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Abstract: Background
Body composition assessment using abdominal computed tomography (CT) images is
increasingly applied in clinical and translational research. Manual segmentation of
body compartments on L3 CT images is time-consuming and requires significant
expertise. Robust high-throughput automated segmentation is key to assess large
patient cohorts and ultimately, to support implementation into routine clinical practice.
By training a deep learning neural network (DLNN) with several large trial cohorts and
performing external validation on a large independent cohort, we aim to demonstrate
the robust performance of our automatic body composition segmentation tool for future
use in patients.
Methods
L3 CT images and expert-drawn segmentations of skeletal muscle, visceral adipose
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tissue, and subcutaneous adipose tissue of patients undergoing abdominal surgery
were pooled (n = 3,187) to train a DLNN. The trained DLNN was then externally
validated in a cohort with L3 CT images of patients with abdominal cancer (n = 2,535).
Geometric agreement between automatic and manual segmentations was evaluated
by computing two-dimensional Dice Similarity (DS). Agreement between manual and
automatic annotations were quantitatively evaluated in the test set using Lin’s
Concordance Correlation Coefficient (CCC) and Bland-Altman’s Limits of Agreement
(LoA).
Results
The DLNN showed rapid improvement within the first 10,000 training steps and
stopped improving after 38,000 steps. There was a strong concordance between
automatic and manual segmentations with median DS for skeletal muscle, visceral
adipose tissue, and subcutaneous adipose tissue of 0.97 (interquartile range, IQR:
0.95-0.98), 0.98 (IQR: 0.95-0.98), and 0.95 (IQR: 0.92-0.97), respectively.
Concordance correlations were excellent: skeletal muscle 0.964 (0.959-0.968), visceral
adipose tissue 0.998 (0.998-0.998), and subcutaneous adipose tissue 0.992 (0.991-
0.993). Bland-Altman metrics (relative to approximate median values in parentheses)
indicated only small and clinically insignificant systematic offsets : 0.23 HU (0.5%),
1.26 cm2.m-2 (2.8%), -1.02 cm2.m-2 (1.7%), and 3.24 cm2.m-2 (4.6%) for skeletal
muscle average radiodensity, skeletal muscle index, visceral adipose tissue index, and
subcutaneous adipose tissue index, respectively. Assuming the decision thresholds by
Martin et al. for sarcopenia and low muscle radiation attenuation, results for sensitivity
(0.99 and 0.98 respectively), specificity (0.87 and 0.98 respectively), and overall
accuracy (0.93) were all excellent.
Conclusion
We developed and validated a deep learning model for automated analysis of body
composition of patients with cancer. Due to the design of the DLNN, it can be easily
implemented in various clinical infrastructures and used by other research groups to
assess cancer patient cohorts or develop new models in other fields.
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Author Comments: Re MS# JCSM-D-23-00160
Validation of a deep learning model for automatic segmentation of skeletal muscle and
adipose tissue on L3 abdominal CT images.

Dear Dr. Skipworth, Dear Dr. Anker and Dr. von Haehling,

We would like to thank you and the reviewers for providing a critique of our work and
granting us the opportunity to resubmit our work. We believe that the changes we have
made (highlighted in bold and red text) will address the concerns raised. Below this
letter are our specific responses to the critique by the reviewers.

Our manuscript presents a deep learning neural network which has been trained for
automatic body composition segmentation on L3 CT-images, using several large
patient cohorts (n=3187). We then externally validated our model on a large cohort
(n=2535)
consisting of pancreatic and colon cancer patients. The algorithm performed excellent
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compared with manual segmentations.

In the field of AI tools for potential clinical use, we think that robust, fully  inter-
institutional and large-scale external testing with unseen datasets remain a rarity.
Therefore the quality and robustness of study in this work is rare and remains highly
deserving of attention. We believe work such as this will be highly cited as a new
benchmark for this topic. What stands out is that the algorithm was able to successfully
segment "challenging" scans (e.g. with anatomic variations) due to the large
heterogeneous patient cohorts it had been trained on. The algorithm is an ideal tool to
study large patient cohorts with relative ease, which would otherwise be impossible to
assess manually. In addition, due to the design of the algorithm and integration of
automatic L3 selection, it can be easily implemented in various clinical infrastructures
and used by other research groups to assess cancer patient cohorts or develop new
models in other fields.

I hope that you will agree that this study is of sufficient quality and novelty to merit
publication in the Journal of Cachexia, Sarcopenia and Muscle.

Sincerely,

David P.J. van Dijk, MD, PhD
On behalf of the team
 
Response to reviewers' comments:

Reviewer #2:

1.Comment: These results and conclusion are replicating existing work and already old
news. There are numerous papers that have not only shown L3 segmentation for SKM,
VAT, SAT but also IMAT (which wasn't covered here) and go a step beyond to finding
the L3 automatically. Line 58 states that "Scientifically, our L3 segmentation tool
enables assessment of large (incl. historical) cohorts that would be unfeasible to
segment manually". This is also not accurate as the task of extracting the L3 manually
hasn't been automated, which would present a significant bottleneck in the analysis of
large cohorts.

Response (1/3): Thank you for your comment, however in the field of AI tools for
potential clinical use, we think that robust, fully  inter-institutional and large-scale
external testing with unseen datasets remain a rarity. Therefore the quality and
robustness of study in this work is rare and remains highly deserving of attention. We
believe work such as this will be highly cited as a new benchmark for this topic.
Automatic L3 extraction was not the focus of this algorithm nor is it novel of itself,
because fully stand-alone automatic L3 selection tools already existed for a long time
and is sometimes part of vendor-provided standard CT-scanner software packages.
However, we do agree with the reviewer that some method of automatic L3 vertebra
extraction remains important for using the tool in large cohorts or for clinical
implementation. To this end, adopted a highly modular software design (i.e. the
chaining together of highly specialized “narrow AI” components) and thus incorporated
the Total Segmentator externally validated whole-body segmentation deep learning
model into our workflow (TotalSegmentator).

Added: Methods, p10, lines 15-22: “For use on large cohorts and for ease of future
clinical implementation, automatic vertebra localization is necessary. We have
integrated a state-of-the-art externally validated and  open-source tool known as
TotalSegmentator (https://github.com/wasserth/TotalSegmentator)14,15. In keeping
with the “narrow AI” paradigm, we have chained together highly specialized AI tools for
each task. TotalSegmentator was first used for automated segmentation of all visible
vertebrae in a volumetric CT study. The resulting labelled masks were used to locate
all the slices intersecting L3, and then we selected the CT slices closest to the centre
of the segmented object (see Figure S2).”
AND
Results, p14, lines 7-10: “We tested the accuracy of L3 mid-slice localization from
TotalSegmentator using a small independent test cohort of 30 subjects. The tool
correctly extracted the CT-slice at L3 in 30 out of 30 cases (100%).”
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AND
Discussion, p16 lines 15-22: “For volumetric CTs as input, an important consideration
is how to select the slice intersecting the middle of the L3 vertebra, and more generally
in case the user arbitrarily wishes to select some other vertebra. In keeping with the
“narrow AI” paradigm, we have elected to implement a modular software design such
that highly specialized DLNN are joined up sequentially in a workflow to accomplish a
meaningful task. For the present, we integrated the state-of-the-art and validated
TotalSegmentator tool to automatically localize spinal vertebrae. If a superior vertebrae
segmentation tool should emerge in future, we could relatively easily adapt our
workflow to incorporate the new tool, compared to “all-in-one” monolithic software
design.”

Response (2/3): Regarding IMAT: this was purposefully not included in the algorithm
because IMAT is very heterogeneously distributed within and among skeletal muscles
(Bhullar et al. J Cachexia Sarcopenia Muscle. 2020 Jun;11(3):735-747),
invalidating/complicating accurate quantification of its volume based on single-slice
analysis.

Response (3/3): With regard to the novelty of this study: Our deep learning neural
network was trained on CT-slices of >3000 individual patients, with different types of
cancer/disease, from different centres, that were previously manually segmented by
different researchers trained in body composition analysis. This heterogeneity created
a highly robust algorithm which can handle challenging CT-slices (i.e. suboptimal
patient positioning, anatomical variations; which is the clinical reality). To our
knowledge, we are the first group to successfully validate an algorithm on a completely
different external patient cohort (of >2500 slices), again with different cancer types and
manual segmentation (as ground truth) performed by external researchers trained in
body composition analysis. In the discussion section, we discussed the differences and
novelties of our algorithm compared to the other published algorithms in more detail
(page 16, lines 1-9): “Some other automated segmentation tools have been developed.
The largest cohort (n=12,128) was used for development of the AI tool published by
Magudia et al.14 Their tool performed well with similar dice scores to our algorithm.
Their training cohort only included 604 pancreatic cancer patients while the large (n=
12,128) hospital dataset was used to derive reference curves. However, the large
hospital dataset only included patients without cancer and cardiovascular disease,
making it less applicable to a clinical population of subjects with cancer who frequently
display body composition alterations. In addition, analysis of CT-scans of cancer
patients can be more challenging due to anatomic abnormalities and suboptimal
patient positioning. As patients with cancer were excluded, the tool by Magudia et al.
could perform worse in cancer cohorts. Our analyses did not exclude patients with
anatomical variations or unconventional patient positioning, likely resulting in a more
robust segmentation tool. Dabiri et al. published an automated segmentation tool which
was trained on two cohorts of patients with cancer (n=2529).21 Their segmentation tool
performed similarly well compared with our segmentation tool. However, in contrast to
our study, they did not perform external validation, making it uncertain how their AI
performs in other cohorts.”

2.Comment: Conclusion is stated as following: "Due to the design of the DLNN, it can
be easily implemented in various clinical infrastructures and used by other research
groups to assess cancer patient cohorts or develop new models in other fields."
However, there is no evidence to support this conclusion. Implementation in various
clinical infrastructures is anything but easy and no trained model weights are offered to
the community (DLNN code offering is useless as it is not so difficult a project to build a
DLNN in a few lines of code now).

Response: We agree with the reviewer that implementation in clinical infrastructure can
be challenging. However the comment of the reviewer, that the main thing is to write a
few lines of code to make a DLNN, is also highly inaccurate. The first true challenge of
AI implementation is to have sufficiently massive dataset for training and then once
again for robust interstitutional validation, which we have achieved and is relevant with
regards to writing a few lines of code. The second challenge is to embed the DLNN
tools within a workflow that is useable by radiographers and clinicians. To that end, we
have embedded the complexity of the workflow into a web browser-based graphical
user interface. Additionally, the code for the DLNN architecture and untrained model is
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made publicly available and open access, thus it is even unnecessary for future
workers to write any lines of code. A non-profit service is also provided for external
institutional users; access to the trained model can be requested via the public website
www.mosamatic.com.

Added: Data availability statement: p18 line 8: “The trained model is available upon
request trough www.mosamatic.com.”
Modified: Conclusion, p 17 lines 16-20: “To simplify future use and potential integration
of the DLNN-based automated segmentation workflow, we have incorporated the steps
into a web browser-based graphical user interface. Clinical implementation within our
own institution is not within the scope of this study, but is the subject of a future study.
For external institutional users who wish to access the trained model for research,
please see data availability statement.”

3.Comment: Ultimately, all efforts that seek to improve the state of art in body
composition deserve support and on that basis, this paper deserves to be published
somewhere and will likely get published somewhere. Maybe if this project actually did
some level of analysis of some interesting cancer cachexia/sarcopenia cohort linking to
clinical outcomes, as part of that larger effort, a new method development can be
explained and published in JCSM. If presenting methodological development
replicating already known knowledge as has been submitted, then, in my humble
opinion, since there is nothing exciting or novel that this paper contributes to the
knowledge base in the sarcopenia and cachexia community, it does not merit a
publication in JCSM.

Response: See answer 1 for novelty and impact. The objective of this project was to
provide an externally validated automatic deep learning body composition
segmentation algorithm to the scientific community. A clean methodological paper
facilitates future use in large clinical cohorts by different research groups with different
research topics. In our opinion, adding a clinical outcome to this paper would make the
paper less readable and less approachable by other research groups.

Reviewer #3:

4.Comment: Its not entirely clear if the L3 images are still having to be individually, by
the researcher, extracted, saved as a DICOM and then analysed by the DLNN of if the
program finds the appropriate image given the whole scan? It is this process which is
the most time consuming and would be best automated.

Response: In this study, all L3 images provided by the external validation institution
(Glasgow) had been extracted manually from their respective CT studies. Therefore,
automated selection was not strictly needed. However, for ease of future use and
potential clinical studies, we have already integrated a standalone deep-learning based
whole-body segmentation tool to automatically locate all visible spinal vertebrae in
volumetric CTs into our processing workflow (please see our response above to
Reviewer #2).

5.Comment: Following on from this point it would be good to include in the discussions
some of the limitations of the program and how it can be developed going forward.

Response: We agree with the reviewer that it is important to state limitations of the
DLNN and potential improvements. We therefore added the following section to the
discussion section.

Added: Discussion, p16-17, lines 23-6: “While the DLNN showed excellent
performance, even with challenging CT-scans, it has its limitations. In particular,
analysis of CT-scans of patients with anatomical abnormalities (e.g. large abdominal
hernia, colostomy, profound edema) or of patients with abnormal/non-standard
positioning in the CT-scanner can lead to (partially) incorrect segmentations. Such
challenging CT-images should then be manually corrected and stored prospectively. In
due time, this cohort of “challenging CT-images” can be used to retrain and improve
the DLNN. In addition, different deep learning segmentation algorithms will have
different limitations depending on the cohort. A comparative study using both healthy
individuals and different patient groups could provide insight into how these different
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algorithms perform and if one algorithm is preferred over the other in specific cohorts.”

6.Comment: Page 8 Line 9 'Subjects' I do think this would benefit from a better title to
acknowledge these are patients. As with Line 11 'abdominal surgical subjects' - I think
should be replaced with something more appropriate like 'A total of 3,187 patients
requiring abdominal surgery who had undergone a CT scan prior to surgery
contributed..' (see 'patient' characteristics).

Response: We agree with the reviewer and changed the text accordingly.

Changed: Methods: p8 lines 3-6: “Patients, A total of 3,187 patients requiring
abdominal surgery who had undergone a CT scan prior to surgery contributed by 32
distinct centres were used for DLNN development (see general patient characteristics
in Table 1).”

Reviewer #4:

7.Comment: There are several published NN for body composition analysis, and the
authors comment on page 6 that other methods may be underpowered. It would
therefore be interesting to see how other NN perform on the cohorts used in this
manuscript. Can the authors run published algorithms, such as by Magudia et al. or the
DAFS platform from Voronoi, and compare their performance (including accuracy and
speed) to their NN? This would be a valuable demonstration of the utility of their
method - or at least its performance compared to others.

Response: We agree with the reviewer that a comparison with other published DLNNs
would offer much insight, particularly to see if some algorithms are preferred over
others in certain (patient) cohorts. Such a comparative study has been initiated and will
be performed and published in due course. We added the importance of a comparative
study in the discussion section.

Added: Discussion, p17 lines 2-6: “In addition, different deep learning segmentation
algorithms will have different limitations depending on the selected cohort. A
comparative study using both healthy individuals and different patient groups could
provide insight in how these different algorithms perform and if one algorithm is
preferred over the other in specific cohorts.”

8.Comment: The authors should specify the hardware environment/requirements on
which this analysis is run, and also provide information on computation time, since the
authors comment on the significant reduction in labour between manual and
automated - would be nice to see that exact comparison exactly for their method and
therefore the obvious utility if integrated into clinical practice at some point.

Response: Indeed, the time saved by automatic segmentation vs manual segmentation
is enormous, especially for large cohorts. We added a comparison between manual
and automatic segmentation time, as well as technical requirements needed to run the
algorithm.

Added: Results, p12 11-15: Segmentation speed, The DLNN was able to segment a
single CT-image in around 2 seconds and the whole external validation cohort in
around 90 minutes only using the CPU. Considering that an experienced clinical
researcher train in body composition analysis needs a minimum of 2-5 minutes to
segment a single CT-image, the use of automatic segmentation can potentially save
months of work when assessing large cohorts.
AND
Methods, p10 lines 12-13: “The trained algorithm can run easily on a conventional
office laptop with standard specifications.”

9.Comment: It is not completely clear how the NN manages hands, arm and other
extraneous objects - were these recognised and filtered out? There is mention of other
methods not taking this into account, but I can't tell if it was considered here.

Response: Generally, patients included in the training and validation cohorts did not
have their arms on the CT-image. However, we have tested our algorithm before in
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trauma patients (in which many patients had one or both arms displayed in the CT-
image) and the algorithm performed well. This was mentioned in the introduction
(Introduction, p7 lines 5-10): “In previous work, the DLNN that is the subject of this
paper was independently validated using a large polytrauma patient cohort extracted
from the same university hospital, albeit at a different department and for a clinically
distinct setting. This was nonetheless considered a challenging validation attempt due
to the large variation in patient positioning (including arms and hands appearing inside
the field of view) as well as radiation artifacts (e.g., from metal devices attached to the
patient). Even with this challenging cohort, the present DLNN model performed very
well.”

10.Comment: Even though the original model was published in a separate paper
previously, it would be useful to have a description of the training cohort characteristics
underlying the model, in order to understand how this validation cohort compares to it,
and the degree of comparable clinical demographics. Can the authors also comment
on any concerns, if any, in the 3187 cohort of patients with different, as opposed to
one, types of cancers?

Response: As the training set consisted of several international cohorts, we do not
have access to the full set of patient characteristics. Their main characteristics are
summarized in table 1. We deliberately chose cohorts from a variety of (international)
centres, as well as different disease and cancer types. This prevents overfitting of the
AI-model (e.g. to a single disease type or specific medical centre).

Changed: Discussion, P 16, lines 9-11: “Our analyses did not exclude patients with
anatomical variations or unconventional patient positioning, which prevents overfitting
the model to a specific patient group and will likely result in a more robust
segmentation tool.”

11.Comment: In the discussion, the authors state that data “supports the use of body
composition analysis in the standard diagnostic work-up”. These statements are
controversial, since any diagnostic measures should have relevant clinical implications
– given the uncertainties regarding the independent prognostic effect of body
composition alterations across different cancer types and histologies within a single
cancer type, and the fact that there are no tailored medical interventions to address the
impact of e.g. low SAT with proven patient benefit, I would recommend to reword this
statement and highlight the caveats.

Response: We agree with the reviewer that it is still too early to provide treatment
advice based on body composition. Automatic body composition segmentation will
greatly facilitate data collection and creation of larger cohorts for specific cancers and
their subtypes, potentially enabling clinical implementation in the future. We have
changed our phrasing in the discussion section:

Changed: Discussion p15, lines 5-7: Larger cohorts are needed for each cancer type,
as these could support the use of body composition analysis in the standard diagnostic
work-up, and potentially aid in clinical treatment decision-making.

12.Comment: Also in the discussion, and an extension of my concerns as above re:
emphasis of clinical utility without mentions of specific clinical scenarios or potential
caveats, the messaging would benefit from some consideration as to exactly how
clinical treatment decision making would be influenced - more intense follow up? more
frequent imaging? additional treatment if deemed high risk? and so on. That said, I do
like the idea that body composition combined with other risk factors has the potential to
be more powerful in terms of its clinical risk predictive ability.

Response: We agree with the reviewer that it is important to pay attention to/discuss
the potential implications of body composition analysis for clinical practice. We
therefore suggested several hypothetical uses and added potential scenarios.

Added: Discussion p15, lines 11-16: “In the end, integrating body composition data
with established prognostic factors such as tumour stage may improve prediction of a
patient’s prognosis. A combined tumour and host focused approach would provide a
basis for clinical trials aimed at exploring whether body composition-based prognostic
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information can be used as a basis for treatment decision making (e.g. palliative intent
instead of curative intent, or indication for/selection of (neo)adjuvant therapy).”
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Abstract 1 

 2 

Background 3 

Body composition assessment using abdominal computed tomography (CT) images is increasingly applied 4 

in clinical and translational research. Manual segmentation of body compartments on L3 CT images is time-5 

consuming and requires significant expertise. Robust high-throughput automated segmentation is key to 6 

assess large patient cohorts and ultimately, to support implementation into routine clinical practice. By 7 

training a deep learning neural network (DLNN) with several large trial cohorts and performing external 8 

validation on a large independent cohort, we aim to demonstrate the robust performance of our automatic 9 

body composition segmentation tool for future use in patients. 10 

Methods 11 

L3 CT images and expert-drawn segmentations of skeletal muscle, visceral adipose tissue, and 12 

subcutaneous adipose tissue of patients undergoing abdominal surgery were pooled (n = 3,187) to train a 13 

DLNN. The trained DLNN was then externally validated in a cohort with L3 CT images of patients with 14 

abdominal cancer (n = 2,535). Geometric agreement between automatic and manual segmentations was 15 

evaluated by computing two-dimensional Dice Similarity (DS). Agreement between manual and automatic 16 

annotations were quantitatively evaluated in the test set using Lin’s Concordance Correlation Coefficient 17 

(CCC) and Bland-Altman’s Limits of Agreement (LoA). 18 

Results 19 

The DLNN showed rapid improvement within the first 10,000 training steps and stopped improving after 20 

38,000 steps. There was a strong concordance between automatic and manual segmentations with median 21 

DS for skeletal muscle, visceral adipose tissue, and subcutaneous adipose tissue of 0.97 (interquartile range, 22 

IQR: 0.95-0.98), 0.98 (IQR: 0.95-0.98), and 0.95 (IQR: 0.92-0.97), respectively. Concordance correlations 23 

were excellent: skeletal muscle 0.964 (0.959-0.968), visceral adipose tissue 0.998 (0.998-0.998), and 24 

subcutaneous adipose tissue 0.992 (0.991-0.993). Bland-Altman metrics (relative to approximate median 25 

values in parentheses) indicated only small and clinically insignificant systematic offsets : 0.23 HU (0.5%), 26 
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1.26 cm2.m-2 (2.8%), -1.02 cm2.m-2 (1.7%), and 3.24 cm2.m-2 (4.6%) for skeletal muscle average 1 

radiodensity, skeletal muscle index, visceral adipose tissue index, and subcutaneous adipose tissue index, 2 

respectively. Assuming the decision thresholds by Martin et al. for sarcopenia and low muscle radiation 3 

attenuation, results for sensitivity (0.99 and 0.98 respectively), specificity (0.87 and 0.98 respectively), and 4 

overall accuracy (0.93) were all excellent. 5 

Conclusion 6 

We developed and validated a deep learning model for automated analysis of body composition of patients 7 

with cancer. Due to the design of the DLNN, it can be easily implemented in various clinical infrastructures 8 

and used by other research groups to assess cancer patient cohorts or develop new models in other fields. 9 

 10 
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Introduction 1 

 2 

Body composition assessment using routine abdominal computed tomography (CT) images is increasingly 3 

applied in clinical and translational research. By measuring the tissue area at the level of the third lumbar 4 

vertebra (L3) and scaling for subject height, precise assessments of total body mass of skeletal muscle (SM), 5 

visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) can be made.1 Body composition 6 

has been found to be highly independently predictive of survival, especially among cancer patients. In 7 

particular, low skeletal muscle mass (i.e., sarcopenia), low adipose tissue mass, and decreased skeletal 8 

muscle radiodensity (i.e., myosteatosis) have been shown to be associated with shorter overall survival in 9 

various cancer types.2-4 10 

Body composition exhibits substantial  heterogeneity among people due to natural variation in age, sex, 11 

race, and build.5 These intrinsic inter-personal differences are unrelated to disease and may therefore 12 

obscure disease related body composition effects, necessitating large population-based data cohorts to 13 

adjust for them. 14 

Manual segmentation of body compartments on L3 CT images is time-consuming and requires significant 15 

expertise. Therefore, robust high-throughput automated segmentation is key to body composition 16 

assessment in large patient cohorts and ultimately, to support implementation of body compositon 17 

assessment into routine clinical practice. A deep learning neural network (DLNN) can be an essential part 18 

of such an automated workflow.  19 

One challenge for developing a robust DLNN is that patients do not always have the ideal CT scans for 20 

body composition assessment, such that variable orientation of the patient, degradation of image quality 21 

due to radiation artefacts, and individual-specific anatomical attributes may result in poor performance of 22 

an automated segmentation algorithm.6 A systematic review revealed that one in three DLNN studies of 23 

body composition segmentation have been developed with less than 100 unique human subjects, and more 24 

than half of the reviewed studies used exclusively single-institutional datasets.7 Robust DLNNs need to be 25 

trained on datasets that are large enough to incorporate the heterogeneity created by a variety of scanners, 26 
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image acquisition settings, image reconstruction kernels, patient positioning protocols, and sufficiently high 1 

heterogeneity of subject clinical presentations. Additionally, the quantitative performance of DLNNs need 2 

to be comprehensively evaluated with external test datasets sourced from a wholly independent clinical 3 

workflow and a separate clinical setting from the one used to train the DLNN.8 4 

In previous work, the DLNN that is the subject of this paper had been independently validated using a large 5 

polytrauma patient cohort extracted from the same university hospital, albeit at a different department and 6 

for a clinically distinct setting.9 This was nonetheless considered a challenging validation attempt due to 7 

the large variation in patient positioning (including arms and hands appearing inside the field of view) as 8 

well as radiation artifacts (e.g., from metal devices attached to the patient). Even with this challenging 9 

cohort, the present DLNN model performed very well. 10 

A robust, fully inter-institutional and large-scale external testing with useen datasets is needed for 11 

developing a quality AI tool for potential clinical use. This paper presents the first validation of the 12 

Mosamatic DLNN in a surgical oncology cohort using data from a separate hospital, using previously 13 

unseen scanners, with independent radiology scan protocols, and with reference delineations provided by 14 

independent clinicians.  15 

  16 
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Patients and methods 1 

 2 

Patients 3 

A total of 3,187 patients requiring abdominal surgery who had undergone a CT scan prior to surgery 4 

contributed by 32 distinct centres were used for DLNN development (see general patient 5 

characteristics in Table 1). These comprised of de-identified data abstracted from previously ethics board-6 

approved clinical studies; permission for secondary analysis was obtained via the principal investigators of 7 

the respective studies. We used L3 CT slices from: three colorectal liver metastases trials - two from 8 

multiple sites across the UK and a single-institution study in The Netherlands; two ovarian cancer trials 9 

among five participating Dutch centers; and one pancreatic cancer trial of patients operated either in 10 

Aachen, Germany, or in Maastricht, the Netherlands. 11 

An independent external validation set comprised 2,535 L3 CT slices at different time intervals taken from 12 

1,054 unique subjects diagnosed with either resectable colorectal or pancreatic cancer (see Table 1).10,11 13 

Ethical approval was granted by the West of Scotland Research Ethics Committee, Glasgow.  14 

 15 

Image acquisition and reference segmentations 16 

The aforementioned datasets comprised CT scans from a broad range of equipment vendors and image 17 

acquisition settings. Images were archived in DICOM (Digital Imaging and Communications in Medicine) 18 

format. Table S1 (see online supplementary materials) summarizes the diverse imaging settings as recorded 19 

in DICOM metadata. 20 

All human-made segmentations in this study were created with Slice-o-matic (Tomovision, Quebec, 21 

Canada). Regions of interest (ROIs) were defined using standardized Hounsfield Unit (HU) ranges (SM: -22 

29 to +150, VAT: -150 to -50, SAT: -190 to -30). Absolute areas were normalized by physical height 23 

squared to derive skeletal muscle index (SMI), visceral adipose tissue index (VATI), and subcutaneous 24 

adipose tissue index (SATI).  Mean HU in SM at L3 was used as the skeletal muscle radiation attenuation 25 
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(SMRA). All human reference segmentations were made by clinical researchers trained to perform body 1 

compostion analysis in Slice-o-matic. 2 

Previously published analyses on the external validation dataset had been made with ImageJ (National 3 

Institutes of Health, v1.47, http://rsbweb.nih.gov/ij/), but this method was shown to overestimate adipose 4 

tissue areas relative to other software.12 Every validation subject in this study was therefore independently 5 

re-annotated in Slice-o-matic by the original data owners. To ensure consistency for direct comparison, we 6 

re-computed areas and mean HU for all subjects with independent Python code, and confirmed equivalent 7 

values with each version of Slice-o-matic used to 2 decimal places or better. 8 

 9 

Deep learning neural network (DLNN) 10 

A DLNN for multi-label segmentation of SM, VAT, and SAT was built from a canonical 2D U-Net,13 with 11 

minor change in the input layer to match the dimensions of a CT slice (512x512). An essential development 12 

for this work was to chain two independently-trained U-Net networks; the first U-Net was developed to 13 

segment the whole abdomen, whilst ignoring hands, arms, CT mattress and extraneous medical devices that 14 

sometimes appeared in the CT field of view. The second U-Net was specialized for segmenting SM, VAT, 15 

and SAT within the abdominal outline detected by the first U-Net (see online supplementary materials 16 

Figure S1 and its accompanying text). 17 

Pixel intensities were clipped to the range [-500, +500] HU for the abdomen segmentation network. The 18 

reference abdominal region was generated by computing the outermost continuous contour of the human 19 

expert’s SAT region before morphologically filling in every pixel inside. The range of intensities was 20 

further clipped to [-200, +200] HU to train the multi-label segmentation of muscle and fat. In each network, 21 

clipped intensities were scaled between [0,1] via standard min-max normalization. Pre-processed CT 22 

images where stored and handled in DICOM format. Human expert segmentations were extracted from 23 

Slice-o-matic in its proprietary TAG format and converted to Python (NumPy) array objects before training 24 

the deep learning model. 25 
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Hands, arms, and other extraneous objects were rare within the training set, thus we synthetically over-1 

sampled images with extraneous objects outside the abdomen until they comprised 50% of each training 2 

batch while developing the abdomen U-Net. To train the muscle and fat multi-level segmentation network, 3 

all available 3,187 subjects were randomly shuffled and split into 80% for training and 20% for validation. 4 

Given the relatively large sample size, a (non-overlapping) 80-20 split is superior to alternative methods 5 

like K-fold cross-validation where each validation block ultimately ends up being “seen” by the training 6 

algorithm, potentially introducing bias due to data leakage. More details of DLNN construction have been 7 

provided in online supplementary materials. 8 

CT slices and human-drawn (reference) annotations for the external validation were not revealed until the 9 

final DLNN model had been selected and all its model weights permanently fixed. Pre-processing of the 10 

test set followed the same steps as aforementioned. The full DLNN code (stripped of all trained models and 11 

patient data) is made open access (see data availability statement). The trained algorithm can run easily 12 

on a conventional office laptop with standard specifications. 13 

 14 

Automatic L3-selection 15 

For use on large cohorts and for ease of future clinical implementation, automatic vertebra 16 

localization is necessary. We have integrated a state-of-the-art externally validated and  open-source 17 

tool known as TotalSegmentator (https://github.com/wasserth/TotalSegmentator).14,15 In keeping 18 

with the “narrow AI” paradigm, we have chained together highly specialized AI tools for each task. 19 

TotalSegmentator was first used for automated segmentation of all visible vertebrae in a volumetric 20 

CT study. The resulting labelled masks were used to locate all the slices intersecting L3, and then we 21 

selected the CT slices closest to the centre of the segmented object (see Figure S2). 22 

 23 

Analysis 24 

Geometric agreement was evaluated by using 2D Dice Similarity (DS) comparing the DLNN segmentations 25 

of SM, SAT, and VAT against the corresponding annotation made by human experts. DS computes the area 26 
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of the intersection between human and DLNN segmentations as a fraction of half the summated area 1 

(human-drawn area plus DLNN-drawn area). Perfect geometric agreement implies DS = 1, and if the 2 

intersection area is zero then DS = 0. Agreement of SMI, VATI, SATI, and SMRA between manual and 3 

automatic annotations were quantitatively evaluated in the test set using Lin’s Concordance Correlation 4 

Coefficient (CCC) and Bland-Altman’s Limits of Agreement (LoA) (with and without repeated 5 

measurements). By using the human-drawn annotations in the test set as reference and then applying the 6 

risk classification supplied by Martin et al,2 we computed the diagnostic performance (sensitivity, 7 

specificity, balanced accuracy, and agreement kappa) of the DLNN results. Statistical analyses were 8 

performed in R (version 4.2.0).  9 
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Results 1 

 2 

Model training 3 

Total loss and DS curves in the training dataset show DLNN model convergence within about 40,000 steps 4 

(see Figure S3). There was rapid improvement within the first 10,000 steps but DS was largely stable 5 

thereafter. Total (Dice+L2) loss continued to decrease gradually but we stopped model training after 38,000 6 

steps, since there was very little to gain with further training. The DLNN weights after the last training step 7 

were thus fixed as the “final model” for subsequent testing. The established segmentation tool was named 8 

MosaMatic. 9 

 10 

Segmentation speed 11 

The DLNN was able to segment a single CT-image in around 2 seconds and the whole external 12 

validation cohort in around 90 minutes. Considering that an experienced clinical researcher trained 13 

in body composition analysis needs a minimum of 2-5 minutes to segment a single CT-image, the use 14 

of automatic segmentation can potentially save months of work when assessing large cohorts. 15 

 16 

Concordance between manual and DLNN segmentations 17 

The overall distribution of DS for SM, VAT, and SAT in the quarantined validation dataset are summarized 18 

in the box-whisker plot shown in Figure 1(a). The median DS for SM was 0.97 (interquartile range, IQR: 19 

0.95-0.98), with a tail of outliers down to a minimum DS of 0.45. The distributions of DS for VAT (median: 20 

0.98, IQR: 0.95-0.98) and SAT (median: 0.95, IQR: 0.92-0.97) were highly skewed, with extreme outliers 21 

landing near zero (these were patients with very small amounts of total adipose tissue). The DS is known 22 

to be overly sensitive for small volumes, and this can also be seen in our results – Figure 1(b, c, and d). 23 

Lin’s CCC evaluation of SMRA, SMI, VATI, and SATI comparing expert segmentations (as reference) 24 

and DLNN results (as test) was excellent, as shown in Figure 2 (a-d). Numerical measures of the 25 

concordance correlation coefficient (CCC), bias correction factor for slope of agreement, and finally the 26 
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Bland-Altman intervals of agreement without repeated scans are provided in Table 2. The CCC ranges from 1 

0.964 (for SMI) up to 0.998 (for VATI). The errors in the agreement slope, as indicated by deviation from 2 

the dotted line in Figure 2, were all close to unity, indicating no major deviations from the ideal, which is 3 

supported by bias correction multipliers being better than 0.991 (i.e. no correction implies 1.00). Based on 4 

our large cohort, median in vivo values (which are in reality age- and sex-dependent) of SMRA, SMI, VATI 5 

and SATI roughly fall in the vicinity of 50 HU, 45 cm2.m-2, 60 cm2.m-2 and 70 cm2.m-2. The Bland-Altman 6 

metrics (with percentages in parentheses) indicate only small systematic offsets of 0.23 HU (1.0%), 1.26 7 

cm2.m-2 (2.9%), 1.02 cm2.m-2 (2.5%), and 3.24 cm2.m-2 (4.9%) for SMRA, SMI, VATI, and SATI, 8 

respectively. The upper and lower limits of the Bland-Altman tests indicate SATI had the widest random 9 

variation component (-6.7 to 13 cm2.m-2). Most importantly for risk stratification by muscle fat content, the 10 

random noise component of SMRA was estimated at about 2 to 3 HU in magnitude, and correspondingly 11 

for SMI about 3 to 5 cm2.m-2 in magnitude.  12 

 13 

Consistent concordance for repeated measurements 14 

In 449 subjects, we obtained a repeated CT image at varying time intervals ranging from within a month 15 

up to 12 months. Whereas the scope of this study was not to objectively quantify longitudinal precision, we 16 

can already derive some preliminary insight into stability with repeated imaging over time using this data. 17 

The concordance plots for SMRA, SMI, VATI, and SATI for repeated scans are equivalent to Figure 2 (see 18 

Figure S4). There was no evidence of divergence from the high concordance observed in the agreement on 19 

primary CTs. According to CCC metrics and Bland-Altman limits with repeated measures, there are no 20 

notable changes between agreement of body composition indices between primary (top half of Table 2) and 21 

repeat scans (bottom half of Table 2).  22 

 23 

Accuracy  24 

We tested the clinical significance of using the DLNN segmentations with respect to a change in 25 

stratification for sarcopenia and low SMRA using the widely used thresholds defined by Martin et al.2 26 
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Overall accuracy of stratification was 0.93 for sarcopenia (sensitivity: 0.99, specificity: 0.87) and 0.98 for 1 

low SMRA (sensitivity: 0.98, specificity: 0.98). The discretized agreement (Cohen’s inter-rater kappa) was 2 

0.85 for sarcopenia and 0.96 for low SMRA, which is generally considered as being excellent. For 3 

completeness, a 2x2 confusion matrix for sarcopenia and low SMRA is included in the online supplemental 4 

materials as Figure S5. 5 

 6 

Automatic L3-selection 7 

We tested the accuracy of L3 mid-slice localization from TotalSegmentator using a small 8 

independent test cohort of 30 subjects. The tool correctly extracted the CT-slice at L3 in 30 out of 9 

30 cases (100%). 10 

 11 

Discussion 12 

In this study, we present our high performing and externally validated deep learning model for automated 13 

segmentation of CT-based L3 slices. Due to its excellent performance in both internal and external 14 

validation cohorts, the DLNN-generated segmentation can reliably replace manual segmentation when 15 

performing body composition assessment. This opens up new possibilities both in clinical and scientific 16 

settings, such as cost- and time-effective clinical implementation and large cohort/population studies.  17 

Clinically and subject to clinical implementation study to follow this work, our automated L3 body 18 

composition segmentation tool is intended to be easily implemented in standard practice for all routine CT-19 

scans, which clinicians can then use for prognostic risk assessment and treatment decision making. Changes 20 

in body composition over time can be detected during oncologic follow-up, which might provide early 21 

indications of treatment effect or disease progression/recurrence. Going from a prognostic tool to a 22 

predictive tool – in which the tool is used for treatment decisions - still remains a large step to take as large 23 

international data-sets are needed to provide clinical reference values.  24 

Body composition is highly variable among sex, age, race, and cancer types.3,4,16-18 For this reason, 25 

developed clinical cut-offs vary greatly among different patient cohorts and prognostic models of outcome 26 
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(e.g. survival) are likely to fail during external validation.3,19 In addition, body composition can be 1 

dependent on other clinical parameters and may have stronger prognostic effects when combined with 2 

parameters such as systemic inflammation and weight loss.10,20,21 We have previously demonstrated that 3 

such combinations or “host phenotypes” are more predictive of overall survival than tumor-based 4 

prognostic scores in patients with colorectal liver metastases.20 Larger cohorts are needed for each 5 

cancer type, as these could support the use of body composition analysis in the standard diagnostic 6 

work-up, and potentially aid in clinical treatment decision-making. Automated body composition 7 

analysis is the only way of acquiring sufficient data for adequate Z-scoring and accounting for the 8 

aforementioned patient characteristics. While cut-offs are necessary for clinical use, we advocate the 9 

development of a clinical risk calculator, as the prognostic effect of body composition variables are 10 

incremental4 and should therefore not be arbitrarily forced into dichotomic cut-offs. In the end, integrating 11 

body composition data with established prognostic factors such as tumour stage may improve 12 

prediction of a patient’s prognosis. A combined tumour and host focused approach would provide a 13 

basis for clinical trials aimed at exploring whether body composition-based prognostic information 14 

can be used as a basis for treatment decision making (e.g. palliative intent instead of curative intent, 15 

or indication for/selection of (neo)adjuvant therapy). 16 

Scientifically, our L3 segmentation tool enables assessment of large (incl. historical) cohorts that would be 17 

unfeasible to segment manually. In addition, as the AI has learned from multiple observers, it has not 18 

learned an expert’s specific signature, ensuring a more stable output. However, the true value of automated 19 

segmentation is that it facilitates the inclusion of body composition as a study parameter in RCTs, as the 20 

time and effort of analysis is reduced from a couple of months to a few minutes. This enables stratification 21 

and selection of patients with different body compositions, creating either homogenous or heterogeneous 22 

cohorts as required. Including body composition is particularly important in oncology as it is related to 23 

chemotherapy effectiveness and toxicity.22 Ideally, chemotherapy dosing should be based on lean mass to 24 

prevent dose-limiting toxicities for which DLNN would be a logical application in the future. 25 
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Some other automated segmentation tools have been developed. The largest cohort (n=12,128) was used 1 

for development of the AI tool published by Magudia et al.16 Their tool performed well with similar dice 2 

scores to our algorithm. Their training cohort only included 604 pancreatic cancer patients while the large 3 

(n= 12,128) hospital dataset was used to derive reference curves. However, the large hospital dataset only 4 

included patients without cancer and cardiovascular disease, making it less applicable to a clinical 5 

population of subjects with cancer who frequently display body composition alterations. In addition, 6 

analysis of CT-scans of cancer patients can be more challenging due to anatomic abnormalities and 7 

suboptimal patient positioning. As patients with cancer were excluded, the tool by Magudia et al. could 8 

perform worse in cancer cohorts. Our analyses did not exclude patients with anatomical variations or 9 

unconventional patient positioning, which prevents overfitting the model to a specific patient group 10 

and will likely result in a more robust segmentation tool. Dabiri et al. published an automated 11 

segmentation tool which was trained on two cohorts of patients with cancer (n=2529).23 Their segmentation 12 

tool performed similarly well compared with our segmentation tool. However, in contrast to our study, they 13 

did not perform external validation, making it uncertain how their AI performs in other cohorts.  14 

For volumetric CTs as input, an important consideration is how to select the slice intersecting the middle 15 

of the L3 vertebra, and more generally in case the user arbitrarily wishes to select some other vertebra. In 16 

keeping with the “narrow AI” paradigm, we have elected to implement a modular software design such that 17 

highly specialized DLNN are joined up sequentially in a workflow to accomplish a meaningful task. For 18 

the present, we integrated the state-of-the-art and validated TotalSegmentator tool to automatically localize 19 

spinal vertebrae. If a superior vertebrae segmentation tool should emerge in future, we could relatively 20 

easily adapt our workflow to incorporate the new tool, compared to “all-in-one” monolithic software design. 21 

While the DLNN showed excellent performance, even with challenging CT-scans, it has its 22 

limitations. In particular, analysis of CT-scans of patients with anatomical abnormalities (e.g. large 23 

abdominal hernia, colostomy, profound edema) or of patients with abnormal/non-standard 24 

positioning in the CT-scanner can lead to (partially) incorrect segmentations. Such challenging CT-25 

images should then be manually corrected and stored prospectively. In due time, this cohort of 26 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 22, 2024. ; https://doi.org/10.1101/2023.04.23.23288981doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.23.23288981
http://creativecommons.org/licenses/by-nc/4.0/


 

17 
 

“challenging CT-images” can be used to retrain and improve the DLNN. In addition, different deep 1 

learning segmentation algorithms will have different limitations depending on the cohort. A 2 

comparative study using both healthy individuals and different patient groups could provide insight 3 

into how these different algorithms perform and if one algorithm is preferred over the other in 4 

specific cohorts. 5 

The key step forward will be implementing automated segmentation into clinical practice and making it 6 

easily accessible for new research initiatives. Our tool was created in such a way that it can be easily 7 

integrated in clinical imaging software or work independent alongside existing imaging infrastructure. To 8 

ensure easy access for research purposes, the untrained AI will be freely available for scientific use and the 9 

trained AI can be used under license through a web-app or docker by other research groups. This enables 10 

rapid implementation and much needed data collection to develop clinical prediction tools. 11 

 12 

Conclusion 13 

In this study, we developed a reliable deep learning model that was externally validated for automated 14 

analysis of body composition of patients with cancer. To simplify future use and potential integration 15 

of the DLNN-based automated segmentation workflow, we have incorporated the steps into a web 16 

browser-based graphical user interface. Clinical implementation within our own institution is not 17 

within the scope of this study, but is the subject of a future study. For external institutional users who 18 

wish to access the trained model for research, please see data availability statement. 19 

 20 

 21 

Supplemental material 22 

Please see the attached document for online access. 23 

Data availability statement 24 

This work concerns only secondary re-use of clinical study data of patients, which were obtained in de-25 

identified form with permission from the original principal investigators. Each study had previously been 26 
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reviewed by a competent ethics body. Data may be obtained from the aforementioned principal 1 

investigators upon reasonable request. Source code for data preparation of CT slices and human reference 2 

annotations, along with the DLNN model architecture, are publicly available here under a Creative 3 

Commons 4.0 CC-BY-NC License: 4 

https://github.com/MaastrichtU-CDS/BodyCompL3_DLNN_Open_Code 5 

The trained model is available upon request through www.mosamatic.com. 6 
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Table 1. General patient characteristics for the deep learning neural network development sets 

and the external test set. 

 MODEL DEVELOPMENT SETS TEST SET 

Study ID FROGS* 

New 

EPOC* 

Zuyd+ MUMC** MUMC / Aachenx UG^ 

Diagnosis 

Emergency 

laparotomy 

Colorectal liver metastases Ovarian cancer Pancreatic cancer 

Pancreatic cancer + 

colorectal cancer 

Time 

interval 

2017-2019 2007-2012 2013-2017 2002-2015 2015-2019 2008-2019 

Sample size 804 153 1587 339 304 

1054 

(147 pancreatic,  

907 colorectal) 

No. male 

(%) 

374 

(47%) 

- 

883 

(56%) 

0 

(0%) 

161 

(53%) 

567 

(54%) 

No. female 

(%) 

430 

(53%) 

- 

704 

(44%) 

339 

(100%) 

143 

(47%) 

487 

(46%) 

Ages 

(median) 

25-95 

(68) 

- 

32-98 

(70) 

30-101 

- 

10-88 

(74) 

23-93 

(69) 

Range BMI 

in kg.m-2 

(median) 

14-58 

(26) 

- 

15-53 

(26) 

- 

- 

- 

(25.4) 

14-59 

(27) 

*Bristol, Poole, Bournemouth, Royal Marsden, Surrey, Portsmouth, Velindre, Sheffield, Imperial Charing Cross, Imperial St. 

Mary, Christie, Southend, Yeovil, North Middlesex, Southampton, Guys, Aintree, Winchester, Cambridge, Princess Alexandra, 

Bedford, Salisbury, University College London, Basingstoke, Pennine (UK). +Zuyderland Medical Centre Geleen/Heerlen (The 

Netherlands). **Maastricht University Medical Centre, Radboud University Medical Centre Nijmegen, Bernhoven Medical 

Centre Uden, St. Jansdal Medical Centre Ede (The Netherlands). x Maastricht University Medical Centre (Netherlands), RWTH 

Uniklinik Aachen (Germany). ^Glasgow Royal Infermary (UK). - No individual values extracted. 
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Table 2. Concordance correlation, bias correction factor, and Bland-Altman agreement without 

repeated measures (n = 1054) 

 

Bland-Altman estimates of agreement for primary scan only (n = 1054) 

 Concordance correlation 

(95% confidence interval) 

Bias correction 

factor 

Bland-Altman agreement 

(95% lower-upper limits) 

SMRA 0.991 (0.990 – 0.992) 0.999 0.23 (-2.06 – 2.52) HU 

SMI 0.964 (0.959 – 0.968) 0.991 1.26 (-3.11 – 5.63) cm2.m-2 

VATI 0.998 (0.998 – 0.998) 0.999 -1.02 (-4.55 – 2.50) cm2.m-2 

SATI 0.992 (0.991 – 0.993) 0.997 3.24 (-6.69 – 13.2) cm2.m-2 

Bland-Altman estimates of agreement for repeated scans only (n = 449) 

 

Concordance correlation 

(95% confidence interval) 

Bias correction 

factor 

Bland-Altman agreement 

(95% lower-upper limits) 

SMRA 0.991 (0.990 – 0.992) 0.999 0.18 (-2.08 – 2.45) HU 

SMI 0.973 (0.969 – 0.976) 0.997 0.75 (-3.56 – 5.06) cm2.m-2 

VATI 0.998 (0.998 – 0.998) 0.999 -1.07 (-4.55 – 2.41) cm2.m-2 

SATI 0.992 (0.991 – 0.993) 0.998 2.55 (-8.36 – 13.4) cm2.m-2 
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Figure 1: Distribution of geometric DS on L3 slice for skeletal muscle (SM), subcutaneous fat (SAT), 

and visceral fat (VAT) 

(a) Box-whisker plot showing the median DS as the solid horizontal line and the interquartile range as the 

upper and lower limits of the box. The vertical line ends indicate 1%-tile and 99%-tile, and outliers outside 

this range are shown as individual dots. (b) – (d) show the distribution of DS as a function of SM area, 

VAT area, and SAT area, respectively. 
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Figure 2: Lin’s concordance correlation (CCC) plots 

(a) skeletal muscle attenuation (SMRA), (b) skeletal muscle index (SMI), (c) visceral fat index (VATI) 

and (d) subcutaeous fat index (SATI). The units of SMRA are HU. The units of SMI, VATI, and SATI 

are all cm2.m-2. Reference values were defined as those extracted from human-drawn segmentations. 

Predicted values were extracted from DLNN-made segmentations. 

 

Figure 2

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 22, 2024. ; https://doi.org/10.1101/2023.04.23.23288981doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.23.23288981
http://creativecommons.org/licenses/by-nc/4.0/


  

Supplementary Material

Click here to access/download
Supplementary Material

19-7-2023 Algorithm paper supplemental files.docx

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 22, 2024. ; https://doi.org/10.1101/2023.04.23.23288981doi: medRxiv preprint 

https://www.editorialmanager.com/jcsm/download.aspx?id=157782&guid=e4abcc7d-5cda-48ea-9266-ac5b93af5028&scheme=1
https://doi.org/10.1101/2023.04.23.23288981
http://creativecommons.org/licenses/by-nc/4.0/

