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Abstract: Aerobic granules are small, dense aggregates of microbial cells that form naturally in aer-
obic wastewater treatment systems. They are characterized by their spherical shape, strong struc-
tural integrity, and ability to rapidly settle. These granules are formed through a self-immobilization 
process where different microbial species coalesce to degrade organic and inorganic compounds in 
wastewater. This study summarizes the development of aerobic granulation technology in 
wastewater treatment and the mechanism of aerobic granules’ formation, analyzes the characteris-
tics and the factors affecting the aerobic granules’ formation, and presents practical engineering ex-
amples of its application from pilot-scale to full-scale operation. 
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1. Introduction 
Successful wastewater treatment relies on choosing microorganisms with the right 

metabolic capabilities and effectively separating them from the treated effluent. Signifi-
cant research efforts have been directed towards minimizing the settling time of activated 
sludge. This is achieved by forming dense flocs or employing biofilm reactors. 
Biogranules, a condensed form of biofilm created through self-immobilization, represent 
a noteworthy innovation in this field [1]. They can be classified as undergoing aerobic or 
anaerobic granulation. These granules are compact conglomerates of diverse bacterial 
species, with each gram of biomass harboring millions of organisms. 

The development of anaerobic granules is a well-researched area, particularly noted 
for its application in the upflow anaerobic sludge blanket (UASB) reactor. This technol-
ogy, known as anaerobic granulation, has been implemented in numerous wastewater 
treatment facilities [2–5]. In reactors that utilize granular sludge, these dense anaerobic 
granules settle quickly. This swift settling significantly cuts down the time needed to sep-
arate the treated water from the biomass. The distinctive characteristics of anaerobic gran-
ules have captivated researchers, motivating them to focus on the development of aerobic 
granulation technology. This shift aims to expand the application spectrum of granulation 
techniques, potentially enhancing their utility in a wider range of scenarios. 

Aerobic granules are small, dense aggregates of microbial cells that form naturally in 
aerobic wastewater treatment systems. They are characterized by their spherical shape, 
strong structural integrity, and ability to rapidly settle. These granules are formed through 
a self-immobilization process where different microbial species coalesce to degrade or-
ganic and inorganic compounds in wastewater. This paper aims to comprehensively sum-
marize the development process of aerobic granules. It will delve into the formation mech-
anism, explore the distinct characteristics, and examine the various factors influencing the 
formation of aerobic granules. The paper will culminate with a discussion on the 
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application of these granules, focusing particularly on their implementation in pilot-scale 
and full-scale settings. 

2. The Development of Aerobic Granular Technology 
2.1. Aerobic Granulation in Sequencing Batch Reactors 

Aerobic granular sludge technology began to emerge in the early 1990s [6]. Toward 
the late 1990s, there was a notable surge in research focused on the basic principles and 
practical applications of aerobic granulation. This led to significant advancements in the 
understanding of how storage polymers contribute to the development of aerobic gran-
ules, facilitating their growth in sequencing batch reactors without the need for carrier 
materials [7–9]. 

Aerobic granular sludge technology developed from the early 1990s [6]. Research in-
terest in the fundamental concepts and real-world uses of aerobic granulation intensified 
towards the late 1990s. Investigations into the creation of storage polymers have paved 
the way for progress in the growth of aerobic granules in sequencing batch reactors (SBR) 
without the necessity for carrier materials [7–9]. The sequencing batch reactor (SBR), orig-
inating in the United States in the late 1960s, gained widespread adoption throughout the 
1980s and 1990s [10]. In contrast to the operation of a suspended sludge SBR, an aerobic 
granular sludge SBR does not include an idling phase in its operation. 

The initial observation of aerobic granule formation in SBR was made by Morgenroth 
et al. [7]. They operated the SBR with a notably brief sedimentation and draw phase, 
which led to the removal of biomass with a low settling ability. After 40 days of this oper-
ation, granules became the primary form of biomass in their reactor. Then, a large number 
of papers on aerobic granular sludge cultivation in the laboratory were published. 

In 2003, the Ede wastewater treatment facility in the Netherlands became the site of 
the world’s inaugural pilot-scale operation of aerobic granular sludge technology [11]. In 
2004, the first international seminar on aerobic granular sludge was held at the Technical 
University of Munich in Germany, where the concept of aerobic granular sludge was in-
troduced [12]. In 2005, the Dutch company DHV developed the Nereda process, which 
was successfully applied for the first time in a wastewater treatment plant [13]. In 2014, 
the aerobic granular sludge technology was successfully applied in Yancang WWTP in the 
Zhejiang province of China [13]. To date, aerobic granular sludge technology has been 
applied in over 100 WWPTs worldwide by Nereda® [14]. 

 
Figure 1. The development of aerobic granulation technology in SBR. 

2.2. Aerobic Granulation in Continuous-Flow Reactors 
Reports have also indicated the occurrence of aerobic granulation in continuous-flow 

systems, specifically in an aerobic upflow sludge blanket (AUSB) reactor [6,15], a 
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fluidized-bed reactor [16], an airlift biofilm reactor [17], a flow baffled reactor [18] and an 
upflow membrane-aerated biofilm reactor [19]. 

In the AUSB reactor, the granules are formed with low shear forces. This process is 
driven by vertical stresses from the upward flow of liquid and horizontal stresses caused 
by agitation at a rate of 1–6 rpm. Granule formation typically occurs within approximately 
5 days [15], or up to three weeks [6], after initiation. However, the complexity of the AUSB 
reactor system, along with its specific requirements for pure oxygen (i.e., 100% O2) and a 
dissolved oxygen tank, may hinder its broader adoption. 

In two-phase fluidized-bed reactors, the formation of nitrifying granules is likely due 
to the relatively low shear forces and self-aggregation. Additionally, nitrifying granules 
can form in airlift reactors, originating from fragments of broken biofilm. The depletion 
of oxygen within the nitrifying biofilm leads to its breakup, and the resulting dense bio-
film fragments remain in the reactor. Generally, some carrier material is necessary to en-
sure system stability. 

Unlike traditional SBR aerobic granular sludge, continuous-flow reactors do not have 
a static sedimentation process [20,21]. Therefore, an additional sludge–water separation 
device is needed in the reactor for sludge–water separation. Based on the different sludge–
water separation mechanisms, continuous-flow aerobic granular sludge reactors can be 
classified into the gravity sedimentation separation type, three-phase separation type, and 
filtration separation type. 

 
Figure 2. The development of aerobic granulation technology in continuous-flow reactors. 

3. Mechanism of Aerobic Granulation 
The process underlying microbial aerobic granulation remains a subject of significant 

debate due to the intricate nature of aerobic granulation. According to the hypothesis 
summarized in Table 1, aerobic granulation starts with the aggregation of microbial cells. 
Fungi, using glucose as their carbon source, secrete H+ ions to lower the pH, creating an 
environment conducive to their growth while suppressing competing bacteria [23]. Fila-
mentous fungi grow from spores to mycelia under shear forces, serving both as an attrac-
tion nucleus for other microorganisms and as a structural framework. Some bacteria at-
tach to inorganic precipitates within the granule’s core, with these precipitates acting as a 
nucleus for growth and reproduction. Other bacteria use cations like Ca2+ and Mg2+ to 
promote aggregation by reducing electrostatic repulsion and enhancing van der Waals 
forces. Shear forces in the granulation process stimulate the secretion of EPS, binding or-
ganisms within the granule. The increased cell surface hydrophobicity and high hydraulic 
stress, combined with the limited settling time, encourage microorganisms to adhere to 
aggregates, forming aerobic granules. 

Granules initially form from small microbial clusters that grow via further aggrega-
tion. These dense granules settle quickly due to selection pressure in the reactor, favoring 
fast-settling biomass and eliminating slower settlers. The oxygen and nutrient gradients 
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within granules create different aerobic and anaerobic zones, allowing diverse microbial 
communities to contribute to the granules’ structure and function. Granules mature and 
grow, balancing microbial proliferation, EPS production, and shear forces that might 
cause breakup. The reactor’s operation, including the feed composition, aeration, and cy-
cle management, is vital for sustaining granulation. 

Table 1. The proposed mechanism of aerobic granulation. 

Year Researcher The Proposed Mechanism Reference 

1999 Beun et al. 

(1) Aerobic granulation started with fungi. (2) Fungi easily formed pellets. When 
the pellets grew up and lysed, (3) the pellets broke apart, and only the adequately 
dense colonies were able to settle successfully. (4) As time progressed, these colo-
nies expanded and transformed into newly formed granules. 

[8] 

2001 Tay et al. 
With the condition of sequential operation, aerobic granules originate from seed 
sludge, progress to compact aggregates, then develop into granular sludge, and 
ultimately evolve into mature granules. 

[22] 

2002 Liu and Tay 

(1) Cells moving randomly and colliding; (2) cells moving randomly and collid-
ing; (3) continued irreversible clustering and expansion within the matrix of ex-
tracellular polymeric substances (EPSs); and (4) the formation of shape and struc-
ture, influenced by shear forces. 

[24] 

2004 Liu et al. 

Hydraulic pressure is a key factor in the formation of biogranules, whereas the 
hydrophobicity of cells markedly contributes to the development of granules. 
Furthermore, the formation of aerobic granules results from the combined efforts 
of different functional groups and their interactions with the ambient environ-
ment. 

[25] 

2010 Barr et al. 
(1) A single microbial colony can gradually expand to form compact and smooth 
granules. (2) The aggregation of multiple independent microbial colonies can lead 
to the formation of relatively loose granules. 

[26] 

2015 Wu et al. 
Under continuous flow conditions, the formation of aerobic granules is critically 
dependent on two key factors: a high organic loading rate and intense selection 
pressure. 

[27] 

2022 Edward et al. 
(1) Selection of microorganisms, (2) targeted substrate utilization, (3) enhancing 
substrate transport into the biofilm, (4) specific feeding strategies, (5) substrates 
that either form or do not form particles, (6) breakdown of granules. 

[28] 

4. Characteristics of Aerobic Granules 
Aerobic granular sludge is distinct from flocculent sludge. Its characteristics are out-

lined as follows [29–40]: 
(1) It possesses a spherical and uniform shape with a distinct, smooth exterior; 
(2) It exhibits a tightly packed and robust microbial constitution; 
(3) It is sufficiently large to be visible as individual entities in the mixed liquor during 

both the mixing and settling phases. 
Sludge has a high biomass retention capability caused by its large size and fast set-

tling velocity. 
It is capable of enduring high organic loading rates. 
It is resilient against the toxicity substances present in wastewater.  
Table 2 provides comprehensive details of aerobic granular sludge. 

Table 2. The characteristic data about aerobic granular sludge. 

Reactor Diameter 
(mm) 

SVI  
(mL g−1) 

MLSS  
(g L−1) 

Specific 
Gravity 

Settling Velocity 
(m h−1) Substrate Reference 
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SBR 0.6–1.4 30–40 5 1.021 22–60 
Synthetic wastewater with sodium 
acetate as the main carbon source, 

COD: 500 mg L−1 
[41] 

SBAR 0.3–3  7–10 - - 
Influence synthetic wastewater 
with an acetate concentration of  

18.3 Cmmol/L 
[42] 

SBR 0.3–0.5 80–100 - - - Acetate [9] 
SBR 2 172 2 1.0038 - Phenol [43] 
SBR 2.8 73 7.9 1.0068 - Phenol with Ca2+ [43] 

CFR system with baf-
fled bubble column 

0.2–2 33.5 2.8–5.8 - - 
Synthetic wastewater with sodium 
acetate as the main carbon source, 

COD:1500 mg L−1  
[44] 

CFR system with mul-
tiple serial chambers 

0.13 43 3.0 - - 
Municipal (30%) and industrial 

(70%) wastewater 
[45] 

CFR system with MBR 0.1–1.0 25–40 10 - 15–25 
Synthetic wastewater with glucose 
as the main carbon source, COD: 

100–300 mg L−1  
[46] 

The reactor type, feeding substrate, and operation conditions significantly influence 
the characteristics of aerobic granules. Specifically, the choice of reactor, such as the Se-
quencing Batch Reactor (SBR) or Continuous-Flow Reactor (CFR), affects the formation, 
size, and density of the granules due to differences in the flow dynamics and mixing pat-
terns [40–44]. The nature of the feeding substrate, including its composition and concen-
tration, impacts the microbial community structure within the granules, as well as their 
metabolic capabilities and pollutant removal efficiency. For instance, high-strength or-
ganic substrates can lead to larger and denser granules with a diverse microbial commu-
nity. Lastly, operation conditions such as hydraulic retention time (HRT), sludge retention 
time (SRT), aeration intensity, and temperature play crucial roles in determining the phys-
ical strength, settling velocity, and overall stability of aerobic granules. Optimizing these 
parameters is essential for achieving efficient wastewater treatment and enhancing the 
robustness and resilience of aerobic granular sludge systems. 

5. Structure and Strength of Aerobic Granule 
Aerobic granules, spherical biofilms encapsulated within an extracellular polymer 

(ECP) matrix, exhibit a complex, layered structure that is critical for their functionality. 
Advanced imaging techniques, such as Confocal Laser-Scanning Microscopy (CLSM), 
have been instrumental in delineating these layers, with each serving distinct roles in the 
granules’ overall efficacy and stability [47–53]. Researchers have uncovered a layered 
structure within these granules [9]. In granules fed with acetate, the outermost layer is 
composed of viable cells, lysed cells, non-degradable cellular remnants, and solids from 
the influent, constituting a layer that is 0.5–5 µm in thickness. Following this, the second 
layer is made up of distinct aggregates enveloped in well-defined polymeric matrices. 
These aggregates form roughly spherical microcolonies, varying in size from 5 to 50 µm. 
The third layer is formed by embedding these numerous microcolonies within the extra-
cellular polymer [49].  

Notably, a layer of deceased microbial cells is situated about 800–1000 µm beneath 
the granules’ surface, and the anaerobic bacteria Bacteroides spp. have been detected at a 
depth of 800–900 µm from the surface. The production of polysaccharides in these gran-
ules reaches its peak at approximately 400 µm below the surface [50]. The granules feature 
channels and pores extending up to 900 µm beneath the surface, with the highest porosity 
observed at depths ranging from 300 to 500 µm. These channels and pores play a crucial 
role in facilitating the movement of oxygen and nutrients into the granules, as well as the 
exit of metabolites. The arrangement of pores and channel layers within the granules af-
fects the distribution of the active biomass, which varies across granules of different 
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diameters. The porosity of these granules is critical to their strength and stability, enabling 
them to withstand the mechanical stresses encountered in wastewater treatment pro-
cesses. 

The relationship between the structure and strength of aerobic granules is thus 
deeply intertwined. The granules’ layered structure, with its distinct microbial composi-
tions and functions, underpins their strength, both in terms of physical integrity and met-
abolic capacity. This structural strength is vital for the granules’ resilience against physical 
shearing forces in reactors and their ability to maintain high rates of pollutant degrada-
tion. Moreover, the size and arrangement of pores and channels within the granules di-
rectly impact their effectiveness in nutrient and oxygen diffusion, further influencing the 
granules’ strength and stability. 

6. Diversity of Aerobic Granules 
To better understand the process of aerobic granulation and enhance the design and 

operational efficiency of aerobic granulation systems, extensive studies have delved into 
the microbial diversity within aerobic granules, employing advanced molecular biotech-
nology methods [43,54–59]. These investigations have unveiled a broad spectrum of bac-
teria, demonstrating the presence of heterotrophic bacteria, nitrifying and denitrifying 
bacteria, phosphorus-accumulating bacteria, and glycogen-accumulating bacteria, culti-
vated under a range of conditions and using various culture media [23,46,54,55,58,60–62]. 
Further exploration into the growth patterns of these microorganisms reveals a complex 
interplay between reactor configurations, substrate types, and operational parameters. 
For instance, the presence of heterotrophic bacteria is significantly influenced by the or-
ganic carbon source and its availability, which, in turn, affects the granule formation by 
facilitating biomass aggregation and structure stability. Nitrifying and denitrifying bacte-
ria, on the other hand, are crucial for nitrogen removal and are found to proliferate under 
specific aeration and substrate concentration conditions, contributing to the structural in-
tegrity and functional diversity of the granules. Phosphorus-accumulating organisms play 
a pivotal role in biological phosphorus removal and are encouraged by alternating anaer-
obic and aerobic conditions, which also affect the granule’s density and settling properties. 
Additionally, the role of glycogen-accumulating organisms in managing the internal car-
bon flux within granules under fluctuating feeding conditions highlights the adaptive 
mechanisms of microbial communities in aerobic granules. 

The interdependence between these microbial communities under varied environ-
mental and operational conditions underscores the complexity of aerobic granulation. 
Such diversity not only contributes to the robustness and resilience of granular sludge 
systems but also offers insights into the optimal conditions for enhanced pollutant re-
moval efficiency. This expanded understanding emphasizes the need for tailored ap-
proaches to reactor design and operation to harness the full potential of microbial diver-
sity in aerobic granulation processes. 

7. Factors Affecting the Formation and Structure of Aerobic Granule 
7.1. Shear Force 

In SBR, the shear force is primarily determined by the upflow air velocity. Studies 
have suggested that a higher shear force favors the creation of aerobic granules [8,15,22]. 
For instance, Tay et al. found that a superficial air upflow velocity of 0.8 cm s−1 led to the 
formation of only loose flocs in an SBR, while a higher velocity of 2.5 cm s−1 facilitated the 
formation of well-shaped granules. This observation was also noted by Beun et al. [63], 
reinforcing the idea. Additionally, there is a proportional relationship between granule 
density and strength and the applied shear force. These insights reveal that shear force 
plays a vital role in both the development of aerobic granulation and in shaping the gran-
ules’ structure.  
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Moreover, Tay et al. [22] reported a close association between the production of cel-
lular polysaccharides and shear force, which further contributes to the stability of aerobic 
granules. This suggests that the shear force not only encourages the formation of aerobic 
granules but also stimulates the production of cellular polysaccharides, thereby playing 
an essential role in their development. 

In addition, the upflow velocity, indicated by the shear force, affects the hydrody-
namic conditions within the reactor, influencing the collision and adhesion rates of micro-
bial cells. Optimal upflow velocities can enhance the collision rate between microbial cells 
and flocs, promoting granulation. However, too high or too low a velocity can disrupt this 
balance, affecting the overall size and stability of the granules.  

7.2. Settling Time 
The settling time plays a pivotal role as a form of hydraulic selection pressure on the 

microbial populations during the process of aerobic granulation. A reduced settling time 
is crucial for two main reasons: firstly, it can eliminate slowly settling biomass while pre-
serving granules that settle quickly, and secondly, it can guarantee the biological systems 
operate both efficiently and cost-effectively. Studies have demonstrated that aerobic gran-
ules became the predominant form in an SBR when the system was managed with a set-
tling time of only 5 min [64]. Extending the settling time beyond 5 min resulted in a mixed 
culture of aerobic granules and free-floating sludge. In practice, the settling time is typi-
cally maintained between 1 and 4 min [7,8,65]. Thus, identifying the ideal settling time is 
essential for successful aerobic granulation. 

7.3. Organic Loading Rate 
While a high Organic Loading Rate (OLR) is beneficial to the formation of anaerobic 

granules in UASB systems, it tends to be detrimental to aerobic granulation due to the 
excessive proliferation of suspended forms. Aerobic granules can successfully form within 
a range of COD loading rates, from 0.42 to 15 kg COD m−3·d−1 [62–64]. Although OLR does 
not significantly impact the initial formation of aerobic granules, it is closely linked to their 
physical characteristics. 

Toh et al. [66] noted that the average diameter of aerobic granules tends to expand as 
the OLR increases [67–69]. Nevertheless, characteristics such as the granules’ roundness, 
dry biomass density, specific gravity, and Sludge Volume Index (SVI) do not show a sig-
nificant relationship with the OLR. On the other hand, the structural integrity of aerobic 
granules weakens with an increase in OLR. This reduction in physical strength is linked 
to the rapid growth in biomass caused by higher OLRs, which adversely affects the three-
dimensional structure of the microbial aggregates [70]. 

7.4. Substrate Composition 
A diverse range of substrates, including glucose, acetate, ethanol, phenol, yeast ex-

tract, particulate organic-matter-rich wastewater, and berberine wastewater, have been ef-
fectively utilized to cultivate aerobic granules [64–69]. Additionally, granules with specific 
nitrification and phosphorus accumulation abilities have been engineered [70–74]. It is 
crucial to recognize that the choice of substrate can profoundly affect the microbial diver-
sity, microstructure, and elemental makeup of mature aerobic granules [71].  

For example, aerobic granules formed using acetate as a substrate tend to have a 
dense microstructure with predominantly radially arranged, rod-like bacteria. Con-
versely, granules cultivated with glucose predominantly contain cocci-type bacteria inter-
nally, with a surface layer composed of both filamentous and rod bacteria. These differ-
ences highlight the significant role that substrate type plays in determining the physical 
and biological properties of aerobic granules. 

7.5. EPS 
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Extracellular Polymeric Substances (EPS), secreted by microorganisms, are intricate 
combinations of proteins, polysaccharides, humic substances, and nucleic acids. These 
substances are instrumental in aerobic granulation. 

Initially, EPS are pivotal to biofilm formation and development, serving as the foun-
dational element of aerobic granules. They facilitate the adhesion of microbial cells to one 
another and to various surfaces, thereby fostering the creation of dense microbial commu-
nities that are essential for effective wastewater treatment. 

As granulation progresses, EPS form a structural matrix that encapsulates the micro-
bial cells within the granules. This matrix not only bestows shape and structural integrity 
upon the granules but also supports the bacterial cells’ aggregation, enhancing the gran-
ules’ mechanical stability. 

Furthermore, the EPS matrix acts as a protective barrier for the microbial cells against 
environmental stressors such as toxic substances, pH fluctuations, and shear forces, en-
suring their viability and functionality within the wastewater treatment process. 

EPS’s ability to bind nutrients, metals, and other substances plays a critical role in 
their retention within the granules and facilitates exchange within the microbial commu-
nity. This trait is vital for the microorganisms’ metabolic activities, improving the 
wastewater treatment’s overall efficiency. Additionally, during periods of scarcity, the 
degradation of EPS components like proteins, polysaccharides, and humic compounds 
serves as a carbon source, increasing cell surface hydrophobicity and enhancing granule 
stability. 

Moreover, EPS act as conduits for cell-to-cell communication within granules, orches-
trating metabolic activities and enabling the microbial community to adapt to environ-
mental changes.  

7.6. Hydraulic Retention Time 
Hydraulic Retention Time (HRT) is a critical factor in the functioning of SBR, associ-

ated with both the cycle duration and the volume exchange rate of the SBR. Defined by 
the ratio between the volume of effluent that is released and the SBR’s operational volume, 
HRT significantly influences the granulation process as a form of hydraulic selection pres-
sure, deterring the proliferation of dispersed sludge. Selecting a suitable HRT is essential 
for encouraging the development of granules [72–74]. 

An HRT that is too short could lead to significant sludge loss without adequate com-
pensation, negatively impacting the system’s efficiency. On the other hand, an excessively 
long HRT could result in bioflocs becoming dominant in the system, which might not be 
desirable depending on the specific goals of the treatment process. It has been observed 
that the stabilization of seeded aerobic granules is achievable with an HRT ranging from 
2 to 12 h [73]. Furthermore, HRTs of 12 and 24 h are particularly beneficial for nitrifying 
bacteria, indicating that the optimal HRT can vary depending on the specific microbial 
community or process goals within the SBR [74]. 

The strategy of controlling HRT within a moderate range is also applied to CFRs, 
given their incorporation into an internal settling zone [75–78]. 

7.7. Dissolved Oxygen 
The Dissolved Oxygen (DO) concentration is indeed a vital parameter in managing 

aerobic wastewater treatment systems. However, when it comes to the formation of aero-
bic granules, the DO concentration does not play a decisive role. Research has shown that 
aerobic granules can successfully form even at relatively low DO concentrations, specifi-
cally in the range of 0.7–1.0 mg L−1 in an SBR [9]. Additionally, aerobic granules have been 
successfully developed at DO concentrations exceeding 2.0 mg L−1. This indicates that aer-
obic granules can form and sustain under a broad range of DO concentrations, making 
them adaptable to various operating conditions in aerobic wastewater treatment processes 
[43,69]. 
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7.8. Aerobic Starvation 
In a typical SBR cycle, there are two distinct phases: the degradation phase and the 

aerobic starvation phase. During the degradation phase, the substrate is progressively de-
pleted to a minimal level. This phase is succeeded by the aerobic starvation period, during 
which the microorganisms in the SBR lack access to any external substrate. 

Consequently, these microorganisms experience periodic starvation. It has been pro-
posed that this intermittent starvation could induce microbial adhesion and aggregation, 
possibly through its impact on cell hydrophobicity [79,80]. This concept suggests that the 
stress of intermittent starvation could alter the surface properties of the cells, making them 
more likely to adhere to each other and form aggregates. Nonetheless, it is critical to 
acknowledge that, despite thorough investigations into the link between starvation and 
cell hydrophobicity, the particular notion that it initiates microbial adhesion and aggrega-
tion within SBR systems lacks direct validation through experimental proof. Further re-
search is needed to validate this hypothesis and fully understand the mechanisms at play. 

7.9. Trace Elements 
Trace elements, particularly calcium and iron, play a significant role in enhancing 

aerobic granulation. The study by Jiang et al. demonstrated that adequate amounts of cal-
cium can significantly expedite the formation of aerobic granules, reducing the required 
time by about 50% [70]. These calcium-augmented aerobic granules not only settle better 
but also exhibit improved strength characteristics and have an increased polysaccharide 
content. Ca2+ are thought to act as a bridge that promotes bacterial aggregation. They 
achieve this by binding the negatively charged groups present on bacterial surfaces and 
extracellular polysaccharide molecules, facilitating the formation of more cohesive and 
robust granules. In a separate study, Tsuneda et al. [79] observed that introducing iron 
(Fe) into the system led to its accumulation in the central part of the nitrifying granules in 
an AUFB reactor. Furthermore, they found that sludge pre-aggregated with iron could 
enhance the formation of nitrifying granules. This indicates that iron, like calcium, may 
play a crucial role in the development and structural integrity of aerobic granules, partic-
ularly in systems focused on nitrification. Magnesium carbonate played a similar role in 
strengthening the formation of aerobic granules [81]. Such insights are valuable for opti-
mizing the process of aerobic granulation in wastewater treatment systems. 

8. Application of Aerobic Granulation Technology 
Aerobic granulation technology is a versatile and efficient solution for wastewater 

treatment, offering benefits like a high treatment efficiency, space savings, energy-effi-
ciency, and environmental sustainability. Its application spans across municipal and var-
ious industrial sectors, addressing both conventional and challenging wastewater treat-
ment needs [23,40,61,69,82–89]. 

In treating high-strength organic wastewater, biological systems need to maintain a 
high biomass concentration and a high rate of microbial degradation. Aerobic granulation 
in SBRs has proven effective in achieving this, with biomass concentrations between 6.0 
to 12.0 g L−1 being reported due to the compact and dense structure of the granules. This 
was highlighted in the research by Tay et al. [23,82]. 

The practicality of using aerobic granulation technology for treating high-strength 
organic wastewater was demonstrated by Moy et al. [69]. They found that aerobic gran-
ules could withstand a maximum organic loading rate of 15.0 kg COD m−3 d−1 using glu-
cose as a substrate, while achieving more than 92% COD removal. This high efficiency can 
be attributed to the granules’ compact structure, which also enhances their ability to de-
grade toxic compounds. 

For example, studies by Jiang et al. [61,83] showed that aerobic granules are particu-
larly effective in degrading toxic substances like phenol. In one instance, an aerobic gran-
ular sludge reactor successfully maintained a steady effluent phenol concentration below 
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0.2 mg L−1, despite the influent having a phenol level of 500 mg L−1. This high resilience of 
the granules to phenol can be attributed to the fact that a significant portion of the biomass 
inside them remains shielded from the elevated concentrations encountered in the 
wastewater.  

Aerobic granules are gaining recognition for their ability to eliminate not just phenol, 
but also other challenging and toxic organic substances from concentrated industrial 
wastewater. Additionally, recent research has shown their ability to efficiently reduce 
phosphate and ammonia levels [40,84,85]. Their adaptability and effectiveness position 
aerobic granules as a viable option for sophisticated wastewater treatment endeavors. 

9. The Engineering of Aerobic Granular Sludge Technology 
Following the first pilot-scale study of aerobic granular sludge reported in 2003, doz-

ens of pilot-scale studies were completed. The influences on the pilot-scale reactors in-
clude sewage, industrial wastewater, and their mixture. The volume of the reactors ranged 
from a minimum of 30 L to a maximum of 6 m3. The inoculation sludge was mostly ob-
tained from the activated sludge of urban wastewater plants, and the raw water included 
domestic sewage, industrial wastewater, and agricultural wastewater. In the pilot studies, 
the COD of the raw water ranged from a minimum of 100 mg L−1 to a maximum of 2000 
mg L−1, and the ammonia nitrogen concentration was between 10 and 200 mg L−1. The size 
of the cultivated granular sludge ranged from a minimum of 0.2 mm to a maximum of 3.5 
mm.  

Table 3. The list of pilot-scale aerobic granulation processes. 

Year Reactor 
Working 
Volume 

(m3) 
Inoculation Sludge Influence Flow Pattern 

MLSS 
(g/L) 

Diameter of 
Granules 

(mm) 

SVI 
(mL/g) 

Reference 

2003 SBR 1.5 
Sludge from municipal 

wastewater treatment plant 
Sewage Intermittent flow 9–10 >0.6 60 [90] 

2010 SBR 0.03 
Sludge from municipal 

wastewater treatment plant, 
MLSS: 2 g L−1, SVI: 145 mL g−1 

40% sewage + 60% industrial 
wastewater, COD: 360–1832 
mg L−1, NH4+-N: 37.5–108.5 

mg L−1 

Intermittent flow 20 0.8 30 [91,92] 

2010 SBR 0.226 

Sludge from municipal 
wastewater treatment plant, 

MLSS: 2.6 g L−1, SVI: 120–160 mL 
g−1 

Municipal wastewater, 
COD: 91.3–157.1 mg L−1, 
NH4+-N: 39.4–68.2 mg L−1 

Intermittent flow 4.0 2.45 45–55 [93] 

2010 SBR 6.0 
Activated sludge, MLSS: 3.0 g 

L−1 

Municipal wastewater, 
COD: 200–350 mg L−1, NH4+-

N: 15–40 mg L−1 
Intermittent flow 8.0 0.33 30 [94] 

2010 SBR 1.0 

Sludge from municipal 
wastewater treatment plant, 

MLSS: 5.0–7.0 g L−1, SVI: 75 mL 
g−1 

Municipal wastewater, 
COD: 100–400 mg L−1, NH4+-

N: 10–40 mg L−1 
Intermittent flow 8.0 0.8 40 [95] 

2011 SBR 0.032 
Sludge from municipal 

wastewater treatment plant, 
MLSS: 2.6 g L−1, SVI: 180 mL g−1 

40% sewage + 60% industrial 
wastewater, COD: 250–1800 
mg L−1, NH4+-N: 39–93 mg 

L−1 

Intermittent flow 7.0–9.0 1.976 25–85 [96] 

2011 SBR 0.1 
Sludge from municipal 

wastewater treatment plant, 
MLSS: 3.7g L−1, SVI: 190 mL g−1 

The synthetic wastewater 
(acetate) 

Intermittent flow 3.5 3.5 - [97] 

2011 SBR 5.95 
Sludge from municipal 

wastewater treatment plant, 
MLSS of 2.7 g L−1 

Sewage with industrial 
wastewater, COD: 271–1839 
mg L−1, NH4+-N: 16.98–214 

mg L−1 

Intermittent flow 2.236 - 65.02 [98] 

2012 SBR 1.47 
Sludge from soy protein 

wastewater treatment plant with 
SVI of 125.6 mL g−1 

Soy protein wastewater an-
aerobic digest effluent with 

COD of 800–1800 mg L−1, 
NH4+-N of 80–160 mg L−1 

Intermittent flow - 0.5–1.0 - [99] 
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2012 SBR 0.085 
Anaerobic digest sludge, MLSS 

of 20 g L−1 

Sewage with COD of 200–
320 mg L−1, TN of 38–55 mg 

L−1 
Intermittent flow 5.9 0.75 20–35 [100] 

2012 SBR 0.1 - 

The synthetic wastewater 
(Sodium acetate) with COD 
of 400 mg L−1, NH4+-N of 40 

mg L−1 

Intermittent flow 12±4 2.4 13±6 [101] 

2013 SBR 1.47 
Activated sludge with MLSS of 
2.8 g L−1, SVI of 105.51 mL g−1 

Soy protein wastewater an-
aerobic digest effluent with 

COD of 700–2400 mg L−1, 
NH4+-N of 200 mg L−1 

Intermittent flow 7.02 1.2–2.0 42.99 [102] 

2013 MBR 0.06 
Sludge from pharmaceutical 
wastewater treatment plant 

Berberine wastewater with 
COD of 1717–4393 mg L−1, 

NH4+-N of 91.8–158.7 mg L−1 
Continuous flow 7.0 0.1–1.0 90 [103] 

2013 SBR 0.1 
Sludge from municipal 

wastewater treatment plant 
Swine wastewater Intermittent flow 11–13 2.0–2.8 - [104] 

2014 SBR 3.5 
Sludge from municipal 

wastewater treatment plant with 
MLSS of 4.581 g L−1 

Municipal wastewater, COD 
of 100–450 mg L−1, NH4+-N 

of 20–30 mg L−1 
Intermittent flow 1.2 1.0 - [105] 

2014 SBR 0.105 
Sludge cultivated in lab with 

MLSS of 3.0 g L−1 

The synthetic wastewater 
(Sodium acetate) with COD 

of 8000 mg L−1 
Intermittent flow 5.0 1.58 80 [106] 

2014 SBR 20 
Activated sludge with MLSS of 

3.8 g/L, SVI of 78 mL g−1 

30% sewage + 70% industrial 
wastewater with COD of 

500–1000 mg L−1, NH4+-N of 
30–80 mg L−1 

Intermittent flow 8.55 0.3 38 [107] 

2015 SBR 4 
Sludge from enhanced biological 
phosphorus removal treatment 

Sewage with Sodium acetate intermittent flow 12 1.1 - [108] 

2016 SBR 1.5 Activated sludge Sewage intermittent flow 9–10 >0.6 60 [109] 

2016 MBR 14 
Sludge from municipal 

wastewater treatment plant with 
SVI of 210 mL g−1 

Municipal wastewater, COD 
of 300 ± 25 mg L−1, TN of 30 

± 5 mg L−1 
intermittent flow 7 0.2 30 [110] 

2017 SBR 0.098 

Sludge from municipal 
wastewater treatment plant with 
VSS of 3.2 g/L, SVI of 220.2 mL 

g−1 

Sewage with COD of 150–
450 mg L−1, NH4+-N of 36–68 

mg L−1 
intermittent flow - 0.29 67 [111] 

2017 SBR 0.16 
Sludge from municipal 

wastewater treatment plant with 
MLSS of 6.5 g L−1 

Municipal wastewater, COD 
of 300 mg L−1, NH4+-N of 43–

52 mg L−1 
intermittent flow 12.19 1.269 21.31 [112] 

2017 SBR 3.394 
Sludge from industrial 

wastewater treatment plant with 
MLSS of 3.5 g L−1 

Paper and pulp wastewater, 
COD of 2000–3000 mg L−1 

intermittent flow 7–8 2–4 60–70 [113] 

2019 CSTR 0.128 Activated sludge with 4.284 g L−1 

Sewage, COD of 200–400 mg 
L−1, NH4+-N 0f 10–35 mg L−1, 
TN of 30–55 mg L−1 and TP 

of 1–5 mg L−1 

Continuous flow 4.1–5.8 3.4 64 [114] 

2022 RFBR  Activated sludge - Continuous flow 1.3 - 43 [115] 

2023 
SFD-
SBR 

Sidestream 
reactor: 1.4 
m3, main-
stream re-

actor: 14 m3  

Sludge from municipal 
wastewater treatment plant 

The municipal wastewater, 
TOC of 48–59 

mg L−1 
Continuous flow 3 - 80 [116] 

2023 CFR 0.2 
Sludge from municipal 

wastewater treatment plant with 
MLSS of 2.5 g L−1 

The municipal wastewater, 
COD of 161–1145  

mg L−1; TN of 14–103 mg L−1 
and TP of 2.5–19 mg L−1 

Continuous flow 6.1 0.5–1.0 40 [117] 

The first full-scale AGS reactor was set up in the Garmerwolde Wastewater Treatment 
Plant in the Netherlands. At present, more than 80 AGS plants are operated worldwide by 
Nereda®. The operation condition and results of a few of these full-scale reactors, located 
in Poland, the Netherlands, and South Africa, were published [109–114]. Full-scale aerobic 
granulation is a complex process that requires careful design, monitoring, and manage-
ment to successfully treat wastewater in an efficient and environmentally friendly 
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manner. The technology’s scalability and adaptability to various wastewater treatment 
needs make it an increasingly popular choice in modern wastewater treatment facilities. 

Table 4. The list of full-scale continuous-flow aerobic granulation processes. 

Year Location Name 
Granulation 

Strategy 
Reactor 

Type 

Wastewater 
Treatment 

Plant Capac-
ity (m3/d) 

Inocula-
tion 

Sludge 
Influence 

MLSS 
(g/L) 

Diameter 
of Gran-

ules (mm) 

SVI 
(mL/g) 

Reference 

2008 South Africa 
Gansbaai 
WWTP 

SBR 
(Nereda) 

Column  4000 
Activated 

Sludge  

Sewage, COD: 1265 
mg L−1, NH4+-N: 175 
mg L−1, TP: 19 mg L−1 

- - - [118] 

2010 
Zhejiang 
Province 

Yancang 
WWTP 

SBR Column  50,000 
Activated 

Sludge 

70% industrial 
wastewater + 30%mu-

nicipal wastewater, 
COD: 200–700 mg L−1, 
NH4+-N: 28–40 mg L−1, 

TP: 2–4 mg L−1  

- 0.5 47 [119] 

2013 Netherlands Garmerwolde SBR 
(Nereda) 

Column  13,000 Activated 
Sludge 

Sewage, COD: 146–715 
mg L−1, NH4+-N: 13.4–
56.5 mg L−1, TN: 14–81 
mg L−1, TP: 1.9–9.7 mg 

L−1 

8.5 1 35 [119] 

2014 Portugal 
Frielas 
WWTP 

SBR 
(Nereda) 

Column  70,000 
Activated 

Sludge 
Sewage 6–8 - 40 [118] 

2022 

The James R. 
Dilorio Wa-

ter Recla 
mation Facil-

ity 

Colorado, 
USA 

Hydrocyclone-
based wasting 

helped improve 
settling character-

istics 

Several 
tanks 

60,000 

Sludge 
from mu-

nicipal 
wastewater 
treatment 

plant 

Sewage 2.2 >0.2 83 [120] 

2024 WWTP in  
Hebei prov-
ince,China 

A novel micro-
aerobic–aerobic 

configuration with 
internal separators 

Several 
tanks 

25,000 

Sludge 
form Mu-

nicipal 
wastewater 
treatment 

plant  

30% sewage + 70% in-
dustrial wastewater, 

COD: 200–700 mg L−1, 
NH4+-N: 28–40 mg L−1 

20 

0.138, gran-
ules larger 
than 200 

µm consti-
tuting 
28.9% 

51.4 [121] 

10. Conclusions and Challenges in Future 
This paper offers an extensive review of the advancements in aerobic granular sludge 

research, highlighting the evolution of aerobic granulation technology, the mechanisms 
behind granulation, the properties of aerobic granules, the factors that drive aerobic for-
mation, and their practical uses. Despite the growing worldwide implementation of AGS 
in wastewater treatment plants (WWTPs), indicating a promising future for AGS in boost-
ing wastewater treatment efficiency, several critical challenges hinder AGS application. 
The key obstacles and future research opportunities in AGS include the following: 
(1) The process of aerobic granule formation remains largely unknown. Various theories 

have been proposed to explain this phenomenon, yet conclusive experimental sup-
port is lacking. 

(2) Achieving low substrate concentrations during steady-state operations to enable 
feast/famine conditions in CAGS is difficult. Research into how CAGS’s operational 
parameters affect the feast/famine ratio is scarce, necessitating future investigations 
into its impact on granule stability. 

(3) Employing a particle-size-based selection pressure could potentially facilitate CAGS 
granulation. However, research in this area is still in its infancy, and such a selection 
pressure might compromise CAGS stability in the long term. 

(4) While most CAGS setups incorporate a settling tank or clarifier for granule recycling, 
the recycling process can lead to granule disintegration. This calls for the creation of 
more sophisticated CAGS reactors with optimized recycling mechanisms. 
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