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ABSTRACT
We consider a first-order dynamical system for solving inverse
quasi-variational inequalities in finite dimensional spaces.
Through an explicit time discrete version of the proposed
dynamical system, we investigate the linear convergence of
a projection algorithm under suitable conditions of parame-
ters.Moreover, we investigate the application of inverse quasi-
variational inequalities in traffic assignment problem and net-
work equilibriumcontrol problem. Thenumerical experiments
for these practical problems confirm the linear convergence of
the theoretical part. In particular, the obtained results provide
a positive answer to an open question posted by S. Dey and S.
Reich in Optimization, DOI: 10.1080/02331934.2023.2173525
(2023).

ARTICLE HISTORY
Received 1 December 2023
Accepted 1 March 2024

KEYWORDS
Inverse quasi-variational
inequality; projection
algorithm; linear
convergence; traffic
assignment; network
equilibrium control problem

MATHEMATICS SUBJECT
CLASSIFICATIONS (2010)
47J20; 49J40; 49M37

1. Introduction

Let R
n be the n-dimensional Euclidean space with the inner product 〈·, ·〉 and a

generated norm ‖ · ‖. Let K be a nonempty closed convex subset of R
n and F :

R
n → R

n be a continuousmapping, we recall the variational inequality problems
(VIPs) which consist of finding a point x∗ ∈ K such that

〈F(x∗), x − x∗〉 ≥ 0 ∀ x ∈ K.

TheVIPs have been appeared inmany theoretical and applied fields, such as opti-
mization problems, complementary problems, saddle-point ( min–max) prob-
lems, Nash equilibrium problems and fixed point problems [1]. Hence, many
methods, especially projection-type methods, have been studied for solving the
VIPs (see, for instance [2–7]).

In the case where an explicit formula of F is not available, but defined as the
inverse of a given mapping f, i.e. F(x) = f−1(x) = u, the VIP becomes an inverse
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variational inequality problem (IVIP) which calls for finding u∗ ∈ R
n such that

f (u∗) ∈ K and 〈u∗, v − f (u∗)〉 ≥ 0, ∀ v ∈ K.

Although the IVIPs arise in various fields, such as traffic network problems [8]
and economic equilibrium problems [9], there is a limited number of theoretical
and numerical methods for solving them. Some researchers have paid attention
and generalized IVIPs in variousways. This leads to one of the important general-
izations of IVIPs called the inverse quasi-variational inequality problems [10,11].

Let � : R
n → 2R

n
be a set-valued mapping with nonempty, closed, convex

point values and f : R
n → R

n be a single-valuemapping. Throughout this article,
we consider the inverse quasi-variational inequality problem, denoted by IQVIP,
which is to find x∗ ∈ R

n such that

f (x∗) ∈ �(x∗) and 〈x∗, y − f (x∗)〉 ≥ 0 ∀ y ∈ �(x∗). (1)

In recent years, many researchers have widely studied dynamical systems for
solving related optimization problems such as variational inequalities, fixed prob-
lems and monotone inclusions (see, e.g. [12–16]). Through the discrete forms of
dynamical systems, numerous algorithms have been proposed for solving associ-
ated VIPs andmonotone inclusions. Motivated by dynamical system approaches,
in latest investigation [11], S. Dey and S. Reich have suggested an algorithm for
solving IQVIP and simultaneously established linear convergence of the sequence
generated by this algorithmunder a restricted condition on� (which is called the
moving set condition)

�(x) = g(x) + �, (2)

where g : R
n → R

n is l-Lipschitz continuous and� is a nonempty closed convex
subset of R

n. In this paper, we revisit this proposed order dynamical system{
ẋ(t) + α(t)

(
f (x) − P�(x)(f (x) − λx)

) = 0,
x(0) = x0,

(3)

where x0 is an arbitrary in R
n and study the projection algorithm derived from

the discretization of (3)

xn+1 = xn + αn
[
P�(xn)(f (xn) − λxn) − f (xn)

]
. (4)

The linear convergence of (4) was obtained in [11, Theorem 6.1] under the
moving set condition (2) on � and the following question was posted:

Does Theorem 6.1 hold for more general set-valued mappings? This question
remains open.

The first aim of this paper is to provide a positive answer for this question.
We will prove the linear convergence of sequence generated by (4) to the unique
solution for general set-valued mapping �.
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The second aim of this paper is to investigate the applications of QIVIs in road
pricing problems [8] and network equilibrium control problem [17]. We empha-
size that in previous works, researchers simulated and tackled these problems in
the form of IVI problems with the fixed constrain for link flows in traffic network
(for road pricing problem) or amount of production and consumption (for net-
work equilibrium control problem). However in the real life, these problems can
become more complicated. For example, as mentioned in [10] for road pricing
problem, we assume that the effects of traffic flow on environment are a func-
tion predetermined through statistics of data. First, the policy-makers attempt to
manage the environment impact by limiting the traffic flowwithin a range of cer-
tain lower and upper bounds. To do this, some tolls are imposed on some lines in
network. However, the taxes also effect traffic flows, hence cause the change on
environment impact. Thus it is difficult to maintain the previous fixed bounds
on environment impact function. Therefore, the policy-makers expect to adjust
environment impact constraints depending on the imposed tolls on lines in net-
work, which lead to a model of IQVI problem. This is a main motivation making
us generalize the IVI problems to IQVI problems and study the algorithms for
solving them. In our numerical experiment of road pricing problem, we take
the flexible constraint of link flow function into account instead of environment
impact function for simplicity. In addition, we discuss why the IQVI problem is
more appropriate than IVI problem to express the network equilibrium control
problem in the practical model.

In Section 2,we recall somebasic definitions and results. In Section 3,we estab-
lish the linear convergence of the sequence generated by the projection algorithm.
Finally, we discuss applications and provide numerical examples in Section 4.

2. Preliminaries

We will recall some definitions about Lipschitz continuity and monotonicity of f
as follows (see, e.g. [18]):

• f is L-Lipschitz continuous on R
n if there exists L>0 such that ‖f (x) −

f (y)‖ ≤ L‖x − y‖ for all x, y ∈ R
n.

• f is monotone on R
n if for any x, y ∈ R

n we have 〈f (x) − f (y), x − y〉 ≥ 0.
• f is γ -strongly monotone on R

n if for any x, y ∈ R
n we have 〈f (x) − f (y), x −

y〉 ≥ γ ‖x − y‖2.Obviously, if f is strongly-monotone on R
n, then f is mono-

tone on R
n.

Let x ∈ R
n and K is a nonempty closed convex subset of R

n. The metric
projection of x on K, denoted by PK(x), is a unique element of K such that
‖x − PK(x)‖ ≤ ‖x − y‖ for all y ∈ K. We recall two important properties of
metric projection as follows [19].
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Theorem 2.1: For any x, z ∈ R
n we have

(a) ‖PK(x) − PK(z)‖ ≤ ‖x − z‖ (nonexpansivity of PK(.));
(b) 〈x − PK(x), y − PK(x)〉 ≤ 0, ∀ y ∈ K.

Remark 2.1: To the IQVIP (1), in the case where the set-valued mapping � :
R
n → 2R

n
has nonempty, closed and convex point values, it is not difficulty to

check that x∗ is a solution of IQVIP (1) if and only if it is a solution to the
projection equation

f (x) = P�(x)(f (x) − λx),

where λ > 0 is a fixed constant.

We recall conditions to establish the existence and uniqueness of solu-
tion to the inverse quasi-variational inequality problem (IQVIP) (1) (see [11],
Theorem 3.2).

Theorem 2.2: Let � : R
n → 2R

n be a set-valued mapping with nonempty, closed
and convex point values and f : R

n → R
n be a L-Lipschitz continuous and γ -

strongly monotone mapping. If there exists κ > 0 such that

‖P�(x)(z) − P�(y)(z)‖ ≤ κ‖x − y‖ ∀ x, y, z ∈ R
n

and √
L2 − 2γ λ + λ2 + κ < λ,

where λ > 0 is a constant, then the inverse quasi-variational inequality problem (1)
has a unique solution.

The existence and uniqueness of the trajectory of dynamical system (3) are
stated in the following result (see [11], Theorem 4.1).

Theorem 2.3: Let � : R
n → 2R

n be a set-valued mapping with nonempty, closed
and convex point values and f : R

n → R
n be a L-Lipschitz continuous mapping.

Assume that the parameter α(t) ∈ C([0,+∞)), the set of all continuous functions
from [0,+∞) into itself, and there exists a number κ > 0 such that

‖P�(x)(z) − P�(y)(z)‖ ≤ κ‖x − y‖ ∀ x, y, z ∈ R
n.

Then there exists a unique solution of the dynamical system (3).
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3. Linear convergence analysis

A finite-difference scheme for dynamical system (3) with respect to time variable
t, with stepsize hn > 0 and initial point x0, yields the following iterative scheme:

xn+1 − xn
hn

= αn{P�(x)(f (xn) − λxn) − f (xn)},

which is equivalent to

xn+1 = xn + αnhn{P�(x)(f (xn) − λxn) − f (xn)}.

If hn = 1, we can rewrite above scheme as

xn+1 = xn + αn
[
P�(xn)(f (xn) − λxn) − f (xn)

]
. (5)

The linear convergence of the projection method (5) is established as follows.

Theorem 3.1: Let � : R
n → 2R

n be a set-valued mapping with nonempty, closed
and convex point values and f : R

n → R
n be L-Lipschitz continuous and γ -

strongly monotone. Assume that

η := γ − κ − 1
2

− 1
2
L2 − 1

2
λ2 + λγ > 0, (6)

where κ satisfies

‖P�(x)(z) − P�(y)(z)‖ ≤ κ‖x − y‖ ∀ x, y, z ∈ R
n (7)

and √
L2 − 2γ λ + λ2 + κ < λ. (8)

Let {αn} in scheme (5) such that

0 < M < αn < N, where (9)

0 <
N2

M
<

2η
(2L + κ + λ)2

. (10)

Then the sequence {xn} generated by algorithm (5) converges linearly to the unique
solution of the IQVIP (1).

Proof: First, under the conditions (7) and (8), it follows from Theorem 2.2 that
the IQVIP (1) has a unique solution, denoted by x∗. On the one hand, using the
nonexpansiveness of the projection and the Lipschitz continuity of f, for x ∈ R

n
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we have

‖ (
f (x) − P�(x)(f (x) − λx)

) − (
f (x∗) − P�(x∗)(f (x∗) − λx∗)

) ‖
≤ ‖f (x) − f (x∗)‖ + ‖P�(x)(f (x) − λx) − P�(x∗)(f (x∗) − λx∗)‖
≤ L‖x − x∗‖ + ‖P�(x)(f (x) − λx) − P�(x)(f (x∗) − λx∗)‖

+ ‖P�(x)(f (x∗) − λx∗) − P�(x∗)(f (x∗) − λx∗)‖
≤ L‖x − x∗‖ + ‖(f (x) − λx) − (f (x∗) − λx∗)‖ + κ‖x − x∗‖
≤ (L + κ)‖x − x∗‖ + ‖f (x) − f (x∗)‖ + λ‖x − x∗‖
≤ (2L + κ + λ)‖x − x∗‖. (11)

On the other hand, since f is L-Lipschitz and γ -stronglymonotone, κ satisfies (7),
we have

〈f (x) − P�(x)(f (x) − λx), x − x∗〉
= 〈(f (x) − P�(x)(f (x) − λx)

) − (
f (x∗) − P�(x∗)(f (x∗) − λx∗)

)
, x − x∗〉

= 〈f (x) − f (x∗), x − x∗〉 − 〈P�(x)(f (x) − λx)

− P�(x∗)(f (x∗) − λx∗), x − x∗〉
≥ γ ‖x − x∗‖2 − 〈P�(x)(f (x) − λx) − P�(x)(f (x∗) − λx∗), x − x∗〉

− 〈P�(x)(f (x∗) − λx∗) − P�(x∗)(f (x∗) − λx∗), x − x∗〉
≥ γ ‖x − x∗‖2 − 〈P�(x)(f (x) − λx) − P�(x)(f (x∗) − λx∗), x − x∗〉

− ‖P�(x)(f (x∗) − λx∗) − P�(x∗)(f (x∗) − λx∗)‖‖x − x∗‖

≥ γ ‖x − x∗‖2 − 1
2
‖x − x∗‖2 − 1

2
‖P�(x)(f (x) − λx)

− P�(x)(f (x∗) − λx∗)‖2 − κ‖x − x∗‖2

≥
(

γ − κ − 1
2

)
‖x − x∗‖2 − 1

2
‖(f (x) − λx) − (f (x∗) − λx∗)‖2

=
(

γ − κ − 1
2

)
‖x − x∗‖2 − 1

2
‖f (x) − f (x∗)‖2 − 1

2
λ2‖x − x∗‖2

+ λ〈f (x) − f (x∗), x − x∗〉

≥
(

γ − κ − 1
2

− 1
2
L2 − 1

2
λ2 + λγ

)
‖x − x∗‖2, (12)

or equivalently

〈P�(x)(f (x) − λx) − f (x), x − x∗〉 ≤ −η‖x − x∗‖2. (13)
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Note that f (x∗) − P�(x∗)(f (x∗) − λx∗) = 0, combining (11) and (12), we obtain

‖f (x) − P�(x)(f (x) − λx)‖2

≤ (2L + κ + λ)2‖x − x∗‖2

≤ (2L + κ + λ)2

η
〈f (x) − P�(x)(f (x) − λx), x − x∗〉

= −(2L + κ + λ)2

η
〈P�(x)(f (x) − λx) − f (x), x − x∗〉. (14)

Let {xn} be the sequence generated by the scheme (5), we obtain

‖xn+1 − x∗‖2 = ‖xn − x∗ + αn
[
P�(xn)(f (xn) − λxn) − f (xn)

] ‖2

= ‖xn − x∗‖2 + α2
n‖P�(xn)(f (xn) − λxn) − f (xn)‖2

+ 2αn〈xn − x∗, P�(xn)(f (xn) − λxn) − f (xn)〉. (15)

Setting yn = P�(xn)(f (xn) − λxn) and combining with (14), it follows from (15)
that

‖xn+1 − x∗‖2

≤ ‖xn − x∗‖2 − α2
n
(2L + κ + λ)2

η
〈xn − x∗, yn − f (xn)〉

+ 2αn〈xn − x∗, yn − f (xn)〉

= ‖xn − x∗‖2 +
(
2αn − α2

n
(2L + κ + λ)2

η

)
〈xn − x∗, yn − f (xn)〉

≤ ‖xn − x∗‖2 − η

(
2αn − α2

n
(2L + κ + λ)2

η

)
‖xn − x∗‖2

=
(
1 − ηαn

(
2 − αn

(2L + κ + λ)2

η

))
‖xn − x∗‖2, (16)

where the last inequality is deduced from (9), (10) and (13). For every αn > 0, let
T(αn) defined by

T(αn) =
√
1 − ηαn

(
2 − αn

(2L + κ + λ)2

η

)
,

we can rewrite (16) as

‖xn+1 − x∗‖ ≤ T(αn)‖xn − x∗‖.
Using the above inequality n times, we obtain

‖xn+1 − x∗‖ ≤
n∏

k=0

T(αk)‖x0 − x∗‖. (17)
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Using the conditions (9) and (10), we get

T(αk)
2 = 1 − 2ηαk + (2L + κ + λ)2α2

k

< 1 − 2ηM + (2L + κ + λ)2N2 = r < 1. (18)

Combining (17) with (18), we obtain

0 ≤ ‖xn+1 − x∗‖ ≤ rn/2‖x0 − x∗‖,
which implies that {xn} converges linearly to solution x∗. �

Remark 3.1: In particular, we choose αn = α is a constant. From above proof,
we obtain that the sequence {xn} converges linearly to the solution x∗ with the

rate r =
√
1 − ηα(2 − α

(2L+κ+λ)2

η
). Obviously, the rate r attains its minimum

valuewhen q(α) = 2ηα − (2L + κ + λ)2α2 takes its biggest value on the interval
(0,+∞). It is not difficult to verify that q(α) attains its maximum value at α∗ =

η

(2L+κ+λ)2
and the best value of r is r∗ =

√
1 − η2

(2L+κ+λ)2
.

We demonstrate two small examples in R
2 to show the linear convergence of the

sequences generated by algorithm (5).

Example 3.1: In R
2, let �1(x1, x2) = R(x1, x2) where R(x1, x2) is the closed

rectangle restricted by four lines x = |x1|, x = −|x1|, y = |x2|, y = −|x2|. Let f :
R
2 → R

2 defined by f (x) = Axwhere
[
A = 3.2 2−0.6 1

]
. We consider the IQVIP (1).

First, we can easily prove that � satisfies (7) with κ = 1, which means

‖P�1(x)(z) − P�1(y)(z)‖ ≤ ‖x − y‖ ∀ x, y, z ∈ R
2.

Besides, since the matrix A = [ 3.2 2−0.6 1
]
is positive definite with eigenvalues are

2.2 and 2, f is 2.2-Lipschitz continuous and 2-strongly monotone. Therefore we
obtain L = 2.2 and γ = 2. We choose λ = 2 and verify the condition (6) by

η := γ − κ − 1
2

− 1
2
L2 − 1

2
λ2 + λγ = 0.08 > 0.

It is easy to check that (0, 0) is a solution of the IQVIP (5). Moreover, since

λ −
√
L2 − 2γ λ + λ2 − κ ≈ 0.083 > 0,

by Theorem 2.2, we obtain that the IQVIP (1) has a unique solution. There-
fore, (0, 0) is a unique solution of the IQVIP (1). We choose the parameter
αn = α = 0.00146 <

η

(2L+κ+λ)2
satisfying (9). Figure 1 illustrates the points gen-

erated by scheme (5) to the unique solution x∗ = (0, 0) with initial points
(5, 3), (−5, 3), (5,−3) and (−5,−3).
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Figure 1. Performance of sequences generated by scheme (5) for different starting points.

Example 3.2: In R
2, let �2(x1, x2) = OR(x1, x2) where OR(x1, x2) is the closed

rectangle restricted by four lines x = x1, x = 0, y = x2, y = 0. Let f : R
2 → R

2

defined by f (x) = Ax where A = [ 3 4−0.2 1.2
]
. We consider the IQVIP (1).

First, we can easily prove that �2 satisfies (7) with κ = 1, which means

‖P�2(x)(z) − P�2(y)(z)‖ ≤ ‖x − y‖ ∀ x, y, z ∈ R
2.

Besides, since the matrix
[
A = 3 4−0.2 1.2

]
is positive definite with eigenvalues are

2.2 and 2, f is 2.2-Lipschitz continuous and 2-strongly monotone. Therefore, we
obtain L = 2.2 and γ = 2. We choose λ = 2 and verify the condition (6) by

η := γ − κ − 1
2

− 1
2
L2 − 1

2
λ2 + λγ = 0.08 > 0.

It is easy to check that (0, 0) is a solution of the IQVIP (5). Moreover, since

λ −
√
L2 − 2γ λ + λ2 − κ ≈ 0.083 > 0,

by Theorem 2.2, we obtain that the IQVIP (1) has a unique solution. There-
fore, (0, 0) is a unique solution of the IQVIP (1). We choose the parameter
αn = α = 0.00146 <

η

(2L+κ+λ)2
satisfying (9). Figure 2 illustrates the points gen-

erated by scheme (5) to the unique solution x∗ = (0, 0) with initial points
(5, 3), (−5, 3), (5,−3) and (−5,−3).

4. Applications and numerical experiments

4.1. Traffic assignment problems

In this section, we demonstrate a practical example as in [8,20] which is
involved in traffic assignment, called road pricing problem. After that, we will
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Figure 2. Performance of sequences generated by scheme (5) for different starting points.

use algorithm (5) to find the solution for this problem. Particularly, we take the
continuous time road pricing into account, in which the government wants to
manage some vehicle flows fi on special links i in the network by charging the
extra tolls xi (with i ∈ I is the subset of links in network). More details, ini-
tially the authority hope that the imposed taxes will control the link flows in
predetermined range. However, as we explained in introduction, the govern-
ment prefers to control the link flows within a range depending in imposed
tolls. As mathematical interpreter, we can express that the link flow must sat-
isfy: f (x) ∈ �(x), where�(x) is themulti-value function of charged tolls defined
as �(x) = {y : gi(x) ≤ yi ≤ hi(x)} = {y : g(x) ≤ y ≤ h(x)} (note that from now
on, we use the notation ‘ ≤′ and ‘ ≥′ inR

n with point-wise ordermeaning). From
that, we can understand the continuous pricing problem as: Find xi(t) such that
limt→∞ f (x(t)) ∈ �(x(t)). Using the discussions in [20, Section 5], we similarly
obtain the Lagrangian function as

L(f , ν, θ) =
∑
i∈I

[νi(hi − fi)(x) + θi(fi − gi)(x)],

where ν and θ are multiplier vectors. It follows from the Karush–Tuhn–Tucker
(KKT) optimally condition that the equilibrium traffic flows f ∗i must satisfy

{
ν∗
i ≥ 0; hi − f ∗i ≥ 0; ν∗

i (hi − f ∗i ) = 0 ∀ i ∈ I,
θ∗
i ≥ 0; f ∗i − gi ≥ 0; θ∗

i (f ∗i − gi) = 0 ∀ i ∈ I.
(19)

We observe that νi > 0 and θi > 0 cannot occur simultaneously (at that time,
gi = fi = hi), so we can define the control variable (i.e. toll) as xi = νi − θi for
each link i ∈ I. From (19), we have that, if f ∗i = hi, then f ∗i > gi, then θ∗

i = 0.
Since x∗

i = ν∗
i − θ∗

i , we have x
∗
i ≥ 0. On the other hand, if f ∗i = gi, then f ∗i < hi.

Using (19) again, we can deduce ν∗
i = 0. Since x∗

i = ν∗
i − θ∗

i , we get x∗
i ≤ 0.
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Figure 3. Road pricing problem with four bridge network.

Obviously, if gi < f ∗i < hi, then ν∗
i = θ∗

i = 0 or x∗
i = 0. In summary, in each sit-

uation, we always obtain (y − f (x∗))Tx∗ ≤ 0, ∀y ∈ �(x∗). Hence, this problem
can be rewritten as: find the toll x∗ such that

f (x∗) ∈ �(x∗) and (y − f (x∗))Tx∗ ≤ 0, ∀ y ∈ �(x∗).

We will transfer above problem to basic form of IQVI problem (1). Set F = −f ,
we can rewrite above problem as

F(x∗) ∈ −�(x∗) and (y + F(x∗))Tx∗ ≤ 0, ∀ y ∈ �(x∗),

or equivalently

F(x∗) ∈ −�(x∗) and (y − F(x∗))Tx∗ ≥ 0, ∀ y ∈ −�(x∗). (20)

We employ the detail traffic network in [8] shown in Figure 3. This network
includes 8 nodes and 16 links connecting these nodes. As we can see, the links
1, 2, 3, 4 are four bridges, which connecting origin Oi with destination Dj. With
the demands between OD pairs given in Table 1, we can see that the old bridge
2 is overload and the new bridge 3 is still have room for more vehicles in range
of its capacity. Hence, the government’s purpose is managing the flows in three
links 1, 2, 3 ( e.g.: reduces the flows in link 2 and increase the flows in link 3) by
imposing tolls on them. In this case, we assume that the authorities attempt to
maintain the link flow f satisfying g(x) ≤ f (x) ≤ h(x), where g(x) = x + G and
h(x) = x + H, where G = (40, 0, 100)T and H = (90, 50, 200)T . We verify eas-
ily that the �(x) satisfying the condition (7). As we can see in algorithm (5), we
need the value of link flows fi for calculating the next imposed tolls. In the real
world, we can collect this data through observing the vehicle volumes passing
the bridges after tolls are imposed. Assume that traffic flows satisfy user’s equi-
librium and the link performance function is strongly monotone. In this study,
to simplify, we just compute the value of link flows by solving a fixed-demand
user equilibrium traffic assignment. In this traffic assignment problem, the data



12 T. Q. TRINH AND P. T. VUONG

Table 1. Origin–destination demand table.

Demand O1 O2 O3 O4

D1 60 30 20 15
D2 50 160 45 30
D3 20 30 20 10
D4 20 15 15 40

Table 2. Link free flow travel time and capacity.

Link i 1 2 3 4 5 6 7 8 9 10

t0i 60 40 60 20 20 20 20 20 20 20
ci 150 100 300 200 300 300 300 300 300 300

about OD demands, the free flow travel times and the link capacities are given in
Tables 1 and 2, respectively. Note that the free flow travel times and the link capac-
ities in link 5-16 are the same for each term. To describe the impact of imposed
tolls on link flows, we suppose the cost of a vehicle passing bridges i is the sum
of travel time and imposed toll on this link. The relationship between link travel
time ti with the link flows fi is the Bureau of Public Roads (BPR) function:

ti(fi) = t0i

[
1 + 0.15

(
fi
ci

)4
]
,

where fi, t0i and ci denote link flow, free flow travel time and capacity on link i,
respectively. Except for neighbourhood of zero, the BPR function satisfies the
strongly monotone property. Hence, we will implement Algorithm (5) to solve
the dynamic road pricing problem.

In our numerical experiment, we use fixed stepsize λ and scaling factorα. Note
that f = −F,P−�(xn)(F(xn) − λxn) = −P�(xn)(f (xn) + λxn). Thus, for the IQVI
problem in (20), the projection algorithm (5) becomes

xn+1 = xn + α[P−�(xn)(F(xn) − λxn) − F(xn)]

= xn + α[f (xn) − P�(xn)(f (xn) + λxn)].

Recall that in this case the solution x∗ must satisfy the projection equation

F(x) = P−�(x)(F(x) − λx),

which is equivalent to

f (x) = P�(x)(f (x) + λx).

Therefore, we define the rn = ‖α(P�(xn)(f (xn) + λxn) − f (xn))‖ as the residual
of the projection algorithm (5) and use it to demonstrate the convergence rate of
this algorithm.

In first experiment, we apply the projection algorithm (5) with λ = 0.5 and
α = 0.02 and the result is depicted in Figure 4. In roundly initial 50 time step,
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Figure 4. Flows on three bridges and convergence rate of the projection algorithm (5) with λ =
0.5 and α = 0.02.

the traffic flows on three bridges change considerably. After that, the link flow on
each bridge becomesmore stable and after the step 90, the residual becomes lower
than 0.1. The tolls in three bridges are 25.24, 60.36 and 6.84 correspondingly with
the flows 116.10, 111.22 and 207.69. At the time step 150, we can observe that the
residual is approximately 0.03 and the tolls xi almost satisfy authority’s condition
with tiny differences. In comparison with toll on bridge 3, the toll on bridge 2 is
significantly higher, therefore meets the requirement from policy-makers which
is to restrict the vehicles flow on bridges 2 (from 170 to 111.22). Meanwhile, the
toll in bridge 1 is reasonable to keep the link flow on bridge 1 in the range of its
capacity. In the real life, the authority can adjust the condition� flexibly tomatch
certain situation, such as reduce the link flow on bridge 2 to its maximum capac-
ity, and simultaneously increase the link flows on bridges 1 and 3 to acceptable
level.

In the second experiment, we run the projection algorithm (5) with larger step
size λ = 0.8 and larger scalar factor α = 1/30 and the result is shown in Figure 5.
In comparison with the first, three of bridge flows converge considerably faster.
Especially, they change dramatically with first 20 time steps. After about 35 time
steps, the trajectories of three of link flows are stable and the residual becomes
lower than 0.1 after 70 time steps. Besides, at the time step 150, the residual is
relatively 0.005 which is significantly more precise than that in first experiment
and the tolls meet the authority’s requirement. Therefore, we can conclude that
our second experiment is better than the first one.

If we keep the stepsize λ = 0.5 in first experiment and choose a larger scalar
α = 1/6, our bridge flows does not converge as shown in Figure 6. Note that from
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Figure 5. Flows on three bridges and convergence rate of the projection algorithm (5) with λ =
0.8 and α = 1/30.

Figure 6. Flows on three bridges and convergence rate of the projection algorithm (5) with λ =
0.5 and α = 1/6.

the conditions (9) and (10), we can deduce that

α <
α2

M
<

N2

M
<

2η
(2L + κ + λ)2

. (21)

Thus α in this experiment breaks above condition and causes the instability of
trajectories of link flows.
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4.2. Network equilibrium control problems

At first, we recall the spatial price problem which received many attentions from
researchers, such as Nagurney [21,22], He et al. [17] and Thore [23]. In this prob-
lem, one seeks to compute the commodity supply prices, demand prices and costs
from trade or transportation. The equilibrium condition states that the demand
price is equal to the supply price plus cost from trade or transportation when
we already know both supply and demand functions. When the demand price
is smaller than supply price plus transportation cost, there will be no profit and
merchants will not decide to trade. Thus this problem can be considered as the
optimization problem of merchant’s profit.

However, sometimes the authority wants to control the commodity flows from
supply to demandmarkets for special reasons. For example, the government usu-
ally imposes tax or subsidy to adjust the amount of import or export of some
special kinds of food for ensuring national food security. Another example is in
the national energy problems, where the authority always attempts to encourage
the production and consumption of clean energy and restrict the production and
consumption of non-renewable resources. Hence, to reach such goal, one possi-
ble way for the policy-maker is to impose higher tax to reduce the production
at supply markets and consumption at demand market or provide subsidy to get
the opposite thing. Therefore, from the government’s perspective, this problem
becomes the network equilibrium problem in which the objective they attempt
to control is the amount of trading through the policy implemented on supply
and demand markets. Researchers are also interested in the models where the
tax or subsidy works as policy intervention. For example, in the model of He
et al. [17], they expect to control the amount of supply and demand resources
in a given range, then formulate this control problem to an inverse variational
inequality problem. In our study, we expect further to control the amount of
demand and supply in a range depending in the imposed tax, which is more
flexible in practical problem. After that, we rewrite this network control equilib-
rium problem as an inverse quasi-variational inequality problem and implement
the projection algorithm (5) for solving it. This is the novelty value in our
model.

Next, we will introduce a bipartite market equilibrium depicted in Figure 7 for
one commodity. There are m supply markets and n demand markets denoted
by Si, i = 1, 2, . . . ,m and Dj, j = 1, 2, . . . , n, respectively. To simplify, for i =
1, . . . ,m and j = 1, . . . , n, we use following notations:

• yij: the amount of commodity transported from Si to Dj
• si: amount of production at the supply market Si
• dj: amount of consumption at the demand market Dj
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Figure 7. Bipartite market network equilibriummodel.

• pi, qj : tax of the commodity on the supply market Si and demand market Dj,
respectively

• tij: the transportation cost from supply market Si to demand market Dj
• ki: purchase price of the commodity at supply market Si
• lj: sale price of the commodity at demand market Dj.

Obviously, the amount of commodity at supply market Si is equal to sum of
commodity shipments from Si to all demand markets Dj. Hence si = ∑n

j=1 yij.
Similarly, dj = ∑m

i=1 yij. Besides, commodity’s prices at the supply and demand
markets are effected by the amount of production and consumption, respectively;
and the costs of transportation tij depend on the amount of commodity shipment
yij. Therefore, we assume ki = ki(si), lj = lj(dj) and tij = tij(yij).

As above-mentioned, the market equilibrium condition means that between
a pair of markets, if the purchase price at the supply market plus cost (consist
of tax and transportation cost) is equal to the sale price at the demand market
minus the commodity tax, then there is trade. Besides, if the purchase price at
the supply market plus cost is higher than the sale price at the demand market
minus the commodity tax, then there is no trade. Thuswe express the equilibrium
condition as follows:

ki + pi + tij

{
= lj − qj, if yij �= 0,
≥ lj − qj, if yij = 0.

(22)

We can rewrite the condition (22) as

yij ≥ 0, yTij (ki + pi + tij − (lj − qj)) ≥ 0, ∀ i = 1,m, j = 1, n. (23)
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Let En = (1, 1, . . . , 1) is a row matrix with n elements equal to 1 and In is the
identity matrix in R

n×n. We denote

A =

⎛
⎜⎜⎝
En 0 . . . 0
0 En . . . 0

. . . . . . . . . . . .

0 0 . . . En

⎞
⎟⎟⎠ ∈ R

m×mn and B = (In, In, . . . , In) ∈ R
n×mn.

Since si = ∑n
j=1 yij and dj = ∑m

i=1 yij, we also demonstrate the supply and
demand as

s = Ay and d = By.

Thuswe rewrite the condition (23) as the formof a variational inequality problem

y ≥ 0, (y′ − y)T{t(y) + AT[k(s) + p] − BT[l(d) − q]} ≥ 0, ∀ y′ ≥ 0. (24)

Now, the authority implements control policy to regulate the amount of pro-
duction and consumption by imposing tax on supply and demand markets. Let
u = (u1, u2, . . . , um)T and v = (v1, . . . , vn)T denote the changes of taxes on m
supply and n demand markets. Combining with (24), we have a new VI problem
as

y ≥ 0, (y′ − y)T{t(y) + AT[k(s) + p + u] − BT[l(d) − (q + v)]} ≥ 0,

∀ y′ ≥ 0. (25)

Let x = (u, v)T is the change of imposed tax, we will obtain the value of equilib-
rium shipment y(x) by solving the VI problem (25). Moreover, the total supply
and demand at the equilibrium state can be computed as

s(x) = Ay(x) and d(x) = By(x).

Let us convert the network equilibrium control problem under the government’s
perspective into the IQVI problem. Let f : R

m+n → R be the function of amount
of supply and demand at the markets, defined as f (x) = (s(x), d(x))T . In our
model, the policy-makers suppose to adjust the amount of supply and demand
in flexible ranges depending on the change of imposed tax, given by �(x) =
{b ∈ R

m+n : g(x) ≤ b ≤ h(x)}. As we explained above, once the new taxes are
imposed, our market will determine new equilibrium state which is described
in (25). We assume that total supply and demand f (x) satisfies the upper bound
depending on change of imposed tax x ≥ 0 because the government wants to
reduce the amount of commodity. Hence, the optimal control variable x∗ and the
amount of supply and demand f (x∗) at the equilibrium state must satisfy

x ≥ 0, f (x) ≤ h(x), (f (x) − h(x))Tx = 0. (26)

Denote Hx = {w ∈ R
m+n : w ≤ h(x)}, we can rewrite equivalently the prob-

lem (26) as

f (x∗) ∈ Hx∗ , (w − f (x∗))Tx∗ ≤ 0, ∀ w ∈ Hx∗ . (27)
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Lemma 4.1: The problems in (26) and (27) are equivalent.

Proof: In fact, if x∗ is a solution of (26), then (f (x∗) − h(x∗))Tx∗ = 0 and
f (x∗) ≤ h(x∗). Hence, x∗ ∈ Hx∗ . Furthermore, for any w ∈ Hx∗ , we have

(w − f (x∗))Tx∗

= (w − h(x∗))Tx∗ + (h(x∗) − f (x∗))Tx∗ = (w − h(x∗))Tx∗ ≤ 0,

which shows that x∗ is a solution of (27).
On another hand, if x∗ is a solution of (27), then f (x∗) ≤ h(x∗). Besides,

choose w = h(x∗) ∈ Hx∗ , we have

(h(x∗) − f (x∗))Tx∗ ≤ 0.

If we choose w = 2f (x∗) − h(x∗) ≤ 2h(x∗) − h(x∗) = h(x∗), then w ∈ Hx∗ .
Thus we obtain

(f (x∗) − h(x∗))Tx∗ ≤ 0.

Hence, (f (x∗) − h(x∗))Tx∗ = 0. Lastly, we assume that there exists x∗
i < 0 is the

ith element of x∗. We choose w such that wj = fj(x∗), j �= i and wi = fi(x∗) − 1.
Then w ∈ Hx∗ and (w − f (x∗))Tx∗ > 0 which contradicts (27). Hence, x∗ ≥ 0 is
a solution of (26). �

With the opposite purpose, if the policy-makers want to encourage the con-
sumption and production then the imposed taxes need to be reduced. Therefore,
the change of tax x ≤ 0 and the amount of commodity f (x) satisfy f (x) ≥ g(x).
Similarly, we deduce that x∗ is a solution of the following problem:

x ≤ 0, f (x) ≥ g(x), (f (x) − g(x))Tx = 0,

if and only if x∗ is the solution of the problem

f (x∗) ∈ Gx∗ , (w − f (x∗))Tx∗ ≤ 0, ∀ w ∈ Gx∗ ,

where Gx = {w ∈ R
m+n, g(x) ≤ w}.Thus, with the condition g(x) ≤ f (x) ≤

h(x), our network equilibrium control problem can be rewritten as: find the x∗
such that

f (x∗) ∈ �(x∗) and (w − f (x∗))Tx∗ ≤ 0, ∀ w ∈ �(x∗). (28)

As in the traffic assignment problem, with F = −f, the problem (28) can be
rewritten as an IQVI problem: Find the x∗ ∈ R

m+n such that

F(x∗) ∈ −�(x∗) and (w − F(x∗))Tx∗ ≤ 0, ∀ w ∈ −�(x∗). (29)

As thematter of fact, due to the lawof supply anddemand,we can observe that the
purchase price will increase with the higher demand while the sale price does the
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opposite, it will increase when the supply becomes smaller. Besides, if the ship-
ment increases, one need to use greater number of means of transportation, then
the transportation costs will not decrease. Thus we can assume that the functions
k, l and t satisfy

(s − s′)T(k(s) − k(s′)) ≥ 0, ∀ s ∈ R
m
+, (30)

(d − d′)T(l(d) − l(d′)) ≤ 0, ∀ d ∈ R
n
+ (31)

and

(y − y′)T(t(y) − t(y′)) ≥ 0, ∀ y ∈ R
mn
+ . (32)

Lemma 4.2: Under the conditions (30), (31) and (32), the function F in (29) is
monotone.

Proof: In fact, let x1 = (u1, v1), x2 = (u2, v2) ∈ R
m+n and y1, y2 are, respectively,

the solution of VI problem (25). Let s1 = Ay1, d1 = By1, s2 = Ay2 and d2 = By2.
Since y1 is the solution of (25), with y′ = y2, we have

(y2 − y1)Tt(y1) + (s2 − s1)T(k(s1) + p + u1) − (d2 − d1)T(l(d1) − q − v1)

≥ 0. (33)

Similarly, since y2 is the solution of (25), with y′ = y1, we get

(y1 − y2)Tt(y2) + (s1 − s2)T(k(s2) + p + u2) − (d1 − d2)T(l(d2) − q − v2)

≥ 0. (34)

Adding (33) and (34) together and rearranging, we deduce

(s2 − s1)T(u1 − u2) + (d2 − d1)T(v1 − v2)

≥ (y2 − y1)T(t(y2) − t(y1)) + (s2 − s1)T(k(s2) − k(s1))

− (d2 − d1)T(l(d2) − l(d1))

≥ 0, (35)

where the second inequality is deduced from (30), (31) and (32). Note that the
left-hand side of (35) is (f (x2) − f (x1))T(x1 − x2), therefore with F = −f, we get

(F(x1) − F(x2))T(x1 − x2) ≥ 0.

Hence, F is monotone. �

Next, for the IQVI problem (29), we need more assumptions as follows.

(A1) The mapping F is strongly monotone and Lipschitz continuous.
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(A2) The solution set of IQVI problem (29) is nonempty.
(A3) With given toll x on supply and demand markets, the amount of produc-

tion and consumption f (x) is computed through commodity shipment y,
which is received exactly from solving the VI problem (25).

To implement the projection algorithm (5), we consider network equilibrium
problem with m = 10, n = 30. To establish the functions t, k and l fulfilling the
conditions (30), (31) and (32), respectively, we prioritize to use linear functions
as follows:

t(x) = Tx + T , k(s) = Ks + K, l(d) = −Ld + L, (36)

where T and T aremn-diagonal matrices and elements tii and Tii on diagonal are
randomly given in (0.1, 0.2) and (10, 20), respectively; K and K are m-diagonal
matrices and elements Kii and Kii on diagonal are randomly given in (1, 2) and
(270, 370), respectively; L and L are n-diagonal matrices and elements Lii and
Lii on diagonal are randomly given in (1, 2) and (620, 720), respectively. Besides,
we set pi = 30 and qj = 20 for i = 1, . . . ,m and j = 1, . . . , n. With the construc-
tion (36), note that s = Ay and d = By, the VI problem (25) can be rewritten as:
Find y ≥ 0 such that

(y′ − y)T
(
(T + ATKA + BTLB)y + AT(K + p + u) + BT(q + v − L)

)
≥ 0,

∀ y′ ≥ 0. (37)

SetM = T + ATKA + BTLB andN = AT(K + p + u) + BT(q + v − L), the VI
problem (37) becomes

y ≥ 0, (y′ − y)T(My + N) ≥ 0, ∀ y′ ≥ 0, (38)

which is a linear VI problem. In summary, the projection algorithm (5) works as
follows. For the given toll xn = (un, vn)T , we employ the projection–contraction
method in [24] to solve linear VI problem (38) (we take γ = 1.8 and error ε1 =
0.1), then gain the value y(xn). Compute s(xn) = Ay(xn) and d(xn) = B(yn), we
obtain the value f (xn) = (s(xn), d(xn))T . The update of toll xn+1 with fixed scalar
α and stepsize λ is

xn+1 = xn + α
[
P−�(xn)(F(xn) − λxn) − F(xn)

]
= xn + α

[
f (xn) − P�(xn)(f (xn) + λxn)

]
. (39)

Let �(x) = {w ∈ R
m+n|g(x) ≤ w ≤ h(x)}, where gi(x) = 0 and hi(x) = xi +

160, i = 1, . . . ,m and gm+j(x) = 20, hm+j(x) = xm+j + 60, j = 1, . . . , n. It is not
difficult to verify that � satisfies the condition (7) with κ = 1. Because the pro-
jection algorithm (5) follows the form of scheme (39), we continue using the
term rn = α‖f (xn) − P�(xn)(f (xn) + λxn)‖ to show the convergence rate of this
algorithm.
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Figure 8. Residual of the projection algorithm (5) with α = 0.1 and λ = 0.005.

We start with x0 = (0, 0)T , which means that the toll has not been changed.
Solving the linear VI problem (25), we obtain the supply and demand at the
beginning with

max
1≤i≤10

si(0) = 203.17, max
1≤j≤30

dj(0) = 102.04,

which is out of range of the constraint �(0). Thus the authority needs to adjust
tax and makes the production and consumption meet the expected constraints.

First, we choose the scalar α = 0.1 and the stepsize λ = 0.005, the perfor-
mance of algorithm (5) within 450 step is depicted in Figure 8.We can see that the
residual attains linear convergence and its value decreases rapidly after roughly
first 20 steps. Then, it decreases gradually and becomes approximately 1 at the
step 450.

Next, we choose both greater scalar α = 0.25 and stepsize λ = 0.01. As
demonstrated in Figure 9, the projection algorithm (5) still guarantees the lin-
ear convergence. Furthermore, in this case the residual converges significantly
faster than that in the first experiment, especially within about first 100 steps. It
takes the value about 0.01 at the step 100 and keep decreasing after that.

Finally, we keep the scalar α = 0.1 as in the first implement and choose the
greater stepsize λ = 0.2. The result is illustrated in Figure 10. In this situation,
the residual does not converge and Algorithm (5) fails. As in the last experiment
in Traffic assignment problem, the reason could be because α and λ break the
condition in (21).
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Figure 9. Residual of the projection algorithm (5) with α = 0.25 and λ = 0.01.

Figure 10. Residual of the projection algorithm (5) with α = 0.1 and λ = 0.2.

5. Conclusion

We have revisited the projection algorithm for solving inverse quasi-variational
inequalities with a general constraint function. We established the linear conver-
gence of the iterations computed by the projection algorithm and demonstrated
the convergent rate by numerical examples. We note that the theoretical results
obtained in this paper still hold in infinite dimensional Hilbert spaces. In the
application side, we discussed the inverse quasi-variational inequalities in traffic
assignments and network equilibrium problems and provided some numerical
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experiments. Further applications of IQVI models in practical problems and
extensive numerical tests are reserved for future research.
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