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ABSTRACT
In this paper, we revisit the classical problem of solving over-
determined systems of nonsmooth equations numerically. We
suggest a nonsmooth Levenberg–Marquardt method for its
solution which, in contrast to the existing literature, does
not require local Lipschitzness of the data functions. This is
possible when using Newton-differentiability instead of semi-
smoothness as the underlying tool of generalized differentia-
tion. Conditions for local fast convergence of the method are
given. Afterwards, in the context of over-determined mixed
nonlinear complementarity systems, our findings are applied,
and globalized solutionmethods, based on a residual induced
by themaximumand the Fischer–Burmeister function, respec-
tively, are constructed. The assumptions for local fast conver-
gence are worked out and compared. Finally, these methods
are applied for the numerical solution of bilevel optimization
problems. We recall the derivation of a stationarity condi-
tion taking the shape of an over-determined mixed nonlinear
complementarity system involving a penalty parameter, for-
mulate assumptions for local fast convergence of our solution
methods explicitly, and present results of numerical experi-
ments. Particularly, we investigate whether the treatment of
the appearing penalty parameter as an additional variable is
beneficial or not.
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1. Introduction

Nowadays, the numerical solution of nonsmooth equations is a classical topic in
computational mathematics. Journeying 30 years back to the past, Qi and col-
leagues developed the celebrated nonsmooth Newton method, see [1, 2], based
on the notion of semismoothness for locally Lipschitzian functions which is
due to Mifflin, see [3]. Keeping the convincing local convergence properties of
Newton-type methods in mind, this allowed for a fast numerical solution of
Karush–Kuhn–Tucker systems, associated with constrained nonlinear optimiza-
tion problems with inequality constraints, without the need of smoothing or
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relaxing the involved complementarity slackness condition. Indeed, the latter
can be reformulated as a nonsmooth equation with the aid of so called NCP-
functions, see [4–6] for an overview, where NCP abbreviates nonlinear comple-
mentarity problem. Recall that a continuous function ϕ : R

2 → R is referred to
as an NCP-function whenever

∀(a, b) ∈ R
2 : ϕ(a, b) = 0 ⇐⇒ a ≤ 0, b ≤ 0, ab = 0

is valid. A rather prominent example of an NCP-function is the famous Fis-
cher–Burmeister (FB) function ϕFB : R

2 → R given by

∀(a, b) ∈ R
2 : ϕFB(a, b) := a + b +

√
a2 + b2, (1)

see [7] for its origin. Another popular NCP-function is the maximum function
(a, b) �→ max(a, b). We refer the reader to [7–10] for further early references
dealing with semismooth Newton-type methods to solve nonlinear complemen-
tarity systems. Let us note that even prior to the development of semismooth
Newton methods 30 years ago, the numerical solution of nonsmooth equations
via Newton-type algorithms has been addressed in the literature, see e.g. [11–15].
We refer the interested reader to the monographs [16–18] for a convincing
overview.

Let us mention some popular directions of research which have been enriched
or motivated by the theory of semismooth Newton methods. Exemplary, this
theory has been extended to Levenberg–Marquardt (LM) methods in order to
allow for the treatment of over-determined or irregular systems of equations,
see e.g. [10, 19–22]. It also has been applied in order to solve so-called mixed
nonlinear complementarity problems which are a natural extension of nonlinear
complementarity problems and may also involve pure (smooth) equations, see
e.g. [23–28]. Recently, the variational notion of semismoothness∗ for set-valued
mappings has been introduced in [29] in order to discuss the convergence prop-
erties of Newton’s method for the numerical solution of so-called generalized
equations given via set-valued operators. There also exist infinite-dimensional
extensions of nonsmooth Newton methods, see e.g. [30–36]. In contrast to
the finite-dimensional case, in infinite dimensions, the underlying concept of
semismoothness is often replaced by so-called Newton-differentiability. In prin-
ciple, this notion of generalized differentiation encapsulates all necessities to
address the convergence analysis of associated Newton-type methods properly.
Noteworthy, it does not rely on the Lipschitzness of the underlying mapping. In
the recent paper [37], this favourable advantage of Newton-derivatives has been
used to construct a Newton-type method for the numerical solution of a certain
stationarity system associated with so-called mathematical programs with com-
plementarity constraints, as these stationarity conditions can be reformulated as
a system of discontinuous equations.

Let us point the reader’s attention to the fact that some stationarity condi-
tions for bilevel optimization problems, see [38, 39] for an introduction, can be
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reformulated as (over-determined) systems of nonsmooth equations involving
an (unknown) penalization parameter λ. This observation has been used in the
recent papers [40–42] in order to solve bilevel optimization problems numeri-
cally. In [40], the authors used additional dummy variables in order to transform
the naturally over-determined system into a square system, and applied a global-
ized semismoothNewtonmethod for its computational solution. The papers [41,
42] directly tackle the over-determined nonsmooth system with Gauss–Newton
or LM methods. However, in order to deal with the nonsmoothness, they either
assume that strict complementarity holds or they smooth the complementarity
condition. In all three papers [40–42], it has been pointed out that the choice
of the penalty parameter λ in the stationarity system is, on the one hand, cru-
cial for the success of the approach but, on the other hand, difficult to realize in
practice.

The contributions in this paper touch several different aspects. Motivated by
the results from [37], we study the numerical solution of over-determined sys-
tems of nonsmooth equations with the aid of LMmethods based on the notion of
Newton-differentiability. We show local superlinear convergence of this method
under reasonable assumptions, see Theorem 3.2. Furthermore, we point out that
even for local quadratic convergence, local Lipschitzness of the underlying map-
ping is not necessary. To be more precise, a one-sided Lipschitz estimate, which
is referred to as calmness in the literature, is enough for that purpose. Thus,
our theory applies to situations where the underlying mapping can be even dis-
continuous. Our next step is the application of this method for the numerical
solution of over-determined mixed nonlinear complementarity systems. Here,
we strike a classical path and reformulate the appearing complementarity con-
ditions with the FB function and the maximum function in order to obtain a
system of nonlinear equations. To globalize the associated Newton methods, we
exploit the well-known fact that the squared norm of the residual associated
with the FB function is continuously differentiable, and make use of gradient
steps with respect to this squared norm in combination with an Armijo step size
selection if LM directions do not yield sufficient improvements. We work out
our abstract conditions guaranteeing local fast convergence for both approaches
and state global convergence results in Theorems 4.6 and 4.12. Furthermore, we
compare these findings with the ones in the classical paper [9] where a related
comparison has been done in the context of semismooth Newton-type methods
for square systems of nonsmooth equations. Finally, we apply both methods in
order to solve bilevel optimization problems via their over-determined station-
arity system of nonsmooth equations mentioned earlier. In contrast to [41, 42],
we neither assume strict complementarity to hold nor do we smooth or relax
the complementarity condition. Some assumptions for local fast convergence are
worked out, see Theorems 5.3 and 5.4. As extensive numerical testing of related
approaches has been carried out in [40–42], our experiments in Section 5.2 focus
on specific features of the developed algorithms. Particularly, we comment on the
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possibility to treat the aforementioned penalty parameter λ as a variable, inves-
tigate this approach numerically, and compare the outcome with the situation
where λ is handled as a parameter.

The remainder of the paper is organized as follows. Section 2 provides an
overview of the notation and preliminaries used in themanuscript. Furthermore,
we recall the notion of Newton-differentiability and present some associated
calculus rules in Section 2.2. A local nonsmooth LM method for Newton-
differentiable mappings is discussed in Section 3. Section 4 is dedicated to the
derivation of globalized nonsmooth LM methods for the numerical solution of
over-determined mixed nonlinear complementarity systems. First, we provide
the analysis for the situation where the complementarity condition is reformu-
lated with the maximum function in Section 4.1. Afterwards, in Section 4.2, we
comment on the differences which pop up when the FB function is used instead.
The obtained theory is used in Section 5 in order to solve bilevel optimiza-
tion problems. In Section 5.1, we first recall the associated stationarity system of
interest and characterize some scenarios where it provides necessary optimality
conditions. Second, we present different ways on how tomodel these stationarity
conditions as an over-determinedmixed nonlinear complementarity system. The
numerical solution of these systems with the aid of nonsmooth LM methods is
then investigated in Section 5.2 where results of computational experiments are
evaluated. The paper closes with some concluding remarks in Section 6.

2. Notation and preliminaries

2.1. Notation

By N, we denote the positive integers. The set of all real matrices with m ∈ N

rows and n ∈ N columns will be represented by R
m×n, and O denotes the all-

zero matrix of appropriate dimensions while we use I
n for the identity matrix in

R
n×n. IfM ∈ R

m×n is a matrix and I ⊂ {1, . . . ,m} is arbitrary, thenMI shall be
the matrix which results fromM by deleting those rows whose associated index
does not belong to I. Whenever the quadratic matrix N ∈ R

n×n is symmetric,
λmin(N) denotes the smallest eigenvalue ofN. For any x ∈ R

n, diag(x) ∈ R
n×n is

the diagonal matrix whose main diagonal is given by x and whose other entries
vanish.

For arbitrary n ∈ N, the space R
n will be equipped by the standard Euclidean

inner product as well as the Euclidean norm ‖·‖ : R
n → R. Further, we equip

R
m×n with the matrix norm induced by the Euclidean norm, i.e. with the spec-

tral norm, and denote it by ‖·‖ : R
m×n → R as well as this cannot cause any

confusion. For arbitrary x ∈ R
n and ε>0, Bε(x) := {y ∈ R

n | ∥∥y − x
∥∥ ≤ ε} rep-

resents the closed ε-ball around x. Recall that a sequence {xk}k∈N ⊂ R
n is said

to converge superlinearly to some x̄ ∈ R
n whenever ‖xk+1 − x̄‖ ∈ o(‖xk − x̄‖).

The convergence xk → x̄ is said to be quadratic if ‖xk+1 − x̄‖ ∈ O(‖xk − x̄‖2).
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Frequently, for brevity of notation, we interpret tuples of vectors as a single
block column vector, i.e. we exploit the identity

∀i ∈ {1, . . . , �}, ∀xi ∈ R
ni :

R
n1 × . . . × R

n� � (x1, . . . , x�) ∼=

⎡⎢⎣x
1

...
x�

⎤⎥⎦ ∈ R
n1+...+n�

for any � ∈ N with � ≥ 2 and n1, . . . , n� ∈ N.
A function H : R

n → R
m is called calm at x̄ ∈ R

n whenever there are con-
stants C>0 and ε>0 such that

∀x ∈ Bε(x̄) : ‖H(x) − H(x̄)‖ ≤ C‖x − x̄‖.

We note that calmness can be seen as a one-sided local Lipschitz property which
is, in general, weaker than local Lipschitzness. Indeed, one can easily check
that there exist functions which are calm at some fixed reference point but
discontinuous in each neighbourhood of this point.

Next, let H : R
n → R

m be differentiable at x̄ ∈ R
n. Then H′(x̄) ∈ R

m×n

denotes the Jacobian of H at x̄. Similarly, for a differentiable scalar-valued func-
tion h : R

n → R,∇h(x̄) ∈ R
n is the gradient of h at x̄. Clearly, h′(x̄) = ∇h(x̄)� by

construction. In the case where h is twice differentiable, ∇2h(x̄) ∈ R
n×n denotes

the Hessian of h at x̄. Partial derivatives with respect to particular variables are
represented in analogous fashion.

We use � : R
n ⇒ R

m is order to express that � is a so-called set-valued
mapping which assigns to each x ∈ R

n a (potentially empty) subset of R
m. For

any such set-valued mapping, the sets defined by dom� := {x ∈ R
n | �(x) �= ∅}

and gph� := {(x, y) ∈ R
n × R

m | y ∈ �(x)} are the domain and the graph of
�, respectively. We say that � is inner semicontinuous at (x̄, ȳ) ∈ gph� when-
ever for each sequence {xk}k∈N ⊂ R

n such that xk → x̄, there exists a sequence
{yk}k∈N ⊂ R

m such that yk → ȳ which satisfies yk ∈ �(xk) for all large enough
k ∈ N. We emphasize that whenever � is inner semicontinuous at (x̄, ȳ), then x̄
is an interior point of dom�. At a fixed point (x̄, ȳ) ∈ gph�, � is said to be calm
whenever there are constants ε, δ, L>0 such that

∀x ∈ Bε(x̄), ∀y ∈ �(x) ∩ Bδ(ȳ), ∃ỹ ∈ �(x̄) : ‖y − ỹ‖ ≤ L‖x − x̄‖.

We note that whenever H : R
n → R

m is a single-valued function which is calm
at x̄, then the set-valued mapping x �→ {H(x)} is calm at (x̄,H(x̄)). The converse
is not necessarily true.
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2.2. Newton-differentiability

In order to construct numerical methods for the computational solution of
nonsmooth equations, one has to choose a suitable concept of generalized dif-
ferentiation. Typically, the idea of semismoothness is used for that purpose,
see [2, 3]. Here, however, we strike a different path and exploit the notion of
Newton-differentiability, see [32, 35], whose origins can be found in infinite-
dimensional optimization. The latter has the inherent advantage that, in contrast
to semismoothness, it is defined for non-Lipschitz functions and enjoys a natu-
ral calculus which follows the lines known from standard differentiability. These
beneficial features have been used recently in order to solve stationarity con-
ditions of complementarity-constrained optimization problems which can be
reformulated as systems of discontinuous equations, see [37].

Let us start with the formal definition of Newton-differentiability before pre-
senting some essential calculus rules. Most of this material is taken from the
recent contribution [37, Section 2.3].

Definition 2.1: Let F : R
p → R

q and DNF : R
p → R

q×p be given mappings
and letM ⊂ R

p be nonempty. We say that

(a) F is Newton-differentiable on M with Newton-derivative DNF whenever
for each z ∈ M, we have

F(z + d) − F(z) − DNF(z + d)d = o(‖d‖),
(b) F is Newton-differentiable onM of order α ∈ (0, 1] with Newton-derivative

DNF whenever for each z ∈ M, we have

F(z + d) − F(z) − DNF(z + d)d = O(‖d‖1+α).

We note that the Newton-derivative of amappingF : R
p → R

q is not necessarily
uniquely determined if F is Newton-differentiable on some set M ⊂ R

p. It can
be easily checked that any continuously differentiable function F : R

p → R
q is

Newton-differentiable on R
p when DNF := F ′ is chosen. If, additionally, F ′ is

locally Lipschitz continuous, then the order of Newton-differentiability is 1.
In the recent paper [37], the authors present several important calculus rules

for Newton-derivatives including a chain rule which we recall below, see [37,
Lemma 2.11].

Lemma 2.2: Suppose that F : R
p → R

q is Newton-differentiable on M ⊂ R
p

with Newton-derivative DNF , and that G : R
q → R

s is Newton-differentiable on
F(M) with Newton-derivative DNG. Further, assume that DNF is bounded on
a neighbourhood of M, and that DNG is bounded on a neighbourhood of F(M).
Then G ◦ F is Newton-differentiable on M with Newton-derivative given by z �→
DNG(F(z))DNF(z). If bothF andG areNewton-differentiable of orderα ∈ (0, 1],
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then G ◦ F is Newton-differentiable of order α with the Newton-derivative given
above.

Let us note that Lemma 2.2 directly gives a sum rule which applies to the concept
of Newton-differentiability. However, a direct proof via Definition 2.1 shows that
a sum rule for Newton-differentiability holds without additional boundedness
assumptions on the Newton-derivatives of the involved functions.

Let us inspect some examples which will be of major interest in this paper.

Example 2.3: (a) The function max : R
2 → R is Newton-differentiable on R

2

of order 1 with Newton-derivative given by

∀(a, b) ∈ R
2 : DN max(·, ·)(a, b) :=

{
(1, 0) a ≥ b,
(0, 1) a<b,

see [37, Example 2.8].
(b) For arbitrary p ∈ N, we investigate Newton-differentiability of the Euclidean

norm ‖·‖ : R
p → R. Noting that ‖·‖ is continuously differentiable on R

p \
{0} with locally Lipschitzian derivative, it is Newton-differentiable of order
1 there. Let us consider the mapping DN ‖·‖ : R

p → R
1×p given by

∀z ∈ R
p : DN ‖·‖ (z) :=

⎧⎪⎪⎨⎪⎪⎩
z�

‖z‖ z �= 0,
√p
p
e� z = 0.

(2)

Here, e ∈ R
p denotes the all-ones vector. At the origin, we have

‖d‖ − DN ‖·‖ (d)d = 0 for each d ∈ R
p, so we already obtain Newton-

differentiability of ‖·‖ onR
p of order 1.We also note that the precise value of

DN ‖·‖ (0) is completely irrelevant for the validity of this property. However,
the particular choice in (2) will be beneficial later on.

(c) Let us investigate Newton-differentiability of the aforementioned FB func-
tion ϕFB : R

2 → R given in (1). Relying on the sum rule (note that ϕFB is
the sum of the identity and ‖·‖ in R

2) and respecting our arguments from
Example 2.3(b), we obtain that ϕFB is Newton-differentiable on R

2 of order
1 with Newton-derivative given by

DNϕFB(a, b) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
1 + a√

a2 + b2
, 1 + b√

a2 + b2

)
(a, b) �= (0, 0),(

1 +
√
2
2

, 1 +
√
2
2

)
(a, b) = (0, 0)

for all (a, b) ∈ R
2, where we made use of (2).
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3. A local nonsmooth Levenberg–Marquardt method

The paper [8] introduces a semismoothNewton-typemethod for square comple-
mentarity systems whose globalization is based on the FB function. An extension
to LM-type methods (which even can handle inexact solutions of the subprob-
lems) can be found in [10, 19]. A theoretical and numerical comparison of these
methods is provided in [9]. An application of the semismooth LMmethod in the
context of mixed complementarity systems can be found in [20], and these ideas
were applied in the context of semiinfinite optimization e.g. in [21, 22].

In this subsection, we aim to analyse the local convergence properties of non-
smooth LM methods in a much broader context which covers not only the
applications within the aforementioned papers, but also some new ones in bilevel
optimization, see e.g. Section 5 and our comments in Section 6. Our approach
via Newton-derivatives is slightly different from the one in the literature which
exploits semismoothness of the underlyingmap of interest and, thus, particularly,
local Lipschitz continuity.

Throughout the subsection, we assume that F : R
p → R

q is a given map-
ping with q>p and inherent nonsmooth structure. We aim to solve the (over-
determined) nonlinear system of equations

F(z) = 0. (3)

Classically, this can be done by minimizing the squared residual of a first-order
linearization associated with F . The basic idea behind LM methods is now to
add a classical square-norm regularization term to this optimization problem. Let
us consider a current iterate zk where F is Newton-differentiable, and consider
the minimization of d �→ 1

2
∥∥F(zk) + DNF(zk)d

∥∥2 + νk
2 ‖d‖2 which is a strictly

convex function. Above, we exploited the Newton-derivative in order to find a
linearization of F at zk, and νk>0 is a regularization parameter. By means of the
chain rule, a necessary optimality condition for this surrogate problem is given
by (

DNF(zk)�DNF(zk) + νkI
p
)
d = −DNF(zk)�F(zk). (4)

Observing that the matrix DNF(zk)�DNF(zk) is at least positive semidefi-
nite, (4) indeed possesses a uniquely determined solution dk.

This motivates the formulation of Algorithm 3.1 for the numerical treatment
of (3). We assume that DNF : R

p → R
q×p is a given function which serves as a

Newton-derivative on a suitable subset of R
p which will be specified later.

Algorithm3.1 (Local nonsmoothLevenberg–Marquardtmethod):
Input: starting point z0 ∈ R

p

1: set k := 0
2: while a suitable termination criterion is violated at iteration k do
3: choose νk > 0 and compute dk as the uniquely determined solution of (4)
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4: set zk+1 := zk + dk and k := k + 1
5: end while
6: return zk

In the subsequent theorem, we present a local convergence result regarding
Algorithm 3.1.

Theorem 3.2: Let M ⊂ R
p be a set such that a solution z̄ ∈ R

p of (3) satisfies
z̄ ∈ M. Assume that F is Newton-differentiable on M with Newton-derivative
DNF : R

p → R
q×p. We assume that there are δ>0 and C>0 such that, for all

z ∈ Bδ(z̄), DNF(z) possesses full column rank p such that

λmin(DNF(z)�DNF(z)) ≥ 1
C
, ‖DNF(z)‖ ≤ C. (5)

Then there exists ε>0 such that, for each starting point z0 ∈ Bε(z̄) and each null
sequence {νk}k∈N ⊂ (0, ε), Algorithm 3.1 terminates after finitely many steps or
produces a sequence {zk}k∈N which converges to z̄ superlinearly. Furthermore, if F
is even Newton-differentiable on M of order 1, and if νk ∈ O(‖F(zk)‖) while F is
calm at z̄, then the convergence is quadratic.

Proof: Due to the assumptions of the theorem, and by Newton-differentiability
of F , we can choose ε ∈ (0,min(δ, 1/(4C)) so small such that the following
estimates hold true for all d ∈ Bε(0) and ν>0:

‖(DNF(z̄ + d)�DNF(z̄ + d) + νI
p)−1‖ ≤ C, (6a)

‖DNF(z̄ + d)‖ ≤ C, (6b)

‖F(z̄ + d) − F(z̄) − DNF(z̄ + d)d‖ ≤ 1
4C2 ‖d‖ . (6c)

Using F(z̄) = 0, for each zk ∈ Bε(z̄) and νk ∈ (0, ε), we find

‖zk+1 − z̄‖ = ‖zk − (DNF(zk)�DNF(zk) + νkI
p)−1DNF(zk)�F(zk) − z̄‖

≤ C‖DNF(zk)�(F(zk) − F(z̄) − DNF(zk)(zk − z̄))‖
+ Cνk‖zk − z̄‖

≤ C2‖F(zk) − F(z̄) − DNF(zk)(zk − z̄)‖ + Cνk‖zk − z̄‖
≤ 1

4‖zk − z̄‖ + 1
4‖zk − z̄‖ = 1

2‖zk − z̄‖.
(7)

Thus, we have ‖zk+1 − z̄‖ ≤ 1
2‖zk − z̄‖, i.e. zk+1 ∈ Bε/2(z̄). Thus, if z0 ∈ Bε(z̄)

and {νk}k∈N ⊂ (0, ε), we have zk → z̄ in the case where Algorithm 3.1 generates
an infinite sequence. Furthermore, the definition of Newton-differentiability, (7),
and νk → 0 give ‖zk+1 − z̄‖ = o(‖zk − z̄‖), i.e. the convergence zk → z̄ is super-
linear.
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Finally, assume that F is Newton-differentiable of order 1 and calm at z̄, and
that νk ∈ O(‖F(zk)‖). Then there is a constant K>0 such that the estimate (7)
can be refined as

‖zk+1 − z̄‖ ≤ C2‖F(zk) − F(z̄) − DNF(zk)(zk − z̄)‖ + Cνk‖zk − z̄‖
≤ O(‖zk − z̄‖2) + CK‖F(zk)‖‖zk − z̄‖
= O(‖zk − z̄‖2),

where we used F(z̄) = 0 and the calmness of F at z̄ in the last step. �

Let us briefly compare the assumptions of Theorem 3.2, which are used to
guarantee the superlinear or quadratic convergence of a sequence generated by
Algorithm 3.1, with the ones exploited in the literature where nonsmooth LM
methods are considered from the viewpoint of semismoothness, see e.g. [10,
Section 2]. Therefore, we fix a solution z̄ ∈ R

p of (3). The full column rank
assumption on the Newton-derivative, locally around z̄, corresponds to so-called
BD-regularity of the point z̄ which demands that all matrices within Bouligand’s
generalized Jacobian at z̄ (if available), see e.g. [1, Section 2], possess full column
rank.We note that, by upper semicontinuity of Bouligand’s generalized Jacobian,
this full rank assumption extends to a neighbourhood of z̄. Hence, these full rank
assumptions are, essentially, of the same type although the one fromTheorem 3.2
is more general since it addresses situations where the underlying map is allowed
to be non-Lipschitz. Second, Theorem 3.2 assumes boundedness of the Newton-
derivative, locally around z̄. In the context of semismooth LM methods, local
boundedness of the generalized derivative holds inherently by construction of
Bouligand’s generalized Jacobian and local Lipschitzness of the underlying map-
ping. Third, for quadratic convergence, the regularization parameters need to
satisfy νk ∈ O(‖F(zk)‖) in Theorem 3.2, and this assumption is also used in [10].
Similarly, since Newton-differentiability of order 1 is a natural counterpart of
so-called strict semismoothness, the assumptions for quadratic convergence are
also the same. Summarizing these impressions, Algorithm 3.1 and Theorem 3.2
generalize the already existing theory on nonsmooth LM methods to a broader
setting under reasonable assumptions. We also note that our analysis made no
use of deeper underlying properties of the generalized derivative, wemainly used
its definition for our purposes. However, it should be observed that a sophis-
ticated choice of the Newton-derivative, which is not uniquely determined for
a given map as mentioned in Section 2.2, may lead to weaker assumptions in
Theorem 3.2 than a bad choice of it. Indeed, it evenmay happen that the assump-
tions of Theorem 3.2 are valid for a particular choice of the Newton-derivative
while they are violated for another one. Thus, when Algorithm 3.1 (or a suitable
globalization) is implemented, one has to keep in mind to choose the Newton-
derivative in such a way that the assumptions of Theorem 3.2 are valid (if this
is actually possible), as the requirements of Theorem 3.2 need to be satisfied for
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one particular choice of the Newton-derivative (and not for all possible choices).
Clearly, this choice depends on structural properties of the nonsmooth map-
ping F under consideration and is, potentially, a laborious task as we will see
in Section 4, see [37] as well.

The following corollary of Theorem 3.2 shows that ‖F(zk+1)‖ ∈ o(‖F(zk)‖)
can be expected under reasonable assumptions, and this will be of essential
importance later on.

Corollary 3.3: Under the assumptions of Theorem 3.2 which guarantee the super-
linear convergence of {zk}k∈N generated by Algorithm 3.1, we additionally have

‖F(zk+1)‖∥∥F(zk)
∥∥ → 0

provided F is calm at z̄.

Proof: We choose ε>0 as in the proof of Theorem 3.2 and observe {zk}k∈N ⊂
Bε(z̄). Exploiting the Newton-differentiability of F and F(z̄) = 0, we have

F(zk) = DNF(zk)(zk − z̄) + o(‖zk − z̄‖),
and some transformations give, for sufficiently large k ∈ N and by boundedness
of the sequence {DNF(zk)}k∈N,

‖zk − z̄‖ ≤ ‖(DNF(zk)�DNF(zk))−1DNF(zk)�F(zk)‖ + 1
2‖zk − z̄‖,

i.e.

1
2‖zk − z̄‖ ≤ ‖(DNF(zk)�DNF(zk))−1‖‖DNF(zk)‖‖F(zk)‖ ≤ C2‖F(zk)‖

due to (5). Thus, we find

‖F(zk+1)‖
‖F(zk)‖ ≤ 2C2‖F(zk+1) − F(z̄)‖

‖zk − z̄‖ ≤ 2C2L‖zk+1 − z̄‖
‖zk − z̄‖

≤ 2C2L o(‖zk − z̄‖)
‖zk − z̄‖ → 0

as k → ∞, where L>0 is a local calmness constant of F at z̄. �

In [37, Section 3.2], a function is constructed which possesses the following
properties:

(i) it is Newton-differentiable on its set of roots with globally bounded and
nonvanishing Newton-derivative,

(ii) it is discontinuous in each open neighbourhood of its set of roots, and
(iii) it is calm at each point from its set of roots.
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This function is thenused to construct a nonsmoothNewton-typemethod for the
computational solution of stationarity systems associated with complementarity-
constrained optimization problems.Wenote that it crucially violates the standard
requirement of local Lipschitzness which is typically exploited in the con-
text of nonsmooth Newton-type methods. Similarly as in [37], the analysis in
Theorem 3.2 and Corollary 3.3 only requires calmness of the mapping F (as
well as some other natural assumptions) in order to get local fast convergence
of a nonsmooth LM method. Thus, the ideas from [37] can be carried over to
the situation where over-determined stationarity systems of complementarity-
constrained optimization problems need to be solved (such systems would,
exemplary, arise when applying the theory from Section 5.1 to bilevel optimiza-
tion problems with additional complementarity constraints at the upper-level
stage or to the so-called combined reformulation of bilevel optimization prob-
lems which makes use of the so-called value function and Karush–Kuhn–Tucker
reformulation at the same time, see [43]).

For the globalization of Algorithm 3.1, one typically needs to impose addi-
tional assumptions like the smoothness of z �→ ‖F(z)‖2. In the next section, we
address the prototypical setting ofmixed nonlinear complementarity systems and
carve out two classical globalization strategies.

4. A global nonsmooth Levenberg–Marquardt method for mixed
nonlinear complementarity systems

For functions H : R
p1 × R

p2 → R
q1 and G : R

p1 × R
p2 → R

p2 being contin-
uously differentiable, we aim to solve the mixed nonlinear complementarity
system

H(w, ξ) = 0, G(w, ξ) ≤ 0, ξ ≥ 0, G(w, ξ)�ξ = 0 (MNLCS)

where, in the application we have in mind, q1>p1 holds true, see Section 5. A
comprehensive overview of available theoretical and numerical aspects as well
as applications of mixed nonlinear complementarity problems can be found
in the monograph [16]. Typical solution approaches are based on nonsmooth
Newton-type methods, see [26], smoothing methods, see [23, 27], active-set and
interior-point methods, see [24, 28], as well as penalty methods, see [25]. Let us
note that the classical formulation of mixed nonlinear complementarity systems
as considered in [23, 24, 26–28] is essentially equivalent to the one we are sug-
gesting in (MNLCS), see [23, Section 4] and [24, Section 1] for arguments which
reveal this equivalence. However, in Section 5, it will be beneficial to work with
the model (MNLCS) to preserve structural properties.

For later use, we introduce some index sets depending on a pair of vectors
(w, ξ) ∈ R

p1 × R
p2 :

I0(w, ξ) := {i ∈ {1, . . . , p2} |Gi(w, ξ) = 0},
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I−(w, ξ) := {i ∈ {1, . . . , p2} |Gi(w, ξ)<0},
I+(w, ξ) := {i ∈ I0(w, ξ) | ξi>0},
I00(w, ξ) := {i ∈ I0(w, ξ) | ξi = 0}.

Above, G1, . . . ,Gp2 : R
p1 × R

p2 → R are the component functions of G.
Based on NCP-functions, see Section 1, the complementarity condition

G(w, ξ) ≤ 0, ξ ≥ 0, G(w, ξ)�ξ = 0 (8)

can be restated in form of a (nonsmooth) equality constraint. In this paper, we
will focus on two popular choices, namely themaximum function and the famous
FB function. Clearly, (8) is equivalent to

max(G(w, ξ),−ξ) = 0,

where max : R
p2 × R

p2 → R
p2 is exploited to express the componentwise maxi-

mum. Using φFB : R
p2 × R

p2 → R
p2 , given by

∀ξ 1, ξ 2 ∈ R
p2 : φFB(ξ

1, ξ 2) :=

⎛⎜⎝ ϕFB(ξ
1
1 , ξ

2
1 )

...
ϕFB(ξ

1
p2 , ξ

2
p2)

⎞⎟⎠ ,

where ϕFB : R
2 → R is the FB function defined in (1), (8) is also equivalent to

φFB(G(w, ξ),−ξ) = 0.

These nonsmooth equations motivate the consideration of the special residual
mappings Fmax,FFB : R

p1 × R
p2 → R

q1 × R
p2 given by

∀w ∈ R
p1 , ∀ξ ∈ R

p2 : Fmax(w, ξ) :=
[ H(w, ξ)

max(G(w, ξ),−ξ)

]
,

FFB(w, ξ) :=
[ H(w, ξ)

φFB(G(w, ξ),−ξ)

]
,

(9)

since precisely their roots are the solutions of (MNLCS). Let us note that, in
a certain sense, these residuals are equivalent. This can be distilled from [44,
Lemma 3.1].

Lemma 4.1: There exist constants K1,K2>0 such that

∀w ∈ R
p1 , ∀ξ ∈ R

p2 : K1 ‖Fmax(w, ξ)‖ ≤ ‖FFB(w, ξ)‖ ≤ K2 ‖Fmax(w, ξ)‖ .

Due to the inherent nonsmoothness ofFmax andFFB from (9), wemay now apply
Algorithm 3.1 in order to solve Fmax(w, ξ) = 0 or FFB(w, ξ) = 0. Note that we
have p := p1 + p2 and q := q1 + p2 in the context of Section 3. In the literature,
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the approach viaFFB is quite popular due to the well-known observation that the
mapping �FB : R

p1 × R
p2 → R given by

∀w ∈ R
p1 , ∀ξ ∈ R

p2 : �FB(w, ξ) := 1
2
‖FFB(w, ξ)‖2

is continuously differentiable, allowing for a globalization of suitable local solu-
tionmethods. This is due to the fact that the squared FB function is continuously
differentiable, see e.g. [45, Lemma 3.4]. However, it has been reported in [9] in
the context of square nonlinear complementarity systems that a mixed approach
combining both residuals from (9) might be beneficial since the assumptions for
local fast convergence could be weaker while the local convergence is faster.

4.1. Themixed approach via both residual functions

First, let us focus on this mixed approach where the central LM search direction
will be computed via Fmax given in (9) in order to end up with less compli-
cated Newton-derivatives in the LM system. Still, we exploit the smooth function
�FB for globalization purposes. Later, in Section 4.2, we briefly comment on the
method which exclusively uses FFB.

Below, we provide formulas for a Newton-derivative ofFmax and the gradient
of �FB for later use.

Lemma 4.2: On each bounded subset ofRp1 × R
p2 , the mappingFmax is Newton-

differentiable with Newton-derivative given by

(w, ξ) �→
[

H′
w(w, ξ) H′

ξ (w, ξ)

D(I≥(w, ξ))G′
w(w, ξ) D(I≥(w, ξ))G′

ξ (w, ξ) − D(I<(w, ξ))

]
,

and this mapping, again, is bounded on bounded sets. Whenever the derivatives of
G andH are locally Lipschitzian, the order of Newton-differentiability is 1. Above,
the index sets I≥(w, ξ) and I<(w, ξ) are given by

I≥(w, ξ) := {i ∈ {1, . . . , p2} |Gi(w, ξ) ≥ −ξi},
I<(w, ξ) := {i ∈ {1, . . . , p2} |Gi(w, ξ)< − ξi},

and, for each I ⊂ {1, . . . , p2}, D(I) ∈ R
p2×p2 is the diagonal matrix given by

∀i, j ∈ {1, . . . , p2} : D(I)ij :=
{
1 i = j, i ∈ I,
0 otherwise.

Proof: This follows easily from Lemma 2.2, Example 2.3(a), and our comments
right after Definition 2.1. �

Throughout the section, we will denote the Newton-derivative of Fmax which
has been characterized in Lemma 4.2 by DNFmax.
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The next result follows simply by computing the derivative of the squared FB
function and using the standard chain rule.

Lemma 4.3: At each point (w, ξ) ∈ R
p1 × R

p2 ,�FB is continuously differentiable,
and its gradient is given by

∇�FB(w, ξ)

=
[

H′
w(w, ξ) H′

ξ (w, ξ)

D̃G(w, ξ)G′
w(w, ξ) D̃G(w, ξ)G′

ξ (w, ξ) − D̃ξ (w, ξ)

]�
FFB(w, ξ)

where

D̃G(w, ξ) := diag(va(w, ξ)), D̃ξ (w, ξ) := diag(vb(w, ξ)).

Above, va(w, ξ), vb(w, ξ) ∈ R
p2 are the vectors given by

∀i ∈ {1, . . . , p2} : (va(w, ξ))i :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + Gi(w, ξ)√

G2
i (w, ξ) + ξ 2i

i /∈ I00(w, ξ),

1 +
√
2
2

i ∈ I00(w, ξ),

(vb(w, ξ))i :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − ξi√

G2
i (w, ξ) + ξ 2i

i /∈ I00(w, ξ),

1 +
√
2
2

i ∈ I00(w, ξ).
(10)

For local superlinear convergence of our method of interest, we need the follow-
ing result.

Lemma 4.4: Fix a solution (w̄, ξ̄ ) ∈ R
p1 × R

p2 of (MNLCS) and assume that for
each index set I ⊂ I00(w̄, ξ̄ ), the matrix⎡⎢⎣ H′

w(w̄, ξ̄ ) H′
ξ (w̄, ξ̄ )

G′
w(w̄, ξ̄ )I+(w̄,ξ̄ )∪I G′

ξ (w̄, ξ̄ )I+(w̄,ξ̄ )∪I
O −I

p2
I−(w̄,ξ̄ )∪Ic

⎤⎥⎦ ,

where we used Ic := I00(w̄, ξ̄ ) \ I, possesses linear independent columns. Then the
matricesM(w, ξ)�M(w, ξ), where

M(w, ξ) :=
[

H′
w(w, ξ) H′

ξ (w, ξ)

D(I≥(w, ξ))G′
w(w, ξ) D(I≥(w, ξ))G′

ξ (w, ξ) − D(I<(w, ξ))

]
,

are uniformly positive definite in a neighbourhood of (w̄, ξ̄ ).
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Proof: Suppose that the assertion is false. Then there exist sequences {wk}k∈N ⊂
R
p1 , {ξ k}k∈N ⊂ R

p2 , {(dkw, dkξ )}k∈N ⊂ R
p1 × R

p2 , and {ηk}k∈N ⊂ [0,∞) such that
wk → w̄, ξ k → ξ̄ , ηk → 0, and, for each k ∈ N, ‖dkw‖ + ‖dkξ‖ = 1 as well as

ηk =
[
dkw
dkξ

]�
M(wk, ξ k)�M(wk, ξ k)

[
dkw
dkξ

]
.

For brevity of notation, we make use of the abbreviations

H′
w(k) := H′

w(wk, ξ k), H′
ξ (k) := H′

ξ (w
k, ξ k),

(Gi)′w(k) := (Gi)′w(wk, ξ k), (Gi)′ξ (k) := (Gi)′ξ (wk, ξ k)
(11)

for all i ∈ {1, . . . , p2}. Due to D(I≥(wk, ξ k))D(I<(wk, ξ k)) = O, the above gives

ηk = ‖H′
w(k)dkw‖2 + 2(H′

w(k)dkw)�(H′
ξ (k)d

k
ξ ) + ‖H′

ξ (k)d
k
ξ‖2

+
∑

i∈I≥(wk,ξk)

(
(Gi)′w(k)dkw + (Gi)′ξ (k)dkξ

)2 +
∑

i∈I<(wk,ξk)

(dkξ )
2
i .

(12)

By continuity of G, each index i ∈ I+(w̄, ξ̄ ) lies in I≥(wk, ξ k) for sufficiently large
k ∈ N. Furthermore, any i ∈ I−(w̄, ξ̄ ) lies in I<(wk, ξ k) for sufficiently large k ∈
N. For i ∈ I00(w̄, ξ̄ ), two scenarios are possible. Either there is an infinite subset
Ki ⊂ N such that i ∈ I≥(wk, ξ k) for all k ∈ Ki, or i ∈ I<(wk, ξ k) holds for all large
enough k ∈ N. Anyhow, since there are only finitely many indices in {1, . . . , p2},
we may choose an infinite subset K ⊂ N as well as an index set I ⊂ I00(w̄, ξ̄ )

such that I≥(wk, ξ k) = I+(w̄, ξ̄ ) ∪ I and I<(wk, ξ k) = I−(w̄, ξ̄ ) ∪ Ic is valid for
each k ∈ K, where Ic := I00(w̄, ξ̄ ) \ I. Hence, for each k ∈ K, (12) is equivalent
to

ηk = ‖H′
w(k)dkw‖2 + 2(H′

w(k)dkw)�(H′
ξ (k)d

k
ξ ) + ‖H′

ξ (k)d
k
ξ‖2

+
∑

i∈I+(w̄,ξ̄ )∪I

(
(Gi)′w(k)dkw + (Gi)′ξ (k)dkξ

)2 +
∑

i∈I−(w̄,ξ̄ )∪Ic
(dkξ )

2
i .

(13)

Clearly, along a subsubsequence (without relabelling), {(dkw, dkξ )}k∈K converges
to some (dw, dξ ) ∈ R

p1 × R
p2 such that ‖dw‖ + ‖dξ‖ = 1. Thus, taking the limit

k →K ∞ in (13) gives

0 = ‖H′
w(w̄, ξ̄ )dw‖2 + 2(H′

w(w̄, ξ̄ )dw)�(H′
ξ (w̄, ξ̄ )dξ ) + ‖H′

ξ (w̄, ξ̄ )dξ‖2

+
∑

i∈I+(w̄,ξ̄ )∪I

(
(Gi)′w(w̄, ξ̄ )dw + (Gi)′ξ (w̄, ξ̄ )dξ

)2 +
∑

i∈I−(w̄,ξ̄ )∪Ic
(dξ )

2
i .
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This implies that the matrix M̃I(w̄, ξ̄ )�M̃I(w̄, ξ̄ ), where

M̃I(w̄, ξ̄ ) :=
[ H′

w(w̄, ξ̄ ) H′
ξ (w̄, ξ̄ )

D(I+(w̄, ξ̄ ) ∪ I)G′
w(w̄, ξ̄ ) D(I+(w̄, ξ̄ ) ∪ I)G′

ξ (w̄, ξ̄ ) − D(I−(w̄, ξ̄ ) ∪ Ic)

]
,

which is naturally positive semidefinite by construction, is not positive definite.
Thus, M̃I(w̄, ξ̄ ) cannot possess full column rank, contradicting the lemma’s
assumptions. �

The qualification condition postulated in Lemma 4.4 actually corresponds to
the linear independence of the columns of all elements of Bouligand’s general-
ized Jacobian of Fmax at (w̄, ξ̄ ), i.e. these assumptions recover the BD-regularity
condition from the literature, and the latter is well established in the context of
solution algorithms for nonsmooth systems. Let us also mention that it can be
easily checked bymeans of simple examples that full column rank of theNewton-
derivative of Fmax at (w̄, ξ̄ ), as constructed in Lemma 4.2, does, in general, not
guarantee the uniform positive definiteness which has been shown under the
assumptions of Lemma 4.4.

We note that each solution of (MNLCS) is a globalminimizer of�FB and, thus,
a stationary point of this function. The converse statement is not likely to hold.
Even for quadratic systems, one needs strong additional assumptions in order to
obtain such a result.

Next, we present the method of our interest in Algorithm 4.5. For brevity of
notation, we introduce

z :=
[
w
ξ

]
, d :=

[
δw
δξ

]
,

and similarly, we define zk and dk. Recall that DNFmax(z) denotes the Newton-
derivative of Fmax at z characterized in Lemma 4.2.

Algorithm 4.5 (Global nonsmooth Levenberg–Marquardt method for mixed
nonlinear complementarity systems):
Input: starting point z0 ∈ R

p1 × R
p2 , parameters κ ∈ (0, 1), τabs > 0, σ ,β ∈

(0, 1), ρ1, ρ2 > 0, and γ1, γ2 > 0
1: set k := 0
2: while ‖FFB(zk)‖ ≥ τabs do
3: set νk := min(γ1, γ2‖FFB(zk)‖) and compute dk as the uniquely determined

solution of(
DNFmax(zk)�DNFmax(zk) + νkI

p)d = −DNFmax(zk)�Fmax(zk)

4: if �FB(zk + dk) ≤ κ�FB(zk) then
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5: set zk+1 := zk + dk

6: else
7: if � ′

FB(z
k)dk > −ρ1‖∇�FB(zk)‖‖dk‖ or ‖dk‖ < ρ2 then

8: set dk := −∇�FB(zk)
9: end if
10: set αk := β ik where ik ∈ N is the smallest positive integer such that

�FB(zk + β ikdk) ≤ �FB(zk) + β ikσ � ′
FB(z

k)dk

11: set zk+1 := zk + αkdk

12: end if
13: set k := k + 1
14: end while
15: return zk

We now present the central convergence result associated with Algorithm 4.5. Its
proof is similar to the one of [37, Theorem 5.2] but included for the purpose of
completeness.

Theorem 4.6: Let {zk}k∈N be a sequence generated by Algorithm 4.5.

(a) If �FB(zk + dk) ≤ κ�FB(zk) holds infinitely many times in Step 4, then
{�FB(zk)}k∈N is a null sequence and each accumulation point of {zk}k∈N is
a solution of (MNLCS).

(b) Each accumulation point of {zk}k∈N is a stationary point of �FB.
(c) If an accumulation point z̄ of {zk}k∈N satisfies the assumptions of Lemma 4.4,

then the whole sequence {zk}k∈N converges to z̄ superlinearly. If the derivatives
of G andH are locally Lipschitz continuous functions, then the convergence is
even quadratic.

Proof: (a) We note that Algorithm 4.5 is a descent method with respect to
�FB which is bounded from below by 0. Thus, the assumptions guarantee
�FB(zk) → 0. Noting that �FB is continuous, each accumulation point z̄ of
{zk}k∈N satisfies �FB(z̄) = 0 in this situation, giving FFB(z̄) = 0, and this
means that z̄ solves (MNLCS).

(b) If the assumptions of the first statement hold, the assertion is clear. Thus, we
may assume that, along the tail of the sequence, �FB(zk + dk)>κ�FB(zk)
is valid. Assume without loss of generality that {zk}k∈N converges to some
point z̄. We proceed by a distinction of cases.
If lim infk→∞ ‖dk‖ = 0,Algorithm4.5 automatically givesdk = −∇�FB(zk)
along a subsequence (without relabelling). Taking the limit along this sub-
sequence gives ∇�FB(z̄) = 0 by continuity of ∇�FB.
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Next, consider the case lim infk→∞ αk‖dk‖>0. Noting that {�FB(zk)}k∈N

is monotonically decreasing and bounded from below, this sequence con-
verges. Furthermore, for all large enough iterations k ∈ N, the choice of the
step size and the fact that the search direction is a descent direction for �FB
guarantee that

0 ≤ −αkσ� ′
FB(z

k)dk ≤ �FB(zk) − �FB(zk+1).

Thus, since {�FB(zk)}k∈N is a Cauchy sequence, we find αk�
′
FB(z

k)dk → 0.
Noting that, by construction of Algorithm 4.5, each search direction passes
the angle test � ′

FB(z
k)dk ≤ −ρ1‖∇�FB(zk)‖‖dk‖ for large enough k ∈ N,

the estimate

αk�
′
FB(z

k)dk ≤ 0 ≤ ρ1αk‖∇�FB(zk)‖‖dk‖ ≤ −αk�
′
FB(z

k)dk

follows. Taking the limit k → ∞ and noting that {αk‖dk‖}k∈N is bounded
away from zero, ∇�FB(zk) → 0 follows, so ∇�FB(z̄) = 0 is obtained from
continuity of ∇�FB.
Finally, we assume that lim infk→∞ ‖dk‖>0 and lim infk→∞ αk‖dk‖ = 0.
For simplicity of notation, let αk‖dk‖ → 0. Then we have αk → 0 by
assumption. Particularly, for large enough k ∈ N, the step size candidate
β−1αk is rejected, i.e.

�FB(zk + β−1αkdk)>�FB(zk) + β−1αkσ � ′
FB(z

k)dk.

The smoothness of�FB allows for the application of themean value theorem
in order to find θk ∈ (0,β−1αk) such that

�FB(zk + β−1αkdk) − �FB(zk) = β−1αk � ′
FB(z

k + θkdk)dk,

and together with the above,

� ′
FB(z

k + θkdk)dk>σ � ′
FB(z

k)dk

follows. Clearly, αkdk → 0 gives θkdk → 0. Noting that ∇�FB is uniformly
continuous on each closed ball around z̄, for arbitrary ε>0, we can ensure

0 < � ′
FB(z

k + θkdk)dk − σ � ′
FB(z

k)dk

= (� ′
FB(z

k + θkdk) − � ′
FB(z

k))dk + (1 − σ)� ′
FB(z

k)dk

≤ ε‖dk‖ + (1 − σ)� ′
FB(z

k)dk

for large enough k ∈ N. Combining this with the validity of the angle test
gives

ε‖dk‖> − (1 − σ)� ′
FB(z

k)dk ≥ (1 − σ)ρ1‖∇�FB(zk)‖‖dk‖,
i.e. (1 − σ)ρ1‖∇�FB(zk)‖<ε for all large enough k ∈ N. Since ε>0 has been
chosen arbitrarily, ∇�FB(zk) → 0 follows, which gives ∇�FB(z̄) = 0.
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(c) Let {zk}k∈K be a subsequence fulfilling zk →K z̄ for some point z̄ which
satisfies the assumptions of Lemma 4.4. Furthermore, we note that Fmax
is locally Lipschitzian by construction. Clearly, by ‖FFB(zk)‖ →K 0, which
holds since z̄ solvesFmax(z) = 0 and, thus, alsoFFB(z) = 0, {νk}k∈K is a null
sequence. Due to Lemma 4.1, it holds νk ∈ O(‖Fmax(zk)‖), so we know that,
for sufficiently large k ∈ K, zk lies in the radius of attraction of z̄ mentioned
in Theorem 3.2 while νk is sufficiently small in order to apply Theorem 3.2 to
get the desired results if the LMdirection is actually accepted. This, however,
follows for all large enough k ∈ K from Corollary 3.3 since Lemma 4.1 gives

�FB(zk + dk)
�FB(zk)

=
(

‖FFB(zk + dk)‖
‖FFB(zk)‖

)2

≤
(
K2

K1

)2 (‖Fmax(zk + dk)‖
‖Fmax(zk)‖

)2

→K 0

for the LM directions {dk}k∈K . �

Remark 4.7: (a) Clearly, Algorithm 4.5 is a descent method with respect to
�FB, i.e. the sequence {‖FFB(zk)‖}k∈N is monotonically decreasing. This
directly gives that {νk}k∈N is monotonically decreasing and, thus, bounded
by its trivial lower boundedness.

(b) Besides the standard angle test, there is another condition in Step 7 which
avoids that the LMdirection is chosen if it tends to zero while the angle test is
passed. This is due to the following observation. Suppose that (along a suit-
able subsequence without relabelling), the LM directions {dk}k∈N pass the
angle test but tend to zero. In order to prove in Theorem 4.6 that the accumu-
lation points of {zk}k∈N are stationary for �FB, one can exploit boundedness
of the matrices DNFmax(zk)�DNFmax(zk) + νkIp which would give

M̂I(w̄, ξ̄ )�
[ H(w̄, ξ̄ )

max(G(w̄, ξ̄ ),−ξ̄ )

]
= 0 (14)

by definition of the LM direction where (w̄, ξ̄ ) is an accumulation point of
{zk}k∈N. Above, we used the matrix

M̂I(w̄, ξ̄ ) :=
[ H′

w(w̄, ξ̄ ) H′
ξ (w̄, ξ̄ )

D(I>(w̄, ξ̄ ) ∪ I)G′
w(w̄, ξ̄ ) D(I>(w̄, ξ̄ ) ∪ I)G′

ξ (w̄, ξ̄ ) − D(I<(w̄, ξ̄ ) ∪ Ic)

]

as well as the index set

I>(w̄, ξ̄ ) := {i ∈ {1, . . . , p2} |Gi(w̄, ξ̄ )> − ξ̄},
and the pair (I, Ic) is a disjoint partition of {i ∈ {1, . . . ,m} |Gi(w̄, ξ̄ ) = −ξ̄i}.
We note, however, that (14) is underdetermined, so we cannot deduce
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H(w̄, ξ̄ ) = 0 and max(G(w̄, ξ̄ ),−ξ̄ ) = 0 which would give us stationarity of
z̄ := (w̄, ξ̄ ) for �FB. This is pretty much in contrast to the situation in [9,
Theorem 4.6] where, for square systems, stationarity has been shown under
some additional assumptions.

(c) Following the literature, see e.g. [9, 10], it is also possible to incorporate
inexact solutions of the LM equation in Algorithm 4.5 in a canonical way.
Combined with a suitable solver for this equation, this approach may lead to
an immense speed-up of the method. For brevity of presentation, we omit
this discussion here but just point out the possibility of investigating it.

4.2. On using the Fischer–Burmeister function exclusively

In this subsection, we briefly comment on an algorithm, related to Algorithm 4.5,
which fully relies on the residual FFB introduced in (9). For completeness, we
first present a result regarding theNewton-differentiability of this functionwhich
basically follows from the chain rule stated in Lemma 2.2 and Example 2.3(c).

Lemma 4.8: On each bounded subset of R
p1 × R

p2 , the mapping FFB is Newton-
differentiable with Newton-derivative given by

(w, ξ) �→
[

H′
w(w, ξ) H′

ξ (w, ξ)

D̃G(w, ξ)G′
w(w, ξ) D̃G(w, ξ)G′

ξ (w, ξ) − D̃ξ (w, ξ)

]
,

and this mapping, again, is bounded on bounded sets. Whenever the derivatives of
G andH are locally Lipschitzian, the order of Newton-differentiability is 1. Above,
the matrices D̃G(w, ξ), D̃ξ (w, ξ) ∈ R

p2×p2 are those ones defined in Lemma 4.3.

Subsequently, we will denote the Newton-derivative of FFB characterized
above byDNFFB. Observe that, due to Lemma 4.3, we haveDNFFB(z)�FFB(z) =
∇�FB(z) for each z ∈ R

p.
We also need to figure out, in which situations the Newton-derivative from

Lemma 4.8 satisfies the assumptions for local fast convergence.

Lemma 4.9: Fix a solution (w̄, ξ̄ ) ∈ R
p1 × R

p2 of (MNLCS) and assume that for
each pair (a, b) ∈ R

p2 × R
p2 of vectors satisfying

∀ i ∈ I−(w̄, ξ̄ ) : ai = 0, bi = 1,

∀ i ∈ I+(w̄, ξ̄ ) : ai = 1, bi = 0,

∀ i ∈ I00(w̄, ξ̄ ) : (ai − 1)2 + (bi − 1)2 = 1,

(15)

the matrix [
H′

w(w̄, ξ̄ ) H′
ξ (w̄, ξ̄ )

D̂
a
G(w̄, ξ̄ )G′

w(w̄, ξ̄ ) D̂
a
G(w̄, ξ̄ )G′

ξ (w̄, ξ̄ ) − D̂
b
ξ (w̄, ξ̄ )

]
, (16)
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where we used

D̂
a
G(w̄, ξ̄ ) := diag(a)D(I+(w̄, ξ̄ ) ∪ I00(w̄, ξ̄ )),

D̂
b
ξ (w̄, ξ̄ ) := diag(b)D(I−(w̄, ξ̄ ) ∪ I00(w̄, ξ̄ )),

possesses linearly independent columns. Then the matrices N (w, ξ)�N (w, ξ),
where

N (w, ξ) :=
[

H′
w(w, ξ) H′

ξ (w, ξ)

D̃G(w, ξ)G′
w(w, ξ) D̃G(w, ξ)G′

ξ (w, ξ) − D̃ξ (w, ξ)

]
,

are uniformly positive definite in a neighbourhood of (w̄, ξ̄ ).

Proof: For the proof, we partially mimic our arguments from the proof of
Lemma 4.4. Thus, let us suppose that the assertion is false. Then there
exist sequences {wk}k∈N ⊂ R

p1 , {ξ k}k∈N ⊂ R
p2 , {(dkw, dkξ )}k∈N ⊂ R

p1 × R
p2 , and

{ηk}k∈N ⊂ [0,∞) such that wk → w̄, ξ k → ξ̄ , ηk → 0, and, for each k ∈ N,
‖dkw‖ + ‖dkξ‖ = 1 as well as

ηk =
[
dkw
dkξ

]�
N (wk, ξ k)�N (wk, ξ k)

[
dkw
dkξ

]
.

Again, we make use of the abbreviations from (11) and obtain, by definition of
the matrixN (wk, ξ k),

ηk = ‖H′
w(k)dkw‖2 + 2(H′

w(k)dkw)�(H′
ξ (k)d

k
ξ ) + ‖H′

ξ (k)d
k
ξ‖2

+
p2∑
i=1

(va(wk, ξ k))2i
(
(Gi)′w(k)dkw + (Gi)′ξ (k)dkξ

)2
− 2

p2∑
i=1

(va(wk, ξ k))i(vb(wk, ξ k))i
(
(Gi)′w(k)dkw + (Gi)′ξ (k)dkξ

)
(dkξ )i

+
p2∑
i=1

(vb(wk, ξ k))2i (d
k
ξ )

2
i

(17)
where we exploited the vectors va(wk, ξ k) and vb(wk, ξ k) defined in (10). For each
i ∈ I+(w̄, ξ̄ ), i ∈ I00c (wk, ξ k) := {1, . . . , p2} \ I00(wk, ξ k) holds for large enough
k ∈ N by continuity of Gi, and we find the convergences (va(wk, ξ k))i → 1
and (vb(wk, ξ k))i → 0 as k → ∞. Similarly, for each i ∈ I−(w̄, ξ̄ ), we find i ∈
I00c (wk, ξ k) for all large enough k ∈ N, and we also have (va(wk, ξ k))i → 0 and
(vb(wk, ξ k))i → 1 in this case. It remains to consider the indices i ∈ I00(w̄, ξ̄ ).
By construction, we know that the sequence {((va(wk, ξ k))i, (vb(wk, ξ k))i)}k∈N ⊂
R
2 belongs to the sphere of radius 1 around (1, 1) for each k ∈ N and, thus,
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possesses an accumulation point in this sphere. Thus, taking into account that
I00(w̄, ξ̄ ) is a finite set, we find an infinite set K ⊂ N and vectors a, b ∈ R

p2

satisfying va(wk, ξ k) →K a, vb(wk, ξ k) →K b, and (15). We may also assume
for simplicity that the convergences dkw →K dw and dkξ → dξ hold for a pair
(dw, dξ ) ∈ R

p1 × R
p2 which is nonvanishing. Taking the limit k →K ∞ in (17)

then gives

0 = ‖H′
w(w̄, ξ̄ )dw‖2 + 2(H′

w(w̄, ξ̄ )dw)�(H′
ξ (w̄, ξ̄ )dξ ) + ‖H′

ξ (w̄, ξ̄ )dξ‖2

+
∑

i∈I+(w̄,ξ̄ )

(
(Gi)′w(w̄, ξ̄ )dw + (Gi)′ξ (w̄, ξ̄ )dξ

)2 +
∑

i∈I−(w̄,ξ̄ )

(dξ )
2
i

+
∑

i∈I00(w̄,ξ̄ )

(ai
(
(Gi)′w(w̄, ξ̄ )dw + (Gi)′ξ (w̄, ξ̄ )dξ

)
− bi(dξ )i)

2

which, similar as in the proof of Lemma 4.4, implies that (dw, dξ ) belongs to
the kernel of the matrix from (16). This, however, contradicts the lemma’s
assumptions. �

We note that the assumption of Lemma 4.9, which corresponds to the full row
rank of all matrices in Bouligand’s generalized Jacobian of FFB at the reference
point, i.e. BD-regularity, ismore restrictive than the one fromLemma4.4. Indeed,
if the assumption of Lemma 4.9 holds, then one can choose the vectors a, b ∈ R

p2

such that

∀i ∈ {1, . . . , p2} : ai :=
{
0 i ∈ I−(w̄, ξ̄ ) ∪ Ic,
1 i ∈ I+(w̄, ξ̄ ) ∪ I,

bi :=
{
0 i ∈ I+(w̄, ξ̄ ) ∪ I,
1 i ∈ I−(w̄, ξ̄ ) ∪ Ic

for arbitrary I ⊂ I00(w̄, ξ̄ ) and Ic := I00(w̄, ξ̄ ) \ I in order to validate the assump-
tion of Lemma 4.4. Clearly, the assumptions of Lemmas 4.4 and 4.9 coincide
whenever the biactive set I00(w̄, ξ̄ ) is empty. This situation is called strict com-
plementarity in the literature.

The subsequent example shows that the assumptions of Lemma 4.9 can be
strictly stronger than those ones of Lemma 4.4.

Example 4.10: Let us consider the mixed linear complementarity system

w + ξ = 0, w ≥ 0, ξ ≥ 0, wξ = 0

which possesses the uniquely determined solution (w̄, ξ̄ ) := (0, 0). In the context
of this example, the functions G,H : R × R → R are given by

∀(w, ξ) ∈ R × R : G(w, ξ) := −w, H(w, ξ) := w + ξ .
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Clearly, the assumption of Lemma 4.4 holds since the matrices[
1 1

−1 0

]
,
[
1 1
0 −1

]
possess full column rank 2. However, the matrix[

1 1
−a −b

]
possesses column rank 1 for a := b := 1 + √

2/2, i.e. the assumptions of
Lemma 4.9 are violated.

From the viewpoint of semismooth solution methods, it also has been
observed in [9, Propositions 2.8 and 2.10, Example 2.1] that the mixed approach
viaFmax needs less restrictive assumptions than the one viaFFB in order to yield
local fast convergence.

Next, we state the globalized nonsmooth LM method for the numerical
solution of (MNLCS) via exclusive use of FFB from (9) in Algorithm 4.11.

Algorithm 4.11 (Global nonsmooth Levenberg–Marquardt method for
mixed nonlinear complementarity systems via Fischer–Burmeister function):

Input: starting point z0 ∈ R
p1 × R

p2 , parameters κ ∈ (0, 1), τabs > 0, σ ,β ∈
(0, 1), ρ > 0, and γ1, γ2 > 0

1: set k := 0
2: while ‖FFB(zk)‖ ≥ τabs do
3: set νk := min(γ1, γ2‖FFB(zk)‖) and compute dk as the uniquely determined

solution of (
DNFFB(zk)�DNFFB(zk) + νkI

p)d = −∇�FB(zk) (18)

4: if �FB(zk + dk) ≤ κ�FB(zk) then
5: set zk+1 := zk + dk

6: else
7: if � ′

FB(z
k)dk > −ρ‖∇�FB(zk)‖‖dk‖ then

8: set dk := −∇�FB(zk)
9: end if
10: set αk := β ik where ik ∈ N is the smallest positive integer such that

�FB(zk + β ikdk) ≤ �FB(zk) + β ikσ � ′
FB(z

k)dk

11: set zk+1 := zk + αkdk
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12: end if
13: set k := k + 1
14: end while
15: return zk

Below, we formulate a convergence result which addresses Algorithm 4.11.

Theorem 4.12: Let {zk}k∈N be a sequence generated by Algorithm 4.11.

(a) If �FB(zk + dk) ≤ κ�FB(zk) holds infinitely many times in Step 4, then
{�FB(zk)}k∈N is a null sequence and each accumulation point of {zk}k∈N is
a solution of (MNLCS).

(b) Each accumulation point of {zk}k∈N is a stationary point of �FB.
(c) If an accumulation point z̄ of {zk}k∈N satisfies the assumptions of Lemma 4.9,

then the whole sequence {zk}k∈N converges to z̄ superlinearly. If the derivatives
of G andH are locally Lipschitz continuous functions, then the convergence is
even quadratic.

Proof: The only major difference to the proof of Theorem 4.6 addresses the sec-
ond statement. More precisely, we need to show that, if the ratio test in Step 4
is violated along the tail of the sequence, and if dk → 0 along a subsequence
(without relabelling) while zk → z̄ for some z̄, then z̄ is stationary for �FB. As
in the proof of Theorem 4.6, this is clear if dk = −∇�FB(zk) holds infinitely
many times. Thus, without loss of generality, let us assume that dk is the LM
direction for all k ∈ N, i.e. the uniquely determined solution of (18). Bound-
edness of {νk}k∈N together with Lemma 4.8 gives boundedness of the matri-
ces {DNFFB(zk)�DNFFB(zk) + νkI

p}k∈N. Thus, dk → 0 gives ∇�FB(z̄) = 0 by
continuity of ∇�FB and definition of dk in (18). �

5. Applications in optimistic bilevel optimization

5.1. Model problem and optimality conditions

We consider the so-called standard optimistic bilevel optimization problem

min
x,y

F(x, y) s.t. G(x, y) ≤ 0, y ∈ S(x), (OBPP)

where S : R
n ⇒ R

m is given by

∀x ∈ R
n : S(x) := argminy{f (x, y) | y ∈ Y(x)}. (19)

The terminus ‘standard’ has been coined in [46]. Above, F, f : R
n × R

m → R

are referred to as the upper- and lower-level objective function, respectively,
and assumed to be twice continuously differentiable. Furthermore the map-
ping, G : R

n × R
m → R

s is the twice continuously differentiable upper-level
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constraint function, and the set-valued mapping Y : R
n ⇒ R

m is given by

∀x ∈ R
n : Y(x) := {y ∈ R

m | g(x, y) ≤ 0},
where the describing lower-level constraint function g : R

n × R
m → R

t is also
assumed to be twice continuously differentiable. The component functions of g
will be denoted by g1, . . . , gt .

We consider the so-called lower-level value function reformulation

min
x,y

F(x, y) s.t. G(x, y) ≤ 0, g(x, y) ≤ 0, f (x, y) ≤ ϕ(x), (VFR)

where ϕ : R
n → R := R ∪ {±∞} is the lower-level value function given by

∀x ∈ R
n : ϕ(x) := inf

y
{f (x, y) | y ∈ Y(x)}. (20)

It is well known that (OBPP) and (VFR) possess the same local and global
minimizers.

Let us fix a feasible point (x̄, ȳ) ∈ R
n × R

m of (OBPP). Under mild assump-
tions, one can show that the lower-level value function ϕ is locally Lipschitz
continuous in a neighbourhood of x̄, and its Clarke subdifferential, see [47], obeys
the upper estimate

∂cϕ(x̄) ⊂ {∇xf (x̄, ȳ) + g′
x(x̄, ȳ)

�ν̂ | ν̂ ∈ �(x̄, ȳ)}, (21)

where �(x̄, ȳ) is the lower-level Lagrange multiplier set which comprises all
vectors ν̂ ∈ R

t such that

∇yf (x̄, ȳ) + g′
y(x̄, ȳ)

�ν̂ = 0,

ν̂ ≥ 0, g(x̄, ȳ) ≤ 0, ν̂�g(x̄, ȳ) = 0.

Let us now assume that (x̄, ȳ) is already a local minimizer of (OBPP) and, thus,
of (VFR) as well. Again, under some additional assumptions, (x̄, ȳ) is a (non-
smooth) stationary point of (VFR) (in Clarke’s sense). Keeping the estimate (21)
in mind while noting that, by definition of the lower-level value function,
f (x̄, ȳ) = ϕ(x̄) is valid, this amounts to the existence of μ ∈ R

s, ν, ν̂ ∈ R
t , and

λ ∈ R such that

∇F(x̄, ȳ) + G′(x̄, ȳ)�μ + g′(x̄, ȳ)�(ν − λν̂) = 0, (22a)

∇yf (x̄, ȳ) + g′
y(x̄, ȳ)

�ν̂ = 0, (22b)

μ ≥ 0, G(x̄, ȳ) ≤ 0, μ�G(x̄, ȳ) = 0, (22c)

ν ≥ 0, g(x̄, ȳ) ≤ 0, ν�g(x̄, ȳ) = 0, (22d)

ν̂ ≥ 0, g(x̄, ȳ) ≤ 0, ν̂�g(x̄, ȳ) = 0, (22e)

λ ≥ 0. (22f)
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In the subsequently stated lemma, we postulate some conditions which ensure
that local minimizers of (OBPP) indeed are stationary in the sense that there
exist multipliers which solve the system (22). Related results can be found e.g. in
[48–50]. As we work with slightly different constraint qualifications, we provide
a proof for the convenience of the reader.

Lemma 5.1: Fix a local minimizer (x̄, ȳ) ∈ R
n × R

m of (OBPP) such that x̄ is an
interior point of dom S. The fulfillment of the following conditions implies that there
are multipliers μ ∈ R

s, ν, ν̂ ∈ R
t, and λ ∈ R which solve the system (22).

(a) The functions f and g1, . . . , gt are convex in (x, y).
(b) Either the functions f and g are affine in (x, y) or the lower-level

Mangasarian–Fromovitz constraint qualification (LMFCQ)

g′
y(x̄, ȳ)

�ν̂ = 0, ν̂ ≥ 0, ν̂�g(x̄, ȳ) = 0 =⇒ ν̂ = 0

holds.
(c) The set-valued mapping � : R × R

s ⇒ R
n × R

m given by

∀(r, u) ∈ R × R
s :

�(r, u) := {(x, y) ∈ gphY | f (x, y) − ϕ(x) ≤ r, G(x, y) ≤ u}

is calm at ((0, 0), (x̄, ȳ)).

Proof: The imposed convexity assumptions on the lower-level data functions
guarantee that ϕ is convex, see e.g. [51, Lemma 2.1]. Given that x̄ is an interior
point of dom S, we have |ϕ(x)|<∞ for all x in some neighbourhood of x̄, and
thereforeϕ is Lipschitz continuous around x̄. Thus, (VFR) is a Lipschitz optimiza-
tion problem around the point (x̄, ȳ). Hence, it follows from [52, Theorem 4.1]
and [53, Theorem 6.12] that the calmness of � at ((0, 0), (x̄, ȳ)) yields the
existence of μ ∈ R

s, λ ∈ R, ϑ ∈ ∂cϕ(x̄), and υ ∈ NgphY(x̄, ȳ) such that condi-
tion (22c) holds together with

∇F(x̄, ȳ) + G′(x̄, ȳ)�μ + λ
(∇f (x̄, ȳ) − (ϑ , 0)

)+ υ = 0, (23a)

λ ≥ 0, f (x̄, ȳ) − ϕ(x̄) ≤ 0, λ
(
f (x̄, ȳ) − ϕ(x̄)

) = 0. (23b)

Above, NgphY(x̄, ȳ) denotes for the normal cone, in the sense of convex analy-
sis, to the graph of Y (which is a convex set under the assumptions made) at the
point (x̄, ȳ). Due to the validity of LMFCQ or the fact that g1, . . . , gt are affine,
there exists some ν ∈ R

t satisfying (22d) such that υ = g′(x̄, ȳ)�ν, see e.g. [53,
Theorem 6.14] for the nonlinear case (in the linear case, this is a consequence
of the well-known Farkas lemma). Furthermore, combining the fulfillment of
LMFCQ with the full convexity of the lower-level data functions implies that
inclusion (21) holds, see e.g. [51, Theorem 2.1]. On the other hand, if f and g
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are affine, then (21) holds due to [54, Proposition 4.1]. In both situations, we
can find some ν̂ ∈ R

t such that (22b), (22e), and ϑ = ∇xf (x̄, ȳ) + g′
x(x̄, ȳ)�ν̂ are

satisfied. Plugging this information into (23a) gives

∇xF(x̄, ȳ) + G′
x(x̄, ȳ)

�μ + g′
x(x̄, ȳ)

�(ν − λν̂) = 0,

∇yF(x̄, ȳ) + G′
y(x̄, ȳ)

�μ + λ∇yf (x̄, ȳ) + g′
y(x̄, ȳ)

�ν = 0.

Now, making use of (22b) yields (22). Finally, it remains to show that (23b)
reduces to (22f). This, however, is obvious as f (x̄, ȳ) = ϕ(x̄) holds due to ȳ ∈
S(x̄). �

Remark 5.2: (a) Note that assumption (a) in Lemma 5.1 can be replaced by
so-called inner semicontinuity of the lower-level optimal solution mapping
S from (19) at (x̄, ȳ) as this, together with LMFCQ, still yields validity of
the estimate (21) although ϕ is likely to be not convex in this situation, see
e.g. [50, Corollary 5.3, Theorem 6.1].

(b) We note that assumption (c) is potentially weaker than the standard con-
ditions used in the literature which combine a so-called partial calmness
condition, see [55], with MFCQ-type conditions with respect to the upper-
and lower-level inequality constraints. On the one hand, we admit that a
calmness-type assumption on the constraint including the lower-level value
function is comparatively restrictive, see e.g. [56–58] for discussions, so
that (22) can be seen as a reliable necessary optimality condition for (OBPP)
in selected situations only. On the other hand, from a numerical perspective,
the computational solution of the system (22) turned out to be surprisingly
effective in order to determine minimizers of optimistic bilevel optimiza-
tion problems, see e.g. [41, 42, 59], and this observation covers situations
where the assumptions of Lemma 5.1 are not necessarily satisfied.

(c) In the case where the functions f and g are affine in (x, y), the associated
lower-level value function ϕ is piecewise affine. Hence, whenever G is affine
as well, the set-valued mapping � from assumption (c) is so-called poly-
hedral, i.e. its graph is the union of finitely many convex polyhedral sets. It
is well known that such mappings are inherently calm at all points of their
graph, see [60, Proposition 1]. Thus, assumptions (a), (b), and (c) are satisfied
in this situation.

(d) A second standard approach to optimality conditions for bilevel optimiza-
tion problems is based on its so-called Karush–Kuhn–Tucker reformulation,
but as shown in [59], both approaches are, in general, completely different
when comparing the resulting optimality conditions and associated con-
straint qualifications. Optimality conditions which are based on the refor-
mulation (VFR) merely discriminate from each other due to different upper
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estimates for the subdifferential of the optimal value function and the asso-
ciated constraint qualifications which ensure their validity. For a detailed
comparison, we refer the interested reader to [48, 49, 61].

Let us now transfer the necessary optimality conditions from (22) into a mixed
nonlinear complementarity system. In order to do it in a reasonable way, we need
to comment on the role of the appearing real number λ. Therefore, let usmention
again that system (22) is nothing else but the (nonsmooth)Karush–Kuhn–Tucker
system of (VFR) where the (Clarke) subdifferential of the implicitly known func-
tionϕ has been approximated from above by initial problemdata in terms of (21).
Having this inmind, there are at least two possible interpretations of themeaning
behind λ. On the one hand, it may represent the Lagrange multiplier associated
with the constraint f (x, y) − ϕ(x) ≤ 0 in (VFR). Clearly, in order to incorporate
optimality for the lower-level problem into the system (22), themultiplier ν̂ char-
acterized in (22b), (22e), has to be meaningful, i.e. λ has to be positive. Similarly,
we can interpret λ as a partial penalty parameter which provides local optimality
of (x̄, ȳ) for

min
x,y

F(x, y) + λ(f (x, y) − ϕ(x)) s.t. G(x, y) ≤ 0, g(x, y) ≤ 0

whose (nonsmooth) Karush–Kuhn–Tucker system reduces to (22) under mild
assumptions, and this is the fundamental idea behind the aforementioned con-
cept of partial calmness from [55]. We note that, whenever a feasible point
(x̄, ȳ) ∈ R

n × R
m of (OBPP) is a local minimizer of the above partially penalized

problem for some λ, then this also holds for each larger value of this parameter.
Similarly, the case λ = 0 would not be reasonable here as this means that lower-
level optimality is not a restriction at all. Summing up these considerations, we
may work with λ>0.

Subsequently, we will introduce some potential approaches for the reformula-
tion of (22) as a mixed nonlinear complementarity system.

5.1.1. Parametric approach
Following the ideas in [42], we suppose that λ>0 is not a variable in the sys-
tem (22), but a given parameter which has to be chosen before the system
is solved. Although this approach is challenging due to the obvious difficulty
of choosing an appropriate value for λ, it comes along with some theoretical
advantages as we will see below.

For a compact notation, let us introduce the block variables

w :=
[
x
y

]
∈ R

n+m, ξ :=
⎡⎣μ

ν

ν̂

⎤⎦ ∈ R
s+2t
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as well as, for some fixed λ>0, functions Lopλ , �op : R
n+m × R

s+2t → R of
Lagrangian type given by

∀w ∈ R
n+m, ∀ξ ∈ R

s+2t :

Lopλ (w, ξ) := F(x, y) + μ�G(x, y) + (ν − λν̂)�g(x, y),

�op(w, ξ) := f (x, y) + ν̂�g(x, y).

Setting

G(w, ξ) :=
⎡⎣G(x, y)
g(x, y)
g(x, y)

⎤⎦ , H(w, ξ) :=
[∇wL

op
λ (w, ξ)

∇y�
op(w, ξ)

]
, (24)

the solutions of the associated nonlinear complementarity system (MNLCS) are
precisely the solutions of (22) with a priori given λ. We note that G does not
depend on the multipliers in this setting.

Let us now state some assumptions which guarantee local fast convergence of
Algorithms 4.5 and 4.11 when applied to the above setting. Therefore, we first
need to fix a point (w, ξ) = ((x, y), (μ, ν, ν̂)) ∈ R

n+m × R
s+2t which satisfies the

stationarity conditions (22) with given λ>0. For such a point, we introduce the
following index sets:

I0G(x, y) := {i ∈ {1, . . . , s} |Gi(x, y) = 0},
I−G (x, y) := {i ∈ {1, . . . , s} |Gi(x, y)<0},

I+G (x, y,μ) := {i ∈ I0G(x, y) | μi>0},
I00G (x, y,μ) := {i ∈ I0G(x, y) | μi = 0},

I0g (x, y) := {i ∈ {1, . . . , t} | gi(x, y) = 0},
I−g (x, y) := {i ∈ {1, . . . , t} | gi(x, y)<0},

I+g (x, y, ν) := {i ∈ I0g (x, y) | νi>0},
I00g (x, y, ν) := {i ∈ I0g (x, y) | νi = 0}.

Furthermore, we make use of the so-called critical subspace defined by

C(w, ξ) :=
{

δw ∈ R
n+m

∣∣∣∣∣ ∇Gi(x, y)δw = 0 i ∈ I+G (x, y,μ)

∇gi(x, y)δw = 0 i ∈ I+g (x, y, ν) ∪ I+g (x, y, ν̂)

}
.

We say that the lower-level linear independence constraint qualification (LLICQ)
holds at (x, y) whenever the gradients

∇ygi(x, y) (i ∈ I0g (x, y))

are linearly independent (note that, at the lower-level stage, only y is a variable).
Analogously, the bilevel linear independence constraint qualification (BLICQ) is
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said to hold at (x, y) whenever the gradients

∇Gi(x, y) (i ∈ I0G(x, y)), ∇gi(x, y) (i ∈ I0g (x, y))

are linearly independent.
The following two theorems are inspired by [41, Theorem 3.3]. Our first result

provides conditions which guarantee validity of the assumptions of Lemma 4.4
in the setting (24). These assumptions, thus, give local fast convergence of
Algorithm 4.5 in the present setting.

Theorem5.3: Let (w, ξ) = ((x, y), (μ, ν, ν̂)) ∈ R
n+m × R

s+2t be a solution of the
stationarity system (22) with given λ>0. Let LLICQ and BLICQ be satisfied at
(x, y). Finally, assume that the second-order condition

∀ δw ∈ C(w, ξ) \ {0} : δw�∇2
wwL

op
λ (w, ξ)δw>0 (25)

holds. Then, in the specific setting modelled in (24), the assumptions of Lemma 4.4
are valid.

Proof: For each sets IG ⊂ I00G (x, y,μ), Ig ⊂ I00g (x, y, ν), and Îg ⊂ I00g (x, y, ν̂), we
need to show that the system comprising

∇2
wwL

op
λ (w, ξ)δw + G′(x, y)�δμ + g′(x, y)�(δν − λδν̂) = 0, (26a)

(∇y�
op)′w(w, ξ)δw + g′

y(x, y)
�δν̂ = 0 (26b)

as well as the sign conditions

G′
i(x, y)δw = 0 i ∈ I+G (x, y,μ) ∪ IG, (27a)

g′
i(x, y)δw = 0 i ∈ I+g (x, y, ν) ∪ I+g (x, y, ν̂) ∪ Ig ∪ Îg , (27b)

δμi = 0 i ∈ I−G (x, y) ∪ (IG)c, (27c)

δνi = 0 i ∈ I−g (x, y) ∪ (Ig)c, (27d)

δν̂i = 0 i ∈ I−g (x, y) ∪ (Îg)c (27e)

only possesses the trivial solution. Above, we used (IG)c := I00G (x, y,μ) \ IG,
(Ig)c := I00g (x, y, ν) \ Ig , and (Îg)c := I00g (x, y, ν̂) \ Îg .

Multiplying (26a) from the left with δw� and respecting (27a) gives
δw�∇2

wwL
op
λ (w, ξ)δw = 0. On the other hand, (27a) and (27b) yield δw ∈

C(w, ξ). Hence, the assumptions of the theorem can be used to find δw = 0. Now,
we can exploit LLICQ in order to obtain δν̂ = 0 from (26b) and (27e). Finally,
with the aid of BLICQ, (26a), (27c), and (27d), we find δμ = 0 and δν = 0. This
shows the claim. �



32 L. O. JOLAOSO ET AL.

Let us note from the proof that Theorem 5.3 remains correct whenever (25) is
replaced by the slightly weaker condition

∀ δw ∈ C(w, ξ) \ {0} : δw�∇2
wwL

op
λ (w, ξ)δw �= 0. (28)

However, (25) is related to second-order sufficient optimality conditions for the
characterization of strict local minimizers of (OBPP), see e.g. [62], and as we aim
to find local minimizers of (OBPP), this seems to be a more natural assumption
than (28) which seemingly concerns saddle points of Lopλ .

Under slightly stronger conditions, we can prove that even the assumptions of
Lemma 4.9 hold in the precise setting from (24) which, in turn, guarantee local
fast convergence of Algorithm 4.11 in the present setting.

Theorem5.4: Let (w, ξ) = ((x, y), (μ, ν, ν̂)) ∈ R
n+m × R

s+2t be a solution of the
stationarity system (22) with given λ>0. Let LLICQ and BLICQ be satisfied at
(x, y), and let I00g (x, y, ν̂) ⊂ I+g (x, y, ν) hold. Finally, assume that the second-order
condition (25) holds. Then, in the specific setting modelled in (24), the assumptions
of Lemma 4.9 are valid.

Proof: For each i ∈ I00G (x, y,μ), let (aGi , b
G
i ) ∈ R

2 satisfy

(aGi − 1)2 + (bGi − 1)2 = 1.

Similarly, for each i ∈ I00g (x, y, ν) (i ∈ I00g (x, y, ν̂)), let (agi , b
g
i ) ∈ R

2 ((âgi , b̂
g
i ) ∈

R
2) satisfy

(agi − 1)2 + (bgi − 1)2 = 1
(
(âgi − 1)2 + (b̂gi − 1)2 = 1

)
.

We need to show that the system comprising the conditions from (26) as well as
the sign conditions

G′
i(x, y)δw = 0 i ∈ I+G (x, y,μ), (29a)

g′
i(x, y)δw = 0 i ∈ I+g (x, y, ν) ∪ I+g (x, y, ν̂), (29b)

aGi G
′
i(x, y)δw − bGi δμi = 0 i ∈ I00G (x, y,μ), (29c)

agi g
′
i(x, y)δw − bgi δνi = 0 i ∈ I00g (x, y, ν), (29d)

âgi g
′
i(x, y)δw − b̂gi δν̂i = 0 i ∈ I00g (x, y, ν̂), (29e)

δμi = 0 i ∈ I−G (x, y), (29f)

δνi = δν̂i = 0 i ∈ I−g (x, y) (29g)

only possesses the trivial solution.
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For later use, we introduce index sets PG10, P
G
01, P

G+ ⊂ I00G (x, y,μ) by means of

PG10 := {i ∈ I00G (x, y,μ) | aGi = 1, bGi = 0},
PG01 := {i ∈ I00G (x, y,μ) | aGi = 0, bGi = 1},
PG+ := I00G (x, y,μ) \ (PG10 ∪ PG01).

Let us note that aGi , b
G
i >0 holds for each i ∈ PG+, which gives G′

i(x, y)δw =
(bGi /aGi )δμi by (29c). Furthermore, for each i ∈ PG10, we have G′

i(x, y)δw =
0, while δμi = 0 is valid for each i ∈ PG01. Let the index sets Pg10, P

g
01, P

g
+ ⊂

I00g (x, y, ν) and P̂g10, P̂
g
01, P̂

g
+ ⊂ I00g (x, y, ν̂) be defined in analogous fashion.

Note that for each i ∈ P̂g+ ⊂ I00g (x, y, ν̂) ⊂ I+g (x, y, ν), (29b) and (29e) give
(b̂gi /â

g
i )δν̂i = g′

i(x, y)δw = 0.
Clearly, (29a) and (29b) give δw ∈ C(w, ξ).Multiplying (26a) from the left with

δw� while respecting (25), (29a), and the above discussion gives

0 ≤ δw�∇2
wwL

op
λ (w, ξ)δw = −

∑
i∈PG+

bGi
aGi

(δμi)
2 −

∑
i∈Pg+

bgi
agi

(δνi)
2 + λ

∑
i∈P̂g+

b̂gi
âgi

(δν̂i)
2

= −
∑
i∈PG+

bGi
aGi

(δμi)
2 −

∑
i∈Pg+

bgi
agi

(δνi)
2 ≤ 0.

Thus, we have δw�∇2
wwL

op
λ (w, ξ)δw = 0, so (25) yields δw = 0. Now, we can

argue as in the proof of Theorem 5.3 in order to obtain δμ = 0, δν = 0, and
δν̂ = 0 from (26b), (29f), and (29g) with the aid of LLICQ and BLICQ. This
completes the proof. �

Let us note that both Theorems 5.3 and 5.4 drastically enhance [41,
Theorem 3.3] where strict complementarity is assumed.

5.1.2. Variable approach
The discussions in [40, 42] underline that, from a numerical point of view, treat-
ing λ as a parameter in (22) is nontrivial since the particular choice of it is quite
involved.We therefore aim to interpret λ as a variable which is determined by the
solution algorithm. In this section, we suggest two associated approaches.

First, we may consider the block variables

w :=
[
x
y

]
∈ R

n+m, ξ :=

⎡⎢⎢⎣
μ

ν

ν̂

λ

⎤⎥⎥⎦ ∈ R
s+2t+1
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as well as Lagrangian-type functions Lop1 , �op1 : R
n+m × R

s+2t+1 → R given by

∀w ∈ R
n+m, ∀ξ ∈ R

s+2t+1 :

Lop1 (w, ξ) := F(x, y) + μ�G(x, y) + (ν − λν̂)�g(x, y),

�
op
1 (w, ξ) := f (x, y) + ν̂�g(x, y).

Setting

G(w, ξ) :=

⎡⎢⎢⎣
G(x, y)
g(x, y)
g(x, y)

0

⎤⎥⎥⎦ , H(w, ξ) :=
[∇wL

op
1 (w, ξ)

∇y�
op
1 (w, ξ)

]
, (30)

we can reformulate (22) as a mixed complementarity system of type (MNLCS).
Here, λ is treated as part of the Lagrange multiplier vector associated with (22),
and this seems to be rather natural.

A second idea is based on a squaring trick. Observe that the system (22) can
be equivalently reformulated by combining

∇F(x̄, ȳ) + G′(x̄, ȳ)�μ + g′(x̄, ȳ)�(ν − ζ 2ν̂) = 0

with (22b)–(22e) for multipliers μ ∈ R
s, ν, ν̂ ∈ R

t , and ζ ∈ R. This eliminates
the sign condition (22f). Thus, using the block variables

w :=
⎡⎣xy

ζ

⎤⎦ ∈ R
n+m+1, ξ :=

⎡⎣μ

ν

ν̂

⎤⎦ ∈ R
s+2t

as well as Lagrangian-type functions Lop2 , �op2 : R
n+m+1 × R

s+2t → R given by

∀w ∈ R
n+m+1, ∀ξ ∈ R

s+2t :

Lop2 (w, ξ) := F(x, y) + μ�G(x, y) + (ν − ζ 2ν̂)�g(x, y),

�
op
2 (w, ξ) := f (x, y) + ν̂�g(x, y),

we can recast the resulting system in the form (MNLCS) when using

G(w, ξ) :=
⎡⎣G(x, y)
g(x, y)
g(x, y)

⎤⎦ , H(w, ξ) :=
[∇(x,y)L

op
2 (w, ξ)

∇y�
op
2 (w, ξ)

]
. (31)

Note that in both settings (30) and (31), the mapping G does not depend on the
multiplier.

Let us point the reader’s attention to the fact that both approaches dis-
cussed above come along with the heavy disadvantage that a result similar to
Theorem 5.3 does not seem to hold. In order to see this, one can try to mimic
the proof of Theorem 5.3 in the setting (30) and (31), respectively. After all pos-
sible eliminations, one ends up with δν = δλ ν̂ and δν = 2ζ δζ ν̂, respectively,
and both of these linear equations possess a nonvanishing kernel. Clearly, these
arguments extend to Theorem 5.4 as well.
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5.2. Computational experiments

We would like to point the reader’s attention to the fact that the numerical
application of Gauss–Newton or LM methods for the numerical solution of a
smoothed version of system (22) has been investigated in [41, 42]. Therein, the
authors challenged their methods by running experiments on the 124 nonlin-
ear bilevel optimization problems which are contained in the BOLIB library
from [63]. Let us note that only some of these examples satisfy the assumptions of
Lemma 5.1, leading to the fact that (22) does not provide a reliable necessary opti-
mality condition, i.e. system (22) does not possess a solution in many situations.
In this regard, it is not surprising that, in [41, Section 5.4], the authors admit that
themethods under considerationmost often terminate since themaximumnum-
ber of iterations is reached or since the norm of the difference of two consecutive
iterates becomes small, which is clearly not satisfying. In [42, Section 4.1.4], the
authors introduce additional termination criteria, based on the difference of the
normof the FB residual and certain thresholds of the iteration number, to enforce
termination even in situations where the algorithm did not fully converge. It is
not clarified in [42] why the authors do not check for approximate stationarity of
the squared FB residual. Summarizing this, the experiments in [41, 42] visualize
some global properties of the promoted solution approaches but do not respect
the assumptions needed to ensure (local fast) convergence. The results are, thus,
of limited expressiveness.

Here, we restrict ourselves to the illustration of certain features of our non-
smooth LM methods from Algorithms 4.5 and 4.11 on problems where the
assumptions of Lemma 5.1 or even Theorems 5.3 and 5.4 hold. Furthermore, we
take care of distinguishing between the parametric approach from Section 5.1.1,
where the multiplier λ is treated as a parameter which has to be chosen a priori,
see [40, 41] for further comments on how precisely this parameter can be chosen
in numerical practice, and the variable approach from Section 5.1.2, where λ is
an additional variable.

5.2.1. Implementation and setting
We implemented Algorithm 4.5 (methodmixLM) and Algorithm 4.11 (method
FBLM) for the three different settings described in (24) (setting Para), (30) (set-
ting Var1), and (31) (setting Var2) (making a total number of six algorithms)
in MATLAB2022b based on user-supplied gradients and Hessians. Numerical
experiments were ran for two bilevel optimization problems whose minimizers
satisfy the stationarity conditions from (22):

Experiment 1 the problem from [62, Example 8] where (22) holds at the global
minimizer for each λ>0,

Experiment 2 the inverse transportation problem from [64, Section 5.3.2,
Experiment 3] whose lower-level problem and upper-level constraints are
fully affine.
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For each experiment, a certain number of (random) starting points has been
generated, and each of the algorithms has been run based on these starting
points. If the termination criterion ‖FFB(zk)‖<τabs (Term=1) is violated in
Algorithms 4.5 and 4.11, we additionally check validity of ‖∇�FB(zk)‖<τ statabs
(Term=2) for some constant τ statabs >0 in order to capture situations where a
stationary point of the squared FB residual �FB has been found. Furthermore,
we equip each algorithm with a maximum number of possible iterations, and
terminate if it is hit (Term=0).

In order to compare the output of the six methods, we make use of so-called
performance profiles, see [65], based on the following indicators: total number
of iterations, execution time (in seconds), upper-level objective value, and per-
centage of full LM steps (i.e. the quotient # full LM steps/# total iterations). We
denote by ts,i>0 the metric of comparison (associated with the current perfor-
mance index) of solver s ∈ S for solving the instance i ∈ I of the problem, where
S is the set of solvers and I represents the different starting points. We define the
performance ratio by

∀s ∈ S , ∀i ∈ I : rs,i := ts,i
min{ts′,i | s′ ∈ S} .

This quantity is the ratio of the performance of solver s ∈ S to solve instance
i ∈ I compared to the best performance of any other algorithm in S to solve
instance i. The cumulative distribution function ωs : [1,∞) → [0, 1] of the
current performance index associated with the solver s ∈ S is defined by

∀τ ∈ [1,∞) : ωs(τ ) := |{i ∈ I | rs,i ≤ τ }|
|I| .

The performance profile for a fixed performance index shows (the illustrative
parts of) the graphs of all the functions ωs, s ∈ S . The value ωs(1) represents
the fraction of problem instances for which solver s ∈ S shows the best perfor-
mance. For arbitrary τ ≥ 1, ωs(τ ) shows the fraction of problem instances for
which solver s ∈ S shows at most the τ -fold of the best performance.

Finally, let us comment on the precise construction of the performancemetric.
For the comparison of the total number of iterations and execution time (in sec-
onds), we simply rely on the index under consideration. Computed upper-level
objective values are shifted by the minimum function value known in the litera-
ture to ensure that the associated performance metric does not produce negative
outputs (additionally, we also add a small positive offset to ensure positivity).
In order to benchmark the percentage of full LM steps, we subtract the afore-
mentioned quotient of full LM steps over total number of steps from 1 (again, a
positive offset is added to ensure positivity). This guarantees that small values of
the metric indicate a desirable behaviour.
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Table 1. Averaged performance indices for Experiment 1.

mixLM FBLM mixLM FBLM mixLM FBLM
Para Para Var1 Var1 Var2 Var2

Aver. # outer iter. 1476.47 1626.61 4302.02 4301.25 1476.47 1626.61
Aver. # full LM steps 4.3970 3.7273 3.9256 3.1157 4.3970 3.7273
Aver. time 0.4748 0.4839 0.9691 1.0176 0.4702 0.4840
# Term= 0 13 16 52 52 13 16
# Term= 1 63 56 61 49 63 56
# Term= 2 45 49 8 20 45 49
# optimal solution 74 71 69 68 74 71

5.2.2. Numerical examples
Experiment 1 We investigate the bilevel optimization problem from [62, Exam-
ple 8] which is given by

min
x,y

(x − 8)2 + (y − 9)2 s.t. x ≥ 0, y ∈ argminy{(y − 3)2 | y2 ≤ x}.

Its global minimizer is (x̄, ȳ) := (9, 3), and the corresponding stationarity con-
ditions from (22) hold for each λ>0 when choosing μ := 0, ν̂ ≥ 0, and ν :=
2 + λν̂. One can easily check that the assumptions of Theorem 5.3 are valid. If
ν̂>0 is chosen, strict complementarity holds. However, even for ν̂ := 0, we have
I00g (x̄, ȳ, ν̂) = I+g (x̄, ȳ, ν) so that the assumptions of Theorem 5.4 hold as well for
each feasible choice of the multipliers.

For this experiment, we took the maximum number of iteration to be 105

and chose the following parameters for the algorithms: q: = 0.8, τabs := 10−6,
τ statabs := 10−8, β := 0.5, σ := 0.5, γ1 := γ2 := 0.5, ρ1 := 10−2, ρ2 := 10−12, and
ρ := 10−2.We challenged our algorithms with 121 starting points constructed in
the followingway. The pair (x, y) is chosen from {0, 1, . . . , 10} × {−5,−4, . . . , 5}.
For the multipliers, we always chose μ := ν := ν̂ := 1 and λ := 1. In the case of
settingVar2, wemade use of ζ := 1. The results of the experiments are illustrated
in Figure 1 and Table 1.

We immediately see that the approaches Para and Var2 perform almost
equally good. These methods terminate due to a small residual or stationarity
of the squared FB residual in 90% of all runs, and the actual optimal solution is
found in approximately 60% of all runs with slight advantages for mixLM. Let
us now report on Var1. The optimal solution is found in about 57% of all runs.
However, in this setting, both algorithms much more often do not terminate due
to stationarity of the squared FB residual but are aborted since the maximum
number of iterations is reached – the latter happens in 43% of the runs. Often,
both algorithms seem to be close (but not too close) to a stationary point of the
squared FB residual in this case, but this is not detected by our termination cri-
terion. For a better overview, Figure 2 illustrates the termination behaviour of
all six methods. Coming back to an overall comparison,mixLM in setting Para
converges to the globalminimizer of the problem for starting points (x, y) chosen
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from

({0, . . . , 10} × {0, . . . , 5}) ∪ ({5, . . . , 10} × {−2}) ∪ ({9, 10} × {−3}).

In most of the associated runs, a total number of 6 to 10 iterations is performed
out of which almost all are full LM steps, i.e. we observe local fast convergence
in our experiments. Related phenomena can be observed for the remaining five
approaches. Particularly, despite the absence of any theoretical guarantees, local
fast convergence is present in the variable settings described in Section 5.1.2.
More precisely, we observed that whenever our algorithms approach the global
minimizer, then this happens in a few number of full LM steps, and the conver-
gence is, indeed, quadratic. The large average number of iterations documented
in Table 1 results from the fact that whenever the algorithms do not approach
the global minimizer, they tend to get stuck in stationary points of the squared
residual which are approached by slow gradient steps. Typically, the algorithms
are aborted in this situation since the maximum number of iterations is reached.
The performance profiles in Figure 1 indicate that settings Para and Var2 are
superior to Var1 when the total number of iterations and execution time are
investigated. Recalling that Var1 does not stop until the maximum number of
iterations is reached in comparatively many runs, its (averaged) running time is

Figure 1. Performance profiles for Experiment 1. From top left to bottom right: number of total
iterations, execution time, upper-level objective value, and percentage of full LM steps.
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Figure 2. Reason for termination for Experiment 1.

twice as large as for Para and Var2. We note thatmixLM (even in setting Var1)
performs more full LM steps than FBLM, see Table 1 as well. For more than 80%
of all starting points, mixLM in setting Var1 carries out the highest number of
full LM steps among the six methods which we are comparing here. However,
there are some critical instances where, in the setting Var1, comparatively many
gradient steps are done, which explains the numbers in Table 1. All this is in line
with the above comments, and also extends to the computed upper-level objec-
tive value, although one has to be careful as all six methods compute the global
minimizer almost equally often. However,Var1 ends up in points with compara-
tively high objective value inmuchmore runs than the other two settings. Taking
a look at the averaged numbers in Table 1, we observe that mixLM performs
slightly quicker than FBLM for all three settings. Furthermore,mixLM finds the
global minimizer more often than FBLM. The highest number of total iterations
can be observed for FBLM in setting Var1.

Experiment 2We consider the bilevel optimization problem

min
x,y

1
2
‖y − yo‖2 s.t. x ≥ 0, e�x ≥ e�bdem, y ∈ S(x)

where S : R
n ⇒ R

n×� is the solution mapping of the parametric transportation
problem

min
y

n∑
i=1

�∑
j=1

cijyij s.t.
�∑

j=1
yij ≤ xi (i = 1, . . . , n),

n∑
i=1

yij ≥ bdemj (j = 1, . . . , �),

y ≥ 0.

(TR(x))
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Here, � ∈ N is a positive integer, bdem ∈ N
� is an integer vector modelling the

minimum demand of the � consumers, and c ∈ [0, 1]n×� is a cost matrix. In
(TR(x)), the parameter x ∈ R

n represents the offer provided at n warehouses
which is unknown and shall be reconstructed from a given (noisy) transporta-
tion plan yo ∈ R

n×�. For our experiments, we chose n: = 5, � := 7, and relied on
the data matrices given in [64, Appendix]. As mentioned in [64], the best known
solution of this bilevel optimization problem comes along with an upper-level
objective value of 5.07 · 10−4.

All six methods were tested based on a collection of 500 random starting
points which were created in the following way. For the construction of the pair
(x, y), the components of x are chosen randomly from the interval [1, 10] while
the components of y are chosen randomly from [0, 10], based on a uniform
distribution, respectively. The associated multiplier vectors as well as ζ in set-
ting Var2 are defined as in our first experiment. For our algorithms, we chose
a maximum number of 104 iterations, and we made use of the following val-
ues for all appearing parameters: q: = 0.9, τabs := 10−4, τ statabs := 10−3, β := 0.9,
σ := 0.4, γ1 := 10−4, γ2 := 0.05, and ρ1 := ρ2 := ρ := 10−4. The resulting per-
formance profiles and averaged performance indices are documented in Figure 3
and Table 2.

Figure 3. Performance profiles for Experiment 2. From top left to bottom right: number of total
iterations, execution time, upper-level objective value, and percentage of full LM steps.
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Table 2. Averaged performance indices for Experiment 2.

mixLM FBLM mixLM FBLM mixLM FBLM
Para Para Var1 Var1 Var2 Var2

Aver. # outer iter. 97.754 10.256 54.508 10.156 67.75 20.17
Aver. # full LM steps 5.902 7.79 8.684 7.782 21.064 8.832
Aver. time 2.5777 0.0391 1.0971 0.0371 0.9610 0.1198
# Term= 0 1 0 0 0 0 0
# Term= 1 32 301 0 142 0 421
# Term= 2 467 199 500 358 500 79
# approx. optimal 111 397 0 162 411 378

Figure 4. Reason for termination for Experiment 2.

From Figure 3, it is easy to see that FBLM performs better thanmixLM con-
sidering the total number of iterations, execution time, and the percentage of full
LM steps although FBLM in settingVar2 cannot challenge the same algorithm in
settings Para and Var1 for these three criteria, see Table 2 as well. Our choice of
τabs and τ statabs caused that all six methods terminated either due to a small residual
or stationarity of the squared FB residual inmost of the runs. Let us point out that
mixLM terminated due to stationarity of the squared FB residual in most of the
runs, and the same holds true for FBLM in setting Var1, see Figure 4 as well.

This, however, does not tell the full story. In the last row of Table 2, we docu-
ment the number of runs where the final iterate produces an upper level objective
value between 5.06 · 10−4 and 5.08 · 10−4, i.e. we count the number of runswhere
a point is produced whose associated upper-level function value is close to the
best known one (below, we will refer to such points as reasonable). As it turns
out, mixLM in setting Var1 is not competitive at all in this regard. Indeed, this
method most often terminates in points possessing upper-level objective value
around 4.07 · 10−4 and norm of the FB residual around 10−5. We suspect that
this method tends to get stuck in stationary points of the squared FB residual
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which are not feasible for the inverse transportation problem. Hence, the perfor-
mance profile which monitors the upper-level objective value in Figure 3 is of
limited meaningfulness. The situation is far better for FBLM where reasonable
points are computedmuchmore frequently, although it has to be mentioned that
the settingsPara (79% reasonable) andVar2 (76% reasonable) again outrunVar1
(32% reasonable) in this regard. Interestingly,mixLM in settingVar2 always ter-
minated due to a small value of the squared FB residual, but produced reasonable
points in more than 82% of all runs. An individual fine tuning of the parameters
for the settings Para, Var1, and Var2 may lead to more convincing termination
reasons, but we abstained from it for a better comparison of all methods under
consideration. The performance profiles in Figure 3 show that FBLM in the set-
tings Para and Var1 are superior to Var2, and when only computed function
values are taken into account, then, for the price of higher computation time,
mixLM in setting Var2 is acceptable as well.

Let us note that (22) turns out to be an over-determined mixed linear com-
plementarity system in the particular setting considered here and, thus, a certain
error bound condition is present. In the light of available literature on smooth
LM methods, see e.g. [66], this could be a reason for the observed local fast
convergence for a large number of starting points, although we did not prove
such a result in this paper. Furthermore, it has to be observed that a refor-
mulation via Var2 abrogates linearity of the system, but we obtained the best
results in this setting when convergence to reasonable points is the underlying
criterion.

Summary Let us briefly summarize that our experiments visualized compet-
itiveness of the settings Para and Var2, while setting Var1 has turned out to
come along with numerical disadvantages in both experiments. While, in our
first experiment, there was no significant difference between Para and Var2, our
second (and, by far, more challenging) experiment revealed that Var2 also could
have some benefits over Para. Our experiments do not indicate whether it is gen-
erally better to applymixLM or FBLM, but at least we can suggest that whenever
the parameter λ is unknown, then it might be reasonable to apply mixLM in
setting Var2 to obtain good solutions.

6. Concluding remarks

In this paper, we exploited the concept of Newton-differentiability in order to
design a nonsmooth Levenberg–Marquardt method for the numerical solution
of over-determined nonsmooth equations. Our method possesses desirable local
convergence properties under reasonable assumptions and may be applied in
situations where the underlying nonsmooth mapping is even discontinuous.
We applied this idea to over-determined mixed nonlinear complementarity sys-
tems where a suitable globalization is possible via gradient steps with respect
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to the squared norm of the residual induced by the Fischer–Burmeister func-
tion. However, we investigated the method in two different flavors regarding
the computation of the Levenberg–Marquardt direction namely via a residual
given in terms of the maximum function on the one hand and in terms of the
Fischer–Burmeister function on the other hand. For both methods, global con-
vergence results have been derived, and assumptions for local fast convergence
have been specified. Our analysis recovers the impressions from [9], obtained in a
slightly different framework, that the approach via the maximum residual works
under less restrictive assumptions. Finally, we applied these globalized non-
smooth Levenberg–Marquardt methods in order to solve bilevel optimization
problems numerically. Theoretically, we were in position to verify local fast
convergence of both algorithms under less restrictive assumptions than those
ones stated in the literature which among others assume strict complementar-
ity, see [41, Section 3]. Some numerical experiments were discussed in order to
visualize interesting computational features of this approach.

Our theoretical and numerical investigation of bilevel optimization problems
solely focused on the optimistic approach, but it might be also possible to address
(similarly over-determined) stationarity systems related to pessimistic bilevel
optimization via a similar approach. Next, we would like to point the reader’s
attention to the fact that the (inherent) inner semicontinuity assumption on the
solution mapping in Lemma 5.1, see Remark 5.2 as well, is comparatively strong
and may fail in many practically relevant scenarios. However, it is well known
from the literature that in the presence of so-called inner semicompactness,
which is inherent whenever the solution mapping is locally bounded, slightly
more general necessary optimality conditions can be derived which comprise
additional geometric constraints of polyhedral type addressing the multipliers,
see e.g. [49, Theorem 4.9]. For the numerical solution of this stationarity sys-
tem, a numerical method would be necessary which is capable of solving an
over-determined system of equations subject to polyhedral constraints where
either the polyhedral constraint set is not convex or the equations are non-
smooth. Exemplary, we refer the interested reader to [67–69] for examples of
such methods. In the future, it needs to be checked how these methods apply to
the described setting of bilevel optimization, and how the assumptions for local
fast convergence can be verified in this situation. Yet another way to extend our
approach to more general bilevel optimization problems could be to consider
the combined reformulation of bilevel optimization problems which merges the
value function and Karush–Kuhn–Tucker reformulation, see [43]. A potential
associated stationarity system can be reformulated as an overdetermined sys-
tem of discontinuous nonsmooth equations which, similar as in [37], still can be
solved with the aid of the nonsmooth Levenberg–Marquardt method developed
in Section 3 as the latter one is reasonable for functions which are merely calm at
their roots, and this property is likely to hold, see [37, Lemma 3.3(d)]. Let us also
mention that it would be interesting to study whether an error bound condition
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is enough to yield local fast convergence of Algorithms 4.5 and 4.11 even in the
nonsmooth setting, see [66] for the analysis in the smooth case. Furthermore,
it remains to be seen whether some reasonable conditions can be found which
guarantee local fast convergence of our algorithms when applied to stationarity
systems of bilevel optimization problemswhere themultiplier associatedwith the
value function constraint is treated as a variable, see Section 5.1.2.
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