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Abstract. Traditional sensitivity analysis methods fail for chaotic systems due to the unstable characteristics of the5
linearised equations. To overcome these issues two methods have been developed in the literature, one being the Shadowing6
approach, which results in a minimisation problem, and the other being numerical viscosity, where a damping term is added to7
the linearised equations to suppress the instability. The Shadowing approach is computationally expensive but produces accurate8
sensitivities, while numerical viscosity can produce less accurate sensitivities but with significantly reduced computational cost.9
However, it is not fully clear how the solutions generated by these two approaches compare to each other. In this work we10
aim to bridge this gap by introducing a control term, found with optimal control theory techniques, to prevent the exponential11
growth of solution of the linearised equations. We will refer to this method as Optimal Control Shadowing. We investigate the12
computational aspects and performance of this new method on the Lorenz and Kuramoto-Sivashinsky systems and compare its13
performance with simple numerical viscosity schemes. We show that the tangent solution generated by the proposed approach is14
similar to that generated by shadowing methods, suggesting that optimal control attempts to stabilize the unstable shadowing15
direction. Further, for the spatially-extended system, we examine the energy budget of the tangent equation and show that16
the control term found via the solution of the optimal control problem acts only at length scales where production of tangent17
energy dominates dissipation, which is not necessarily the case for the numerical viscosity methods.18

1. Introduction. Derivatives of functions are an important tool for design in the engineering sector19

and are used in uncertainty quantification or optimisation procedures. These derivatives are commonly20

known as sensitivities or linear responses. In the aerospace sector, traditionally there is one function of21

interest and multiple parameters and as such adjoint-based sensitivity analysis methods are employed. Shape22

optimisation is the main role of these derivatives and has been used extensively to optimise a design given23

a steady state Reynolds-Averaged Navier-Stokes (RANS) simulation Refs. [48, 72, 86]. As computational24

resources are becoming more accessible, higher fidelity simulations are being increasingly used such as Large25

Eddy Simulations (LES). These higher fidelity simulations naturally are transient and, as a consequence,26

time averaged sensitivities should be calculated. The approach presented in Ref. [48] breaks down for time27

averaged sensitivities of chaotic systems. The reason for this break down is known as the ‘butterfly effect’28

where small perturbations to the system grow exponentially in time, see Refs. [55, 85]. The computation of29

the linear response is currently comprised of two approaches the ensemble and derivative operator formula.30

The ensemble approach computes, for a given orbit, the average perturbation, Refs. [34, 55]. Derivative31

operators, on the other hand, estimate the Sinai–Ruelle–Bowen (SRB) measure, Ref. [35]. A method that32

combines the ensemble and derivative operator formulas is the blended response algorithm, Ref. [1]. The33

linear response can be decomposed into contributions corresponding to the shadowing and unstable parts.34

It is well known that the Shadowing part is not guaranteed to compute accurate sensitivities, Ref. [62]. The35

saving grace is that Shadowing, when the unstable dimension is low, can produce accurate sensitivity values,36

Ref. [63]. Computation of the unstable component is inefficient as it scales with dimension. For this reason37

many methods attempt to approximate the Shadowing component.38

There are currently two main leading class of methods that approximate the Shadowing component of the39

linear response, namely Shadowing methods and Numerical Viscosity (NV) approaches. The main difference40

between the two is that Shadowing methods are generally computationally expensive but, in turn, can41

produce accurate sensitivities with no a priori knowledge. By contrast, NV approaches are computationally42

cheaper but require selecting and tuning a numerical viscosity term. Several forms of shadowing methods43

have been proposed since the seminal work of Ref. [83]: Least Squares Shadowing (LSS) Refs. [11, 12, 13,44

16, 26, 82, 84], Multiple Shooting Shadowing (MSS) Refs. [14, 74, 75], Non-Intrusive LSS (NILSS) Refs. [10,45

17, 47, 61, 64, 65, 66] and Periodic Shadowing Refs. [53, 54]. In Shadowing methods, the tangent solution46

defines a perturbation to the original solution of the non-linear system that remains uniformly bounded in47

time, and “shadows” the original solution, hence the name. LSS, MSS and NILSS solve a minimisation48

problem where the L2 norm of the tangent solution is minimised through relaxation of the initial condition49

of the tangent equation. MSS is a reformulation of LSS that reduces the size of the optimisation problem50

being solved and reduces computational costs. NILSS solves one inhomogeneous tangent equation and M51

homogeneous tangent equations where M is larger than the number of positive Lyapunov exponents (LEs)52

of the system. The final tangent solution for sensitivity analysis is formed as the linear combination of these53
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solutions that has minimum norm.54

Numerical viscosity (NV) methods, Refs. [9, 18, 36, 79, 80], on the other hand, introduce an additional55

numerical viscosity term into the linearised equations along with a tuning parameter which can be used56

to stabilise the solution. As these methods solve the non-linear solution and one linearised equation they57

are significantly computationally cheaper than Shadowing methods. However, one question remains open:58

it is not necessarily clear what term should be added to the governing equations to obtain an effective59

stabilisation without compromising the accuracy of the resulting solution. For instance, for Navier-Stokes60

problems Blonigan et al. (Ref. [18]) used the Laplacian of the adjoint field as their choice of numerical61

viscosity term after analysing the contributions to dissipation of adjoint energy. Such an approach targets62

primarily the growth of unstable perturbations at small length scales, where numerical viscosity can be63

effective, but can fail to control large-scale instabilities if the viscosity is not large enough.64

This paper proposes to bridge the conceptual gap in understanding between Shadowing methods and65

NV approaches. To this end, we propose a new sensitivity technique whereby a control term is introduced in66

the linearised equations, as in NV approaches, but its spatio-temporal structure is not constrained a priori.67

Instead, we find the control term by utilising optimal control techniques for linear time-varying systems,68

(see e.g. Refs. [67, 70]), whereby the control that stabilises the tangent solution and minimises its norm, as69

in LSS, is found using a mathematically rigorously procedure. Given the size of the problems to which this70

technique is targeted to, we do not solve a Riccati equation to find the optimal feedback, Refs. [7, 46, 59,71

71], but use direct-adjoint looping, Ref. [69], to find the optimal control for a given finite-span non-linear72

trajectory. This method will be referred to as Optimal Control Shadowing (OCS). The method depends on73

a single parameter that expresses the cost of applying control to the linearised equations and determines its74

strength, analogously to the tuning parameter in other NV methods. Note that we do not aim to improve75

the computational efficiency of Shadowing methods, but more fundamentally we want to use OCS to develop76

a better understanding of what properties and structure the control term in NV methods should have.77

Nevertheless we describe computational aspects associated to the solution of the optimal control problem78

such as the overall costs, preconditioning methods to speed-up the solution of the optimality conditions and79

the resulting convergence rates. We also compare the solutions generated by OCS, MSS and various NV80

methods. Results are presented for the Lorenz equations, Ref. [56], and the Kuramoto-Sivashinsky, Refs. [50,81

51, 76, 77], partial differential equations, where we analyse the impact of the spatial domain size on the cost82

of the algorithm.83

This paper is divided as follows: Section 2 introduces optimal control techniques into the Shadowing84

approach and Section 3 outlines implementation details. Section 4 investigates the behaviour of OCS on the85

Lorenz system. Section 5 continues to explore the behaviour of OCS along with comparison of the solutions86

generated by OCS, MSS and NV for the Kuramoto-Sivashinsky system. Finally, conclusions are reported in87

Section 6.88

2. Applying optimal control techniques to the shadowing approach. In this Section we set89

up the problem and then derive of tangent and adjoint OCS. Finally, we provide details of a method to90

solve OCS that decomposes the time domain into segments to leverage distributed computing architectures.91

Implementation details are left for Section 3.92

2.1. Problem set-up. Firstly, consider a non-linear chaotic dynamical system of the form93

(2.1)
du(t, p)

dt
= f(u(t, p), p),94

where u(t, p) ∈ Rnu is the state vector, p ∈ R is a parameter of interest and f(u(t, p), p) : Rnu × R → Rnu95

are the governing equations. In general, the function of interest is J (u(t, p), p) : Rnu × R→ R and its time96

average is97

(2.2) J̄ =
1

T

∫ tf

ts

J (u(t, p), p) dt,98

where ts is the start time, tf is the final time and T = tf − ts is the time horizon.99
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2.2. Derivation of the tangent OCS formulation. We first linearise Equation (2.1) and introduce100

the time dilation term ηf , explained in Ref. [83], which results in101

(2.3)
dv

dt
=

∂f

∂u
v +

∂f

∂p
+ ηf ,102

where v = ∂u
∂p ,

∂f
∂u is the Jacobian and ∂f

∂p is a forcing term. To remove explicit calculation of the ηf term, v is103

constrained to be orthogonal to f as in Ref. [14]. Shadowing methods such as MSS/LSS consist of introducing104

a minimisation problem on the norm of v which is achieved through the relaxation of the initial condition of105

Equation (2.3). Here, to remain comparable to the NV formulation, the initial condition v(ts) = 0 is used.106

Introduction of a generic control term, q ∈ Rnq , into Equation (2.3), results in the tangent equation107

(2.4a)
dv

dt
=

∂f

∂u
v +

∂f

∂p
+ ηf + q,108

109

(2.4b) v(ts) = 0.110

Following the control techniques presented in Refs. [3, 6, 21, 68], which are typically used to compute the111

structure of the control term q, leads to the following minimisation problem112

min
v,q

∫ tf

ts

vTv + αqTqdt(2.5a)113

s.t.
dv

dt
=

∂f

∂u
v +

∂f

∂p
+ ηf + q,(2.5b)114

vT f
∣∣
t
= 0,(2.5c)115

v(ts) = 0,(2.5d)116117

where α determines the cost of applying control. Small values mean control is cheap to apply and the tangent118

solution is over-damped, while large values mean control is expensive to apply and the tangent solution is119

under-damped.120

For the structure of q to be optimal, the Pontryagin minimisation principle, see Refs. [67, 70], is used.121

Firstly, a set of Lagrange multipliers, λ ∈ Rnλ and ω ∈ R, are introduced for the constraints (2.5b)122

and (2.5c), respectively. Utilising λ and ω means that the constraints can be incorporated to form the123

Hamiltonian, H, of Equation (2.5) resulting in124

(2.6) H =

∫ tf

ts

vTv + αqTq+ λT

(
dv

dt
− ∂f

∂u
v − ∂f

∂p
− ηf − q

)
+ ω

(
fTv

)
dt.125

Integration of Equation (2.6) by parts leads to126

(2.7) H =

∫ tf

ts

vTv + αqTq− dλT

dt
v − λT

(
∂f

∂u
v +

∂f

∂p
+ ηf + q

)
+ ω

(
fTv

)
dt+ λTv

∣∣∣tf
ts
.127

Pontryagin’s minimisation principle defines the minimum of Equation (2.7) to be when all partial derivatives128

of H with respect to v, λ, q, ω and η are zero. This leads to the set of first order optimality conditions129

∂H
∂λ

= 0 =
dv

dt
− ∂f

∂u
v − ∂f

∂p
− ηf − q,(2.8a)130

∂H
∂v

= 0 = −dλ

dt
− ∂f

∂u

T

λ+ 2v + ωf ,(2.8b)131

∂H
∂q

= 0 = 2αq− λ,(2.8c)132

∂H
∂ω

= 0 = fTv
∣∣
t
,(2.8d)133

∂H
∂η

= 0 = λT f
∣∣∣
t
.(2.8e)134

135
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The Hamiltonian Hessian matrix is positive-definite, which means the minimisation problem, Equation (2.5a),136

will be convex if the second order sufficient condition137

(2.9)
∂2H
∂q2

= 2α138

is greater than zero. This leads to the constraint α > 0.139

To find the optimal control we solve Equation (2.8). Equation (2.8a) is solved forwards in time from140

v(ts) = 0. The Lagrange multiplier values can be selected arbitrarily and, therefore, λTv
∣∣∣tf
ts

in Equation (2.7)141

is constrained to be zero. This results in λ(tf ) = 0. The co-state equation, Equation (2.8b), is solved142

backwards in time from tf to ts using λ(tf ) = 0 as a terminal condition. We note at this point the main143

difference between OCS and NV is that NV adds a control term with a certain structure, which is generic144

for all initial conditions, whereas OCS adds a control term which is related to the time horizon and initial145

condition used.146

The η term remains unknown and a closed from expression is required. This can be found by defining147

v′(t) as the solution of the tangent equation without the influence of ηf and after some manipulation (details148

provided in Appendix A), the tangent solution at time t becomes149

(2.10) v(t) = v′(t)−
(
v′T f

fT f
f

)∣∣∣∣
t

.150

Similarly, ω is also an unknown and, utilising a similar approach to η, the closed form expression is required.151

By defining λ′(t) as the solution to the co-state equation without the influence of ωfT and after manipulation152

(see Appendix B) the co-state solution at time t becomes153

(2.11) λ(t) = λ′(t)−
(
λ′T f

fT f
f

)∣∣∣∣
t

.154

Finally, the sensitivity equation, where details of the derivation are provided in Ref. [14], is155

(2.12)
dJ̄

dp
=

1

T

∫ tf

ts

∂J

∂u
v +

∂J

∂p
+ η

(
J − J̄

)
dt,156

and can be manipulated using v′(t) to remove η resulting in157

(2.13)
dJ̄

dp
=

1

T

∫ tf

ts

∂J

∂u
v′ +

∂J

∂p
dt+

1

T

v′T f

fT f

(
J̄ − J

)∣∣∣∣∣
tf

.158

2.3. Derivation of the adjoint OCS formulation. It is common in engineering applications that159

the sensitivity of the function of interest is required with respect to multiple parameters. Typically, this is160

achieved using the adjoint approach. To derive the adjoint OCS formulation, additional Lagrange multipliers161

λ̂ ∈ Rnλ̂ , v̂ ∈ Rnv̂ , q̂ ∈ Rnq̂ , η̂ ∈ R and ω̂ ∈ R, one for each optimality condition in Equation (2.8),162

are introduced. These, again, allow the incorporation of the optimality conditions, Equation (2.8), into163

Equation (2.12) which results in164

dJ̄

dp
=

∫ tf

ts

1

T

∂J

∂u
v +

1

T
η
(
J − J̄

)
+

1

T

∂J

∂p

+ λ̂
T
(
dv

dt
− ∂f

∂u
v − ∂f

∂p
− ηf − q

)
+

(
−dλT

dt
− λT ∂f

∂u
+ 2vT + ωfT

)
v̂

+
(
2αqT − λT

)
q̂

+ ω̂
(
fTv

)
+ η̂

(
−fTλ

)
dt.

(2.14)165
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It is worth noting that the incorporation of the optimality conditions does not modify the sensitivity in any166

way as all terms added are zero. Integration by parts of Equation (2.14) and grouping terms in v, q, λT , ω167

and η leads to168

dJ̄

dp
=

∫ tf

ts

1

T

∂J

∂p
− λ̂

T ∂f

∂p
+(

1

T

∂J

∂u
− dλ̂

T

dt
− λ̂

T ∂f

∂u
+ 2v̂T + ω̂fT

)
v+

λT

(
dv̂

dt
− ∂f

∂u
v̂ − η̂f − q̂

)
+(

2αq̂T − λ̂
T
)
q+(

1

T

(
J − J̄

)
− λ̂

T
f

)
η +

(
v̂T f

)
ωdt+

λ̂
T
v
∣∣∣tf
ts

+ λT v̂
∣∣∣tf
ts
.

(2.15)169

By selecting the terms inside the brackets of Equation (2.15) to be zero, which removes the explicit calculation170

of v, q, λT , ω and η, leads to the following adjoint optimality conditions171

0 =
dv̂

dt
− ∂f

∂u
v̂ − η̂f − q̂,(2.16a)172

0 =
1

T

∂J

∂u
− dλ̂

T

dt
− λ̂

T ∂f

∂u
+ 2v̂T + ω̂fT ,(2.16b)173

0 = 2αq̂− λ̂,(2.16c)174

0 = v̂T f
∣∣
t
,(2.16d)175

0 =
1

T

(
J(t)− J̄

)
− λ̂

T
f
∣∣∣
t
.(2.16e)176

177

There is still a reliance of v and λT in the terms λ̂
T
v
∣∣∣tf
ts

and λT v̂
∣∣∣tf
ts

from Equation (2.15). The selection178

of the Lagrange multipliers is arbitrary and we thus set λT v̂
∣∣∣tf
ts

= 0 which results in v̂(ts) = 0. In the179

adjoint formulation there still is a forward and backward equation which we will refer to as the tangent180

and co-state equations but denote the difference between those derived in Section 2.2 with a hat, □̂. Here,181

the tangent equation, Equation (2.16a), is solved forwards in time from ts to tf from this initial condition.182

Similarly, setting λ̂
T
v
∣∣∣tf
ts

= 0 leads to λ̂(tf ) = 1
T

J−J̄
fT f

f
∣∣∣
tf

and the co-state equation, Equation (2.16b), is183

solved backwards in time from tf to ts from this terminal condition.184

Deriving the closed form expression for η̂ term is achieved in a similar manner to the tangent formulation185

which results in the adjoint tangent solution at time t being186

(2.17) v̂(t) = v̂′(t)−
(
v̂′T f

fT f
f

)∣∣∣∣
t

.187

The full derivation of Equation (2.17) can be found in Appendix C. Similarly, the closed form expression for188

ω̂ in derived in a similar manner as the tangent formulation and the adjoint co-state solution at time t is189

(2.18) λ̂(t) = λ̂
′
(t)− λ̂

′T f

fT f
f

∣∣∣∣∣
t

+
1

T

J − J

fT f
f

∣∣∣∣
t

.190

The full derivation of Equation (2.18) can be found in Appendix D. Finally, the remaining non-zero terms191

from Equation (2.15) lead to the adjoint sensitivity equation192

(2.19)
dJ̄

dp
=

∫ tf

ts

1

T

∂J

∂p
− λ̂

T ∂f

∂p
dt.193
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Once λ̂ has been found it is simple to modify Equation (2.19) for multiple parameters.194

2.4. Time domain decomposition. A method for splitting the time horizon into segments is pre-195

sented in Refs. [28, 29, 31, 42, 49]. The rationale as to why the time horizon is split into segments is that196

for large systems the method outlined in Section 2.2 may require more memory than the compute node has.197

Further to this, the splitting of the time horizon into segments acts to condition the system. A solution of the198

tangent equation still exhibits exponential growth but is limited to the growth in one segment. The growth is199

reduced due to the smaller segment time resulting in better conditioning. Therefore, the time domain is split200

into segments so that the memory requirements are reduced and each segment can be solved on a separate201

compute node. The splitting is derived for the tangent OCS formulation, Section 2.2. However, this is easily202

modified for the equations derived for the adjoint OCS formulation, Section 2.3. Various alternatives to203

Refs. [28, 29, 31, 42, 49] are available such as single shooting formulation Ref [20], multiple shooting for the204

direct solution Ref. [19], multiple shooting utilising gradient descent Ref. [2] and receding horizon optimal205

control Ref. [39].206

The time horizon, (ts, tf ), is split into N equal segments where each has a local time span, (tj , tj+1),207

where j = 0, 1, . . . , N − 1 and ts = t0 < t1 < . . . < tN−1 < tN = tf . Next, a locally defined tangent solution208

vj(t) ∈ Rnv and control qj(t) ∈ Rnq on each segment j are introduced. For this splitting to be identical to209

the method presented in Section 2.2, continuity in both control and tangent solutions between consecutive210

segments is required. This results in the following constraints vj−1(tj) = vj(tj) for j = 1, . . . , N − 1 and211

qj−1(tj) = qj(tj) for j = 1, . . . , N − 1. A graphical representation of this can be seen in Figure 1. These

t0 t1 t2t1 t2 t3

v0(t) v1(t) v2(t)

q0(t) q1(t) q2(t)

Fig. 1: Example time domain decomposition where the dotted lines represent the solution in segment 0,
dashed in segment 1 and solid segment 2. Black solutions represent the tangent solution and blue the
control.

212
conditions leads to the following minimisation problem213

min
vj ,qj

N−1∑
j=0

∫ tj+1

tj

vj
Tvj + αqj

Tqjdt(2.20a)214

s.t.
dvj

dt
=

∂f

∂u
vj +

∂f

∂p
+ ηjf + qj j = 0, 1, . . . N − 1,(2.20b)215

vT
j f
∣∣
t
= 0 j = 0, 1, . . . N − 1,(2.20c)216

v(ts) = 0,(2.20d)217

vj−1(tj) = vj(tj) j = 1, . . . , N − 1,(2.20e)218

qj−1(tj) = qj(tj) j = 1, . . . , N − 1.(2.20f)219220

The Hamiltonian, H, for this minimisation problem is formed through the introduction of locally defined221

Lagrange multipliers λj ∈ Rnλ for j = 0, 1, . . . , N −1 for the tangent equation, ωj ∈ R for j = 0, 1, . . . , N −1222

for the tangent orthogonality constraint, Ψj ∈ RnΨ for j = 1, . . . , N−1 for the tangent continuity constraints223

and Φj ∈ RnΦ for j = 1, . . . , N − 1 for the control continuity constraint. For optimality the derivatives of224

the Hamiltonian with respect to vj , λj , qj , ηj , ωj , Φj and Ψj , using Pontryagin’s minimisation principle,225
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are zero. This leads to the set of first order optimality conditions226

∂H
∂λj

= 0 =
dvj

dt
− ∂f

∂u
vj −

∂f

∂p
− ηjf − qj j = 0, 1, . . . N − 1,(2.21a)227

∂H
∂vj

= 0 = −dλj

dt
− ∂f

∂u

T

λj + 2vj + ωjf j = 0, 1, . . . N − 1,(2.21b)228

∂H
∂qj

= 0 = 2αqj − λj j = 0, 1, . . . N − 1,(2.21c)229

∂H
∂ωj

= 0 = fTvj

∣∣
t

j = 0, 1, . . . N − 1,(2.21d)230

∂H
∂ηj

= 0 = λT
j f
∣∣∣
t

j = 0, 1, . . . N − 1,(2.21e)231

∂H
∂Ψj

= 0 = vj−1(tj)− vj(tj) j = 1, . . . N − 1,(2.21f)232

∂H
∂Φj

= 0 = qj−1(tj)− qj(tj) j = 1, . . . N − 1.(2.21g)233
234

The control continuity constraint, Equation (2.21g), can be cast onto the co-state, λj , through the use of235

the control equation, Equation (2.21c), resulting in236

(2.22) 0 = λj−1(tj)− λj(tj) j = 1, . . . N − 1.237

The initial condition for the tangent equation in segment 0 is v(ts) = 0 and the terminal condition for the238

co-state equation in segment N − 1 is λ(tf ) = 0. These are used to ensure this method is consistent with239

that presented in Section 2.2. Again, removing the explicit computation of ηj results in240

(2.23) vj(t) = v′
j(t)−

(
v′
j
T f

fT f
f

)∣∣∣∣∣
t

.241

Similarly, removal of the explicit computation of ωj results in242

(2.24) λj(t) = λ′
j(t)−

(
λ′
j
T f

fT f
f

)∣∣∣∣∣
t

.243

By performing this decomposition, the sensitivity equation, (2.12), becomes244

(2.25)
dJ̄

dp
=

1

T

N−1∑
j=0

∫ tj+1

tj

∂J

∂u
v′
j +

∂J

∂p
dt+

1

T

N−1∑
j=0

v′T f

fT f

(
J̄ − J

)∣∣∣∣∣
tj+1

,245

where details of this derivation can be found in Ref. [14].246

3. Computational and implementation aspects. In Section 3.1 we provide a matrix-free method247

for solving the tangent optimality conditions, Equation (2.8). This approach is equally applicable to the248

optimality conditions generated for the adjoint OCS formulation, Equation (2.16). In Section 3.2, we pro-249

vide a matrix-free method for the computation of the time domain decomposition optimality conditions,250

Equation (2.21), along with various preconditioning methods. We build on previous work undertaken in this251

area for optimal control of problems governed by stable advection-diffusion equations, Refs. [28, 29, 42] and252

extend the discussion to the performance of these methods for unstable systems such as the present ones,253

introducing additional requirements on the length of the segments and discussing the impact that the growth254

of the solution in the time horizon has on convergence of these methods.255

3.1. A matrix-free method for the solution to the optimality conditions. A common method,256

Refs. [7, 46, 59, 71], for generating a solution that satisfies the optimality conditions, Equation (2.8), is the257

differential Riccati equation (DRE). The DRE generates a differential equation for a matrix, nq ×nq in size,258
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for the relationship between v(t) and q(t). This DRE becomes unfeasible for systems with a large number of259

degrees of freedom, such as unsteady turbulent flow. An iterative approach to the solution of the optimality260

conditions in a matrix-free sense is outlined in Ref. [69]. There are alternatives to the method proposed in261

Ref. [69] such as the reduced space method, Ref. [60], boundary optimal control, Ref. [52], various types262

of preconditioning, Refs. [4, 73], multi-grid in time, Ref. [40] and para-real/PFASST, Refs. [37, 38, 57, 58,263

81]. We keep the notation general for reasons that will become clear when undertaking the time domain264

decomposition technique.265

The method used here iterates the control term until all optimality conditions are satisfied. Initially,266

there is no knowledge of what the control term should be and, therefore, it is common to arbitrarily select267

q(t) = 0. The tangent solution is found by solving Equation (2.8a), from ts to tf from the initial condition268

v(ts) = 0, the current iteration of q(t) along with using Equation (2.10). By finding the tangent solution in269

this way ensures that Equation (2.8a) and Equation (2.8d) of the optimality conditions are always satisfied.270

Similarly, the co-state solution is found by solving Equation (2.8b) backwards in time from tf to ts with271

λ(tf ) = 0 as the terminal condition along with using the tangent solution, v(t), and Equation (2.11).272

Finding the co-state solution in this way ensures that Equation (2.8b) and Equation (2.8e) of the optimality273

conditions are always satisfied.274

The only remaining unsatisfied optimality constraint is ∂H
∂q = 0 because intermediate values for the275

control are not guaranteed to satisfy this equation. The approach taken here is to solve this unsatisfied276

constraint iteratively through finding a value of q that ensures this equation is satisfied. We first derive the277

linear system of the optimality constraint. This is achieved through taking the analytical solutions of the278

tangent and co-state equations. The tangent solution at time τ for some arbitrary control, given in terms of279

its state transition matrix, ϕ(t1, t2) (details of which can be found in Appendix F) is280

(3.1) v(τ) = Av(ts) +

(∫ τ

ts

η(s)ds

)
f(τ) +B

∂f

∂p
+Bq,281

where the linear operators A and B are defined by282

(3.2) Av(ts) = ϕ(ts, τ)v(ts),283

and284

(3.3) B□ =

∫ τ

ts

ϕ(s, τ)□(s)ds,285

where □(s) is the value of □ evaluated at time s. Similarly, the analytical form of the co-state solution at286

time t, written in terms of its state transition matrix, ϕ∗(t1, t2), is287

(3.4) λ(t) = −2Cv(t) +Dλ(tf ) +

(∫ tf

t

ω(τ)dτ

)
f(t),288

where the linear operators C and D are defined by289

(3.5) Cv(t) =

∫ tf

t

ϕ∗ (t, τ)
−1

v(τ)dτ,290

and291

(3.6) Dλ(tf ) = ϕ∗ (t, tf )
−1

λ(tf ).292

Substitution of Equation (3.1) into Equation (3.4) leads to293

(3.7) λ(t) = −2C
[
Av(ts) +

(∫ t

ts

η(s)ds

)
f(t) +B

∂f

∂p
+Bq

]
+Dλ(tf ) +

(∫ tf

t

ω(τ)dτ

)
f(t).294

Substitution of Equation (3.7) into Equation (2.8c) and grouping term in q gives295

(3.8)
∂H
∂q

= [2αI+ 2CB]q+2C

[
Av(ts) +

(∫ t

ts

η(s)ds

)
f(t) +B

∂f

∂p

]
−
(∫ tf

t

ω(τ)dτ

)
f(t)−Dλ(tf ) = 0,296
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where I is the identity. This can be recast as a linear system of the form297

∂H
∂q

= G(q) = Eq− b = 0,298

where G(q) is an affine operator that computes the gradient of the Hamiltonian given a certain value of q.299

The operator E = [2αI+ 2CB] is the impact that the control has on the solution, and the known term300

b = −2C
[
Av(ts) +

(∫ t

ts

η(s)ds

)
f(t) +B

∂f

∂p

]
−
(∫ tf

t

ω(τ)dτ

)
f(t) +Dλ(tf )301

represents the growth of the solution without control. As mentioned in Ref. [69], E is linear and positive302

definite meaning the system can be solved using a conjugate gradient method. Algorithm 3.1 shows how to303

compute G(q) in a matrix-free sense. The same algorithm can also be utilised to compute the know term b,

Algorithm 3.1 A matrix-free method for the calculation of G(q).

Input: q
Output: G(q)
v← Solve Equation (2.8a) from ts to tf using v(ts) and q
λ← Solve Equation (2.8b) from tf to ts using λ(tf ) and v
G(q) ← 2αq− λ

304
which is achieved by computing −G(0). Once b is found, computation the action of the operator E is done305

by evaluating G(q) and adding b. Finally, the optimal control, tangent and co-state solutions are found306

using Algorithm 3.2.

Algorithm 3.2 A matrix-free method for solution of the optimality conditions problem.

Set b = −G(0)
Solve Eq = b iteratively using conjugate gradient to compute q, using Algorithm 3.1 to compute G(q)
when Eq is evaluated
v← Solve Equation (2.8a) from ts to tf using v(ts) and q
λ← Solve Equation (2.8b) from tf to ts using λ(tf ) and v

307

It is worth noting that the operator E is never actually formed in practice and only its action on vectors308

is computed. This involves an evaluation of Algorithm 3.1 which requires the storage of v, λ and q at each309

time step in the time horizon. Storage requirements scale with problem size, time horizon and time step.310

It is well known that the convergence rate of the conjugate gradient algorithm is determined by the311

condition number of E. The value chosen for α, through the 2αI term, controls the condition number of the312

operator E which is comprised of two terms, 2αI and 2CB. These terms can be thought of as the cost in313

applying control and how well the control stabilises the solution, respectively. If α ≈ 0, then the 2CB term314

dominates the condition number and as such a control is applied such that315

(3.9) q ≈ 1

2
[CB]

−1

(
−2C

[
Av(ts) +

(∫ τ

ts

η(s)ds

)
f(τ) +B

∂f

∂p

]
+

(∫ tf

t

ω(τ)dτ

)
f(t) +Dλ(tf )

)
,316

which implies that the control applied is exactly the negative of the tangent equation and leads to a tangent317

solution that is over-damped. It is worth noting that in the limit case where α→ 0, the norm of the resulting318

tangent solution v(t) tends to zero. Conversely, if α is large then 2αI dominates the conditioning of E and319

the control applied results in320

(3.10) q ≈ 1

2α

(
−2C

[
Av(ts) +

(∫ τ

ts

η(s)ds

)
f(τ) +B

∂f

∂p

]
+

(∫ tf

t

ω(τ)dτ

)
f(t) +Dλ(tf )

)
,321

which implies the control applied is negligible and the solution is under-damped. Therefore, selecting α in322

between these values leads to an adequately controlled solution.323

9

This manuscript is for review purposes only.



3.2. A matrix-free method for time domain decomposition. To solve the optimality constraints,324

Equation (2.21) we follow the iterative approach set out in Ref. [29]. Similar in manner to the approach set325

out in section 3.1, we iterate the tangent and co-state interface values, vj(tj) and λj−1(tj) for j = 1, . . . , N−1326

respectively, and control term, q(tj) for j = 0, . . . , N − 1, until the optimality conditions are satisfied. We327

select the initial values of vj(tj) = 0 and λj−1(tj) = 0 for j = 1, . . . , N − 1. Further, qj(t) = 0 for328

j = 0, 1, . . . , N − 1 is used. The local tangent solution is found by marching Equation (2.21a) forwards in329

time from tj to tj+1 using the initial condition vj(tj) for j = 0, 1, . . . , N − 1, the control qj and making330

use of Equation (2.23) to remove the explicit computation of ηj . Using this approach ensures that the time331

domain decomposition optimality constraints Equation (2.21a) and Equation (2.21d) are satisfied. The same332

procedure is used for the co-state solution by solving Equation (2.21b) backwards in time from tj+1 to tj333

using the terminal condition λj(tj+1) for j = 0, 1, . . . , N − 1, the tangent solution vj and Equation (2.24)334

to remove the explicit calculation of ωj . Again, this approach ensures that the constraints Equation (2.21b)335

and Equation (2.21e) are satisfied. Therefore, the only constraints not satisfied is the control equation,336

Equation (2.21c), the continuity constraint on the tangent solution, Equation (2.21f), and the continuity on337

the control solution, Equation (2.21g). In practice, substitution of Equation (2.21g) for Equation (2.22) is338

undertaken. With this approach the unknowns are gathered together as339

x = (v1(t1),q0, . . . ,vj+1(tj+1),qj ,λj−1(tj), . . . ,qN−1,λN−2(tN−1))
T
.340

Making use of the analytical form of the tangent and co-state solutions leads to341

(3.11)



∂L
∂Ψ0
∂L
∂q0

...
∂L
∂Ψj
∂L
∂qj
∂L
∂Φj

...
∂L

∂qN−1
∂L

∂ΦN−1


= Hx =



v1(t1)− v0(t1)
2αq0 − λ0

...
vj+1(tj+1)− vj(tj+1)

2αqj − λj

λj−1(tj)− λj(tj)
...

2αqN−1 − λN−1

λN−2(tN−1)− λN−1(tN−1)


=



0
0
...
0
0
0
...
0
0


,342

Using a similar approach to that presented in Section 3.1 it can be shown that343

(3.12) Hx = Fx− c = 0,344

where the linear operator, F, is block-tridiagonal,345

(3.13) F =



F0,0 F0,1

F1,0
. . .

Fj,j−1 Fj,j Fj,j+1

. . . FN−2,N−1

FN−1,N−2 FN−1,N−1

 ,346

and block Fj,j is347

(3.14) Fj,j =

I −Bj 0
0 2αI+ 2CjBj 0
0 2CjBj I

 ,348

where B and C are defined as in Section 3.1 and the subscript □j denotes the operator □ on segment j.349

The full structure of F and c can be found in Appendix E.350

The system, Equation (3.12), cannot be solved using conjugate gradient methods, see Refs. [29, 42],351

and a generic linear system solver, GMRES, is used. Algorithm 3.3 is a matrix-free method for computing352
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Algorithm 3.3 A matrix-free method for the calculation of Hx.

Input: x
Output: Hx
for j = 0, 1, . . . , N − 1 do

vj(t)← Solve (2.21a) from tj to tj+1 using vj(tj) and qj(t)
λj(t)← Solve (2.21b) from tj+1 to tj using λj(tj+1) and vj(t)
Hx← 2αqj(t)− λj(t)

for j = 1, . . . , N − 1 do
Hx← vj−1(tj)− vj(tj)
Hx← λj−1(tj)− λj(tj)

Hx. As in Section 3.1, c is computed by computing Hx with x = 0. Similarly, Fx is found by computing353

Hx and adding c. We, again, reiterate that at every evaluation of Fx in the GMRES iterative solver an354

evaluation of Algorithm 3.3 is required. Algorithm 3.4 is used for finding the optimal control, tangent and355

co-state solutions. Parallel computation can be leveraged using this method as all the information required

Algorithm 3.4 A matrix-free method for solution of the optimality conditions.

Set c = −H0
Solve Fx = c using GMRES to compute x where Algorithm 3.3 is used in the evaluation of Fx

for j = 0, 1, . . . , N − 1 do
vj(t)← Solve (2.21a) from tj to tj+1 using vj(tj) and qj(t)
λj(t)← Solve (2.21b) from tj+1 to tj using λj(tj+1) and vj(t)

356

for each segment is contained within x and, therefore, computation of the tangent and co-state solutions on357

each segment along with computation of the constraints between consecutive segments are not reliant on the358

solutions of other segments.359

The main limitation with this method is that the vector of unknowns, x, is larger than q(t) presented360

in Section 3.1 due to the unknown conditions of the tangent and co-state at the segment interfaces and,361

therefore, does not reduce the memory limitations. One method to overcome this limitation is to store the362

vector x across compute nodes. Using this approach a parallel implementation of GMRES, see Refs. [32,363

33, 87], is required for the solution of the optimality conditions. An alternative approach to remove this364

limitations is through using various preconditioning methods previously developed in Refs. [5, 29, 42, 49].365

These preconditioning methods are presented in the following Sections.366

3.2.1. Jacobi preconditioning. The authors of Refs. [5, 29, 42, 49] used the splitting F = M−L−U,367

whereM is the block diagonal component of F and L andU are the block lower and block upper components,368

respectively. The intuitive reasoning behind these components is that M is related to the constraints ∂L
∂qj

,369

L is related to the constraint ∂L
∂Ψj

and U is related to the constraint ∂L
∂Φj

. Inverting any of M, L and U370

can be thought of as solving their respective constraints, for example inverting the diagonal blocks of F is371

equivalent to solving the optimal control problem on each segment, Ref. [42]. Utilising this splitting, the372

system, Equation (3.11), can be written as373

(3.15) Fx− c = [M− (U+ L)]x− c = 0,374

where left multiplication by M−1 results in375

(3.16)
[
I−M−1 (U+ L)

]
x−M−1c = 0.376

Left multiplication of M−1 always satisfies the constraints ∂L
∂qj

= 0, i.e. solving the optimal control problem377

on segment j. We utilise the method set out in section 3.1 to solve the control optimality constrain on each378

segment which only relies on the tangent and co-state initial and terminal values as the control is solved for379
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in an iterative manner. Using this approach means that initial estimate qj in x is never used. The result380

of this is that qj can be removed from x simplifying the system. This feature of simplification resulting381

from Jacobi preconditioning is well known in the optimisation research community, see e.g. Section 4.2 of382

Ref. [29]. This leaves the unknowns for the Jacobi preconditioning as383

xJac = (v1(t1), . . . ,vj+1(tj+1),λj−1(tj), . . . ,λN−2(tN−1))
T
,384

which is significantly smaller than x and can easily fit onto one compute node to be solved with GMRES.385

These unknowns are the initial tangent conditions at the beginning of each segment and the co-state terminal386

conditions at the end of each segment. Further, the entries from F and c relating to the constraint ∂L
∂qj

can387

be removed which leads to the simplified Jacobi preconditioned system388

(3.17)



∂L
∂Ψ0

...
∂L
∂Ψj
∂L
∂Φj

...
∂L

∂ΦN−1


= HJacxJac =



v1(t1)− v0(t1)
...

vj+1(tj+1)− vj(tj+1)
λj−1(tj)− λj(tj)

...
λN−2(tN−1)− λN−1(tN−1)


=



0
...
0
0
...
0


.389

Again, it can be shown that390

HJacxJac = FJacxJac − cJac = 0.391

Algorithm 3.5 is a matrix-free method for the computation of HJacxJac. The term cJac is computed

Algorithm 3.5 A matrix-free method for the calculation of HJacxJac.

Input: xJac

Output: HJacxJac

for j = 0, 1, . . . , N − 1 do
Solve Algorithm 3.2 on (tj , tj+1) from vj(tj) and λj(tj+1)

for j = 1, . . . , N − 1 do
HJacxJac ← vj−1(tj)− vj(tj)
HJacxJac ← λj−1(tj)− λj(tj)

392

using HJacxJac using zero for xJac. Similarly, FJacxJac is computed using HJacxJac and adding cJac. As393

before, the use of Algorithm 3.5 is required for every evaluation of FJacxJac in the iterative solver. An394

algorithm for computing the optimal control, tangent and co-state solutions using Jacobi preconditioning is395

given Algorithm 3.6. One benefit of this approach is that all the optimal control problems on each segment

Algorithm 3.6 A matrix-free method for solution of the optimality conditions.

Set cJac = −HJac0
Solve FJacxJac = cJac using GMRES to compute xJac where Algorithm 3.5 is used in the evaluation of
FJacxJac

for j = 0, 1, . . . , N − 1 do
Solve Algorithm 3.2 on (tj , tj+1) from vj(tj) and λj(tj+1)

396

can be solved in parallel, even distributed across multiple compute nodes, thus distributing computational397

resources and reducing the memory requirements.398

3.2.2. Gauss-Seidel preconditioning. We utilise the same splitting of F = M − L − U used in399

Section 3.2.1. We can, therefore, left multiply Equation (3.15) by (M− L)
−1

resulting in400

(3.18)
[
I− (M− L)

−1
U
]
x− (M− L)

−1
c = 0.401
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Left multiplication by (M− L)
−1

can be thought of as solving the optimal control on each segment and then402

applying continuity in the tangent solution between consecutive segments. We refer to this left multiplication403

as Forward Gauss-Seidel (FGS) preconditioning. The control optimality conditions, on each segment, are404

solved using the method outlined in section 3.1. As before utilising this approach results in the values of qj405

being removed from x. Applying continuity in the tangent solution results in the tangent interface values,406

vj(tj) for j = 1, . . . , N−1, in x never being used as they are updated from the preceding segment. Therefore407

they can also be removed from x. This method results in the unknown terms408

xFGS = (λj−1(tj), . . . ,λN−2(tN−1))
T
.409

These unknowns are the co-state terminal conditions at the end of each segment. By utilising this left410

multiplication, we find that the FGS linear system satisfies the constraints ∂L
∂qj

= 0 and ∂L
∂Ψj

= 0 and, as411

before, we can remove these from the linear system resulting in412

(3.19)


∂L
∂Φ1

...
∂L

∂ΦN−1

 = HFGSxFGS =

 λ0(t1)− λ1(t1)
...

λN−2(tN−1)− λN−1(tN−1)

 =

0
...
0

 .413

Again, it can be shown that414

HFGSxFGS = FFGSxFGS − cFGS = 0.415

Algorithm 3.7 is used for computing HFGSxFGS in a matrix-free sense. Computation of Algorithm 3.7 is

Algorithm 3.7 A matrix-free method for the calculation of HFGSxFGS.

Input: xFGS

Output: HFGSxFGS

for j = 0, 1, . . . , N − 1 do
Solve Algorithm 3.2 on (tj , tj+1) from vj(tj) and λj(tj+1)
if j ̸= N − 1 then

vj+1(tj+1)← vj(tj+1)

for j = 1, . . . , N − 1 do
HFGSxFGS ← λj−1(tj)− λj(tj)

416

commonly referred to as instantaneous control in the literature Refs. [8, 25, 27, 43, 44, 45]. The term cFGS417

is computed using HFGSxFGS using zero for xFGS. Similarly, FFGSxFGS is computed using HFGSxFGS and418

adding cFGS. We remind the reader that an evaluation of FFGSxFGS in the GMRES iterative solver requires419

the use of Algorithm 3.7. An algorithm for computing the optimal control, tangent and co-state solutions420

using FGS preconditioning is given Algorithm 3.8.

Algorithm 3.8 A matrix-free method for solution of the optimality conditions.

Set cFGS = −HFGS0
Solve FFGSxFGS = cFGS using GMRES to compute xFGS

for j = 0, 1, . . . , N − 1 do
Solve Algorithm 3.2 on (tj , tj+1) from vj(tj) and λj(tj+1)

421

A Backwards Gauss-Seidel (BGS) preconditioning approach can be achieved by left multiplying Equa-422

tion (3.15) by (M−U)
−1

. The BGS preconditioning approach can be thought of as solving the optimal423

control on each segment and then applying continuity on the co-state solution, leaving only the tangent424

continuity constraints unsatisfied. HBGSxBGS is computed in a matrix-free sense by solving optimal con-425

trol problem on the final segment, with their respective initial and terminal conditions on the tangent and426
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co-state equations then setting λN−2(tN−1) = λN−1(tN−1) and then repeating this process on the previous427

segment. Then the discontinuity is computed on the tangent solutions between consecutive segments. The428

linear system FBGSxBGS = cBGS is solved in a similar manner as that for the FGS approach.429

Finally, one drawback of the Gauss-Seidel preconditioning methods is that the parallel computation of430

segments is removed due to the continuity constraint between segments.431

4. Performance of OCS on the Lorenz system. In this Section we restrict our investigation to432

the tangent OCS formulation and show the impact that the parameter α has on the sensitivity generated433

by OCS. Computational aspects involving the total cost of the algorithm as a function number of segments434

and α are discussed along with the convergence rate for different preconditioning methods for a fixed α435

and number of segments. For this analysis, we utilise the Lorenz 1963 system, Ref. [56], which has been436

extensively utilised as a benchmark for sensitivity analysis of chaotic systems in previous work, Refs. [9, 10,437

13, 15, 18, 22, 23, 24, 26, 47, 53, 54, 64, 65, 74, 83, 84, 85].438

4.1. Description of the Lorenz system. The Lorenz system, Ref. [56], was developed as a simplified439

model for atmospheric convection and is given by the following system of ordinary differential equations440

dx

dt
= σ (y − x)(4.1a)441

dy

dt
= x (ρ− z)− y(4.1b)442

dz

dt
= xy − βz.(4.1c)443

444

The state vector is u = (x, y, z)T , where x ∈ R represents the rate of convection of the problem, y ∈ R445

is the horizontal temperature variation, z ∈ R is the vertical temperature variation. The parameter σ is446

proportional to the Prandtl number of the flow, ρ is proportional to the Rayleigh number, and β represents447

a physical thickness of the fluid layer. Typical values for σ, ρ and β used in other studies are 10, 28 and 8
3448

respectively, and shall be used here unless otherwise stated.449

The time step for the numerical simulation of the system is ∆t = 0.01 time units for numerical stability450

and a fourth order Runge-Kutta time-stepping scheme is used. All results are generated using an initial451

conditions for x, y and z drawn from a uniform distribution between 0 and 1.452

4.2. Numerical computation of the Lorenz system sensitivity. We select ρ to be our parameter453

of interest as in other studies and454

(4.2) J(u) = z,455

as the quantity of interest. To aid in the investigation into the accuracy in the time averaged sensitivity456

generated by OCS we first compute the impact that ρ has on the time averaged cost J̄ . We compute J̄457

for the range ρ ∈ (1, 100) for 100 equally spaced values where each sample has random initial conditions.458

Each sample has a ‘spin up’ time of 50 time units to ensure the solution is on the attractor and the time459

average is computed over 1500 time units. This can be seen in Figure 2 along with a curve fit of the solution460

following the discontinuity at ρ = 24. The curve fit can then be utilised to compute the derivative of J̄ with461

respect to ρ. The derivative of the curve fit at ρ = 28 is dJ̄
dρ ≈ 1.006 and it is this value that will be utilised462

for comparison throughout the remainder of this section. The authors note that the tangent and adjoint463

formulations are consistent with each other as ∆t → 0 along with the error between the methods decaying464

to zero at a rate consistent with the order of accuracy of the time-stepping scheme.465

4.3. Influence of α on the sensitivity generated by OCS. We now compute the sensitivity gen-466

erated by OCS for the range α ∈ (1, 1 × 1015) when T = 30 time units, a ‘spin up’ time of 50 time units467

and the same initial conditions are used for Equation (4.1) for each value of α. We undertake this analysis468

to investigate how varying the cost of the control applied varies the sensitivity generated. This influence469

has been undertaken on three different initial conditions for the non-linear system and can be seen in Fig-470

ure 3. The first observation to note is that the initial condition chosen impacts the value of the sensitivity471

generated. However, it is well known that Shadowing methods increase in accuracy as the time horizon is472

increased, Ref. [54, 82], and, therefore, this bias will reduce. Secondly, taking an average of the sensitivity473

over a range of initial conditions will also reduce the bias.474
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Fig. 2: J̄ computed over 1500 time units against ρ for the Lorenz system.
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Fig. 3: The sensitivity dJ̄
dρ against α for OCS for three different non-linear initial conditions, solid black line,

dashed blue line and dotted red line. The derivative of the curve fit derivative of Figure 2, black dash dotted
line, is also shown for comparison.

It can be observed that when α ≤ 10 the sensitivity is under-predicted. This is because the control475

in this region is considered cheap and a large amount of control is applied. This implies that the tangent476

solution is significantly damped which then results in a lower sensitivity dJ̄/dp (see equation (2.25)). In the477

limit case α→ 0, the tangent solution v vanishes completely and so does the sensitivity of the time average.478

By contrast, when α ≥ 1 × 1011 the control applied is insufficient and is unable to stabilise the tangent479

solution (under-damping) which leads to inaccurate sensitivities, either much larger or much smaller. In480

between these regions the control applied is large enough to control the exponential growth of perturbations481

but small enough not to damp the entire solution. Comparisons not reported here with solutions obtained482

with MSS suggest that, excluding the initial and final fractions of the time horizon, the tangent solution483

15

This manuscript is for review purposes only.



generated by OCS converges to the true shadowing direction. This is a bounded, but unstable, solution of484

the linearised equations which many shadowing methods find approximations for. In the present approach,485

such an approximation is found by finding an appropriate stabilising control using optimal control theory. A486

remark on the selection of the α is in order. This parameter has units of the inverse of a time scale, but the487

“ideal” range in which the solution is neither over-damped nor under-damped does not seem to be related488

in a straightforward manner with relevant time scales of the linearised dynamics, e.g. the Lyapunov time489

associated to the single positive exponent of the Lorenz equations.490

The squared norms of the optimal tangent, vTv, and control, qTq, solutions as a function of time are491

displayed in Figure 4 for α ∈ {1, 1 × 106, 1 × 1012}. Panel (a) shows that for all α values investigated the

0 5 10 15 20 25 30

t

10−4

10−3

10−2

10−1

100

101

v
T
v

α = 1

α = 1× 106

α = 1× 1012

(a)

0 5 10 15 20 25 30

t

10−27

10−23

10−19

10−15

10−11

10−7

10−3

101

q
T
q

α = 1

α = 1× 106

α = 1× 1012

(b)

Fig. 4: Comparison of the squared norms of the tangent solution, panel (a), and of the control, panel (b),
for α = 1, solid black line, α = 1× 106, red dotted line, and α = 1× 1012 blue dotted line.

492
tangent solution is stabilised onto approximations of the shadowing direction for the initial five sixths of the493

time horizon. There are slight differences between the tangent solutions generated by each value of α and,494

therefore, the same approximation to the shadowing direction is not found between cases.495
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Panel (b) shows that when α = 1 there is a constant amount of control being applied throughout the496

time horizon which is able to counteract the growth of perturbations. The dip in control applied at the end497

of the time horizon is due to the terminal condition λ(tf ) = 0. When α = 1× 106 there is significantly less498

control applied, and the control value decays exponentially for the first two thirds of the time horizon and499

then reaches a constant value for the remainder. Finally, when α = 1 × 1012 the control follows a similar500

profile for the previous case except the constant value reached is several orders of magnitude lower. This501

exponential decay in the first two thirds of the time horizon of the control solution suggests that a solution502

with exponential growth is being controlled. In the final third of the time horizon there is significant difference503

between α = 1 × 1012 and the other two cases. This is caused by the small value of control applied which504

is unable to control exponential growth in the tangent solution. This is the mechanism that causes the505

sensitivity values to be inaccurate for large values of α.506

The implications that this has on NV methods is that the control applied by the additional term must507

be large initially, but might need to be weaker across the rest of the time horizon. This will have the impact508

of stabilising the tangent solution towards the shadowing direction, but once the tangent solution is close to509

the shadowing direction minimal amounts of control are required.510

4.4. Convergence rates of the preconditioning methods. The stopping criteria for the GMRES511

method is based on the value of the residual r = Hx − c of Equation (3.12). In this analysis the stopping512

criteria is chosen to be 1× 10−14 for both CG and GMRES as this value is close to machine epsilon in 64-bit513

double-precision floating-point arithmetic. A large stopping tolerance means that there are discontinuities514

between segments, and the control will not be optimal, and as such the values generated for the sensitivities515

can be impacted.516

The preconditioning methods derived, Jacobi, FGS and BGS are compared to the no preconditioning517

case in Figure 5 for T = 30 time units, a ‘spin up’ time of 50 time units, α = 500, N = 6 and using the same518

initial condition for Equation (4.1). It can be seen that applying no preconditioning has the slowest rate
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Fig. 5: The norm of the residual, r, for no preconditioning, solid line, Jacobi preconditioning, dotted line,
FGS, dashed line, and BGS, dash dotted line.

519
of convergence, followed by Jacobi then BGS and, finally, FGS having the fastest convergence rate of those520

investigated. These results are in good agreement with those presented in Figure 6 in Ref. [42], Figure 5.6 in521

Ref. [28] and Tables 5.2 to 5.4 in Ref. [29] despite the difference in system investigated. Although the results522

from Refs. [28, 29, 42] are for advection-diffusion and heat equation problems the linear unstable system523

investigated here still shows very similar behaviour. Therefore, it can be concluded that the difference in524

class of system does not impact the convergence rates of the method.525

When there is no preconditioning applied, the converge rate is slow because all variables, control and526

17

This manuscript is for review purposes only.



interface values for the tangent and co-state, are solved together. Therefore, at each iteration the control527

values on each segment and tangent and co-state values at the segment interfaces are not guaranteed to be528

optimal. Jacobi preconditioning, on the other hand, solves the optimal control problem on each segment at529

each GMRES iteration with discontinuities in both the tangent and co-state solution between consecutive530

segments. This results in “information” being propagated between consecutive segments faster than no531

preconditioning. BGS solves the optimal control problem sequentially backwards in time, meaning the co-532

state equation always obeys continuity across the segment boundaries. This leads to an increased rate of533

“information” transfer compared to the Jacobi preconditioning. The reason why the FGS converges quicker534

than BGS is that the formulation derived in Section 2 aims to minimise the norm of the tangent solution.535

By ensuring that there is continuity between consecutive segments in the tangent solution, as the FGS536

preconditioning does, its growth is known in each segment. By knowing the growth of the tangent solution537

in each segment q can applied in a more “appropriate” fashion to better stabilise the solution, which leads538

to fewer iterations.539

From these results it is clear that FGS requires the fewest number of iterations, but FGS does not have a540

favourable parallel efficiency, as the optimal control problems on the segments must be solved sequentially. In541

this regard, from the perspective of maximising compute resources, Jacobi preconditioning is advantageous542

over FGS or BGS, because the increased parallelism of the Jacobi preconditioning may result in the CPU543

wall-clock time of a single GMRES iteration being reduced over FGS or BGS and may lead to a faster overall544

solution in terms of CPU wall-clock time depending on the number of segments and other factors. Here we545

make use of the FGS method due to the faster convergence rates and disregard the impact on computational546

efficiency.547

4.5. Total cost of the OCS algorithm. For a given preconditioning method, there are two factors548

that will impact the cost of the OCS algorithm, the first being α, due to its impact on the condition number549

of the linear system associated with the optimal control problem in each segment and the second being550

the number of segments, N . We now compute the total cost of the algorithm for N ∈ {4, 6, 8, 12, 24} with551

α ∈ (1, 1 × 1019) for T = 30 time units, a ‘spin up’ time of 50 time units using the FGS preconditioning552

method. The number of tangent and co-state solutions are directly tied to the number of CG and GMRES553

iterations. For a solution of the optimal control problem on each segment a tangent and co-state solution are554

required for the computation of bj . A forward and backward solution are then required for each call to Ejqj .555

Finally, solutions to the tangent and co-state equations are required once the optimal control q has been556

found. Solving the discontinuities between segments leads to one optimal control solution required for the557

computation of cJac, cFGS or cBGS. An optimal control solution is required every GMRES iteration for the558

evaluation of FJacxJac, FFGSxFGS or FBGSxBGS. Finally, one more optimal control solution is required once559

the interface values for the tangent and co-state has been found. Therefore, the total cost of the algorithm560

in terms of number of tangent and co-state solutions required for convergence through can be found with561

Total Cost = (ItersGMRES + 2)× (2× ItersCG + 4) .562

The change in cost through varying α and the number of segments for one simulation is presented in Figure 6.563

For large values of α fewer segments are preferred, however, for small values of α the difference between the564

cost generated by varying the number of segments is reduced. As can be found in Figure 6 in Ref. [42],565

Figure 5.6 in Ref. [28] and Tables 5.2 to 5.4 in Ref. [29] fewer segments produce lower computational cost.566

Based on this analysis, the fewest number of segments should be used. However, due to memory limitations567

this may not be feasible and a larger number of segments may be necessary. In practice, the number of568

segments used are selected such that the memory required for the optimal control problem on each segment569

is smaller than the memory each compute node has available. Finally, the method developed in Refs. [28,570

29, 42] are for advection-diffusion and heat equation problems the linear unstable system investigated here571

still shows very similar cost. It can, therefore, be concluded that the difference in the systems has little, to572

no, impact on the convergence rates of the method.573

5. Performance of OCS on the Kuramoto-Sivashinsky system. In this Section we investigate the574

performance of the tangent OCS formulation on a spatially distributed system. The Kuramoto-Sivashinsky575

system, Refs. [50, 51, 76, 77], has been extensively investigated for sensitivity analysis of chaotic systems,576

Refs. [9, 10, 11, 12, 14, 18, 53, 74, 75, 85], and we use it here as a stepping stone to larger more industrially577
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Fig. 6: Total cost of the OCS algorithm against α for 4 segments, solid black line, 6 segments, dotted black
line, 8 segments, dashed black line, 12 segments, dash dotted black line, and 24 segments, blue solid line.

relevant systems. The impact that the domain size has on the convergence rate of OCS is investigated,578

followed by a comparison between MSS, OCS and NV methods.579

5.1. Description of the Kuramoto-Sivashinsky system. The Kuramoto-Sivashinsky (KS) equa-580

tion was initially introduced in Refs. [50, 51] as a method of modelling angular-phase turbulence in a system of581

reaction-diffusion equations. Later, the equations were derived in Refs. [76, 77] to model how the instabilities582

of a distributed plane flame front evolve. The KS system investigated here is given by583

(5.1)

∂u(x, t)

∂t
= −(u(x, t) + c)

∂u(x, t)

∂x
− ∂2u(x, t)

∂x2
− ∂4u(x, t)

∂x4
,

x ∈ (0, L),

u(0, t) = u(L, t),

584

where u(x, t) is a spatially distributed variable with L being the length of the domain. The variable c is585

the mean convective speed, and is used here as the parameter of interest, as in previous work, Refs [9, 10,586

11, 12, 14, 18, 53, 74, 75, 85]. There have been several investigations into the modified KS system where587

Neumann and Dirichlet boundary conditions are used, Refs [9, 10, 11, 12, 14, 18, 53, 74, 75, 85], instead of588

periodic boundary conditions used here. In this Section, periodic boundary conditions are utilised as this589

facilitates the use of spectral methods and a wavenumber-by-wavenumber analysis of the tangent energy590

budget derived in Section 5.2. The solution can be expanded as591

u(x, t) =

∞∑
k=−∞

ũk(t)e
ik 2π

L x,592

but, in practice, a grid of Kx = 6L
5 grid points is used, so that the spatial resolution is independendent of593

L. As the solution is real valued, this results in Kx

2 + 1 Fourier modes. A zero mean solution is chosen, i.e.594

ũ0 = 0, which is commonly performed in the literature, Ref [30]. For the time integration a Crank-Nicolson595

scheme is used for the linear terms and a second order Runge-Kutta scheme is used for the non-linear terms596

and ∆t = 1 × 10−3 time units is used for stability. The inner product between two spatially distributed597

variables, a(x, t) and b(x, t),598

⟨a(x, t), b(x, t)⟩ = 1

L

∫ L

0

a(x, t)b(x, t)dx599
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is used and the norm is600

∥a(x, t)∥ =
√
⟨a(x, t), a(x, t)⟩.601

We consider a domain length L = 50 and a convective speed c = 0.5. This domain length is sufficiently large602

for the dynamics to display fully developed spatial chaos, with no qualitative change on the behaviour when603

larger domain sizes are considered. A typical example of the solution to the KS system for such parameter604

values is given in Figure 7.
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Fig. 7: Example of a typical KS solution, u(x, t), for c = 0.5 and L = 50.

605

5.2. Derivation of the tangent energy equation. The main development of NV methods has been606

for fluid flow problems, Ref. [18], and has not been developed for the KS system. Therefore, we need to derive607

the NV approach for the KS system. The approach taken to derive the NV method in Ref. [18] consisted in608

selecting a term which dissipates excess adjoint energy and stabilises the solution. Here, we follow a similar609

approach by finding terms that contribute to the dissipation of tangent energy. We undertake this in terms610

of tangent energy as we are primarily investigating the tangent OCS formulation derived in Section 2.2.611

Starting from the KS system, the linearised tangent equation with control term included is612

(5.2)

∂v(x, t)

∂t
= −c∂v(x, t)

∂x
− ∂(u(x, t)v(x, t))

∂x
+ ηf(x, t)︸ ︷︷ ︸

C(x,t)

− ∂2v(x, t)

∂x2︸ ︷︷ ︸
P (x,t)

− ∂4v(x, t)

∂x4︸ ︷︷ ︸
D(x,t)

− ∂u(x, t)

∂x︸ ︷︷ ︸
I(x,t)

+ q(x, t)︸ ︷︷ ︸
Q(x,t)

,

x ∈ [0, L),

v(0, t) = v(L, t),

613

where C(x, t) can be seen as a combination of terms that are producing and dissipating tangent energy (with614

f(x, t) the right hand side of Equation (5.1)), P (x, t) purely contributes to production of tangent energy,615

D(x, t) is a dissipation term, I(x, t) is an inhomogeneous term, and Q(x, t) is the contribution to the tangent616

energy of the control term. Similar to the nonlinear KS equation, the tangent formulation has periodic617

boundary conditions. Therefore, the tangent and control variables can be expanded in a Fourier series as618

v(x, t) =

∞∑
k=−∞

ṽk(t)e
ik 2π

L x and q(x, t) =

∞∑
k=−∞

q̃k(t)e
ik 2π

L x.619

Let ϵ(x, t) = 1
2v(x, t)

2 denote the local tangent energy. An evolution equation for this variable is found620
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by multiplication of Equation (5.2) by v(x, t), resulting in621

(5.3)

∂ϵ(x, t)

∂t
= −2ϵ(x, t)∂u(x, t)

∂x
− (u(x, t) + c)

∂ϵ(x, t)

∂x
− v(x, t)

∂2v(x, t)

∂x2
+ v(x, t)ηf(x, t)−

v(x, t)
∂4v(x, t)

∂x4
− v(x, t)

∂u(x, t)

∂x
+ v(x, t)q(x, t),

622

Defining the tangent energy, E(t) = 1
L

∫ L

0
ϵ(x, t)dx, as the domain average of the local tangent energy, results623

in the scalar evolution equation624

(5.4)

dE(t)
dt

=
1

L

∫ L

0

(
−2ϵ(x, t)∂u(x, t)

∂x
− (u(x, t) + c)

∂ϵ(x, t)

∂x
− v(x, t)

∂2v(x, t)

∂x2
+ v(x, t)ηf(x, t) −

v(x, t)
∂4v(x, t)

∂x4
− v(x, t)

∂u(x, t)

∂x
+ v(x, t)q(x, t)

)
dx.

625

Integration of the third term on the right hand side of Equation (5.4) by parts results in626 ∫ L

0

−v(x, t)∂
2v(x, t)

∂x2
dx =

∫ L

0

(
∂v(x, t)

∂x

)2

dx,627

which can be seen to be a production term as it is always positive. Similarly, integration of the fourth term628

by parts twice leads to629 ∫ L

0

−v(x, t)∂
4v(x, t)

∂x4
dx =

∫ L

0

−
(
∂2v(x, t)

∂x2

)2

dx,630

which is always negative and is a dissipation term. The first numerical viscosity term considered here is631

q(x, t) = µP
∂2v(x, t)

∂x2
632

which modifies the production of tangent energy where µP > 0 is a tuning parameter and shall be referred633

to as NVP henceforth. When µP > 1 the control applied by NVP counteracts the influence of P (x, t).634

Similarly, modification of the dissipation of tangent energy leads to635

q(x, t) = −µD
∂4v(x, t)

∂x4
636

where µD > 0 is a scaling factor for the artificial viscosity term and the approach shall be referred to as637

NVD.638

5.3. Numerical computation of the sensitivity for the Kuramoto-Sivashinsky system. The639

functional of interest used for sensitivity analysis is640

(5.5) J (u(x, t)) = ∥u(x, t)∥2,641

which represents the energy density of the solution variable u(x, t). The value of J̄ is found using a random642

initial condition for Equation (5.1) for a time horizon of T ∈ {2× 103, 2× 104} time units following a ‘spin643

up’ time of 1000 time units. This is undertaken over 50 samples. The change in mean value J̄ and standard644

deviation as a function of c for c ∈ (0.0, 1.0) using 100 equally spaced points is shown in Figure 8, where a645

curve fit through the data is also shown. We note that the literature uses Neumann and Dirichlet boundary646

conditions and the resulting correlation between c and J̄ is stronger, see Figure 7 in Ref. [14]. Figure 8647

indicates that as the time horizon increases the average value of J̄ is approximately constant in this range648

of c values. This is shown by the mean converging to the curve fit as T increases along with the standard649

deviation decreasing. The derivative of the curve fit when c = 0.5 is dJ̄
dc ≈ 6.725× 10−2, i.e. approximately650

zero and shall be used for comparison throughout this Section.651

We then solve the tangent OCS problem for α ∈ (10, 1 × 1010) using T = 240 time units, preceded by652

a ‘spin up’ time of 1000 time units, L = 50 and Kx = 60. This procedure is repeated for µP ∈ (0, 5) and653
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Fig. 8: Mean and standard deviation of J̄ against c for the KS system from numerical simulation when
T = 2× 103, blue crosses, T = 2× 104, red crosses, and a curve fit through when T = 2× 104, black dashed
line.

µD ∈ (0, 50) using the same conditions. In Figure 9 we show the sensitivity generated by tangent OCS, NVP654

and NVD in the left column for the range of tuning parameters along with, in the right column, ∥v(x, t)∥2655

for selected values of the tuning parameters. We find that there is some bias with the OCS solution and656

the curve fit derivative, Figure (9a) which is caused by the selection of the initial condition on u(x, ts), as657

shown previously for the Lorenz system. We note that even though there is little correlation between c and658

J̄ we still observe that the influence of α shows similar features as those presented for the Lorenz case and659

this lack of correlation is not a major limitation in the analysis. When α < 5 × 102 the solution is over660

damped. Again when α > 5 × 104 the solution is under damped. In between these values the sensitivities661

are in good agreement with the curve fit derivative. Above this value the sensitivities become inaccurate.662

This, as we will show later, is due to the control applied being too small and allowing the tangent solution663

to experience exponential growth, Figure (9b). We also observed that from α > 5× 103 the tangent solution664

can experience significant transient growth in the first fraction of the time span, before control is able to665

stabilize it. One interesting feature to note is that the norm of the tangent solution can be quite large, and666

still produce sensitivity values in good agreement with the curve fit derivative.667

For the NV methods, we find that when µP < 1 the sensitivities generated by NVP are inaccurate,668

Figure (9c), which is due to the control being inadequate and not able to stabilise the tangent solution,669

as can be seen in panel (d). When µP is increased above 2 the sensitivity generated becomes in better670

agreement with the curve fit derivative. This is due to the control being sufficient to damp the exponential671

growth of the tangent solution. Similar behaviour can be seen for the NVD approach too.672

5.4. Influence of the domain size on the convergence rate of the OCS algorithm. We now673

investigate the influence of the size of the domain, L, has on the convergence properties of CG and GMRES.674

The spatial resolution, ∆x = L
Kx

= 5
6 , is kept constant between all domain sizes investigated. Each simulation675

uses a time horizon of T = 240 time units, following a ‘spin up’ time of 1000 time units, N = 20 and the676

FGS preconditioning method. Increasing the domain size increases the size of the control variable, q, which677

results in the size of the linear systems generated by the optimal control problem on each segment and the678

continuity constraints between consecutive segments becoming larger. The convergence properties of average679

number of CG iterations across all segments per GMRES iteration, panel (a), and GMRES, panel (b), for680

L ∈ {64, 128, 256, 512} and α ∈ (1, 1× 1019) are presented in Figure 10. In general a small value of α leads681

to an increase in the number of CG iterations required for all domain sizes, Figure 10a. There is a very682

small influence that the domain size has on the average number of CG iterations. This behaviour is also683
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Fig. 10: Average number of CG iterations per GMRES iteration, panel (a), and GMRES iterations, panel
(b), for L = 64, black solid line, L = 128, blue dotted line, L = 256, red dashed line, and L = 512, orange
dash dotted line, for a range of α values.

seen, for a different system, in Table 5.7 in Ref. [29]. In general increasing α leads to a larger number of684

GMRES iterations, Figure 10b. This is because the discontinuities between segments becomes larger when685

α is increased which results in more work being required to enforce continuity. Increasing the domain size686

increases the system solved by GMRES which results in a larger number of GMRES iterations and this687

relationship can be seen to be linear. From this analysis we expect that when applying these methods to688

larger systems, such as fluid flow problem, that the majority of the computational time is dedicated to the689

GMRES iterations.690

5.5. Spatio-temporal structure of the tangent solutions. A MSS solution, left, on a time horizon691

of 240 time units following a ‘spin up’ time of 1000 time units using Kx = 60 and N = 60 from a random692

initial condition u(x, ts) is shown in Figure 11 along with the norm of the tangent solution, right, for clarity.693

The tangent solutions, left column, generated by OCS for the same conditions when α ∈ {50, 5000, 5× 106}694

and NVp, right column, for µP ∈ {1, 2.5, 5} are shown in Figure 12. We refer the reader to Figures 9b695

and 9d for the solution norms of these. When α = 50 there are some similarities between MSS, Figure 11a,696

and the OCS, Figure 12a. One thing to note is that OCS produces a tangent solution with a smaller norm,697

solid black line in Figure 9b, than MSS, Figure 11b. We argue that this is because the small value of α698

leads to a large amount of control being applied which damps the solution. OCS has zero norm which then699

rises, this is common between all OCS solutions which is due to the control stabilising the solution onto700

the approximate shadowing direction. Increasing α to 5000 results in a larger solution norm, dashed black701

line in Figure 9b. The large initial fluctuations in the tangent solution is caused by the reduced amount702

of control being applied when α = 5000 compared to the previous case. We find that the tangent solution703

for α = 5 × 106, Figure 12c, does not initially resemble that of MSS, Figure 11a, but following a transient704

period it does show similar features. Finally, when α = 5×106 we find that the solution norm is significantly705

larger than MSS. This is caused by the control term being too small. This results in the tangent solution,706

Figure 12e, having no resemblance to MSS. The behaviour that increasing α leads to larger norm is not seen707

in the literature. This is because the equations that optimal control have been applied to in the literature,708

Refs [7, 8] for example, do not exhibit exponential growth whereas the tangent equation, in our case, does.709

We find that when µP = 1 the control term is unable to stabilise the tangent solution, which results in710

the solution norm growing exponentially, solid black line in Figure 9d. One other impact of this is that this711

solution, Figure 12b, has no similarities with that generated by MSS. Increasing µP to 2.5 leads to a solution712

where the control applied results in a better stabilised tangent solution, dashed black line in Figure 9d,713
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Fig. 11: v(x, t), panel (a), and ∥v(x, t)∥2, panel (b), of the tangent solution generated by MSS.

shown by the reduced norm. For this value of µP the tangent solution is better controlled, Figure 12d,714

and is starting to exhibit some features that resemble that of MSS. Increasing µP to 5, leads to solution715

that has been stabilised, dotted red line in Figure 9d. Further, this norm is smaller than that generated by716

MSS, Figure 11b. When µP = 5 the tangent solution, Figure 12f, has some features of the MSS solution,717

Figure 11a, but there is still a large difference, seen in the large diagonal banding in the solution. We see718

similar behaviour for NVD as we do for NVP .719

5.5.1. Quantifying the similarities between tangent solutions. To gain a better understanding720

of the similarities in the tangent solutions generated by OCS and NV with MSS we make use of721

θX(t) = arccos

(
⟨vMSS(x, t), vX(x, t)⟩
∥vMSS(x, t)∥∥vX(x, t)∥

)
,722

where vX(x, t) is the tangent solution generated by OCS or NVP and vMSS(x, t) to MSS. We use the solution723

generated by MSS as a reference for the shadowing direction. Similar behaviour is seen between the NVP724

and NVD methods. A value of θX(t) close to zero shows that the solutions are well aligned with each other725

and are similar whereas values close to π
2 indicates the solutions are dissimilar. We show the comparison726

between MSS and OCS, θOCS, for a range of α values in panel (a) and the comparison between NVP and727

MSS, θNVP
, for a range of µP values in panel (b) of Figure 13. When α ∈ {5, 50, 500, 5000} there is initially728

little similarity between the tangent solution generated by MSS and OCS. This is because there is a difference729

in the initial conditions between the two methods. This suggests that OCS stabilises the tangent solution to730

one similar to MSS. When α = 5 the tangent solution gets close to the MSS solution rapidly and throughout731

the time horizon diverges away. This is because the exponential growth of perturbations are damped yet732

control is continued to be applied throughout the time horizon meaning the solution is controlled further.733

Increasing α to 50 leads to an increased time the OCS solution takes to get close to MSS. Once the solution734

reaches something resembling MSS little control is applied. This behaviour is seen when increasing α to 500735

or 5000. If α is increased further then there is no resemblance between the tangent solutions generated by736

OCS and MSS. This is because the control applied is unable to control the growth of perturbations.737

For NVP , we find that regardless of which value of µP chosen there is no similarity with the tangent738

solution generated by MSS as the angle between solutions is, on average, π
2 . This result is surprising even739

though the sensitivity values generated with both methods are in good agreement with each other.740

5.6. Spatio-temporal structures of the control produced by OCS and NV. We now show the741

control solution to aid in the explanation of the analysis derived for the tangent solutions. We show the742

spatio-temporal structures of q(x, t) and its squared norm generated by OCS for α ∈ {50, 5000, 5×106} in the743
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(a) v(x, t) generated by OCS for α = 50.
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(b) v(x, t) generated by NVP for µP = 1.
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(c) v(x, t) generated by OCS for α = 5000.
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(d) v(x, t) generated by NVP for µP = 2.5.
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(e) v(x, t) generated by OCS for α = 5× 106.
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(f) v(x, t) generated by NVP for µP = 5.

Fig. 12: v(x, t) generated by OCS, left column, for α ∈ {50, 5000, 5 × 106} and NVp, right column, for
µP ∈ {1, 2.5, 5}.
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Fig. 13: θOCS for α = 5, solid black line, α = 50, dashed blue, α = 500, dotted red, α = 5000, dash dotted
yellow, α = 5× 106, solid pink, and α = 5× 109, dashed orange, panel (a), and θNVP

for µP = 1, solid black
line, µP = 1.5, dashed blue, µP = 2, dotted red, µP = 2.5, dash dotted yellow, µP = 3, solid pink, µP = 3.5,
dashed orange, µP = 4, dotted magenta, µP = 4.5, dash dotted lime, and µP = 5, solid green, panel (b).

left and right columns, respectively, of Figure 14. We find that when α = 50 the amount of control applied744

is constant throughout the time horizon, Figure 14b. The drop towards the end of the time horizon is due745

to the control being related to the co-state solution which has zero terminal condition. We also find that746

the control has very similar spatio-temporal structures in the entire time domain, as observed in the tangent747

solution, Figure 12a. Increasing α to 5000 there is exponential decay in the amount of control applied over748

the first half of the time horizon, Figure 14d. Following this the amount of control applied is constant. We749

find that the majority of the control is applied in the first half of the time horizon, Figure 14c. Finally,750

increasing α to 5× 106 the control applied is several orders of magnitude lower than the other cases.751

We repeat this for µP ∈ {1, 2.5, 5} using the same conditions as before. These results can be seen in752

Figure 15. As the control term, q(x, t) = µP
∂2v(x,t)

∂x2 , is linked to the tangent solution we find that when753

µP = 1 the control is unable stabilise the solution and the amount applied increases exponentially throughout754

the time horizon, Figure 15b. We also find control is applied at shorter wavelengths, Figure 15a, compared755

to the tangent solution, Figure 12b. Increasing µP to 2.5 applies smaller amount of control than µP = 1,756

Figure 15d. This may seem counter-intuitive, but as q(x, t) is directly related to the tangent solution a757

control term that is able to stabilise the solution will result in less control being applied. Finally, increasing758

µP to 5 reduces the control applied even more, Figure 15f. We note that this behaviour is also seen for the759

NVD case. We find that when µP = 5, Figure 15e, the resulting control being applied has similar features760

as when α = 50, Figure 14a. Further, NVP applies orders of magnitude more control than OCS. As a final761

remark, the magnitude of the control applied by NVP has high amplitude oscillations, Figure 15f, whereas762

that applied by OCS, Figure 14d, does not exhibit this behaviour.763

5.7. Wavenumber analysis of the tangent equation. In this Section we investigate the tangent764

equation, Section 5.2, on a wavenumber by wavenumber basis for the solutions generated by MSS, OCS and765

the two NV methods. We solve the tangent equation using spectral methods and, therefore, each term in766

Equation (5.2) can be represented in terms of its spectral decomposition. This is repeated for the terms,767

C(x, t), P (x, t), D(x, t), I(x, t) and Q(x, t) in Equation (5.2) using the same approach. We then compute the768

time average of the absolute value of these on a wavenumber by wavenumber basis, e.g. |Pk|. We compute769

an average of these terms using 50 samples from different initial conditions, L = 50, Kx = 60, T = 240 and770

a ‘spin up’ time of 1000 time units. We observe that results on different domain sizes collapse when the771

wavenumbers are scaled by k
L . Therefore, the analysis drawn for L = 50 is applicable to all domain sizes772
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(a) q(x, t) generated by OCS for α = 50.
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(b) ∥q(x, t)∥2 generated by OCS for α = 50.
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(c) q(x, t) generated by OCS for α = 5000.
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(d) ∥q(x, t)∥2 generated by OCS for α = 5000.
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(e) q(x, t) generated by OCS for α = 5× 106.
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(f) ∥q(x, t)∥2 generated by OCS for α = 5× 106.

Fig. 14: q(x, t), left column, and ∥q(x, t)∥2, right column, of the control solution generated by OCS for
α = 50, top row, α = 5000, middle row, and α = 5× 106, bottom row.
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(a) q(x, t) generated by NVP for µP = 1.
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(b) ∥q(x, t)∥2 generated by NVP for µP = 1.
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(c) q(x, t) generated by NVP for µP = 2.5.
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(d) ∥q(x, t)∥2 generated by NVP for µP = 2.5.
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(e) q(x, t) generated by NVP for µP = 5.
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(f) ∥q(x, t)∥2 generated by NVP for µP = 5.

Fig. 15: q(x, t), left column, and ∥q(x, t)∥2, right column, of the tangent solution generated by NVP for
µP = 1, top row, µP = 2.5, middle row, and µP = 5, bottom row.
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under the correct scaling. We also restrict ourselves to one value of the tuning parameter in OCS and the773

NV methods which are α = 500, µP = 2.5 and µD = 31.0. We compute the mean and standard error of these774

results for 50 different initial conditions which is shown in Figure 16 for MSS, panel (a), OCS, panel (b),775

NVP , panel (c), and NVD, panel (d). One general trend that is observed is that production of tangent energy
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(a) Time averaged tangent spatial modes produced by
MSS.
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(b) Time averaged tangent spatial modes produced by
OCS.
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(c) Time averaged tangent spatial modes produced by
NVP .
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(d) Time averaged tangent spatial modes produced by
NVD.

Fig. 16: Comparison of the mean and standard error of the time averaged tangent spatial modes produced
by various methods over 50 samples. Panel (a) is the tangent solution generated by MSS, panel (b) by OCS,
panel (c) by NVP and panel (d) by NVD.

776
is dominated by the longest wavelengths. Further, dissipation of tangent energy is dominant at intermediate777

wavelengths, and that dissipation dominates production from around wavenumber k = 8. It is well known778

that the stable covariant Lyapunov vectors (CLVs) have stronger signatures as high wavenumbers, see Figure779

3 in Ref. [78], and more stable CLVs have higher wavenumbers. We argue that the wavenumber at which780

dissipation dominates production is related to the most dominant wavenumber of the CLV with the smallest781

negative (closest to zero) LE. The inhomogeneous and convective terms both act on the longest length scales782

of the system and are reduced at shorter length scales for all cases.783

The main difference between OCS and the two NV methods investigated is the length scales at which784
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the control terms acts. We find that for OCS the control term acts predominantly at wavenumbers where785

production dominates dissipation and is reduced elsewhere. Further, the magnitude of the control term is786

several orders of magnitude lower than the other terms. This suggests that OCS applies control at length787

scales that require stabilising. We argue these long wavelengths are related to the unstable CLVs of the788

system, see Figure 3 in Ref. [78]. Both NV methods, on the other hand, have a large amount of control789

applied across all wavenumbers peaking at k = 8 and, therefore, damping across a large range of length790

scales, even when dissipation dominates production. This behaviour suggests that NV applies control that791

does not consider the unstable, neutral or stable sub-spaces of the tangent space, by contrast, OCS, we argue,792

applies control predominantly on the unstable sub-space. The wider implications of this is that knowing at793

what length scales production of tangent energy dominates dissipation or the length scales associated to the794

unstable sub-space could lead to the selection of a more targeted control term.795

6. Conclusion. We developed Optimal Control Shadowing, OCS, as a method to bridge the gap in796

understanding between the computationally expensive and accurate Shadowing methods, and the computa-797

tionally cheap but less accurate numerical viscosity, NV, methods. The tangent OCS formulation, valid for798

a single parameter of interest, and the adjoint OCS formulation, valid for multiple parameters of interest,799

were derived. For large systems, such as fluid flows, solving the optimal control problem is a computationally800

challenging task, both in terms of storage and CPU usage. To partly overcome this limitation, a method801

for decomposing the time domain into segments such that the solutions can be distributed across multiple802

compute nodes was utilised. Finally, various algorithms and preconditioning methods for the numerical803

solution of the optimality conditions were presented.804

The accuracy of the method depends on a single tuning parameter, α. Small values of α means control is805

inexpensive to apply and leads to the solution being over-damped resulting in inaccurate sensitivity values.806

In these conditions, the tangent solution derived from OCS was significantly different to that obtained using807

state-of-the-art shadowing methods such as MSS. Large values of α corresponds to control being expensive to808

apply, resulting in under-damping of the solution which exhibits exponential growth and leads to inaccurate809

sensitivities. Again, in these conditions strong differences with results from MSS were observed. Values of810

α between the over- or under- damped regions produced sensitivities in good agreement with the expected811

sensitivity values. These values also produced similar solutions to those generated by MSS. NV methods, on812

the other hand, did not show any similarities with MSS regardless of which tuning parameter value selected.813

In general, fewer segments used to decompose the time domain results in an algorithm with smaller814

computational cost. In practice, however, fewer segments results in the memory requirements of the optimal815

control problem on each segment potentially being larger than the compute node they are allocated to.816

Therefore, the number of segments should be selected such that the memory requirements for the optimal817

control problem is below the memory limit of each node. The value of α controls the condition number of the818

optimal control problem and, as a consequence, the rate of convergence of iterative algorithms used for its819

solution. Among the preconditioners examines, Forward Gauss-Seidel (FGS) preconditioning produced the820

fastest convergence rate, followed by Backward Gauss-Seidel (BGS) preconditioning and then Jacobi precon-821

ditioning. The reason why FGS was fastest was due to an increased rate of “information” transfer between822

segments. The limitation of FGS and BGS is that the segments must be solved sequentially whereas Jacobi823

and no preconditioning can be solved in parallel. Therefore, the increased rate of convergence of the FGS824

method may have a slower wall-clock time than Jacobi due to the parallel nature of Jacobi preconditioning.825

Through investigating the control term applied by OCS and both NV methods we found that there were826

significant differences. Namely, OCS applies the majority of the control initially and reduces the amount827

throughout the time horizon. Both NV methods, on the other hand, apply control proportional to the tangent828

solution and apply orders of magnitude more control than is applied by OCS. Through examination of the829

wavenumber decomposition of the control terms for OCS and NV it was determined that OCS applies the830

majority of the control in wavelengths where production of tangent energy dominates dissipation, whereas831

NV methods apply control across a wide range of length scales. We argue that this relationship is related832

to the CLVs and knowledge of them along with knowing the length scales at which production of tangent833

energy dominates dissipation could be utilised to derive NV terms that apply control more selectively.834

Appendix A. Derivation for the closed form expression of η. Following Ref. [14] we remove835

the explicit calculation of η in the following way. Firstly, the tangent equation, Equation (2.8a), can be836

rewritten utilising the state transition matrix, ϕ(t1, t2), where an introduction to the state transition matrix837
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can be found in Ref. [41] and details are provided in Appendix F. The solution to the tangent equation at838

time t is839

(A.1) v(t) = Av(ts) +

(∫ t

ts

η(τ)dτ

)
f |t +B

∂f

∂p
+Bq,840

where841

(A.2) Av(ts) = ϕ(ts, t)v(ts),842

and843

(A.3) B□ =

∫ t

ts

ϕ(τ, t) □|τ dτ.844

By defining the solution to the tangent equation without the influence of the ηf term as845

(A.4) v′(t) = Av(ts) +B
∂f

∂p
+Bq,846

Equation (A.1) can be rewritten as follows847

(A.5) v(t) = v′(t) +

(∫ t

ts

η(τ)dτ

)
f |t .848

Taking the inner product of Equation (A.5) with f and utilising the constraint, Equation (2.8d), results in849

(A.6) vT f
∣∣
t
= 0 = v′T f

∣∣
t
+

(∫ t

ts

η(τ)dτ

)
fT f
∣∣
t
.850

Manipulation of Equation (A.6) leads to the closed form expression of η,851

(A.7)

∫ t

ts

η(τ)dτ = − v′T f

fT f

∣∣∣∣
t

,852

which can be combined with Equation (A.5) to give the solution to the tangent solution at time t853

(A.8) v(t) = v′(t)−
(
v′T f

fT f
f

)∣∣∣∣
t

.854

855

Appendix B. Derivation for the closed form expression of ω. The closed form expression856

for ω by found by following a similar procedure to that of the derivation for the closed form expression for857

η. Firstly, Equation (2.8b) can be written in terms of the adjoint state transition matrix, ϕ∗(t1, t2), which858

details can again be found in Appendix F. The solution to the co-state equation at time t can be written859

(B.1) λ(t) = −2Cv +Dλ(tf ) +

(∫ tf

t

ω(τ)dτ

)
f |t ,860

where861

(B.2) Cv =

∫ tf

t

ϕ∗ (t, τ)
−1

v(τ)dτ,862

and863

(B.3) Dλ(tf ) = ϕ∗ (t, tf )
−1

λ(tf ).864

Defining the solution to the co-state equation without the influence of the ωf as865

(B.4) λ′(t) = −2Cv +Dλ(tf ),866
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leads to Equation (B.1) being867

(B.5) λ(t) = λ′(t) +

(∫ tf

t

ω(τ)dτ

)
f |t .868

By taking the inner product of Equation (B.5) with f and using the co-state constraint, Equation (2.8e),869

results in870

(B.6) λT f
∣∣∣
t
= 0 = λ′T f

∣∣
t
+

(∫ tf

t

ω(τ)dτ

)
fT f
∣∣
t
.871

Manipulation of Equation (B.6) leads to the closed form expression of ω,872

(B.7)

∫ tf

t

ω(τ)dτ = − λ′T f

fT f

∣∣∣∣
t

,873

and can be substituted into Equation (B.5) to give the co-state solution at time t874

(B.8) λ(t) = λ′(t)−
(
λ′T f

fT f
f

)∣∣∣∣
t

.875

876

Appendix C. Derivation of the closed form expression of η̂. The adjoint tangent equation,877

Equation (2.16a), can be written using its state transition matrix, ϕ̂(t1, t2). The solution to the adjoint878

tangent equation at time t is879

(C.1) v̂(t) = Âv̂(ts) +

(∫ t

ts

η̂(τ)dτ

)
f |t + B̂q̂,880

where881

(C.2) Âv̂(ts) = ϕ̂(ts, t)v̂(ts),882

and883

(C.3) B̂q̂ =

∫ t

ts

ϕ̂(τ, t) q̂|τ dτ.884

By defining the solution to the tangent equation without the influence of the η̂f term as885

(C.4) v̂′(t) = Âv̂(ts) + B̂q̂,886

Equation (C.1) can be rewritten as887

(C.5) v̂(t) = v̂′(t) +

(∫ t

ts

η̂(τ)dτ

)
f |t .888

Taking the inner product of Equation (C.5) with f and utilising constraint Equation (2.16d) results in889

(C.6) v̂T f
∣∣
t
= 0 = v̂′T f

∣∣
t
+

(∫ t

ts

η̂(τ)dτ

)
fT f
∣∣
t
.890

Manipulation of Equation (C.6) leads to the closed form expression for η̂,891

(C.7)

∫ t

ts

η̂(τ)dτ = − v̂′T f

fT f

∣∣∣∣
t

,892

which can be substituted combined with Equation (C.4) to give the adjoint tangent solution at time t893

(C.8) v̂(t) = v̂′(t)−
(
v̂′T f

fT f
f

)∣∣∣∣
t

.894
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895

Appendix D. Derivation of the closed form expression of ω̂. The adjoint co-state equation,896

Equation (2.16b), can be written in terms of its adjoint state transition matrix, ϕ̂∗(t1, t2), resulting in897

(D.1) λ̂(t) = −Ĉ [2v̂]− Ĉ

[
1

T

∂J

∂u

T
]
+ D̂λ(tf ) +

(∫ tf

t

ω̂(τ)dτ

)
f |t ,898

where899

(D.2) Ĉ□ =

∫ tf

t

ϕ̂∗(t, τ)−1 □|τ dτ,900

and901

(D.3) D̂λtf = ϕ̂∗ (t, tf )
−1

λ̂(tf ).902

Defining the solution to the co-state equation without the influence of the ω̂f as903

(D.4) λ̂
′
(t) = −Ĉ [2v̂]− Ĉ

[
1

T

∂J

∂u

T
]
+ D̂λ̂(tf ),904

Equation (D.1) can be rewritten as905

(D.5) λ̂(t) = λ̂
′
(t) +

(∫ tf

t

ω̂(τ)dτ

)
f |t .906

By taking the inner product of Equation (D.5) with f and using the co-state constraint, Equation (2.16e),907

results in908

(D.6) λ̂
T
f
∣∣∣
t
− 1

T

(
J − J̄

)∣∣∣∣
t

= 0 = λ̂
′T f
∣∣∣
t
+

(∫ tf

t

ω̂(τ)dτ

)
fT f
∣∣
t
− 1

T

(
J − J̄

)∣∣∣∣
t

.909

The closed form expression for ω̂ is910

(D.7)

∫ tf

t

ω̂(τ)dτ = − λ̂
′T f

fT f

∣∣∣∣∣
t

+
1

T

J − J̄

fT f

∣∣∣∣
t

.911

and can be substituted into Equation (D.5) to give the adjoint co-state solution at time t912

(D.8) λ̂(t) = λ̂
′
(t)− λ̂

′T f

fT f
f

∣∣∣∣∣
t

+
1

T

J − J̄

fT f
f

∣∣∣∣
t

.913

914

Appendix E. Analytical structure of the linear system from time domain decomposition.915

The analytical structure of F is916

(E.1) F =



F0,0 F0,1

F1,0

. . .

Fj,j−1 Fj,j Fj,j+1

. . .

FN−2,N−1

FN−1,N−2 FN−1,N−1


,917

with918

(E.2) F0,0 =

(
I A0

0 2αI+ 2C0B0

)
,919
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920

(E.3) F0,1 =

(
0 0 0
0 0 −D0

)
,921

922

(E.4) F1,0 =

 −A1 0
2C1A1 0
2C1A1 0

 ,923

924

(E.5) Fj,j−1 =

 −Aj 0 0
2CjAj 0 0
2CjAj 0 0

 ,925

926

(E.6) Fj,j =

I −Bj 0
0 2αI+ 2CjBj 0
0 2CjBj I

 ,927

928

(E.7) Fj,j+1 =

0 0 0
0 0 −Dj

0 0 −Dj

 ,929

930

(E.8) FN−2,N−1 =

0 0
0 −DN−2

0 −DN−2

 ,931

932

(E.9) FN−1,N−2 =

(
2CN−1AN−1 0 0
2CN−1AN−1 0 0

)
,933

934

(E.10) FN−1,N−1 =

(
2αI+ 2CN−1BN−1 0

2CN−1BN−1 I

)
.935

The subscripts, Aj , represent the operator A on segment j. Finally, the analytical structure of c is936

(E.11) c =
(
c0, . . . , cj , . . . , cN−1

)T
,937

with938

(E.12) c0 =

 B0
∂f
∂p +

(∫ t

t0
η(τ)dτ

)
f(t)

2C0

[
B0

∂f
∂p +

(∫ t1
t0

η(τ)dτ
)
f(t1)

]
−
[∫ t1

t0
ω0(τ)dτ

]
f(t1)

 ,939

940

(E.13) cj =


Bj

∂f
∂p +

(∫ tj+1

tj
η(τ)dτ

)
f(t)

2Cj

[
Bj

∂f
∂p +

(∫ t

tj
η(τ)dτ

)
f(t)

]
−
[∫ t

tj
ωj(τ)dτ

]
f(t)

2Cj

[
Bj

∂f
∂p +

(∫ tj+1

tj
η(τ)dτ

)
f(tj+1)

]
−
[∫ tj+1

tj
ωj(τ)dτ

]
f(tj+1)

 ,941

942

(E.14) cN−1 =

 2CN−1

[
BN−1

∂f
∂p +

(∫ t

tN−1
η(τ)dτ

)
f(t)

]
−
[∫ t

tN−1
ωN−1(τ)dτ

]
f(t)

2CN−1

[
BN−1

∂f
∂p +

(∫ tf
tN−1

η(τ)dτ
)
f(tf )

]
−
[∫ tf

tN−1
ωN−1(τ)dτ

]
f(tf )

 .943
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944

Appendix F. Properties of the state transition matrix. Given a system of the form945

(F.1)
dv

dt
= Av + g,946

where v ∈ Rn is the state, A ∈ Rn×n and g ∈ Rn are known and continuous in time, the homogeneous947

equation is defined as948

(F.2)
dv

dt
= Av,949

where the is a linear combination of a set of solutions vj that satisfy Equation (F.2). Define the fundamental950

matrix solution, X|t ∈ Rn×n, as a matrix whose columns are solutions to Equation (F.2). A general solution951

is v(t) = X|t c, where c is a vector of arbitrary weights. If v(t1) is known then c = X−1v
∣∣
t1
. One other952

important feature is X|t0 = I. The difference between the solution at time t1 and t2 of Equation (F.2) and953

Equation (F.1) is the influence of g which can be written as954

(F.3) X−1v
∣∣t2
t1

=

∫ t2

t1

X−1g
∣∣
τ
dτ.955

The solution to Equation (F.1) at t2 is956

(F.4) v(t2) = X|t2

[
X−1v

∣∣
t1
+

∫ t2

t1

X−1g
∣∣
τ
dτ

]
.957

The state transition matrix is defined as958

(F.5) ϕ(t1, t2) = X|t2 X−1
∣∣
t1

959

and can be thought of moving the solution v(t1) to v(t2) under the influence of Equation (F.2) and is960

written v(t2) = ϕ(t1, t2)v(t1). The state transition matrix also satisfies Equation (F.2) and has the following961

relationships962

(F.6) ϕ(t, t) = I963

964

(F.7) ϕ(t1, t2)ϕ(t0, t1) = ϕ(t0, t2),965

966

(F.8) ϕ(t1, t2) = ϕ(t2, t1)
−1

967

and968

(F.9) ϕ∗(t1, t2) = ϕ(t1, t2)
−T ,969

where ϕ∗(t1, t2) is the adjoint state transition matrix.970

References.971

[1] Rafail V Abramov and Andrew J Majda. “New Approximations and Tests of Linear Fluctuation-972

Response for Chaotic Nonlinear Forced-Dissipative Dynamical Systems”. In: Journal of Nonlinear973

Science 18.3 (2008), pp. 303–341. url: https://doi.org/10.1007/s00332-007-9011-9.974

[2] Usman Ali and Yorai Wardi. “Multiple Shooting Technique for Optimal Control Problems with Appli-975

cation to Power Aware Networks”. In: IFAC-PapersOnLine 48.27 (2015), pp. 286–290. issn: 24058963.976

[3] Brian D. O. Anderson and John B. Moore. Optimal Control: Linear Quadratic Methods. USA: Prentice-977

Hall, Inc., 1990.978

[4] Andrew T. Barker and Martin Stoll. “Domain decomposition in time for PDE-constrained optimiza-979

tion”. In: Computer Physics Communications 197 (2015), pp. 136–143.980

36

This manuscript is for review purposes only.

https://doi.org/10.1007/s00332-007-9011-9


[5] Martin Berggren and Matthias Heinkenschloss. “Parallel Solution of Optimal-Control Problems by981

Time-Domain Decomposition”. In: 1997.982

[6] John T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming.983

Society for Industrial and Applied Mathematics, 2010.984

[7] Thomas R. Bewley, Paolo Luchini, and Jan Pralits. “Methods for solution of large optimal control985

problems that bypass open-loop model reduction”. In: Meccanica 51.12 (2016), pp. 2997–3014.986

[8] Thomas R. Bewley, Parviz Moin, and Roger Temam. “DNS-based predictive control of turbulence: An987

optimal benchmark for feedback algorithms”. In: Journal of Fluid Mechanics 447 (2001), pp. 179–225.988

[9] Manav Bhatia and David Makhija. “Sensitivity analysis of time-averaged quantities of chaotic systems”.989

In: AIAA Journal 57.5 (2019), pp. 2088–2099.990

[10] Patrick J. Blonigan. “Adjoint sensitivity analysis of chaotic dynamical systems with non-intrusive least991

squares shadowing”. In: Journal of Computational Physics 348 (2017), pp. 803–826.992

[11] Patrick J. Blonigan, Steven A. Gomez, and Qiqi Wang. “Least squares shadowing for sensitivity analysis993

of turbulent fluid flows”. In: 52nd Aerospace Sciences Meeting (Jan. 2014), pp. 1–23.994

[12] Patrick J. Blonigan and Qiqi Wang. “Least squares shadowing sensitivity analysis of a modified995

Kuramoto-Sivashinsky equation”. In: Chaos, Solitons and Fractals 64.1 (2014), pp. 16–25.996

[13] Patrick J. Blonigan and Qiqi Wang. “Multigrid-in-time for sensitivity analysis of chaotic dynamical997

systems”. In: Numerical Linear Algebra with Applications 24 (2017), pp. 1–27.998

[14] Patrick J. Blonigan and Qiqi Wang. “Multiple shooting shadowing for sensitivity analysis of chaotic999

dynamical systems”. In: Journal of Computational Physics 354 (2018), pp. 447–475.1000

[15] Patrick J. Blonigan et al. “A non-intrusive algorithm for sensitivity analysis of chaotic flow simulations”.1001

In: AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting (2017), pp. 1–8.1002

[16] Patrick J. Blonigan et al. “Least-squares shadowing sensitivity analysis of chaotic flow around a two-1003

dimensional airfoil”. In: AIAA Journal 56.2 (2018), pp. 658–672.1004

[17] Patrick J. Blonigan et al. “Toward a chaotic adjoint for LES”. In: arXiv (2017).1005

[18] Patrick J. Blonigan et al. “Towards adjoint sensitivity analysis of statistics in turbulent flow simula-1006

tion”. In: 2012 Summer Program, Center for Turbulence Research, Stanford Univ., Stanford, CA, 20121007

(2012), pp. 229–239.1008

[19] Hans G. Bock and Karl J. Plitt. “Multiple Shooting Algorithm for Direct Solution of Optimal Control1009

Problems.” In: IFAC Proceedings Series 17.2 (1985), pp. 1603–1608.1010

[20] J. Frédéric Bonnans. “The shooting approach to optimal control problems”. In: IFAC Proceedings1011

Volumes (IFAC-PapersOnline) 11 (2013), pp. 281–292.1012

[21] Arthur E. Bryson and Yu-Chi Ho. Applied Optimal Control. New York: John Wiley and Sons, 1975.1013

[22] Nisha Chandramoorthy, Luca Magri, and Qiqi Wang. “Variational optimization and data assimilation1014

in chaotic time-delayed systems with automatic-differentiated shadowing sensitivity”. In: (2020). url:1015

http://arxiv.org/abs/2011.08794.1016

[23] Nisha Chandramoorthy and Qiqi Wang. “On the probability of finding nonphysical solutions through1017

shadowing”. In: Journal of Computational Physics 440 (2021), p. 110389.1018

[24] Nisha Chandramoorthy et al. “Feasibility analysis of ensemble sensitivity computation in turbulent1019

flows”. In: AIAA Journal 57 (10 2019), pp. 4514–4526.1020

[25] Yong Chang and S. Scott Collis. “Active control of turbulent channel flows based on Large Eddy simula-1021

tion”. In: Proceedings of the 1999 3rd ASME/JSME Joint Fluids Engineering Conference, FEDSM’99,1022

San Francisco, California, USA, 18-23 July 1999 (CD-ROM) (1999).1023

[26] Mario Chater et al. “Least squares shadowing method for sensitivity analysis of differential equations”.1024

In: SIAM Journal on Numerical Analysis 55.6 (2017), pp. 3030–3046.1025

[27] Haecheon Choi, Michael Hinze, and Karl Kunisch. “Instantaneous control of backward-facing step1026

flows”. In: Applied Numerical Mathematics 31 (2 1999), pp. 133–158.1027

[28] Agata Comas. “Time Domain Decomposition Methods for Second Order Linear Quadratic Optimal1028

Control Problems”. Master’s Thesis. Rice University, 2004.1029

[29] Agata Comas. “Time-Domain Decomposition Preconditioners for the Solution of Discretized Parabolic1030

Optimal Control Problems”. PhD Thesis. Rice University, 2005.1031

[30] Predrag Cvitanović, Ruslan L. Davidchack, and Evangelos Siminos. “On the State Space Geometry1032

of the Kuramoto–Sivashinsky Flow in a Periodic Domain”. In: SIAM Journal on Applied Dynamical1033

Systems 9 (1 Jan. 2010), pp. 1–33.1034

37

This manuscript is for review purposes only.

http://arxiv.org/abs/2011.08794


[31] Xiaodi Deng. “A Parallel-In-Time Gradient-Type Method Doctor of Philosophy A Parallel-In-Time1035

Gradient-Type Method For Optimal Control Problems”. PhD thesis. Rice University, 2017.1036

[32] Byron DeVries et al. “Parallel Implementations of FGMRES for Solving Large, Sparse Non-symmetric1037

Linear Systems”. In: Procedia Computer Science 18 (2013). 2013 International Conference on Compu-1038

tational Science, pp. 491–500. issn: 1877-0509.1039

[33] Jocelyne Erhel. “A parallel GMRES version for general sparse matrices”. In: ETNA 3 (Aug. 1998).1040

[34] Gregory L. Eyink, Tom W. N. Haine, and Daniel J. Lea. “Ruelle’s linear response formula, ensemble1041
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