = [1 − exp (−
𝑡
𝜃1
)]
α

,                                              0 ≤ 𝑡 < 𝜏,

𝐺2(𝑡) = [1 − exp (−
(𝑡 − 𝜏)
𝜃2

−
𝜏
𝜃1
)]
α

,                          𝜏 ≤ 𝑡 < ∞.
                                        (4.4) 

Thus, the corresponding PDF of time to failure of test units is:  

g(𝑡) =

{
 

 𝑔1(𝑡) =
α
𝜃1
[1 − exp (−

𝑡
𝜃1
)]
α−1

. exp (−
𝑡
𝜃1
) ,                                              0 ≤ 𝑡 < 𝜏,

𝑔2(𝑡) =
α
𝜃2
[1 − exp (−

(𝑡 − 𝜏)
𝜃2

−
𝜏
𝜃1
)]
α−1

. exp (−
(𝑡 − 𝜏)
𝜃2

−
𝜏
𝜃1
) ,        𝜏 ≤ 𝑡 < ∞.

       (4.5) 

4.3 Point Estimates of the Model Parameters 

In this section, the MLEs of the model parameters assuming a CEM with lifetimes distributed according 

to GED are obtained based on a progressively Type-II censored sample. Based on the simple step-stress 

procedure under progressive Type-II censoring explained in Section 4.2, it can be seen that there exist 

three different cases of failure occurrence of test units (Balakrishnan, 2009). So, by using the CEM in 

(4.4) and (4.5), obtaining the likelihood function of each case is discussed. 

Case(1): if all failures occur at lower stress level 𝑥1 (i.e. 𝑛1 = 𝑟, 𝑛2 = 0), then the test will be ALT with 

progressive Type-II censored data. The likelihood function takes the form: 



Chapter 4 

43 

L(𝜃1, 𝜃2, α; 𝑡) = C𝑝∏{𝑔1(𝑡i:n)[1 − 𝐺1(𝑡𝑖:n)]
𝑅i}

𝑟

i=1

 

= C𝑝 (
α

𝜃1
)
𝑟

∏{[1 − exp (−
𝑡i:n
𝜃1
)]
α−1

exp (−
𝑡i:n
𝜃1
) × [1 − [1 − exp (−

𝑡i:n
𝜃1
)]
α

]

𝑅i

}

𝑟

i=1

,

0 < 𝑡1:n < ⋯ < 𝑡𝑟:n ≤ 𝜏 

where, C𝑝 = 𝑛(𝑛 − 1 − 𝑅1)(𝑛 − 2 − 𝑅1 − 𝑅2)… (𝑛 − 𝑟 + 1 −∑𝑅𝑖

𝑟−1

𝑖=1

). 

Hence, the MLE of 𝜃2 does not exist in this case, since there are no failures observed after 𝜏. 

Case(2): all failures occur at higher stress level 𝑥2 (i.e. 𝑛1 = 0, 𝑛2 = 𝑟). According to Nelson, the CEM 

can still be applied even though no failures are observed in the first step of the SSALT. The likelihood 

function is: 

L(𝜃1, 𝜃2, α; 𝑡) = C𝑝∏{𝑔2(𝑡i:n)[1 − 𝐺2(𝑡𝑖:n)]
𝑅i}

𝑟

i=1

 

= C𝑝 (
α

𝜃2
)
𝑟

∏{[1 − exp (−
(𝑡 − 𝜏)

𝜃2
−
𝜏

𝜃1
)]

α−1

exp(−
(𝑡 − 𝜏)

𝜃2
−
𝜏

𝜃1
)

𝑟

i=1

× [1 − [1 − exp(−
(𝑡 − 𝜏)

𝜃2
−
𝜏

𝜃1
)]

α

]

𝑅i

} ,        𝜏 < 𝑡1:n < ⋯ < 𝑡𝑟:n 

According to equations (4.4) and (4.5) and Section 2.6.1, the cumulative exposure distribution is 

undefined as no failures are observed before 𝜏. The 𝑔1(𝑡i:n) and 𝐺1(𝑡𝑖:n) are undefined. So, the MLE of 

𝜃1 does not exist as the LH is increasing with 𝜃1. 

Case(3): At least one failure occurs at lower stress level 𝑥1 before 𝜏, and at least one failure occurs at 

higher stress level 𝑥2 after the times 𝜏1(i.e. 𝑛1 ≠ 0, 𝑛2 ≠ 0, 𝑛1 + 𝑛2 = 𝑟, 0 < 𝑛1 < 𝑟). So, the 

likelihood function in this case is:  

L(𝜃1, 𝜃2, α; 𝑡) = C𝑝∏{𝑔1(𝑡i:n)[1 − 𝐺1(𝑡𝑖:n)]
𝑅i}

n1

i=1

× ∏ {𝑔2(𝑡i:n)[1 − 𝐺2(𝑡𝑖:n)]
𝑅i}

𝑟

i=n1+1

. 
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L(𝜃1, 𝜃2, α; 𝑡) = C𝑝∏{
α

𝜃1
[1 − exp (−

𝑡𝑖:n
𝜃1
)]
α−1

. exp (−
𝑡𝑖:n
𝜃1
) [1 − [1 − exp (−

𝑡𝑖:n
𝜃1
)]
α

]

𝑅i

}

n1

i=1

× ∏ {
α

𝜃2
[1 − exp(−

(𝑡𝑖:n − 𝜏)

𝜃2
−
𝜏

𝜃1
)]

α−1

. exp (−
(𝑡𝑖:n − 𝜏)

𝜃2

𝑟

i=n1+1

−
𝜏

𝜃1
) [1 − [1 − exp(−

(𝑡𝑖:n − 𝜏)

𝜃2
−
𝜏

𝜃1
)]

α

]

𝑅i

}, 

                                            0 < 𝑡1:n < ⋯ < 𝑡n1:n ≤ 𝜏 < 𝑡n1+1:n < ⋯ < 𝑡𝑟:n.                                          (4.6) 

Obviously, the MLEs of 𝜃1 and 𝜃2 exist only when 0 < n1 < 𝑟. 

The log-likelihood function ℓ(δ𝑘 , 𝑡) ≡ ln L(𝜃1, 𝜃2, α; 𝑡), is: 

ℓ(δ𝑘 , 𝑡) = ln(C𝑝) +∑[ln((
α

𝜃1
) [A1(𝑡i:n)]

(α−1)[1 − [A1(𝑡i:n)]
α]𝑅𝑖) − A3(𝑡i:n)]

𝑛1

𝑖=1

+ ∑ [ln((
α

𝜃2
) [A2(𝑡i:n)]

(α−1)[1 − [A2(𝑡i:n)]
α]𝑅𝑖) − A4(𝑡i:n)]

𝑟

𝑖=𝑛1+1

 , k = 1,2,3   (4.7) 

where δ1 = 𝜃1 , δ2 = 𝜃2 and δ3 = α , 

and 

Ap(𝑡i:n) =

{
 
 

 
 1 − exp(−

(𝑡i:n − 𝜏𝑝−1)

𝜃p
−
𝜏𝑝−1
𝜃p−1

)          if    p = 1,2

 
(𝑡i:n − 𝜏𝑝−3)

𝜃p−2
+
𝜏𝑝−3
𝜃p−3

                                 if    p = 3,4

                                                         (4.8) 

such that 𝜏0 = 0  and 𝜏1 = 𝜏. 

The MLEs δ̂𝑘 = (𝜃1 , 𝜃2, α̂) of the model parameters δ𝑘 are the values which maximize the likelihood 

function L(𝜃1, 𝜃2, α; 𝑡) defined in (4.6) or, equivalently, maximizes the log-likelihood function ℓ(δ𝑘 , 𝑡) 

obtained in (4.7).  
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The first partial derivatives of the log-likelihood function (4.7) with respect to each of the parameters 

are:   

𝜕ℓ(δ𝑘 , 𝑡)

𝜕𝜃1
= −

n1
𝜃1
+ (

∑ (𝑡i:n)
n1
𝑖=1

𝜃1
2 ) + (

n2𝜏

𝜃1
2 ) −

(α − 1)

𝜃1
2 ∑[

𝑡i:nexp (−
𝑡i:n
𝜃1
)

[1 − exp (−
𝑡i:n
𝜃1
)]
]

n1

𝑖=1

− (
𝜏(α − 1)

𝜃1
2 ) ∑ [

exp (−
(𝑡i:n − 𝜏)

𝜃2
−
𝜏
𝜃1
)

[1 − exp (−
(𝑡i:n − 𝜏)

𝜃2
−
𝜏
𝜃1
)]
]

𝑟

𝑖=n1+1

+ (
α

𝜃1
2)∑[𝑅𝑖𝑡i:n

[1 − exp (−
𝑡i:n
𝜃1
)]
α−1

exp (−
𝑡i:n
𝜃1
)

[1 − [1 − exp (−
𝑡i:n
𝜃1
)]
α

]
]

n1

𝑖=1

+ (
α𝜏

𝜃1
2) ∑

[
 
 
 

𝑅𝑖

[1 − exp (−
(𝑡i:n − 𝜏)

𝜃2
−
𝜏
𝜃1
)]
α−1

exp (−
(𝑡i:n − 𝜏)

𝜃2
−
𝜏
𝜃1
)

[1 − [1 − exp (−
(𝑡i:n − 𝜏)

𝜃2
−
𝜏
𝜃1
)]
α

]
]
 
 
 𝑟

𝑖=n1+1

. 

For simplicity, let 

Bp(𝑡i:n) =

{
 
 

 
 
1 − Ap(𝑡i:n)

Ap(𝑡i:n)
                                if    p = 1,2       

    

𝑅𝑖
[Ap−2(𝑡i:n)]

α

1 − [Ap−2(𝑡i:n)]
α                   if    p = 3,4        

                                                                  (4.9) 

Then, the first derivative of the log-likelihood function with respect to 𝜃1 is: 

𝜕ℓ(δ𝑘 , 𝑡)

𝜕𝜃1
=
1

𝜃1
2

[
 
 
 
 
 
−n1𝜃1 + n2𝜏 +∑[𝜃1A3(𝑡i:n) − [ti:nB1(𝑡i:n)[(α − 1) − αB3(𝑡i:n)]]]

n1

𝑖=1

− ∑ [τ1B2(𝑡i:n)[(α − 1) − αB4(𝑡i:n)]]

𝑟

𝑖=n1+1

                                                 
]
 
 
 
 
 

.            (4.10) 

Also, the first derivative of the log-likelihood function with respect to 𝜃2 is derived as 

𝜕ℓ(δ𝑘 , 𝑡)

𝜕𝜃2
= −

n2
𝜃2
+
1

𝜃2
2 ∑ (𝑡i:n − 𝜏)

𝑟

𝑖=n1+1

−
(α − 1)

𝜃2
2 ∑

(𝑡i:n − 𝜏)exp (−
(𝑡i:n − 𝜏)

𝜃2
−
𝜏
𝜃1
)

[1 − exp (−
(𝑡i:n − 𝜏)

𝜃2
−
𝜏
𝜃1
)]

𝑟

𝑖=n1+1

+
α

𝜃2
2 ∑

{
 

 

𝑅𝑖

[1 − exp (−
(𝑡i:n − 𝜏)

𝜃2
−
𝜏
𝜃1
)]
α−1

(𝑡i:n − 𝜏)exp (−
(𝑡i:n − 𝜏)

𝜃2
−
𝜏
𝜃1
)

[1 − [1 − exp (−
(𝑡i:n − 𝜏)

𝜃2
−
𝜏
𝜃1
)]
α

]
}
 

 𝑟

𝑖=n1+1
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By using (4.8) and (4.9), 𝜕ℓ(δ𝑘;𝑡) 
𝜕𝜃2

 can be written as 

𝜕ℓ(δ𝑘 , 𝑡)

𝜕𝜃2
=
1

𝜃2
2 [−n2𝜃2 + ∑ (𝑡i:n − 𝜏)[1 − B2(𝑡i:n)[(α − 1) − αB4(𝑡i:n)]]

𝑟

𝑖=n1+1

].                           (4.11) 

Moreover, the first derivative of the log-likelihood function with respect to α is: 

𝜕ℓ(δ𝑘 , 𝑡)

𝜕α
=
n1 + n2
α

+∑ln [1 − exp (−
𝑡i:n
𝜃1
)]

n1

𝑖=1

+ ∑ ln [1 − exp (−
(𝑡i:n − 𝜏)

𝜃2
−
𝜏

𝜃1
)]

𝑟

𝑖=n1+1

−∑[
𝑅𝑖 [1 − exp (−

𝑡i:n
𝜃1
)]
α

ln [1 − exp (−
𝑡i:n
𝜃1
)]

[1 − [1 − exp (−
𝑡i:n
𝜃1
)]
α

]
]

n1

𝑖=1

− ∑ [
𝑅𝑖 [1 − exp (−

(𝑡i:n − 𝜏)
𝜃2

−
𝜏
𝜃1
)]
α

ln [1 − exp (−
(𝑡i:n − 𝜏)

𝜃2
−
𝜏
𝜃1
)]

[1 − [1 − exp (−
(𝑡i:n − 𝜏)

𝜃2
−
𝜏
𝜃1
)]
α

]

]

𝑟

𝑖=n1+1

. 

According to (4.8) and (4.9), 𝜕ℓ(δ𝑘,𝑡)
𝜕α

 takes the form 

𝜕ℓ(δ𝑘 , 𝑡)

𝜕α
=
𝑟

α
+∑ln[A1(𝑡i:n)]

n1

𝑖=1

[1 − 𝐵3(𝑡i:n)] + ∑ ln[A2(𝑡i:n)]

𝑟

𝑖=n1+1

[1 − 𝐵4(𝑡i:n)].                     (4.12) 

Therefore, the MLEs of δ𝑘 are obtained by setting the first partial derivatives of ℓ(δ𝑘; 𝑡)  to be equal to 

zero as shown in the following equations: 

𝜕ℓ(δ𝑘 , 𝑡)

𝜕𝜃1
=
1

𝜃1
2

[
 
 
 
 
 
−n1𝜃1 + n2τ1 +∑[𝜃1A3(𝑡i:n) − [ti:nB1(𝑡i:n)[(α − 1) − αB3(𝑡i:n)]]]

n1

𝑖=1

− ∑ [𝜏B2(𝑡i:n)[(α − 1) − αB4(𝑡i:n)]]

𝑟

𝑖=𝑛1+1

                                                 
]
 
 
 
 
 

= 0

                          

𝜕ℓ(δ𝑘 , 𝑡)

𝜕𝜃2
=
1

𝜃2
2 [−n2𝜃2 + ∑ (𝑡i:n − 𝜏)[1 − B2(𝑡i:n)[(α − 1) − αB4(𝑡i:n)]]

𝑟

𝑖=n1+1

] = 0                

                                  

 
𝜕ℓ(δ𝑘 , 𝑡)

𝜕α
=
𝑟

α
+∑ln[A1(𝑡i:n)]

n1

𝑖=1

[1 − 𝐵3(𝑡i:n)] + ∑ ln[A2(𝑡i:n)]

𝑟

𝑖=n1+1

[1 − 𝐵4(𝑡i:n)] = 0         
}
 
 
 
 
 
 

 
 
 
 
 
 

 (4.13) 

Thus, to obtain the MLEs of δ𝑘, the system of three non-linear equations (4.13) will be solved. However, 

they do not have a closed form solution for the unknown parameters. Therefore, an iterative procedure 

must be applied to obtain the MLEs of the unknown parameters. For this purpose, the R program is used. 

The maxBFGS built-in function from the maxLik package (Henningsen and Toomet, 2011) is used for 

obtaining the MLEs of the model parameters. 



Chapter 4 

47 

4.4 Fisher Information Matrix 

The Fisher information matrix 𝐹(δ𝑘) is a measure of the information content of the data relative to the 

parameters being estimated. It is symmetric matrix obtained by taking the 𝐸 (− 𝜕2ℓ(δ𝑘,𝑡)

𝜕δ𝑖𝜕δ𝑗
), where 𝑖, 𝑗 =

1,2,3. Unfortunately, the exact mathematical expression for the expectation is very difficult to obtain. 

Therefore, the observed Fisher information matrix can be obtained by estimating the expected value 

using MLEs, (Cohen, 1965). So, the asymptotic Fisher information matrix for observations at 𝑥𝑠, 𝑠 =

1,2 is: 

𝐹(δ̂𝑘) = [

𝑓11 𝑓12 𝑓13
𝑓21 𝑓22 𝑓23
𝑓31 𝑓32 𝑓33

] = −

[
 
 
 
 
 
 
 
𝜕2ℓ(δ𝑘, 𝑡)

𝜕𝜃1
2

𝜕2ℓ(δ𝑘, 𝑡)

𝜕𝜃1𝜕𝜃2

𝜕2ℓ(δ𝑘 , 𝑡)

𝜕𝜃1𝜕𝛼

𝜕2ℓ(δ𝑘, 𝑡)

𝜕𝜃2𝜕𝜃1

𝜕2ℓ(δ𝑘, 𝑡)

𝜕𝜃2
2

𝜕2ℓ(δ𝑘 , 𝑡)

𝜕𝜃2𝜕𝛼

𝜕2ℓ(δ𝑘, 𝑡)

𝜕𝛼𝜕𝜃1

𝜕2ℓ(δ𝑘, 𝑡)

𝜕𝛼𝜕𝜃2

𝜕2ℓ(δ𝑘 , 𝑡)

𝜕𝛼2 ]
 
 
 
 
 
 
 

 
  
   
  
 

|δ𝑘 = δ̂𝑘

                           (4.14) 

The elements of this matrix are obtained by taking the second and mixed partial derivatives of (4.10), 

(4.11) and (4.12) with respect to δ𝑘. By substituting from (4.8) and (4.9), then the second partial 

derivatives is simplified as: 

𝑓11

=
−1

𝜃1
4

[
 
 
 
 
 
 
 
 
 
 

𝜃1
2n1 − (2𝜃1n2𝜏)

 

−∑𝑡i:n

n1

𝑖=1

[

2𝜃1 + D1(𝑡i:n)[[𝑡i:n − 2𝜃1] + [𝑡i:nB1(𝑡i:n)]]

−[𝛼B1(𝑡i:n)B3(𝑡i:n)] [[(−𝑡i:nD1(𝑡i:n)) + (𝑡i:n − 2𝜃1)] − [𝛼 𝑡i:nB1(𝑡i:n)
B3(𝑡i:n)

𝑅𝑖
]]
]

 

− ∑ 𝜏 [

D2(𝑡i:n)[[𝜏 − 2𝜃1] + [𝜏B2(𝑡i:n)]]

−[𝛼B2(𝑡i:n)B4(𝑡i:n)] [[(−τ1D2(𝑡i:n)) + (𝜏 − 2𝜃1)] − [𝛼𝜏B2(𝑡i:n)
B4(𝑡i:n)

𝑅𝑖
]]
]

𝑟

𝑖=n1+1 ]
 
 
 
 
 
 
 
 
 
 

, 

𝑓12 = (
𝜏

𝜃1
2𝜃2

2) ∑ (𝑡i:n − 𝜏)B2(𝑡i:n)

𝑟

𝑖=n1+1

[
 
 
 
 [

(𝛼 − 1)

A2(𝑡i:n)
]

− [𝛼B4(𝑡i:n) [(1 − D2(𝑡i:n)) − (𝛼 B2(𝑡i:n)
B4(𝑡i:n)

𝑅𝑖
)]]
]
 
 
 
 

, 

𝑓13 =
1

𝜃1
2

[
 
 
 
 
 
 
 
∑𝑡i:nB1(𝑡i:n) [1 − [B3(𝑡i:n) [1 +

𝛼 ln(A1(𝑡i:n))

[1 − [A1(𝑡i:n)]
𝛼]
]]]

n1

𝑖=1

+ ∑ 𝜏B2(𝑡i:n) [1 − [B4(𝑡i:n) [1 +
𝛼 ln(A2(𝑡i:n))

[1 − [A2(𝑡i:n)]
𝛼]
]]]

𝑟

𝑖=n1+1 ]
 
 
 
 
 
 
 

, 



Chapter 4 

48 

 

𝑓22 = −
n2

𝜃2
2 + ∑

(𝑡i:n − 𝜏)

𝜃2
4

[
 
 
 
 
 2𝜃2 + [D2(𝑡i:n)[((𝑡𝑖:𝑛 − 𝜏) − 2𝜃2) + (𝑡𝑖:𝑛 − 𝜏)B2(𝑡i:n)]] 

−

[
 
 
 

𝛼B2(𝑡i:n)B4(𝑡i:n) [

[((𝑡i:n − 𝜏) − 2𝜃2) − ((𝑡i:n − 𝜏)D2(𝑡i:n))]

− [𝛼(𝑡i:n − 𝜏)B2(𝑡i:n)
B4(𝑡i:n)

𝑅𝑖
]

]

]
 
 
 

]
 
 
 
 
 

𝑟

𝑖=n1+1

, 

𝑓23 = ∑
(𝑡𝑖:𝑛 − 𝜏)

𝜃2
2 B2(𝑡i:n) [1 − [B4(𝑡i:n) ((1 − [A2(𝑡i:n)]

𝛼) + 𝛼 ln(A2(𝑡i:n)))]]

𝑟

𝑖=n1+1

, 

𝑓33 =
(n1 + n2)

𝛼2
+∑[

[ln[A1(𝑡i:n)]]
2B3(𝑡i:n)

[1 − [A1(𝑡i:n)]
𝛼]

]

n1

𝑖=1

+ ∑ [
[ln[A2(𝑡i:n)]]

2B4(𝑡i:n)

[1 − [A2(𝑡i:n)]
𝛼]

]

𝑟

𝑖=n1+1

, 

where D𝑞(𝑡i:n) = (𝛼 − 1)B𝑞(𝑡i:n), for q = 1,2 

4.5 Interval Estimates for the Model Parameters 

In this section, different methods for obtaining the CIs for the unknown parameters are discussed. The 

AV-C matrix of the MLEs is presented. Confidence intervals based on the asymptotic normality of the 

MLEs are obtained. Parametric bootstrap CIs are also obtained. 

4.5.1 Asymptotic Confidence Intervals for the Model Parameters 

Since the MLEs of 𝜃1, 𝜃2 and α are not in closed form expressions, then it is not possible to derive their 

exact distributions. Thus, the corresponding exact CIs cannot be obtained. Therefore, asymptotic CIs 

for these parameters based on the asymptotic distributions of the MLEs of 𝜃1, 𝜃2 and α are derived.  

The 𝐴𝑉𝑎𝑟 of 𝜃1, 𝜃2 and α̂ can be obtained from the AV-C matrix, which is defined as the inverse of the 

asymptotic Fisher information matrix in (4.14), as follows 

𝐴𝑉. 𝐶 = 𝐹−1(δ̂𝑘)  = [

𝐴𝑉𝑎𝑟(𝜃1) Cov(𝜃1, 𝜃2) Cov(𝜃1, α̂)

Cov(�̂�2, 𝜃1) 𝐴𝑉𝑎𝑟(𝜃2) Cov(�̂�2, α̂)

Cov(α̂, 𝜃1) Cov(α̂, 𝜃2) 𝐴𝑉𝑎𝑟(α̂)

] ,     𝑘 = 1,2,3                                  (4.15) 

For large sample size, the MLEs of δ𝑘 under appropriate regularity conditions, are asymptotically 

normality distributed with mean δ𝑘 and AV-C =𝐹−1( δ𝑘). 

Using the asymptotic normality of the MLEs, the asymptotic two-sided 100(1 − 𝛾 )% CIs with an 

approximate confidence coefficient (1 − 𝛾)for 𝜃1, 𝜃2 and α are constructed such that 
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𝑃 [δ̂𝑘 − 𝑧𝛾
2
√𝐴𝑉𝑎𝑟(δ̂𝑘) ≤ δ𝑘 ≤ δ̂𝑘 + 𝑧𝛾

2
√𝐴𝑉𝑎𝑟(δ̂𝑘)] ≅ 1 − 𝛾   , 𝑘 = 1,2,3                                    (4.16) 

where 𝑧𝛾
2
 is the upper (𝛾 2⁄ )th percentile of a standard normal distribution and 𝐴𝑉𝑎𝑟(δ̂𝑘) represents the 

asymptotic variances of 𝜃1, 𝜃2 and α̂. These variances are obtained using the AV-C matrix defined in 

(4.15). 

Therefore, the lower limit (LL) and the upper limit (UL) of the CIs for 𝜃1, 𝜃2 and α, are given 

respectively, as follows  

𝐿𝐿(δ) = δ̂𝑘 − 𝑧𝛼
2
√𝐴𝑉𝑎𝑟(δ̂𝑘)              𝑈𝐿(δ) = δ̂𝑘 + 𝑧𝛼

2
√𝐴𝑉𝑎𝑟(δ̂𝑘), 𝑘 = 1,2,3                              (4.17) 

where   δ̂1 = 𝜃1 , δ̂2 = 𝜃2 and δ̂3 = α̂    

4.5.2 Bootstrap Confidence Intervals for the Model Parameters 

The CIs of the model parameters can be found using the A-VC matrix in Section 4.5.1. However, their 

expressions are complicated and must be computed numerically. In addition, the large sample 

approximations may not work well for small samples. Therefore, bootstrap CI approaches will be studied 

in this section. The bootstrap is a popular random resampling procedure extensively discussed by Efron 

and Tibshirani (1993).  

This subsection presents two methods of constructing the CIs for 𝜃1, 𝜃2 and α, percentile and BCa 

bootstrap methods based on parametric bootstrap samples. In a parametric bootstrap, the data are 

assumed to follow a known parametric model with unknown parameters. The main idea of the bootstrap 

method is using the empirical distribution of the resulting samples as the estimates of the sampling 

distribution of the estimator. Thus, bootstrap data are sampled from a specified distribution where its 

parameters have been estimated from the original data. In other words, based on parametric bootstrap, 

the 𝐵 samples are generated from the parametric estimate of the population. Then, the parameter 

estimates from these samples are calculated to obtain 𝐵 bootstrap estimates 𝔅(δ̂∗); see Efron and 

Tibshirani (1993) for more details. 

𝔅(δ̂𝑘
∗ ) = {δ̂𝑘

∗(1), δ̂𝑘
∗(2), … , δ̂𝑘

∗(B)
} ,       𝑘 = 1,2,3         

where   δ̂1∗ = 𝜃1∗ , δ̂2∗ = 𝜃2∗ and δ̂3∗ = α̂∗.       

The t-bootstrap method requires calculating the variance of parameters, which is not in closed form in 

the proposed model here, and it needs to be estimated. Thus, t-bootstrap method does not work well for 

this model. 
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4.5.2.1 Percentile method 

The CDF of δ̂𝑘∗  is 𝔹(𝔶) = 𝑃(δ̂𝑘∗ ≤ 𝔶). Thus, define δ̂𝑘𝑏𝑜𝑜𝑡∗ = 𝔹−1(𝔶) for given 𝔶.  

Then, the lower and upper limits of 100(1 − 𝛾)% percentile CIs are defined as 

𝐿𝐿 = 𝔹−1 (
𝛾

2
)  and 𝑈𝐿 = 𝔹−1 (1 −

𝛾

2
).  

However, the number of estimates in the bootstrap sample is finite 𝐵. Thus, a two-sided 100(1 − 𝛾)% 

percentile bootstrap CI for a model parameter is 

(δ̂𝑘
∗[
𝛾
2
𝐵]
 , δ̂𝑘

∗[(1−
𝛾
2
)𝐵]
 ) ,     𝑘 = 1,2,3                                                                                                              (4.18) 

where δ̂1∗ = 𝜃1∗, δ̂2∗ = 𝜃2∗, δ̂3∗ = α̂∗, and [𝒷] denotes the largest integer less than or equal to 𝒷. 

4.5.2.2 Bias Corrected and Accelerated Method 

A two-sided 100(1 − 𝛾)% BCa bootstrap CIs for model parameters 𝜃1, 𝜃2 and α have the form 

(δ̂𝑘
∗[𝛾1k𝐵] , δ̂𝑘

∗[𝛾2k𝐵] ) , 𝑘 = 1,2,3                                                                                                                     (4.19) 

where 

𝛾1k = Φ{�̂�0k +
�̂�0k + 𝒵1−𝛾/2

1 − �̂�𝑘( �̂�0k + 𝒵1−𝛾/2)
}, 

and 

𝛾2k = Φ{�̂�0k +
�̂�0k + 𝒵𝛾/2

1 − �̂�𝑘( �̂�0k + 𝒵𝛾/2)
}. 

Here Φ is the CDF of the standard normal distribution and 𝒵𝛾 is the upper 𝛾 point of the standard normal 

distribution. The bias correction factor �̂�0k can be calculated as 

�̂�0k = Φ
−1 {

number of  δ̂𝑘
∗(b) < δ̂𝑘

𝐵
}.            , 𝑘 = 1,2,3   , 𝑏 = 1,… , 𝐵, 

An estimate of the acceleration factor �̂� can be obtained based on jackknife resampling method. This 

involves generating 𝑟 replicates of the original sample with one observation being omitted, where 

(𝑟 − 1) is the number of observations in each sample (Balakrishnan et al., 2007). The first jackknife 

replicate is obtained by leaving out the first value of the original sample, the second by leaving out the 

second value, and so on, until 𝑟 sub-samples of size 𝑟 − 1 are generated. For each of the sub-samples, 

the MLEs δ̂𝑘(𝑖), 𝑘 = 1,2,3 corresponding to the model parameters are calculated.  
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The mean of these estimates can be calculated as follows: 

δ̂𝑘(.) =
1

𝑟
∑δ̂𝑘(𝑖)

𝑟

𝑖=1

      , 𝑘 = 1,2,3. 

Therefore, an estimate of the acceleration factor based on the jackknife technique, can be calculated as:   

�̂�𝑘 =
∑ [δ̂𝑘(.) − δ̂𝑘(𝑖)]

3𝑟
𝑖=1

6 {∑ [δ̂𝑘(.) − δ̂𝑘(𝑖)]
2𝑟

𝑖=1 }

3
2

      , 𝑘 = 1,2,3. 

where δ̂𝑘(𝑖) is the MLE of δ𝑘 based on the original sample with the 𝑖𝑡ℎ observation deleted. 

Note that, if �̂�0𝑘 = 0 and �̂�𝑘 = 0, then the BCa interval tends to be the same as the percentile interval. 

The steps of obtaining CIs based on bootstrap methods will be explain in next section. 

4.6 Simulation Studies 

Since it is mathematically intractable to obtain a closed form expression for the MLEs, a numerical study 

is carried out to investigate the performance of the proposed methods. In this section, extensive Monte-

Carlo simulation is performed to assess the performance of the MLEs and to estimate the CIs for 

parameters of the proposed SSALT model based on progressive Type-II censoring, where test items 

have a GED. The numerical study was carried out using maxLik package in R. The built-in function 

called maxBFGS is used with the constraint: 

𝜃1 > 𝜃2 , 𝜃2 > 0 and α > 0 

The simulation studies are carried out and the steps for obtaining the point and interval estimates are 

described in Section 4.6.1 based on ML and bootstrap methods. In Section 4.6.2, simulation results are 

presented together with discussion. 

4.6.1 Simulation Description 

In an ALT experiment, choosing the initial values of 𝜃1, 𝜃2, α, n, τ and failure percentage (FP) is one of 

the complicated challenges for the statistician. Many variables must be chosen in advance to strike a 

balance between the restricted time and cost of the experiment and the efficiency of the statistical 

analysis. For example, the censoring percentage must also be relevant to the sample size. Obviously, a 

considerable increase in the stress level value may accelerate failure times, which reduces the total test 

time. However, an increase the stress level could result in large variance of the parameter estimates due 

to the large difference between the accelerated stress levels and the usage stress level. Therefore, to get 

more reasonable simulation results, it is required to choose a set of initial values along with studying the 

impact of changing any of these values on the performance of the MLEs. Thus, before starting to get the 
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result of simulation, the steps were tested for a wide range of values of the model parameters along with 

stress change time and different censoring schemes, to determine the sets of the initial values to be used 

in this chapter. Also, different values of 𝑛, 𝐹𝑃, 𝜏, 𝛼 and PCSs were chosen to investigate their influence 

on the parameter estimates. 

The performance of the estimators of simple SSALT model parameters is evaluated. The estimated 

absolute bias (AB) and the estimated mean squared error (MSE) associated with the estimator are 

obtained for each model parameter. Also, the average length (AL), which is the mean of the interval 

length, and an estimate of the actual coverage probabilities (CP) of the intervals are estimated. The 

bootstrap and jackknife methods are planned to be used in order to estimate bias and variance of the 

estimators for the model parameters (see Efron and Stein, 1981, Efron and Tibshirani, 1993 and 

Kisielinska, 2013 for more details) 

A numerical study is provided to investigate the influence of the sample size 𝑛 and stress change time 𝜏 

on the accuracy of the parameter estimates. The impact of the FP on the precision of the estimators will 

be investigated. Also, the effect of different PCSs on the performance of the MLEs and on the percentage 

of failed items in each step.  

The Monte Carlo simulation generates different samples by repeatedly running the simulation algorithm. 

Since the numerical study is carried out to investigate the performance of the proposed methods, it is 

essential to consider the sampling error of the results. The sampling error results from using samples to 

estimate the model parameters. So, the overinterpretation of the numerical results is assessed using the 

standard error. The Monte Carlo standard errors estimate the standard errors of estimated performance, 

such as estimated AB and estimated MSE. It is used to quantify simulation certainty. The standard error 

represents the precision of the estimate relative to the estimator. It will be utilized to assess the precision 

of the performance of the MLEs and the CIs for parameters of the proposed SSALT model. The Monte 

Carlo standard error is the standard deviation of an estimator over the number of repetitions of the 

simulation steps. It is the standard deviation of the sampling distribution of an estimator.  

For simplicity, we will use the notation of Balakrishnan and Cramer (2014) for describing the censoring 

schemes. For example, when 𝑛 = 20 and 𝑟 = 15, the scheme ℛ = (2, 3, 0∗13) means that, after the first 

failure of the test items, two items are randomly removed from the remaining 19 survival items. 

Similarly, after the second failure in the test, three items are randomly removed from the remaining 16 

survival items. For the subsequent 13 failures, no items are removed from the test. However, for the case 

of the complete sample the censoring scheme will be ℛ = (0∗𝑛) where no item will be removed after 

each of the failure items. Also, for the case of Type-II censored data the censoring scheme will be        

ℛ = (0∗(𝑟−1), (𝑛 − 𝑟)) where the remaining (𝑛 − r) items surviving after the last failure will be 

censored. 
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The following four different PCSs are considered in this section: 

Scheme-1: ℛ1 = (0∗(𝑟−1), (𝑛 − 𝑟)),  

where all censored items are removed from the test at the time of occurrence the final observed censored 

item. This scheme presents the basic Type-II censoring scheme which is a special case of progressive 

Type-II censoring. 

Scheme-2: ℛ2 = ((𝑛 − 𝑟) , 0∗(𝑟−1))  

This scheme is the reverse of the previous scheme wherein (𝑛 − 𝑟) censored items are removed 

completely when the first item fails. The test then is continuously run until 𝑟 items fail. 

Scheme-3:  ℛ3 = (0∗⌊
(𝑟−z)

2
⌋
 , 𝑅𝑖 =

(𝑛−𝑟)

z
 , 0

∗⌈
(𝑟−z)

2
⌉
) , where: 𝑖 = (⌊(𝑟−z)

2
⌋ + 1) ,… , (⌊

(𝑟−z)

2
⌋ + z),              

where ⌊. ⌋ is rounding the number down and ⌈. ⌉ is rounding the number up. 

In this scheme, censored items are removed at 𝑧 different middle points of the test, where 𝑧 is the number 

of failures by the middle of the test. 

Scheme-4: ℛ4 = (0∗(
2r−𝑛

2
)
 , 𝑅i = 1, 0

∗(
2r−𝑛

2
)
); where  𝑖 = ((2r−𝑛

2
) + 1) ,… , ((

2r−𝑛

2
) + (𝑛 − 𝑟)), 

For this situation, a single item is randomly removed after each failure in the middle of intervals between 

failures. 

In addition, in the case of the complete sample, there are no removed items throughout the test, and 

ℛ0 = (0∗𝑛). 

The steps for generating samples from CEM based on the GED are presented in Section 4.6.1.1 along 

with MLEs and asymptotic CIs for the model parameters. Also, the algorithm to generate the bootstrap 

samples and assess the performance of the bootstrap CIs is discussed in Section 4.6.1.2. 

4.6.1.1 Simulation Steps for Obtaining the MLEs and Asymptotic Confidence 

Intervals 

The following algorithm is utilized to illustrate the method for obtaining MLEs from GED under SSALT 

based on progressive Type-II censoring. The initial values of the scale parameter at lower and higher 

stress levels are chosen to be 𝜃1 = 0.6, 𝜃2 = 0.3. The different choices of observed sample size,            

𝑛 = 40,60,80, and different censoring schemes are assumed. The number of replications is p = 3000. 

Step (1): Generate a random sample from the Uniform(0,1) distribution and obtained the order statistics 

(𝑈1:𝑛, … , 𝑈𝑛:𝑛).  
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Step (2): Based on the 4 censoring schemes that are assumed previously in Section 4.6.1, obtain the 

observed sample of failures by randomly removing 𝑅i items from the test after each failure. 

Step (3): Calculate the numbers 𝑛1 and 𝑛2 which present the number of failures at lower and higher 

stress level, respectively. This can be achieved firstly by transforming the given stress change time      

𝜏 = 0.4 and 0.6 from the GED to the Uniform(0,1) distribution by using the transformation                

𝜏𝑢 = (1 − 𝑒
−𝜏 𝜃1⁄ )

𝛼
. Then, determine the number of failures at lower stress levels, such that 

 0 ≤ 𝑈𝑛1:𝑛 ≤ 𝜏𝑢, and the value of 𝑛2 can consequently calculated as  𝑛2 = 𝑟 − 𝑛1. 

Step (4): Eliminate samples that have no failures in either the first or second step-stress level. i.e. exclude 

samples with 𝑛1 = 0 or 𝑛2 = 0. Thus, check if  𝑛1 = 0 or 𝑛2 = 0, eliminate the sample and go to step(1)  

Step (5): From steps (2) and (3), the ordered failure observations 𝑡1:n < ⋯ < 𝑡n1:n < 𝑡n1+1:n < ⋯ < 𝑡𝑟:n 

are calculated as follows 

𝑡i:n = {

−𝜃1 ln(1 − (Ui:n)
1  𝛼⁄ )                                         if        1 ≤ i ≤ 𝑛1 

−𝜃2 ln(1 − (Ui:n)
1  𝛼⁄ ) + 𝜏 −

𝜃2
𝜃1
𝜏                    if      𝑛1 < i ≤ 𝑟.  

 

Step (6): The maxBFGS built-in function is utilized under constraints (𝜃1 > 𝜃2 and 𝜃1, 𝜃1, 𝛼 > 0) based 

on ℓ(δ𝑘, t) in (4.7) and the gradient functions in (4.10) - (4.12) to obtain the MLEs δ̂𝑘 of parameters 

δ𝑘 (where δk is a general notation that can be replaced by δ1 ≡ 𝜃1, δ2 ≡ 𝜃2, δ3 ≡ α). The computations 

are carried out for FP of 60%, 80% and 100% (complete sample). 

Step (7): Repeat the above steps (1-6) 3000 times. 

Step (8): The mean value δ̂k, 𝑘 = 1,2,3 of the estimate is reported for the number of replications          

p = 3000 as follows:  

δ̂k =
1

p
∑δ̂kj 

p

j=1

,   

Subsequently, estimated AB and estimated MSE for the MLEs are obtained, respectively, as follows 

𝐴�̂�(δ̂k) =
1

𝑝
∑|δ̂kj − δk|

𝑝

𝑗=1

,                                                                                                    

𝑀𝑆�̂�(δ̂k) =
1

𝑝
∑((δ̂kj − δk)

2
)

𝑝

𝑗=1

,                                                                  

where 𝑘 = 1,2,3 such as δ1 ≡ 𝜃1, δ2 ≡ 𝜃2, δ3 ≡ α 
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Step (9): As the number of replications 𝑝 = 3000 is large, thus, we can assume the central limit theorem 

holds, and thus following Koehler, Brown and Haneuse (2009), the Monte Carlo standard errors of the 

estimated AB and estimated MSE are obtained as: 

𝑆𝐸 (𝐴�̂�(δ̂k)) =
1

𝑝
√∑(𝐴�̂�(𝛿𝑘𝑗) − 𝐴�̂�(𝛿𝑘))

2

𝑝

𝑗=1

,  

𝑆𝐸 (𝑀𝑆�̂�(δ̂k)) =
1

𝑝
√∑(𝑀𝑆�̂�(𝛿𝑘𝑗) − 𝑀𝑆�̂�(�̂�𝑘))

2

𝑝

𝑗=1

,  

where 𝑘 = 1,2,3 such as δ1 ≡ 𝜃1, δ2 ≡ 𝜃2, δ3 ≡ α 

Step (10): Compute the mean of the proportions 𝑝𝑛1 and 𝑝𝑛2 of test units that failed at lower and higher 

stress levels, respectively, and determine the average mean test duration time in each case. 

Step (11): Using the AV-C matrix, the approximate two-sided confidence limits can be obtained with 

confidence levels (1 − γ) = 0.90, 0.95 and 0.99, using (4.17). Also, the interval’s average mean length 

has been calculated along with the estimated actual CP to study the performance of the asymptotic CIs.  

Step (12): The Monte Carlo standard errors of the estimated AL and estimated CP are calculated as: 

𝑆𝐸 (𝐴�̂�(δ̂k)) =
1

𝑝
√∑(𝐴�̂�(𝛿𝑘𝑗) − 𝐴�̂�(𝛿𝑘))

2

𝑝

𝑗=1

,  

𝑆𝐸 (𝐶�̂�(δ̂k)) =
√
𝐶�̂�(δ̂k) (1 − 𝐶�̂�(δ̂k))

𝑝
,  

where 𝑘 = 1,2,3 such as δ1 ≡ 𝜃1, δ2 ≡ 𝜃2, δ3 ≡ α 

The simulation steps are summarized in the flowchart in Figure 4.2. 
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Figure 4.2 Summary of the simulation algorithm. 

4.6.1.2 Steps for Obtaining Bootstrap Samples & Confidence Intervals 

Within each replication of the Monte-Carlo simulation, the parameter estimates of 𝐵 = 1000 bootstrap 

samples are obtained and then the CIs for the model parameters are calculated using the methods 

discussed in Sections 4.5.2.1 and 4.5.2.2 based on the percentile and BCa bootstrap methods, 

respectively. 

The following algorithm is utilized to generate parametric bootstrap samples and to obtain point and 

interval estimates for each of the 3000 replications. The steps for obtaining the MLEs that were 

Start with determining the initial values 

Calculate number of failures in each stress level 

Remove the censored data 

Generate Uniform sample 

Calculate the MLEs of the model parameters 

Use a transformation to obtain data under the GED  

Calculate the estimated AB and estimated MSE of the MLEs with 
associated standard errors 

Repeat the above steps 3000 times 

Obtain the asymptotic CIs for the model parameters 
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explained in Section 4.6.1.1, are used in the algorithm for obtaining the bootstrap CIs. The steps for 

obtaining the bootstrap CIs are: 

Step (1): Based on the MLEs 𝜃1, 𝜃2 and α̂ obtained previously in Section 4.6.1.1, by using the steps    

(1-6) in Section 4.6.1.1, the bootstrap estimates 𝜃1∗, 𝜃2∗ and α̂∗ are computed numerically based on the 

parametric bootstrap sample. 

Step (2): Repeat the previous step 𝐵 = 1000 times, then the set of 𝐵 bootstrap estimates δ̂𝑘∗ , 𝑘 = 1,2,3 

are presented in ascending order, as follows: 

𝔅(δ̂𝑘
∗ ) = {δ̂𝑘

∗(1)
, δ̂𝑘
∗(2)

, … , δ̂𝑘
∗(𝐵)

} , 𝑘 = 1,2,3 ,  

where   δ̂1∗ = 𝜃1∗ , δ̂2∗ = 𝜃2∗ and δ̂2∗ = α̂∗.        

Step (3): Based on the bootstrap resampling method, the bias and the variance of the MLEs are estimated, 

respectively, (Efron and Tibshirani,1993) as follows 

𝑏𝑖𝑎�̂�(δ̂𝑘) = δ̂𝑘
∗(.)
− δ̂𝑘 , 

and 𝑣𝑎�̂�(δ̂𝑘) =
1

(𝐵 − 1)
∑ [δ̂𝑘

∗(𝑏)
− δ̂𝑘

∗(.)
]
2
 

𝐵

b=1

 , 

where δ̂𝑘
∗(.)

=
1

𝐵
∑ δ̂𝑘

∗(𝑏)
 

𝐵

b=1

. 

Step (4): Using the bootstrap estimates generated by the algorithm given above, percentile and BCa 

bootstrap CIs are derived according to (4.18) and (4.19) in Section 4.5.2.1 and 4.5.2.2, respectively. 

4.6.1.3 Steps for Obtaining Jackknife Estimators 

The variance and bias of estimators are estimated using two resampling methods: the bootstrap and the 

jackknife method. Unlike the bootstrap, the jackknife estimate of the variance of the MLE will not 

change for a given sample (Efron and Stein, 1981). For each sample, delete observations one-by-one at 

a time and calculate the MLEs of the model parameters. The jackknife estimate δ̃𝑘(𝑖) is the estimate of 

δ𝑘 based on the original sample with the 𝑖𝑡ℎ observation omitted (see Efron and Stein, 1981 for more 

details). It can be calculated numerically as follows: 

Step (1): For each sample replication with 𝑟 observations, sequentially omitting each observation from 

the sample and calculate the MLEs of the model parameter based on the remaining (𝑟 − 1) observations. 

Subsequently, update the number of failures at lower and higher stress levels 𝑛1 and 𝑛2. 

Step (2): Compute 𝑟 jackknife estimates for the model parameters δ̃k(1), δ̃k(2), … , δ̃k(𝑟) where δ̃1 =

�̃�1 , δ̃2 = �̃�2 and δ̃1 = α̃ 
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Step (3): Based on the jackknife estimates, the bias and the variance of the MLEs are estimated as 

follows (Efron, 1982) 

𝑏𝑖𝑎�̂�𝑗𝑎𝑐𝑘(δ̂k) = (𝑟 − 1)(δ̃k(.) − δ̂k), 

𝑣𝑎�̂�𝑗𝑎𝑐𝑘(δ̂𝑘) =
(𝑟 − 1)

𝑟
∑[δ̃k(𝑖) − δ̃k(.)]

2
 

𝑟

i=1

 , 

where δ̃k(.) =
1

𝑟
∑δ̃k(𝑖) 

𝑟

i=1

, 𝑘 = 1,2,3  

All the above steps for obtaining the CIs based on asymptotic, percentile and BCa bootstrap method are 

programmed manually in R. Also, the steps for deriving the jackknife estimates for the variance and the 

bias of the estimators are programmed in R. The Monte-Carlo simulation is done by using the High-

Performance Computing facility Iridis-4 with job array using batch files. Different sets of initial values 

have been sent in each array iteration using (R CMD BATCH) command. 

4.6.2 Simulation Results and Discussion 

Simulation results are presented in Tables A.1– A,21 in Appendix A for different sample sizes 𝑛, FP%, 

stress change time 𝜏 and 4 censoring schemes. Tables (A.1– A.6) give the average mean of the MLEs 

besides the estimated AB, estimated MSE for the estimators of δ𝑘 based on ML, with associated standard 

errors. Also, the estimated AB, and the estimated MSE for the estimators of δ𝑘 based on bootstrap and 

jackknife method are given in Tables (A.1– A.6). The AL and the estimated CP of the asymptotic, 

bootstrap and Jackknife CIs at confidence levels 95% and 99% for 𝜃1, 𝜃2 and 𝛼 are presented in Tables 

A.7– A.18. Note that, for the sake of conciseness, CIs with 90% confidence level are not presented here 

but are available upon request. Table A.19 reports the mean of the proportions of failures at each stress 

levels, along with the mean of the total test duration 𝑇. Incidentally, for the purpose of conciseness,         

a subset of simulation results is reported. 

The following Figure 4.3 – Figure 4.5 summarize the influence of increasing the sample size upon the 

performance of MLEs of model parameters based on four censoring schemes. 
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Figure 4.3 The effect of increasing the sample size and failure percentage on the performance of 𝜃1 

under different progressive censoring schemes. 
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Figure 4.4 The effect of increasing the sample size and failure percentage on the performance of 𝜃2 

under different progressive censoring schemes. 
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From the results shown in Tables A.1– A.13 in Appendix A and Figure 4.3 – Figure 4.5, the following 

comments are concluded on the performance of parameters estimates for the generalized exponential 

lifetime distribution for simple SSALT models under progressive Type-II censoring. 

1) For fixed values of censoring scheme, stress change time 𝜏 and FP, as the sample size 𝑛 increases, 

it is noticed that the AB of the MLEs 𝜃1 and �̂� decrease considerably, whereas there is a slight 

decrease in AB and MSE of 𝜃2. As expected, the standard error of the estimated AB, MSE, AL and 

CP are decreasing as the sample size increases. For confidence levels 0.95% and 0.99%, the CIs of 

the model parameters become much narrow with larger sample size. Also, there is a noticeable 

increase in the total test time as the sample size increases, except for few cases under Type-II 

censoring. 

2) For the fixed values of 𝑛, censoring scheme and 𝜏, by increasing the FP, it is seen that the AB and 

MSE of MLEs decrease, except in a few cases where AB and MSE of 𝜃1 and �̂� have a slight increase. 

Figure 4.5 The effect of increasing the sample size and failure percentage on the performance of α̂ 

under different progressive censoring schemes. 
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Moreover, it is noticed that there are a few cases where the censoring scheme gives smaller AB and 

MSE than the complete sample. In this situation, running the SSALT for a complete sample does 

not improve the performance of MLEs of the model parameters. Since increasing the number of 

failures would result in more precise estimates, the standard errors of the performance measures 

slightly decrease as the FP increases. The proportion of failures at a lower stress level 𝑝𝑛1 decreases 

by 7%-20% with increasing FP for ℛ1,ℛ3 and ℛ4, while it is constant for ℛ2. This means that as 

the number of observed failures increases, the number of test units that fail at a lower stress level 

decreases. 

3) For a larger value of 𝜏, which results in more failures at a lower stress level, 𝑝𝑛1 increases. This 

results in providing more information about 𝜃1. Thus, the performance of MLEs of 𝜃1 and 𝛼 gets 

better as the AB and MSE decrease, along with the estimated CP of the CI getting closer to the 

nominal levels at 95% and 99%. On the contrary, the AB and MSE of 𝜃2 increase and the CP 

becomes far from nominal levels. However, the test takes more time with increasing 𝜏. 

4) Figure 4.3 – Figure 4.5 show that among all censoring schemes, the AB and MSE of 𝜃1 were the 

largest under ℛ2, where all censored data were removed at the time of the first failure, which 

probably meant less information about the lower stress level. In contrast, the AB and MSE of 𝜃2were 

the largest under ℛ1 that presented Type-II censoring, where all censored data is removed at the 

end of the test, which means less information about the higher stress level. The differences in the 

AB and MSE of the MLEs, based on different schemes, reduce as the FP increases or 𝑛 increases. 

Furthermore, it can be noticed that ℛ3 and ℛ4 have the same impact on the AB and MSE of the 

MLEs of the model parameters. However, the precision of the performance measures among ℛ1,ℛ3 

and ℛ4 censoring schemes is almost equal and comparable to the precision under a complete sample. 

Therefore, running the life test under Type-II progressive censoring would not affect the precision 

of the performance measures of the MLEs of the model parameters. 

5) For fixed 𝜏, removing the censored items based on ℛ2 does not affect the failure proportions 𝑝𝑛1 

and 𝑝𝑛2 at lower and higher stress levels, respectively. However, 𝑝𝑛1 and 𝑝𝑛2 based on ℛ2 are the 

same as 𝑝𝑛1 and 𝑝𝑛2 based on the complete sample.  

6) Comparing the results for ℛ3 and ℛ4, where the censored data is removed in the middle stages of 

the test, it was observed that all results have almost the same values under the two schemes. This 

means that while removing items in the middle stages of the test, removing the items one by one or 

as a pre-determined number in the middle of the test have the same impact on the MLEs. 

7) In general, it can be concluded that the jackknife method provides better estimates of AB and MSE 

of the MLEs, except for a few cases where the bootstrap method provides smaller values of the MSE 

estimators. Also, the values of AB under bootstrap and asymptotic MLEs are relatively the same.  

8) It is observed that the approximate CIs for 𝛼 provides good CP (close to the nominal level) 

regardless of the sample size. This was observed in all cases. 
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9) In general, the precision of the performance measures is high as the Monte Carlo standard errors for 

the performance measures ≤ 0.0175 for all different scenarios when 𝜏 = 0.6 and it is ≤ 0.0275 for 

all different scenarios when 𝜏 = 0.4. 

10) The failure proportion 𝑝𝑛1 at the lower stress level is shown to be more than 𝑝𝑛2 at the higher stress 

level for all censoring schemes, except for ℛ2 and 𝜏 = 0.4. For scheme ℛ2 and 𝜏 = 0.4, it is noticed 

that the AB and the MSE of 𝜃1 and �̂� are the highest, whereas they are the lowest for 𝜃2 for all 

assumed values of 𝑛 and FP. However, it may require studying the case where 𝑝𝑛1 < 𝑝𝑛2 for other 

PCSs. 

11) For the scale parameter 𝜃1, it is noticed that for confidence levels 0.95% and 0.99% asymptotic 

CIs become considerably narrower than bootstrap CIs for all different values of 𝑛, PCSs and 𝜏. To 

the contrary, the CPs of the asymptotic CIs are less than nominal levels by 5% - 6%. In contrast, the 

estimated CPs of the percentile bootstrap CIs at 95% and the estimated CPs of the BCa bootstrap 

CIs at 99% are getting closer to the nominal levels.  

12) For the scale parameter 𝜃2, the AL of the CIs under the three methods is approximately the same. 

However, at 95%, the AL of asymptotic CIs is slightly shorter than that of bootstrap CIs. The BCa 

bootstrap method provides good CP (close to the nominal level) of the CI estimates.  

13) For the shape parameter 𝛼, asymptotic CIs have the shortest estimated AL among the three methods. 

The estimated CP of the asymptotic CIs is getting closer to the nominal levels at 95% and 99%. 

However, the estimated level of CP of the asymptotic CIs is more than the nominal level for almost 

all cases at 95% and some cases at 99%. 

14) Time duration for life test depends on number of observed data as well as actual sample size. It is 

clear from Table A.13 that Type-II censoring provides the shortest test with respect to total test time. 

The reason for this is that in Type-II censoring, items with highest lifetimes are removed from the 

test. Therefore, the longer test duration among different censoring schemes was under scheme-2. 

However, it was observed that as the data are more likely to be removed at later stages of the test, 

the time required for running the test reduces.  

The following Table 4.1 – Table 4.2 summarize the values of standard errors as a percentage of the 

estimated value of the performance measurements of the point and interval estimates of 𝜃1, 𝜃2 and 𝛼. 

Table 4.1 Summary of the standard errors as a percentage of the estimated AB and estimated MSE. 

𝝉  
�̂�𝟏 �̂�𝟐 �̂� 

SEP(AB) SEP(MSE) SEP(AB) SEP(MSE) SEP(AB) SEP(MSE) 

0.4  
min 1.64 3 1.3 1.05 1.59 1.54 
max 3.25 10.6 1.55 2.5 2.08 2.34 

0.6  
min 1.48 2.43 1.29 1.07 2.33 2.19 
max 2.67 6.88 1.78 3.34 5.66 5.34 
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Table 4.2 Summary of the standard error as a percentage of the estimated AL and estimated CP. 

𝝉 confidence 
level 

 �̂�𝟏 �̂�𝟐 �̂� 

SEP(AL) SEP(CP) SEP(AL) SEP(CP) SEP(AL) SEP(CP) 

 
0.4  

95% 
min 0.87 0.005 0.29 0.004 0.5 0.003 
max 2.49 0.006 0.88 0.007 0.97 0.004 

99% 
min 0.97 0.004 0.52 0.003 0.5 0.002 
max 1.66 0.005 0.99 0.005 0.97 0.003 

0.6 
95% 

min 0.67 0.002 0.34 0.009 0.43 0.003 
max 1.44 0.006 1.71 0.012 0.94 0.006 

99% 
min 0.81 0.001 0.56 0.003 0.43 0.002 
max 1.51 0.005 1.8 0.009 0.94 0.003 

Despite the complexity of the proposed SSALTs model, it can be seen from the above table, the standard 

errors as a percentage of the estimated value are generally small except a few cases when the sample 

size is small 𝑛 = 40. Thus, the estimated measures are precise for 𝑛 > 40.  

The standard error of the MSE of 𝜃1 as a percentage of the estimated MSE when 𝜏 = 0.4 is relatively 

large in some cases, particularly when 𝑛 = 40 and 𝜏 = 0.04 where there is a small number of failures 

at the lower stress level. Thus, in this scenario, we should take care not to overinterpret the estimated 

MSE values, e.g. in comparisons. 

On the other hand, for all assumed initial values, the standard errors in estimating the AL and CP are at 

most 2.5% of the estimated value of the performance measure. Thus, the AL and the CP are precisely 

estimated and can be used to assess the performance of the MLEs  of the model parameters. Furthermore, 

the percentage of the standard errors of the CP is less than 0.009%, indicating that the estimated CPs of 

the asymptotic CIs are precise for all scenarios of the initial values. 

4.7 Summary 

This chapter has studied statistical inference for the SSALT model based on progressive Type-II 

censoring where the failures follow the GED. The CEM was described in detail based on progressive 

Type-II censoring. The MLEs of the model parameters were derived and their performance was assessed 

using the estimated AB and MSE. The bootstrap and the Jackknife methods were utilized to estimate 

the AB and the MSE of the estimates. In addition, CIs of the model parameters were obtained using 

three methods; the asymptotic CIs, percentile and BCa bootstrap methods. Simulation studies with 

detailed descriptions were conducted under variable sets of the sample sizes, FP, stress change time and 

4 censoring schemes. Results of simulation studies were utilized to illustrate the impact of a set of initial 

values on both the point and interval estimation methods and to assess the performance of the estimates.  

Generally, it can be seen that the impact of the suggested initial values on the performance of the MLEs 

is the same for the three used methods. Also, the initial values have the same impact on both asymptotic 
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CIs and bootstrap CIs. Thus, the following Table 4.1 summarizes the impact of different initial values 

on the point and interval estimates of 𝜃1, 𝜃2 and 𝛼. 

Table 4.3 The impact of 𝑛, FP and 𝜏 on the point and interval estimates of the model parameters. 

 

 

 

 

 

 

 

 

 

 

 

Simulation results indicate that estimates of 𝜃1 and 𝛼 have improved by decreasing the estimated AB 

and estimated MSE of the model parameters and decreasing the estimated AL of the CIs when the 

number of failures at a low stress level increases. In addition, the precision of the estimated performance 

measures is improved when the number of failures at the lower stress level increases by increasing the 

sample size or increasing the stress change time to get more failures at the lower stress level.  This is     

a consequence of the lower stress level being closer to the usage stress level. Consequently, failures 

under lower stress level may behave similarly to failures under usage stress level. In other words, the 

density function for items under a lower stress level is close to that of items under a usage stress level.  

On the other hand, the number of observed items on the higher stress level slightly affects the 

performance of 𝜃2. Thus, we can suggest increasing the FP under a lower stress level to get better 

estimates of the model parameters with less AB and MSE.  

In addition, the simulation results in this chapter indicate that scheme-1, which is the basic Type-II 

censoring, leads to an increase in the AB and MSE of 𝜃2, besides increasing 𝑝𝑛1 compared with other 

examined schemes. On the other hand, scheme-2 increases the AB and MSE of 𝜃1 and �̂� and decreases 

𝑝𝑛1 among other examined schemes. In addition, scheme-3 and scheme-4 almost lead to the same 

results. 

Measure Parameter 
Initial value 

𝒏 ↑ FP ↑ 𝝉 ↑ 

AB 

𝜽𝟏 

↓ 

↓ except few cases 

↓ 𝜽𝟐 ↝ fluctuated 

𝜶 ↓ except few cases 

MSE 

𝜽𝟏 

↓ 

↓ except few cases 

↓ 𝜽𝟐 ↝ fluctuated 

𝜶 ↓ except few cases 

AL 

𝜽𝟏 

↓ ↓ 

↓ 

𝜽𝟐 ↑ 

𝜶 ↓ 

CP 

𝜽𝟏 

≈ 
≈ 

≈ 

𝜽𝟐  

𝜶  ≈ 
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The numerical results show that progressive Type-II censoring could reduce the number of failures and 

decrease the total testing time without losing much precision of the estimates. However, it is crucial to 

identify the optimal stress change time that yields an appropriate number of failures at each stress level 

to get more precise estimations of model parameters. Moreover, in designing the SSALTs based on 

Progressive Type-II censoring, it is essential to choose the optimal censoring scheme that improves the 

statistical inference of the model parameters. So, the next chapter studies the optimal design for 

obtaining the optimal stress change time and optimal censoring scheme based on variable set of test 

settings
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Chapter 5  

Optimal Step-Stress Model for Progressive Type-II 

Censored Data 

5.1 Introduction 

When designing ALT experiments, the number of items to be tested is usually dependent upon the 

available budget, the cost of the test equipment and the availability of the test facilities. Furthermore, 

the number of items allowed to fail under the test may be determined before setting the test for the same 

reasons. Consequently, the question may also arise when each item could be censored from the test with 

the least impact on the precision of parameter estimation. In addition, a further question that may be 

considered is whether the optimal value of the censoring scheme is fixed or whether there is a flexible 

range of values with similar efficiency to choose from.  

The general purpose of reliability studies is often to maximize the amount of information about a product 

gathered within certain restrictions, such as the number of items to be examined. Another consideration 

about the best time to move to the higher stress level may arise, subject to having sufficient information 

from both stress levels. Therefore, the criteria that result in optimal design are required. An optimal 

design provides the most precise estimates of the model parameters; it minimizes the 𝐴𝑉𝑎𝑟 of the MLEs 

of the parameters of interest at the usage stress level. 

In a non-optimal design, a large number of items must be tested to achieve the same level of accuracy 

in parameter estimation as an optimal design. Therefore, an optimal design can reduce the number of 

items under test, which reduces the total cost of the test. 

This chapter will study the optimal design to determine the best time to increase the stress level from 

low level to high level. It should be noted that the optimal design studied in this chapter is locally based 

on different sets of initial values. Furthermore, this chapter aims to investigate censoring schemes to 

choose the appropriate number of items to be removed from the test after each failure under a progressive 

Type-II censoring scheme. All these optimal studies will be done using the V-optimality criterion, 

considering minimizing the 𝐴𝑉𝑎𝑟 of the MLE of the 100𝓅𝑡ℎpercentile lifetime under the GED at usage 

stress level. 

Numerical analysis using the golden section search method, which will be explained in Section 5.3.1, is 

presented to illustrate the derivation of the optimal design for a simple SSALT. After determining the 

optimal design in terms of the optimal stress change time and optimal censoring scheme, a sensitivity 

analysis is carried out to identify the model parameters that need to be estimated with particular 

attention. The chapter concludes with a review of the main points. 
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5.2 Optimality Criterion 

When conducting an ALT experiment, researchers aim to estimate the parameters of interest with the 

highest degree of precision and minimum dispersion. In this thesis, under the step-stress setting, we are 

interested in the life estimate of a product at the usage stress level.  

The most commonly used criteria for designing optimum SSALT are V-optimality, determinant (D)-

optimality and average variance (A)-optimality (Kundu and Ganguly, 2017). All three of these criteria 

are based on the Fisher information matrix. From the practitioner's perspective, the optimality criterion 

will be chosen regarding the objective of the experiment. Under the circumstances when the 

experimenter is concerned with the estimate’s precision of the mean time to failure under usage stress 

level, V-optimality is the best criterion to use. On the other hand, if the life-stress relationship parameters 

are the most important to estimate with high precision, then D-optimality should be used (Ng et al., 

2004). 

In this chapter, the optimal test design under the V-optimality criterion is studied in detail to get the 

most efficient MLEs of the model parameters. The objective of V-optimality is to identify an optimal 

design such that the quantile failure estimate under the usage stress level has the least variability.             

V-optimality is minimizing 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) (Li, 2009). 

Depending on the practitioner/producer, the value of 𝓅 is specified based on the purpose of the life test 

experiment. Suppose a producer is interested in providing a product warranty for his/her clients. In the 

manufacturing field, the manufacturer’s budget may cover the repair of 5% of the products. Thus, this 

manufacturer will be interested in estimating the largest product lifetime such that 5% of the total 

number of manufactured products have a lifetime equal to or less than the determined product lifetime. 

Therefore, in this scenario, the optimization criterion is to minimize the 𝐴𝑉𝑎𝑟(�̂�0.05(𝑥0)) (Balakrishnan 

and Aggarwala, 2000). It is essential to accurately estimate 𝑡0.05(𝑥0), as it plays an important role in 

reducing the repairing cost under guarantee, since the warranty cost may significantly increase with 

early failures. 

From another point of view, a manufacturer may be interested in testing the reliability of products 

manufactured by a new production line. In this situation, it is suggested to estimate the median of the 

lifetime or estimate the lifetime of the product such that 95% of products fail before it. Thus, this chapter 

studies the estimation of the optimal stress change time for 5𝑡ℎ, 50𝑡ℎ and 95𝑡ℎ percentile lifetime under 

the GED at the usage stress level. 

As it is mentioned in (4.1) in Section 4.2, the CDF of GED at a time 𝑡 is: 

Fs(t; 𝜃, α) = [1 − exp[− t 𝜃⁄ ]]
α
.          t > 0 
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The estimated 100𝓅𝑡ℎ percentile life of the GED with specified probability 𝓅 under usage stress level 

𝑥0 is: 

�̂�𝓅(𝑥0) = −𝜃0 ln (1 − 𝓅
1
�̂�) ,                   𝓅 = 0.05, 0.50, 0.95,                                                               (5.1) 

where 𝜃0 is the MLE of the scale parameter under the usage stress level 𝑥0, and �̂� is the MLE of the 

shape parameter. When 𝓅 = 0.5, �̂�𝓅(𝑥0) is the MLE of the median life at the usage stress level. 

In order to calculate 𝜃0, the life-stress relationship is used to relate the product lifetimes with life testing 

stress levels (see Miller and Nelson, 1983 for more details). This thesis assumes that the scale parameter 

𝜃𝑘, which is the characteristic life of a test unit at any stress level 𝑥𝑘, is a log-linear function of the 

stress. According to (2.1) in Chapter 2, the life-stress relationship is defined as follows: 

𝑙𝑛(𝜃𝑘) = β0 + β1𝑥𝑘  ,                       𝑘 = 0,1,2 , 

where 𝑥0, 𝑥1 and 𝑥2 are usage, lower and higher stress levels, respectively. The life-stress model 

parameters β0 and  β1(< 0) are unknown parameters. 

By solving the equations of life-stress relationship regarding lower and higher stress level to find the 

value of β0 and  β1, we get 

β0 = 𝑙𝑛(𝜃1) − β1𝑥1 ,  

β1 =
𝑙𝑛(𝜃1) − 𝑙𝑛(𝜃2)

(𝑥1 − 𝑥2)
 . 

After estimating 𝜃1 and 𝜃2, the parameters β0 and  β1 can be estimated by using the invariance property 

of MLEs. Thus, the life-stress relationship could be used to find the estimated value of 𝜃0 at the usage 

stress level 𝑥0. By using the invariance property of MLEs, the MLE of 𝜃0 can be calculated as: 

𝜃0 = 𝑒
(β̂0+β̂1𝑥0) . 

Now, according to Li (2009), the standardized stress level is defined as 

𝑥𝑠 =
𝑥1 − 𝑥0
𝑥2 − 𝑥0

 . 

Then 

 𝑥0 =
𝑥1 − 𝑥2𝑥𝑠
(1 − 𝑥𝑠)

 . 

Next, by substituting the value of 𝑥0 in the life-stress relationship and using the invariance property of 

the ML method, 𝜃0 is obtained as follows: 
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𝜃0 = exp(
𝑙𝑛(𝜃1) − 𝑥𝑠 𝑙𝑛(𝜃2)

(1 − 𝑥𝑠)
).   

To estimate the asymptotic variance of 100𝓅𝑡ℎpercentile lifetime, the Fisher information matrix 𝐹(δ) 

is used. According to Li (2009), the delta method is used to obtain the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) at probabilities 

𝓅 = 0.05, 0.50, 0.95 as 

𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) = 𝐴𝑉𝑎𝑟 (−𝑒𝑥𝑝 (
ln(𝜃1) − 𝑥𝑠 ln(𝜃2)

(1 − 𝑥𝑠)
) 𝑙𝑛 (1 − 𝓅

1
α̂))   

= 𝐻�̂�−1𝐻𝑇 ,                                                                                                                                                           (5.2) 

where �̂�−1 denotes the inverse of the observed Fisher information matrix in (4.14) evaluated at the 

MLEs δ̂𝑘 = {𝜃1 , 𝜃2 , α̂  }. Furthermore, 𝐻 is a row vector of the first derivative of the �̂�𝓅(𝑥0) and 𝐻𝑇 is 

the column vector with respect to 𝜃1, 𝜃2 and α. 

𝐻 = [
𝜕𝑡𝓅(𝑥0)

𝜕𝜃1
,
𝜕𝑡𝓅(𝑥0)

𝜕𝜃2
,
𝜕𝑡𝓅(𝑥0)

𝜕α
]
|(δ=δ̂ , 𝑡𝓅(𝑥0)=�̂�𝓅(𝑥0))

 

     =

[
 
 
 
 
 
 
 
 −(

1

𝜃1(1 − 𝑥𝑠)
) 𝑒𝑥𝑝 (

ln(𝜃1) − 𝑥𝑠 ln(𝜃2)

(1 − 𝑥𝑠)
) ln (1 − 𝓅

1
α̂) ,

(
𝑥𝑠

𝜃2(1 − 𝑥𝑠)
) 𝑒𝑥𝑝 (

ln(𝜃1) − 𝑥𝑠 ln(𝜃2)

(1 − 𝑥𝑠)
) ln (1 − 𝓅

1
α̂) ,

−𝑒𝑥𝑝 (
ln(𝜃1) − 𝑥𝑠 ln(𝜃2)

(1 − 𝑥𝑠)
) .

𝓅
1
α̂ ln(𝓅)

α̂2 (1 − 𝓅
1
α̂)

  

]
 
 
 
 
 
 
 
 

 .         

The above 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) in (5.2) is complicated to calculate in closed form. Therefore, a numerical 

method is used in Section 5.3.1 to estimate the optimal stress change time and in Section 5.4.1 to 

investigate the optimal censoring scheme. The optimal test design in terms of stress change time and 

censoring scheme will be discussed in Section 5.3 and 5.4, respectively, for a given set of initial values 

of the model parameters δ = (𝜃1, 𝜃2, α), failure percentage and sample size. The advantage of 

investigating the optimal stress change time and the optimal censoring schemes for a range of 𝑛 and FP 

is not only examining their effects on the optimal design, but also providing the experimenter with the 

flexibility to choose them regarding the corresponding objective function. 

5.3 Optimal Stress Change Time 

In some situations, under a simple step-stress model, the hold time at low stress level might be relatively 

short, resulting in few or no failure data at low stress level and thus affecting the quality of the MLEs. 

Also, if all items under the test fail at the lower stress level before increasing the stress level, then no 
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information will be obtained from the experiment about the lifetimes at the higher stress level. Moreover, 

given that the sample size in a reliability test is often small, choosing the optimal stress time is essential 

to obtaining observed failures in both stress levels. However, the precision of the MLE 𝜃0 depends on 

the run time at each stress level. For all those reasons, determining an optimal stress change time to 

change the stress level is essential to ensure the availability of sufficient items at each stress level. This 

will improve the efficiency of statistical inference of the model parameters and the 100𝓅𝑡ℎpercentile 

under usage stress level. 

Furthermore, in Section 4.6.2, the simulation results have shown that increasing 𝜏 results in getting better 

MLEs of 𝜃1 and 𝛼. In fact, the total time of the test increases with increasing the stress change time as 

increasing the stress level would accelerate the failure rate. So, it is required to determine the optimal 

stress change time 𝜏∗, which balances between accelerating the failure rate and resulting in precise MLEs 

for the model parameters. The optimal stress change time 𝜏∗ is estimated by minimizing the 

𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). The ALT design is developed considering minimization of the 𝐴𝑉𝑎𝑟 of the median and 

5𝑡ℎ and 95𝑡ℎ percentile life estimates of GED under SSALTs based on progressive Type-II censoring 

schemes. Therefore, the next section will explain the steps for numerically determining the optimal 

stress change time, using (5.2) with 𝓅 = 0.05,0.50,0.95 for different sample sizes, failure percentages 

and model parameters. 

5.3.1 Numerical Study 

The computation of the 𝐴𝑉𝑎𝑟 of the MLEs would be based on the Fisher information matrix. However, 

due to the complexity of the proposed model, 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) cannot be found theoretically. Therefore, 

numerical analysis is required.  

The numerical method that is used in this chapter to solve the optimization problem is the golden section 

search method. The golden section search strategy was first introduced by Kiefer (1953) to solve an 

optimisation problem. Braun and Murdoch (2021) discussed the golden section method as a 

straightforward technique for determining the unique minimiser/maximiser of a univariate function 𝑓(. ) 

over a closed interval. 

The golden section search is a modification of the bisection method, used to find the root of  

differentiable and non-differentiable functions. The golden section search requires less calculation than 

bisection method since the objective function 𝑓(. ) has to be evaluated once at one new point for each 

iteration. However, it reuses specific values from the previous iteration, as seen later in this section.  

The general idea of golden section search is summarised as repeatedly shrinking the closed interval 

[𝑠𝐿 , 𝑠𝑈] that contains the minimiser of the objective function 𝑓(. ). The shrinkage will be stopped when 

the interval length is less than or equal to a predetermined small tolerance value 휀. After that, the 

http://en.wikipedia.org/wiki/Differentiation_(mathematics)
http://en.wikipedia.org/wiki/Differentiation_(mathematics)
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midpoint of the smallest interval is obtained as the minimiser. However, the interval [𝑠𝐿 , 𝑠𝑈] that 

contains the minimiser can be determined using the density plot of the objective function 𝑓(. ).  

In each repetition of the golden section search algorithm, two test points 𝑠1, 𝑠2 ∈ [𝑠𝐿 , 𝑠𝑈] are determined 

using the golden ratio, such that 𝑠1 < 𝑠2. The golden ratio is defined as: 

𝜑 =
√5 − 1

2
≅ 0.618 

Therefore, the value of the test points 𝑠1, 𝑠2 can be calculated as: 

𝑠1 = 𝑠𝑈 − ℓ .                                                                                                                                                    (5.3) 

𝑠2 = 𝑠𝐿 + ℓ ,                                                                                                                                                     (5.4) 

where ℓ is the distance from 𝑠1 and 𝑠2 to the boundaries of the search interval [𝑠𝐿 , 𝑠𝑈], such that: 

 ℓ = (𝑠𝑈 − 𝑠𝐿) × 𝜑. 

The test points 𝑠1, 𝑠2 divide the interval into three parts. The function 𝑓(. ) is evaluated at 𝑠1 and 𝑠2 to 

determine which part should be discarded. At each iteration, the interval length is reduced by a factor of 

𝜑 ≅ 0.618; see Chong and Zȧk (2013). However, the golden ratio is the convergence rate in the golden 

section search method. The golden section search method is terminated when 

𝑠𝑈 − 𝑠𝐿 ≤ 휀 , 

where 휀 is the specified tolerance that is used to compare the closeness of 𝑠𝑈 and 𝑠𝐿. In this thesis, the 

tolerance is assumed to be 휀 = 𝑒−10. 

Then, the minimiser can be calculated as 

𝑠𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =
𝑠𝐿 + 𝑠𝑈
2

. 

The algorithm of the golden section search is summarised in Figure 5.1. 

The golden section search method is used to find the minimum 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) of GED under SSALT 

over a predetermined range of the stress change time, which gives the corresponding optimal stress 

change time. 
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Figure 5.1 A summary of the golden section search algorithm. 

Repeat  

Set the interval [𝑠𝐿 , 𝑠𝑈] and the tolerance 휀 

Using (5.3) and (5.4): 

calculate 𝑠1, 𝑠2 ∈ [𝑠𝐿 , 𝑠𝑈], such that 𝑠1 < 𝑠2 

Yes 

No 
No Yes 

𝑠𝑈 ← 𝑠2  

 𝑠2 ← 𝑠1 , 𝑓(𝑠2) = 𝑓(𝑠1) 

𝑠1 = 𝑠𝑈 − ℓ  

Evaluate 𝑓(𝑠1) 

𝑓(𝑠1) > 𝑓(𝑠2) ? 

𝑠𝐿 ← 𝑠1  

 𝑠1 ← 𝑠2 , 𝑓(𝑠1) = 𝑓(𝑠2) 

𝑠2 = 𝑠𝐿 + ℓ  

Evaluate 𝑓(𝑠2) 

𝑠𝑈 − 𝑠𝐿 ≤ 휀 ? 

The minimiser = 𝑠𝐿+𝑠𝑈

2
 

Evaluate 𝑓(𝑠1) and 𝑓(𝑠2) 

End 

Start 
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5.3.1.1 Numerical Explanation and Simulation Steps 

The problem of minimising the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) of GED under SSALTs is solved numerically.                    

A numerical study is provided in this section to investigate the optimal design as a function of various 

parameters. The impact of changing 𝑛, FP, 𝜃1, 𝜃2, α and several censoring schemes on the optimal stress 

change time are studied.  

For performing the algorithm for estimating the optimal stress change time 𝜏∗, an initial estimate of the 

model parameters is required to estimate 𝑡𝓅(𝑥0) of the life distribution. The model parameters are 

estimated from a previous experiment or based on a pilot study. So, the MLEs of the model parameters 

are obtained and used to determine the optimal 𝜏∗ that minimize the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). 

However, before applying the numerical method to estimate the optimal stress change time 𝜏∗, the 

estimated value of 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) is graphically presented against 𝜏. The plot is then used to identify 

the interval containing the minimum value of  𝜏. This interval is then used in the golden section search 

method to estimate 𝜏∗. 

The following algorithm illustrates the method for estimating the optimal stress change time 𝜏∗ at which 

𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)), achieves its minimum value with different sets of initial values. The algorithm is 

performed under the choice of lower and higher stress-levels from an example from Nelson (1990) of 

76 times (in minutes) to oil breakdown of an insulating fluid at constant voltage stress (KV). The design 

voltage stress level is 𝑥0 = 20 KV, the lower voltage stress is 𝑥1 = 26 KV and the higher voltage stress 

level is 𝑥2 = 38 KV. However, Guan et al. (2014) showed that the GED fits the data at each stress level. 

They used the Kolmogorov–Smirnov distance between the empirical distribution function and the fitted 

distribution function based on the MLEs of the parameters.  

Step (1): For different choices of 𝑛, FP, 𝜃1, 𝜃2, α and censoring schemes, we generate progressively 

Type-II censored samples from GED and calculate the MLEs 𝜃1, 𝜃2 and α̂ of the model parameters, 

using the algorithm presented in Section 4.6.1.1 . 

Step (2): From the life-stress relationship, we have: 

𝑙𝑛(𝜃𝑘) = β0 + β1𝑥𝑘  ,                       𝑘 = 0,1,2 , 

β̂1 =
𝑙𝑛(𝜃1) − 𝑙𝑛(𝜃2)

(𝑥1 − 𝑥2)
  . 

β̂0 = 𝑙𝑛(𝜃1) − β̂1𝑥1.  
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Then, 𝜃0 can be evaluated as 

𝜃0 = 𝑒
(β̂0+β̂1𝑥0). 

Step (3): Using (5.1), the MLE of the 100𝓅𝑡ℎ percentile of the life distribution at usage stress level is 

obtained as follows: 

�̂�𝓅(𝑥0) = −𝜃0 ln (1 − 𝓅
1
�̂�) . 

Step (4): Using a loop, repeat the above steps (1 – 3), 3000 times to get a sample of the MLE �̂�𝓅(𝑥0). 

Step (5): Find the empirical variance of the 100𝓅𝑡ℎ percentile. 

Step (6): For each value of  𝜏, repeat the above 5 steps to calculate the corresponding 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). 

Step (7): Plot 𝜏 for the values 𝜏 ∈ [0.01,2.5] with its corresponding variance of the MLEs of the 100𝓅𝑡ℎ 

percentile. 

Step (8): Using the golden section search algorithm discussed in the previous Section 5.3.1, find the 

optimal stress change time, where the objective function 𝑓(. ) = 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) and the search interval 

[𝑠𝐿 , 𝑠𝑈] that include the optimal 𝜏∗ is determined from the plot of the relationship between 𝜏 and 

𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). 

Step (9): Repeat the above steps (1 – 8), 50 times to obtain a sample of 𝜏∗ with its corresponding 

minimum value of 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). Calculate the mean, median, minimum and maximum for the 

optimal sample. It is worth noting that the replication is chosen to be 50 due to the limited time to run  

a single job on Iridis, which is 60 hours. After running many jobs on the Iridis to obtain a sample of  𝜏∗ 

based on different sets of initial values, it was noticed that if the replication was > 50, then the run time 

would exceed 60 hours. Thus, it was found that repeating steps (1 – 8) 50 times takes run time < 60 

hours to obtain the optimal 𝜏∗. So, we can get the results based on all the suggested initial values. 

Simulation studies have been performed using the above algorithm for the three percentiles with 

probability 𝓅 = 0.05, 0.50, 0.95. 

The Monte Carlo standard error of the estimated 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) is obtained, for some scenario of the 

initial values, to assess the precision of the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) for the 5𝑡ℎ, 50𝑡ℎ and 95𝑡ℎ percentile lifetime 

of the GED at the usage stress level. By assuming the central limit theorem holds, and thus following 

Koehler, Brown and Haneuse (2009), the Monte Carlo standard errors of the estimated 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) 

is obtained as: 



Chapter 5 

76 

𝑆𝐸 (𝐴𝑉𝑎�̂� (�̂�𝓅(𝑥0))) =
√
var(𝐴𝑉𝑎�̂�(�̂�𝓅(𝑥0)))

50
,  

where 𝓅 = 0.05, 0.50, 0.95 

Hence, both 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) and 𝑀𝑆𝐸 (�̂�𝓅(𝑥0)) were estimated for different sets of the initial values. It 

was concluded that the 𝑀𝑆𝐸 (�̂�𝓅(𝑥0)) has the same behaviour as 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). Thus, 𝑀𝑆𝐸 (�̂�𝓅(𝑥0)) 

gives the same corresponding optimal 𝜏∗ as 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). Therefore, the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) is only used 

and presented to calculate the optimal 𝜏∗. 

Simulation studies in this chapter are performed in R program version 3.5.1 to numerically solve the 

optimal design problem. The maxBFGS built-in function from the maxLik package (Henningsen and 

Toomet, 2011) is used for calculating the MLEs of the model parameters. The maxBFGS function 

applies quasi-Newton algorithms to estimate the minimum/maximum for the objective function 

(Henningsen and Toomet, 2011). Moreover, the data generation, the progressive algorithm, and the 

golden section search method are manually programmed along with functions and loops. 

The program for finding the optimal value under different sets of initial values is computationally 

intensive. Thus, it is vital to speed up these intensive computations using high performance computing. 

The simulation steps are performed utilising the Iridis4 and Iridis5 facilities on the University of 

Southampton high performance computing facility. The array jobs are submitted to Iridis4 using PBS 

commands and for Iridis5 using SLURM commands for execution. The batch file on Iridis runs the 

script of R using the command (R CMD BATCH) according to a variable set of initial values for varied 

cases. The output contains two files: the first file contains the results, which are saved as a word 

document file using the “rtf” package (Michael E. S., 2021) in R. The second file is the output file which 

resembles the console screen of R and includes the code with its execution results and any relevant 

program’ messages. The batch files are run in serial on Iridis4 and in both serial and parallel on Iridis5 

to run more cases simultaneously and get the results faster. 

5.3.2 Numerical Results and Concluding Remarks 

For an illustration of the results of the optimal design problem, a numerical study based on a selected 

set of the initial values: 𝑛, FP, 𝜃1, 𝜃2, α and several censoring schemes has been conducted. The results 

are reported in this section and in the Appendix B. The R codes and Iridis commands are available upon 

request. 

The observed sample under SSALT is obtained from the complete sample based on the following               

4 censoring schemes: 
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PSC1: The first PCS, when (𝑛 − 𝑟) items are removed from the test at the time of the first failure. This 

scheme is the reverse of Type-II censoring scheme. 

ℛ1 = ((𝑛 − 𝑟) , 0∗(𝑟−1)) 

PSC2: The second PCS, where several items are removed at multiple consecutive times of the failure 

occurrence in the middle of the test.  

ℛ2 =

{
(0

∗(
(𝑟−z)

2
)
 , 𝑅𝑖 =

(𝑛−𝑟)

z
 , 0

∗(
(𝑟−z)

2
)
) , where: 𝑖 = ((𝑟−z)

2
+ 1) ,… , (

(𝑟−z)

2
+ z)                        if 𝑧 is even

(0
∗(
(𝑟−z−1)

2
)
  , 𝑅𝑖 =

(𝑛−𝑟)

z
, 0
∗(
(𝑟−z−1)

2
+1)
) , where: 𝑖 = ((𝑟−z+1)

2
+ 1) ,… , (

(𝑟−z+1)

2
+ z)    if 𝑧 is odd 

  

where 𝑧 is the number of failures that the censored items are removed from the test at their occurrence. 

PSC3: The third PCS, where a single item is randomly removed after each failure in the middle interval 

of the test.  

ℛ3 = (0
∗(
2r−𝑛
2

)
 , 1∗(𝑛−𝑟), 0

∗(
2r−𝑛
2

)
) 

PSC4: The fourth PCS, in which (𝑛 − 𝑟) items survive at the end of the test. This scheme is Type-II 

censoring scheme. 

ℛ4 = (0∗(𝑟−1), (𝑛 − 𝑟)).  

The program for plotting the relationship between the stress change time 𝜏 and 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) has been 

executed multiple times for various combinations of initial values, such as 𝑛, the FP, the model 

parameters and the 4 censoring schemes PSC1- PSC4. The phase of graphically determining the 

relationship between 𝜏 and 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) is the starting stage of investigating the optimal stress change 

time. The plots are used to determine the interval that includes the value of 𝜏∗ that results in the minimal 

value of 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). This interval is used as the search interval [𝑠𝐿 , 𝑠𝑈] in the golden section search 

method, as discussed in Section 5.3.1.  

Figure 5.2 describes the 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) of the GED as a function of 𝜏. The model parameters 𝜃1 = 0.6, 

𝜃2 = 0.3 and 𝛼 = 1.2 are assumed. The 3 censoring schemes PSC1- PSC3 are used to study the 

relationship between 𝜏 and 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)). The PCSs for different combinations of 𝑛 and FP are 

described as follows 
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𝑛 𝐹𝑃 𝑟 ℛ1 ℛ2 ℛ3 

40 60% 24 (16 , 0∗23) (0∗10, 4∗4, 0∗10) (0∗4, 1∗16, 0∗4) 

40 80% 32 (8 , 0∗31) (0∗14, 2∗4, 0∗14) (0∗12, 1∗8, 0∗12) 

60 60% 36 (24 , 0∗35) (0∗15, 4∗6, 0∗15) (0∗6, 1∗24, 0∗6) 

60 80% 48 (12 , 0∗47) (0∗22, 3∗4, 0∗22) (0∗18, 1∗12, 0∗18) 

80 60% 48 (32 , 0∗47) (0∗20, 4∗8, 0∗20) (0∗8, 1∗32, 0∗8) 

80 80% 64 (16 , 0∗63) (0∗30, 4∗4, 0∗30) (0∗24, 1∗16, 0∗24) 

By applying steps 1 to 7 of the algorithm for estimating 𝜏∗ in Section 5.3.1.1, we obtained a plot of 𝜏 

with its corresponding 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) as illustrated in Figure 5.2.

From Figure 5.2, it can be seen that for all cases, the value of 𝜏∗ that corresponds to the minimal value 

of 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) is in the interval [0.5, 1.5]. However, it is obvious that for 0.3 < 𝜏 < 1, there is only 

PCS-3 

PCS-1 

PCS-2 

Figure 5.2 Plot of time 𝜏 vs. 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) for three censoring schemes and different combinations 

of 𝑛, 𝑟 and FP. 
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a slight change in 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)). That may be because changing the stress change time in this interval 

has a small effect on the number of failures at the lower and higher stress levels. Therefore, the amount 

of information gained from the experiment regarding both stress levels will be stable. Consequently, this 

reduces the impact on the 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)). 

Before studying the optimal 𝜏∗ under different sets of initial values, let us investigate the behaviour of 

the optimal 𝜏∗ sample. Steps 1 to 8 of the simulation algorithm described in Section 5.3.1.1 are 

implemented to generate a sample of 500 optimal 𝜏∗. Figure 5.3 presents a histogram, the kernel density 

estimates and a boxplot of a sample of 500 optimal 𝜏∗ under two values of 𝑛 = 20,60 with FP= 80%. 

The initial values of the model parameters are 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and the items are censored 

in the middle of the test. 

 

Figure 5.3 Density plot and boxplot of optimal 𝜏∗. 

It can be seen that for the small sample size 𝑛 = 20, the optimal 𝜏∗ is right skewed with outliers. For 

𝑛 = 20, the mean of the 𝜏∗ sample= 0.7761 and the median= 0.6939. On the other hand, for 𝑛 = 60, 

the mean = 0.8709 and the median= 0.8666. However, as would be seen later from the simulation 

results under different values, the optimal 𝜏∗ sample is skewed only for a few cases, such as when        

𝑛 ≤ 40. Thus, the optimal 𝜏∗ median is obtained because it is more robust and less sensitive to the 

skewness of the distribution and the existence of outliers. 
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Moreover, a sample of the MLE of the percentile 𝑡0.5(𝑥0) is calculated at the optimal 𝜏∗ to understand 

the behaviour of �̂�0.5. The steps 1 to 4 of the simulation algorithm described in Section 5.3.1.1 are 

implemented to generate a sample of 3000 MLE �̂�0.5(𝑥0) at the optimal 𝜏∗ value. The parameter values 

are assumed to be 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2. The simulation study is done for 𝑛 = 100 with 40% 

observed failures and the data are censored in the middle of the test based on PCS2. Figure 5.4 shows 

the kernel density estimates and the boxplot of �̂�0.5(𝑥0) of the GED under SSALT based on Type-II 

progressive censored data. 

 

Figure 5.4 Density plot and boxplot of �̂�0.5(𝑥0). 

It can be seen from Figure 5.4 that the distribution of �̂�0.5(𝑥0)  is right skewed with outliers. However, 

outliers occur in only a few cases. The density curve is right skewed because the data follows the GED 

which is a skewed distribution. 

Multiple sets of the model parameters, 𝑛, FP and censoring schemes are examined to investigate the 

impact of changing them on the optimal 𝜏∗. Simulation results are presented in Tables B.1 – B.9 in 

Appendix B. These tables present 4 measures, which are the mean, the median, the minimum and the 

maximum of both the optimal 𝜏∗ and 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). 
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To study the impact of the sample size, 𝑛 = (20,40,60,80,100,150,200) is considered with 80% of 

items observed under the test. Also, 4 schemes PSC1 - PSC4 of removing censored items from the test 

are suggested. The parameter values are assumed to be 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2. The results are 

presented in Figure 5.5 – Figure 5.7 and are presented in Tables B.1 – B.5 in Appendix B.  

The purpose of the following plot is to show the impact of censoring items in the middle of the test, 

based on PSC2 and PSC3, on the optimal 𝜏∗. Figure 5.5 shows the boxplot of optimal 𝜏∗ for two 

censoring scenarios in which items are removed in the middle of the test based on PSC2 and PSC3. 

 

Figure 5.5 Boxplot of optimal 𝜏∗ vs. sample size stratified by 𝓅, for two censoring schemes. 

From Tables B.1, B.2 and B.3, both censoring schemes have the same impact on the results i.e. both 

schemes result in essentially the same average values of 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). Thus, none of the two scenarios 

is preferable to the other, and the choice between the two schemes is dependent on the experimenter’s 

point of view. From one point of view, PSC3 allows items to be censored early in the test. As a result, 

these items are probably more reliable as they are run for a shorter time under the test, and they can be 

reused in another experiment for another purpose, or their components could be recycled or reused.       

On the other hand, if it is not desirable to remove items frequently, the experimenter may remove several 

items at once based on PSC2. However, from Tables B.1, B.2 and B.3, it can be noticed that the mean 

and the median of the optimal 𝜏∗ slightly decrease in most cases when items are removed based on PSC3. 

Figure 5.6 presents the boxplot of optimal 𝜏∗ for 5𝑡ℎ, 50𝑡ℎ and 95𝑡ℎ percentiles, under 3 censoring 

schemes PSC1, PSC2 and PSC4. 
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Figure 5.6 and Tables B.1, B.2 and B.3, show that as 𝑛  increases, the mean and median of the optimal 

stress change time also increases just for 𝑛 < 60. However, the mean and median of optimal 𝜏∗ are more 

stable as 𝑛 increases; 𝑛 ≥ 60. Also, the optimal 𝜏∗ variability is modest when the objective of the V-

optimality is to minimize the 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)). In addition, SSALTs based on PSC1 and PSC2 censoring 

schemes require almost the same duration of hold time under 𝑥1 to get the minimum 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). 

Figure 5.6 Boxplot of optimal 𝜏∗ vs. sample size stratified by 𝓅 for three censoring schemes. 

PSC4 

PSC2 

PSC1 
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Furthermore, that the optimal 𝜏∗ is smaller if estimating 𝑡0.05(𝑥0) under the SSALTs is of interest. This 

means it is not required to run the experiment under a low stress level for a long time. As a result, the 

stress level could be increased faster, and the total time of the experiment would be reduced. On the 

other hand, if estimating 𝑡0.5(𝑥0) or 𝑡0.95(𝑥0) of the GED under the SSALTs is of interest, then, the 

experiment must run longer under 𝑥1 to get the most precise estimate of the percentile with the smallest 

value of 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). In fact, increasing the value of 𝓅, results in increasing the value of optimal 

change time. This may be because as 𝓅 increases, more failure information is required under 𝑥1 

regarding to the right tail of the distribution curve. 

Figure 5.7 shows the impact of the sample size on 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) that corresponds to the optimal 𝜏∗ 

under three censoring schemes. The value of the 𝐴𝑉𝑎𝑟 decreases, and its range slightly decreases as 𝑛 

increases (see Tables B.1 - B.5 in Appendix B). Obviously, increasing 𝑛 yields more information about 

the data, which probably increases the precision of estimation 𝑡𝓅(𝑥0). In particular, as 𝑛 increases, 

𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) → 0. In addition, it can be concluded that the time of removing the items from the test 

has no obvious effect on 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). Thus, increasing 𝑛 reduces the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) regardless of 

which censoring scheme is implemented from the given three schemes PSC1, PSC2 and PSC4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) and ln (𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0))) vs. sample size stratified by 𝓅 for three censoring schemes. 
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The standard error of the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) is presented in Tables B.4 and B.5 in Appendix B to assess the 

precision of the estimated 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). The standard error of the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) are decreasing as 

the sample size increases for estimating the 5𝑡ℎ, 50𝑡ℎ and 95𝑡ℎ  percentile. The standard error as a 

percentage of the estimated 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) is less than 0.08 for all cases. The estimated 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) 

values are precise for 𝑛 ≥ 40 as the percentage the standard errors as a percentage of the estimated value 

are generally small < 0.022. When the sample size is small 𝑛 = 20, the standard error percentage            

= 0.087. Thus, the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) is precisely estimated, consequently, the optimal values of the stress 

change time are precisely estimated and the precision of the optimal 𝜏∗ is improved when the sample 

size increases. 

After studying the impact of increasing 𝑛, the impact of the observed sample size is of interest. The FP 

determines the number 𝑟 of failures under the test. The value of 𝑛 = 40, 100 with the FP ranged between 

20 and 100 with increments of 20 is assumed. The parameter values are assumed to be 𝜃1 = 0.6,         

𝜃2 = 0.3, 𝛼 = 1.2 and the data are censored in the middle of the test based on PCS2. Figure 5.8 

illustrates the relationship between the FP and optimal 𝜏∗. For more details, the results are tabulated in 

Table B.6 in Appendix B. 

 

Figure 5.8 Boxplot of optimal 𝜏∗ vs. FP stratified by 𝓅 for 𝑛 = 40,100. 

As shown in Figure 5.8, for 𝑛 = 40, the optimal 𝜏∗ increases as the FP increases. However, that the 

optimal 𝜏∗ only slightly increases if estimating 𝑡0.05(𝑥0) under the SSALTs is of interest. From Table 

B.6, it can be seen that the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) is slightly changed with increasing FP, except for 20% FP, 

especially when 𝓅 = 0.05. So, 𝐹𝑃 = 40% does not remarkably increase the value of 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)), 

whilst it reduces the cost of the experiment by censoring 60% of the items from the test. The impact of 

the FP on the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) is illustrated in Figure 5.9. If estimating 𝑡0.05(𝑥0) of the GED under the 

SSALTs is of interest, the impact of 𝐹𝑃 = 40% on 𝐴𝑉𝑎𝑟(�̂�0.05(𝑥0)) is the same as the impact of the 

𝑛 = 100 𝑛 = 40 
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complete sample, with no censoring, on 𝐴𝑉𝑎𝑟(�̂�0.05(𝑥0)). In this situation, to reduce the cost of the 

SSALT, FP= 40% is better to be suggested than FP= 100% of the complete sample case. 

It is concluded that, under a specific censoring scheme, the precision of �̂�𝓅(𝑥0) may be improved by 

increasing either the sample size or the FP. 

 

 

 

 

 

 

 

 

 

 

One of the interesting questions is “What is the impact of changing the censoring scheme on the optimal 

𝜏∗? “. So, Table 5.1 – Table 5.3 represent the optimal 𝜏∗ and its corresponding 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) for 

5𝑡ℎ, 50𝑡ℎ and 95𝑡ℎ percentiles under 10 various censoring schemes. The simulation study is done for                      

𝑛 = 20, 40 ,60 with 60% observed failures and the model parameters 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 are 

assumed. 

What is interesting to note from Table 5.1 – Table 5.3 is that, as the censoring time shifts to the end of 

the test, the optimal 𝜏∗ decreases, and the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) increases, except for a few cases where items 

are censored at the beginning of the test. Similarly, the optimal 𝜏∗ decreases and the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) 

increases as items are censored at both the beginning and end of the test. These results hold whether 
(𝑛−𝑟)

2
 items are censored after the first failure and (𝑛−𝑟)

2
 items are censored after the last failure, or if 

(𝑛−𝑟)

2
 items are censored one by one after the first 𝑟

3
 failures and (𝑛−𝑟)

2
 items are censored one by one 

after the last 𝑟
3
 failures. 

It is concluded that as several items are censored at the end of the test, the optimal 𝜏∗ decreases as the 

more reliable items are removed. However, the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) increases because of the lack of 

information regarding the upper tail of the distribution under SSALT. This conclusion holds in all cases 

where either all items or a number of censored items are removed at the end of the test.  

Figure 5.9 ln (𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) ) vs. FP stratified by 𝓅. 
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Table 5.1 The impact of changing the censoring scheme on optimal 𝜏∗ and its corresponding 

𝐴𝑉𝑎𝑟(�̂�0.05(𝑥0)) when FP=60%, and 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2. 

 

 Optimal 𝝉∗ 𝑨𝑽𝒂𝒓(�̂�𝟎.𝟎𝟓(𝒙𝟎)) 

𝒏 𝒓 𝓡 Mean Median Min Max Mean Median Min Max 

20 12 

(8, 0∗11) 0.4328 0.4321 0.2060 0.6328 0.0041 0.0040 0.0037 0.0046 

(0∗5, 8, 0∗6) 0.3986 0.3820 0.2264 0.7151 0.0038 0.0034 0.0032 0.0187 

(0∗11, 8) 0.3281 0.2812 0.2117 0.7921 0.0065 0.0036 0.0031 0.0536 

(4, 0∗10, 4) 0.3373 0.3179 0.2218 0.8055 0.0044 0.0038 0.0033 0.0216 

(0∗2, 4, 0∗6, 4, 0∗2) 0.3531 0.3334 0.2353 0.8334 0.0039 0.0034 0.0031 0.0141 

(1∗8, 0∗4) 0.3889 0.3755 0.2667 0.7312 0.0036 0.0035 0.0032 0.0055 

(0∗2, 1∗8, 0∗2) 0.3768 0.3606 0.2413 0.9196 0.0042 0.0035 0.0031 0.0196 

(0∗4, 1∗8) 0.3252 0.3082 0.2258 0.9421 0.0047 0.0036 0.0031 0.0452 

(1∗4, 0∗4, 1∗4) 0.3712 0.3413 0.2450 1.2249 0.0051 0.0036 0.0032 0.0452 

(0, 1∗4, 0∗2, 1∗4, 0) 0.3849 0.3375 0.2390 0.9413 0.0046 0.0035 0.0032 0.0288 

40 24 

(16, 0∗23) 0.5974 0.5906 0.3750 0.7671 0.0019 0.0019 0.0018 0.0020 

(0∗11, 16, 0∗12) 0.4521 0.4545 0.3082 0.5816 0.0015 0.0015 0.0014 0.0016 

(0∗23, 16) 0.3598 0.3351 0.2654 0.8529 0.0033 0.0017 0.0016 0.0446 

(8, 0∗22, 8) 0.4183 0.4189 0.2662 0.7786 0.0019 0.0018 0.0017 0.0085 

(0∗5, 8, 0∗12, 8, 0∗5) 0.4188 0.4073 0.2927 0.7906 0.0016 0.0016 0.0015 0.0027 

(1∗16, 0∗8) 0.4944 0.4838 0.3472 0.6657 0.0016 0.0015 0.0015 0.0017 

(0∗4, 1∗16, 0∗4) 0.4230 0.4161 0.3082 0.5501 0.0015 0.0015 0.0015 0.0017 

(0∗8, 1∗16) 0.3749 0.3702 0.2631 0.5345 0.0016 0.0016 0.0015 0.0018 

(1∗8, 0∗8, 1∗8) 0.4050 0.3927 0.2826 0.9259 0.0018 0.0016 0.0016 0.0122 

(0∗2, 1∗8, 0∗4, 1∗8, 0∗2) 0.4189 0.4159 0.2974 0.7679 0.0016 0.0016 0.0015 0.0027 

60 36 

(24, 0∗35) 0.6158 0.6260 0.4772 0.9003 0.0012 0.0012 0.0011 0.0012 

(0∗17, 24, 0∗18) 0.4591 0.4674 0.3082 0.6973 0.0009 0.0009 0.0008 0.0010 

(0∗35, 24) 0.3876 0.3532 0.2505 0.9418 0.0032 0.0010 0.0010 0.0392 

(12, 0∗34, 12) 0.4339 0.4321 0.3081 0.5501 0.0011 0.0011 0.0010 0.0012 

(0∗9, 12, 0∗16, 12, 0∗9) 0.4385 0.4443 0.305 0.6606 0.0009 0.0009 0.0009 0.0010 

(1∗24, 0∗12) 0.5176 0.4870 0.3082 0.7665 0.0009 0.0009 0.0009 0.0010 

(0∗6, 1∗24, 0∗6) 0.4518 0.4321 0.3021 0.6583 0.0009 0.0009 0.0009 0.0010 

(0∗12, 1∗24) 0.3839 0.3746 0.2668 0.7320 0.0010 0.0009 0.0009 0.0017 

(1∗12, 0∗12, 1∗12) 0.4240 0.4291 0.3096 0.5501 0.0010 0.0010 0.0009 0.0011 

(0∗3, 1∗12, 0∗6, 1∗12, 0∗3) 0.4337 0.4320 0.3021 0.5561 0.0009 0.0009 0.0009 0.0010 
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Table 5.2 The impact of changing the censoring scheme on optimal 𝜏∗ and its corresponding 

𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) when FP=60%, and 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2. 

 

 Optimal 𝝉∗ 𝑨𝑽𝒂𝒓(�̂�𝟎.𝟓(𝒙𝟎)) 

𝒏 𝒓 𝓡 Mean Median Min Max Mean Median Min Max 

20 12 

(8, 0∗11) 0.6172 0.6212 0.3750 0.9416 0.2638 0.2627 0.2325 0.3462 

(0∗5, 8, 0∗6) 0.5052 0.5021 0.3750 0.6583 0.2422 0.2411 0.2261 0.2801 

(0∗11, 8) 0.3264 0.3084 0.2257 0.6583 0.2834 0.2478 0.2274 1.2323 

(4, 0∗10, 4) 0.3959 0.3839 0.2404 0.7427 0.2759 0.2580 0.2377 0.6728 

(0∗2, 4, 0∗6, 4, 0∗2) 0.4174 0.4261 0.2361 0.7094 0.2600 0.2520 0.2264 0.4350 

(1∗8, 0∗4) 0.5612 0.5501 0.3337 0.9416 0.2662 0.2499 0.2238 0.5032 

(0∗2, 1∗8, 0∗2) 0.4610 0.4776 0.2924 0.7409 0.2655 0.2579 0.2288 0.4389 

(0∗4, 1∗8) 0.3863 0.3750 0.2255 0.8483 0.2998 0.2547 0.2366 1.3931 

(1∗4, 0∗4, 1∗4) 0.3807 0.3641 0.2413 0.7920 0.2650 0.2531 0.2392 0.6634 

(0, 1∗4, 0∗2, 1∗4, 0) 0.4119 0.3878 0.2668 0.8589 0.2733 0.2486 0.2312 0.8765 

40 24 

(16, 0∗23) 0.8304 0.8347 0.7642 1.1167 0.1036 0.1016 0.0960 0.1356 

(0∗11, 16, 0∗12) 0.7217 0.7252 0.4871 0.9416 0.1119 0.1100 0.1025 0.1578 

(0∗23, 16) 0.4089 0.4024 0.3495 0.5246 0.1544 0.1401 0.1304 1.5972 

(8, 0∗22, 8) 0.5552 0.5501 0.4419 0.6592 0.1343 0.1227 0.1072 0.2975 

(0∗5, 8, 0∗12, 8, 0∗5) 0.6473 0.6582 0.4953 0.7665 0.1174 0.1156 0.1071 0.1510 

(1∗16, 0∗8) 0.7746 0.7672 0.6528 1.0085 0.1054 0.1047 0.0991 0.1215 

(0∗4, 1∗16, 0∗4) 0.6559 0.6510 0.5599 0.7667 0.1110 0.1100 0.1022 0.1414 

(0∗8, 1∗16) 0.5257 0.5295 0.4419 0.6012 0.1254 0.1181 0.1072 0.4257 

(1∗8, 0∗8, 1∗8) 0.5841 0.5914 0.4675 0.6996 0.1239 0.1209 0.1092 0.1633 

(0∗2, 1∗8, 0∗4, 1∗8, 0∗2) 0.6379 0.6349 0.5501 0.7665 0.1162 0.1148 0.1070 0.1391 

60 36 

(24, 0∗35) 0.9811 0.9850 0.7665 1.1167 0.0586 0.0584 0.0550 0.0658 

(0∗17, 24, 0∗18) 0.8129 0.8176 0.6328 0.9737 0.0656 0.0651 0.0616 0.0770 

(0∗35, 24) 0.4324 0.4332 0.3509 0.5185 0.0662 0.0792 0.0707 0.2345 

(12, 0∗34, 12) 0.5773 0.5829 0.4832 0.6592 0.0724 0.0684 0.0626 0.1595 

(0∗9, 12, 0∗16, 12, 0∗9) 0.7193 0.7168 0.5501 0.8334 0.0648 0.0647 0.0587 0.0723 

(1∗24, 0∗12) 0.8097 0.8055 0.6569 0.9514 0.0623 0.0623 0.0580 0.0674 

(0∗6, 1∗24, 0∗6) 0.7202 0.7153 0.6071 0.8328 0.0650 0.0648 0.0619 0.0729 

(0∗12, 1∗24) 0.5592 0.5561 0.4773 0.6583 0.0687 0.0680 0.0645 0.0953 

(1∗12, 0∗12, 1∗12) 0.6220 0.6238 0.5381 0.6945 0.0689 0.0672 0.0633 0.1348 

(0∗3, 1∗12, 0∗6, 1∗12, 0∗3) 0.6807 0.6837 0.5766 0.7679 0.0657 0.0656 0.0608 0.0722 
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Table 5.3 The impact of changing the censoring scheme on optimal 𝜏∗ and its corresponding 

𝐴𝑉𝑎𝑟(�̂�0.95(𝑥0)) when FP=60%, and 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2. 

 

 Optimal 𝝉∗ 𝑨𝑽𝒂𝒓(�̂�𝟎.𝟗𝟓(𝒙𝟎)) 

𝒏 𝒓 𝓡 Mean Median Min Max Mean Median Min Max 

20 12 

(8, 0∗11) 0.6746 0.6692 0.2254 1.0085 6.2699 6.3073 5.0220 7.2551 

(0∗5, 8, 0∗6) 0.4962 0.5060 0.2191 0.7832 6.2773 6.2000 5.7703 8.2750 

(0∗11, 8) 0.1616 0.1263 0.1013 0.5430 4.4938 4.1028 3.5148 12.0111 

(4, 0∗10, 4) 0.3378 0.3300 0.2111 0.6606 5.9219 5.7483 4.9540 12.2591 

(0∗2, 4, 0∗6, 4, 0∗2) 0.3476 0.3082 0.2157 0.9259 6.1516 5.9623 5.2415 12.8614 

(1∗8, 0∗4) 0.5477 0.5513 0.2413 0.8431 6.3360 6.2984 5.7069 7.3004 

(0∗2, 1∗8, 0∗2) 0.4347 0.4230 0.2418 0.7665 6.3941 6.2794 5.8502 8.0077 

(0∗4, 1∗8) 0.1907 0.1366 0.1034 0.6427 5.0562 4.6462 3.9332 12.6422 

(1∗4, 0∗4, 1∗4) 0.2320 0.1568 0.1054 0.5201 5.2408 4.6801 3.9120 12.4179 

(0, 1∗4, 0∗2, 1∗4, 0) 0.2826 0.1568 0.1034 0.6564 5.2013 4.3391 3.9786 11.5821 

40 24 

(16, 0∗23) 0.9744 0.9784 0.7798 1.1008 2.2630 2.2317 2.0258 2.8711 

(0∗11, 16, 0∗12) 0.8408 0.8502 0.5256 1.0394 2.7560 2.7059 2.4046 3.5990 

(0∗23, 16) 0.4389 0.4444 0.3596 0.5580 3.9818 3.7211 3.3303 7.1570 

(8, 0∗22, 8) 0.5887 0.5818 0.4588 0.7007 3.2518 3.0956 2.7208 4.9375 

(0∗5, 8, 0∗12, 8, 0∗5) 0.7348 0.7261 0.6267 0.9393 2.7810 2.7122 2.4167 3.8198 

(1∗16, 0∗8) 0.8548 0.8522 0.6583 1.0085 2.5047 2.4703 2.3214 2.9223 

(0∗4, 1∗16, 0∗4) 0.7273 0.7124 0.5849 0.9416 2.7526 2.7238 2.3479 3.3596 

(0∗8, 1∗16) 0.5735 0.5758 0.4832 0.6583 3.0460 2.9693 2.6660 5.2682 

(1∗8, 0∗8, 1∗8) 0.6235 0.6193 0.5167 0.7811 3.0350 2.8921 2.5971 5.0669 

(0∗2, 1∗8, 0∗4, 1∗8, 0∗2) 0.6887 0.6772 0.5904 0.8334 2.7340 2.7194 2.4390 3.2460 

60 36 

(24, 0∗35) 1.0315 1.0356 0.8640 1.1583 1.2364 1.2297 1.1655 1.4954 

(0∗17, 24, 0∗18) 0.8902 0.8862 0.7214 1.0629 1.5090 1.5032 1.3882 1.7107 

(0∗35, 24) 0.4493 0.4464 0.4006 0.5088 1.9672 1.9571 1.7909 2.2383 

(12, 0∗34, 12) 0.6110 0.6165 0.5203 0.6861 1.6062 1.5867 1.4624 1.9975 

(0∗9, 12, 0∗16, 12, 0∗9) 0.7837 0.7800 0.6491 0.9417 1.4486 1.4339 1.3387 1.6693 

(1∗24, 0∗12) 0.9123 0.9081 0.7604 1.1167 1.3940 1.3867 1.3246 1.4956 

(0∗6, 1∗24, 0∗6) 0.7956 0.8000 0.6425 0.9516 1.4785 1.4712 1.4064 1.6303 

(0∗12, 1∗24) 0.6185 0.6194 0.5256 0.6819 1.6046 1.5722 1.4594 2.2917 

(1∗12, 0∗12, 1∗12) 0.6725 0.6740 0.5725 0.7790 1.5831 1.5255 1.3846 2.3705 

(0∗3, 1∗12, 0∗6, 1∗12, 0∗3) 0.7225 0.7252 0.6486 0.8334 1.4788 1.4657 1.3733 1.6473 
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Next, the effect of changing 𝜃1 and 𝜃2 on the optimal 𝜏∗ is studied. The fixed initial values of 𝑛 = 80 

with FP= 80% are assumed. The censored items are removed at the middle points of the test, subject to 

the censoring scheme ℛ = (0∗30, 4∗4, 0∗30). Also, 𝛼 = 1.2 is assumed. In the case of testing the impact 

of 𝜃1, 𝜃2 = 0.3 is assumed and 𝜃1 is tested for the values 𝜃1 = 0.6, 0.8, 1.0, 1.2, 1.5, 1.8, 2.0, 2.5 . On 

the other hand, in the case of testing the impact of 𝜃2, 𝜃1 = 0.6 is assumed and 𝜃2 is tested for the values 

𝜃2 = 0.1, 0.2, 0.3, 0.4, 0.5.  

The results are presented in Figure 5.10 and Figure 5.11 and in Tables B.7 and B.8 in Appendix B. 

Figure 5.10 shows the value of the optimal 𝜏∗ as a function of 𝜃1 and 𝜃2 for three different percentiles 

of interest: 5𝑡ℎ , 50𝑡ℎ and 95𝑡ℎ. From Figure 5.10 and Tables B.7 and B.8, it is obvious that the value of 

𝜃1 has a noticeable effect on the optimal 𝜏∗. For estimating the 5𝑡ℎ, 50𝑡ℎ and 95𝑡ℎ  percentile, it is 

observed that as 𝜃1 increases, the estimated optimal 𝜏∗ and the optimal 𝜏∗ sample range are gradually 

increasing. In contrast, 𝜃2 has a negligible effect on the optimal 𝜏∗. This result may relate to the 

conclusion obtained from Section 4.6.2 that the number of failures in each stress level only slightly 

impacts the estimate of 𝜃2. So, changing 𝜃2 does not require changing the value of 𝜏 to get the most 

precise estimate of 𝜃2. 

The scale parameter represents the characteristic life of a test unit under any stress level (Nelson 1990). 

The scale parameter has a  negative relationship with the stress level. So, as 𝜃1 increases, the stress level 

decreases and becomes closer to the usage stress level. Therefore, the items take a longer time to fail. 

As a result, the stress change time 𝜏 should be increased when 𝜃1 increases to get a large number of 

failures at a low stress level. 

Regarding the impact of changing 𝜃1 and 𝜃2 on 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) calculated at the optimal 𝜏∗, Figure 5.11 

shows ln (𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) ) versus 𝜃1 and 𝜃2. The impact of increasing the value of 𝜃1 and 𝜃2 on the 

value of 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) is the same for the three percentile values. 

Figure 5.10 Boxplot of optimal 𝜏∗ vs. scale parameters 𝜃1 and 𝜃2 stratified by 𝓅. 
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Figure 5.11 ln (𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) ) vs. 𝜃1 and 𝜃2 stratified by 𝓅. 

For a fixed value of 𝜃2 = 0.3, the value of 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) increases, and its range slightly increases as 

𝜃1 is increasing; see Tables B.7 and B.8 in Appendix B: 

𝐴𝑉𝑎𝑟(�̂�𝓅(𝑥0)|𝜃1 = 0.6) < 𝐴𝑉𝑎𝑟(�̂�𝓅(𝑥0)|𝜃1 = 0.8) < ⋯ < 𝐴𝑉𝑎𝑟(�̂�𝓅(𝑥0)|𝜃1 = 2.5). 

This increase in 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) may be due to increasing the difference between 𝜃1 and 𝜃2, which 

indicates increasing the difference between lower and higher stress levels. 

On the other hand, for a fixed value of 𝜃1 = 0.6, the value of 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) decreases, and its range 

slightly decreases as 𝜃2 increases:  

𝐴𝑉𝑎𝑟(�̂�𝓅(𝑥0)|𝜃2 = 0.1) > 𝐴𝑉𝑎𝑟(�̂�𝓅(𝑥0)|𝜃2 = 0.2) > ⋯ > 𝐴𝑉𝑎𝑟(�̂�𝓅(𝑥0)|𝜃2 = 0.5). 

For both 𝜃1 and 𝜃2, the increasing of 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) and its range is greater as 𝓅 increases.  

𝐴𝑉𝑎𝑟(�̂�0.95(𝑥0)) > 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) > 𝐴𝑉𝑎𝑟(�̂�0.05(𝑥0)) . 

From these results, the question of the impact of changing 𝜃1 and 𝜃2 on the optimal 𝜏∗ is of interest. As 

the scale parameters have a log-linear relationship with the stress level, so the impact of their values is 

of interest. The following table includes the results of studying the impact of different sets of scale 

parameters to study their effects on optimal 𝜏∗. The simulation study is done for 𝑛 = 80 with 80% 

observed failures and the censoring scheme ℛ = (0∗30, 4∗4, 0∗30). Also, 𝛼 = 1.2 is assumed. 
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Table 5.4 The impact of changing 𝜃1 and 𝜃2 on optimal 𝜏∗ and its corresponding 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) 

for 100𝓅𝑡ℎpercentile when 𝑛 = 80, FP=80%, ℛ = (0∗30, 4∗4, 0∗30) at 𝛼 = 1.2 

 Optimal 𝝉∗ 𝑨𝑽𝒂𝒓(�̂�𝓹(𝒙𝟎)) 

𝓹 𝜽𝟏 𝜽𝟐 𝜽𝟐 𝜽𝟏⁄  Mean Median Min Max Mean Median Min Max 

0.05 

0.5 0.4 0.8 0.5347 0.5411 0.3927 0.7151 0.0002 0.0002 0.0002 0.0002 

0.6 0.3 0.5 0.5806 0.5533 0.3980 0.9493 0.0006 0.0006 0.0005 0.0007 

0.7 0.2 0.29 0.6630 0.6720 0.4447 0.9493 0.0014 0.0014 0.0014 0.0015 

0.8 0.7 0.88 0.7762 0.7377 0.5118 1.3506 0.0006 0.0006 0.0006 0.0007 

0.9 0.6 0.67 0.8533 0.8403 0.5472 1.3506 0.0010 0.0010 0.0010 0.0011 

1.0 0.5 0.5 0.8943 0.8816 0.5427 1.3559 0.0017 0.0017 0.0016 0.0018 

1.2 0.8 0.67 1.0643 1.0595 0.6927 1.5986 0.0018 0.0018 0.0017 0.0019 

1.5 0.5 0.33 1.2300 1.2266 0.7013 1.7507 0.0058 0.0058 0.0056 0.0060 

0.50 

0.5 0.4 0.8 0.7628 0.7609 0.5533 0.9493 0.0112 0.0112 0.0106 0.0125 

0.6 0.3 0.5 0.8750 0.8658 0.7013 1.1026 0.0311 0.0310 0.0295 0.0338 

0.7 0.2 0.29 1.0310 1.0345 0.8184 1.1973 0.0749 0.0746 0.0719 0.0795 

0.8 0.7 0.88 1.2085 1.2249 0.9485 1.3870 0.0241 0.0241 0.0222 0.0254 

0.9 0.6 0.67 1.3434 1.3331 1.0248 1.5782 0.0492 0.0492 0.0472 0.0529 

1.0 0.5 0.5 1.4586 1.4536 1.2059 1.7527 0.0863 0.0864 0.0831 0.0901 

1.2 0.8 0.67 1.7692 1.7706 1.4787 2.1965 0.0879 0.0877 0.0828 0.0924 

1.5 0.5 0.33 2.0676 2.0496 1.7097 2.3885 0.2953 0.2946 0.2844 0.3121 

0.95 

0.5 0.4 0.8 0.8851 0.8917 0.7012 1.0440 0.2439 0.2423 0.2336 0.2684 

0.6 0.3 0.5 1.0075 1.0141 0.7918 1.2635 0.6732 0.6733 0.6408 0.7175 

0.7 0.2 0.29 1.1675 1.1665 0.9501 1.3858 1.6135 1.6112 1.5368 1.7109 

0.8 0.7 0.88 1.3732 1.3672 1.0485 1.6124 0.5259 0.5226 0.4983 0.5722 

0.9 0.6 0.67 1.5527 1.5738 1.2855 1.8986 1.0619 1.0621 0.9898 1.1288 

1.0 0.5 0.5 1.7000 1.7003 1.3689 1.9888 1.8664 1.8647 1.7569 1.9721 

1.2 0.8 0.67 2.0461 2.0861 1.6644 2.3239 1.8801 1.8820 1.7974 1.9845 

1.5 0.5 0.33 2.5456 2.5884 2.1249 2.8124 6.3424 6.3357 6.1135 6.6366 

From the above table, it can be noticed that as the difference between the values of 𝜃1 and 𝜃2 increase, 

the value of optimal stress change 𝜏∗ and its corresponding 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) increase for different 

100𝓅𝑡ℎpercentiles. In fact, increasing the difference between 𝜃1 and 𝜃2 indicates increasing the 

difference between the two stress levels under the test. However, for the same ratio of 𝜃1 and 𝜃2, as the 

two values of 𝜃1 and 𝜃2 increase, the value of optimal 𝜏∗ and its corresponding 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) increase. 
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Similar to the effects of changing the scale parameters on the optimal 𝜏∗, the effect of changing the 

shape parameter 𝛼 is presented in Figure 5.12. The set of initial values is assumed as 𝑛 = 80, FP=80%, 

ℛ = (0∗30, 4∗4, 0∗30) with 𝜃1 = 0.6 and 𝜃2 = 0.3. The results are numerically presented in Table B.9 

in Appendix B. 

 

Figure 5.12 Boxplot of optimal 𝜏∗ vs. shape parameter 𝛼 stratified by 𝓅. 

From Figure 5.12 and Table B.9, it can be seen that for 0.6 < 𝛼 ≤ 1.0, the optimal 𝜏∗ that corresponds 

to the minimum 𝐴𝑉𝑎𝑟(�̂�0.05(𝑥0)) slightly decreases. Whereas the optimal 𝜏∗ slightly increases when 

estimating the 50𝑡ℎand 95𝑡ℎpercentile. For 1.0 < 𝛼 ≤ 1.6, the optimal 𝜏∗ is reasonably constant with 

respect to 𝛼. Moreover, when 𝛼 > 1.6, the optimal 𝜏∗ that minimizes 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) is increasing with 

increasing values of 𝛼. From Figure 3.1, it can be seen that the density curve becomes more skewed for 

increasing 𝛼, so the value of the median would increase. Thus, the time under the lower stress level is 

increasing to get a large number of failures. 

The following Figure 5.13 shows the impact of 𝛼 on 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) that corresponds to optimal 𝜏∗. The 

values of 𝐴𝑉𝑎𝑟(�̂�0.05(𝑥0)) and 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) slightly increase as 𝛼 increases. Whereas the 

𝐴𝑉𝑎𝑟(�̂�0.95(𝑥0)) and its range are stable for all different values of 𝛼. In other words, if the objective of 

the V-optimality is to minimize 𝐴𝑉𝑎𝑟(�̂�0.95(𝑥0)), then the choice of the stress change time would not 

affect the precision of �̂�𝓅(𝑥0). 
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Figure 5.13 Variance and ln (𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) ) vs. shape parameter 𝛼 stratified by 𝓅. 

5.3.3 Sensitivity Analysis 

In a SSALT design, estimation of the optimal 𝜏∗ depends on the initial estimates of the model parameters 

𝜃1, 𝜃2 and 𝛼. Incorrect estimation of the model parameters gives a poor estimate of 𝑡𝓅(𝑥0) under the 

GED. A sensitivity analysis is performed to investigate the robustness of the optimal 𝜏∗ to the model 

parameters. Consequently, a parameter that has a large impact on optimal 𝜏∗ must be estimated with 

special care. The importance of the sensitivity analysis is to avoid erroneously estimating the optimal 

𝜏∗. Robustness will be investigated by considering the effect of parameter misspecification. However, 

the proposed SSALTs plan is robust if a small change in 𝜃1, 𝜃2 and 𝛼 has no or small impact on the 

optimal stress change time 𝜏∗. 

From the results in Tables B.1 – B.5 and Figure 5.6, it can be seen that the range of changing 

𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) has become smaller as the sample size increases, whilst the range of optimal 𝜏∗ is 

unchanged. Thus, the optimal 𝜏∗ is robust for all given sample size values except 𝑛 = 20. 

To examine the robustness of the optimal 𝜏∗ against the change of the initial estimates of model 

parameters 𝜃1, 𝜃2 and 𝛼, a sensitivity analysis is performed. For fixed 𝑛 = 80, FP = 80%, 𝛼 = 1.2 and 

the censoring scheme ℛ = (0∗30, 4∗4, 0∗30), the following Figure 5.14 – Figure 5.16 show the result of 

the sensitivity analysis for the model parameters 𝜃1, 𝜃2 and 𝛼. 
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Figure 5.14 Optimal 𝜏∗ vs. changes in 𝜃1, 𝜃2, 𝛼 for 5𝑡ℎ percentile. 

Figure 5.15 Optimal 𝜏∗ vs. changes in 𝜃1, 𝜃2, 𝛼 for 50𝑡ℎ percentile. 
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From Figure 5.14 – Figure 5.16, it is observed that: 

1- The value of 𝜃2 has no impact on the estimate of optimal 𝜏∗. Thus, optimal 𝜏∗ is robust for the value 

of 𝜃2. 

2- For changing the value of 𝛼, the optimal 𝜏∗ becomes more robust for 1 ≤ 𝛼 ≤ 1.5 in the case of 

estimating the 50𝑡ℎ and 95𝑡ℎ percentile. On the other hand, it is obvious that in the case of estimating 

𝑡0.05(𝑥0) the optimal 𝜏∗ is robust for all given range of 0.5 ≤ 𝛼 ≤ 1.5. 

3- The optimal 𝜏∗ is more sensitive to changing the value of 𝜃1 than to changing 𝛼. Noticeably, when 

the objective function is to minimise the 𝐴𝑉𝑎𝑟(�̂�0.05(𝑥0)), the optimal 𝜏∗ is less sensitive to 𝜃1 when 

𝜃1 is close to 𝜃2. This implies that the optimal 𝜏∗ becomes robust when the two stress levels are close.  

These observations indicate that the MLE of 𝜃2 does not affect the value of optimal 𝜏∗. In contrast, 𝜃1 

should be estimated with special care to obtain the precise optimal 𝜏∗ that minimizes the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). 

5.4 Optimal Censoring Scheme 

In the ALT plan, the sample size and FP are usually fixed and can be determined by the experimenter 

based on a budget of the ALT and the availability of the test facilities. However, under progressive 

Type-II censoring, one may wonder when each item should be censored from the test with minimal 

effect on the precision of the parameter estimation. In fact, some questions exist in the design of the 

Figure 5.16 Optimal 𝜏∗ vs. changes in 𝜃1, 𝜃2, 𝛼 for 95𝑡ℎ percentile. 
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ALTs, such as “What is the best scheme to be tested amongst all the various schemes with given sample 

size and failure percentage of items?“. Another question is, “What is the efficiency of the optimal 

censoring scheme ℛ∗ for SSALTs under progressive Type-II censoring schemes compared with the 

basic Type-II censoring scheme and a complete sample situation?”. This part of the thesis is organized 

to answer these questions. However, the issue of determining the optimal ℛ∗ is substantial in designing 

the ALT experiment as there are an enormous number of distinct censoring schemes. For example, given 

the sample size 𝑛 = 20 and the FP = 60% (number of failures 𝑟 = 12), there are 75,582 ways to remove 

data from the test under the progressive Type-II censoring scheme. This number considerably increases 

as the sample size or FP increases. Obviously, different censoring schemes have varying impacts on the 

precision of the MLEs of the model parameters. Therefore, it is crucial to choose the optimal ℛ∗ that 

achieves the purpose of using the progressive Type-II censoring strategy, which aims to reduce the time, 

effort and cost of the ALT. One of the benefits of obtaining the optimal ℛ∗ over all censoring schemes 

for small sample size is that one can do a pilot study with the optimal initials to get the most accurate 

estimates. These estimates will be used as an initial value in the main experiment. So, this results in 

producing the most efficient estimates for the parameters of interest. A detailed test design, including 

determining the optimal stress change time and the optimal ℛ∗, should be designed before conducting 

the ALTs to accurately estimate the reliability measures at the usage stress level. 

Removing items at the beginning of the test is preferable as it guarantees the experimenter will get the 

most reliable products that can be used for other purposes. On the other hand, removing all the items 

after the first failure may lead to a lack of information about the lower or higher stress level, particularly 

with small sample size. Also, removing all censored items at the end of the test may lead to a lack of 

information about the higher stress level. Furthermore, the censored items can be used in many ways, 

such as to examine the mechanism of the product’s internal parts after working for some time, or the 

internal parts can be used as a replacement in other products. Although removing the items early from 

the life test is beneficial in terms of cost, it may reduce the information about the products obtained from 

the experiment. So, determining the optimal ℛ∗ helps the experimenter balance between design 

efficiency, time spent by testing facilities and total test time, which strongly relates to the cost of the 

experiment. Thus, an optimization criterion is used in this thesis to obtain the optimal ℛ∗. The optimal 

censoring scheme is investigated for 100𝓅𝑡ℎpercentiles of the GED lifetime distribution under 

progressive Type-II censoring. In Section 5.4.1, the detailed steps of the numerical analysis are 

presented. Then, extensive simulation studies are carried out in Section 5.4.2 to obtain the optimal ℛ∗ 

and compare different censoring schemes for different sample sizes, FP, 𝜏 and model parameters. Also, 

a comparison between the optimal ℛ∗ and the other schemes will be studied in Section 5.4.2.1 to 

examine the sensitivity of the censoring scheme regarding an erroneous estimate of model parameters 

for small sample size. 
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5.4.1 Simulation Study 

In ALTs based on progressive Type-II censored data, one may wonder when each item should be 

censored from the test with the least impact on the precision of the estimation of the parameters. On the 

other hand, are the optimal values inflexible to choose from, or is there a flexible range of values with 

similar efficiency. Thus, this section focuses on numerically investigating the issue of selecting the 

optimal ℛ∗ that satisfies a considerable decrease in the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) of the GED. The V-optimality 

criterion discussed in Section 5.2 is used.  

The optimization technique minimizes the objective function 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) with respect to every 

possible censoring scheme ℛ = (𝑅1 , 𝑅2 , … 𝑅𝑟). Note that the optimization is a discrete optimization 

issue (Pradhan and Kundu, 2009). Thus, the concept of obtaining the optimal ℛ∗ relies on the selection 

of the best set of censoring schemes ℛ = (𝑅1 , 𝑅2 , … 𝑅𝑟) within all alternative censoring schemes, such 

that: 

∑ 𝑅𝑖
𝑟

𝑖=1
= 𝑛 − 𝑟 

The optimal scheme is the one that minimizes the objective function by providing the maximum 

information about the product from the observed sample. Even though the total number of all possible 

censoring schemes is finite, it might be reasonably numerous, especially with increasing 𝑛 and FP. There 

are (𝑛−1
𝑟−1

) censoring schemes for fixed 𝑛 and a fixed number of failures 𝑟 (Pradhan and Kundu, 2009). 

For example, for 𝑛 = 25 and FP = 60%, there are 1,961,256 different ways to remove data from the 

test under the progressive Type-II censoring scheme. Choosing one of these schemes that minimize the 

objective function 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) is essential. However, this number is considerably large. Thus, it is 

impossible to test and compare the impact of all these schemes as it requires an extremely long time to 

calculate the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) under each of (𝑛−1
𝑟−1

) censoring scheme numerically. Therefore, in this 

thesis, two cases regarding sample size are investigated. In the first case, for large 𝑛 > 20, 11 different 

censoring schemes are suggested, which describe 11 different scenarios of removing the items from the 

ALT. The results and discussion are presented in Section 5.4.2.1. In the second case, all possible 

censoring schemes are tested for small 𝑛 ≤ 20 to obtain the optimal ℛ∗ and compare all schemes with 

the optimal one. The results and discussion are presented in Section 5.4.2.2. 

The 11 different censoring schemes that have been tested in this thesis are given below: 

ℛ1 = ((𝑛 − 𝑟) , 0∗(𝑟−1)),  

where all censored items (𝑛 − 𝑟) are removed at the time of the first failure. This scheme is the reverse 

of the Type-II censoring scheme. In this thesis, this censoring scheme will be called the Rev-TII 

censoring scheme. 
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ℛ2 =

{
 
 

 
 (0

∗(
r

2
)
 , 𝑅

[(
r

2
)+1]

= (𝑛 − 𝑟) , 0
((
r

2
)−1)

) ,                        if 𝑟 is even

(0
∗(
(𝑟−1)

2
)
  , 𝑅

[
(𝑟+1)

2
]
= (𝑛 − 𝑟) , 0

∗(
(𝑟−1)

2
)
) ,                    if 𝑟 is odd  

,  

where all censored items (𝑛 − 𝑟) are removed at the time of the failure occurrence in the middle of the 

test. 

ℛ3 = (0∗(𝑟−1), (𝑛 − 𝑟)), 

where all censored items (𝑛 − 𝑟) are removed from the test at the time of the occurrence of the final 

observed failure. This scheme presents the basic Type-II censoring scheme. 

ℛ4 = {
(𝑅1 =

(𝑛−𝑟)

2
 , 0∗(𝑟−2) , 𝑅r =

(𝑛−𝑟)

2
)                             if 𝑟 is even

(𝑅1 =
(𝑛−𝑟−1)

2
 , 0∗(𝑟−2) , 𝑅r =

(𝑛−𝑟+1)

2
)                     if 𝑟 is odd  

.  

This scheme is the combination of type-II ℛ3 and its opposite ℛ1. Half of censored items (𝑛−𝑟
2
) are 

removed at the time of the first failure and the other half are removed at the end of the test after the last 

failure. This scheme achieves both benefit of reducing the test time with removing the censored items 

while reliability is good. 

ℛ5 = {
(0∗≈𝑞1 , 𝑅𝑟∗25/100 =

(𝑛−𝑟)

2
 , 0∗≈𝑞2 , 𝑅r∗75/100 =

(𝑛−𝑟)

2
 , 0∗≈𝑞1)                  if 𝑟 is even

(0∗≈𝑞1 , 𝑅𝑟∗25/100 =
(𝑛−𝑟−1)

2
 , 0∗≈𝑞2 , 𝑅r∗75/100 =

(𝑛−𝑟+1)

2
 , 0∗≈𝑞1)          if 𝑟 is odd  

, 

where 𝑞1 = (𝑟 − 2) × 25/100 and 𝑞2 = (𝑟 − 2) × 50/100. 

This scheme is like scheme 4, but the two removing times are located after 25% of failures and after 

75% of failures. 

The subsequent 5 censoring schemes ℛ6 −  ℛ10 follow the same scenario as the above 5 schemes ℛ1 −

 ℛ5, but the items are removed one by one instead of removing all items at once. 

ℛ6 = (1∗(𝑛−𝑟) , 0∗(2r−𝑛)). 

ℛ7 = 0
∗(
2r−𝑛

2
)
 , 1∗(𝑛−𝑟), 0

∗(
2r−𝑛

2
)  

ℛ8 = (0∗(2r−𝑛), 1∗(𝑛−𝑟)), 

ℛ9 = {
(1∗

(𝑛−𝑟)

2  , 0∗(2r−𝑛) , 1∗
(𝑛−𝑟)

2 )                             if 𝑟 is even

(1∗
(𝑛−𝑟−1)

2  , 0∗(2r−𝑛) , 1∗
(𝑛−𝑟+1)

2 )                     if 𝑟 is odd  
.  

ℛ10 = {
(0∗≈𝑞1 , 1∗

(𝑛−𝑟)

2  , 0∗≈𝑞2 , 1∗
(𝑛−𝑟)

2  , 0∗≈𝑞1)                if 𝑟 is even

(0∗≈𝑞1 , 1∗
(𝑛−𝑟−1)

2  , 0∗≈𝑞2 , 1∗
(𝑛−𝑟+1)

2  , 0∗≈𝑞1)        if 𝑟 is odd  
.  

where 𝑞1 = (2r − 𝑛) × 25/100 and 𝑞2 = (2r − 𝑛) × 50/100. 
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The last censoring scheme, ℛ11 = (0∗r), is for the complete sample case with no censored items. All 𝑛 

items are observed in the test 𝑛 = 𝑟. 

Obviously, as the observed sample size increases (with reducing FP or increasing 𝑛 or both), the 

precision of the MLE will increase. However, the experiment will be run for a longer time. In fact, both 

𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) and 𝑇 depend on the selected censoring scheme. Therefore, it is required to compare the 

total test time with 𝐴𝑉𝑎𝑟 to determine the proper censoring scheme that balances minimizing the 

precision of the estimator and reducing the total test time. 

A numerical study provided in this section is to investigate the optimal ℛ∗ among ℛ1 − ℛ10 schemes. 

The information obtained under various schemes can be measured by the precision of the MLEs of 

𝑡𝓅(𝑥0) of GED. So, the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) is compared based on the suggested 11 censoring schemes for 

the 5𝑡ℎ, 50𝑡ℎ and 95𝑡ℎ percentile life estimates of GED. Considering the V-optimality criterion, the 

worst censoring scheme corresponding to the maximum 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) is determined. The relative 

efficiency (RE) of the optimal ℛ∗ with respect to the worst censoring scheme, the basic Type-II 

censoring scheme and the complete sample is calculated. In addition, the relative expected time (RT) of 

the expected total test time is also calculated to compare the test time under the optimal ℛ∗ and the other 

censoring schemes. It may be noted that for fixed n and 𝑟, the ℛ3 scheme which is the Type-II censoring 

scheme has the shortest 𝑇 among all schemes considered. In contrast, the ℛ1 scheme has the longest 𝑇. 

The other censoring schemes are likely to have a 𝑇 between these two extreme values (Pareek et al., 

2009). The RE and RT are used to investigate the differences between the censoring schemes and the 

optimal ones. This comparison may help the experimenter choose between the optimal ℛ∗ or a scheme 

that is practically more convenient for ALT design.  

Moreover, the impact of changing 𝑛, FP, 𝜏 and the model parameters 𝜃1, 𝜃2, α on the censoring schemes 

will be studied. The algorithm for figuring out the optimal ℛ∗ is similar to the algorithm for estimating 

the optimal stress change time 𝜏∗ discussed in Section 5.3.1.1. Based on an example from Nelson (1990) 

of 76 times (in minutes) to oil breakdown of an insulating fluid, the values of stress levels are                

𝑥0 = 20 KV,  𝑥1 = 26 KV, 𝑥2 = 38 KV for the usage, lower and higher stress, respectively. 

The following steps describe the simulation procedure for obtaining the optimal ℛ∗ that minimizes the 

𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)), with different sets of initial values. 

Step (1): Based on a selected censoring scheme, we generate progressively Type-II censored samples 

from GED for different choices of 𝑛, FP, 𝜏, 𝜃1, 𝜃2, α. The MLEs 𝜃1, 𝜃2 𝑎𝑛𝑑 α̂ are calculated using the 

algorithm presented in Section 4.6.1.1. 

Step (2): the MLE of the scale parameter under the usage stress level is 

𝜃0 = 𝑒
(β̂0+β̂1𝑥0), 
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where 

β̂1 =
𝑙𝑛(𝜃1) − 𝑙𝑛(𝜃2)

(𝑥1 − 𝑥2)
  . 

β̂0 = 𝑙𝑛(𝜃1) − β̂1𝑥1.  

Step (3): Using (5.1), the MLE of the 100𝓅𝑡ℎ percentile of the life distribution at usage stress level is 

obtained as follows: 

�̂�𝓅(𝑥0) = −𝜃0 ln (1 − 𝓅
1
α̂) ,                   𝓅 = 0.05, 0.50, 0.95.    

In addition, the expected total test time is obtained as 𝑇 = tr . 

Step (4): Using a loop, repeat the above 3 steps, 3000 times to get a sample of the MLE �̂�𝓅(𝑥0).  

Step (5): Find the empirical variance of the 100𝓅𝑡ℎ percentile. 

Step (6): Repeat the above 5 steps 11 times to calculate the corresponding 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) for each of 

the 11 censoring schemes ℛ1 − ℛ11. 

Step (7): Find the optimal and the worst censoring schemes, with their corresponding 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) 

and 𝑇. In addition, the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) and 𝑇 that correspond to the Type-II censoring scheme and 

complete sample will be calculated. 

Step (8): Calculate the RE and RT, as percentages, of the optimal ℛ∗ with respect to other censoring 

schemes as follows 

RE(ℛ∗, 𝑅𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑  ) =
𝐴𝑉𝑎𝑟(�̂�𝓅(𝑥0)|ℛ∗  )

𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0) |𝑅𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑  )
 × 100,                                                                  (5.5) 

RT(ℛ∗, 𝑅𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑  ) =
𝑇|ℛ∗

𝑇 |𝑅𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑
× 100 .                                                                                             (5.6) 

Simulation studies have been performed using the above algorithm for calculating the MLEs of three 

percentiles with probability 𝓅 = 0.05, 0.50, 0.95. 

Similarly to the simulation studies performed in the R program for estimating the optimal 𝜏∗, simulation 

studies for determining the optimal ℛ∗ are performed in the R program version 3.5.1 to solve the optimal 

design problem numerically. Also, all the computations are performed at the Iridis5 facilities on the 

University of Southampton high performance computing. 
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5.4.2 Numerical Results and Concluding Remarks 

In this section, the optimal censoring scheme is numerically provided based upon selected initial values. 

The optimal ℛ∗ is obtained as it minimizes the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) for different 𝓅 = 0.05, 0.50, 0.95. For     

a given 𝑛, 𝐹𝑃, 𝜏, 𝜃1, 𝜃2 and α, the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)), 𝑇, RE and RT are calculated based on progressive 

Type-II censoring schemes. For the first case where 𝑛 > 20, a Monte Carlo simulation study is carried 

out to obtain the optimal ℛ∗ based on the 11 different censoring schemes ℛ1− ℛ11. The results are 

presented in Section 5.4.2.1 via plots and tables for each optimal ℛ∗, the worst censoring scheme, the 

Type-II censoring scheme and the complete sample. For the second case where 𝑛 < 20, a Monte Carlo 

simulation study is carried out to obtain the optimal ℛ∗ based on all possible censoring schemes           

ℛ = (𝑅1 , 𝑅2 , … 𝑅𝑟), such that ∑ 𝑅𝑖
𝑟
𝑖=1 = 𝑛 − 𝑟. The results are presented in Section 5.4.2.2 via plots 

and tables for each of the optimal ℛ∗, the worst censoring scheme, the Type-II censoring scheme and 

the complete sample. The remaining tables for other various schemes are available upon request. The 

results of the first and second cases are reported in this section and Appendix B. The R codes and Iridis 

commands are available upon request. 

5.4.2.1 Large Sample Size 

Multiple sets of 𝑛, 𝐹𝑃, 𝜏 and the model parameters are examined to investigate the impact of changing 

them on the optimal ℛ∗. Simulation results are presented in Tables B.10 – B.24 in Appendix B.  

First, we look at the impact of the sample size on the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) for 𝓅 = 0.05, 0.50, 0.95             

based on 11 censoring schemes described in Section 5.4.1. The sample size values are                                  

𝑛 = (20,40,60,80,100,150,200), with 80% of the observed failures upon the test. The model parameter 

values 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and 𝜏 = 0.8 are assumed. The results are presented in Figure 5.17, 

Figure C.1 and Figure C.2 in Appendix C, and they are also presented in Tables B.10 – B.12 in Appendix 

B. 

 

 

 

 

 

 

 

 Figure 5.17 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) vs. sample size for 11 censoring schemes. 
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Figure 5.17 shows the impact of increasing 𝑛 on the 𝐴𝑉𝑎𝑟(�̂�0.50(𝑥0)) based on 11 different censoring 

schemes. Although the type-II censoring scheme reduces the test time, it is the worst scheme that 

provides the least RE and has the largest 𝐴𝑉𝑎𝑟(�̂�0.50(𝑥0)) for all 𝑛 and 𝓅. As 𝑛 → ∞, RE of the worst 

scheme → 100%, which means the schemes become robust and the experimenter could have the 

flexibility to choose the most appropriate scheme to be applied for the SSALT experiment. These 

conclusions also hold for estimating the 5𝑡ℎ and 95𝑡ℎ percentiles. For 𝑛 ≤ 50, the optimal ℛ∗ for 

estimating the 5𝑡ℎ, 50𝑡ℎ or 95𝑡ℎ percentile is where (𝑛 − 𝑟) items are removed in the middle of the test; 

either at one time or one by one, based on scheme ℛ2 or ℛ7, respectively. This will emphasise having 

enough information (enough failures) at lower and higher stress levels. However, ℛ2 is the optimal ℛ∗ 

for all given sample sizes, when estimating the 5𝑡ℎ percentile of the GED under the SSALTs is of 

interest. On the other hand, for estimating the 50𝑡ℎ and 95𝑡ℎ  percentile, ℛ∗ = ℛ4 when 𝑛 > 50. Also, 

from Tables B.10 – B.12 in Appendix B, it can be noticed that the RE for 𝑛 > 50, the RT is 50% of the 

total time under the complete sample, whilst the RE increased 20%, which is relative to FP. Thus, using 

progressive type-II censoring reduces the total time of the test by 50%, which leads to a reduction in the 

cost of running the experiment. 

After studying the impact of increasing 𝑛, the impact of the FP is of interest. We take 𝑛 = 40, 100 and 

FP= 50%,60%, 70%, 80%. The parameter values are assumed to be 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and 

𝜏 = 0.8. The results are tabulated in the following Table 5.5 – Table 5.7. Also, Figures C.3 – C.5 in 

Appendix C illustrate the effect of the FP on the 𝐴𝑉𝑎𝑟(�̂�0.50(𝑥0)) of 5𝑡ℎ, 50𝑡ℎ and 95𝑡ℎpercentile under 

various censoring schemes.  

Table 5.5 – Table 5.7 show that the Type-II censoring scheme is the worst scheme that provides the least 

RE for all FP and 𝓅. As expected, the efficiency of the worst scheme against the optimal ℛ∗ decreases 

as FP decreases. Furthermore, the efficiency of the complete sample scheme ℛ11 against the optimal 

ℛ∗ increases as FP decreases. For estimating 𝑡0.05(𝑥0), the RT for the optimal ℛ∗ decreases as FP 

decreases, which means the optimal ℛ∗ not only reduces the number of failures but also reduces the total 

test time. This implies a reduction in the ALT cost. Also, for estimating 𝑡0.05(𝑥0), the optimal ℛ∗ is ℛ2 

for all given FP when 𝑛 = 100. From Table 5.5 – Table 5.7 and Tables B.10 – B.12, it can be seen that 

the observed sample size does not determine the optimal ℛ∗. For example, when 𝑛 = 40 and 𝑟 = 24 

with 60%FP, the optimal ℛ∗ is scheme ℛ6 for all 𝓅 = 0.05, 0.50, 0.95. While the optimal scheme for 

𝑛 = 30 and 𝑟 = 24 with 80%FP is ℛ2 or ℛ7 for 𝓅 = 0.05, 0.50, 0.95. So, for the same 𝑟, the optimal 

ℛ∗ is variable according to determined values of 𝑛 and FP. It is concluded that the optimal ℛ∗ is varies 

depending on the FP when 𝑛 = 100; this means the optimal ℛ∗ is sensitive to the FP. 
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Table 5.5 The comparison of optimal ℛ∗ with the worst, Type-II and the complete sample based on 

RE and RT, and the corresponding 𝐴𝑉𝑎𝑟(�̂�0.05(𝑥0)) when changing FP for 𝑛 = 40,100, 

𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and 𝜏 = 0.8 

𝒏 FP Scheme 𝑨𝑽𝒂𝒓 𝑻 RE(%) RT(%) 

40 80% 

Optimal ℛ2 0.0015 1.6216 100 100 

Worst ℛ3 0.0062 0.9313 24.83 174.12 

Type-II ℛ3 0.0062 0.9313 24.83 174.12 

Complete ℛ11 0.0014 1.7426 110.35 93.06 

40 70% 

Optimal ℛ6 0.0017 1.5925 100 100 

Worst ℛ3 0.0182 0.8602 9.35 185.13 

Type-II ℛ3 0.0182 0.8602 9.35 185.13 

Complete ℛ11 0.0014 1.7398 119.17 91.53 

40 60% 

Optimal ℛ6 0.0019 1.4969 100 100 

Worst ℛ3 0.0338 0.8340 5.65 179.48 

Type-II ℛ3 0.0338 0.8340 5.65 179.48 

Complete ℛ11 0.0014 1.7378 137.05 86.13 

40 50% 

Optimal ℛ1 0.0026 1.5219 100 100 

Worst ℛ3 0.1125 0.8217 2.30 185.22 

Type-II ℛ3 0.1125 0.8217 2.30 185.22 

Complete ℛ11 0.0014 1.7388 183.62 87.52 

100 80% 

Optimal ℛ2 0.0005 1.8891 100 100 

Worst ℛ3 0.0008 0.9276 65.77 203.65 

Type-II ℛ3 0.0008 0.9276 65.77 203.65 

Complete ℛ11 0.0005 2.0032 106.30 94.30 

100 70% 

Optimal ℛ2 0.0005 1.8305 100 100 

Worst ℛ3 0.0127 0.8399 4.17 217.95 

Type-II ℛ3 0.0127 0.8399 4.17 217.95 

Complete ℛ11 0.0005 2.0154 111.11 90.82 

100 60% 

Optimal ℛ2 0.0006 1.7604 100 100 

Worst ℛ3 0.0322 0.8172 1.79 215.40 

Type-II ℛ3 0.0322 0.8172 1.79 215.40 

Complete ℛ11 0.0005 2.0097 120.94 87.59 

100 50% 

Optimal ℛ2 0.0007 1.6862 100 100 

Worst ℛ3 0.0827 0.8099 0.80 208.20 

Type-II ℛ3 0.0827 0.8099 0.80 208.20 

Complete ℛ11 0.0005 2.0068 134.31 84.02 
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Table 5.6 The comparison of optimal ℛ∗ with the worst, Type-II and the complete sample based on 

RE and RT, and the corresponding 𝐴𝑉𝑎𝑟(�̂�0.50(𝑥0)) when changing FP for 𝑛 = 40,100, 

𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and 𝜏 = 0.8 

𝒏 FP Scheme 𝑨𝑽𝒂𝒓 𝑻 RE(%) RT(%) 

40 80% 

Optimal ℛ2 0.0701 1.6182 100 100 
Worst ℛ3 0.1994 0.9307 35.17 173.86 

Type-II ℛ3 0.1994 0.9307 35.17 173.86 
Complete ℛ11 0.0553 1.7365 126.89 93.18 

40 70% 

Optimal ℛ10 0.0837 1.5206 100 100 
Worst ℛ3 1.4552 0.8603 5.74 176.75 

Type-II ℛ3 1.4552 0.8603 5.74 176.75 
Complete ℛ11 0.0577 1.7379 145.02 87.49 

40 60% 

Optimal ℛ6 0.1062 1.4987 100 100 
Worst ℛ3 2.1273 0.8339 4.99 179.72 

Type-II ℛ3 2.1273 0.8339 4.99 179.72 
Complete ℛ11 0.0590 1.7397 179.96 86.14 

40 50% 

Optimal ℛ1 0.1283 1.5270 100 100 
Worst ℛ3 8.9497 0.8223 1.43 185.70 

Type-II ℛ3 8.9497 0.8223 1.43 185.70 
Complete ℛ11 0.0599 1.7397 214.33 87.77 

100 80% 

Optimal ℛ4 0.0248 1.0979 100 100 
Worst ℛ3 0.0338 0.9277 73.22 118.34 

Type-II ℛ3 0.0338 0.9277 73.22 118.34 
Complete ℛ11 0.0198 2.0118 125.42 54.57 

100 70% 

Optimal ℛ1 0.0288 1.9067 100 100 
Worst ℛ3 1.2013 0.8397 2.40 227.07 

Type-II ℛ3 1.2013 0.8397 2.40 227.07 
Complete ℛ11 0.0199 2.0140 145.00 94.67 

100 60% 

Optimal ℛ1 0.0348 1.8554 100 100 
Worst ℛ3 2.2544 0.8169 1.54 227.11 

Type-II ℛ3 2.2544 0.8169 1.54 227.11 
Complete ℛ11 0.0191 2.0166 181.77 92.00 

100 50% 

Optimal ℛ1 0.0428 1.7993 100 100 
Worst ℛ3 6.4913 0.8100 0.65 222.12 

Type-II ℛ3 6.4913 0.8100 0.65 222.12 
Complete ℛ11 0.0200 2.0172 214.37 89.19 
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Table 5.7 The comparison of optimal ℛ∗ with the worst, Type-II and the complete sample based on 

RE and RT, and the corresponding 𝐴𝑉𝑎𝑟(�̂�0.95(𝑥0)) when changing FP for 𝑛 = 40,100, 

𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and 𝜏 = 0.8 

𝒏 FP Scheme 𝑨𝑽𝒂𝒓 𝑻 RE(%) RT(%) 

40 80% 

Optimal ℛ7 1.6762 1.6117 100 100 

Worst ℛ3 2.7453 0.9331 61.05 172.71 

Type-II ℛ3 2.7453 0.9331 61.05 172.71 

Complete ℛ11 1.3902 1.7324 120.57 93.03 

40 70% 

Optimal ℛ10 1.9722 1.5060 100 100 

Worst ℛ3 26.5742 0.8610 7.42 174.90 

Type-II ℛ3 26.5742 0.8610 7.42 174.90 

Complete ℛ11 1.3592 1.7326 145.10 86.92 

40 60% 

Optimal ℛ6 2.5628 1.4971 100 100 

Worst ℛ3 70.9390 0.8342 3.61 179.46 

Type-II ℛ3 70.9390 0.8342 3.61 179.46 

Complete ℛ11 1.3890 1.7329 184.50 86.39 

40 50% 

Optimal ℛ1 3.4603 1.5206 100 100 

Worst ℛ3 167.8368 0.8222 2.06 184.94 

Type-II ℛ3 167.8368 0.8222 2.06 184.94 

Complete ℛ11 1.4086 1.7404 245.65 87.37 

100 80% 

Optimal ℛ4 0.5267 1.0992 100 100 

Worst ℛ3 0.6183 0.9279 85.18 118.45 

Type-II ℛ3 0.6183 0.9279 85.18 118.45 

Complete ℛ11 0.4412 2.0068 119.37 54.77 

100 70% 

Optimal ℛ5 0.6298 1.7721 100 100 

Worst ℛ3 9.4559 0.8397 6.66 211.05 

Type-II ℛ3 9.4559 0.8397 6.66 211.05 

Complete ℛ11 0.4357 2.0036 144.53 88.44 

100 60% 

Optimal ℛ5 0.7696 1.6861 100 100 

Worst ℛ3 38.5470 0.8169 1.99 206.39 

Type-II ℛ3 38.5470 0.8169 1.99 206.39 

Complete ℛ11 0.4240 2.0102 181.49 83.87 

100 50% 

Optimal ℛ1 0.9693 1.8030 100 100 

Worst ℛ3 89.7060 0.8101 1.08 222.57 

Type-II ℛ3 89.7060 0.8101 1.08 222.57 

Complete ℛ11 0.4528 2.0128 214.05 89.57 
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Next, the effect of changing 𝜃1 and 𝜃2 on the optimal ℛ∗ is studied. The fixed initial values of 𝑛 = 80 

with FP= 80% and 𝜏 = 0.8 are assumed. Also, 𝛼 = 1.2 is assumed. In the case of testing the impact of 

𝜃1, 𝜃2 = 0.3 is assumed, and 𝜃1 is tested for the values 𝜃1 = 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0 . 

On the other hand, in the case of testing the impact of 𝜃2, 𝜃1 = 0.6 is assumed, and 𝜃2 is tested for the 

values 𝜃2 = 0.1, 0.2, 0.3, 0.4, 0.5. The results are presented in Tables B.13 – B.18 in Appendix B. In 

addition, Figures C.6 – C.7 in Appendix C and Figure 5.18 illustrate the effect of changing 𝜃1 and 𝜃2 

on the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) of 5𝑡ℎ, 95𝑡ℎ and 50𝑡ℎ  percentile, respectively, under various censoring schemes. 

Figure 5.18 and Figures C.6 – C.7 in Appendix C show that the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) increases as 𝜃1 increases 

and the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) decreases as 𝜃2 increases for three different percentiles of interest: 5𝑡ℎ, 50𝑡ℎ 

and 95𝑡ℎ. That means, as the difference between the values of 𝜃1 and 𝜃2 decrease, the value of 

Figure 5.18 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) vs. scale parameters 𝜃1 and 𝜃2 for 11 censoring schemes. 
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𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) decreases. This conclusion agrees with the conclusion that is obtained in Section 5.3.2. 

By comparing Figure 5.18 with Figure 5.11 it can be seen that 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) increases as 𝜃1 is 

increasing and decreases as 𝜃2 increases. This behaviour holds not only for the supposed scheme         

ℛ = (0∗30, 4∗4, 0∗30) used for studying optimal 𝜏∗, but holds also for all 11 censoring schemes. 

Furthermore, the value of 𝜃2 has no impact on determining the optimal ℛ∗. Thus, both optimal 𝜏∗ and 

optimal ℛ∗ are robust for the value of 𝜃2. 

From Tables B.13 – B.18 in Appendix B it can be seen that for all values of 𝜃1 and 𝜃2 the optimal ℛ∗ =

ℛ2 or ℛ7 where items are removed in the middle of the test, for estimating the 5𝑡ℎ percentile. Whilst 

unexpectedly the optimal ℛ∗ = ℛ3, which is Type-II censoring, for estimating the 50𝑡ℎ and 95𝑡ℎ 

percentile. In contrast, ℛ3 is the worst scheme for all given values of 𝜃2. The worst scheme is ℛ1 or ℛ6 

where items are removed in beginning of the test for most of the cases for changing 𝜃1, especially when 

𝜃1 ≤ 1.6 for 5𝑡ℎ, 50𝑡ℎ and 95𝑡ℎpercentile. 

In addition, it can be noticed that the 𝑅𝐸 ≈ 100% for the 5𝑡ℎ percentile for all 𝜃1 and 𝜃2. This means 

the efficiency of �̂�0.05(𝑥0) under PCS is almost equal to the efficiency of �̂�0.05(𝑥0) under the complete 

sample. However, ALTs under PCSs reduce the time and cost of the experiment. Surprisingly, 𝑅𝐸 <

100% for 𝜃1 > 1 for 50𝑡ℎ and 95𝑡ℎpercentile, which means the precision of the MLE of 𝑡𝓅(𝑥0) based 

on PCS is better than the precision of the MLE of 𝑡𝓅(𝑥0) under the complete sample. The reason for 

that may be the skewness of the GED, which may result in extreme values in the sample that affect the 

efficiency of the MLEs. So, removing items at the end of the test is desirable. It is noticed that the 𝑅𝐸 

decreases as 𝜃1 increases. Also, for large scale parameter values, the GED density becomes flatter, which 

may lead to the occurrence of extreme values on both sides that affect the precision of the MLEs. In 

fact, this is a noticeable advantage of using progressive Type-II censoring scheme as it increases the 

precision of an estimator as well as reducing the time and cost. 

After studying the impact of changing the scale parameters on various censoring schemes, the impact of 

the shape parameter is of interest. The effect of changing 𝛼 on 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) based on 11 censoring 

schemes is presented in Tables B.19 – B,21 in Appendix B. Also, Figure 5.19 and C.8 and C.9 in 

Appendix C illustrate the behaviour of the objective function of V-optimality with respect to 𝛼 for 

estimating the 50𝑡ℎ, 5𝑡ℎ and 95𝑡ℎ  percentile. The set of initial values is assumed as 𝑛 = 80, FP=80%, 

𝜏 = 0.8 with 𝜃1 = 0.6 and 𝜃2 = 0.3. 
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Figure 5.19 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) vs. 𝛼 for 11 censoring schemes. 

From Figure 5.19 and Table B.9, it can be seen that the difference in the optimal ℛ∗ with respect to 𝛼 is 

large, as 𝛼 affect the the shapes of the GED density functions as discussed in Section 3.1. The density 

curve becomes right skewed for increasing 𝛼, so for 𝛼 ≥ 1.6 the worst scheme is ℛ1 and ℛ6 where 

items are removed at the first failure, whilst the optimal ℛ∗ =  ℛ3 where the most skewed items are 

removed. In contrast, when 𝛼 ≤ 1, the optimal ℛ∗ = ℛ1 for estimation of the 50𝑡ℎ and 95𝑡ℎpercentiles, 

whilst the worst scheme is ℛ3. Moreover, the RE→ 100% as 𝛼 increases as the skewness of the 

distribution may leads to the existence of the extreme values that increases the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). Thus, 

for large values of 𝛼, it is preferable to use the progressive censored samples rather than the complete 

sample, as censoring schemes reduce up to 60% of the total time of the test while holding the efficiency 

of an estimator. 

Next, it is of interest to study the impact of the stress change time on the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) at probabilities 

𝓅 = 0.05, 0.50, 0.95 based on 11 suggested censoring schemes when 𝑛 = 80 with FP=80%, and the 

model parameters 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2. The results are numerically presented in Tables B.22-

B.24 in Appendix B. The impact of changing 𝜏 on the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) for all schemes considered are 

presented in Figure 5.20, Figure C.10 and Figure C.11 in Appendix C for 50𝑡ℎ, 5𝑡ℎ and 95𝑡ℎ  percentile, 

respectively. 

 

 

 



Chapter 5 

109 

 

Figure 5.20 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) vs. 𝜏 for 11 censoring schemes. 

The schemes ℛ1 and ℛ6 where removing the items at the beginning of the test are the worst schemes 

when 𝜏 ≤ 0.7, and they become the optimal ℛ∗ when 𝜏 > 0.9. This result emphasizes the importance 

of choosing the optimal ℛ∗ with respect to the initial values, as a censoring scheme could improve the 

precision of MLEs of the parameters or it could negatively affect the precision of an estimator. For 𝜏 ≤

0.7, the test needs more information regarding the lower stress level before the stress level is increased. 

Thus, the optimal ℛ∗ = ℛ3,  ℛ8 and the worst schemes are ℛ1, ℛ6. In contrast, when 𝜏 ≥ 0.9, the test 

is run longer on the lower stress level, so, it is not preferable to remove items in the last stage of the test. 

Therefore, ℛ3 is the worst scheme and the optimal ℛ∗ = ℛ1 , ℛ6. 

Also, it can be seen that as 𝜏 increases, the efficiency of the optimal  ℛ∗ is almost double the efficiency 

of the worst scheme. The optimal ℛ∗ is ℛ1 and ℛ6, where items are removed at the beginning of the 

test. In contrast, the worst scheme is ℛ3, where items are removed at the end of the test. Although the 

worst scheme reduces the total test time by more than 75%, however, it decreases the efficiency up to 

only 10% by increasing the stress change time. It can be seen that the RE of the worst scheme suddenly 

drops off when 𝜏 increases from 0.8 to 0.9. The RE> 66% for 𝜏 ≤ 0.8, whilst it drops off to less than 

28% for lower 𝜏. However, as 𝜏 increases, the RE is continually decreasing down to 2%. To investigate 

the reason for that, the proportion of failures at each stress level 𝑝𝑛1 and 𝑝𝑛2 were calculated. It was 

concluded that 𝑝𝑛2 rapidly decreases as 𝜏 > 0.8. 

The standard error of the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) is presented in Tables B.22 - B.24 in Appendix B to assess the 

precision of the estimated 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). The following table summarize the values of standard errors 

as a percentage of the estimated value of 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). 
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From the above table, it can be seen that the maximum standard errors percentages are large. For 

5𝑡ℎ, 50𝑡ℎ and 95𝑡ℎ percentiles, the standard error percentages > 0.11 and less than 0.4690 when 𝜏 ≥ 0.8 

and estimating 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) for the worst censoring scheme, which is Type-II censoring. This 

happens due to a decreasing number of failures at the upper stress level as the stress change time 𝜏 

increases. Also, the censored data are removed at the time of the last failure, which leads to the loss of 

information about the right tail of the right-skewed life distribution. Thus, when 𝜏 ≥ 0.8, we should take 

care not to overinterpret the results regarding the worst censoring schemes. 

5.4.2.1.1 Sensitivity Analysis 

Since the resulting optimal censoring scheme is local, the sensitivity of the scheme will be investigated 

by considering the effect of parameter misspecification. This section discusses the sensitivity of the 

𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) measure (based on which optimal censoring schemes are selected) to changes in the 

model parameters. 

For the ‘base’ scenario, the initial values are chosen to be 𝑛 = 80, FP= 80%, 𝜏 = 0.8, 𝜃1 = 0.6,         

𝜃2 = 0.3 and 𝛼 = 1.2. While censoring scheme ℛ2 was optimal for this base scenario for estimating 

the 5𝑡ℎ percentile, censoring scheme ℛ4 was optimal for estimating the 50𝑡ℎ and the 95𝑡ℎ percentile, 

respectively. However, in all these 3 cases, censoring scheme ℛ1 was close to the optimal scheme in 

terms of 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) and was therefore chosen for this study. In particular, the values of 

𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) in the base scenario for ℛ1 are 0.0008, 0.0317 and 0.7024, respectively, whereas the 

corresponding optimal values are 0.0007, 0.0313 and 0.6956. The worst censoring scheme in each of 

these cases would have 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) between 1.5 and 2 times the optimal value of 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)). 

The selected range of values for 𝛼 was 0.8 to double this value at 1.6. The range of values for 𝜃1 was 

0.4 to double this value at 0.8. The range of 𝜃2 was from 0.1 to 𝜃1 − 0.1. According to the life-stress 

relationship in (2.1) in Chapter 2, the scale parameter has an inverse relation to the stress level. Thus, 

as 𝑥1 < 𝑥2, then 𝜃1 > 𝜃2. Simulation studies have been performed using the above initial values ranges 

for calculating the MLEs of the 5𝑡ℎ, 50𝑡ℎ and 95𝑡ℎ percentile. 

The ratio of each selected scenario with respect to the base scenario is used to compare 𝐴𝑉𝑎𝑟(�̂�𝓅(𝑥0) ) 

among different sets of initial values of model parameters and to determine the loss in estimation 

efficiency. The ratio was calculated as follows 

𝓅𝑡ℎpercentile 
𝐴𝑉𝑎�̂� (�̂�𝓅(𝑥0)) 

min max 

5𝑡ℎ 0.0019 0.2210 

50𝑡ℎ 0.0018 0.4541 

95𝑡ℎ 0.0019 0.4690 
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Ratio (𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0))) =
𝐴𝑉𝑎𝑟(�̂�𝓅(𝑥0) |𝜃1,𝜃2,𝛼  )

𝐴𝑉𝑎𝑟(�̂�𝓅(𝑥0)|𝜃1=0.6,𝜃2=0.3,𝛼=1.2 )
 

Note that smaller Ratio (𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0))) values indicate that the current scenario of 𝜃1, 𝜃2 and 𝛼 gives 

smaller value of  𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) than the base scenario when 𝜃1 = 0.6, 𝜃2 = 0.3 and  𝛼 = 1.2. In other 

words, when Ratio (𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0))) < 1, the current scenario of 𝜃1, 𝜃2 and 𝛼 results in a more precise 

estimate of 𝑡𝓅(𝑥0). The results of the sensitivity analysis are presented in the following Table 5.8 and 

in Tables B.25 and B.26 in Appendix B. 
 

Table 5.8 The sensitivity of the SSALTs model based on 𝐴𝑉𝑎𝑟(�̂�0.50(𝑥0)) and the associated ratio 
of base scenario and random scenario for ℛ = ℛ1, 𝜏 = 0.8 and 𝑛 = 80  with 80%FP. 

 

  𝜶 = 𝟎. 𝟖 𝜶 = 𝟏. 𝟐 𝜶 = 𝟏. 𝟒 𝜶 = 𝟏. 𝟔 

𝜽𝟏 𝜽𝟐 𝑨𝑽𝒂𝒓 Ratio 𝑨𝑽𝒂𝒓 Ratio 𝑨𝑽𝒂𝒓 Ratio 𝑨𝑽𝒂𝒓 Ratio 

0.4 0.1 0.0209 0.66 0.0299 0.94 0.0340 1.07 0.0374 1.18 

 0.2 0.0098 0.31 0.0142 0.45 0.0173 0.55 0.0185 0.58 

 0.3 0.0055 0.17 0.0083 0.26 0.0098 0.31 0.0108 0.34 

0.5 0.1 0.0318 1.00 0.0526 1.66 0.0634 2.00 0.0729 2.30 

 0.2 0.0159 0.50 0.0263 0.83 0.0317 1.00 0.0369 1.16 

 0.3 0.0104 0.33 0.0171 0.54 0.0204 0.64 0.0239 0.75 

 0.4 0.0068 0.21 0.0112 0.35 0.0134 0.42 0.0155 0.49 

0.6 0.1 0.0538 1.70 0.0954 3.01 0.1105 3.49 0.1391 4.39 

 0.2 0.0272 0.86 0.0484 1.53 0.0558 1.76 0.0712 2.25 

 0.3 0.0182 0.57 0.0317 1.00 0.0384 1.21 0.0429 1.35 

 0.4 0.0127 0.40 0.0226 0.71 0.0259 0.82 0.0330 1.04 

 0.5 0.0087 0.27 0.0156 0.49 0.0201 0.63 0.0230 0.73 

0.7 0.1 0.0875 2.76 0.1557 5.03 0.2121 6.69 0.2668 8.42 

 0.2 0.0453 1.43 0.0836 2.64 0.1042 3.29 0.1343 4.24 

 0.3 0.0305 0.96 0.0558 1.76 0.0712 2.25 0.0884 2.79 

 0.4 0.0221 0.70 0.0421 1.33 0.0519 1.64 0.0660 2.08 

 0.5 0.0167 0.53 0.0302 0.95 0.0387 1.22 0.0471 1.49 

 0.6 0.0122 0.38 0.0228 0.72 0.0287 0.91 0.0351 1.11 

0.8 0.1 0.1407 4.44 0.2856 9.01 0.3790 11.96 0.4813 15.18 

 0.2 0.0717 2.26 0.1427 4.50 0.1935 6.10 0.2330 7.35 

 0.3 0.0475 1.50 0.0747 2.79 0.1219 3.85 0.1582 4.99 

 0.4 0.0364 1.15 0.0697 2.20 0.0946 2.98 0.1159 3.66 

 0.5 0.0272 0.86 0.0556 1.75 0.0739 2.33 0.0915 2.89 

 0.6 0.0214 0.68 0.0429 1.35 0.0566 1.79 0.0712 2.25 

 0.7 0.0167 0.53 0.0323 1.02 0.0428 1.35 0.0542 1.71 
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Some general observations are made below. For each percentile: 

1- For fixed values of 𝜃1 and 𝜃2, 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) appears to increase as 𝛼 increases.  

2- For fixed values of 𝛼, 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) appears to decrease as 𝜃1 and 𝜃2 get closer together and to 

increase as 𝜃1 gets larger. This result is expected, as the scale parameter has a relationship to the stress 

level according to the life-stress relationship in (2.1) in Chapter 2. As 𝜃1 and 𝜃2 get closer together, this 

means the stress levels 𝑥1 and 𝑥2 get closer to each other. Consequently, items under the SSALT are 

exposed to two stress levels with minimal difference in their level. Thus, the estimated quantile �̂�𝓅(𝑥0) 

values have the least variability in this scenario. 

3- The largest value of 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) is observed for the largest values of 𝛼 and 𝜃1 and the smallest 

value of 𝜃2. 

4- The smallest value of 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) is observed for the smallest values of 𝛼 and 𝜃1 and the largest 

possible value of 𝜃2 for this choice of 𝜃1. 

To assess the sensitivity of 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) for our chosen censoring scheme and value of 𝜏, we compare 

the size of 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) at the base scenario with the smallest and the largest 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) within 

each scenario regarding percentile estimation as follows: 

1- For the 5𝑡ℎ percentile, 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) for the base scenario is approximately 8 times larger than the 

smallest 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)), and the largest 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) is approximately 15 times larger than 

𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) for the base scenario. 

2- For the 50𝑡ℎ percentile, 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) for the base scenario is approximately 6 times larger than the 

smallest 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)), and the largest 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) is approximately 15 times larger than 

𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) for the base scenario. 

3- For the 95𝑡ℎ percentile, 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) for the base scenario is approximately 4 times larger than the 

smallest 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)), and the largest 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) is approximately 13 times larger than 

𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) for the base scenario. 

Moreover, 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) for estimating higher percentiles is larger than for lower percentiles.  

Comparing the values of 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) for the base scenario, we find that 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) for 

estimating the median is approximately 40 times the value of 𝐴𝑉𝑎𝑟(�̂�0.05(𝑥0)), with 𝐴𝑉𝑎𝑟(�̂�0.95(𝑥0)) 

being 22 times higher again than 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) for estimating the median.   



Chapter 5 

113 

It is recommended to examine the sensitivity analysis of all censoring schemes to determine if they have 

the same order regarding the minimum and maximum 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)). Then, evaluate the impact of 

misspecification of the initial parameter values on the order of the schemes based on 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)). 

So, if, for example, the scheme ℛ1 has the smallest or second-smallest value of 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)) across 

all evaluated scenarios of initial values, then the scheme ℛ1 is considered robust. 

Based on the sensitivity analysis of the optimal censoring scheme in this section, it is concluded that 

incorrect estimation of the unknown model parameters results in an inaccurate estimation of the failure 

quantile under the usage stress level. Therefore, the experimenter should have information about the 

unknown model parameters from prior experiments or employ a pilot study to estimate the unknown 

parameters and choose the optimal censoring scheme that minimizes the associated 𝐴𝑉𝑎𝑟 (�̂�𝑝(𝑥0)).  

5.4.2.2 Small Sample Size 

The concept of obtaining the optimal ℛ∗ relies on the selection of the best combination of censoring 

scheme ℛ = (𝑅1 , 𝑅2 , … 𝑅𝑟) within all alternative censoring schemes, such that ∑ 𝑅𝑖
𝑟
𝑖=1 = 𝑛 − 𝑟. Thus, 

in this section, the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) is calculated for all possible censoring schemes ℛ = (𝑅1 , 𝑅2 , … 𝑅𝑟). 

Note that ℛ = (𝑅1 , 𝑅2 , … 𝑅𝑟) consists of fixed constants specifying the number of surviving items to 

be censored at each failure time. However, the number of possible censoring schemes = (𝑛−1
𝑟−1

) is 

enormous and the programme must be run for a considerable amount of time in order to obtain the 

𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) based on each of the (𝑛−1
𝑟−1

) censoring schemes. The maximum time available on Iridis5 

is 60 hours, However, for 𝑛 > 20 it takes more than 60 hours to obtain the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) for all ℛ. 

Therefore, in this case only small sample size 𝑛 ≤ 20 is tested. The optimal ℛ∗ is selected as it 

minimizes the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). 

Testing all possible schemes allows the experimenter to decide which scheme is more efficient given 

some initial conditions. For example, if the experimenter has a constraint that a fixed number of items 

must be removed from the test after the 3𝑟𝑑 failure, while the times for removing other censored items 

𝑅i, 3 < 𝑖 ≤ 𝑟 are random. So, testing all possible censoring schemes gives the experimenter an idea 

about the best scheme with respect to the given constraint of removing a fixed number of items from the 

test after the 3𝑟𝑑 failure. 

Another advantage is when the total time to apply the experiment based on optimal ℛ∗ is long, but the 

experimenter prefers to reduce the test time. So, he/she can choose a censoring scheme that has a RE 

close to 100% and a less total time 𝑇. Moreover, in the situation where it is preferable to remove items 

at fewer times, but the optimal ℛ∗ was the scheme where items are removed from the test at multiple 

times. Then the experimenter has a flexibility to choose the best censoring scheme that is more 
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convenient to apply for ALTs that are at least 95% as efficient as the optimal ℛ∗ (Balakrishnan and 

Aggarwala, 2000). 

In this section, 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) is calculated for all possible schemes. Then, the optimal ℛ∗ is determined 

as the scheme that provides the minimum value of 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). After that, the RE and RT are 

calculated using (5.5) and (5.6), respectively, of the optimal ℛ∗ with respect to all other censoring 

schemes. By using the RE with RT, the experimenter will have the flexibility to choose the most 

convenient scheme to use under the ALT. It is clear that when 𝑅𝐸 is close to 100%, then the scheme has 

the same impact as the optimal one on the precision of �̂�𝓅(𝑥0) (Balakrishnan and Aggarwala, 2000). So, 

the experimenter will have a flexibility of choosing the most practically effective scheme or a range of 

schemes that reduce the time of the test based on comparing RT. Thus, the balance between reduction 

of the cost with the most precision of the �̂�𝓅(𝑥0) is attained. For example, maybe the scheme ℛx is 95% 

as efficient as the optimal ℛ∗, and it reduces the test time by 40% and reduces the number of times items 

are removed from the test. So, the experimenter may prefer to use ℛx rather than the optimal ℛ∗. 

In this section, different sets of 𝑛 and FP are assumed as follows: 

 

 

 

 

 

 

The above sets are run with the initial values of the model parameter 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and 

𝜏 = 0.6 are assumed. For the set of (𝑛−1
𝑟−1

) schemes, the first scheme is ℛ1 = ((𝑛 − 𝑟) , 0∗(𝑟−1)) and the 

last scheme is ℛ(𝑛−1
𝑟−1
) = (0∗(𝑟−1), (𝑛 − 𝑟)). The other schemes are between these two end schemes. As 

the space of the thesis is limited, we tabulate only a part of the complete results. Table 5.9 contains the 

results for the optimal ℛ∗, the worst scheme, ℛ1, ℛ(𝑛−1
𝑟−1

) and the complete sample case. The remaining 

results for other various schemes are available upon request. Also, Figure 5.21 and Figure 5.22 show 

the 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) for all (𝑛−1
𝑟−1

) various censoring schemes and the complete sample case for                 

𝑛 = 10,15,20 and FP= 60%,70%, 80%. 

Table 5.9 shows that the total test time is reduced by ≈ 50% as the items tend to be removed at the end 

of the test. As FP increases for fixed n, the RT decreases as increasing the number of observed data 

leads to an increase in the test time. However, the difference in RE is considerable with respect to 

different censoring schemes. The efficiency of the worst censoring scheme is < 20% of the efficiency 

of the optimal ℛ∗ in most cases. Therefore, selecting a censoring scheme that improves the precision of 

𝑛 FP 𝑟 Number of schemes 

10 

60% 6 126 

70% 7 84 

80% 8 36 

15 

60% 9 3003 

70% 10 2002 

80% 12 364 

20 80% 16 3876 
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the MLE of 𝑡𝓅(𝑥0) is vital. It is interesting to note that the optimal ℛ∗ under 𝑛 = 10,15 are compatible 

with the results obtained by Pradhan and Kundu (2009), who studied statistical inference and optimal 

schemes for the GED under progressive Type-II censored data. 

Table 5.9 The comparison of ℛ∗ with the worst, Type-II and the complete sample, and corresponding 

𝐴𝑉𝑎𝑟(�̂�0.50(𝑥0)) when changing FP and 𝑛 for 𝜃1 = 0.6,𝜃2 = 0.3, 𝛼 = 1.2 and 𝜏 = 0.6. 

𝒏 FP Scheme 𝑨𝑽𝒂𝒓 𝑻 RE(%) RT(%) 

10 

60% 

Optimal (4 , 0 , 0 , 0 , 0 , 0) 0.3549 1.0522 100 100 
Worst (0 , 0 , 1 , 0 ,1 , 2) 27.2998 0.7265 1.30 144.83 
ℛ1 (4 , 0 , 0 , 0 , 0 , 0) 0.3549 1.0522 100 100 

ℛ (𝑛−1
𝑟−1
) (0 , 0 , 0 , 0 , 0 , 4) 4.3179 0.6842 8.22 153.78 

Complete (0 , 0 , 0 , 0 , 0 , 0) 0.2452 1.2086 144.75 87.06 

70% 

Optimal (2 , 1 , 0 , 0 , 0 , 0 , 0) 0.3303 1.0870 100 100 
Worst (0 , 0 , 0 , 0 , 0 , 1 , 2) 5.2405 0.7459 6.30 145.72 
ℛ1 (3 , 0 , 0 , 0 , 0 , 0 , 0) 0.3357 1.0910 98.38 99.62 

ℛ (𝑛−1
𝑟−1
) (0 , 0 , 0 , 0 , 0 , 0 , 3) 1.0946 0.7265 30.17 149.61 

Complete (0 , 0 , 0 , 0 , 0 , 0 , 0) 0.2506 1.2128 131.76 89.62 

80% 

Optimal (2 , 0 , 0 , 0 , 0 , 0 ,0 , 0) 0.2787 1.1391 100 100 
Worst (0 , 0 , 0 , 0 , 0 , 0 ,0 , 2) 0.9600 0.7958 29.03 143.13 
ℛ1 (2 , 0 , 0 , 0 , 0 , 0 ,0 , 0) 0.2787 1.1391 100 100 

ℛ (𝑛−1
𝑟−1
) (0 , 0 , 0 , 0 , 0 , 0 ,0 , 2) 0.9600 0.7958 29.03 143.13 

Complete (0 , 0 , 0 , 0 , 0 , 0 ,0 , 0) 0.2435 1.2122 114.48 93.96 

15 

60% 

Optimal (2 , 3 , 0 , 1 , 0 , 0 ,0 , 0, 0) 0.2560 1.1524 100 100 
Worst (0 , 0 , 0 , 1 , 0 , 1 ,3 , 0 , 1) 23.0547 0.8330 1.11 138.34 
ℛ1 (6 , 0 , 0 , 0 , 0 , 0 ,0 , 0 , 0) 0.2599 1.1719 98.49 98.33 

ℛ (𝑛−1
𝑟−1
) (0 , 0 , 0 , 0 , 0 , 0 ,0 , 0 , 6) 2.3326 0.6780 10.97 169.97 

Complete (0 , 0 , 0 , 0 , 0 , 0 ,0 , 0 , 0) 0.1972 1.3377 129.81 86.14 

70% 

Optimal (0 , 4 , 0 , 1 , 0 , 0 ,0 , 0 , 0, 0) 0.2336 1.1843 100 100 
Worst (0 , 0 , 0 , 0 , 0 , 1 ,0 , 0 , 2, 2) 5.4106 0.7583 4.31 156.17 
ℛ1 (5 , 0 , 0 , 0 , 0 , 0 ,0 , 0 , 0, 0) 0.2429 1.2119 96.17 97.72 

ℛ (𝑛−1
𝑟−1
) (0 , 0 , 0 , 0 , 0 , 0 ,0 , 0 , 0, 5) 0.9437 0.7056 24.75 167.84 

Complete (0 , 0 , 0 , 0 , 0 , 0 ,0 , 0 , 0, 0) 0.1927 1.3364 121.22 88.61 

80% 

Optimal (0 , 0 , 2 , 0 , 0 , 1 ,0 , 0 , 0, 0 , 0) 0.2029 1.2375 100 100 
Worst (0 , 0 , 0 , 0 , 0 , 0 ,0 , 1 , 0, 1 , 1) 0.7452 0.9001 27.22 137.47 
ℛ1 (3 , 0 , 0 , 0 , 0 , 0 ,0 , 0 , 0, 0 , 0) 0.2278 1.2651 89.07 97.81 

ℛ (𝑛−1
𝑟−1
) (0 , 0 , 0 , 0 , 0 , 0 ,0 , 0 , 0, 0 , 3) 0.2961 0.3414 68.53 153.75 

Complete (0 , 0 , 0 , 0 , 0 , 0 ,0 , 0 , 0, 0 , 0) 0.1903 1.3450 106.60 92.00 

20 80% 

Optimal (0,0,1,0,0,1,1,1,0,0,0,0,0,0,0,0) 0.1627 1.3348 100 100 
Worst (0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,0) 0.9264 1.0797 17.56 123.62 
ℛ1 (4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 0.1832 1.3571 88.81 98.35 

ℛ (𝑛−1
𝑟−1
) (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4) 0.2074 0.8086 78.44 165.07 

Complete (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 0.1624 1.4249 100.18 93.67 
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Figure 5.21 Plot of 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) based on various censoring schemes. 

 

 

 

𝑛 = 10, FP = 70% 

𝑛 = 10, FP = 60% 

𝑛 = 10, FP = 80% 𝑛 = 15, FP = 80% 

𝑛 = 15, FP = 60% 

𝑛 = 15, FP = 70% 
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For 𝑛 = 10 with 60% FP, less than 2% of all schemes, only 3 schemes have RE ≥ 80%, which can be 

assumed the best schemes that improve the precision of the MLE of 𝑡0.5(𝑥0). All 3 best schemes involve 

removing items at the time of the first two failures, similar to the optimal ℛ∗. On the other hand, 25% 

of schemes have RE ≤ 20%, which can be assumed to be the worst schemes that leads to an increase 

the 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)). All the worst schemes involve removing items at the time of the last two failures. 

To sum up, the set of schemes that have similar structure of removing items as the optimal scheme can 

be assumed to be similar to the optimal scheme. So, the experiment can be set up using the most relevant 

scheme from this set of schemes. Also, it is concluded that 0.35 ≤ 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) ≤ 3 for 90% of 

censoring schemes.  

For 𝑛 = 10 with 70% FP, 15% of schemes have RE ≥ 80%, which can be assumed as the best schemes 

that improve the precision of the MLE of 𝑡0.5(𝑥0). All 15% best schemes have the same structure of 

removing items at times of first failures like the optimal ℛ∗. On the other hand, 7% of schemes have 

RE ≤ 20%, which can be assumed to be the worst schemes that leads to increase the 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)). 

All worst schemes involve removing items at the time of the last two failures. Also, it is concluded that 

0.33 ≤ 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) ≤ 3 for 96% of censoring schemes, however, 96% of censoring schemes have 

0.33 ≤ 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) ≤ 1.5. 

For 𝑛 = 10 with 80% FP, 50% of schemes have RE ≥ 80% and 12% have RE ≥ 95%. On the other 

hand, only 2 schemes (5%) have RE ≤ 40%. It can be seen for fixed 𝑛 as FP increases, the censoring 

schemes become more efficient. Also, it is concluded that 0.27 ≤ 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) ≤ 1 for all possible 

censoring schemes. So, the percent of best censoring schemes, that reduce the 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)), increases 

as the FP increases for fixed small sample size. 

Figure 5.22 Plot of 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) based on various censoring schemes for 𝑛 = 20 and FP=80%. 
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For 𝑛 = 15 with 60% FP, 9% of schemes have RE ≥ 80%, whilst, 11% schemes have RE ≤ 20%. Also, 

it is concluded that 0.26 ≤ 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) ≤ 3 for 98% of censoring schemes. Also, for 𝑛 = 15 with 

80% FP, 80% of schemes have RE ≥ 80%, however, 28% of schemes have RE ≥ 90%. In contrast, 

only 2% of total schemes have RE ≤ 40%. Also, it is concluded that 0.20 ≤ 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) ≤ 0.5 for 

99% of censoring schemes. These results mean that the schemes are robust and lead to high precision of 

the MLE. Thus, in this case, the experimenter would have a flexibility to choose the most practical 

scheme for the ALT. Also, for 𝑛 = 15 with 70% FP, 22% of schemes have RE ≥ 80%. On the other 

hand, only 3% of all schemes have RE ≤ 20%. Also, it is concluded that 0.23 ≤ 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) ≤ 3 

for 99% of censoring schemes. In addition, for 𝑛 = 15 with 80% FP, 80% of schemes have RE ≥ 80%, 

however, 28% of schemes have RE ≥ 90%. In contrast, only 2% of total schemes have RE ≤ 40%. 

Also, it is concluded that 0.20 ≤ 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) ≤ 0.5 for 99% of censoring schemes. These results 

mean that the schemes are robust and lead to high precision of the MLE. Thus, in this case, the 

experimenter would have a flexibility to choose the most practical scheme for the ALT. 

Moreover, for 𝑛 = 20 with 80% FP, 96% of schemes have RE ≥ 80%, however, 48% of schemes have 

RE ≥ 90%. In contrast, only 1% of total schemes have RE ≤ 60%. Also, it is concluded that 0.16 ≤

𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) ≤ 0.5 for 99.7% of censoring schemes. These results mean that the schemes are robust 

and lead to high precision of the MLE. Thus, in this case, the experimenter would have a flexibility to 

choose the most practical scheme for the ALT. Also, from Figure 5.21 and Figure 5.22, it can be realized 

that the range of 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) become narrow as the FP increases. That means the efficiency of 

censoring schemes 𝑅𝐸 → 100% as FP increases. 

In conclusion, from the above cases of small sample size with different FP and as it can be noticed from 

Figure 5.21 and Figure 5.22, the optimal scheme and the best schemes with respect to minimizing 

𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) are located when items are removed at the time of early failures. On the other hand, the 

worst schemes that lead to increase the 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) are located when items are censored at late 

failure times. 

5.5 Summary 

This chapter has studied the optimal design for the ALT based on progressive Type-II censoring from 

two main views: the optimal stress change time and the optimal censoring scheme. The V-optimality 

criterion is considered to obtain the optimal test design with respect to minimize the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). 

The optimal test design was studied for the 5𝑡ℎ, 50𝑡ℎ and 95𝑡ℎ percentile lifetime of the GED at the 

usage stress level. The golden section search method was used to determine the optimal 𝜏∗ that 

minimizes the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) of GED under SSALT. Simulation studies were carried out using R to 

illustrate the theoretical results of the optimization problem. The impact of different sets of initial values 

𝑛, FP, 𝜃1, 𝜃2, α and 9 censoring schemes on the optimal 𝜏∗ was studied. In addition, 11 different 
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censoring schemes are compared, and the optimal ℛ∗ among them is determined for different set of 

initial values. Also, all possible censoring schemes are calculated and compared for small sample size 

to provide the optimal ℛ∗. The Monte Carlo standard errors of the estimated 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) are 

obtained, in some cases, to assess the precision of the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) for the 5𝑡ℎ, 50𝑡ℎ and 95𝑡ℎ 

percentile lifetime of the GED at the usage stress level. 

The simulation studies in this chapter indicate that as 𝓅 increases, more information must be collected 

from the experiment to get a precise MLE of the 𝑡𝓅(𝑥0). This means the sample size and the FP are 

required to be large. Also, it was concluded that the choice of the censoring scheme to be applied under 

the test is crucial. The gain in efficiency of the MLEs under applying the optimal ℛ∗ compared with 

other schemes is remarkable in certain cases. Furthermore, it was noticed that the place of removing the 

items has almost the same results, whether the items are censored at one time or one-by-one, with respect 

to the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). However, the difference is in the total test time. The test time when removing     

a set of items at one time will be shorter than the total test time when removing the items one by one. 

The results in Section 5.4.2 show that designing the ALT based on choosing the optimal ℛ∗ will 

considerably increase efficiency. The RE of the worst scheme is <50% in many cases. Therefore, it is 

crucial to select the optimal ℛ∗. 

The following Table 5.10 summarizes the impact of different initial values on the optimal 𝜏∗. 

Table 5.10  The impact of 𝑛, FP, ℛ, 𝜃1, 𝜃2, 𝛼 on the optimal 𝜏∗. 

Initial variable 𝟓𝒕𝒉 percentile 𝟓𝟎𝒕𝒉 percentile 𝟗𝟓𝒕𝒉  percentile 

𝑛 ↑ 
𝑛 < 60 → slightly ↑ 
𝑛 ≥ 60 → constant 

FP ↑ ↓ 

ℛ → ↓ 

𝜃1 ↑ considerable ↑ 

𝜃2 ↑ constant 

𝛼 ↑ 

0.6 < 𝛼 ≤ 1.0 → 
slightly ↓ 

0.6 < 𝛼 ≤ 1.0 → 
slightly ↓ 

1.0 < 𝛼 ≤ 1.6 → constant 
𝛼 > 1.6 → ↑ 

From the simulation results, it can be noticed that the optimal 𝜏∗ is sensitive to small sample size or 

small FP. So, the case for a small observed sample size must be investigated. Furthermore, it is 

concluded that the optimal 𝜏∗ is not sensitive to 𝜃2 value. Therefore, it is interesting to investigate the 

relationship between the FP under each stress level and the optimal 𝜏∗. 
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From Section 5.3, it was observed that the behaviour of optimal 𝜏∗ is the same with respect to all sets of 

initial values when estimating any of 5𝑡ℎ, 50𝑡ℎ and 95𝑡ℎ percentile of the GED under the usage stress 

level. 

Surprisingly, the RE of the optimal ℛ∗ with respect to the complete sample can be below 100% whilst 

the RT <60%. This means that the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) based on the optimal ℛ∗ is less than when the 

complete sample case is used; besides, the optimal ℛ∗ yields reduction in the 𝑇 of more than 40%. This 

happens when estimating 50𝑡ℎ and 95𝑡ℎ percentile with respect to increasing 𝜃1 which corresponds to 

decreasing the lower stress level to be close to the normal stress level. In this case, optimal ℛ∗ = ℛ3 

when removing items at the end of the test. Thus, removing the items at the end of the test with extreme 

timing yields reduces the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). 

The following Table 5.11 summarizes the impact of different initial values on the optimal ℛ∗. As                 

a reminder, censoring scheme ℛ2 removes all censored items at the time of the failure occurrence in the 

middle of the test, whereas censoring schemes ℛ1 and ℛ3 remove all censored items at the first and the 

last observed failure, respectively. 

Table 5.11 The impact of 𝑛, FP, 𝜃1, 𝜃2, 𝛼, 𝜏 on the optimal ℛ∗. 

Initial 
variable scheme 𝟓𝒕𝒉 percentile 𝟓𝟎𝒕𝒉 percentile 𝟗𝟓𝒕𝒉  percentile 

𝑛 
optimal ℛ2 

𝑛 ≤ 50 → ℛ7 
𝑛 > 50 → ℛ4 

worst ℛ3 

FP - 40 
optimal ℛ6 , ℛ1 Not specified Not specified 

worst ℛ3 

FP - 100 
optimal ℛ2 ℛ1 Not specified 

worst ℛ3 

𝜃1 

optimal ℛ2 , ℛ7 
𝜃1 = 0.6 → ℛ4 

𝜃1 > 0.6 → ℛ3,ℛ8 

𝜃1 = 0.6 → ℛ4 
0.6 < 𝜃1 ≤ 1.8 → ℛ3 
𝜃1 > 1.8 → ℛ1 

worst 

𝜃1 = 0.6 → ℛ3 

𝜃1 > 0.6 → ℛ1 
0.6 < 𝜃1 ≤ 2 →ℛ1,ℛ6 

𝜃1 > 2 → ℛ10 
0.6 < 𝜃1 ≤ 1.6 → ℛ6 
𝜃1 > 1.6 → ℛ2,ℛ7 

𝜃2 
optimal ℛ2 ℛ4 ℛ4 ,ℛ9 

worst ℛ3 

𝛼 optimal ℛ2 

𝛼 ≤ 1 → ℛ1 

1.2 ≤ 𝛼 ≤ 1.4 → ℛ4,ℛ9 

𝛼 > 1.4 → ℛ3 
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worst 
𝛼 ≤ 1.4 → ℛ3 

𝛼 > 1.4 → ℛ1 𝛼 > 1.4 → ℛ6 

𝜏 
optimal 

𝜏 ≤ 0.8→ ℛ2 𝜏 ≤ 0.6→ ℛ3,  ℛ8 

𝜏 ≥ 0.9→ ℛ1 , ℛ6 

worst 
𝜏 ≤ 0.7→ ℛ1, ℛ6 
𝜏 > 0.8→ ℛ3 

From the above table, some general observations are made below.  

1- It can be seen that although it is not easy to determine the optimal ℛ∗ that minimizes the 

𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) for the three given 𝓅 simultaneously, it is possible to determine the optimal ℛ∗ that 

reduces the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) for both the 50𝑡ℎ percentile and the 95𝑡ℎ percentile simultaneously. 

2- For estimating the 5𝑡ℎ percentile, the optimal ℛ∗ is often when censored items are removed at the 

time of the failure occurrence in the middle of the test (ℛ2).  

3- for estimating the 50𝑡ℎ and 95𝑡ℎ percentile, the optimal ℛ∗ is when removing the censored items at 

the time of first failure (ℛ1) or last failure (ℛ3), or at the time of both first and last failures (ℛ4). In 

other words, the optimal scheme removes the censored items that are located in the tails of the life 

distribution. 

4- The censoring scheme ℛ3 which is Type-II censoring, is often the worst scheme, which leads to 

maximizing the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) for  5𝑡ℎ, 50𝑡ℎ and 95𝑡ℎ percentile for many cases. Nevertheless, ℛ3 is 

the optimal scheme when the GED density becomes more skewed or if the difference between the stress 

levels increases. 

5- The optimal censoring scheme ℛ∗ is affected by changing the initial values, especially 𝜃1 and 𝛼. 

However, from the above results, it is concluded that the optimal scheme is sensitive to the change in 

any of the initial values: of 𝑛, FP, 𝜃1, 𝜃2, 𝛼, 𝜏. There is no scheme that would be optimal for all scenarios 

of the initial values. Thus, more studies should be conducted by testing more schemes which are closed 

to the optimal and worst scheme in each case. Furthermore, it is suggested using an optimality criterion 

for obtaining robust test plans based on optimal censoring schemes that results in minimizing the 

𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) under different sets of initial values. 

As discussed at the beginning of Section 5.4, the number of schemes based on a given 𝑛 and FP is  (𝑛−1
𝑟−1

). 

This number is enormous and requires considerable time to compute the objective function based on 

each of these schemes. So, finding a method to obtain the optimal ℛ∗ without testing each of the (𝑛−1
𝑟−1

) 

censoring schemes is essential.  

Although the given simulation studies in this chapter provide a basic reference for designing ALT with 

progressive Type-II censored data, it is not easy to generalize the result for all values of the initial value. 
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However, this chapter shows the importance of using the progressive Type-II censoring scheme with 

respect to getting the most precise estimate of the percentile with the smallest value of 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) 

for 5𝑡ℎ, 50𝑡ℎ and 95𝑡ℎ percentiles. Also, it is essential to design the ALT with the optimal ℛ∗ and 

optimal 𝜏∗ in order to obtain the most precise estimates of the model parameters. 
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Chapter 6  

Conclusion and Future Work 

6.1 General Discussion and Conclusion 

In lifetime data analysis, life testing for items under normal use conditions can often take a long time to 

obtain a reasonable number of failures. Thus, there can be high cost to obtain information about the 

lifetime of products under normal condition as it takes a long time to observe failures. In this situation, 

ALT procedures are performed in order to obtain failure time data in a shorter time. The SSALT model 

is a commonly used method in life testing. It allows the stress level applied to each test unit to be changed 

step-by-step during the test. In this way information about the parameters of the life distribution is 

obtained more quickly than under normal operating conditions.  

There are two major aspects in the SSALT studies: statistical inference of model parameters and optimal 

test design. The main objectives of this thesis were to develop an optimal test plan for a simple SSALT 

model and to make statistical inferences for a simple SSALT model based on progressive type-II 

censoring schemes for a determined set of initial values. General design steps and assumptions for 

modelling SSALT under progressive Type-II censored samples have been described and discussed in 

detail. The GED is assumed as a lifetime distribution and the CEM is also assumed for the CDF of 

failure times under different stress levels. 

6.1.1 Analysis of SSALT Under Progressive Type-II Censoring 

Statistical inference for model parameters was discussed. The ML method has been used to estimate the 

three unknown parameters of the CEM; 𝜃1, 𝜃2 and α based on different sets of initial values. Also, the 

asymptotic CIs for the parameters based on the observed Fisher information matrix have been derived. 

Moreover, the bootstrap approach has been utilized to obtain the CIs for the model parameters using 

two methods, percentile and BCa based on parametric bootstrap samples.  

The MLEs and the CIs based on three methods were obtained numerically because they are not in closed-

form expressions. Extensive Monte-Carlo simulation was performed, using R and the High-Performance 

Computing facility Iridis-4 and Iridis-5 with PBS and SLURM commands. To assess the performance 

of the MLEs and CIs, simulation studies have been carried out under different sample sizes, FP, stress 

change time and PCSs. The performance of the MLEs for the model parameters 𝜃1, 𝜃2 and 𝛼 have been 

evaluated by using AB and MSE. The bootstrap and jackknife resampling methods have been used to 

estimate the bias and MSE of the MLEs. Also, the CPs of the intervals as well as the AL of CIs have 

been determined at nominal confidence levels 90%, 95% and 99% to study the performance of the CIs 

for the parameters. 
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It is noticed that the MLE of 𝜃1 is remarkably influenced by the number of failures under lower stress 

level. So, to get precise estimates of 𝜃1 with small AB and MSE, the number of observed data under the 

lower stress level should be increased. That could be done by increasing the value of the stress change 

time, increasing the sample size, avoiding removing items in the early stages of the test or by a balance 

between these three factors. On the other hand, the number of failures at each stress level has less impact 

on the estimate of 𝜃2. The MLE of the scale parameter 𝜃2 is less sensitive than MLE of 𝜃1.  

Based on the assumed sets of initial values, it is concluded that the performance of the CIs under 

asymptotic approach is close to the performance of the CIs based on BCa bootstrap method. However, 

the asymptotic CIs are shorter in all cases than the other two methods, whereas, the BCa bootstrap CIs 

provide better CP that is close to the nominal level. 

6.1.2 Design of SSALT Under Progressive Type-II Censoring 

In some situations, under a simple SS model, the hold time at low stress levels might be relatively short, 

resulting in few or no failure data and thus affecting the performance of the MLEs. Thus, determining 

an optimal hold time at low stress is essential to obtain sufficient information at different stress levels. 

Moreover, choosing the optimal censoring scheme is crucial for censoring items at the best time to assure 

having enough failures in each stress level. This will improve the efficiency of statistical inference. 

In ALT, determining the optimal design is essential to maximize the precision of the estimates of 

percentile lifetime under the GED at usage stress level. Therefore, optimal test design under                        

V-optimality criterion has been studied in detail based on determining the optimal stress change time 

and optimal censoring scheme. Determining the optimal design has been studied for 5𝑡ℎ, 50𝑡ℎ and 95𝑡ℎ 

percentiles under usage stress level. The impact of a different set of initial values 𝑛, FP, 𝜃1, 𝜃2, α and 

nine censoring schemes on the optimal 𝜏∗ has been studied. In addition, 11 different censoring schemes 

are compared, and the optimal ℛ∗ among them is determined for a different set of initial values. Also, 

all possible censoring schemes are calculated and compared for small sample size to provide the optimal 

ℛ∗.  

It is observed that the behaviour (increase/decrease) of optimal 𝜏∗ is the same with respect to all assumed 

sets of initial values when estimating any of 5𝑡ℎ, 50𝑡ℎ and 95𝑡ℎ percentile of the GED under the usage 

stress level. Moreover, for the suggested sets of initial values, it was noticed that the range of optimal 

𝜏∗ for estimating the 50𝑡ℎ percentile intersects with the range of optimal 𝜏∗ for estimating the 95𝑡ℎ 

percentile. So, the 50𝑡ℎ percentile and the 95𝑡ℎ percentile lifetime of the GED under the usage stress 

level can be estimated with reducing the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) based on the same value of optimal 𝜏∗. Also, 

it is concluded that the choice of the censoring scheme is crucial to decreases the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)).  Also, 

it is noticed that the place of removing the items has almost the same results, whether the items are 

censored at one time or one-by-one, with respect to the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)). However, the difference is in 
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the total test time. The test time when removing a set of items at one time will be shorter than the total 

test time when removing the items one by one. 

6.2 Limitation of Study and Related Suggestion 

In Chapter 4, the range of the initial values is limited. However, it could be suggested to consider                

a broader range of the initial values to investigate their impact on the MLEs and the sensitivity of the 

model parameters. This should be studied in future work. 

Also, it should be noted that the results in Chapter 5 are limited to the set of fixed initial values. In other 

words, we investigate the impact of changing one initial value at a time, except by changing the scale 

parameters 𝜃1 and 𝜃2 together. However, assuming the stress levels are fixed, there are 7 initial values: 

𝜃1, 𝜃2, 𝛼, 𝑛, FP, 𝜏 and censoring scheme. So, if only 3 values are chosen for each variable, then there 

are 2187 possible sets of initial values, which makes it impossible to test all of them. Now, these 37 =

2187 combinations can be viewed as a full factorial design with 7 factors, each at 3 levels. Therefore, 

in future work, a fractional factorial design with a more manageable number of combinations could be 

chosen to enable us to study how changing variable values simultaneously affects the optimal value of 

𝜏. 

It is noticed that the run time of the simulation is varied according different proposed methods. The 

computational time to run the program and get the result is between 5 minutes for deriving the MLEs 

and 8-10 hours for constructing the bootstrap CIs in the statistical inference part in Chapter 4. While in 

the design part at Chapter 5, the computational run time ranges between 6 hours and 56 hours using the 

high-performance computing facilities (Iridis) at the University of Southampton. As we know that Iridis 

speeds up the computational process to get the results faster, then, the computational process may take 

a longer time with a normal CPU. Therefore, considering the cost of the computational process is of 

interest in terms of the cost of using computational facilities and the time required to get the results. 

However, the maximum time allowable in Iridis (60 hours) is a limitation for my calculation in the 

design chapter. I was not able to take more than 50 replications for the optimal 𝜏∗ as in some cases I 

found that the run time exceeded 60 hours and the jobs were terminated before completion. Also, I could 

not test all censoring schemes for larger values of 𝑛 and FP as the number of censoring schemes will 

be > 4000 and would take more than 60 hours.    

The suggestion to solve this problem of limited running time is to use parallel computing. As the 

censoring schemes are parallel, so parallel jobs can be used to calculate the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) under the 

various censoring schemes. Then, using a series job to find the optimal ℛ∗ that corresponds to the 

minimum 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) besides the near optimal ℛ∗ that have RE ≥ 95%. To take advantage of 

parallel computing using (mpirun) in Iridis, a parallel computing R script should be written using                

a parallel package, such as (doParallel) or (Rmpi) to write R commands using the message passing 

Interface with multi-core or Open Multiprocessing with multi-node. So, multiple tasks will be running 
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in parallel. It is more efficient than series jobs with respect to reducing the running time of total 

computation. 

It is important to note that some of the suggestions I already started to study, but due to limited time of 

the PhD and difficulties of programming the strategy, I was not able to get or discuss results. 

6.3 Extensions and Generalization of Current Model 

In this thesis, the parametric bootstrap approach has been used to construct the CIs of the model 

parameter. The parametric bootstrap distribution is smoother than the nonparametric one, because the 

samples are drawn from a continuous distribution. Therefore, the parametric bootstrap method may be 

more accurate than nonparametric bootstrap, just if the original distribution is estimated efficiently. Due 

to the complexity of the SSALT model and CEM, it may difficult to estimate the distribution of the 

population. Therefore, it may be beneficial to use the nonparametric bootstrap method to calculate the 

CIs of the model parameter. So, the original sample is used to represent an unknown population. In           

a nonparametric bootstrap, 𝐵 samples are re-sampled with replacement from the original sample. For 

each of these 𝐵 samples, the MLEs for the model parameters are calculated to obtain a sample of 𝐵 

bootstrap estimates. Then, the nonparametric bootstrap CIs for the parameters are derived and their 

performance are compared with parametric bootstrap CIs and asymptotic CIs.  

However, it should be mentioned that the computational time for calculating the bootstrap CIs increases 

as the sample size or FP increases. So, it is of interest to compare the computational time for obtaining 

the CIs based on different methods that are used to estimate the CIs for model parameters. As reducing 

the analysis time leads to reduce the total time requires for life test analysis and associated costs. 

One of the interesting aspects of designing SSALT under progressive Type-II censoring is the impact 

of optimal 𝜏∗ with the optimal ℛ∗ on the MLE of the 100𝓅𝑡ℎpercentile lifetime under the GED at usage 

stress level. So, the optimal 𝜏∗ could be determined under the 11 suggested schemes. Then, the 

𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) could be calculated based on each of the 11 schemes with their related optimal 𝜏∗ to 

compare their effects on the 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) and determine the optimal ℛ∗. In this case, the experimenter 

will have the optimal censoring scheme to set for the SSALT with the optimal time to change the stress 

level. 

From Chapter 4 and Chapter 5, we concluded that the number of failures under each stress level has         

a considerable effect on the estimation of the parameter of interest. The stress level is changed from 

lower stress level to higher stress level at a pre-determined stress change time. So, the number of failures 

under lower and higher stress levels are random. For this reason, there may no or a small number of 

failures at either lower or higher stress levels. Therefore, it may worth to change the stress level after 

predetermined number of failures occured. This model is called a failure-stress SSALT model in which 
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items are tested under lower stress level until a specified proportion of failures under lower stress level 

(see Nelson, 1990 for more details).  

In planning SSALTs, different factors affect the cost of the test, such as the sample size, the number of 

observed failures and the cost of equipment and facilities to apply the experiment. However, the 

experimental budget is usually predetermined and fixed. So, it is crucial to consider designing the 

SSALTs under cost constraints. 

For further study, it is planned to examine different optimality criteria, such as A-optimality and              

D-optimality criteria. Then, the results of optimal 𝜏∗ and optimal ℛ∗ can be compared with results 

obtained based on V-optimality criteria. The A-optimality and the D-optimality criteria are used to 

measure the overall variability. However, A-optimality is used when the correlation between the MLEs 

of the model parameters is low (Ng, et al., 2004). On the other hand, D-optimality is used when there is 

a correlation between the MLEs. In A-optimality, the objective function is based on the sum of 𝐴𝑉𝑎𝑟 

of the MLEs of the model parameters. Thus, it is the sum of the diagonal elements of the AV-C matrix. 

The optimal 𝜏∗ can be calculated by minimizing the trace function of the AV-C matrix 𝑇𝑟 (𝐹−1(δ̂𝑘)), 

where 

𝑇𝑟 (𝐹−1(δ̂𝑘)) = 𝐴𝑉𝑎𝑟(𝜃1) + 𝐴𝑉𝑎𝑟(𝜃2) + 𝐴𝑉𝑎𝑟(α̂), 𝑘 = 1,2,3   

If the life-stress relationship parameters are the most important to estimate with high precision, then       

D-optimality should be used (Gouno et al., 2004). In D-optimality, the optimal 𝜏∗ is obtained by 

minimizing the determinant of the Fisher information matrix of the MLEs of the model parameters. The 

determinant of the Fisher information matrix can be calculated using equation (4.14) in Chapter 4, as 

follows 

|𝐹−1(δ̂𝑘)| = 𝐴𝑉𝑎𝑟(𝜃1)[𝐴𝑉𝑎𝑟(𝜃2) × 𝐴𝑉𝑎𝑟(α̂) − Cov(𝜃2, α̂) × Cov(α̂, 𝜃2)]  

                − Cov(�̂�1, 𝜃2)[Cov(𝜃2, 𝜃1) × 𝐴𝑉𝑎𝑟(α̂) − Cov(𝜃2, α̂) × Cov(α̂, 𝜃1)]  

                + Cov(�̂�1, α̂)[Cov(𝜃2, 𝜃1) × Cov(α̂, 𝜃2) − 𝐴𝑉𝑎𝑟(𝜃2) × Cov(α̂, 𝜃1)]  

The simple SSALT model has been assumed in this thesis based on progressively Type-II censored data. 

In simple SSALT, two higher stress levels are assumed to accelerate the failure times of the products. 

Thus, extending the results to a more general model, a 3-step SSALT model is of natural interest. In the 

3-step SSALTs model, three higher stress levels are assumed. In simple SSALTs, it is noticed that as 

more failures occur at lower stress, the precision of the estimates is increased. So, it is interesting to 

investigate the impact of testing items on three stress levels close to the usage stress level. The results 

can be compared with simple SSALT in two aspects, the time of the total test and the precision of the 

parameter estimators. 
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6.4 Related Issues of Interest 

This thesis studies the statistical analysis and the design of the SSALT model based on progressive 

Type-II censoring. In the future plan, it would be interesting to suppose the SSALT model based on 

other censoring schemes, such as Type-I and Type-II hybrid censoring schemes. 

In reliability and life testing, two accelerated models can be used to accelerate failure time: fully, or 

simply, ALTs and partially-ALTs. In the proposed SSALT model, items are tested under two higher 

stress levels. In partially-ALTs, the units are tested first under a usage stress level to observe failure 

times, and then non-failed units are tested further under a higher stress level. So, the partially-ALT 

model allows the experimenter to collect some of the observed failure times under a usage stress level. 

The partially-ALT model contains an acceleration factor, which describes the relationship between 

usage and accelerated stress level. The partially-ALT design based on GED could be illustrated under 

progressive Type-II censoring schemes. Results could be compared with the ALT under PCSs with 

respect to the estimator precision of the model parameters. 
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Appendix A  

Statistical Inference Results 
Table A.1 The AB and MSE for the ML, bootstrap and jackknife estimates of the scale parameter 𝜃1 

at (𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2, 𝜏 = 0.4) for different 𝑛, FP and censoring schemes (C.Sc). 
The standard error of estimated AB and MSE are presented alongside the ML measures. A.1 

 

n 
FP% 
= 𝒓 C.Sc 

 ML Bootstrap Jackknife 

MLE AB SE(AB) MSE SE(MSE) AB MSE AB MSE 

40 

60% 
= 24 

ℛ1 0.6473 0.2036 0.0042 0.2307 0.0132 0.2800 1.4595 0.0783 0.3232 

ℛ2 0.6638 0.2522 0.0082 0.3000 0.0249 0.4661 7.9451 0.1195 1.1642 

ℛ3 0.6176 0.2127 0.0043 0.2475 0.0204 0.2634 0.7325 0.0419 0.1945 

ℛ4 0.6330 0.2185 0.0045 0.2819 0.0201 0.2780 1.0023 0.0614 0.243 

80% 
= 32 

ℛ1 0.6353 0.2046 0.0046 0.2574 0.0273 0.2570 0.5556 0.0711 0.3668 

ℛ2 0.6543 0.2336 0.0051 0.3352 0.0239 0.3238 1.3875 0.0741 0.4039 

ℛ3 0.6339 0.2032 0.0043 0.2310 0.0184 0.2569 0.5073 0.0503 0.1591 

ℛ4 0.6296 0.2042 0.0043 0.2392 0.0224 0.2630 0.7341 0.057 0.2238 
100% 
= 40 ℛ0 0.6399 0.2050 0.0045 0.2416 0.0200 0.2494 0.4337 0.0641 0.2383 

60 

60% 
= 36 

ℛ1 0.6166 0.1637 0.0030 0.1159 0.0048 0.1894 0.1692 0.0438 0.2061 

ℛ2 0.6588 0.2119 0.0045 0.2495 0.0159 0.2720 0.567 0.0514 0.2402 

ℛ3 0.6120 0.1692 0.0029 0.1265 0.0048 0.1907 0.1293 0.0200 0.0964 

ℛ4 0.6189 0.1760 0.0032 0.1403 0.0065 0.2043 0.1642 0.0314 0.0866 

80% 
= 48 

ℛ1 0.6235 0.1655 0.0031 0.1203 0.0052 0.1870 0.132 0.0345 0.1152 

ℛ2 0.6334 0.1808 0.0036 0.1621 0.0099 0.2206 0.245 0.0344 0.1022 

ℛ3 0.6199 0.1696 0.0030 0.1217 0.0053 0.1863 0.1188 0.0314 0.1525 

ℛ4 0.6206 0.1676 0.0030 0.1213 0.0060 0.1857 0.1346 0.0273 0.0736 
100% 
= 60 ℛ0 0.6228 0.1641 0.0030 0.1175 0.0048 0.1865 0.1274 0.0317 0.0793 

80 

60% 
= 48 

ℛ1 0.6172 0.1399 0.0023 0.0763 0.0023 0.1594 0.0852 0.0330 0.1759 

ℛ2 0.6387 0.1767 0.0035 0.1548 0.0096 0.2108 0.2073 0.0273 0.0852 

ℛ3 0.6023 0.1505 0.0026 0.0911 0.0037 0.1609 0.0670 0.0095 0.0433 

ℛ4 0.6158 0.1528 0.0026 0.0951 0.0042 0.1644 0.0758 0.0198 0.0529 

80% 
= 64 

ℛ1 0.6171 0.1397 0.0025 0.0803 0.0032 0.1523 0.0625 0.0247 0.0874 

ℛ2 0.6186 0.1528 0.0027 0.0981 0.0037 0.1730 0.0923 0.0216 0.0555 

ℛ3 0.6108 0.1434 0.0024 0.0786 0.0027 0.1539 0.0616 0.0169 0.0464 

ℛ4 0.6130 0.1394 0.0024 0.0784 0.0036 0.1529 0.0617 0.0171 0.0445 
100% 
= 80 ℛ0 0.6152 0.1408 0.0025 0.0792 0.0034 0.1533 0.0609 0.0212 0.0439 
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Table A.2 The AB and MSE for the ML, bootstrap and jackknife estimates of the scale parameter 𝜃1 

at (𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2, 𝜏 = 0.6) for different 𝑛, FP and censoring schemes. The 

standard error of estimated AB and MSE are presented alongside the ML measures.A.2 

 
 

n 
FP% 
= 𝒓 

C.Sc 
 ML Bootstrap Jackknife 

MLE AB SE(AB) MSE SE(MSE) AB MSE AB MSE 

40 

60% 
= 24 

ℛ1 0.7299 0.1833 0.0049 0.1618 0.0084 0.2331 0.2126 0.0721 0.3625 

ℛ2 0.6403 0.1979 0.0041 0.2108 0.0145 0.2445 0.7339 0.0379 0.1541 

ℛ3 0.6099 0.1815 0.0031 0.1441 0.0053 0.1925 0.1327 0.0154 0.0605 

ℛ4 0.6170 0.1802 0.0034 0.1499 0.0085 0.2007 0.1784 0.0237 0.0766 

80% 
= 32 

ℛ1 0.6162 0.1513 0.0027 0.1005 0.0049 0.1695 0.0949 0.0309 0.1190 

ℛ2 0.6240 0.1720 0.0033 0.1388 0.0066 0.1982 0.2417 0.0255 0.0829 

ℛ3 0.6160 0.1623 0.0027 0.1084 0.0037 0.1783 0.1060 0.0146 0.0532 

ℛ4 0.6079 0.1602 0.0028 0.1084 0.0049 0.1745 0.1045 0.0178 0.0592 

100% 
= 40 ℛ0 0.6183 0.1562 0.0028 0.1025 0.0040 0.1699 0.0971 0.0230 0.0609 

60 

60% 
= 36 

ℛ1 0.6853 0.1289 0.0029 0.0724 0.0023 0.1311 0.0582 0.0492 0.2579 

ℛ2 0.6255 0.1584 0.0030 0.1124 0.0062 0.1783 0.1108 0.0192 0.0662 

ℛ3 0.6015 0.1514 0.0025 0.0897 0.0035 0.1567 0.0625 0.0096 0.0402 

ℛ4 0.6076 0.1443 0.0024 0.0821 0.0029 0.1518 0.0584 0.0120 0.0382 

80% 
= 48 

ℛ1 0.6095 0.1226 0.0020 0.0574 0.0019 0.1306 0.0399 0.0202 0.0809 

ℛ2 0.6177 0.1379 0.0024 0.0762 0.0025 0.1463 0.0573 0.0136 0.0422 

ℛ3 0.6075 0.1332 0.0022 0.0677 0.0024 0.1366 0.0428 0.0077 0.0302 

ℛ4 0.6030 0.1298 0.0020 0.0621 0.0017 0.1356 0.0422 0.0088 0.0299 

100% 
= 60 ℛ0 0.6121 0.1214 0.0020 0.0567 0.0017 0.1315 0.0403 0.0126 0.0311 

80 

60% 
= 48 

ℛ1 0.6645 0.1104 0.0024 0.0497 0.0016 0.1189 0.3312 0.0410 0.2241 

ℛ2 0.6175 0.1338 0.0023 0.0713 0.0025 0.1488 0.0610 0.0109 0.0381 

ℛ3 0.6066 0.1326 0.0021 0.0653 0.0019 0.1351 0.0389 0.0064 0.0306 

ℛ4 0.6010 0.1213 0.0018 0.0532 0.0014 0.1252 0.0336 0.0084 0.0266 

80% 
= 64 

ℛ1 0.6053 0.1096 0.0017 0.0415 0.0011 0.1122 0.0260 0.0157 0.0669 

ℛ2 0.6135 0.1187 0.0019 0.0524 0.0015 0.1272 0.0367 0.0090 0.0273 

ℛ3 0.6018 0.1123 0.0017 0.0452 0.0011 0.1169 0.0277 0.0054 0.0224 

ℛ4 0.6057 0.1117 0.0018 0.0458 0.0013 0.1177 0.0287 0.0062 0.0203 

100% 
= 80 ℛ0 0.6059 0.1081 0.0017 0.0417 0.0012 0.1120 0.0256 0.0091 0.0221 
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Table A.3 The AB and MSE for the ML, bootstrap and jackknife estimates of the scale parameter 𝜃2 

at (𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2, 𝜏 = 0.4) for different 𝑛, FP and censoring schemes. The 

standard error of estimated AB and MSE are presented alongside the ML measures. A.3 

 
 

n 
FP% 
= 𝒓 

C.Sc 
 ML Bootstrap Jackknife 

MLE AB SE(AB) MSE SE(MSE) AB MSE AB MSE 

40 

60% 
= 24 

ℛ1 0.2929 0.0921 0.0013 0.0307 6e-04 0.0878 0.0142 0.0275 0.0784 

ℛ2 0.2968 0.0637 9e-04 0.0136 2e-04 0.0634 0.0069 0.0096 0.0073 

ℛ3 0.2935 0.0750 0.0011 0.0193 4e-04 0.0733 0.0093 0.0089 0.0101 

ℛ4 0.2982 0.0761 0.0011 0.0198 3e-04 0.07311 0.0093 0.0105 0.0089 

80% 
= 32 

ℛ1 0.2964 0.0626 9e-04 0.0131 2e-04 0.0617 0.0065 0.0104 0.0358 

ℛ2 0.2996 0.0550 8e-04 0.0102 2e-04 0.0555 0.0052 0.0053 0.0055 

ℛ3 0.3005 0.0602 8e-04 0.0121 2e-04 0.0588 0.0059 0.0052 0.0060 

ℛ4 0.2994 0.0597 8e-04 0.0120 2e-04 0.0586 0.0058 0.0056 0.0060 

100% 
= 40 ℛ0 0.2989 0.0495 7e-04 0.0082 1e-04 0.0497 0.0041 0.0034 0.0043 

60 

60% 
= 36 

ℛ1 0.2953 0.0770 0.0011 0.0205 4e-04 0.0738 0.0096 0.0199 0.0743 

ℛ2 0.2979 0.0532 7e-04 0.0091 1e-04 0.0524 0.0046 0.0050 0.0048 

ℛ3 0.2971 0.0632 9e-04 0.0131 2e-04 0.0598 0.0060 0.0050 0.0067 

ℛ4 0.2949 0.0630 9e-04 0.0129 2e-04 0.0609 0.0063 0.0047 0.0058 

80% 
= 48 

ℛ1 0.2990 0.0504 7e-04 0.0084 1e-04 0.0507 0.0043 0.0057 0.0326 

ℛ2 0.3006 0.0455 6e-04 0.0068 1e-04 0.0454 0.0034 0.0029 0.0035 

ℛ3 0.2991 0.0493 7e-04 0.0079 1e-04 0.0488 0.0039 0.0023 0.0040 

ℛ4 0.2995 0.0491 7e-04 0.0079 1e-04 0.0486 0.0039 0.0025 0.0039 

100% 
= 60 ℛ0 0.2981 0.0406 6e-04 0.0053 1e-04 0.0408 0.0027 0.0013 0.0027 

80 

60% 
= 48 

ℛ1 0.2972 0.0650 9e-04 0.0144 2e-04 0.0671 0.0739 0.0139 0.0698 

ℛ2 0.3005 0.0460 6e-04 0.0069 1e-04 0.0454 0.0034 0.0031 0.0035 

ℛ3 0.2985 0.0525 7e-04 0.0092 1e-04 0.0525 0.0046 0.0028 0.0049 

ℛ4 0.2976 0.0535 7e-04 0.0095 1e-04 0.0537 0.0048 0.0028 0.0044 

80% 
= 64 

ℛ1 0.2985 0.0444 6e-04 0.0064 1e-04 0.0438 0.0032 0.0041 0.0317 

ℛ2 0.3003 0.0386 6e-04 0.0050 1e-04 0.0398 0.0026 0.0016 0.0026 

ℛ3 0.3011 0.0426 6e-04 0.0059 1e-04 0.0422 0.0029 0.0014 0.0030 

ℛ4 0.2999 0.0411 6e-04 0.0057 1e-04 0.0422 0.0029 0.0010 0.0029 

100% 
= 80 ℛ0 0.2997 0.0352 5e-04 0.0040 1e-04 0.0355 0.0020 0.0010 0.0021 
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Table A.4 The AB and MSE for the ML, bootstrap and jackknife estimates of the scale parameter 𝜃2 

at (𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2, 𝜏 = 0.6) for different 𝑛, FP and censoring schemes. The 

standard error of estimated AB and MSE are presented alongside the ML measures. A.4 

 

 

n 
FP% 
= 𝒓 

C.Sc 
 ML Bootstrap Jackknife 

MLE AB SE(AB) MSE SE(MSE) AB MSE AB MSE 

40 

60% 
= 24 

ℛ1 0.2820 0.1346 0.0024 0.0717 0.0024 0.1090 0.0242 0.0420 0.1196 

ℛ2 0.2970 0.0731 0.0010 0.0183 3e-04 0.0717 0.0088 0.0100 0.0101 

ℛ3 0.2911 0.0868 0.0012 0.0262 4e-04 0.0839 0.0122 0.0138 0.0151 

ℛ4 0.2920 0.0905 0.0012 0.0293 5e-04 0.0869 0.0131 0.0178 0.0166 

80% 
= 32 

ℛ1 0.2948 0.0794 0.0011 0.0219 4e-04 0.0772 0.0103 0.0178 0.0529 

ℛ2 0.2989 0.0663 9e-04 0.0142 2e-04 0.0624 0.0065 0.0067 0.0075 

ℛ3 0.2969 0.0695 9e-04 0.0163 3e-04 0.0674 0.0076 0.0069 0.0089 

ℛ4 0.2979 0.0709 0.001 0.0168 3e-04 0.0677 0.0077 0.0069 0.0092 

100% 
= 40 

ℛ0 0.2976 0.0571 8e-04 0.0108 2e-04 0.0564 0.0053 0.0037 0.0058 

60 

60% 
= 36 

ℛ1 0.2874 0.1276 0.0022 0.0653 0.0020 0.0936 0.1003 0.0386 0.1223 

ℛ2 0.2975 0.0611 8e-04 0.0123 2e-04 0.0590 0.0058 0.0055 0.0067 

ℛ3 0.3003 0.0747 0.0010 0.0184 3e-04 0.0692 0.0081 0.0070 0.0097 

ℛ4 0.2973 0.0769 0.0010 0.0202 3e-04 0.0732 0.0090 0.0085 0.0103 

80% 
= 48 

ℛ1 0.2973 0.0665 9e-04 0.0146 2e-04 0.0643 0.0070 0.0104 0.0493 

ℛ2 0.3005 0.0537 7e-04 0.0093 1e-04 0.0520 0.0044 0.0023 0.0047 

ℛ3 0.3003 0.0579 8e-04 0.0111 2e-04 0.0565 0.0052 0.0033 0.0060 

ℛ4 0.2991 0.0586 8e-04 0.0111 2e-04 0.0563 0.0052 0.0033 0.0058 

100% 
= 60 

ℛ0 0.2985 0.0480 7e-04 0.0073 1e-04 0.0464 0.0035 0.0013 0.0037 

80 

60% 
= 48 

ℛ1 0.2928 0.1180 0.0021 0.0580 0.0016 0..1052 0.1832 0.0364 0.1195 

ℛ2 0.2992 0.0533 7e-04 0.0092 1e-04 0.0520 0.0044 0.0026 0.0047 

ℛ3 0.299 0.0634 9e-04 0.0133 2e-04 0.0610 0.0062 0.0039 0.0070 

ℛ4 0.2971 0.0674 9e-04 0.0154 3e-04 0.0657 0.0072 0.0049 0.0078 

80% 
= 64 

ℛ1 0.3010 0.0578 8e-04 0.0110 2e-04 0.0563 0.0053 0.0068 0.0472 

ℛ2 0.3002 0.0466 6e-04 0.0069 1e-04 0.0451 0.0033 0.0015 0.0036 

ℛ3 0.2984 0.0491 7e-04 0.0080 1e-04 0.0494 0.0040 0.0015 0.0043 

ℛ4 0.2998 0.0508 7e-04 0.0084 1e-04 0.0495 0.0040 0.0019 0.0043 

100% 
= 80 

ℛ0 0.3002 0.0416 6e-04 0.0055 1e-04 0.0409 0.0027 0.0008 0.0027 
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Table A.5 The AB and MSE for the ML, bootstrap and jackknife estimates of the shape parameter 𝛼 

at (𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2, 𝜏 = 0.4) for different 𝑛, FP and censoring schemes. The 

standard error of estimated AB and MSE are presented alongside the ML measures. A.5 

 
 

n 
FP% 
= 𝒓 

C.Sc 
 ML Bootstrap Jackknife 

MLE AB SE(AB) MSE SE(MSE) AB MSE AB MSE 

40 

60% 
= 24 

ℛ1 1.3338 0.3226 0.0067 0.4485 0.0254 0.4000 0.4885 0.4523 1.0711 

ℛ2 1.3567 0.3671 0.0073 0.5896 0.0274 0.4377 0.6025 0.3276 0.9309 

ℛ3 1.3798 0.3583 0.0068 0.5265 0.0194 0.4277 0.5387 0.2082 0.4934 

ℛ4 1.3674 0.3503 0.0069 0.5175 0.0218 0.4258 0.5517 0.2049 0.4427 

80% 
= 32 

ℛ1 1.3562 0.3348 0.0069 0.4746 0.0244 0.3881 0.4275 0.2341 0.4282 

ℛ2 1.3563 0.3510 0.0071 0.5261 0.0229 0.3927 0.4145 0.2420 0.6122 

ℛ3 1.3567 0.3338 0.0065 0.4733 0.0212 0.3920 0.4160 0.1884 0.3728 

ℛ4 1.3557 0.3369 0.0068 0.4764 0.0260 0.3940 0.4213 0.1927 0.4002 

100% 
= 40 

ℛ0 1.3476 0.3352 0.0065 0.4524 0.0176 0.3724 0.3575 0.1816 0.3491 

60 

60% 
= 36 

ℛ1 1.3074 0.2670 0.0047 0.2555 0.0082 0.2873 0.1826 0.3320 0.5384 

ℛ2 1.2957 0.2849 0.0051 0.3192 0.0117 0.3167 0.2203 0.2006 0.3605 

ℛ3 1.3152 0.2718 0.0048 0.2780 0.0088 0.3047 0.2014 0.1260 0.1964 

ℛ4 1.3149 0.2765 0.0049 0.2796 0.0087 0.2988 0.1957 0.1225 0.1854 

80% 
= 48 

ℛ1 1.2982 0.2607 0.0045 0.2448 0.0071 0.2857 0.1795 0.1605 0.2154 

ℛ2 1.3066 0.2755 0.0050 0.2886 0.0098 0.2993 0.1943 0.1479 0.2256 

ℛ3 1.3043 0.2629 0.0046 0.2514 0.0071 0.2857 0.1753 0.1162 0.1773 

ℛ4 1.3055 0.2654 0.0047 0.2569 0.0078 0.2891 0.1829 0.1160 0.1756 

100% 
= 60 

ℛ0 1.2973 0.2597 0.0046 0.2459 0.0076 0.2802 0.1665 0.1123 0.1697 

80 

60% 
= 48 

ℛ1 1.2709 0.2180 0.0036 0.1663 0.0041 0.2629 0.1901 0.2777 0.3539 

ℛ2 1.2739 0.2491 0.0041 0.2237 0.0059 0.2669 0.1428 0.1379 0.1878 

ℛ3 1.3030 0.2373 0.0041 0.2021 0.0059 0.2522 0.1270 0.0918 0.1279 

ℛ4 1.2771 0.2299 0.0039 0.1845 0.0048 0.2454 0.1206 0.0887 0.1197 

80% 
= 64 

ℛ1 1.2712 0.2154 0.0035 0.1629 0.0038 0.2355 0.1099 0.1263 0.1381 

ℛ2 1.2836 0.2307 0.0040 0.1942 0.0056 0.2473 0.1211 0.1009 0.1241 

ℛ3 1.2827 0.2263 0.0036 0.1717 0.0041 0.2372 0.1112 0.0831 0.1065 

ℛ4 1.2738 0.2150 0.0036 0.1647 0.0040 0.2365 0.1101 0.0805 0.1060 

100% 
= 80 

ℛ0 1.2706 0.2136 0.0035 0.1616 0.0040 0.2297 0.1028 0.0778 0.1014 
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Table A.6 The AB and MSE for the ML, bootstrap and jackknife estimates of the shape parameter 𝛼 

at (𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2, 𝜏 = 0.6) for different 𝑛, FP and censoring schemes. The 

standard error of estimated AB and MSE are presented alongside the ML measures. A.6 

 
 

n 
FP% 
= 𝒓 

C.Sc 
 ML Bootstrap Jackknife 

MLE AB SE(AB) MSE SE(MSE) AB MSE AB MSE 

40 

60% 
= 24 

ℛ1 1.2682 0.2858 0.0067 0.3026 0.0128 0.3204 0.2463 0.5261 1.3903 

ℛ2 1.3277 0.3270 0.0062 0.4237 0.0162 0.3724 0.3437 0.2609 0.6168 

ℛ3 1.3575 0.3279 0.0064 0.4249 0.0200 0.3812 0.3735 0.1588 0.3153 

ℛ4 1.3409 0.3136 0.0057 0.3761 0.0137 0.3635 0.3326 0.1607 0.2914 

80% 
= 32 

ℛ1 1.3153 0.2825 0.0051 0.3003 0.0092 0.3205 0.2355 0.2159 0.3517 

ℛ2 1.3338 0.3081 0.0057 0.3664 0.0165 0.3427 0.2735 0.1785 0.3202 

ℛ3 1.3250 0.2975 0.0054 0.3349 0.0113 0.3341 0.2626 0.1448 0.2469 

ℛ4 1.3426 0.3083 0.0061 0.3761 0.0201 0.3366 0.2630 0.1419 0.2405 

100% 
= 40 

ℛ0 1.3132 0.2906 0.0053 0.3139 0.0100 0.3176 0.2267 0.1357 0.2234 

60 

60% 
= 36 

ℛ1 1.2297 0.2058 0.0041 0.1542 0.0045 0.2294 0.3634 0.4327 0.7606 

ℛ2 1.2832 0.2587 0.0042 0.2380 0.0061 0.2802 0.1608 0.1467 0.2076 

ℛ3 1.3020 0.2506 0.0045 0.2306 0.0068 0.2735 0.1553 0.0989 0.1573 

ℛ4 1.2944 0.2447 0.0042 0.2140 0.0061 0.2688 0.1508 0.0986 0.1386 

80% 
= 48 

ℛ1 1.2778 0.2255 0.0038 0.1796 0.0050 0.2421 0.1165 0.1525 0.1813 

ℛ2 1.2749 0.2365 0.0040 0.2009 0.0052 0.2588 0.1340 0.1098 0.1418 

ℛ3 1.2857 0.2340 0.0039 0.1922 0.0056 0.2523 0.1278 0.0885 0.1219 

ℛ4 1.2908 0.2346 0.0041 0.1968 0.0055 0.2528 0.1285 0.0884 0.1210 

100% 
= 60 

ℛ0 1.2707 0.2204 0.0036 0.1705 0.0044 0.2405 0.1144 0.0843 0.1127 

80 

60% 
= 48 

ℛ1 1.2258 0.1877 0.0037 0.1189 0.0034 0.2943 0.1062 0.4108 0.6466 

ℛ2 1.2653 0.2262 0.0037 0.1772 0.0046 0.2366 0.1077 0.1076 0.1307 

ℛ3 1.2691 0.2101 0.0036 0.1556 0.0043 0.2256 0.0980 0.0688 0.0997 

ℛ4 1.2714 0.2019 0.0033 0.1428 0.0035 0.2217 0.0943 0.0700 0.0866 

80% 
= 64 

ℛ1 1.2576 0.1948 0.0030 0.1234 0.0027 0.2010 0.0759 0.1236 0.1272 

ℛ2 1.2539 0.2022 0.0032 0.1399 0.0032 0.2148 0.0872 0.0790 0.0884 

ℛ3 1.2701 0.1984 0.0032 0.1341 0.0031 0.2101 0.0836 0.0633 0.0795 

ℛ4 1.2598 0.1944 0.0032 0.1321 0.0032 0.2094 0.0830 0.0639 0.0782 

100% 
= 80 

ℛ0 1.2530 0.1917 0.0030 0.1229 0.0028 0.1987 0.0734 0.0597 0.0729 
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Table A.7 Estimated CP (in %) and AL of asymptotic, BS and Jackknife CIs for 𝜃1 at confidence level 

= 95%, 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and 𝜏 = 0.4 for different 𝑛, FP, 𝜏 and censoring 

schemes. The standard error of estimated AL and CP are presented alongside the 

Asymptotic CI performance measures. A.7 

n FP% 
= 𝒓 C.Sc. 

Asymptotic CI Percentile BS CI BCa BS CI 

AL SE(AL) CP SE(CP) AL CP AL CP 

40 

60% 
= 24 

ℛ1 1.1398 0.0167 90.86 0.0053 1.5957 95.97 1.8962 94.89 

ℛ2 1.6607 0.0413 89.33 0.0056 2.8506 95.56 3.7520 94.53 

ℛ3 1.1574 0.0176 87.33 0.0061 1.4732 92.13 2.1690 92.96 

ℛ4 1.2157 0.0200 87.90 0.0060 1.6562 92.32 2.3857 93.64 

80% 
= 32 

ℛ1 1.1137 0.0192 88.83 0.0058 1.4459 94.63 2.1339 95.00 

ℛ2 1.2748 0.0221 88.10 0.0059 1.8979 95.46 2.3911 93.96 

ℛ3 1.1112 0.0167 89.26 0.0057 1.4435 94.06 1.9527 93.33 

ℛ4 1.1084 0.0178 88.46 0.0058 1.4860 93.76 1.9465 93.53 
100% 
= 40 ℛ0 1.1060 0.0172 89.10 0.0057 1.4037 94.20 1.8785 92.80 

60 

60% 
= 36 

ℛ1 0.8396 0.0094 89.88 0.0055 1.3910 94.91 1.7196 94.01 

ℛ2 1.1579 0.0172 90.53 0.0053 1.5512 95.80 1.8204 93.93 

ℛ3 0.9123 0.0096 90.10 0.0055 1.0143 92.66 1.3282 92.66 

ℛ4 0.9235 0.0108 88.96 0.0057 1.1038 94.00 1.3479 93.60 

80% 
= 48 

ℛ1 0.8516 0.0095 88.93 0.0057 1.0057 94.46 1.4243 94.56 

ℛ2 0.9590 0.0126 90.20 0.0054 1.2175 94.36 1.3765 92.53 

ℛ3 0.8535 0.0096 88.56 0.0058 0.9989 94.26 1.2050 92.10 

ℛ4 0.8581 0.0096 89.20 0.0057 0.9945 94.46 1.2386 93.30 
100% 
= 60 ℛ0 0.8457 0.0093 89.96 0.0055 1.0032 93.76 1.1406 94.06 

80 

60% 
= 48 

ℛ1 0.7182 0.0063 90.89 0.0053 0.9295 94.19 1.2194 93.91 

ℛ2 0.9429 0.0120 90.33 0.0054 1.1595 94.76 1.3206 93.70 

ℛ3 0.7691 0.0072 89.86 0.0055 0.8348 93.76 0.9980 92.56 

ℛ4 0.7805 0.0076 89.66 0.0056 0.8646 93.73 1.0521 93.75 

80% 
= 64 

ℛ1 0.7164 0.0067 91.30 0.0051 0.7994 94.50 1.0651 95.10 

ℛ2 0.7903 0.0080 89.76 0.0055 0.9227 94.76 1.0408 93.73 

ℛ3 0.7127 0.0065 90.43 0.0054 0.8059 93.23 0.9217 93.50 

ℛ4 0.7185 0.0065 90.36 0.0054 0.7996 94.4 0.9176 93.96 
100% 
= 80 ℛ0 0.7096 0.0066 91.26 0.0052 0.8029 94.50 0.8862 94.60 

 
 
 
 
 



Appendix A 

136 

Table A.8 Estimated CP (in %) and AL of asymptotic, BS and Jackknife CIs for 𝜃1 at confidence level 

= 95%, 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and 𝜏 = 0.6 for different 𝑛, FP, 𝜏 and censoring 

schemes. The standard error of estimated AL and CP are presented alongside the 

Asymptotic CI performance measures. A.8 

n FP% 
= 𝒓 C.Sc. 

Asymptotic CI Percentile BS CI BCa BS CI 

AL SE(AL) CP SE(CP) AL CP AL CP 

40 

60% 
= 24 

ℛ1 1.0320 0.0134 98.42 0.0031 1.2381 96.17 1.5926 95.05 

ℛ2 1.0666 0.0154 88.80 0.0058 1.3765 94.55 1.8808 95.20 

ℛ3 0.9596 0.0108 88.76 0.0058 1.0190 91.43 1.3159 94.33 

ℛ4 0.9375 0.0114 89.23 0.0057 1.0776 92.83 1.2510 94.50 

80% 
= 32 

ℛ1 0.7950 0.0084 90.94 0.0052 0.9049 95.06 1.2982 93.91 

ℛ2 0.8988 0.0111 89.83 0.0055 1.0833 94.06 1.3966 93.76 

ℛ3 0.8432 0.0084 89.50 0.0056 0.9430 93.70 1.1549 93.50 

ℛ4 0.8320 0.0088 89.33 0.0056 0.9246 93.10 1.1977 93.80 
100% 
= 40 ℛ0 0.7985 0.0084 89.96 0.0055 0.9070 94.33 1.1125 93.60 

60 

60% 
= 36 

ℛ1 0.7489 0.0062 99.33 0.0019 0.9928 94.29 1.1019 94.17 

ℛ2 0.8225 0.0092 90.30 0.0054 0.9584 95.16 1.1294 94.80 

ℛ3 0.7640 0.0072 89.66 0.0056 0.8093 93.40 0.9351 94.36 

ℛ4 0.7323 0.0067 90.80 0.0053 0.7717 93.36 0.9770 94.20 

80% 
= 48 

ℛ1 0.6268 0.0050 91.76 0.0050 0.6773 93.80 0.7974 97.50 

ℛ2 0.7058 0.0063 91.20 0.0052 0.7678 94.23 0.8971 93.66 

ℛ3 0.6694 0.0056 90.03 0.0055 0.7029 93.90 0.8139 94.20 

ℛ4 0.6581 0.0051 90.47 0.0054 0.6985 93.70 0.8230 94.66 
100% 
= 60 ℛ0 0.6289 0.0049 92.37 0.0048 0.6801 93.96 0.7603 94.53 

80 

60% 
= 48 

ℛ1 0.6154 0.0046 98.77 0.0026 0.8195 92.98 0.8819 93.15 

ℛ2 0.6896 0.0060 91.37 0.0051 0.7839 93.73 0.8661 93.84 

ℛ3 0.6658 0.0053 90.90 0.0053 0.6890 93.73 0.7741 93.68 

ℛ4 0.6168 0.0044 91.53 0.0051 0.6400 92.43 0.7608 94.72 

80% 
= 64 

ℛ1 0.5328 0.0037 91.26 0.0052 0.5735 93.86 0.6999 94.80 

ℛ2 0.5997 0.0045 91.87 0.0050 0.6563 94.30 0.7102 94.00 

ℛ3 0.5662 0.0038 91.50 0.0051 0.5932 93.86 0.6533 93.56 

ℛ4 0.5697 0.0039 92.00 0.0050 0.5987 93.03 0.6670 93.56 
100% 
= 80 ℛ0 0.5326 0.0037 91.63 0.0051 0.5712 94.90 0.6193 94.50 
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Table A.9 Estimated CP (in %) and AL of asymptotic, BS and Jackknife CIs for 𝜃1 at confidence level 

= 99%, 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and 𝜏 = 0.4 for different 𝑛, FP, 𝜏 and censoring 

schemes. The standard error of estimated AL and CP are presented alongside the 

Asymptotic CI performance measures. A.9 

n FP% 
= 𝒓 C.Sc. 

Asymptotic CI Percentile BS CI BCa BS CI 

AL SE(AL) CP SE(CP) AL CP AL CP 

40 

60% 
= 24 

ℛ1 1.4980 0.0229 94.79 0.0041 3.0851 99.14 4.0285 98.82 

ℛ2 2.1825 0.0250 94.03 0.0043 6.6394 99.04 7.7749 98.86 

ℛ3 1.5211 0.0240 92.90 0.0047 2.6793 97.13 3.7151 98.24 

ℛ4 1.5977 0.0252 93.03 0.0046 3.0872 97.84 4.2177 98.68 

80% 
= 32 

ℛ1 1.4636 0.0230 94.00 0.0043 2.6275 98.43 3.4706 99.25 

ℛ2 1.6754 0.0260 93.36 0.0045 3.7073 99.26 4.4696 98.20 

ℛ3 1.4603 0.0229 93.90 0.0044 2.5818 98.70 3.3443 98.30 

ℛ4 1.4567 0.0242 93.36 0.0045 2.6648 98.30 3.3418 98.70 
100% 
= 40 ℛ0 1.4535 0.0235 94.13 0.0043 2.5056 98.96 3.1774 98.56 

60 

60% 
= 36 

ℛ1 1.1034 0.0132 94.50 0.0042 1.4982 97.70 1.960 98.29 

ℛ2 1.5217 0.0236 94.93 0.0040 2.8461 99.43 3.1620 99.10 

ℛ3 1.1990 0.0137 94.40 0.0042 1.5897 97.86 2.0083 98.16 

ℛ4 1.2137 0.0151 94.03 0.0043 1.7628 98.10 2.0808 98.60 

80% 
= 48 

ℛ1 1.1192 0.0134 94.10 0.0043 1.5938 98.66 2.1973 98.53 

ℛ2 1.2604 0.0174 94.86 0.0040 2.0163 98.86 2.1946 97.90 

ℛ3 1.1216 0.0135 94.36 0.0042 1.5664 98.53 1.8414 97.86 

ℛ4 1.1277 0.0136 94.76 0.0041 1.5580 98.10 1.8879 98.13 
100% 
= 60 ℛ0 1.1114 0.0132 94.46 0.0042 1.5730 98.46 1.7160 98.33 

80 

60% 
= 48 

ℛ1 0.9439 0.0092 95.33 0.0039 1.1839 98.26 1.2943 98.19 

ℛ2 1.2392 0.0167 95.60 0.0037 1.9103 98.83 2.0832 98.53 

ℛ3 1.0108 0.0105 94.66 0.0041 1.2335 98.23 1.4301 98.20 

ℛ4 1.0258 0.0109 94.33 0.0042 1.2982 98.03 1.5453 98.35 

80% 
= 64 

ℛ1 0.9416 0.0097 95.53 0.0038 1.1867 99.03 1.5006 98.63 

ℛ2 1.0387 0.0114 94.73 0.0041 1.4116 99.30 1.5573 98.53 

ℛ3 0.9366 0.0094 95.16 0.0039 1.193 98.03 1.3351 98.10 

ℛ4 0.9443 0.0095 95.13 0.0039 1.1822 98.93 1.3216 98.16 
100% 
= 80 ℛ0 0.9325 0.0096 95.93 0.0036 1.1861 98.66 1.2742 98.23 
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Table A.10 Estimated CP (in %) and AL of asymptotic, BS and Jackknife CIs for 𝜃1 at confidence level 

= 99%, 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and 𝜏 = 0.6 for different 𝑛, FP, 𝜏 and censoring 

schemes. The standard error of estimated AL and CP are presented alongside the 

Asymptotic CI performance measures. A.10 

n FP% 
= 𝒓 C.Sc. 

Asymptotic CI Percentile BS CI BCa BS CI 

AL SE(AL) CP SE(CP) AL CP AL CP 

40 

60% 
= 24 

ℛ1 1.3562 0.0173 99.33 0.0020 1.9544 99.68 2.6194 97.91 

ℛ2 1.4017 0.0212 93.93 0.0044 2.5595 98.30 3.3111 99.00 

ℛ3 1.2611 0.0152 93.60 0.0045 1.5877 97.30 1.6279 97.66 

ℛ4 1.2321 0.0159 93.67 0.0044 1.7180 97.20 1.4757 96.50 

80% 
= 32 

ℛ1 1.0448 0.0120 95.29 0.0039 1.4015 99.13 1.7204 98.94 

ℛ2 1.1812 0.0154 94.77 0.0041 1.7912 98.26 2.2643 99.16 

ℛ3 1.1082 0.0121 94.20 0.0043 1.4659 98.33 1.7180 98.60 

ℛ4 1.0934 0.0125 93.70 0.0044 1.4326 97.90 1.8043 98.56 
100% 
= 40 ℛ0 1.0495 0.0120 94.33 0.0042 1.4098 98.70 1.6982 98.43 

60 

60% 
= 36 

ℛ1 0.9842 0.0098 99.67 0.0013 1.2951 97.72 1.3559 97.93 

ℛ2 1.0809 0.0130 94.77 0.0041 1.5114 98.83 1.7532 99.06 

ℛ3 1.0040 0.0104 95.20 0.0039 1.1810 98.13 1.3045 98.6 

ℛ4 0.9624 0.0097 95.50 0.0038 1.1278 98.21 1.3853 99.00 

80% 
= 48 

ℛ1 0.8238 0.0075 95.83 0.0036 0.9851 98.46 0.9792 97.98 

ℛ2 0.9276 0.0093 95.87 0.0036 1.1437 98.66 1.2989 98.30 

ℛ3 0.8798 0.0084 95.20 0.0039 1.0100 98.20 1.1474 98.53 

ℛ4 0.8648 0.0077 94.63 0.0041 1.0064 98.13 1.1598 98.23 
100% 
= 60 ℛ0 0.8265 0.0073 95.83 0.0036 0.9806 98.46 1.0769 98.80 

80 

60% 
= 48 

ℛ1 0.8088 0.0076 99.83 0.0010 0.9932 98.24 1.2021 97.85 

ℛ2 0.9063 0.0088 95.97 0.0036 1.1608 98.43 1.2625 98.40 

ℛ3 0.8750 0.0080 94.83 0.0040 0.9723 98.20 1.0595 98.08 

ℛ4 0.8106 0.0068 96.40 0.0034 0.9083 97.83 1.0514 98.68 

80% 
= 64 

ℛ1 0.7003 0.0057 96.30 0.0034 0.8083 98.43 0.7608 98.40 

ℛ2 0.7882 0.0068 95.63 0.0037 0.9405 98.53 0.9994 98.30 

ℛ3 0.7441 0.0060 95.50 0.0038 0.8280 98.43 0.8912 98.60 

ℛ4 0.7487 0.0061 96.20 0.0035 0.8403 98.06 0.9151 98.30 
100% 
= 80 ℛ0 0.6999 0.0057 96.27 0.0035 0.8013 98.66 0.8544 98.53 
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Table A.11 Estimated CP (in %) and AL of asymptotic, BS and Jackknife CIs for 𝜃2 at confidence 

level = 95%, 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and 𝜏 = 0.4 for different 𝑛, FP, 𝜏 and censoring 

schemes. The standard error of estimated AL and CP are presented alongside the 

Asymptotic CI performance measures. A.11 

n FP% 
= 𝒓 C.Sc. 

Asymptotic CI Percentile BS CI BCa BS CI 

AL SE(AL) CP SE(CP) AL CP AL CP 

40 

60% 
= 24 

ℛ1 0.4633 0.0041 87.28 0.0061 0.4301 90.13 0.4691 92.97 

ℛ2 0.3202 0.0017 91.16 0.0052 0.3093 92.28 0.3430 93.03 

ℛ3 0.3773 0.0023 89.53 0.0056 0.3531 90.20 0.3996 91.88 

ℛ4 0.3845 0.0024 90.10 0.0055 0.3533 91.08 0.4017 91.84 

80% 
= 32 

ℛ1 0.3092 0.0017 90.16 0.0054 0.3014 92.50 0.3518 91.13 

ℛ2 0.2792 0.0013 92.80 0.0047 0.2712 93.00 0.2940 93.56 

ℛ3 0.3017 0.0015 91.83 0.0050 0.2862 92.26 0.3181 93.36 

ℛ4 0.3010 0.0015 91.96 0.0050 0.285 92.33 0.3159 93.13 
100% 
= 40 ℛ0 0.2484 0.0011 92.23 0.0049 0.2432 92.90 0.2616 94.26 

60 

60% 
= 36 

ℛ1 0.3798 0.0027 89.24 0.0057 0.3381 93.18 0.3495 92.74 

ℛ2 0.2610 0.0011 92.13 0.0049 0.2566 93.36 0.2737 94.16 

ℛ3 0.3087 0.0016 90.90 0.0053 0.2904 92.46 0.3197 92.63 

ℛ4 0.3097 0.0016 91.03 0.0052 0.2965 92.53 0.3224 92.23 

80% 
= 48 

ℛ1 0.2536 0.0011 92.93 0.0047 0.2484 93.93 0.2992 93.23 

ℛ2 0.2273 9e-04 93.13 0.0046 0.2227 93.86 0.2357 94.33 

ℛ3 0.2459 0.0010 92.83 0.0047 0.2385 93.86 0.2537 93.30 

ℛ4 0.2451 0.0010 92.63 0.0048 0.2373 92.96 0.2567 93.20 
100% 
= 60 ℛ0 0.2019 7e-04 93.33 0.0046 0.2000 94.03 0.2101 94.26 

80 

60% 
= 48 

ℛ1 0.3261 0.0020 91.26 0.0052 0.2391 93.77 0.4193 93.97 

ℛ2 0.2277 9e-04 93.63 0.0045 0.2226 93.70 0.2376 93.56 

ℛ3 0.2669 0.0011 92.60 0.0048 0.2562 93.26 0.2744 93.28 

ℛ4 0.2714 0.0012 92.50 0.0048 0.2618 93.46 0.2792 93.30 

80% 
= 64 

ℛ1 0.2181 8e-04 93.16 0.0046 0.2149 94.00 0.2574 93.76 

ℛ2 0.1965 6e-04 93.70 0.0044 0.1955 94.26 0.2028 94.06 

ℛ3 0.2136 7e-04 94.03 0.0043 0.2069 92.60 0.2187 93.73 

ℛ4 0.2123 7e-04 94.13 0.0043 0.2069 93.6 0.2199 93.70 
100% 
= 80 ℛ0 0.1754 5e-04 93.70 0.0044 0.1743 94.43 0.1809 94.50 
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Table A.12 Estimated CP (in %) and AL of asymptotic, BS and Jackknife CIs for 𝜃2 at confidence 

level = 95%, 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and 𝜏 = 0.6 for different 𝑛, FP, 𝜏 and censoring 

schemes. The standard error of estimated AL and CP are presented alongside the 

Asymptotic CI performance measures. A.12 

n FP% 
= 𝒓 C.Sc. 

Asymptotic CI Percentile BS CI BCa BS CI 

AL SE(AL) CP SE(CP) AL CP AL CP 

40 

60% 
= 24 

ℛ1 0.6795 0.0116 81.37 0.0096 0.5303 84.46 0.7914 93.05 

ℛ2 0.3714 0.0022 90.23 0.0054 0.3457 90.85 0.3762 91.50 

ℛ3 0.4424 0.0030 87.40 0.0061 0.3972 90.30 0.4186 92.00 

ℛ4 0.4685 0.0033 87.96 0.0059 0.4111 90.10 0.4093 87.00 

80% 
= 32 

ℛ1 0.3999 0.0028 88.53 0.0058 0.3736 92.18 0.4291 92.72 

ℛ2 0.3212 0.0017 90.33 0.0054 0.3024 93.33 0.3249 94.36 

ℛ3 0.3515 0.0020 90.80 0.0053 0.3248 92.53 0.3559 92.10 

ℛ4 0.3521 0.0020 90.40 0.0054 0.3261 91.96 0.3545 92.53 
100% 
= 40 ℛ0 0.2858 0.0013 91.80 0.0050 0.2744 93.66 0.2921 92.73 

60 

60% 
= 36 

ℛ1 0.6477 0.0104 82.10 0.0090 0.5718 90.92 0.4917 94.17 

ℛ2 0.3027 0.0015 91.56 0.0051 0.2865 92.33 0.3062 92.46 

ℛ3 0.3682 0.0021 89.90 0.0055 0.3324 91.16 0.3651 92.00 

ℛ4 0.3909 0.0024 90.23 0.0054 0.3521 91.94 0.3764 93.50 

80% 
= 48 

ℛ1 0.3276 0.0019 91.10 0.0052 0.3133 93.50 0.3138 91.25 

ℛ2 0.2636 0.0012 92.33 0.0049 0.2534 93.80 0.2668 93.60 

ℛ3 0.2893 0.0014 91.93 0.0050 0.2745 94.23 0.2925 92.67 

ℛ4 0.2891 0.0013 92.60 0.0048 0.2737 93.03 0.2913 92.76 
100% 
= 60 ℛ0 0.2329 9e-04 92.50 0.0048 0.2267 94.10 0.2380 94.30 

80 

60% 
= 48 

ℛ1 0.6293 0.0096 84.37 0.0086 0.4913 93.10 0.2839 92.93 

ℛ2 0.2627 0.0012 92.37 0.0048 0.2536 94.20 0.2675 93.68 

ℛ3 0.3148 0.0016 91.37 0.0051 0.2954 92.86 0.3145 92.00 

ℛ4 0.3386 0.0019 90.87 0.0053 0.3163 92.66 0.3345 92.88 

80% 
= 64 

ℛ1 0.2870 0.0015 92.20 0.0049 0.2756 93.86 0.2875 92.40 

ℛ2 0.2274 9e-04 92.70 0.0047 0.2207 94.06 0.2307 94.16 

ℛ3 0.2480 0.0010 92.73 0.0047 0.2410 93.60 0.2526 93.93 

ℛ4 0.2504 0.0010 92.80 0.0047 0.2412 93.90 0.2531 94.16 
100% 
= 80 ℛ0 0.2032 7e-04 93.40 0.0045 0.2004 94.16 0.2064 94.36 
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Table A.13 Estimated CP (in %) and AL of asymptotic, BS and Jackknife CIs for 𝜃2 at confidence 

level = 99%, 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and 𝜏 = 0.4 for different 𝑛, FP, 𝜏 and censoring 

schemes. The standard error of estimated AL and CP are presented alongside the 

Asymptotic CI performance measures. A.13 

n FP% 
= 𝒓 C.Sc. 

Asymptotic CI Percentile BS CI BCa BS CI 

AL SE(AL) CP SE(CP) AL CP AL CP 

40 

60% 
= 24 

ℛ1 0.6089 0.0060 91.81 0.0050 0.5796 95.97 0.7719 97.41 

ℛ2 0.4208 0.0029 95.30 0.0039 0.4096 96.72 0.4262 97.96 

ℛ3 0.4958 0.0037 94.03 0.0043 0.4667 95.73 0.4813 96.64 

ℛ4 0.5054 0.0038 94.60 0.0041 0.4677 95.88 0.4870 96.60 

80% 
= 32 

ℛ1 0.4063 0.0028 94.66 0.0041 0.4018 96.90 0.3757 95.63 

ℛ2 0.3670 0.0023 96.00 0.0036 0.3591 97.20 0.3678 98.00 

ℛ3 0.3965 0.0026 96.13 0.0035 0.3790 97.10 0.3937 97.73 

ℛ4 0.3956 0.0026 96.00 0.0036 0.3775 97.13 0.3915 97.86 
100% 
= 40 ℛ0 0.3264 0.0020 96.80 0.0032 0.3217 97.56 0.3300 98.20 

60 

60% 
= 36 

ℛ1 0.4992 0.0042 93.70 0.0044 0.3391 97.66 0.3918 97.54 

ℛ2 0.3430 0.0021 96.46 0.0034 0.3821 96.73 0.3457 98.33 

ℛ3 0.4057 0.0027 95.13 0.0039 0.3916 96.93 0.3954 97.50 

ℛ4 0.4071 0.0027 94.96 0.0040 0.3290 98.13 0.3988 97.50 

80% 
= 48 

ℛ1 0.3333 0.0020 96.56 0.0033 0.2943 97.80 0.3248 96.63 

ℛ2 0.2988 0.0017 96.70 0.0033 0.3149 97.70 0.3009 98.50 

ℛ3 0.3232 0.0019 96.56 0.0033 0.3131 97.53 0.3208 98.06 

ℛ4 0.3221 0.0019 96.76 0.0032 0.2635 98.03 0.3242 97.90 
100% 
= 60 ℛ0 0.2653 0.0015 97.10 0.0031 0.3391 97.66 0.2696 98.33 

80 

60% 
= 48 

ℛ1 0.4286 0.0032 95.43 0.0038 0.3951 97.50 0.4451 98.42 

ℛ2 0.2993 0.0017 97.06 0.0031 0.294 98.23 0.3029 98.43 

ℛ3 0.3508 0.0021 96.53 0.0033 0.3372 97.63 0.3451 97.92 

ℛ4 0.3567 0.0022 96.30 0.0034 0.3446 97.60 0.3503 98.25 

80% 
= 64 

ℛ1 0.2867 0.0017 97.03 0.0031 0.2838 98.16 0.2805 97.16 

ℛ2 0.2583 0.0014 97.86 0.0026 0.2576 98.30 0.2603 98.20 

ℛ3 0.2807 0.0016 97.80 0.0027 0.2725 97.50 0.2795 98.36 

ℛ4 0.2790 0.0015 97.80 0.0027 0.2724 97.9 0.2809 98.00 
100% 
= 80 ℛ0 0.2305 0.0012 97.93 0.0026 0.2297 98.60 0.2334 98.53 
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Table A.14 Estimated CP (in %) and AL of asymptotic, BS and Jackknife CIs for 𝜃2 at confidence 

level = 99%, 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and 𝜏 = 0.6 for different 𝑛, FP, 𝜏 and censoring 

schemes. The standard error of estimated AL and CP are presented alongside the 

Asymptotic CI performance measures. A.14 

n FP% 
= 𝒓 C.Sc. 

Asymptotic CI Percentile BS CI BCa BS CI 

AL SE(AL) CP SE(CP) AL CP AL CP 

40 

60% 
= 24 

ℛ1 0.8930 0.0161 86.22 0.0085 0.6927 91.16 0.7194 96.99 

ℛ2 0.4881 0.0036 94.70 0.0041 0.4558 96.50 0.4558 97.00 

ℛ3 0.5814 0.0047 91.73 0.0050 0.5217 94.90 0.4806 96.00 

ℛ4 0.6158 0.0051 92.70 0.0047 0.5385 95.16 0.4660 90.50 

80% 
= 32 

ℛ1 0.5256 0.0043 93.42 0.0045 0.4952 96.52 0.5490 97.69 

ℛ2 0.4221 0.0029 94.87 0.0040 0.3979 97.00 0.4043 98.06 

ℛ3 0.4620 0.0033 94.90 0.0040 0.4270 97.06 0.4370 97.46 

ℛ4 0.4627 0.0033 94.13 0.0043 0.4280 96.50 0.4358 97.23 
100% 
= 40 ℛ0 0.3757 0.0024 96.00 0.0036 0.3604 97.56 0.3662 97.93 

60 

60% 
= 36 

ℛ1 0.8513 0.0145 86.67 0.0080 0.7231 97.14 0.7194 97.50 

ℛ2 0.3978 0.0026 95.70 0.0037 0.3767 97.30 0.3841 97.43 

ℛ3 0.4838 0.0035 94.47 0.0042 0.4357 96.73 0.4474 97.32 

ℛ4 0.5137 0.0038 94.37 0.0042 0.4604 96.89 0.4579 97.50 

80% 
= 48 

ℛ1 0.4306 0.0032 95.67 0.0037 0.4166 97.66 0.3424 96.25 

ℛ2 0.3464 0.0021 96.77 0.0032 0.3330 97.63 0.3375 97.80 

ℛ3 0.3802 0.0024 96.13 0.0035 0.3597 98.16 0.3667 97.67 

ℛ4 0.3799 0.0024 95.67 0.0037 0.3586 97.30 0.3662 97.63 
100% 
= 60 ℛ0 0.3061 0.0018 96.33 0.0034 0.2975 97.83 0.3035 97.73 

80 

60% 
= 48 

ℛ1 0.8271 0.0135 88.01 0.0077 0.5926 97.85 0.4910 97.70 

ℛ2 0.3453 0.0021 96.33 0.0034 0.3332 98.16 0.3386 98.08 

ℛ3 0.4138 0.0028 95.43 0.0038 0.3867 97.16 0.3928 97.12 

ℛ4 0.4450 0.0032 94.67 0.0041 0.4129 97.36 0.4132 97.60 

80% 
= 64 

ℛ1 0.3772 0.0025 95.96 0.0036 0.3648 97.56 0.3108 95.60 

ℛ2 0.2988 0.0017 97.20 0.0030 0.2893 98.10 0.2949 98.36 

ℛ3 0.3260 0.0019 96.50 0.0034 0.3156 98.13 0.3207 98.23 

ℛ4 0.3291 0.0020 96.27 0.0035 0.3162 97.80 0.3217 98.10 
100% 
= 80 ℛ0 0.2671 0.0015 97.47 0.0029 0.2631 98.20 0.2653 98.36 
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Table A.15 Estimated CP (in %) and AL of asymptotic, BS and Jackknife CIs for 𝛼 at confidence level 

= 95%, 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and 𝜏 = 0.4 for different 𝑛, FP, 𝜏 and censoring 

schemes. The standard error of estimated AL and CP are presented alongside the 

Asymptotic CI performance measures. A.15 

n FP% 
= 𝒓 C.Sc. 

Asymptotic CI Percentile BS CI BCa BS CI 

AL SE(AL) CP SE(CP) AL CP AL CP 

40 

60% 
= 24 

ℛ1 1.6344 0.0142 96.44 0.0036 2.1367 93.01 1.6802 94.49 

ℛ2 1.8880 0.0183 95.13 0.0039 2.3313 92.84 1.9010 94.03 

ℛ3 1.7841 0.0162 96.83 0.0032 2.2619 90.73 1.7712 94.36 

ℛ4 1.7547 0.0165 96.56 0.0033 2.2895 89.88 1.7717 93.76 

80% 
= 32 

ℛ1 1.6579 0.0145 96.40 0.0034 2.0536 92.66 1.6994 94.37 

ℛ2 1.7562 0.0165 95.33 0.0039 2.0756 94.23 1.7686 94.04 

ℛ3 1.6817 0.0160 96.56 0.0033 2.0659 92.76 1.6577 94.80 

ℛ4 1.6709 0.0148 96.63 0.0033 2.0796 91.70 1.6646 94.60 
100% 
= 40 ℛ0 1.6385 0.0143 95.83 0.0036 1.9596 92.93 1.6428 93.76 

60 

60% 
= 36 

ℛ1 1.2802 0.0080 95.98 0.0034 1.4924 92.70 1.1973 94.95 

ℛ2 1.4526 0.0105 95.56 0.0038 1.6358 94.16 1.4674 94.30 

ℛ3 1.3523 0.0088 96.63 0.0033 1.5607 92.43 1.3446 94.23 

ℛ4 1.3374 0.0088 96.76 0.0032 1.5388 93.30 1.3427 93.93 

80% 
= 48 

ℛ1 1.2640 0.0077 96.20 0.0035 1.4715 92.56 1.2607 94.50 

ℛ2 1.3585 0.0094 96.73 0.0032 1.5422 92.86 1.3663 93.76 

ℛ3 1.2757 0.0080 96.23 0.0035 1.4646 92.73 1.2883 93.66 

ℛ4 1.2821 0.0081 96.00 0.0036 1.4849 93.10 1.2637 94.06 
100% 
= 60 ℛ0 1.2579 0.0080 95.86 0.0036 1.4384 92.20 1.2632 94.70 

80 

60% 
= 48 

ℛ1 1.0692 0.0054 95.76 0.0035 1.2993 93.62 1.1014 93.88 

ℛ2 1.2374 0.0074 95.66 0.0034 1.3595 94.36 1.2441 93.96 

ℛ3 1.1547 0.0063 96.23 0.0035 1.2744 92.50 1.1289 93.80 

ℛ4 1.1082 0.0060 96.00 0.0036 1.2466 93.20 1.1212 93.90 

80% 
= 64 

ℛ1 1.0642 0.0054 95.96 0.0036 1.1956 93.06 1.0742 95.33 

ℛ2 1.1468 0.0063 96.10 0.0035 1.2554 94.20 1.1439 94.40 

ℛ3 1.0782 0.0055 95.96 0.0036 1.2017 92.43 1.0777 94.80 

ℛ4 1.0711 0.0054 96.56 0.0033 1.197 92.86 1.0691 94.86 
100% 
= 80 ℛ0 1.0556 0.0054 95.60 0.0037 1.1641 93.56 1.0639 94.36 
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Table A.16 Estimated CP (in %) and AL of asymptotic, BS and Jackknife CIs for 𝛼 at confidence level 

= 95%, 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and 𝜏 = 0.6 for different 𝑛, FP, 𝜏 and censoring 

schemes. The standard error of estimated AL and CP are presented alongside the 

Asymptotic CI performance measures. A.16 

n FP% 
= 𝒓 C.Sc. 

Asymptotic CI Percentile BS CI BCa BS CI 

AL SE(AL) CP SE(CP) AL CP AL CP 

40 

60% 
= 24 

ℛ1 1.4010 0.0132 94.49 0.0056 1.6803 94.79 1.4081 93.88 

ℛ2 1.6229 0.0126 95.40 0.0038 1.9500 92.50 1.6574 93.70 

ℛ3 1.5923 0.0126 96.67 0.0033 1.9910 91.10 1.5966 93.33 

ℛ4 1.5313 0.0118 96.26 0.0035 1.9020 91.16 1.5044 94.50 

80% 
= 32 

ℛ1 1.3990 0.0091 96.05 0.0036 1.6662 93.35 1.3917 94.51 

ℛ2 1.5151 0.0110 96.66 0.0033 1.7835 92.66 1.5141 94.10 

ℛ3 1.4535 0.0102 96.60 0.0033 1.7317 92.93 1.4718 94.43 

ℛ4 1.4794 0.0115 96.70 0.0033 1.7456 92.33 1.4668 94.70 
100% 
= 40 ℛ0 1.3935 0.0096 96.33 0.0034 1.6456 93.13 1.4145 94.00 

60 

60% 
= 36 

ℛ1 1.0806 0.0068 95.87 0.0047 1.3826 92.39 1.0179 94.70 

ℛ2 1.2794 0.0074 95.67 0.0037 1.4323 94.26 1.2954 94.86 

ℛ3 1.2276 0.0072 96.57 0.0033 1.3926 92.36 1.2380 94.64 

ℛ4 1.1849 0.0066 95.80 0.0037 1.3679 91.63 1.1867 95.50 

80% 
= 48 

ℛ1 1.0967 0.0057 95.93 0.0036 1.2325 93.60 1.0923 93.75 

ℛ2 1.1676 0.0063 95.63 0.0037 1.3174 93.53 1.1905 94.06 

ℛ3 1.1367 0.0060 96.07 0.0035 1.2807 92.63 1.1334 95.13 

ℛ4 1.1394 0.0061 95.80 0.0037 1.2831 92.80 1.1366 95.16 
100% 
= 60 ℛ0 1.0860 0.0055 95.90 0.0036 1.2218 93.80 1.1009 95.10 

80 

60% 
= 48 

ℛ1 0.9239 0.0053 95.35 0.0050 1.2120 91.69 1.0029 94.71 

ℛ2 1.0993 0.0057 95.37 0.0038 1.1972 94.10 1.1074 94.56 

ℛ3 1.0275 0.0050 95.73 0.0037 1.1370 92.70 1.0365 94.80 

ℛ4 0.9997 0.0045 96.70 0.0033 1.1188 91.93 1.0057 94.60 

80% 
= 64 

ℛ1 0.9276 0.0040 95.43 0.0038 1.0134 93.56 0.9236 95.20 

ℛ2 0.9934 0.0045 95.47 0.0038 1.0833 94.43 1.0058 94.50 

ℛ3 0.9675 0.0043 96.13 0.0035 1.0568 93.26 0.9702 93.96 

ℛ4 0.9561 0.0043 95.50 0.0038 1.0540 92.50 0.9664 94.50 
100% 
= 80 ℛ0 0.9212 0.0040 95.07 0.0040 0.9997 94.30 0.9366 94.10 
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Table A.17 Estimated CP (in %) and AL of asymptotic, BS and Jackknife CIs for 𝛼 at confidence level 

= 99%, 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and 𝜏 = 0.4 for different 𝑛, FP, 𝜏 and censoring 

schemes. The standard error of estimated AL and CP are presented alongside the 

Asymptotic CI performance measures. A.17 

n FP% 
= 𝒓 C.Sc. 

Asymptotic CI Percentile BS CI BCa BS CI 

AL SE(AL) CP SE(CP) AL CP AL CP 

40 

60% 
= 24 

ℛ1 2.1479 0.0186 98.91 0.0022 3.3166 97.56 2.8046 98.66 

ℛ2 2.4813 0.0240 98.00 0.0026 3.6132 98.44 2.6422 98.70 

ℛ3 2.3447 0.0213 98.83 0.0020 3.4738 96.26 2.4225 98.28 

ℛ4 2.3060 0.0216 99.16 0.0017 3.5351 96.64 2.4526 98.56 

80% 
= 32 

ℛ1 2.1789 0.0191 98.73 0.0020 3.1359 97.06 2.2890 99.00 

ℛ2 2.3080 0.0216 98.23 0.0024 3.1465 98.43 2.4239 98.68 

ℛ3 2.2101 0.0210 98.70 0.0021 3.138 97.96 2.2523 98.63 

ℛ4 2.1960 0.0194 98.96 0.0018 3.1557 97.53 2.2614 98.76 
100% 
= 40 ℛ0 2.1534 0.0188 98.16 0.0024 2.9369 97.93 2.2299 98.50 

60 

60% 
= 36 

ℛ1 1.6825 0.0105 98.59 0.0019 2.1934 97.28 1.7492 98.85 

ℛ2 1.9091 0.0137 98.23 0.0024 2.3408 98.53 1.9577 98.70 

ℛ3 1.7772 0.0115 99.20 0.0016 2.2366 97.53 1.7847 98.86 

ℛ4 1.7577 0.0116 98.80 0.0020 2.2117 97.63 1.7981 98.86 

80% 
= 48 

ℛ1 1.6611 0.0101 98.66 0.0021 2.1044 97.36 1.6782 98.40 

ℛ2 1.7853 0.0123 98.93 0.0019 2.2001 97.63 1.8235 98.40 

ℛ3 1.6766 0.0105 98.83 0.0020 2.0849 97.53 1.7121 98.33 

ℛ4 1.6850 0.0107 98.73 0.0020 2.1180 97.66 1.6776 98.43 
100% 
= 60 ℛ0 1.6532 0.0105 98.56 0.0022 2.0410 97.50 1.6803 98.80 

80 

60% 
= 48 

ℛ1 1.4052 0.0071 98.66 0.0021 1.8513 96.95 1.5291 98.65 

ℛ2 1.6262 0.0097 98.53 0.0022 1.8963 98.40 1.6396 98.76 

ℛ3 1.5176 0.0083 98.73 0.0020 1.7776 97.56 1.4842 98.24 

ℛ4 1.4564 0.0079 98.73 0.0020 1.7424 97.70 1.4906 98.55 

80% 
= 64 

ℛ1 1.3986 0.0070 98.76 0.0020 1.6705 97.80 1.4210 98.83 

ℛ2 1.5072 0.0083 98.83 0.0020 1.7461 98.23 1.5103 98.80 

ℛ3 1.4170 0.0072 98.73 0.0020 1.6722 97.83 1.4249 98.73 

ℛ4 1.4077 0.0071 98.90 0.0019 1.6671 97.90 1.4136 98.76 
100% 
= 80 ℛ0 1.3873 0.0071 98.86 0.0019 1.6198 98.00 1.4106 98.36 
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Table A.18 Estimated CP (in %) and AL of asymptotic, BS and Jackknife CIs for 𝛼 at confidence level 

= 99%, 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and 𝜏 = 0.6 for different 𝑛, FP, 𝜏 and censoring 

schemes. The standard error of estimated AL and CP are presented alongside the 

Asymptotic CI performance measures. A.18 

n FP% 
= 𝒓 C.Sc. 

Asymptotic CI Percentile BS CI BCa BS CI 

AL SE(AL) CP SE(CP) AL CP AL CP 

40 

60% 
= 24 

ℛ1 1.8413 0.0173 98.00 0.0034 2.4534 98.99 2.3329 96.29 

ℛ2 2.1329 0.0166 98.20 0.0024 2.8789 98.00 2.2329 98.10 

ℛ3 2.0927 0.0166 98.90 0.0019 2.9729 95.90 2.1015 96.66 

ℛ4 2.0125 0.0155 98.57 0.0022 2.8325 97.26 1.9189 98.00 

80% 
= 32 

ℛ1 1.8386 0.0119 98.76 0.0020 2.4325 98.23 1.9939 98.82 

ℛ2 1.9911 0.0145 98.67 0.0021 2.5989 97.43 2.0430 98.10 

ℛ3 1.9102 0.0134 98.70 0.0021 2.5305 97.30 1.9723 98.40 

ℛ4 1.9442 0.0151 99.30 0.0015 2.5504 97.03 1.9638 98.41 
100% 
= 40 ℛ0 1.8314 0.0126 98.73 0.0020 2.3840 97.93 1.8938 98.40 

60 

60% 
= 36 

ℛ1 1.4201 0.0089 98.79 0.0026 1.8429 97.13 1.7291 98.94 

ℛ2 1.6814 0.0097 98.43 0.0023 2.0091 98.60 1.7143 98.66 

ℛ3 1.6134 0.0094 99.07 0.0018 1.9684 97.10 1.6575 99.08 

ℛ4 1.5572 0.0087 98.80 0.0020 1.9293 97.15 1.5593 98.50 

80% 
= 48 

ℛ1 1.4413 0.0075 98.87 0.0019 1.7321 98.13 1.3258 97.50 

ℛ2 1.5345 0.0083 98.57 0.0022 1.8436 98.30 1.5808 98.20 

ℛ3 1.4939 0.0079 98.57 0.0022 1.7944 97.43 1.4942 99.03 

ℛ4 1.4974 0.0081 98.97 0.0018 1.7971 97.43 1.5027 98.93 
100% 
= 60 ℛ0 1.4272 0.0072 98.90 0.0019 1.7054 98.23 1.4600 99.33 

80 

60% 
= 48 

ℛ1 1.2142 0.0069 99.27 0.0020 1.6921 98.15 1.5827 98.11 

ℛ2 1.4448 0.0075 98.53 0.0022 1.6515 98.16 1.4591 98.48 

ℛ3 1.3504 0.0065 98.97 0.0018 1.5690 97.70 1.3773 98.56 

ℛ4 1.3139 0.0060 99.23 0.0016 1.5420 97.30 1.3301 98.64 

80% 
= 64 

ℛ1 1.2190 0.0052 98.90 0.0019 1.3931 98.00 1.1237 98.40 

ℛ2 1.3055 0.0060 98.77 0.0020 1.4884 98.30 1.3297 98.66 

ℛ3 1.2715 0.0056 99.07 0.0018 1.4531 97.70 1.2824 98.53 

ℛ4 1.2565 0.0056 98.63 0.0021 1.4483 97.53 1.2767 98.53 
100% 
= 80 ℛ0 1.2106 0.0053 98.77 0.0020 1.3687 98.13 1.2408 98.76 
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Table A.19 The proportion 𝑝𝑛1 and 𝑝𝑛2 and average test duration (𝑇) when 𝜃1 = 0.6, 𝜃2 = 0.3,       

𝛼 = 1.2 for different 𝑛, 𝑟, 𝜏 and censoring schemes. A.19 

n FP% 
= 𝒓 C.Sc. 

𝝉𝟏 = 𝟎. 𝟒 𝝉𝟏 = 𝟎. 𝟔 
𝒑𝒏𝟏% 𝒑𝒏𝟐% 𝑻 𝒑𝒏𝟏% 𝒑𝒏𝟐% 𝑻 

40 

60% 
= 24 

ℛ1 69.88 30.12 0.5136 86.62 13.38 0.6546 

ℛ2 42.51 57.49 1.3731 58.55 41.45 1.4802 

ℛ3 60.95 39.05 1.2782 72.63 27.37 1.3487 

ℛ4 60.35 39.65 1.2056 74.89 25.11 1.3084 

80% 
= 32 

ℛ1 52.49 47.51 0.7162 72.09 27.91 0.8183 

ℛ2 42.59 57.41 1.4691 58.12 41.88 1.5675 

ℛ3 51.48 48.52 1.4053 65.50 34.50 1.4998 

ℛ4 51.25 48.75 1.4038 65.44 34.56 1.5146 
100% 
= 40 ℛ0 42.05 57.95 1.5324 58.02 41.98 1.6453 

60 

60% 
= 36 

ℛ1 70.22 29.78 0.5118 89.35 10.65 0.6450 

ℛ2 42.99 57.01 1.4939 58.18 41.82 1.6042 

ℛ3 60.50 39.50 1.3944 71.47 28.52 1.5015 

ℛ4 61.02 38.98 1.3068 75.05 24.95 1.4317 

80% 
= 48 

ℛ1 52.65 47.35 0.7220 72.09 27.91 0.8206 

ℛ2 42.33 57.67 1.5849 57.85 42.15 1.6783 

ℛ3 51.43 48.57 1.5319 65.42 34.58 1.6296 

ℛ4 50.99 49.01 1.5318 65.58 34.42 1.6287 
100% 
= 60 ℛ0 42.11 57.89 1.6483 57.75 42.25 1.7544 

80 

60% 
= 48 

ℛ1 70.14 29.86 0.5151 90.35 09.65 0.6407 

ℛ2 42.46 57.54 1.5927 58.15 41.85 1.6883 

ℛ3 60.27 39.73 1.4799 71.04 28.96 1.5758 

ℛ4 60.68 39.32 1.4156 75.12 24.88 1.5163 

80% 
= 64 

ℛ1 52.67 47.33 0.7235 72.06 27.94 0.8236 

ℛ2 42.26 57.74 1.6815 57.86 42.14 1.7773 

ℛ3 51.61 48.39 1.6234 65.12 34.88 1.7276 

ℛ4 51.24 48.76 1.6058 65.47 34.53 1.7216 
100% 
= 80 ℛ0 42.28 57.72 1.7490 57.65 42.35 1.8444 
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Table A.20 The AB and MSE for the ML of the model parameters at (𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1,       

𝜏 = 0.6) for different 𝑛, FP and censoring schemes (C.Sc). A.20 

 

 

 
 

n FP% 
= 𝒓 C.Sc 

𝜽𝟏 𝜽𝟐 𝜶 

MLE AB MSE MLE AB MSE MLE AB MSE 

40 

60% 
= 24 

ℛ1 0.8174 0.2395 0.2237 0.2977 0.1578 0.1078 1.0337 0.2180 0.1711 

ℛ2 0.6264 0.1921 0.1813 0.2956 0.0780 0.0214 1.1012 0.2540 0.2547 

ℛ3 0.6199 0.1920 0.1663 0.2930 0.0911 0.0297 1.1018 0.2459 0.2199 

ℛ4 0.6090 0.1817 0.1470 0.2859 0.1003 0.0352 1.1124 0.2455 0.2260 

80% 
= 32 

ℛ1 0.6162 0.1492 0.0951 0.2953 0.0924 0.0308 1.0890 0.2208 0.1774 

ℛ2 0.6223 0.1689 0.1288 0.2999 0.0675 0.0160 1.0877 0.2281 0.1948 

ℛ3 0.6106 0.1648 0.1122 0.2984 0.0748 0.0194 1.1044 0.2353 0.2016 

ℛ4 0.6142 0.1655 0.1155 0.2977 0.0752 0.0193 1.0931 0.2324 0.1963 
100% 
= 40 ℛ0 0.6140 0.1515 0.0932 0.2970 0.0608 0.0124 1.0888 0.2187 0.1726 

60 

60% 
= 36 

ℛ1 0.7759 0.1907 0.1228 0.2937 0.1508 0.0969 1.0079 0.1686 0.0989 

ℛ2 0.6312 0.1605 0.1149 0.2987 0.0650 0.0144 1.0580 0.2013 0.1411 

ℛ3 0.6108 0.1507 0.0955 0.2957 0.0776 0.0204 1.0710 0.1916 0.1285 

ℛ4 0.6060 0.1472 0.0840 0.2983 0.0873 0.0256 1.0712 0.1883 0.1230 

80% 
= 48 

ℛ1 0.6119 0.1232 0.0571 0.2961 0.0780 0.0208 1.0527 0.1731 0.1036 

ℛ2 0.6185 0.1392 0.0775 0.2976 0.0567 0.0106 1.0553 0.1850 0.1199 

ℛ3 0.6024 0.1309 0.0637 0.3015 0.0632 0.0132 1.0677 0.1832 0.1162 

ℛ4 0.6036 0.1305 0.0646 0.2986 0.0653 0.0135 1.0668 0.1840 0.1178 
100% 
= 60 ℛ0 0.6079 0.1223 0.0563 0.3011 0.0511 0.0087 1.0544 0.1753 0.1038 

80 

60% 
= 48 

ℛ1 0.7547 0.1654 0.0838 0.2983 0.1478 0.0918 0.9975 0.1428 0.0683 

ℛ2 0.6114 0.1353 0.0699 0.2987 0.0577 0.0108 1.0549 0.1746 0.1045 

ℛ3 0.6134 0.1359 0.0709 0.3010 0.0674 0.0155 1.0441 0.1585 0.0857 

ℛ4 0.6070 0.1307 0.0606 0.2969 0.0746 0.0188 1.0520 0.1583 0.0856 

80% 
= 64 

ℛ1 0.6068 0.1049 0.0393 0.2974 0.0678 0.0154 1.0430 0.1472 0.0728 

ℛ2 0.6127 0.1209 0.0523 0.2991 0.0485 0.0078 1.0465 0.1607 0.087 

ℛ3 0.6075 0.1177 0.0483 0.3002 0.0542 0.0097 1.0457 0.1561 0.0804 

ℛ4 0.6046 0.1147 0.0481 0.2989 0.054 0.0097 1.0443 0.1519 0.0771 
100% 
= 80 ℛ0 0.6066 0.1028 0.0387 0.3006 0.0449 0.0065 1.0413 0.1453 0.0714 
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Table A.21 Estimated CP (in %) and AL of asymptotic CIs for model parameters at confidence level = 

95% and 99%, 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1, 𝜏 = 0.6 for different 𝑛, FP, and censoring 

schemes. A,21 

n FP% 
= 𝒓 C.Sc. 

𝜽𝟏 𝜽𝟐 𝜶 

95% 99% 95% 99% 95% 99% 

AL CP AL CP AL CP AL CP AL CP AL CP 

40 

60% 
= 24 

ℛ1 1.2053 99.80 1.5840 99.96 0.8255 79.33 1.0849 84.00 1.0800 94.60 1.4193 98.06 

ℛ2 1.0250 89.10 1.3471 93.86 0.4032 89.53 0.5299 93.73 1.2527 96.03 1.6463 98.90 

ℛ3 1.0229 88.40 1.3443 93.20 0.4763 89.10 0.6260 92.23 1.2021 96.20 1.5798 98.63 

ℛ4 0.9404 88.36 1.2359 93.03 0.5084 85.83 0.6682 90.16 1.1873 96.20 1.5604 98.83 

80% 
= 32 

ℛ1 0.7867 90.70 1.0339 95.86 0.4747 87.90 0.6239 92.26 1.0775 96.46 1.4161 98.90 

ℛ2 0.8864 91.00 1.1649 95.30 0.3507 91.53 0.4608 95.30 1.1432 96.13 1.5024 98.96 

ℛ3 0.8506 88.80 1.1179 93.66 0.3817 90.00 0.5016 93.83 1.1343 96.33 1.4907 99.23 

ℛ4 0.8545 89.60 1.1230 94.66 0.3832 90.96 0.5037 95.16 1.1176 96.20 1.4688 98.53 
100% 
= 40 ℛ0 0.7804 90.43 1.0256 95.56 0.3087 91.73 0.4056 95.96 1.0730 96.86 1.4102 99.16 

60 

60% 
= 36 

ℛ1 0.8959 99.80 1.1774 99.96 0.7817 81.20 1.0274 84.56 0.8417 94.63 1.1062 98.26 

ℛ2 0.8314 90.70 1.0927 95.60 0.3295 91.06 0.4330 95.13 0.9868 95.26 1.2969 98.83 

ℛ3 0.8012 90.40 1.0530 95.43 0.3907 90.03 0.5135 94.53 0.9414 96.73 1.2373 99.20 

ℛ4 0.7477 90.53 0.9827 95.33 0.4323 88.70 0.5681 92.93 0.9198 96.43 1.2088 98.90 

80% 
= 48 

ℛ1 0.6262 91.66 0.8229 96.06 0.3872 89.10 0.5089 93.16 0.8395 95.36 1.1034 99.06 

ℛ2 0.7047 91.26 0.9261 95.66 0.2835 91.60 0.3726 96.30 0.9018 95.33 1.1852 98.66 

ℛ3 0.6707 91.43 0.8814 96.10 0.3146 91.63 0.4134 96.03 0.8835 96.23 1.1612 99.20 

ℛ4 0.6679 91.13 0.8778 96.03 0.3140 90.83 0.4127 95.23 0.8803 96.10 1.1569 99.00 
100% 
= 60 ℛ0 0.6184 90.83 0.8127 95.73 0.2558 92.70 0.3362 96.46 0.8379 95.26 1.1012 98.83 

80 

60% 
= 48 

ℛ1 0.7387 99.86 0.9708 100 0.7611 80.83 1.0003 86.00 0.7142 94.36 0.9387 98.23 

ℛ2 0.6795 90.70 0.893 95.80 0.2854 91.60 0.3751 95.50 0.8569 96.26 1.1262 98.86 

ℛ3 0.6936 91.73 0.9115 96.03 0.3441 91.60 0.4522 95.20 0.789 95.86 1.0369 99.03 

ℛ4 0.6437 91.06 0.846 95.70 0.372 89.80 0.4889 93.86 0.7773 96.26 1.0215 99.00 

80% 
= 64 

ℛ1 0.5311 92.70 0.698 96.76 0.3332 90.86 0.438 94.83 0.7179 96.06 0.9435 99.26 

ℛ2 0.5966 91.90 0.7841 95.80 0.2455 92.96 0.3226 97.30 0.7757 95.53 1.0195 99.06 

ℛ3 0.5842 92.13 0.7678 96.13 0.2703 93.26 0.3553 96.56 0.7454 95.06 0.9796 99.13 

ℛ4 0.5765 91.00 0.7577 96.06 0.2719 92.73 0.3573 96.16 0.7412 96.03 0.9741 98.93 
100% 
= 80 ℛ0 0.5294 92.03 0.6957 96.36 0.2201 93.26 0.2893 97.06 0.7145 95.80 0.939 99.00 
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Appendix B  

Optimum Plan Results 
 

Table B.1 The impact of changing the sample size on optimal 𝜏∗ and the corresponding 

𝐴𝑉𝑎𝑟(�̂�0.05(𝑥0)) with two censoring schemes where censored data are removed in the 

middle of the test and 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and FP=80%. B.1 

 

 

 

 

 

 

 

 

 Optimal 𝝉∗ 𝑨𝑽𝒂𝒓(�̂�𝟎.𝟎𝟓(𝒙𝟎)) 

𝒏 𝒓 𝓡 Mean Median Min Max Mean Median Min Max 

20 16 
(0∗7, 2∗2, 0∗7) 0.5752 0.4503 0.3439 1.9686 0.0055 0.0029 0.0026 0.0537 

(0∗6, 1∗4, 0∗6) 0.5646 0.4504 0.3324 1.9679 0.0051 0.0029 0.0026 0.0518 

40 32 
(0∗14, 2∗4, 0∗14) 0.5042 0.5068 0.3042 0.7609 0.0014 0.0014 0.0013 0.0015 

(0∗12, 1∗8, 0∗12) 0.5195 0.5084 0.2928 0.7609 0.0014 0.0014 0.0013 0.0014 

60 48 
(0∗22, 3∗4, 0∗22) 0.5328 0.5276 0.3042 0.7609 0.0008 0.0008 0.0008 0.0009 

(0∗18, 1∗12, 0∗18) 0.5414 0.5207 0.3042 0.7626 0.0008 0.0008 0.0008 0.0009 

80 64 
(0∗30, 4∗4, 0∗30) 0.5172 0.5224 0.3233 0.7846 0.0006 0.0006 0.0005 0.0006 

(0∗24, 1∗16, 0∗24) 0.5282 0.5212 0.3233 0.7846 0.0006 0.0006 0.0006 0.0006 

100 80 
(0∗37, 4∗5, 0∗38) 0.5277 0.5231 0.3241 0.7846 0.0005 0.0005 0.0005 0.0005 

(0∗30, 1∗20, 0∗30) 0.5125 0.5230 0.3233 0.7846 0.0005 0.0005 0.0005 0.0005 

150 120 
(0∗57, 5∗6, 0∗57) 0.5110 0.5046 0.3233 0.7846 0.0003 0.0003 0.0003 0.0003 

(0∗45, 1∗30, 0∗45) 0.5120 0.5193 0.3493 0.7901 0.0003 0.0003 0.0003 0.0003 

200 160 
(0∗75, 4∗10, 0∗75) 0.5278 0.5185 0.3109 0.7880 0.0002 0.0002 0.0002 0.0002 

(0∗60, 1∗40, 0∗60) 0.5156 0.5015 0.3561 0.7846 0.0002 0.0002 0.0002 0.0002 
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Table B.2 The impact of changing the sample size on optimal 𝜏∗ and the corresponding 

𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) with two censoring schemes where censored data are removed in the 

middle of the test and 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and FP=80%. B.2 

 

 

 

 

 

 

 

 

 

 

 

 Optimal 𝝉∗ 𝑨𝑽𝒂𝒓(�̂�𝟎.𝟓𝟎(𝒙𝟎)) 

𝒏 𝒓 𝓡 Mean Median Min Max Mean Median Min Max 

20 16 
(0∗7, 2∗2, 0∗7) 0.8087 0.6945 0.5434 1.9688 0.2953 0.1672 0.1529 1.6520 

(0∗6, 1∗4, 0∗6) 0.7739 0.6881 0.5298 1.9686 0.2875 0.1674 0.1560 2.0027 

40 32 
(0∗14, 2∗4, 0∗14) 0.8276 0.8236 0.6891 1.0416 0.0685 0.0682 0.0647 0.0775 

(0∗12, 1∗8, 0∗12) 0.8305 0.8251 0.6906 0.9747 0.0688 0.0687 0.0655 0.0761 

60 48 
(0∗22, 3∗4, 0∗22) 0.8654 0.8665 0.6913 1.0415 0.0429 0.0429 0.0407 0.0467 

(0∗18, 1∗12, 0∗18) 0.8548 0.8665 0.6854 1.0671 0.0426 0.0423 0.0405 0.0458 

80 64 
(0∗30, 4∗4, 0∗30) 0.8992 0.9008 0.6939 1.0878 0.0312 0.0311 0.0298 0.0339 

(0∗24, 1∗16, 0∗24) 0.8797 0.8960 0.6803 1.0878 0.0310 0.0309 0.0298 0.0337 

100 80 
(0∗37, 4∗5, 0∗38) 0.8938 0.9001 0.6939 1.0898 0.0245 0.0245 0.0235 0.0258 

(0∗30, 1∗20, 0∗30) 0.8600 0.8665 0.7486 1.0447 0.0245 0.0244 0.0235 0.0261 

150 120 
(0∗57, 5∗6, 0∗57) 0.8949 0.9050 0.6939 1.0678 0.0159 0.0159 0.0153 0.0169 

(0∗45, 1∗30, 0∗45) 0.8715 0.8684 0.6789 1.1038 0.0160 0.0160 0.0155 0.0174 

200 160 
(0∗75, 4∗10, 0∗75) 0.8845 0.8799 0.6939 1.0878 0.0118 0.0118 0.0112 0.0123 

(0∗60, 1∗40, 0∗60) 0.8660 0.8700 0.7002 1.1026 0.0118 0.0118 0.0114 0.0125 
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Table B.3 The impact of changing the sample size on optimal 𝜏∗ and the corresponding 

𝐴𝑉𝑎𝑟(�̂�0.95(𝑥0)) with two censoring schemes where censored data are removed in the 

middle of the test and 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2 and FP=80%. B.3 

 

 

 

 

 

 

 

 

 

 

 

 Optimal 𝝉∗ 𝑨𝑽𝒂𝒓(�̂�𝟎.𝟗𝟓(𝒙𝟎)) 

𝒏 𝒓 𝓡 Mean Median Min Max Mean Median Min Max 

20 16 
(0∗7, 2∗2, 0∗7) 0.7533 0.7708 0.2767 1.0499 4.2218 4.1536 3.8183 4.9184 

(0∗6, 1∗4, 0∗6) 0.7157 0.7252 0.4626 0.9112 4.1741 4.1200 3.8369 4.7021 

40 32 
(0∗14, 2∗4, 0∗14) 0.9570 0.9507 0.7492 1.2210 1.5882 1.5643 1.4820 1.9572 

(0∗12, 1∗8, 0∗12) 0.9433 0.9535 0.7446 1.0997 1.5779 1.5660 1.4517 1.8262 

60 48 
(0∗22, 3∗4, 0∗22) 0.9958 1.0031 0.8003 1.1931 0.9397 0.9337 0.8884 1.0480 

(0∗18, 1∗12, 0∗18) 0.9796 0.9840 0.8003 1.1504 0.9289 0.9245 0.8780 0.9970 

80 64 
(0∗30, 4∗4, 0∗30) 1.0227 1.0229 0.7997 1.2380 0.6741 0.6687 0.6424 0.7331 

(0∗24, 1∗16, 0∗24) 1.0063 1.0190 0.8033 1.2380 0.6689 0.6672 0.6391 0.7056 

100 80 
(0∗37, 4∗5, 0∗38) 1.0345 1.0328 0.8862 1.2380 0.5225 0.5236 0.4874 0.5613 

(0∗30, 1∗20, 0∗30) 1.0104 1.0204 0.8471 1.2380 0.5237 0.5218 0.5004 0.5478 

150 120 
(0∗57, 5∗6, 0∗57) 1.0521 1.0402 0.8398 1.2522 0.3379 0.3379 0.3233 0.3524 

(0∗45, 1∗30, 0∗45) 1.0497 1.0460 0.8381 1.2505 0.3382 0.3374 0.3233 0.3550 

200 160 
(0∗75, 4∗10, 0∗75) 1.0512 1.0460 0.8395 1.2532 0.2480 0.2473 0.2365 0.2594 

(0∗60, 1∗40, 0∗60) 1.0130 1.0167 0.8283 1.2018 0.2491 0.2484 0.2402 0.2644 
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Table B.4 The impact of changing the sample size on optimal 𝜏∗ and the corresponding 

𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) when FP=80%, ℛ = ((𝑛 − 𝑟), 0∗(𝑟−1), ) and 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2. 

 Optimal 𝝉∗ 𝑨𝑽𝒂𝒓(�̂�𝓹(𝒙𝟎)) 

𝓹 𝒏 𝒓 Mean Median Min Max Mean Median Min Max SE 

0.05 

20 16 0.3200 0.3114 0.1047 0.5507 0.0025 0.0025 0.0019 0.0030 0.0001 

40 32 0.5497 0.5485 0.2713 0.8526 0.0015 0.0015 0.0014 0.0016 1e-05 

60 48 0.5858 0.5521 0.3699 0.8970 0.0009 0.0009 0.0009 0.0010 5e-06 

80 64 0.5881 0.5495 0.3808 0.8262 0.0007 0.0007 0.0006 0.0007 2e-06 

100 80 0.5928 0.5567 0.3822 0.9652 0.0005 0.0005 0.0005 0.0006 1e-06 

150 120 0.5866 0.5957 0.3752 0.9654 0.0003 0.0003 0.0003 0.0003 8e-07 

200 160 0.5856 0.5580 0.3616 0.8911 0.0002 0.0002 0.0002 0.0002 5e-07 

0.50 

20 16 0.7922 0.7823 0.5901 1.0649 0.1647 0.1594 0.1474 0.2851 0.0035 

40 32 0.9542 0.9564 0.7960 1.1026 0.0676 0.0671 0.0649 0.0718 0.0009 

60 48 0.9845 0.9759 0.8459 1.1973 0.0415 0.0415 0.0390 0.0448 0.0006 

80 64 0.9893 0.9802 0.7952 1.1973 0.0301 0.0301 0.0284 0.0322 7e-05 

100 80 0.9894 0.9973 0.8546 1.1388 0.0236 0.0236 0.0224 0.0247 6e-05 

150 120 0.9654 0.9541 0.7957 1.1973 0.0153 0.0153 0.0148 0.0160 3e-05 

200 160 0.9784 0.9621 0.8326 1.1166 0.0113 0.0113 0.0109 0.0116 2e-05 

0.95 

20 16 0.8800 0.8573 0.6557 1.1615 3.8050 3.6830 3.4959 5.2395 0.0318 

40 32 1.0573 1.0643 0.8257 1.2745 1.4519 1.4236 1.3492 1.6574 0.0113 

60 48 1.1025 1.1029 0.9316 1.2801 0.8565 0.8533 0.8115 0.9297 0.0027 

80 64 1.1010 1.1018 0.9316 1.2742 0.6179 0.6183 0.5910 0.6470 0.0016 

100 80 1.1141 1.1029 0.9911 1.2833 0.4823 0.4824 0.4607 0.5052 0.0012 

150 120 1.1157 1.1029 0.9316 1.2742 0.3098 0.3101 0.2956 0.3236 0.0006 

200 160 1.1108 1.1029 0.9566 1.2875 0.2287 0.2284 0.2210 0.2379 0.0005 
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Table B.5 The impact of changing the sample size on optimal 𝜏∗ and the corresponding 

𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) when FP=80%, ℛ = (0∗(𝑟−1), (𝑛 − 𝑟)) and 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2. 

(Type-II censoring). B.5 

 Optimal 𝝉∗ 𝑨𝑽𝒂𝒓(�̂�𝓹(𝒙𝟎)) 

𝓹 𝒏 𝒓 Mean Median Min Max Mean Median Min Max SE 

0.05 

20 16 0.2634 0.2669 0.1250 0.4676 0.0023 0.0023 0.0021 0.0029 2e-04 

40 32 0.4054 0.4052 0.2058 0.5906 0.0014 0.0014 0.0013 0.0015 3e-05 

60 48 0.4403 0.4282 0.2615 0.6156 0.0009 0.0008 0.0008 0.0009 2e-06 

80 64 0.4537 0.4532 0.2808 0.6544 0.0006 0.0006 0.0006 0.0006 1e-06 

100 80 0.4414 0.4426 0.2676 0.5985 0.0005 0.0005 0.0004 0.0005 8e-06 

150 120 0.4481 0.4444 0.2713 0.6580 0.0003 0.0003 0.0003 0.0003 4e-07 

200 160 0.4432 0.4409 0.2713 0.6544 0.0002 0.0002 0.0002 0.0002 6e-07 

0.50 

20 16 0.4913 0.4687 0.3361 1.1026 0.1849 0.1527 0.1457 1.2904 0.0011 

40 32 0.6289 0.6269 0.5232 0.7347 0.0767 0.0755 0.0696 0.1051 0.0004 

60 48 0.6525 0.6515 0.5869 0.7185 0.0448 0.0445 0.0418 0.0512 0.0004 

80 64 0.6646 0.6672 0.5804 0.7233 0.0318 0.0316 0.0305 0.0351 0.0007 

100 80 0.6702 0.6637 0.6085 0.7349 0.0248 0.0247 0.0237 0.0262 7e-05 

150 120 0.6819 0.6865 0.5971 0.7521 0.0161 0.0161 0.0152 0.0170 6e-05 

200 160 0.6710 0.6681 0.5716 0.7420 0.0119 0.0118 0.0116 0.0125 4e-05 

0.95 

20 16 0.3482 0.3054 0.2023 0.7136 3.2616 3.1813 2.6766 4.9369 4e-05 

40 32 0.6641 0.6555 0.5485 0.7603 1.8083 1.7957 1.6334 2.0616 0.0175 

60 48 0.6912 0.6991 0.6094 0.7542 1.0162 1.0067 0.9375 1.2027 0.0062 

80 64 0.7106 0.7194 0.6544 0.7603 0.6964 0.6972 0.6520 0.7589 0.0029 

100 80 0.7170 0.7169 0.6387 0.7852 0.5394 0.5367 0.5061 0.5806 0.0022 

150 120 0.7216 0.7239 0.6485 0.7861 0.3421 0.3416 0.3248 0.3656 0.0008 

200 160 0.7259 0.7198 0.6544 0.8257 0.2524 0.2521 0.2410 0.2663 0.0002 
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Table B.6 The impact of increasing the FP on the optimal 𝜏∗ and the corresponding 

𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) when 𝜃1 = 0.6, 𝜃2 = 0.3, 𝛼 = 1.2. B.6 

 

 Optimal 𝝉∗ 𝑨𝑽𝒂𝒓(�̂�𝓹(𝒙𝟎)) 

𝓹 𝒏 FP% 𝓡 Mean Median Min Max Mean Median Min Max 

0.05 

40 20 (0∗2, 8∗4, 0∗2) 0.4488 0.2908 0.1113 1.3439 0.0069 0.0060 0.0028 0.0516 

40 40 (0∗5, 4∗6, 0∗5) 0.3018 0.3012 0.2262 0.4278 0.0018 0.0018 0.0017 0.0020 

40 60 (0∗10, 4∗4, 0∗10) 0.4391 0.4304 0.3042 0.6330 0.0015 0.0015 0.0014 0.0016 

40 80 (0∗14, 2∗4, 0∗14) 0.5266 0.5212 0.3042 0.7609 0.0014 0.0014 0.0013 0.0014 

40 100 (0∗40) 0.5967 0.5864 0.3524 0.9652 0.0014 0.0013 0.0013 0.0014 

100 20 (0∗7, 16∗5, 0∗8) 0.3039 0.2735 0.2022 1.0125 0.0034 0.0030 0.0028 0.0183 

100 40 (0∗17, 12∗5, 0∗18) 0.3629 0.3610 0.2499 0.5485 0.0017 0.0017 0.0017 0.0018 

100 60 (0∗27, 8∗5, 0∗28) 0.4630 0.4587 0.2713 0.6889 0.0015 0.0015 0.0014 0.0016 

100 80 (0∗37, 4∗5, 0∗38) 0.5034 0.5117 0.3095 0.8254 0.0014 0.0014 0.0013 0.0015 

100 100 (0∗100) 0.6193 0.6187 0.3361 0.8911 0.0013 0.0013 0.0013 0.0014 

0.5 

40 20 (0∗2, 8∗4, 0∗2) 0.3216 0.1592 0.1113 1.0915 0.9089 0.3286 0.2835 5.8375 

40 40 (0∗5, 4∗6, 0∗5) 0.5008 0.5085 0.3042 0.6829 0.2127 0.2073 0.1935 0.2995 

40 60 (0∗10, 4∗4, 0∗10) 0.7025 0.6983 0.5497 0.8393 0.1084 0.1072 0.0983 0.1198 

40 80 (0∗14, 2∗4, 0∗14) 0.8408 0.8390 0.7127 1.0265 0.0689 0.0686 0.0649 0.0762 

40 100 (0∗40) 0.9625 0.9652 0.8243 1.1587 0.0511 0.0510 0.0476 0.0553 

100 20 (0∗7, 16∗5, 0∗8) 0.5404 0.5293 0.2380 1.2346 0.2472 0.2291 0.2081 0.7930 

100 40 (0∗17, 12∗5, 0∗18) 0.7442 0.7444 0.5430 0.9493 0.0674 0.0670 0.0624 0.0806 

100 60 (0∗27, 8∗5, 0∗28) 0.8302 0.8326 0.6789 1.0079 0.0366 0.0365 0.0348 0.0388 

100 80 (0∗37, 4∗5, 0∗38) 0.8951 0.8935 0.7013 1.0802 0.0243 0.0243 0.0235 0.0264 

100 100 (0∗100) 0.9628 0.9526 0.7952 1.1388 0.0186 0.0186 0.0177 0.0193 

0.95 

40 20 (0∗2, 8∗4, 0∗2) 0.2564 0.1319 0.1036 0.9652 14.4831 6.2388 5.4752 74.2034 

40 40 (0∗5, 4∗6, 0∗5) 0.5385 0.5255 0.4147 0.7013 5.3915 5.3655 4.7911 6.4886 

40 60 (0∗10, 4∗4, 0∗10) 0.8055 0.7972 0.6049 0.9950 2.7818 2.7034 2.4955 4.0026 

40 80 (0∗14, 2∗4, 0∗14) 0.9456 0.9460 0.7609 1.0931 1.5890 1.5721 1.4752 2.0946 

40 100 (0∗40) 1.0911 1.0950 0.8801 1.2177 1.0812 1.0780 0.9687 1.1893 

100 20 (0∗7, 16∗5, 0∗8) 0.6363 0.6347 0.3035 0.8207 5.6624 5.6091 5.0131 6.9856 

100 40 (0∗17, 12∗5, 0∗18) 0.8776 0.8654 0.7082 1.0460 4.6939 4.6885 4.1960 5.4571 

100 60 (0∗27, 8∗5, 0∗28) 0.9388 0.9472 0.7837 1.1549 2.4514 2.4552 2.2804 2.5876 

100 80 (0∗37, 4∗5, 0∗38) 1.0361 1.0442 0.7846 1.2077 1.5823 1.5743 1.5099 1.7009 

100 100 (0∗100) 1.1069 1.1078 0.9427 1.3089 1.1440 1.1421 1.0968 1.2080 
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Table B.7 The impact of changing 𝜃1 on optimal 𝜏∗ and the corresponding 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) when 

𝑛 = 80, FP=80%, ℛ = (0∗30, 4∗4, 0∗30) and 𝜃2 = 0.3, 𝛼 = 1.2. B.7 

 Optimal 𝝉∗ 𝑨𝑽𝒂𝒓(�̂�𝓹(𝒙𝟎)) 

𝓹 𝜽𝟏 Mean Median Min Max Mean Median Min Max 

0.05 

0.6 0.5534 0.5245 0.3623 0.8889 0.0006 0.0006 0.0006 0.0006 

0.8 0.7135 0.6961 0.4500 0.9593 0.0014 0.0014 0.0014 0.0015 

1.0 0.9533 0.9416 0.5466 1.3364 0.0028 0.0028 0.0027 0.0030 

1.2 1.0703 1.0742 0.6719 1.6342 0.0050 0.0049 0.0048 0.0053 

1.5 1.2587 1.2899 0.6939 1.9635 0.0096 0.0096 0.0092 0.0103 

1.8 1.5452 1.4572 0.9373 2.3633 0.0167 0.0167 0.0160 0.0173 

2.0 1.9934 1.8951 1.3352 2.8786 0.0231 0.0231 0.0220 0.0251 

2.5 2.1620 2.1506 1.2695 3.1633 0.0445 0.0445 0.0423 0.0471 

0.50 

0.6 0.8757 0.8767 0.6939 1.0878 0.0312 0.0312 0.0300 0.0334 

0.8 1.1753 1.1808 0.8443 1.4243 0.0751 0.0750 0.0704 0.0793 

1.0 1.4980 1.5108 1.1800 1.7259 0.1472 0.1480 0.1399 0.1535 

1.2 1.7507 1.7264 1.3313 2.1191 0.2528 0.2529 0.2393 0.2699 

1.5 2.1855 2.2121 1.7304 2.6060 0.4929 0.4906 0.4745 0.5174 

1.8 2.4590 2.5089 1.8673 2.8515 0.8544 0.8476 0.8097 0.9630 

2.0 2.8947 2.8955 2.3687 3.4223 1.1678 1.1681 1.1133 1.2180 

2.5 3.5204 3.5527 2.6311 4.3035 2.2823 2.2740 2.1578 2.4515 

0.95 

0.6 1.0161 1.0233 0.8444 1.2306 0.6677 0.6681 0.6356 0.7028 

0.8 1.3572 1.3548 1.1770 1.6229 1.6122 1.6121 1.5485 1.7108 

1.0 1.6721 1.6803 1.4220 2.0450 3.1533 3.1437 3.0264 3.3791 

1.2 2.0255 2.0155 1.6880 2.4098 5.4686 5.4748 5.2272 5.7062 

1.5 2.5162 2.5131 2.1663 2.9325 10.5840 10.6099 10.0046 11.0241 

1.8 3.0154 3.0163 2.5232 3.5623 18.3005 18.3037 17.2486 19.2245 

2.0 3.2577 3.2496 2.7638 3.7250 25.0155 24.9822 23.7461 26.1288 

2.5 4.0585 4.0822 3.3156 4.6226 48.8046 48.6820 46.5784 51.5443 
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Table B.8 The impact of changing 𝜃2 on optimal 𝜏∗ and the corresponding 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) when 

𝑛 = 80, FP=80%, ℛ = (0∗30, 4∗4, 0∗30) and 𝜃1 = 0.6, 𝛼 = 1.2. B.8 

 Optimal 𝝉∗ 𝑨𝑽𝒂𝒓(�̂�𝓹(𝒙𝟎)) 

𝓹 𝜽𝟐 Mean Median Min Max Mean Median Min Max 

0.05 

0.1 0.5749 0.5484 0.3927 0.9578 0.0018 0.0018 0.0017 0.0020 

0.2 0.5726 0.5492 0.3862 0.9494 0.0009 0.0009 0.0008 0.0010 

0.3 0.5878 0.5634 0.3894 0.9526 0.0006 0.0006 0.0006 0.0006 

0.4 0.5804 0.5480 0.3947 0.9493 0.0004 0.0004 0.0004 0.0005 

0.5 0.5977 0.5506 0.3804 0.9491 0.0003 0.0003 0.0003 0.0004 

0.50 

0.1 0.8819 0.8908 0.7013 1.1026 0.0946 0.0945 0.0885 0.1024 

0.2 0.8789 0.8908 0.7013 1.0940 0.0472 0.0472 0.0441 0.0495 

0.3 0.8886 0.8907 0.7013 1.1079 0.0312 0.0312 0.0296 0.0331 

0.4 0.8881 0.8988 0.7007 1.0217 0.0219 0.0219 0.0210 0.0231 

0.5 0.8909 0.8997 0.7013 1.0146 0.0150 0.0149 0.0145 0.0159 

0.95 

0.1 1.0225 1.0087 0.8042 1.1635 2.0254 2.0225 1.9398 2.1262 

0.2 1.0136 1.0082 0.8042 1.1715 1.0161 1.0170 0.9501 1.1018 

0.3 1.0164 1.0383 0.8042 1.1458 0.6716 0.6705 0.6351 0.7163 

0.4 1.0260 1.0272 0.8052 1.1873 0.4687 0.4661 0.4495 0.4959 

0.5 1.0315 1.0217 0.8862 1.1973 0.3257 0.3248 0.3083 0.3466 
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Table B.9 The impact of changing 𝛼 on optimal 𝜏∗ and the corresponding 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) when      

𝑛 = 80, FP=80%, ℛ = (0∗30, 4∗4, 0∗30) and 𝜃1 = 0.6, 𝜃2 = 0.3. B.9 

 Optimal 𝝉∗ 𝑨𝑽𝒂𝒓(�̂�𝓹(𝒙𝟎)) 

𝓹 𝜶 Mean Median Min Max Mean Median Min Max 

0.05 

0.6 0.6516 0.5731 0.4098 1.8046 0.0000 0.0000 0.0000 0.0001 

0.8 0.5833 0.5657 0.3658 0.9373 0.0001 0.0001 0.0001 0.0001 

1.0 0.5643 0.5412 0.3875 0.9373 0.0003 0.0003 0.0003 0.0003 

1.2 0.6036 0.5941 0.3574 0.9378 0.0006 0.0006 0.0006 0.0006 

1.4 0.6063 0.5533 0.4149 0.9405 0.0010 0.0010 0.0009 0.0010 

1.6 0.6198 0.6051 0.4504 0.9378 0.0014 0.0014 0.0013 0.0015 

1.8 0.6716 0.6793 0.5080 0.9373 0.0018 0.0018 0.0018 0.0020 

2.0 0.7104 0.6939 0.5383 0.9374 0.0023 0.0023 0.0022 0.0025 

2.5 0.7991 0.7869 0.6363 0.9593 0.0036 0.0036 0.0034 0.0037 

3.0 0.8413 0.8332 0.7128 0.9944 0.0047 0.0047 0.0045 0.0049 

4.0 1.0351 1.0306 0.9019 1.1809 0.0071 0.0071 0.0068 0.0074 

5.0 1.1807 1.1738 1.0489 1.3541 0.0094 0.0094 0.0090 0.0097 

0.50 

0.6 0.6845 0.6979 0.5460 0.8237 0.0113 0.0113 0.0105 0.0119 

0.8 0.7687 0.7475 0.6427 0.9493 0.0185 0.0185 0.0175 0.0194 

1.0 0.8629 0.8684 0.6447 1.0081 0.0252 0.0251 0.0244 0.0268 

1.2 0.8752 0.8752 0.6427 1.0217 0.0313 0.0312 0.0298 0.0337 

1.4 0.9342 0.9334 0.7013 1.1026 0.0370 0.0368 0.0354 0.0395 

1.6 0.9836 0.9621 0.8204 1.1388 0.0419 0.0418 0.0404 0.0433 

1.8 1.0132 1.0046 0.8541 1.1974 0.0466 0.0464 0.0447 0.0486 

2.0 1.0368 1.0440 0.8493 1.1973 0.0509 0.0509 0.0489 0.0533 

2.5 1.1144 1.1058 0.9387 1.3506 0.0609 0.0605 0.0577 0.0657 

3.0 1.1786 1.1726 1.0433 1.3561 0.0685 0.0686 0.0652 0.0723 

4.0 1.1857 1.1920 1.0440 1.3506 0.0686 0.0686 0.0658 0.0714 

5.0 1.3651 1.3516 1.1835 1.5986 0.0913 0.0907 0.0878 0.0968 
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Table B.9 (continue):  The impact of changing 𝛼 on optimal 𝜏∗and the corresponding 𝐴𝑉𝑎𝑟 (�̂�𝓅(𝑥0)) 

when 𝑛 = 80, FP=80%, ℛ = (0∗30, 4∗4, 0∗30) and 𝜃1 = 0.6, 𝜃2 = 0.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Optimal 𝝉∗ 𝑨𝑽𝒂𝒓(�̂�𝓹(𝒙𝟎)) 

𝓹 𝜶 Mean Median Min Max Mean Median Min Max 

095 

0.6 0.8369 0.8387 0.6939 1.0154 0.6939 0.6922 0.6618 0.7313 

0.8 0.8996 0.9018 0.6719 1.0878 0.6831 0.6806 0.6547 0.7340 

1.0 0.9819 0.9661 0.6939 1.1233 0.6721 0.6687 0.6426 0.7370 

1.2 1.0105 1.0293 0.6939 1.1808 0.6730 0.6695 0.6429 0.7400 

1.4 1.0604 1.0647 0.8443 1.3313 0.6699 0.6652 0.6403 0.7448 

1.6 1.0939 1.0904 0.9018 1.3364 0.6737 0.6729 0.6400 0.7141 

1.8 1.1488 1.1618 0.9373 1.3313 0.6730 0.6744 0.6316 0.7071 

2.0 1.1951 1.1811 0.9373 1.3668 0.6740 0.6726 0.6437 0.7116 

2.5 1.2578 1.2670 1.0878 1.3888 0.6702 0.6671 0.6435 0.7048 

3.0 1.3206 1.3298 1.1680 1.5740 0.6712 0.6716 0.6401 0.7025 

4.0 1.3859 1.3887 1.1808 1.6322 0.6650 0.6605 0.6366 0.7090 

5.0 1.4522 1.4385 1.2188 1.7080 0.6165 0.6169 0.5893 0.6617 
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Table B.10 The comparison of optimal ℛ∗ with the worst, Type-II and the complete sample based on 

estimating the 5𝑡ℎ percentile when changing 𝑛 with 80%FP for 𝜃1 = 0.6, 𝜃2 = 0.3,          

𝛼 = 1.2 and 𝜏 = 0.8. B.10 

𝒏 𝒓 Scheme 𝑨𝑽𝒂𝒓 𝑻 RE(%) RT(%) 

20 16 

Optimal ℛ1 0.0040 1.4581 100 100 
Worst ℛ3 0.0116 0.9443 34.51 154.41 

Type-II ℛ3 0.0116 0.9443 34.51 154.41 
Complete ℛ11 0.0033 1.5316 119.14 95.20 

30 24 

Optimal ℛ2 0.0023 1.5421 100 100 
Worst ℛ3 0.0063 0.9371 35.83 164.55 

Type-II ℛ3 0.0063 0.9371 35.83 164.55 
Complete ℛ11 0.0020 1.6507 111.03 93.41 

40 32 

Optimal ℛ2 0.0015 1.6184 100 100 
Worst ℛ3 0.0081 0.9337 18.73 173.32 

Type-II ℛ3 0.0081 0.9337 18.73 173.32 
Complete ℛ11 0.0014 1.7377 110.06 93.13 

50 40 

Optimal ℛ2 0.0011 1.6911 100 100 
Worst ℛ3 0.0035 0.9298 32.90 181.87 

Type-II ℛ3 0.0035 0.9298 32.90 181.87 
Complete ℛ11 0.0011 1.8040 106.65 93.74 

60 48 

Optimal ℛ2 0.0009 1.7441 100 100 
Worst ℛ3 0.0021 0.9282 43.90 187.89 

Type-II ℛ3 0.0021 0.9282 43.90 187.89 
Complete ℛ11 0.0009 1.8539 106.07 94.07 

70 56 

Optimal ℛ2 0.0007 1.7911 100 100 
Worst ℛ3 0.0013 0.9269 57.15 193.23 

Type-II ℛ3 0.0013 0.9269 57.15 193.23 
Complete ℛ11 0.0007 1.8988 104.22 94.32 

80 64 

Optimal ℛ2 0.0007 1.8207 100 100 
Worst ℛ3 0.0014 0.9276 47.40 196.28 

Type-II ℛ3 0.0014 0.9276 47.40 196.28 
Complete ℛ11 0.0006 1.9437 104.65 93.67 

100 80 

Optimal ℛ2 0.0005 1.8883 100 100 
Worst ℛ3 0.0007 0.9270 71.32 203.70 

Type-II ℛ3 0.0007 0.9270 71.32 203.70 
Complete ℛ11 0.0005 2.0098 104.69 93.95 

150 120 

Optimal ℛ7 0.0003 2.0033 100 100 
Worst ℛ3 0.0004 0.9284 77.66 215.77 

Type-II ℛ3 0.0004 0.9284 77.66 215.77 
Complete ℛ11 0.0003 2.1290 102.61 94.09 

200 160 

Optimal ℛ7 0.0002 2.0970 100 100 
Worst ℛ3 0.0003 0.9289 81.41 225.75 

Type-II ℛ3 0.0003 0.9289 81.41 225.75 
Complete ℛ11 0.0002 2.2202 102.34 94.44 
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Table B.11 The comparison of optimal ℛ∗ with the worst, Type-II and the complete sample based on 

estimating the 50𝑡ℎ percentile when changing 𝑛 with 80%FP for 𝜃1 = 0.6, 𝜃2 = 0.3,       

𝛼 = 1.2 and 𝜏 = 0.8. B.11 

𝒏 𝒓 Scheme 𝑨𝑽𝒂𝒓 𝑻 RE(%) RT(%) 

20 16 

Optimal ℛ2 0.1692 1.4179 100 100 
Worst ℛ3 0.5278 0.9447 32.06 150.09 

Type-II ℛ3 0.5278 0.9447 32.06 150.09 
Complete ℛ11 0.1335 1.5310 126.78 92.61 

30 24 

Optimal ℛ7 0.0980 1.5239 100 100 
Worst ℛ3 0.2859 0.9367 34.29 162.69 

Type-II ℛ3 0.2859 0.9367 34.29 162.69 
Complete ℛ11 0.0800 1.6513 122.47 92.28 

40 32 

Optimal ℛ7 0.0686 1.6091 100 100 
Worst ℛ3 0.1498 0.9339 45.76 172.29 

Type-II ℛ3 0.1498 0.9339 45.76 172.29 
Complete ℛ11 0.0575 1.7308 119.19 92.96 

50 40 

Optimal ℛ7 0.0539 1.6774 100 100 
Worst ℛ3 0.0973 0.9296 55.36 180.44 

Type-II ℛ3 0.0973 0.9296 55.36 180.44 
Complete ℛ9 0.0424 1.8035 127.18 93.00 

60 48 

Optimal ℛ2 0.0431 1.2595 100 100 
Worst ℛ3 0.0873 0.9282 49.31 135.68 

Type-II ℛ3 0.0873 0.9282 49.31 135.68 
Complete ℛ11 0.0350 1.8555 122.90 67.87 

70 56 

Optimal ℛ4 0.0352 1.0921 100 100 
Worst ℛ3 0.0636 0.9278 55.30 117.71 

Type-II ℛ3 0.0636 0.9278 55.30 117.71 
Complete ℛ11 0.0291 1.9028 120.72 57.39 

80 64 

Optimal ℛ4 0.0313 1.0947 100 100 
Worst ℛ3 0.0457 0.9286 68.48 117.88 

Type-II ℛ3 0.0457 0.9286 68.48 117.88 
Complete ℛ11 0.0251 1.9460 124.78 56.25 

100 80 

Optimal ℛ4 0.0240 1.0963 100 100 
Worst ℛ3 0.0307 0.9273 78.06 118.22 

Type-II ℛ3 0.0307 0.9273 78.06 118.22 
Complete ℛ11 0.0193 2.0121 124.18 54.48 

150 120 

Optimal ℛ4 0.0157 1.1019 100 100 
Worst ℛ3 0.0187 0.9288 84.19 118.62 

Type-II ℛ3 0.0187 0.9288 84.19 118.62 
Complete ℛ11 0.0129 2.1266 121.82 51.81 

200 160 

Optimal ℛ4 0.0116 1.1033 100 100 
Worst ℛ3 0.0137 0.9290 84.76 118.77 

Type-II ℛ3 0.0137 0.9290 84.76 118.77 
Complete ℛ11 0.0095 2.2222 122.63 49.65 
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Table B.12 The comparison of optimal ℛ∗ with the worst, Type-II and the complete sample based on 

estimating the 95𝑡ℎ percentile when changing 𝑛 with 80%FP for 𝜃1 = 0.6, 𝜃2 = 0.3,      

𝛼 = 1.2 and 𝜏 = 0.8. B.12 

𝒏 𝒓 Scheme 𝑨𝑽𝒂𝒓 𝑻 RE(%) RT(%) 

20 16 

Optimal ℛ7 4.2261 1.4086 100 100 
Worst ℛ3 7.7586 0.9442 54.46 149.17 

Type-II ℛ3 7.7586 0.9442 54.46 149.17 
Complete ℛ11 3.2938 1.5288 128.30 92.13 

30 24 

Optimal ℛ7 2.5041 1.5238 100 100 
Worst ℛ3 4.8987 0.9366 51.11 162.68 

Type-II ℛ3 4.8987 0.9366 51.11 162.68 
Complete ℛ11 2.0708 1.6560 120.92 92.01 

40 32 

Optimal ℛ7 1.6471 1.6078 100 100 
Worst ℛ3 3.1529 0.9314 52.24 172.61 

Type-II ℛ3 3.1529 0.9314 52.24 172.61 
Complete ℛ11 1.4674 1.7381 112.24 92.50 

50 40 

Optimal ℛ4 1.1836 1.0849 100 100 
Worst ℛ3 1.7939 0.9306 65.97 116.57 

Type-II ℛ3 1.7939 0.9306 65.97 116.57 
Complete ℛ9 1.0225 1.8036 115.75 60.15 

60 48 

Optimal ℛ4 0.9615 1.0885 100 100 
Worst ℛ3 1.2562 0.9287 76.54 117.20 

Type-II ℛ3 1.2562 0.9287 76.54 117.20 
Complete ℛ11 0.8315 1.8625 115.63 58.44 

70 56 

Optimal ℛ4 0.7893 1.0891 100 100 
Worst ℛ3 0.9994 0.9272 78.97 117.46 

Type-II ℛ3 0.9994 0.9272 78.97 117.46 
Complete ℛ11 0.6624 1.9068 119.15 57.11 

80 64 

Optimal ℛ4 0.6956 1.0943 100 100 
Worst ℛ3 0.9180 0.9274 75.77 117.99 

Type-II ℛ3 0.9180 0.9274 75.77 117.99 
Complete ℛ11 0.5826 1.9530 119.40 56.03 

100 80 

Optimal ℛ4 0.5204 1.0977 100 100 
Worst ℛ3 0.6232 0.9279 83.49 118.30 

Type-II ℛ3 0.6232 0.9279 83.49 118.30 
Complete ℛ11 0.4534 2.0134 114.77 54.52 

150 120 

Optimal ℛ4 0.3330 1.1028 100 100 
Worst ℛ3 0.3733 0.9273 89.20 118.92 

Type-II ℛ3 0.3733 0.9273 89.20 118.92 
Complete ℛ11 0.2889 2.1266 115.26 51.85 

200 160 

Optimal ℛ4 0.2437 1.1033 100 100 
Worst ℛ7 0.2763 2.0915 88.19 52.75 

Type-II ℛ3 0.2690 0.9294 90.61 118.71 
Complete ℛ11 0.2130 2.2186 114.39 49.73 
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Table B.13 The comparison of optimal ℛ∗ with the worst, Type-II and the complete sample based on 

estimating the 5𝑡ℎ percentile when changing 𝜃1, for 𝜃2 = 0.3, 𝛼 = 1.2, 𝜏 = 0.8 and         

𝑛 = 80 with 80%FP. B.13 

𝜽𝟏 Scheme 𝑨𝑽𝒂𝒓 𝑻 RE(%) RT(%) 

0.6 

Optimal ℛ2 0.0007 1.8236 100 100 
Worst ℛ3 0.0010 0.9273 65.47 196.65 

Type-II ℛ3 0.0010 0.9273 65.47 196.65 
Complete ℛ11 0.0006 1.9490 106.77 93.56 

0.8 

Optimal ℛ2 0.0015 1.9294 100 100 
Worst ℛ1 0.0017 1.9752 87.99 97.68 

Type-II ℛ3 0.0017 1.0242 89.62 188.38 
Complete ℛ11 0.0014 2.0448 103.95 94.35 

1.0 

Optimal ℛ2 0.0029 1.9875 100 100 
Worst ℛ1 0.0033 2.0365 86.40 97.59 

Type-II ℛ3 0.0030 1.0850 94.81 183.17 
Complete ℛ11 0.0028 2.1047 102.47 94.42 

1.2 

Optimal ℛ7 0.0051 2.0146 100 100 
Worst ℛ1 0.0059 2.0735 85.95 97.15 

Type-II ℛ3 0.0053 1.1249 96.14 179.08 
Complete ℛ9 0.0049 2.1417 103.28 94.06 

1.4 

Optimal ℛ2 0.0081 2.0454 100 100 
Worst ℛ1 0.0095 2.1062 85.74 97.11 

Type-II ℛ3 0.0085 1.1525 95.80 177.47 
Complete ℛ11 0.0080 2.1775 101.84 93.93 

1.6 

Optimal ℛ2 0.0122 2.0722 100 100 
Worst ℛ1 0.0143 2.1199 85.35 97.75 

Type-II ℛ3 0.0129 1.1737 94.64 176.55 
Complete ℛ11 0.0120 2.1915 101.52 94.55 

1.8 

Optimal ℛ2 0.0175 2.0791 100 100 
Worst ℛ1 0.0197 2.1267 88.86 97.76 

Type-II ℛ3 0.0181 1.1884 96.30 174.95 
Complete ℛ11 0.0172 2.2010 101.57 94.46 

2.0 

Optimal ℛ7 0.0232 2.0797 100 100 
Worst ℛ1 0.0262 2.1369 88.41 97.32 

Type-II ℛ3 0.0246 1.1998 94.14 173.34 
Complete ℛ11 0.0223 2.2020 103.93 94.44 

2.5 

Optimal ℛ2 0.0396 2.0898 100 100 
Worst ℛ1 0.0444 2.1418 89.20 97.57 

Type-II ℛ3 0.0410 1.2201 96.59 171.27 
Complete ℛ11 0.0390 2.2118 101.60 94.48 

3.0 

Optimal ℛ2 0.0579 2.0794 100 100 
Worst ℛ1 0.0614 2.1448 94.31 96.94 

Type-II ℛ3 0.0579 1.2321 99.92 168.76 
Complete ℛ11 0.0576 2.2067 100.51 94.22 
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Table B.14 The comparison of optimal ℛ∗ with the worst, Type-II and the complete sample based on 

estimating the 50𝑡ℎ percentile when changing 𝜃1, for 𝜃2 = 0.3, 𝛼 = 1.2, 𝜏 = 0.8 and      

𝑛 = 80 with 80%FP. B.14 

𝜽𝟏 Scheme 𝑨𝑽𝒂𝒓 𝑻 RE(%) RT(%) 

0.6 

Optimal ℛ4 0.0314 1.0929 100 100 
Worst ℛ3 0.0446 0.9276 70.43 117.82 

Type-II ℛ3 0.0446 0.9276 70.43 117.82 
Complete ℛ11 0.0249 1.9443 126.10 56.20 

0.8 

Optimal ℛ3 0.0780 1.0239 100 100 
Worst ℛ6 0.0967 1.9688 80.63 52.00 

Type-II ℛ3 0.0780 1.0239 100 100 
Complete ℛ11 0.0721 2.0354 108.26 50.30 

1.0 

Optimal ℛ3 0.1888 1.0857 100 100 
Worst ℛ6 0.2524 2.0335 74.80 53.38 

Type-II ℛ3 0.1888 1.0857 100 100 
Complete ℛ11 0.1837 2.1072 102.79 51.52 

1.2 

Optimal ℛ3 0.4039 1.1234 100 100 
Worst ℛ1 0.5201 2.0807 77.66 53.98 

Type-II ℛ3 0.4039 1.1234 100 100 
Complete ℛ11 0.4247 2.1463 95.09 52.33 

1.4 

Optimal ℛ3 0.7524 1.1528 100 100 
Worst ℛ6 0.9025 2.0918 83.37 55.11 

Type-II ℛ3 0.7524 1.1528 100 100 
Complete ℛ11 0.7831 2.1740 96.08 53.02 

1.6 

Optimal ℛ3 1.1547 1.1737 100 100 
Worst ℛ1 1.2987 2.1169 88.91 55.44 

Type-II ℛ3 1.1547 1.1737 100 100 
Complete ℛ11 1.2102 2.1876 95.41 53.65 

1.8 

Optimal ℛ3 1.5618 1.1881 100 100 
Worst ℛ6 1.6576 2.1246 94.21 55.92 

Type-II ℛ3 1.5618 1.1881 100 100 
Complete ℛ11 1.6425 2.2013 95.08 53.97 

2.0 

Optimal ℛ3 1.8772 1.2008 100 100 
Worst ℛ6 1.9742 2.1250 95.08 56.50 

Type-II ℛ3 1.8772 1.2008 100 100 
Complete ℛ11 1.9992 2.2107 93.89 54.31 

2.5 

Optimal ℛ8 2.4170 1.5178 100 100 
Worst ℛ10 2.6044 2.0175 92.80 75.23 

Type-II ℛ3 2.4310 1.2203 99.42 124.37 
Complete ℛ11 2.6733 2.2120 90.41 68.61 

3.0 

Optimal ℛ3 2.7220 1.2323 100 100 
Worst ℛ10 2.9368 2.0099 92.68 61.31 

Type-II ℛ3 2.7220 1.2323 100 100 
Complete ℛ11 2.9894 2.2081 91.05 55.80 
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Table B.15 The comparison of optimal ℛ∗ with the worst, Type-II and the complete sample based on 

estimating the 95𝑡ℎ percentile when changing 𝜃1, for 𝜃2 = 0.3, 𝛼 = 1.2, 𝜏 = 0.8 and      

𝑛 = 80 with 80%FP. B.15 

𝜽𝟏 Scheme 𝑨𝑽𝒂𝒓 𝑻 RE(%) RT(%) 

0.6 

Optimal ℛ4 0.6591 1.0936 100 100 
Worst ℛ3 0.8128 0.9277 81.08 117.8 

Type-II ℛ3 0.8128 0.9277 81.08 117.8 
Complete ℛ11 0.5700 1.9421 115.62 56.30 

0.8 

Optimal ℛ3 1.9326 1.0258 100 100 
Worst ℛ6 2.4188 1.9720 79.89 52.01 

Type-II ℛ3 1.9326 1.0258 100 100 
Complete ℛ11 1.8138 2.0388 106.54 50.31 

1.0 

Optimal ℛ3 4.9440 1.0842 100 100 
Worst ℛ6 6.4662 2.028 76.45 53.46 

Type-II ℛ3 4.9440 1.0842 100 100 
Complete ℛ11 4.7782 2.0977 103.46 51.68 

1.2 

Optimal ℛ3 10.9569 1.1232 100 100 
Worst ℛ6 13.9939 2.0651 78.29 54.38 

Type-II ℛ3 10.9569 1.1232 100 100 
Complete ℛ11 11.5778 2.1459 94.63 52.33 

1.4 

Optimal ℛ3 19.9918 1.1532 100 100 
Worst ℛ6 22.0947 2.0943 90.48 55.06 

Type-II ℛ3 19.9918 1.1532 100 100 
Complete ℛ11 20.5157 2.1783 97.44 52.93 

1.6 

Optimal ℛ3 29.0553 1.1727 100 100 
Worst ℛ6 31.2474 2.1039 92.98 55.74 

Type-II ℛ3 29.0553 1.1727 100 100 
Complete ℛ11 30.2695 2.1844 95.98 53.68 

1.8 

Optimal ℛ3 36.1174 1.1895 100 100 
Worst ℛ7 39.8482 2.0806 90.63 57.17 

Type-II ℛ3 36.1174 1.1895 100 100 
Complete ℛ11 38.2206 2.1989 94.49 54.09 

2.0 

Optimal ℛ1 41.1437 2.1401 100 100 
Worst ℛ2 44.6236 2.0860 92.20 102.59 

Type-II ℛ3 42.5113 1.1998 96.78 178.37 
Complete ℛ11 45.3612 2.2035 90.70 97.12 

2.5 

Optimal ℛ1 47.3938 2.1394 100 100 
Worst ℛ2 52.5781 2.0902 90.13 102.35 

Type-II ℛ3 49.7898 1.2196 95.18 175.41 
Complete ℛ11 53.4715 2.2125 88.63 96.69 

3.0 

Optimal ℛ1 49.0296 2.1381 100 100 
Worst ℛ2 54.5146 2.0780 89.93 102.89 

Type-II ℛ3 51.8609 1.2316 94.54 173.60 
Complete ℛ11 55.8334 2.2055 87.81 96.94 
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Table B.16 The comparison of optimal ℛ∗ with the worst, Type-II and the complete sample based on 

estimating the 5𝑡ℎ percentile when changing 𝜃2, for 𝜃1 = 0.6, 𝛼 = 1.2, 𝜏 = 0.8 and         

𝑛 = 80 with 80%FP.  B.16 

𝜽𝟐 Scheme 𝑨𝑽𝒂𝒓 𝑻 RE(%) RT(%) 

0.1 

Optimal ℛ2 0.0020 1.1423 100 100 

Worst ℛ3 0.0036 0.8423 54.41 135.60 

Type-II ℛ3 0.0036 0.8423 54.41 135.60 

Complete ℛ11 0.0019 1.1833 106.71 96.52 

0.2 

Optimal ℛ2 0.0010 1.4825 100 100 

Worst ℛ3 0.0020 0.8856 49.08 167.39 

Type-II ℛ3 0.0020 0.8856 49.08 167.39 

Complete ℛ11 0.0010 1.5605 103.88 94.99 

0.3 

Optimal ℛ2 0.0007 1.8215 100 100 

Worst ℛ3 0.0012 0.9276 55.48 196.36 

Type-II ℛ3 0.0012 0.9276 55.48 196.36 

Complete ℛ11 0.0006 1.9437 106.20 93.71 

0.4 

Optimal ℛ2 0.0005 2.1597 100 100 

Worst ℛ3 0.0009 0.9695 53.72 222.77 

Type-II ℛ3 0.0009 0.9695 53.72 222.77 

Complete ℛ11 0.0005 2.3199 105.17 93.09 

0.5 

Optimal ℛ2 0.0004 2.5159 100 100 

Worst ℛ3 0.0007 1.0116 58.50 248.71 

Type-II ℛ3 0.0007 1.0116 58.50 248.71 

Complete ℛ11 0.0004 2.7065 107.58 92.95 
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Table B.17 The comparison of optimal ℛ∗ with the worst, Type-II and the complete sample based on 

estimating the 50𝑡ℎ percentile when changing 𝜃2, for 𝜃1 = 0.6, 𝛼 = 1.2, 𝜏 = 0.8 and      

𝑛 = 80 with 80%FP. B.17 

𝜽𝟐 Scheme 𝑨𝑽𝒂𝒓 𝑻 RE(%) RT(%) 

0.1 

Optimal ℛ4 0.0963 0.8984 100 100 

Worst ℛ3 0.1431 0.8425 67.28 106.63 

Type-II ℛ3 0.1431 0.8425 67.28 106.63 

Complete ℛ11 0.0786 1.1824 122.54 75.97 

0.2 

Optimal ℛ4 0.0467 0.9969 100 100 

Worst ℛ3 0.0809 0.8856 57.68 112.56 

Type-II ℛ3 0.0809 0.8856 57.68 112.56 

Complete ℛ11 0.0383 1.5600 121.97 63.89 

0.3 

Optimal ℛ4 0.0317 1.0921 100 100 

Worst ℛ3 0.0518 0.9285 61.12 117.61 

Type-II ℛ3 0.0518 0.9285 61.12 117.61 

Complete ℛ11 0.0244 1.9455 129.63 56.13 

0.4 

Optimal ℛ4 0.0219 1.1920 100 100 

Worst ℛ3 0.0309 0.9723 71.06 122.59 

Type-II ℛ3 0.0309 0.9723 71.06 122.59 

Complete ℛ11 0.0182 2.3229 120.26 51.31 

0.5 

Optimal ℛ4 0.0152 1.2894 100 100 

Worst ℛ3 0.0251 1.0127 60.29 127.31 

Type-II ℛ3 0.0251 1.0127 60.29 127.31 

Complete ℛ11 0.0127 2.7085 118.95 47.60 
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Table B.18 The comparison of optimal ℛ∗ with the worst, Type-II and the complete sample based on 

estimating the 95𝑡ℎ percentile when changing 𝜃2, for 𝜃1 = 0.6, 𝛼 = 1.2, 𝜏 = 0.8 and      

𝑛 = 80  with 80%FP. B.18 

𝜽𝟐 Scheme 𝑨𝑽𝒂𝒓 𝑻 RE(%) RT(%) 

0.1 

Optimal ℛ9 2.0790 0.9679 100 100 

Worst ℛ3 2.6495 0.8424 78.46 114.88 

Type-II ℛ3 2.6495 0.8424 78.46 114.88 

Complete ℛ11 1.7548 1.1833 118.47 81.79 

0.2 

Optimal ℛ9 1.0412 1.1340 100 100 

Worst ℛ3 1.2935 0.8855 80.49 128.06 

Type-II ℛ3 1.2935 0.8855 80.49 128.06 

Complete ℛ11 0.8874 1.5617 117.33 72.61 

0.3 

Optimal ℛ4 0.6894 1.0950 100 100 

Worst ℛ3 0.9689 0.9279 71.15 118.00 

Type-II ℛ3 0.9689 0.9279 71.15 118.00 

Complete ℛ11 0.5911 1.9401 116.62 56.44 

0.4 

Optimal ℛ9 0.4812 1.4701 100 100 

Worst ℛ3 0.5733 0.9718 83.93 151.28 

Type-II ℛ3 0.5733 0.9718 83.93 151.28 

Complete ℛ11 0.4148 2.3171 115.99 63.44 

0.5 

Optimal ℛ9 0.3238 1.6370 100 100 

Worst ℛ3 0.5148 1.0138 62.89 161.46 

Type-II ℛ3 0.5148 1.0138 62.89 161.46 

Complete ℛ11 0.2885 2.6976 112.22 60.68 
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Table B.19 The comparison of optimal ℛ∗ with the worst, Type-II and the complete sample based on 
estimating the 5𝑡ℎ percentile when changing 𝛼, for 𝜃1 = 0.6, 𝜃2 = 0.3, 𝜏 = 0.8 and          
𝑛 = 80 with 80%FP. B.19 

𝜶 Scheme 𝑨𝑽𝒂𝒓 𝑻 RE(%) RT(%) 

0.6 

Optimal ℛ2 0.0000 1.6184 100 100 
Worst ℛ3 0.0002 0.8388 8.80 192.95 

Type-II ℛ3 0.0002 0.8388 8.80 192.95 
Complete ℛ11 0.0000 1.7386 108.16 93.08 

0.8 

Optimal ℛ2 0.0001 1.7104 100 100 
Worst ℛ3 0.0009 0.8592 12.71 199.07 

Type-II ℛ3 0.0009 0.8592 12.71 199.07 
Complete ℛ11 0.0001 1.8206 107.88 93.94 

1.0 

Optimal ℛ2 0.0003 1.7725 100 100 
Worst ℛ3 0.0013 0.8897 25.71 199.22 

Type-II ℛ3 0.0013 0.8897 25.71 199.22 
Complete ℛ11 0.0003 1.8939 105.40 93.58 

1.2 

Optimal ℛ2 0.0007 1.8252 100 100 
Worst ℛ3 0.0014 0.9276 47.82 196.76 

Type-II ℛ3 0.0014 0.9276 47.82 196.76 
Complete ℛ11 0.0006 1.9456 105.75 93.81 

1.4 

Optimal ℛ2 0.0011 1.8754 100 100 
Worst ℛ3 0.0013 0.9668 79.33 193.98 

Type-II ℛ3 0.0013 0.9668 79.33 193.98 
Complete ℛ11 0.0010 1.9895 106.41 94.26 

1.6 

Optimal ℛ2 0.0016 1.9088 100 100 
Worst ℛ1 0.0017 1.9673 89.10 97.02 

Type-II ℛ3 0.0017 1.0024 91.75 190.43 
Complete ℛ11 0.0014 2.0302 110.77 94.02 

1.8 

Optimal ℛ2 0.0020 1.9443 100 100 
Worst ℛ1 0.0022 1.9966 87.17 97.37 

Type-II ℛ3 0.0022 1.0367 90.20 187.54 
Complete ℛ11 0.0019 2.0663 104.05 94.09 

2.0 

Optimal ℛ2 0.0024 1.9679 100 100 
Worst ℛ1 0.0028 2.0332 88.57 96.78 

Type-II ℛ3 0.0027 1.0642 91.90 184.91 
Complete ℛ11 0.0023 2.1025 106.37 93.59 

2.5 

Optimal ℛ2 0.0037 2.0411 100 100 
Worst ℛ1 0.0042 2.0918 88.38 97.57 

Type-II ℛ3 0.0038 1.1290 95.94 180.78 
Complete ℛ11 0.0035 2.1693 106.39 94.08 

3.0 

Optimal ℛ7 0.0049 2.0920 100 100 
Worst ℛ1 0.0057 2.1450 86.87 97.52 

Type-II ℛ3 0.0051 1.1817 97.17 177.03 
Complete ℛ11 0.0046 2.2125 107.07 94.55 
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Table B.20 The comparison of optimal ℛ∗ with the worst, Type-II and the complete sample based on 
estimating the 50𝑡ℎ percentile when changing 𝛼, for 𝜃1 = 0.6, 𝜃2 = 0.3, 𝜏 = 0.8 and       
𝑛 = 80 with 80%FP. B.20 

𝜶 Scheme 𝑨𝑽𝒂𝒓 𝑻 RE(%) RT(%) 

0.6 

Optimal ℛ1 0.0111 1.6771 100 100 
Worst ℛ3 0.2751 0.8389 4.03 199.90 

Type-II ℛ3 0.2751 0.8389 4.03 199.90 
Complete ℛ11 0.0084 1.7351 132.94 96.65 

0.8 

Optimal ℛ1 0.0182 1.7515 100 100 
Worst ℛ3 0.1738 0.8587 10.48 203.97 

Type-II ℛ3 0.1738 0.8587 10.48 203.97 
Complete ℛ11 0.0146 1.8220 124.65 96.13 

1.0 

Optimal ℛ1 0.0257 1.8295 100 100 
Worst ℛ3 0.0825 0.8890 31.13 205.79 

Type-II ℛ3 0.0825 0.8890 31.13 205.79 
Complete ℛ11 0.0195 1.8917 131.84 96.71 

1.2 

Optimal ℛ4 0.0312 1.0935 100 100 
Worst ℛ3 0.0562 0.9270 55.43 117.95 

Type-II ℛ3 0.0562 0.9270 55.43 117.95 
Complete ℛ11 0.0259 1.9443 120.43 56.24 

1.4 

Optimal ℛ9 0.0372 1.3463 100 100 
Worst ℛ3 0.0508 0.9671 73.31 139.20 

Type-II ℛ3 0.0508 0.9671 73.31 139.20 
Complete ℛ11 0.0306 1.9890 121.66 67.68 

1.6 

Optimal ℛ7 0.0429 1.8985 100 100 
Worst ℛ6 0.0482 1.9562 89.03 97.05 

Type-II ℛ3 0.0436 1.0041 98.36 189.07 
Complete ℛ11 0.0380 2.0308 112.97 93.48 

1.8 

Optimal ℛ3 0.0489 1.0359 100 100 
Worst ℛ6 0.0560 1.9909 87.39 52.03 

Type-II ℛ3 0.0489 1.0359 100 100 
Complete ℛ11 0.0435 2.0739 112.33 49.94 

2.0 

Optimal ℛ3 0.0533 1.0670 100 100 
Worst ℛ6 0.0679 2.0260 78.45 52.66 

Type-II ℛ3 0.0533 1.0670 100 100 
Complete ℛ11 0.0509 2.0977 104.74 50.86 

2.5 

Optimal ℛ3 0.0731 1.1297 100 100 
Worst ℛ6 0.0892 2.0822 81.95 54.25 

Type-II ℛ3 0.0731 1.1297 100 100 
Complete ℛ11 0.0691 2.1674 105.83 52.12 

3.0 

Optimal ℛ3 0.0963 1.1839 100 100 
Worst ℛ1 0.1230 2.1515 78.29 55.02 

Type-II ℛ3 0.0963 1.1839 100 100 
Complete ℛ11 0.0939 2.2156 102.59 53.43 
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Table B.21 The comparison of optimal ℛ∗ with the worst, Type-II and the complete sample based on 

estimating the 95𝑡ℎ percentile when changing 𝛼, for 𝜃1 = 0.6, 𝜃2 = 0.3, 𝜏 = 0.8 and      

𝑛 = 80 with 80%FP. B,21 

𝜶 Scheme 𝑨𝑽𝒂𝒓 𝑻 RE(%) RT(%) 

0.6 

Optimal ℛ1 0.6169 1.6683 100 100 
Worst ℛ3 14.6333 0.8388 4.21 198.89 

Type-II ℛ3 14.6333 0.8388 4.21 198.89 
Complete ℛ11 0.4942 1.7347 124.83 96.17 

0.8 

Optimal ℛ1 0.6542 1.7522 100 100 
Worst ℛ3 6.2095 0.8590 10.53 203.98 

Type-II ℛ3 6.2095 0.8590 10.53 203.98 
Complete ℛ11 0.5172 1.8234 126.48 96.09 

1.0 

Optimal ℛ1 0.6658 1.8234 100 100 
Worst ℛ3 2.6600 0.8885 25.03 205.22 

Type-II ℛ3 2.6600 0.8885 25.03 205.22 
Complete ℛ11 0.5463 1.8930 121.88 96.31 

1.2 

Optimal ℛ4 0.6783 1.0922 100 100 
Worst ℛ3 1.0331 0.9278 65.65 117.72 

Type-II ℛ3 1.0331 0.9278 65.65 117.72 
Complete ℛ11 0.5856 1.9453 115.83 56.14 

1.4 

Optimal ℛ9 0.7141 1.3497 100 100 
Worst ℛ6 0.7890 1.9099 90.50 70.66 

Type-II ℛ3 0.7322 0.9680 97.52 139.43 
Complete ℛ11 0.6232 1.9971 114.58 67.58 

1.6 

Optimal ℛ3 0.7106 1.0037 100 100 
Worst ℛ6 0.8832 1.9502 80.45 51.46 

Type-II ℛ3 0.7106 1.0037 100 100 
Complete ℛ11 0.6407 2.0285 110.90 49.48 

1.8 

Optimal ℛ8 0.7270 1.3493 100 100 
Worst ℛ6 0.9475 1.9952 76.72 67.62 

Type-II ℛ3 0.7562 1.0346 96.12 130.41 
Complete ℛ11 0.6863 2.0699 105.93 65.18 

2.0 

Optimal ℛ3 0.7788 1.0649 100 100 
Worst ℛ6 0.9539 2.0241 81.64 52.61 

Type-II ℛ3 0.7788 1.0649 100 100 
Complete ℛ11 0.7689 2.0949 101.29 50.83 

2.5 

Optimal ℛ3 0.9363 1.1303 100 100 
Worst ℛ6 1.1496 2.0856 81.44 54.19 

Type-II ℛ3 0.9363 1.1303 100 100 
Complete ℛ11 0.9299 2.1632 100.68 52.25 

3.0 

Optimal ℛ3 1.0830 1.1828 100 100 
Worst ℛ6 1.4187 2.1394 76.33 55.28 

Type-II ℛ3 1.0830 1.1828 100 100 
Complete ℛ11 1.0905 2.2145 99.30 53.41 
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Table B.22 The comparison of optimal ℛ∗ with the worst, Type-II and the complete sample based on 

estimating the 5𝑡ℎ percentile when changing 𝜏, for 𝜃1 = 0.6, 𝜃2 = 0.3,  𝛼 = 1.2 and        

𝑛 = 80 with 80%FP. B.22 

𝝉 Scheme 𝑨𝑽𝒂𝒓 SE 𝑻 RE(%) RT(%) 

0.5 

Optimal ℛ2 0.0006 1.7e-6 1.6800 100 100 
Worst ℛ1 0.0007 2.2e-6 1.7314 85.44 97.02 

Type-II ℛ3 0.0007 1.7e-6 0.7737 92.02 217.12 
Complete ℛ11 0.0006 1.5e-6 1.7873 100.33 93.99 

0.6 

Optimal ℛ2 0.0006 1.6e-6 1.7205 100 100 
Worst ℛ1 0.0007 1.9e-6 1.7812 87.53 96.59 

Type-II ℛ3 0.0007 1.7e-6 0.8245 92.29 208.68 
Complete ℛ11 0.0006 1.3e-6 1.8403 104.89 93.49 

0.7 

Optimal ℛ2 0.0006 1.6e-6 1.7752 100 100 
Worst ℛ3 0.0008 1.7e-5 0.8742 84.34 203.06 

Type-II ℛ3 0.0008 1.7e-5 0.8742 84.34 203.06 
Complete ℛ11 0.0006 1.6e-6 1.8983 105.11 93.51 

0.8 

Optimal ℛ2 0.0006 1.4e-6 1.8235 100 100 
Worst ℛ3 0.0010 2.2e-4 0.9283 66.44 196.43 

Type-II ℛ3 0.0010 2.2e-4 0.9283 66.44 196.43 
Complete ℛ11 0.0006 1.6e-6 1.9514 102.02 93.44 

0.9 

Optimal ℛ6 0.0007 1.9e-6 1.9157 100 100 
Worst ℛ3 0.0029 3.9e-4 0.9893 23.28 193.65 

Type-II ℛ3 0.0029 3.4e-4 0.9893 23.28 193.65 
Complete ℛ11 0.0006 1.5e-6 1.9902 107.53 96.25 

1.0 

Optimal ℛ6 0.0007 2e-6 1.9663 100 100 
Worst ℛ3 0.0066 8.2e-4 1.0640 10.69 184.79 

Type-II ℛ3 0.0066 8.2e-4 1.0640 10.69 184.79 
Complete ℛ11 0.0007 1.3e-6 2.0486 106.59 95.98 

1.1 

Optimal ℛ6 0.0007 3.7e-5 2.0202 100 100 
Worst ℛ3 0.0122 2e-3 1.1492 6.01 175.78 

Type-II ℛ3 0.0122 2e-3 1.1492 6.01 175.78 
Complete ℛ11 0.0007 1.8e-6 2.0951 108.04 96.42 

1.2 

Optimal ℛ6 0.0008 2.4e-6 2.0708 100 100 
Worst ℛ3 0.0327 2.7e-3 1.2389 2.45 167.14 

Type-II ℛ3 0.0327 2.7e-3 1.2389 2.45 167.14 
Complete ℛ11 0.0007 1.9e-6 2.1422 112.85 96.66 
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Table B.23 The comparison of optimal ℛ∗ with the worst, Type-II and the complete sample based on 

estimating the 50𝑡ℎ percentile when changing 𝜏, for 𝜃1 = 0.6, 𝜃2 = 0.3,  𝛼 = 1.2 and     

𝑛 = 80 with 80%FP. B.23 

𝝉 Scheme 𝑨𝑽𝒂𝒓 SE 𝑻 RE(%) RT(%) 

0.5 

Optimal ℛ8 0.0389 1.2e-4 1.0828 100 100 
Worst ℛ1 0.0560 1.4e-4 1.7246 69.38 62.78 

Type-II ℛ3 0.0407 1.3e-4 0.7747 95.47 139.77 
Complete ℛ11 0.0384 1.3e-4 1.7942 101.19 60.35 

0.6 

Optimal ℛ8 0.0340 9.7e-5 1.1314 100 100 
Worst ℛ1 0.0426 1.7e-4 1.7741 79.64 63.76 

Type-II ℛ3 0.0344 1.4e-4 0.8233 98.70 137.41 
Complete ℛ11 0.0314 1.2e-4 1.8453 108.12 61.31 

0.7 

Optimal ℛ4 0.0316 1.1e-4 1.0433 100 100 
Worst ℛ6 0.0362 1.2e-4 1.8114 87.42 57.59 

Type-II ℛ3 0.0331 5.4e-4 0.8745 95.45 119.31 
Complete ℛ11 0.0272 6.2e-5 1.9019 116.19 54.85 

0.8 

Optimal ℛ4 0.0314 7.7e-5 1.0937 100 100 
Worst ℛ3 0.0463 2.1e-2 0.9290 67.91 117.72 

Type-II ℛ3 0.0463 2.1e-2 0.9290 67.91 117.72 
Complete ℛ11 0.0256 5.5e-5 1.9508 122.91 56.06 

0.9 

Optimal ℛ1 0.0303 8.6e-5 1.9316 100 100 
Worst ℛ3 0.1098 1.9e-2 0.9896 27.61 195.19 

Type-II ℛ3 0.1098 1.9e-2 0.9896 27.61 195.19 
Complete ℛ11 0.0246 4.5e-5 1.9966 123.35 96.74 

1.0 

Optimal ℛ1 0.0315 7.7e-5 1.9700 100 100 
Worst ℛ3 0.4469 8.7e-2 1.0643 7.05 185.09 

Type-II ℛ3 0.4469 8.7e-2 1.0643 7.05 185.09 
Complete ℛ11 0.0244 4.9e-5 2.0479 129.21 96.19 

1.1 

Optimal ℛ1 0.0319 7.7e-5 2.0229 100 100 
Worst ℛ3 1.0574 2.3e-1 1.1488 3.01 176.09 

Type-II ℛ3 1.0574 2.3e-1 1.1488 3.01 176.09 
Complete ℛ11 0.0249 5.8e-5 2.0938 128.13 96.61 

1.2 

Optimal ℛ1 0.0321 2.8e-4 2.0833 100 100 
Worst ℛ3 1.8943 2.3e-1 1.2394 1.76 168.09 

Type-II ℛ3 1.8943 2.3e-1 1.2394 1.76 168.09 
Complete ℛ11 0.0263 5.7e-5 2.1421 127.13 97.25 
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Table B.24 The comparison of optimal ℛ∗ with the worst, Type-II and the complete sample based on 

estimating the 95𝑡ℎ percentile when changing 𝜏, for 𝜃1 = 0.6, 𝜃2 = 0.3,  𝛼 = 1.2 and     

𝑛 = 80 with 80%FP. B.24 

𝝉 Scheme 𝑨𝑽𝒂𝒓 SE 𝑻 RE(%) RT(%) 

0.5 

Optimal ℛ3 1.0329 0.0044 0.7739 100 100 
Worst ℛ6 1.3200 0.0065 1.7214 78.24 44.95 

Type-II ℛ3 1.0329 0.0044 0.7739 100 100 
Complete ℛ11 1.0026 0.0044 1.7912 103.02 43.20 

0.6 

Optimal ℛ3 0.8110 0.0023 0.8238 100 100 
Worst ℛ6 1.0254 0.0039 1.7660 79.08 46.64 

Type-II ℛ3 0.8110 0.0023 0.8238 100 100 
Complete ℛ11 0.7822 0.0026 1.8478 103.68 44.58 

0.7 

Optimal ℛ3 0.7029 0.0182 0.8749 100 100 
Worst ℛ6 0.8570 0.0027 1.8223 82.02 48.01 

Type-II ℛ3 0.7029 0.0182 0.8749 100 100 
Complete ℛ11 0.6604 0.0021 1.8917 106.43 46.24 

0.8 

Optimal ℛ4 0.6822 0.0022 1.0951 100 100 
Worst ℛ3 0.8393 0.3923 0.9269 81.28 118.14 

Type-II ℛ3 0.8393 0.3923 0.9269 81.28 118.14 
Complete ℛ11 0.5787 0.0017 1.9450 117.89 56.30 

0.9 

Optimal ℛ1 0.6578 0.0021 1.9328 100 100 
Worst ℛ3 2.4561 1.1520 0.9903 26.78 195.16 

Type-II ℛ3 2.4561 1.1520 0.9903 26.78 195.16 
Complete ℛ11 0.5223 0.0015 1.9950 125.95 96.88 

1.0 

Optimal ℛ1 0.6428 0.0019 1.9757 100 100 
Worst ℛ3 3.9247 1.4108 1.0638 16.37 185.71 

Type-II ℛ3 3.9247 1.4108 1.0638 16.37 185.71 
Complete ℛ11 0.5037 0.0012 2.0454 127.62 96.59 

1.1 

Optimal ℛ1 0.6312 0.0017 2.0337 100 100 
Worst ℛ3 13.4307 2.0907 1.1490 4.69 176.99 

Type-II ℛ3 13.4307 2.0907 1.1490 4.69 176.99 
Complete ℛ11 0.6312 0.0012 2.0337 100 100 

1.2 

Optimal ℛ1 0.6264 0.0017 2.0801 100 100 
Worst ℛ3 30.8444 6.8235 1.2394 2.03 167.82 

Type-II ℛ3 30.8444 6.8235 1.2394 2.03 167.82 
Complete ℛ11 0.5019 0.0012 2.1447 124.78 96.98 
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Table B.25 The sensitivity of the SSALTs model based on 𝐴𝑉𝑎𝑟(�̂�0.05(𝑥0)) and the associated ratio 

of base scenario and random scenario for ℛ = ℛ1, 𝜏 = 0.8 and 𝑛 = 80 with 80%FP. B.25 

 

 

 

 

 

 

 

  𝜶 = 𝟎. 𝟖 𝜶 = 𝟏. 𝟐 𝜶 = 𝟏. 𝟒 𝜶 = 𝟏. 𝟔 

𝜽𝟏 𝜽𝟐 𝑨𝑽𝒂𝒓 Ratio 𝑨𝑽𝒂𝒓 Ratio 𝑨𝑽𝒂𝒓 Ratio 𝑨𝑽𝒂𝒓 Ratio 

0.4 0.1 0.0002 0.25 0.0008 1.00 0.0012 1.50 0.0017 2.13 
 0.2 0.0001 0.13 0.0004 0.50 0.0006 0.75 0.0009 1.13 
 0.3 0.0001 0.13 0.0003 0.38 0.0004 0.50 0.0006 0.75 

0.5 0.1 0.0002 0.25 0.0013 1.63 0.0022 2.75 0.0031 3.88 
 0.2 0.0001 0.13 0.0007 0.88 0.0011 1.38 0.0015 1.88 
 0.3 0.0001 0.13 0.0004 0.50 0.0007 0.88 0.0010 1.25 
 0.4 0.0001 0.13 0.0003 0.38 0.0005 0.63 0.0007 0.88 

0.6 0.1 0.0004 0.50 0.0019 2.38 0.0036 4.50 0.0051 6.38 
 0.2 0.0002 0.25 0.0010 1.25 0.0018 2.25 0.0025 3.13 
 0.3 0.0001 0.13 0.0008 1.00 0.0011 1.38 0.0014 1.75 
 0.4 0.0001 0.13 0.0005 0.63 0.0009 1.13 0.0012 1.50 
 0.5 0.0001 0.13 0.0003 0.38 0.0007 0.88 0.0010 1.25 

0.7 0.1 0.0006 0.75 0.0035 4.38 0.0055 6.88 0.0080 10.00 
 0.2 0.0003 0.38 0.0017 2.13 0.0028 3.50 0.0041 5.13 
 0.3 0.0002 0.25 0.0011 1.38 0.0019 2.38 0.0026 3.25 
 0.4 0.0002 0.25 0.0009 1.13 0.0014 1.75 0.0020 2.50 
 0.5 0.0001 0.13 0.0007 0.88 0.0011 1.38 0.0016 2.00 
 0.6 0.0001 0.13 0.0006 0.75 0.0009 1.13 0.0013 1.63 

0.8 0.1 0.0009 1.13 0.0051 6.38 0.0082 10.25 0.0119 14.88 
 0.2 0.0005 0.63 0.0026 3.25 0.0041 5.13 0.0060 7.50 
 0.3 0.0003 0.38 0.0016 2.13 0.0027 3.38 0.0040 5.00 
 0.4 0.0002 0.25 0.0013 1.63 0.0021 2.63 0.0029 3.63 
 0.5 0.0002 0.25 0.0010 1.25 0.0016 2.00 0.0024 3.00 
 0.6 0.0002 0.25 0.0009 1.13 0.0014 1.75 0.0020 2.50 
 0.7 0.0001 0.13 0.0007 0.88 0.0012 1.50 0.0017 2.13 
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Table B.26 The sensitivity of the SSALTs model based on 𝐴𝑉𝑎𝑟(�̂�0.95(𝑥0)) and the associated ratio 

of base scenario and random scenario for ℛ = ℛ1, 𝜏 = 0.8 and 𝑛 = 80 with 80%FP. B.26 

 

  𝜶 = 𝟎. 𝟖 𝜶 = 𝟏. 𝟐 𝜶 = 𝟏. 𝟒 𝜶 = 𝟏. 𝟔 

𝜽𝟏 𝜽𝟐 𝑨𝑽𝒂𝒓 Ratio 𝑨𝑽𝒂𝒓 Ratio 𝑨𝑽𝒂𝒓 Ratio 𝑨𝑽𝒂𝒓 Ratio 

0.4 0.1 0.6206 0.88 0.5661 0.81 0.5749 0.82 0.5491 0.78 
 0.2 0.3101 0.44 0.2853 0.41 0.2819 0.40 0.2705 0.39 
 0.3 0.1699 0.24 0.1644 0.23 0.1658 0.24 0.1673 0.24 

0.5 0.1 1.0547 1.50 1.1258 1.60 1.1735 1.67 1.2103 1.72 
 0.2 0.5466 0.78 0.5512 0.78 0.5946 0.85 0.6017 0.86 
 0.3 0.3425 0.49 0.3651 0.52 0.3738 0.53 0.3950 0.56 
 0.4 0.2261 0.32 0.2362 0.34 0.2504 0.36 0.2623 0.37 

0.6 0.1 2.0060 2.86 2.1181 3.02 2.2772 3.24 2.4928 3.55 
 0.2 0.9745 1.39 1.0436 1.49 1.2097 1.72 1.2745 1.81 
 0.3 0.6555 0.93 0.7024 1.00 0.6673 0.95 0.6788 0.97 
 0.4 0.4782 0.68 0.4954 0.71 0.5398 0.77 0.5791 0.82 
 0.5 0.3156 0.45 0.3420 0.49 0.3867 0.55 0.4166 0.59 

0.7 0.1 3.4095 4.85 3.8820 5.53 4.2585 6.06 4.9352 7.03 
 0.2 1.7183 2.45 2.0168 2.87 2.1847 3.11 2.3299 3.32 
 0.3 1.1867 1.69 1.3379 1.90 1.4712 2.09 1.6469 2.34 
 0.4 0.8306 1.18 0.9958 1.42 1.0788 1.54 1.2017 1.71 
 0.5 0.6324 0.90 0.7808 1.11 0.8230 1.17 0.9154 1.30 
 0.6 0.4615 0.66 0.5373 0.76 0.6043 0.86 0.6601 0.94 

0.8 0.1 5.5593 7.91 6.6198 9.42 7.8499 11.18 8.8922 12.66 
 0.2 2.5851 3.68 3.6261 5.16 4.0558 5.77 4.4285 6.3 
 0.3 1.9485 2.77 1.9195 2.90 2.6526 3.78 2.9108 4.14 
 0.4 1.4563 2.07 1.7890 2.55 1.9602 2.79 2.3051 3.28 
 0.5 1.1170 1.59 1.3589 1.93 1.5512 2.21 1.6744 2.38 
 0.6 0.8519 1.21 1.0828 1.54 1.2489 1.78 1.4195 2.02 
 0.7 0.6678 0.95 0.8190 1.17 0.8862 1.26 1.0732 1.53 
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Appendix C  

Optimum Plan Results – Figures of Censoring Schemes 

 

Figure C.1 𝐴𝑉𝑎𝑟(�̂�0.05(𝑥0)) vs. sample size for 11 censoring schemes. C.1 

 

 

Figure C.2 𝐴𝑉𝑎𝑟(�̂�0.95(𝑥0)) vs. sample size for 11 censoring schemes. C.2 
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Figure C.3 The impact of increasing the FP on the 𝐴𝑉𝑎𝑟(�̂�0.05(𝑥0)) for 11 censoring schemes. C.3 
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Figure C.4 The impact of increasing the FP on the 𝐴𝑉𝑎𝑟(�̂�0.5(𝑥0)) for 11 censoring schemes. C.4 
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Figure C.5 The impact of increasing the FP on the 𝐴𝑉𝑎𝑟(�̂�0.95(𝑥0)) for 11 censoring schemes. C.5 
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Figure C.6 𝐴𝑉𝑎𝑟(�̂�0.05(𝑥0)) vs. scale parameters 𝜃1 and 𝜃2 for 11 censoring schemes. C.6 
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Figure C.7 𝐴𝑉𝑎𝑟(�̂�0.95(𝑥0)) vs. scale parameters 𝜃1 and 𝜃2 for 11 censoring schemes. C.7 
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Figure C.8 𝐴𝑉𝑎𝑟(�̂�0.05(𝑥0)) vs. 𝛼 for 11 censoring schemes. C.8 

Figure C.9 𝐴𝑉𝑎𝑟(�̂�0.95(𝑥0)) vs. 𝛼 for 11 censoring schemes. C.9 
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Figure C.10 𝐴𝑉𝑎𝑟(�̂�0.05(𝑥0)) vs. 𝜏 for 11 censoring schemes. C.10 

Figure C.11 𝐴𝑉𝑎𝑟(�̂�0.95(𝑥0)) vs. 𝜏 for 11 censoring schemes. C.11 
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Balakrishnan, N., Han, D. and Iliopoulos, G. (2011) 'Exact Inference for Progressively Type-I Censored 

Exponential Failure Data', Metrika, 73, pp. 335–358. 

 
Balakrishnan, N., Kundu, D., Ng, H.K.T. and Kannan, N. (2007) 'Point and Interval Estimation for a 

Simple Step-Stress Model with Type-II Censoring', Journal of Quality Technology, 39(1), pp. 35-
47. 

 
Balakrishnan, N. and Sandhu, A. (1995) 'A Simple Simulational Algorithm for Generating Progressive 

Type-II Censored Samples', The American Statistician, 49(2), pp. 229-230. 

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=24
https://springerlink3.metapress.com/content/0026-1335/


Appendix C 

186 

 
Balakrishnan, N., Xie, Q. and Kundu, D. (2009) 'Exact Inference for a Simple Step-Stress Model from 

The Exponential Distribution Under Time Constraint', Annals of the Institute of Statistical 
Mathematics, 61, pp. 251-274. 

 
Bessler, S., Chernoff, H. and Marshall, A.W. (1962) 'An Optimal Sequential for Step-Stress Accelerated 

Life-Test', Technometrics, 4(3), pp. 367-379. 

 
Braun, W. and Murdoch, D. (2021) A First Course in Statistical Programming with R, third edition, 

Cambridge: Cambridge University Press. 

 
Chen D.G. and Lio Y.L. (2010) 'Parameter Estimations for Generalized Exponential Distribution Under 

Progressive Type-I Interval Censoring', Computational Statistics and Data Analysis, 54, pp. 1581–
1591. 

 
Chen, W., Gao, L., Pan, J., Qian, P. and He, Q. (2018) 'Design of Accelerated Life Test Plans - Overview 

and Prospect', Chinese Journal of Mechanical Engineering, 31(1), pp. 1-15. 

 
Chernick, M. R. and LaBudde, R. A. (2011) An Introduction to Bootstrap Methods with Applications to 

R, Hoboken, New Jersey, Canada: John Wiley and Sons, Inc. 

 
Chernoff, H. (1962) 'Optimal Accelerated Life Designs for Estimation', Technometrics, 4(3), pp. 381-

408. 
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