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Nomenclature

𝑎 duct radius

𝐴𝑚𝑛 pressure amplitude

𝑐0 ambient speed of sound

𝐷 polar directivity (non-dimensional)

𝐹 magnitude of fluctuating force (dipole source strength)

𝑘 acoustic wavenumber

𝑘𝑧 axial wavenumber

𝑁 total number of modes

𝑝 acoustic pressure

𝑡 observer time

𝑡0 emission time

𝑊 acoustic power

Coordinates:

(𝑅, 𝜙, 𝜃) spherical polar coordinates

(𝑟, 𝜃, 𝑧) cylindrical polar coordinates

(𝑥, 𝑦, 𝑧) Cartesian coordinates
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Greek symbols:

𝜂 free-field to ducted power ratio (non-dimensional)

𝜅 transverse wavenumber

𝜙𝑚𝑛 mode-ray angle/ nil-shielding direction

𝜙𝑙𝑜𝑠 highest angle of clear line of sight

𝜒 accumulated phase angle (non-dimensional)

𝜔 angular frequency

Ω Rotational speed

Subscripts:

0 source location

𝐹 flanged

𝑚 azimuthal order

𝑛 radial order

Superscripts:

𝑓 𝑓 free-field

𝐷 Ducted

Other symbols:

˜ Transformed variable

. Mean variable

ˆ Time domain variable
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I Introduction

Many propeller and rotor systems are ducted to enhance their efficiency and to improve safety, such as aero-engine

rotors and marine propellers. The prediction of the acoustic radiation due to ducted rotors and propellers typically

requires analysis of the behaviour of the individual duct modes excited by the rotor so that their contribution

to the far-field can be predicted. However, this detailed analysis can be avoided if the difference between the

far-field radiation from free-field and ducted sources is known a priori, assuming that the source distribution is

unaffected by the duct. Moreover, analysis of this difference provides fundamental insight into the effect of the

duct on rotor and propeller radiation.

Surrounding a fan, propeller or rotor has two effects. The first is to modify the flow around the fan, which of

course alters the source strength of sound. The second modifies the radiation, which is subject of this paper in

which we study the difference between ducted and free field, in the absence of flow. The industrial application for

this work is therefore ducted marine propellers, where the flow Mach number is negligible and industrial cooling

fans.

One application where this approximation is not valid is of course in aero-engine turbofan engine applications,

where the flow influences the transmission and sound radiation from the fan. This application would of course

require the full solution to the Euler or Navier Stokes equations and is outside the scope of this paper. Nevertheless,

even in this case, quantifying the effect by the duct on source radiation independently of the source is useful.

To the authors’ knowledge the only study aimed at comparing the radiation due to free-field and ducted sources

was by Chapman [1]. Chapman investigated in detail the behaviour of the open-to-ducted transfer function for a

single azimuthal acoustic mode. One of the important aspects of his study was the identification of ‘nil-shielding’

angles at which the radiation from the free-field and ducted sources is identical. The existence of nil shielding

directions was demonstrated analytically from the solutions of the radiation directivity of single acoustic modes

from a flanged duct.

Chapman’s comparison of free-field and ducted radiation [1] is confined to a single propagating azimuthal mode

order 𝑚 and does not address the differences for arbitrary source distributions, which can potentially excite

all possible acoustic modes, including cut-off modes. This paper is a study of the comparison of the acoustic

radiation due to point dipole sources with arbitrary orientation rotating around an axis either within a semi-infinite,

hard-walled circular duct or located in a free-field.
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The analysis coordinate system for the free-field and ducted cases are presented in Figs 1a and 1b respectively. In

both cases a point force with arbitrary time dependence (magnitude 𝐹 (𝑡)) is assumed to rotate at angular velocity

Ω around the 𝑧 axis with radius of rotation 𝑟0. The point force is assumed to be orientated at angle 𝛾 between

the azimuthal and axial dimensions. Far-field observer points are expressed in a spherical coordinate system at

position (𝑅, 𝜙, 𝜃) centred on a point located at an axial distance 𝑧0 from the centre of rotation (𝑥, 𝑦, 𝑧) = (0, 0, 0),

where 𝑅 is the radial distance and 𝜃 and 𝜙 are the azimuthal and polar angles respectively. The azimuthal position

is in the 𝜃-direction measured anticlockwise from the 𝑥-axis, and the polar coordinate is in the 𝜙-direction

measured from the 𝑧-axis. In figure 1b the rotating dipole source is assumed to be located within a semi-infinite,

hard-walled, un-flanged circular duct of radius 𝑎.

(a) Free-field source (b) Ducted source

Figure 1 Coordinate system of free-field and ducted sources

I.A Radiation from free-field point rotating dipole sources

In this section the solution for the free-field radiation due to rotating point dipole sources is reviewed. This

problem has been addressed by a number of authors for a steady force, for example Garrick and Watkins [2],

Hanson [3], Parry and Crighton [4], Schulten [5], Peake and Crighton [6], Mao, Gu, Qi and Tang [7], McAlpine

and Kingan [8] and Blake [9]. The essential difference between these various studies is the choice of coordinate

system, hence these may be shown to provide consistent solutions when expressed in a common coordinate

system [1].

In Appendix A, the solution of the acoustic radiation due to a rotating point dipole with arbitrary time dependence

is derived. The frequency domain solution 𝑝 ( 𝑓 𝑓 ) (𝑅, 𝜙, 𝜃, 𝜔), is shown in the Appendix to be in the form of a

summation of azimuthal acoustic mode orders 𝑚,

𝑝 ( 𝑓 𝑓 ) (𝑅, 𝜙, 𝜃, 𝜔) =
∞∑︁

𝑚=−∞
𝑝
( 𝑓 𝑓 )
𝑚 (𝑅, 𝜙, 𝜃, 𝜔) . (1)
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Each modal pressure contribution is of the form,

𝑝
( 𝑓 𝑓 )
𝑚 (𝑅, 𝜙, 𝜃, 𝜔) = 𝑗𝑚−1 1

4𝜋𝑅

(
𝑚

𝑟0
sin 𝛾 + 𝑘 cos 𝜙 cos 𝛾

)
𝐹̃ (𝜔 − 𝑚Ω)𝐽𝑚 (𝑘𝑟0 sin 𝜙)e− 𝑗𝑘 (𝑅−𝑧0 cos 𝜙)− 𝑗𝑚(𝜃−𝜃0) ,

(2)

where 𝑘 is the acoustic wavenumber 𝑘 = 𝜔/𝑐0 and 𝑐0 is the sound speed, 𝜃0 and 𝑧0 are the source azimuthal

coordinate and distance between the source and the duct open end at emission time 𝑡0 = 0 respectively. Note that

the only effect on the solution due to source rotation is the introduction of a Doppler shift on the source frequency

𝐹̃ (𝜔 − 𝑚Ω).

I.B Acoustic radiation from a semi-infinite duct

In this section the solution for the far-field radiation due to the point dipole source shown in figure 1b is reviewed.

The source can be observed to rotate around its axis located within a semi-infinite, hard-walled, un-flanged

circular duct.

The general solution for the far-field radiation when the source is located within the duct is now in the form of a

summation of azimuthal and radial mode orders with indices 𝑚 and 𝑛,

𝑝 (𝐷) (𝑅, 𝜙, 𝜃, 𝜔) =
∞∑︁

𝑚=−∞

∞∑︁
𝑛=1

𝑝
(𝐷)
𝑚𝑛 (𝑅, 𝜙, 𝜃, 𝜔) , (3)

with each modal contribution of the form,

𝑝
(𝐷)
𝑚𝑛 (𝑅, 𝜙, 𝜃, 𝜔) =

( 𝑎
𝑅

)
𝐴𝑚𝑛 (𝜔 − 𝑚Ω)𝐷𝑚𝑛 (𝜙, 𝑘𝑎) e− 𝑗 (𝑘𝑅+𝑚𝜃) , (4)

where 𝐴𝑚𝑛 (𝜔 − 𝑚Ω) is the complex modal pressure amplitude, and 𝐷𝑚𝑛 (𝜙, 𝑘𝑎) is the non-dimensional far-field

polar modal directivity function.

For the rotating point dipole force 𝐴𝑚𝑛 (𝜔 − 𝑚Ω) is derived in Appendix B, and is of the form,

𝐴𝑚𝑛 (𝜔−𝑚Ω) =
1
2𝑆

[
𝑎

𝑟0
𝑚 sin 𝛾+𝑘𝑧,𝑚𝑛𝑎 cos 𝛾

]
𝐹 (𝜔−𝑚Ω) 1

𝑘𝑧,𝑚𝑛𝑎

√︃
1 − 𝑚2

(𝜅𝑚𝑛𝑎)2

𝐽𝑚 (𝜅𝑚𝑛𝑟0)
𝐽𝑚 (𝜅𝑚𝑛𝑎)

e 𝑗 (𝑘𝑧,𝑚𝑛𝑧0+𝑚𝜃0) , (5)

where 𝑆 = 𝜋𝑎2 is the area of the duct cross-section, 𝑘𝑧,𝑚𝑛 is the modal axial wavenumber, and 𝜅𝑚𝑛 is the transverse

wavenumber chosen to satisfy the hard-walled boundary condition, 𝜕𝑝/𝜕𝑟 = 0 at 𝑟 = 𝑎. The wavenumbers are

6



related through the dispersion relationship,

𝑘2 = 𝜅2𝑚𝑛 + 𝑘2𝑧,𝑚𝑛. (6)

The solution for the directivity function 𝐷𝑚𝑛 (𝜙, 𝑘𝑎) for both flanged and un-flanged ducts are discussed in the

next section.

I.C Far-field modal directivity functions for ducted sources

The modal radiation due to ducted sources has been addressed by a number of authors. The first work on the

far-field radiation due to a single acoustic mode incident upon the open end of a flanged duct was by Tyler and

Sofrin [10] in 1962.

Subsequently, Homicz and Lordi [11] developed an expression for the far-field modal pressure from a semi-infinite,

hard-walled, un-flanged circular duct using the Wiener-Hopf technique. Their solution does not readily allow

computation of the radiation due to cut-off modes, 𝜅𝑚𝑛 < 𝑘 , and is therefore unsuitable for calculations where the

source is located relatively close to the duct open end, 𝑧0/𝜆 → 0. More recently Gabard and Astley [12] provided

an alternative formulation that readily includes cut-off modes (and also the effect of flow and a center-body both

of which will not be considered in the present study).

The flanged solution has been shown to provide a good approximation to the un-flanged result for polar angles

not too close to the sideline directions 𝜙 ≈ 90° and for modes not too close to the cut-off frequency (𝑘/𝜅𝑚𝑛 = 1).

All predictions comparing free-field and ducted directivities presented in this paper have been calculated using

the un-flanged solution, specifically the solution by Gabard and Astley [12], who expressed the modal directivity

function for a hard-walled hollow duct in the form,

𝐷𝑚𝑛 (𝜙, 𝑘𝑎) =
(𝑘𝑎 + 𝑘𝑧,𝑚𝑛𝑎) (1 − cos 𝜙)

𝜋(𝑘𝑧,𝑚𝑛𝑎 − 𝑘𝑎 cos 𝜙)𝑘𝑎 sin 𝜙𝐻 ′
𝑚 (𝑘𝑎 sin 𝜙)

√︃(
1 − 𝑚2

𝜅2𝑚𝑛𝑎
2

) 𝐾−
𝑚 (𝜅𝑚𝑛𝑎)

𝐾+
𝑚 (cos 𝜙)

. (7)

In Eq. 7 𝐻𝑚 is the Hankel function of the first kind with prime denoting differentiation with respect to its

argument, and 𝐾+ and 𝐾− are the Kernel functions, which are determined from complex integral expressions.

By contrast, the solution for themodal radiation from a flanged duct derived by Tyler and Sofrin [10], 𝐷𝐹,𝑚𝑛 (𝜙, 𝑘𝑎),
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is considerably simpler and provides much greater insight into the behaviour and characteristics of modal radiation

from ducts. It is of the form

𝐷𝐹,𝑚𝑛 (𝜙, 𝑘𝑎) = 𝑗𝑚−1 𝑘𝑧,𝑚𝑛

𝑘

sin 𝜙𝐽 ′𝑚 (𝑘𝑎 sin 𝜙)

( 𝜅
2
𝑚𝑛

𝑘2
− sin2 𝜙)

√︃(
1 − 𝑚2

𝜅2𝑚𝑛𝑎
2

) . (8)

Comparisons between the flanged and un-flanged directivities for modes excited above and below cut-off are

shown in figure 2 for a mode of azimuthal order 𝑚 = 9 and radial order 𝑛 = 6. Results are shown at three different

frequencies representing cut-off ratios of 𝑘/𝜅𝑚𝑛 = 1.5, 1.01 and 0.5, corresponding to a well cut-on mode, a

mode just cut-on, and a mode well cut-off respectively.

(a) 𝒌/𝜿𝒎𝒏 = 1.50 (b) 𝒌/𝜿𝒎𝒏 = 1.01

(c) 𝒌/𝜿𝒎𝒏 = 0.50

Figure 2 Modal directivity for (𝒎, 𝒏) = (9, 6) at 𝒌/𝜿𝒎𝒏 = 1.5, 1.01 and 0.5. The un-flanged directivity -
solid black line, flanged - red dashed line, mode-ray angle Eq. 9 -blue circle. In 𝒅𝑩 re 1.

Whilst the general shape of the directivity functions presented in figure 2 are similar in the forward arc, their

levels can be observed to be significantly different by up to 5 𝑑𝐵 in these examples. However, despite these
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large differences, the two solutions 𝐷𝑚𝑛 (𝜙, 𝑘𝑎) and 𝐷𝐹,𝑚𝑛 (𝜙, 𝑘𝑎) are in very close agreement at the angles 𝜙𝑚𝑛,

given by

sin 𝜙𝑚𝑛 =
𝜅𝑚𝑛

𝑘
. (9)

These angles have been identified by a number of authors as the mode-ray angle at which peak radiation occurs

for well cut-on modes, as in figure 2a. However, Chapman [1] showed that these angles have broader significance

as the ‘nil-shielding’ angles at which the free-field and ducted solutions agree, but without providing examples.

The existence of nil-shielding directions is shown in this paper to be central to the understanding between the

differences in the characteristics of the radiation from free-field and ducted sources.

Note when the mode is cut-off, as shown in figure 2c, the angle 𝜙𝑚𝑛 is not defined. For the remainder of this

paper we use the directivity function of Gabard and Astley [12] to predict the radiation from roating point dipole

sources, considering modes excited above and below cut-off.

II Nil-shielding directions

Following Chapman [1] the existence of nil-shielding directions is readily demonstrated for the flanged duct by

evaluating 𝑝𝐹,𝑚𝑛 (𝑅, 𝜙, 𝜃, 𝜔) (substituting Eq. 8 into Eq. 4) at the nil-shielding direction 𝜙 = 𝜙𝑚𝑛 by the use of

L’Hôpital’s rule to give,

𝑝
(𝐷)
𝐹,𝑚𝑛

(𝑅, 𝜙𝑚𝑛, 𝜃, 𝜔) = 𝑗𝑚−1
(
1
4𝜋𝑅

) [
𝑚

𝑟0
sin 𝛾+𝑘 cos 𝜙𝑚𝑛 cos 𝛾

]
𝐹 (𝜔−𝑚Ω)𝐽𝑚 (𝑘𝑟0 sin 𝜙𝑚𝑛)e− 𝑗𝑘 (𝑅−𝑧0 cos 𝜙𝑚𝑛)− 𝑗𝑚(𝜃−𝜃0) .

(10)

This expression is identical to Eq. 2 derived in Appendix A for the far-field pressure due to the same source

radiating into a free-field, thereby demonstrating that at these mode-ray angles, the rigid duct is effectively

transparent to sound, where radiation from the duct is equal to the free-field source. We further note by observation

of figure 2 that the un-flanged duct solution is also in agreement with the free-field and flanged duct solutions. It

therefore follows that the flanged duct, un-flanged duct, and free-field solutions are in agreement in the forward

arc at the mode-ray nil-shielding directions, i.e.

𝑝
(𝐷)
𝑚𝑛 (𝑅, 𝜙𝑚𝑛, 𝜃, 𝜔) = 𝑝 ( 𝑓 𝑓 )𝑚 (𝑅, 𝜙𝑚𝑛, 𝜃, 𝜔). (11)
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Chapman [1] stated that this behaviour was ‘strikingly evident’ from the predictions for free-field and ducted

source radiation in Myers and Lan [13]. Attempts at proving the agreement between the expression for

𝑝
( 𝑓 𝑓 )
𝑚 (𝑅, 𝜙𝑚𝑛, 𝜃, 𝜔) and 𝑝 (𝐷)

𝑚 (𝑅, 𝜙𝑚𝑛, 𝜃, 𝜔) at 𝜙 = 𝜙𝑚𝑛 involving the un-flanged directivity expression of Eq. 7

have so far been unsuccessful owing to the complexity of the Kernel function 𝐾 .

II.A Far-field directivities for single azimuthal modes due to sources deep inside the

duct

The previous section has investigated the characteristics of the far-field radiation for single acoustic duct modes

and verified the existence of nil-shielding directions, which occur at the mode-ray angles, where the solution is in

exact agreement with the free-field solution.

Before comparing the directivities due to ducted and free-field sources for calculations involving multiple

azimuthal mode orders, directivities for some idealised cases involving only a single azimuthal mode order are

compared to highlight more clearly the role of nil-shielding directions in determining the overall directivity in the

forward arc.

The directivities between free-field and ducted sources are now investigated for a single azimuthal mode order 𝑚

when the source plane is 𝑧0/𝜆 = 5, which, acoustically, is far from the duct open end such that the contribution

due to cut-off modes can be neglected. Figures 3a and 3b show a comparison between the free-field and ducted

directivities for the single azimuthal mode order 𝑚 = 0, excited at 𝑘𝑎 = 5 and 35 respectively. The radius

of rotation and dipole orientation are chosen to be 𝑟0/𝑎 = 0.5 and 𝛾 = 0° respectively. The fluctuating force

strength spectrum is taken to be ‘flat’ with unit source strength 𝐹̃ = 1. Throughout this paper, the expression for

the far-field is evaluated at 𝑅 = 1𝑚. The nil-shielding directions for each constituent radial mode order 𝑛 are

represented by the blue circles.
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(a) 𝑘𝑎 = 5 (b) 𝑘𝑎 = 35

Figure 3 Free-field (red dashed line) and ducted (black line) directivities of rotating point dipole sources
for 𝒎 = 0, with 𝒓0/𝒂 = 0.5, 𝒛0/𝝀 = 5 and 𝜸 = 0°, with nil-shielding directions as the blue circles. In 𝒅𝑩 re
1 𝑷𝒂

The important feature of figure 3 is that, even when multiple radial mode orders are present, very close agreement

is observed between the un-flanged ducted solution and the free-field solution at the nil-shielding directions 𝜙𝑚𝑛.

At 𝑘𝑎 = 35 there are eleven cut-on modes for 𝑚 = 0, whereas at 𝑘𝑎 = 5 there are only two. Clearly, therefore, the

presence of additional radial modes do not disrupt the agreement between the two solutions at the nil-shielding

directions. This property was recognised by Chapman [1] for the flanged-duct directivity, which he attributed

to the ‘interlacing’ property of the Bessel function appearing in the expression for 𝐷𝑚𝑛 (𝜙). In terms of the

directivity function, this property may be stated as,

𝐷𝑚𝑛′ (𝜙𝑚𝑛, 𝑘𝑎) = 0, 𝑛 ≠ 𝑛′, ∀𝑘

𝐷𝑚𝑛′ (𝜙𝑚𝑛, 𝑘𝑎) ≠ 0, 𝑛 = 𝑛′, 𝑘 < 𝜅𝑚𝑛

(12)

In figure 3a for 𝑘𝑎 = 5 and 𝑚 = 0, only the plane wave mode (𝑚, 𝑛) = (0, 1) and mode (𝑚, 𝑛) = (0, 2) are cut-on,

and hence only two nil-shielding directions occur at which the solutions can be observed to exactly match, with

the plane wave having 𝜙𝑚𝑛 = 0◦. Deviations between the solutions of up to 3 𝑑𝐵 can be observed at angles

away from the nil-shielding directions (in the majority of the forward-arc). At the much higher non-dimensional

frequency of 𝑘𝑎 = 35, many more radial modes and hence nil-shielding directions are present at which the

solutions match. Due to the high density of nil-shielding directions at this frequency good agreement between the

two solutions occur, not only at the nil-shielding directions, but also at angles in-between. Naturally there is no

agreement in the rear-arc 90° < 𝜙 < 180° which is shielded by the duct unlike for a free-field source, which is

exactly symmetric about 𝜙 = 90° in this example with 𝛾 = 0◦ (axial dipole).
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II.B Far-field directivities for single azimuthal modes due to sources at the open end

As the source plane approaches the duct open end the contribution from cut-off modes become increasingly

important to the overall far-field radiation. To illustrate the importance of the location of the source plane to

overall radiation for the single azimuthal mode orders 𝑚 = 0, 1, 2 and 3, and hence to the contribution from cut-off

modes, figures 4a - 4d shows the far-field directivity when the source plane is now located approximately at the

duct open end. Also shown in the figure is the corresponding free-field directivity. In this example, 𝑧0/𝜆 = 0.01

and 𝑘𝑎 = 5. In each figure the directivity due to the ducted radiation is further broken down into their contribution

from cut-on modes and cut-off modes as the blue and grey lines respectively. Note the number of cut-off modes

was chosen to ensure convergence of the directivity function. which is typically many times the number of cut-on

modes. The remaining parameters as the same as in figure 3a.

Note that Eq. 4 for the ducted radiation tends to infinity when the source is located exactly at 𝑧0/𝜆 = 0, as was

shown in Baddour et al [14]. This behaviour was attributed to the number of cut-off modes that contribute

significantly to the far-field radiation, which tends to infinity as the source approaches the duct open end. The

reason for this behaviour in the formulation is still not resolved and is under further investigation. This was also

noted by Rienstra and Tester [15], where they identified a divergent behavior of adding cut-off modes to compute

the in-duct pressure field.

(a) 𝑚 = 0 (b) 𝑚 = 1

12



(c) 𝑚 = 2 (d) 𝑚 = 3

Figure 4 Free-field (red dashed line) and ducted (black line) directivities of rotating point dipole sources
for 𝒎 = 0, 1, 2 and 3 at 𝒌𝒂 = 5 with 𝒓0/𝒂 = 0.5, 𝒛0/𝝀 = 0.01 and 𝜸 = 0°, with nil-shielding directions as the
blue circles. In 𝒅𝑩 re 1 𝑷𝒂. In 𝒅𝑩 re 1 𝑷𝒂

For the zero mode order 𝑚 = 0, only two radial modes are cut-on at this frequency whose nil-shielding directions

can be seen at exactly 0◦ and approximately 50◦. Excellent agreement is obtained between the ducted and

free-field solutions, not only at these nil-shielding angles, but also at all angles in the forward arc. Note that in this

case there is negligible contribution from cut-off modes. For mode order 𝑚 = 1, however, excellent agreement is

limited to angles less than the first nil-shielding direction of 𝜙𝑚𝑛 ≈ 20◦. Note that over this range of angles the

contribution from cut-on modes is dominant. At angles greater than 𝜙 ≈ 20◦ the agreement between the free-field

and ducted solution is less good but remains within 2 𝑑𝐵 at all angles up to 𝜙 ≈ 120◦, which can be seen to be

attributed to the presence of cut-off modes. For mode orders 𝑚 = 2 and 𝑚 = 3, good levels of agreement (< 1

𝑑𝐵) is observed at all angles up to approximately the first nil-shielding direction of 𝜙𝑚𝑛 ≈ 37◦ and 𝜙𝑚𝑛 ≈ 57◦

respectively, although the level of agreement can be seen to degrade with increasing 𝑚. At the higher angles,

generally poor levels of agreement between the free-field and ducted solutions are observed. The contribution

from cut-off modes becomes progressively weaker since their radiation efficiency has been shown to vary as

(𝑘𝑎)2𝑚+2 [16]. In summary, therefore, generally good agreement is observed between the ducted and free-field

directivities in all cases at radiation angles close to the duct axis but worsens significantly towards the sideline

directions.

By contrast, significant deviations between the free-field and ducted directivities were observed in figure 3a at the

comparatively low frequency of 𝑘𝑎 = 5 when the source plane was many wavelengths (𝑧0/𝜆 = 5) from the duct

open end, except at the nil-shielding directions where exact agreement was observed.

The reason for the difference in levels of agreement for the two source planes can be attributed to the phase
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difference between different radial modes at the duct open end. Equation 2 for the free-field radiation includes the

phase term e 𝑗𝑘𝑧0 cos 𝜙 , while for ducted sources the far-field pressure contains the phase term e 𝑗𝑘𝑧,𝑚𝑛𝑧0 (see Eq. 5).

Clearly therefore, the phase difference between the various radial mode orders at the duct open end are only equal:

1) At the nil-shielding directions 𝜙 = 𝜙𝑚𝑛.

2) At all radiation angles 𝜙 when the source plane is located at the duct open end 𝑧0 = 0.

This is an important result which suggests that, for a single azimuthal mode order, the far-field radiation due

to free-field and ducted sources is identical at the nil-shielding directions and becomes almost identical over a

large range of forward arc angles as the source plane is moved increasingly closer to the duct open end. Clearly

therefore, when the source is at the open end, the duct has a relatively small effect on the radiation of the source

in the forward arc.

The comparison between free-field and ducted source directivities presented above (for an axial location

𝑧0/𝜆 = 0.01) is now shown at the much higher frequency of 𝑘𝑎 = 35, for azimuthal mode orders 𝑚 = 0, 10, 20

and 30, in figure 5a - 5d respectively. The parameters are the same as in figure 3b.

(a) 𝑚 = 0 (b) 𝑚 = 10
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(c) 𝑚 = 20 (d) 𝑚 = 30

Figure 5 Comparison between free-field and ducted directivities of rotating point dipole sources at single
azimuthal orders 𝒎 = 0, 10, 20 and 30 at non-dimensional frequency 𝒌𝒂 = 35. Shown for a source radius
of rotation 𝒓0/𝒂 = 0.5, dipole orientation 𝜸 = 0° and axial location 𝒛0/𝝀 = 0.01. The contribution of cut-on
and cut-off modes are highlighted for the ducted case and the nil-shielding directions are shown as the blue
circles. In 𝒅𝑩 re 1 𝑷𝒂

By comparison with the previous results at 𝑘𝑎 = 5, in figure 5 the free-field and ducted solutions at this higher

frequency are now in excellent agreement over a much larger range of angles for the azimuthal orders 𝑚 = 0, 10

and 20. This improved level of agreement is due to the much higher number of nil-shielding directions present

for 𝑚 = 0, 10 and 20. At 𝑚 = 0 and 𝑚 = 10, contributions from cut-off modes can be observed to be negligible.

However, at 𝑚 = 20 the directivity levels can be observed to be significantly weaker than at the lower orders by

about 10 to 20 𝑑𝐵, and hence the relative contribution from cut-off modes is more significant. For this mode the

directivity is dominated by the cut-on modes at angles up to the second nil-shielding direction at 𝜙𝑚𝑛 ≈ 65◦, but

then becomes dominated by the cut-off modes at higher angles.

At the highest azimuthal mode order under investigation, 𝑚 = 30, the overall directivity is many orders of

magnitude smaller than for the lower orders by virtue of its intrinsically weaker radiation efficiency. The notable

aspect of the directivity for this azimuthal mode is that cut-off modes completely dominate the overall response

(gray curve hidden below the black curve) except at the single nil -shielding direction at 𝜙𝑚𝑛 ≈ 68◦. Here, the

contribution due to cut-off modes exhibits a null and the free-field and ducted solutions still agree.

Note that there exists a lower-bound frequency below which no nil-shielding directions can occur at which all

radial mode orders associated with the same azimuthal mode order are cut-off. An estimate for these frequencies

is readily obtained by noting that the first stationary value of the Bessel function of order 𝑚, 𝐽 ′𝑚 (𝜅𝑚0𝑎) = 1 occurs

approximately at 𝜅𝑚0𝑎 ≈ 𝑚. The lower boundary frequency 𝑓 (in Hertz) for the azimuthal mode 𝑚 below which
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no nil-shielding directions occur is therefore given by 𝑓 < 𝑚𝑐0/2𝜋𝑎.

II.B.1 High-ka limit, ka → ∞

Following from the observations above, now consider the limiting behaviour of ducted source radiation in the

high frequency limit, 𝑘𝑎 → ∞. Irrespective of the source location relative to the duct open end, 𝑧0, the existence

of nil-shielding directions at the discrete mode-ray angles 𝜙𝑚𝑛 is highlighted. In the high-𝑘𝑎 limit, the mode-ray

angles associated with a particular value of 𝑚 tend towards a continuum of values and the expression for the

far-field radiation due to a ducted source must therefore tend to that of the free-field source for almost all radiation

angles in the forward-arc independent of its position relative to the duct open end. The radiation angles in the

side-line directions however, will have a lower ducted than free-field radiation caused by reflections of the modes

closest to cut-off.

II.C Summary

By way of summary, for sources located close to the duct open end the radiation due to a single azimuthal mode

𝑚 and its comparison with free-field radiation can be summarised as follows:

1) The radiation is sensitive to source position relative to the duct open end at low frequencies where there are

comparatively few nil-shielding directions. The sensitivity of the radiation to source position becomes much

weaker as frequency is increased since there are a greater number of nil-shielding directions at which the

ducted directivity matches the free-field solution.

2) For sources close to the duct open end there is close agreement between the free-field and ducted radiation at

polar angles from 0◦ (the duct axis) up to the highest nil-shielding direction associated with the least cut-on

propagating mode.

3) For sources close to the duct open end, far-field radiation appears to be dominated by cut-on modes, with

relatively small contribution due to cut-off modes over the range of angles specified above in 2.

4) Cut-off modes are generally important to the overall directivity for the higher order azimuthal modes 𝑚

(1/2𝑘𝑎 ≲ 𝑚 ≲ 𝑘𝑎) at radiation angles above the highest nil-shielding direction 𝜙 > 𝜙𝑚𝑛, including in the

rear-arc. The contribution of cut-off modes appear to improve the agreement between the free-field and ducted

radiation at the higher angles above the highest nil-shielding directions.
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III Comparison between the free-field and ducted directivities for rotat-

ing point dipole sources

The previous sections have compared the directivity patterns due to single azimuthal mode orders excited by

free-field and ducted rotating sources. In this section the directivities are compared, now with all possible

azimuthal mode orders, including cut-off modes for the case of the ducted source, included. This comparison is

made for different axial distances from the duct open end 𝑧0, source radii of rotation 𝑟0, dipole orientations 𝛾 and

non-dimensional frequencies 𝑘𝑎.

The expression for the mean squared pressure due to free-field and ducted sources, with all possible azimuthal

modes included, may be obtained by evaluating 𝑝2 = 1
2 𝐸{𝑝𝑝

∗}, where 𝑝 is the expression for either the free-field

or ducted pressure given by Eq. 2 or Eq. 5 respectively, and 𝐸 {·} denotes the expectation operator. This

procedure results in the cross-spectral term 𝐸{𝐹 (𝜔 −𝑚Ω)𝐹∗ (𝜔 −𝑚′Ω)}. In this paper frequency incoherence is

assumed in the source cross-spectrum, i.e. 𝐸{𝐹 (𝜔 − 𝑚Ω)𝐹∗ (𝜔 − 𝑚′Ω)} = 𝐹2 (𝜔 − 𝑚Ω)𝛿𝑚𝑚′ , in Eqs. 2 and 5,

where 𝛿𝑚𝑚′ is the Knonecker delta function, i.e., that the source spectrum at different frequencies is incoherent.

The final results are presented for the two solutions in the form,

𝑝2
( 𝑓 𝑓 )

(𝑅, 𝜙, 𝜔) = 1
2

(
1
4𝜋𝑅

)2 ∞∑︁
𝑚=−∞

(
𝑚

𝑟0
sin 𝛾 + 𝑘 cos 𝜙 cos 𝛾

)2
𝐹2 (𝜔 − 𝑚Ω)𝐽2𝑚 (𝑘𝑟0 sin 𝜙). (13)

𝑝2
(𝐷)

(𝑅, 𝜙, 𝜔) = 1
2

(
1
4𝜋𝑅

)2 ∞∑︁
𝑚=−∞

𝐸


����� ∞∑︁
𝑛=1

𝐴𝑚𝑛 (𝜔 − 𝑚Ω)𝐷𝑚𝑛 (𝜙, 𝑘𝑎)
�����2 . (14)

The assumption made above concerning the source frequency spectrum implies that the mean square pressure

due to different azimuthal modes may be summed incoherently, while the radial modes within each azimuthal

mode must be summed coherently. Note also that for more complex spatial source distributions, such as might be

expected for fan noise, each radial mode order 𝑛 is also likely to be incoherent, as verified experimentally by

Castres et al [17].

Equation 13 may be developed further. Expanding the term (𝑚/𝑟0 sin 𝛾 + 𝑘 cos 𝜙 cos 𝛾)2 and assuming a ‘flat’

source spectrum 𝐹2 (𝜔) = 𝐹2 (i.e. independent of frequency), Eq. 13 may be simplified by noting the following

Bessel function identities:
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∞∑︁
𝑚=−∞

𝐽2𝑚 (Θ) = 1 (𝑎),
∞∑︁

𝑚=−∞
𝑚𝐽2𝑚 (Θ) = 0 (𝑏),

∞∑︁
𝑚=−∞

𝑚2𝐽2𝑚 (Θ) =
1
2
Θ2 (𝑐), (15)

which upon substitution into Eq. 13 gives,

𝑝2
( 𝑓 𝑓 )

(𝑅, 𝜙, 𝜔) = 1
2
𝐹2

(
𝑘2

4𝜋𝑅

)2 (1
2
sin2 𝛾 sin2 𝜙 + cos2 𝜙 cos2 𝛾

)
. (16)

Equation 15a is a standard result, while Eq. 15b arises since 𝑚𝐽2𝑚 (Θ) is an odd function in 𝑚. The authors

cannot seem to find a reference to Equation 15c, which has only been proven numerically (although not shown

here). The final result of Eq. 16 is particularly simple. It reduces to standard results for the axial and transverse

dipole orientations of 𝛾 = 0 and 𝛾 = 90°. Note that Eq. 16 is independent of the radius of rotation 𝑟0.

The free-field directivity for the rotating source is fundamentally different from that when the source is stationary.

The far-field directivity for a stationary dipole is proportional to cos2 (𝜙 − 𝛾), and therefore rotates with the dipole

orientation 𝛾 such that maximum and zero radiation occurs at 𝜙max = 𝛾 and 𝜙min = 𝛾 + 90° respectively. For

rotating dipole sources, however, the far-field directivity becomes modified by the effects of rotation according to

(1/2 sin 𝛾 sin 𝜙 + cos 𝛾 cos 𝜙)2.

III.A Effect of far-field radiation due to source axial distance from the duct open end

In section II it is established that for a single azimuthal mode order in the high-frequency limit, 𝑘𝑎 → ∞, there is

close agreement between the free-field and ducted directivities at all polar angles in the forward-arc, irrespective

of the source location within the duct. Also observed is the good match between free-field and ducted source

radiation at all frequencies with the source located at the duct open end. Since the contributions from individual

azimuthal mode orders may be summed incoherently, it therefore follows that the same conditions apply to ensure

close agreement between the free-field and ducted solutions for the case when all azimuthal mode orders are

excited due to an arbitrary source distribution.

To confirm this hypothesis the effect of 𝑧0 on far-field radiation in the multi-mode case is investigated by

interrogating Eqs. 16 and 14. Figure 6 shows a comparison between the multi-mode free-field directivity

patterns 𝑝2
( 𝑓 𝑓 )

(𝑅, 𝜙, 𝜔) and the ducted directivity patterns 𝑝2
(𝐷)

(𝑅, 𝜙, 𝜔) computed at the two axial locations

of 𝑧0/𝜆 = 5 and 𝑧0/𝜆 = 0.01. In these simulations 𝑟0, 𝛾 and 𝑅 are identical to those in Section II, with unit source

strength assumed, 𝐹2 (𝜔 − 𝑚Ω) = 1.
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(a) 𝑘𝑎 = 5 (b) 𝑘𝑎 = 20

(c) 𝑘𝑎 = 35
(d) 𝑘𝑎 = 50

Figure 6 Free-field and ducted directivities of rotating point dipole sources with 𝒓0/𝒂 = 0.5 and 𝜸 = 0° at
𝒌𝒂 = 5, 20, 35 and 50, and𝒛0/𝝀 = 0.01, 𝒛0/𝝀 = 5. In 𝒅𝑩 re 1 𝑷𝒂.

Figure 6 shows that when the source plane is located at the duct open end, the free-field and ducted directivities

generally agree to within 1 𝑑𝐵 over a wide range of forward-arc angles at all frequencies. This result is consistent

with the behaviour for single azimuthal modes 𝑚 explored in Section II.

The most striking effect of locating the source deep within the duct 𝑧0/𝜆 = 5 is the appearance of oscillations in

the far-field radiation, which in section II has been found to be caused by interference between different radial

mode orders at the same azimuthal order. As frequency is increased the number of oscillations increase and

becomes smaller in amplitude such that the ducted radiation tends to that of the free-field source. Although not

seen in figure 6 for the axial dipoles, deviations from free-field behaviour is observed for non-axial dipoles where

the radiation at 𝜙 = 90° is non-zero due to significant reflections of near cut-off modes.
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III.B Effect of far-field radiation due to source radial position

This section investigates the effect on the far-field radiation due to source radius 𝑟0/𝑎 from a rotating point

dipole source. The same two axial locations investigated previously are used, 𝑧0/𝜆 = 5, where the effect of

cut-off modes is negligible, and 𝑧0/𝜆 = 0.01, where cut-off modes make most contribution. Figures 7a - 7d

show a comparison between the free-field and ducted directivities at the relatively low frequency of 𝑘𝑎 = 5 for

an axial dipole source (𝛾 = 0°). In each figure, results are shown for the two source radii of 𝑟0/𝑎 = 0 and 1,

which only affects the ducted radiation and not the free-field solution of Eq. 16. which in this case reduces to

𝑝2
( 𝑓 𝑓 )

= 𝐹2
(
𝑘2/4𝜋𝑅

)2 cos2 𝜙 cos2 𝛾. The remaining parameters are the same as in figure 6.

(a) 𝑘𝑎 = 5, 𝑧0/𝜆 = 5 (b) 𝑘𝑎 = 5, 𝑧0/𝜆 = 0.01

(c) 𝑘𝑎 = 35, 𝑧0/𝜆 = 5 (d) 𝑘𝑎 = 35, 𝑧0/𝜆 = 0.01

Figure 7 Free-field and ducted directivities of rotating point dipole sources with 𝒓0/𝒂 = 0.0 and 1, 𝜸 = 0°.
In 𝒅𝑩 re 1 𝑷𝒂.

Figure 7 illustrates clearly the influence of both the source radius 𝑟0 and axial location 𝑧0 on the far-field directivity

due to ducted sources. At the lowest frequency of interest, 𝑘𝑎 = 5, there is significant difference in level between

the two ducted and free-field solutions when the source is deep within the duct. Note that when the source is

located at the duct wall 𝑟0/𝑎 = 1 the ducted radiation is approximately 3 𝑑𝐵 greater than the free-field solution
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over most of the range of angles. This finding is a result of the effective increase in acoustic pressure due to

a source located next to a hard boundary. When the source is located on axis, far-field levels of radiation are

observed to be similar.

However, when the source is located close to the duct open end, figure 7b and 7d indicates that the far-field

directivity varies between that of a free-field axial dipole source when the source is on-axis 𝑟0/𝑎 = 0, to being

close to omni-directional when the source is located at the duct wall 𝑟0/𝑎 = 1. Further investigations, shown in

Section V.A below, indicated that this monopole-type behaviour only occurs when the source is a very small

fraction of a wavelength close to the duct wall. Clearly, this difference between the dipole behaviour of figure 7a

and the behaviour observed in figure 7b, which more closely resembles monopole type directivity is due to the

significant contribution of the cut-off modes which are now important when the source is close to the duct open

end. The clear conclusion is that locating the dipole source at the edge of a diffracting half-plane fundamentally

alters the radiation to be similar to a monopole. The current mechanism for this behaviour is currently being

explored.

Very similar behaviour to figures 7a and 7b can be observed in 7c and 7d at the much higher frequency of 𝑘𝑎 = 35.

When the source is deep within the duct, evidence of strong interference between radial modes can be observed,

which are absent when the source is located close to the duct open duct, as discussed previously in section III.A.

Very close agreement is observed between the free-field and ducted sources when the source is on the duct axis,

𝑟0/𝑎 = 0, but differs significantly when the source is on the duct rim, 𝑟0/𝑎 = 1, and then radiates as a monopole.

Insight into the cause of the omni-directional behaviour for a source located at the duct rim observed in figure 7b

and 7d can be obtained by splitting this directivity into contributions due to cut-on and cut-off modes, as shown

in figure 8.
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(a) Exact (b) Theoretical

Figure 8 Free-field and ducted directivities for rotating axial dipole sources with 𝒓0/𝒂 = 1, 𝒛0/𝝀 = 0.01
at 𝒌𝒂 = 35, highlighting the contribution of cut-on and cut-off modes. In 𝒅𝑩 re 1 𝑷𝒂.

Figure 8 demonstrates that the forward arc is dominated by propagating modes as observed previously. However,

for the axial dipole source at the duct rim, cut-off modes become dominant in the rear-arc. An intriguing finding is

that the radiation at 𝜙 = 0 due to cut-on modes is equal to that at 𝜙 = 𝜋 due to cut-off modes. When the pressure

directivities from cut-on and cut-off modes are summed the resultant directivity is strongly omni-directional, as

observed in the figure.

The forward-arc pressure closely follows the free-field directivity which is approximately cos𝜙. The rear-arc

directivity can be observed to closely follow sin 𝜙/2, as previously noted by Baddour et al [14], which is

characteristic of the radiation directivity at distance 𝑅 due to edge scattering of the form 𝑅−1/2 sin 𝜙/2, which is

the solution to Laplace’s equation for incompressible flow due to a sharp edge, see Ffowcs Williams and Hawkings

[18]. The resultant directivity is therefore the incoherent sum of the forward and rear-arc directivities, i.e.,

𝑝2
(𝐷)

(𝑅, 𝜙, 𝜔) ≈


cos2 𝜙 + sin 𝜙/2 0 < 𝜙 < 𝜋/2

sin 𝜙/2 𝜋/2 < 𝜙 < 𝜋,
(17)

These approximations are plotted in figure 8b with the level chosen to match the exact solution. Agreement

between fig’s 8a and 8b can be observed to be within about 1 𝑑𝐵 at all radiation angles.
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III.C Effect of far-field radiation due to dipole orientation

Finally, for completeness, this section presents an investigation of the effects of dipole orientation on the acoustic

radiation from free-field and ducted sources. Figure 9 shows the free-field and ducted directivities, computed for

𝑧0/𝜆 = 0.01 at 𝑘𝑎 = 5 and 35, for the two dipole orientations of 𝛾 = 45° and 90°. The remaining parameters are

the same as in figure 6.

(a) 𝑘𝑎 = 35

Figure 9 Free-field and ducted directivities for rotating dipole sources at 𝒌𝒂 = 35 with 𝒓0/𝒂 = 0.5,
𝒛0/𝝀 = 0.01 and 𝜸 = 45° and 90°. In 𝒅𝑩 re 1 𝑷𝒂.

Increasing the dipole orientation 𝛾 is shown to cause the main pressure lobe to approximately rotate towards the

sideline directions, with the maximum radiation occurring at 90° for the transverse dipole 𝛾 = 90°. The level of

agreement between the free-field and ducted sources is approximately the same as for the axial dipole source

shown in figure 6c, suggesting that dipole orientation has no significant effect on the difference between free-field

and ducted radiation.

IV Physical interpretation

Figure 6 has indicated that the agreement between the free-field and ducted directivities tend to converge over all

forward-arc angles as the source is moved closer to the duct open end. However, for sources well away from the

duct open end, good agreement with the free-field solution is confined to a range of shallow angles up to some

particular polar angle but then begins to deviate at angles above this.

Two interpretations of these results are now discussed. The first is a ray interpretation, valid in the high frequency
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𝑘𝑎 → ∞ limit. The second is based on a modal interpretation of the far-field radiation.

IV.A Ray theory interpretation

Simple physical reasoning can help to explain the reason why, for sources well away from the duct open end,

close agreement between the free-field and ducted directivity patterns begins to deviate above some particular

angle but agrees at all angles when the source is brought close to the duct open end, as observed in figs 6c and 6d.

Invoking a ray interpretation of the solution in the high-frequency limit suggests that the effect of the duct on the

source radiation is negligible at all radiation angles for which there is a clear ‘line of sight’ between the source

and the far-field observer. By simple geometry, for a point source at radial position 𝑟0 and distance 𝑧0 from the

open end a clear line of sight exists at all polar angles up to some maximum angle 𝜙𝑙𝑜𝑠 given by,

𝜙𝑙𝑜𝑠 = tan−1 (𝑎 − 𝑟0)/𝑧0. (18)

For the cases under investigation with source axial location 𝑧0/𝜆 = 5, in figure 6c, 𝜙𝑙𝑜𝑠 corresponds to

approximately 29°, and for figure 6d, it is approximately 39°. These range of angles are indicated in figure 6 and

can be clearly seen to delineate the range of angles of good agreement and those where deviations begin to occur

owing to duct diffraction effects.

As the non-dimensional frequency 𝑘𝑎 is increased, the influence on the forward-arc radiation due to the duct

becomes increasingly weaker. This interpretation explains why the free-field and ducted solutions always agree

on axis 0°. Note also that 0° represents the nil-shielding direction for the plane wave mode and this is the only

mode that radiates at this angle.

However, as the source is moved deeper within the duct, the region of direct ‘line of sight’ reduces and the

diffraction of the modes radiation owing to the duct starts to become significant.

IV.B Modal interpretation

The previous section developed a ray theory interpretation to explain the results shown in Figure 6. This section

proposes an alternative interpretation based solely on the behaviour of individual duct modes. We now assume

that the contribution to the forward arc pressure due to cut-off modes can be neglected, which is realistic for

sources well away from the duct open end.

24



A single mode propagating within the duct towards the open end at some axial location 𝑧 from the source plane is

of the form e− 𝑗𝑘𝑧,𝑚𝑛𝑧 . From the dispersion relation (Eq. 6) and the relationship between 𝜅𝑚𝑛 and the nil-shielding

direction 𝜙𝑚𝑛 (Eq. 9), modal propagation within the duct can be written as 𝑝𝑚𝑛 ∝ e− 𝑗𝑘 cos 𝜙𝑚𝑛𝑧 . The phase 𝜒𝑚𝑛

accumulated by the mode in propagating a unit axial distance 𝑧 = 1 along the duct is therefore,

𝜒𝑚𝑛 = 𝑘 cos 𝜙𝑚𝑛 . (19)

It is clear therefore that modes with nil-shielding directions close to the duct axis 𝜙𝑚𝑛 ≈ 0, due to well cut-on

modes, accumulate greatest phase 𝜒𝑚𝑛. Of interest here is the phase difference between modes with similar

nil-shielding directions 𝜙𝑚𝑛. The phase difference 𝛿𝜒 between any two modes with nil-shielding directions

separated by 𝛿𝜙𝑚𝑛 is therefore approximately given by,

𝛿𝜒 ≈ −𝑘 sin 𝜙 𝛿𝜙𝑚𝑛 (20)

A number of modes with nil-shielding directions close to the duct axis therefore arrive at the duct open end with

relatively small phase difference compared to cut-on modes with nil-shielding directions close to 𝜙 ≈ 90°. This

property is the cause of the oscillations observed in figure 6 at high radiation angles.

Equation 20 suggests that the modes responsible for the radiation close to the duct axis arrive with relatively small

phase difference 𝛿𝜒 and therefore radiate approximately in phase. At high radiation angles, however, oscillations

appear in the ducted directivity due to phase interference between the modes responsible for the radiation at these

high angles.

The degree of phase difference between the modes at the duct open end may be quantified by the use of Eq. 20 to

compute the phase difference 𝛿𝜒 between successive modes with nil-shielding direction separated by 𝛿𝜙. This

phase difference is plotted in figure 10 against 𝜙𝑚𝑛 for the case considered in figure 6c where 𝑧0/𝜆 = 5 and

𝑘𝑎 = 35.
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Figure 10 Change in phase 𝜹𝝌 between successive modes with adjacent nil-shielding directions 𝝓𝒎𝒏 for
𝒛0/𝒂 = 1 and 𝒌𝒂 = 35.

A general trend is observed in which the phase difference between successive modes increases with increasing

nil-shielding direction, although significant oscillations in the variation of 𝜒 with 𝜙 can be observed in figure 10.

This oscillatory behaviour originates from the uneven and oscillatory values of 𝛿𝜙𝑚𝑛 between successive modes.

This phase difference can be observed to be 𝛿𝜒 ≲ 20◦ for nil-shielding directions with angles below 𝜙𝑚𝑛 < 70◦,

which corresponding roughly to the range of radiation angles at which good agreement between the free-field and

ducted solutions are observed in figure 6c. At high radiation angles, the phase difference between successive

modes begins to increase, leading to significant oscillations in the far-field directivity caused by destructive

interference between the modes arriving at the duct open end.

The phase differences plotted in figure 10 above have been demonstrated to be the cause of oscillations in the

directivities shown in figures 6 when the source is deep within the duct. A simple analysis is now performed to

quantify this phase difference between successive modes propagating along the duct.

An expression is now derived for the average phase difference 𝛿𝜙 between successive modes at any frequency 𝑘𝑎

with mean nil-shielding direction 𝜙. Note that in this analysis, modes with negative 𝑚 value (phase fronts spinning

counter-clockwise) have been omitted since these have identical nil-shielding direction to the corresponding

mode with positive 𝑚 value. Modes with azimuthal order 𝑚 or −𝑚 with the same radial order 𝑛 arrive at the duct

open end perfectly in phase. The number of modes 𝛿𝑁 (𝑘𝑎, 𝜙) with nil-shielding directions per unit range of
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angles 𝛿𝜙 is given by,

𝑑𝑁 (𝑘𝑎, 𝜙)/𝑑𝜙 = 𝑁 (𝑘𝑎)𝑛(𝜙), (21)

where 𝑁 (𝑘𝑎) is the total number of propagating modes with 𝑚 ≥ 0 at frequency 𝑘𝑎 and 𝑛(𝜙) is the modal

density function, which specifies the relative number of modes with nil-shielding directions in a unit range of

angles 𝛿𝜙 = 1, which has the normalisation property
∫ 𝜋
2
0 \(𝜙)𝑑𝜙 = 1. Following Rice [19] 𝑁 (𝑘𝑎) ≈ (1/2𝑘𝑎)2

and 𝑛(𝜙) = sin 2𝜙. The latter has been derived from the modal density function derived by Rice in terms

of cut-off ratio and making a change of variable indicated in Eq. 9 between cut-off ratio 𝜅𝑚𝑛/𝑘 and modal

propagation angle 𝜙. The average difference between successive nil-shielding directions 𝛿𝜙 is therefore given by

𝛿𝜙 = (𝑑𝑁 (𝑘𝑎, 𝜙)/𝑑𝜙)−1. Substituting this expression into Eq. 20 and substituting for 𝑛(𝑘𝑎) and N(𝜙) gives the

following expression for the average difference in phase accumulated by successive modes in propagating unit

length along the duct of the form,

𝛿𝜒 =
−𝑘

( 12 𝑘𝑎)2 cos 𝜙
. (22)

This equation is plotted in red in figure 10, which can be observed to provide a general fit to the trend in the exact

variation of phase difference between successive modes, with greatest phase difference being predicted for near

cut-off modes.

V Sound power radiation by free-field and ducted sources

In the previous sections, the difference in the directivities between a rotating point dipole source in a free-field

and within a hard-walled, semi-infinite, circular duct is investigated. This has shown that the level of agreement

between the two solutions is mostly determined by the number and density of nil-shielding directions at which

the solutions are identical. In this section, the acoustic power𝑊 (𝜔) radiated by the free-field and ducted sources

is investigated to assess the global effect on far-field radiation owing to the introduction of a duct.

The radiated sound power is calculated by integrating the far-field sound intensity,

𝑊 (𝜔) = 2𝜋
𝜌0𝑐0

𝑅2
∫ 𝜋

0
𝑝2 (𝑅, 𝜙, 𝜔) sin 𝜙𝑑𝜙 , (23)

where 𝑝2 (𝑅, 𝜙, 𝜔) is the far-field mean square pressure due to either the free-field or ducted far-field pressure

solutions of Eq. 16 or 14 respectively. The sound power from a free-field rotating point dipole source can be
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deduced analytically by the substitution of Eq. 16 into 23, which gives,

𝑊 ( 𝑓 𝑓 ) (𝜔) = 1
12𝜋

𝑘2
𝐹2

𝜌0𝑐0
, (24)

where a ‘flat’ frequency spectrum for 𝐹 (𝜔) has been assumed, as in Section III.

.

V.A Effect of sound power due to source axial distance from the open end

In this section the effect of the source’s distance from the duct open end on the radiated sound power is investigated.

Figure 11 shows a plot of the free-field and ducted sound powers versus 𝑘𝑎 for 𝑧0/𝜆 = 5 and 𝑧0/𝜆 = 0.01 for

𝑟0/𝑎 = 0.5 and 𝛾 = 0°. Also shown is the free-field sound computed from Eq. 24, where a duct radius of 𝑎 = 1

has been assumed to compute the frequency 𝑘 since the free-field sound power radiation is independent of source

radius 𝑟0.

Figure 11 Power radiated by free-field and ducted sources for 𝒓0/𝒂 = 0.5, 𝜸 = 0° at 𝒛0/𝝀 = 5 (solid black
line) and 𝒛0/𝝀 = 0.01 (solid blue line)

The free-field and ducted sound powers can be observed to vary as (𝑘𝑎)2 over most of the frequency range in

figure 11. This dependence on frequency is seen explicitly in the free-field sound power expression of Eq. 24.

The (𝑘𝑎)2 frequency dependence for the ducted source has different interpretations at low and high frequencies.
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At low frequency, 𝑘𝑎 < 1.84, the (𝑘𝑎)2 frequency dependence of the radiation efficiency for plane waves is a

well-known classical result. The radiation efficiency for un-flanged and flanged ducts is well known to approach

1/2(𝑘𝑎)2 and (𝑘𝑎)2 respectively as 𝑘𝑎 → 0, Kinsler and Frey [20].

The approximate (𝑘𝑎)2 dependence observed in figure 11 at higher frequencies, 𝑘𝑎 ≳ 5, arises because the

relative mode amplitude distribution is independent of 𝑘𝑎, as demonstrated by Rice [19]. Increasing frequency,

therefore, only has the effect of increasing the number of propagating modes. The variation in total sound power

radiation is therefore proportional to the number of modes, which varies as (𝑘𝑎)2.

As the frequency increases a notable frequency is reached when the free-field and ducted sound powers are equal,

which in this example is approximately 𝑘𝑎 ≈ 1.5 and therefore close to the cut-on frequency of the first higher

order duct modes (𝑚, 𝑛) = (1, 1). As the frequency is increased further the free-field sound power is greater than

the ducted power by power by 3 𝑑𝐵, which as seen in figure 6, is due to shielding of the rear-arc radiation by

the semi-infinite duct. Finally, note there is negligible difference at almost all frequencies between the sound

power radiation for when the source is at 𝑧0/𝜆 = 5 and when the source is at the open end 𝑧0/𝜆 = 0.01. In this

low frequency limit, in this example the ducted source radiates greater sound power than when in free-field by

approximately 4.8 𝑑𝐵, identifying the higher power radiation of the plane wave from the ducted case than the

free-field dipole. The plane wave and the free-field dipole radiate with similar strength on axis, but the free-field

dipole has a notable null in the sideline directions where the plane wave generally radiates equally in all directions

at low frequency.

V.B Effect of sound power due to source radii of rotation

This section presents an investigation of the effect of the radius of rotation 𝑟0 on the radiated sound powers due to

free-field and ducted sources. In particular, we examine the sound power ratio 𝜂(𝜔) defined by,

𝜂(𝜔) = 𝑊 (𝐷) (𝜔)
𝑊 ( 𝑓 𝑓 ) (𝜔)

. (25)

Noting that the expression for free-field sound power, which is independent of 𝑟0,𝑊 ( 𝑓 𝑓 ) (𝜔), may be written in

the analytic form of Eq. 24, the sound power ratio reduces to,

𝜂(𝜔) = 12𝜋𝜌0𝑐0
𝑘2𝐹2

𝑊 (𝐷) (𝜔) . (26)
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By way of example, the sound power ratios at the three radii of rotation, 𝑟0/𝑎 = 0, 0.95, and 1 were computed.

Figure 12a shows the results for an axial dipole source (𝛾 = 0) deep within the duct, 𝑧0/𝜆 = 5, while Figure 12b

shows results for a source near the open end 𝑧0/𝜆 = 0.01, as a function of frequency.

(a) 𝑧0/𝜆 = 5 (b) 𝑧0/𝜆 = 0.01

Figure 12 Sound power ratio of rotating point dipole sources with 𝜸 = 0°, 𝒛0/𝝀 = 5 and 𝒛0/𝝀 = 0.01 and
𝒓0/𝒂 = 0, 0.95 and 1. In 𝒅𝑩 re 1

When the source is deep within the duct, as shown in figure 12a, identical sound power is radiated at all three

radial positions below the first duct cut-off frequency 𝑘𝑎 = 1.84 where only the plane wave is present. For the

two source radii not at the wall, 𝑟0/𝑎 = 0, 0.95, 𝜂(𝜔) → 1/2. This behaviour is clearly seen in the directivity

plots of figure 7 in which the ducted and free-field directivities are almost identical in the forward-arc but with

zero radiation in the rear-arc due to the shielding effect by the duct. However, when the source is located on the

hard duct wall, a doubling of radiated sound power occurs, but which is confined to the forward-arc such that

𝜂(𝜔) → 1 in the high frequency limit. The results at 𝑟0/𝑎 = 1 and 𝑟0/𝑎 = 0 appear to provide high frequency

limiting values since the results at 𝑟0/𝑎 = 0.95 are bounded by these two curves as 𝑘𝑎 → ∞.

Different behaviour in the sound power ratio 𝜂(𝜔) is observed when the source is located close to the duct

open end. Figure 12b shows that when the axial dipole source is on the rim of the duct 𝑧0/𝜆 = 0, 𝑟0/𝑎 = 1, the

frequency variability of 𝜂(𝜔) is much weaker and is close to 6 𝑑𝐵. Reference to figure 7b and 7d suggests that

locating the axial dipole exactly on the duct rim fundamentally alters its radiation characteristics to that almost

identical to a monopole source. As in figure 12a the sound power results at 𝑟0/𝑎 = 0 and 𝑟0/𝑎 = 1 appear to

provide bounds on the behaviour for arbitrary source radii where now the transmission from the upper to lower

curves occurs at a lower frequency when the source is located at the open end. Comparison between the curves
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for the source near and at the duct wall, 𝑟0/𝑎 = 0.95 and 𝑟0/𝑎 = 1, identifies that the increase in ducted power

radiation is only observed for sources very near the wall, as even for 𝑟0/𝑎 = 0.95 frequencies above 𝑘𝑎 ≳ 30 have

similar behavior to sources on the duct axis 𝑟0/𝑎 = 0.

V.C Effect of sound power due to source orientation

Finally, the variation in the sound power ratio between free-field and ducted dipole sources is investigated due to

varying the dipole orientation 𝛾. Figure 13 shows the power ratio 𝜂(𝜔) of Eq. 25 for a dipole source deep within

the duct 𝑧0/𝜆 = 5, 𝑟0/𝑎 = 0.5 for the three dipole orientations 𝛾 = 0°, 45° and 90°. Note that the free-field sound

power does not depend on dipole orientation, as shown in Eq. 24 and varies as 𝜔2 for constant source strength.

Figure 13 Sound power ratio of rotating point dipole sources with 𝒛0/𝝀 = 5, radius of rotation 𝒓0/𝒂 = 0.5
and 𝜸 = 0°, 45° and 90°.

The sound power ratio in figure 13 shows a high dependence on the dipole orientation 𝛾 in the plane wave

frequency range 𝑘𝑎 < 1.84. This behaviour is predicted by the combination of the expression for the plane wave

amplitude of Eq. 54 in Appendix A and Eq. 23 for the sound power. Together these results indicate that the

ducted sound power radiation varies proportional to cos2𝛾. Zero radiation is therefore produced for the transverse

dipole whose dipole strength is normal to the particle velocity, leading to zero sound power radiation.

At higher frequencies, the sound power of the ducted case generally reduces with increasing dipole orientation 𝛾

and becomes more oscillatory. The reasons for both behaviours can be found in the expression for the in-duct

modal amplitude of Eq. 50. As 𝛾 is increased the relative contribution from the zero azimuthal mode order

𝑚 = 0, which makes the largest overall contribution, become comparatively weaker compared to the mode orders
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𝑚 ≠ 0, leading to weaker overall sound power radiation. Furthermore, as 𝛾 is increased the modal weightings of

these non-axisymmetric modes increases, which increases the significance of the oscillations observed at the

modal cut-on frequencies.

VI Conclusion

This paper presents an investigation on the characteristics of the far-field radiation from rotating point dipole

sources radiating in a free-field and from a semi-infinite hard-walled circular duct. The study was motivated

by the need to identify the effect on far-field radiation as a consequence of enclosing the source in a duct, as is

commonly undertaken in many rotor or propeller applications to enhance their efficiency. The conclusions from

this paper may be summarised as follows:

1) The concept of nil-shielding directions 𝜙𝑚𝑛, first proposed by Chapman [1], has been investigated numerically,

in which the far-field directivity from a hard-walled duct is precisely equal to that in free-field at the mode-ray

angles, Eq’s 10 and 2.

2) For sources deep within the duct the far-field directivity tends to oscillate around the free-field result due to

phase interference between different radial mode orders 𝑛 of the same azimuthal mode order 𝑚 (figure 6).

These oscillations tend to zero as the source is introduced closer to the duct open end.

3) For sources deep within the duct, such that only propagating modes radiate significantly, the number of

nil-shielding directions increases as 𝑘𝑎 (figure 3). In this high frequency limit, therefore, agreement between

the free-field and ducted multi-mode solutions therefore tend to agree over all radiation angles and not just

at 𝜙𝑚𝑛, except very close to the side-line directions where reflections of the near cut-off modes become

significant.

4) When the source is located at the open end of the duct, but not at the duct wall, good agreement is observed

even at low frequencies over all radiation angles between the free-field and ducted multi-mode solutions (figs

4, 5 and 6), signifying the importance of cut-off modes for sources located close to the open end.

5) For sources located exactly at the duct wall a doubling of the sound power occurs (figure 7).

6) For axial dipole sources located on the duct rim the far-field directivity becomes fundamentally different from

that of the free-field result, and more closely resembles that of a monopole source (figure 7). However, its

area-weighted average is twice that of the free-field result in the forward-arc, so that the total sound radiated

from the duct is almost identical to that radiated into free-field (figure 12a) at frequencies above the first
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cut-off frequency.
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Appendices

A Derivation of free-field rotating point dipole sources

This section summarises the derivation of the expression for the frequency spectrum of the far-field acoustic

pressure due to a rotating point dipole source radiating into free-field, the angular velocity of the dipole is assumed

constant.

The pressure field 𝑝 ( 𝑓 𝑓 ) (𝑟, 𝜃, 𝑧, 𝑡) due to a rotating point source at a single axial plane 𝑧 = 0 can be deduced from

the inhomogeneous wave equation in cylindrical polar coordinates defined in figure 1 of the form,

𝜕2𝑝 ( 𝑓 𝑓 )

𝜕𝑟2
+ 1
𝑟

𝜕𝑝 ( 𝑓 𝑓 )

𝜕𝑟
+ 1
𝑟2
𝜕2𝑝 ( 𝑓 𝑓 )

𝜕𝜃2
+ 𝜕

2𝑝 ( 𝑓 𝑓 )

𝜕𝑧2
− 1
𝑐20

𝜕2𝑝 ( 𝑓 𝑓 )

𝜕𝑡2
= 𝑠(𝑟0, 𝜃0, 𝑡0)𝛿(𝑧 − 𝑧0), (27)

where the receiver and source time are related by 𝑡 = 𝑡0 − 𝑅/𝑐0, note the observer is assumed to be in the far-field

where it can be assumed 𝑅 >> 𝑧0. In this paper we confine our attention to a point force with arbitrary time

dependence orientated at an angle 𝛾 between the azimuthal 𝜃 and axial 𝑧 directions, with zero component in the

radial 𝑟 direction, and azimuthal 𝜃 and axial 𝑧 components given by,
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𝑭(𝑡0) =



0

𝐹 (𝑡0) sin 𝛾

𝐹 (𝑡0) cos 𝛾


, (28)

The source term 𝑠(𝑟0, 𝜃0, 𝑡0) is then obtained from the divergence ∇ · 𝑭, of Eq. 28,

𝑠(𝑟0, 𝜃0, 𝑡0) =
[
1
𝑟

𝜕𝐹 (𝑡0)
𝜕𝜃

sin 𝛾 + 𝜕𝐹 (𝑡0)
𝜕𝑧

cos 𝛾
]
𝛿(𝑟 − 𝑟0)

𝑟0
𝛿
(
𝜃 − 𝜃0

)
, (29)

[8], where 𝐹̂ (𝑡0) is the magnitude of the fluctuating force. The solution to Eq. 27 is obtained in the wavenumber

domain by first Fourier transforming the pressure with respect to 𝑧, 𝑡0, and expanding the pressure as a Fourier

series in 𝜃, to give the following expression for the pressure due to a single azimuthal mode 𝑚,

𝑝
( 𝑓 𝑓 )
𝑚 (𝑟, 𝑘𝑧 , 𝜔) =

∫ ∞

−∞

∫ 2𝜋

0

∫ ∞

−∞
𝑝 ( 𝑓 𝑓 ) (𝑟, 𝜃, 𝑧, 𝑡)e 𝑗 (𝑚𝜃+𝑘𝑧 𝑧−𝜔𝑡0)𝑑𝑧𝑑𝜃𝑑𝑡0. (30)

where 𝑘𝑧 is the axial wavenumber, which takes continuous values in the range −∞ to ∞. In the wavenumber

domain the derivatives of Eq. 30 are as follows,

𝜕

𝜕𝑧
→ − 𝑗 𝑘𝑧

𝜕

𝜕𝜃
→ − 𝑗𝑚 𝜕

𝜕𝑡
→ 𝑗𝜔, (31)

Fourier Transforming the in-homogeneous wave equation Eq. 27 as in Eq. 30 leads to,

𝜕2𝑝
( 𝑓 𝑓 )
𝑚

𝜕𝑟2
+ 1
𝑟

𝜕𝑝
( 𝑓 𝑓 )
𝑚

𝜕𝑟
+
(
𝜅2 − 𝑚2

𝑟2

)
𝑝
( 𝑓 𝑓 )
𝑚 = − 𝑗 𝛿(𝑟 − 𝑟0)

𝑟

∫ ∞

−∞
e 𝑗𝑘𝑧 𝑧𝛿(𝑧 − 𝑧0)𝑑𝑧∫ ∞

−∞

∫ 2𝜋

0

(𝑚
𝑟
sin 𝛾 + 𝑘𝑧 cos 𝛾

)
𝐹̂ (𝑡0)e 𝑗 (𝑚𝜃−𝜔𝑡0)𝛿(𝜃 − 𝜃0)𝑑𝜃𝑑𝑡0,

(32)

where 𝜅 is the radial wavenumber, which is related to the axial wavenumber 𝑘𝑧 by the dispersion relationship

𝑘2 = 𝜅2 + 𝑘2𝑧 . The integrals across 𝑧 and 𝜃 in Eq. 32 are evaluated using the sifting property of the Delta function,
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𝜕2𝑝
( 𝑓 𝑓 )
𝑚

𝜕𝑟2
+ 1
𝑟

𝜕𝑝
( 𝑓 𝑓 )
𝑚

𝜕𝑟
+
(
𝜅2 − 𝑚2

𝑟2

)
𝑝
( 𝑓 𝑓 )
𝑚 = − 𝑗e 𝑗𝑘𝑧 𝑧0

𝛿(𝑟 − 𝑟0)
𝑟

(
𝑚

𝑟
sin 𝛾 + 𝑘𝑧 cos 𝛾

)
∫ ∞

−∞
𝐹̂ (𝑡0)e 𝑗 (𝑚𝜃0−𝜔𝑡0)𝑑𝑡0.

(33)

It is convenient to introduce the coordinate system rotating with the dipole 𝜃0, defined as,

𝜃0 = Ω𝑡0 + 𝜃0, (34)

Substituting 𝜃0 of Eq. 34 into Eq. 32 gives,

𝜕2𝑝
( 𝑓 𝑓 )
𝑚

𝜕𝑟2
+ 1
𝑟

𝜕𝑝
( 𝑓 𝑓 )
𝑚

𝜕𝑟
+
(
𝜅2 − 𝑚2

𝑟2

)
𝑝
( 𝑓 𝑓 )
𝑚 = − 𝑗e 𝑗 (𝑘𝑧 𝑧0+𝑚𝜃0) 𝛿(𝑟 − 𝑟0)

𝑟

(
𝑚

𝑟
sin 𝛾 + 𝑘𝑧 cos 𝛾

)
∫ ∞

−∞
𝐹̂ (𝑡0)e− 𝑗 (𝜔−𝑚Ω)𝑡0𝑑𝑡0.

(35)

The integral with respect to 𝑡0 in Eq. 36, is the inverse Fourier transform, which is readily evaluated to give,

𝜕2𝑝
( 𝑓 𝑓 )
𝑚

𝜕𝑟2
+ 1
𝑟

𝜕𝑝
( 𝑓 𝑓 )
𝑚

𝜕𝑟
+
(
𝜅2 − 𝑚2

𝑟2

)
𝑝
( 𝑓 𝑓 )
𝑚 = − 𝑗e 𝑗 (𝑘𝑧 𝑧0+𝑚𝜃0) 𝛿(𝑟 − 𝑟0)

𝑟

(
𝑚

𝑟
sin 𝛾 + 𝑘𝑧 cos 𝛾

)
𝐹 (𝜔 − 𝑚Ω). (36)

Equation 36 can be solved using the method of variation of parameters. Taking the right hand side to be equal to

0, reveals Bessel’s differential equation. The solution of the inhomogenius problem is given by the method of

variation of parameters following McAlpine et al [8],
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𝑝
( 𝑓 𝑓 )
𝑚 (𝑟, 𝜃, 𝑘𝑧 , 𝜔) =

𝜋

2
𝐹 (𝜔 − 𝑚Ω)(

𝐻
(2)
𝑚 (𝜅𝑟)

∫ 𝑟

0
𝐽𝑚 (𝜅𝑟)𝛿(𝑟 − 𝑟0)

(
𝑚

𝑟
sin 𝛾 + 𝑘𝑧 cos 𝛾

)
𝑑𝑟−

𝐽𝑚 (𝜅𝑟)
∫ 𝑟

0
𝐻

(2)
𝑚 (𝜅𝑟)𝛿(𝑟 − 𝑟0)

(
𝑚

𝑟
sin 𝛾 + 𝑘𝑧 cos 𝛾

)
𝑑𝑟

)
,

(37)

where 𝐻 (2)
𝑚 (𝜅𝑟) is the Hankel function of the second kind, 𝐻 (2)

𝑚 (𝜅𝑟) = 𝐽𝑚 (𝜅𝑟) − 𝑗𝑌𝑚 (𝜅𝑟), where 𝑌𝑚 (𝜅𝑟) is the

Bessel function of the second kind. Solving the integrals across 𝑟 in Eq. 37 utilising the shifting property of the

Delta function for 𝑟 > 𝑟0, valid in the far-field, gives,

𝑝
( 𝑓 𝑓 )
𝑚 (𝑟, 𝑘𝑧 , 𝜔) =

𝜋

2

(
𝐻

(2)
𝑚 (𝜅𝑟)𝐽𝑚 (𝜅𝑟0) − 𝐽𝑚 (𝜅𝑟)𝐻 (2)

𝑚 (𝜅𝑟0)
)
𝐹 (𝜔 − 𝑚Ω)

(
𝑚

𝑟0
sin 𝛾 − 𝑘𝑧 cos 𝛾

)
. (38)

To ensure only outward far-field propagating cylindrical waves are considered, 𝑟 → ∞, we must have 𝐽𝑚 (𝜅𝑟) → 0.

Applying the inverse Fourier transform in 𝑧 and inverse Fourier series in 𝜃,

𝑝 ( 𝑓 𝑓 ) (𝑟, 𝜃, 𝑧, 𝜔) = 1
(2𝜋)2

∞∑︁
𝑚=−∞

e− 𝑗𝑚𝜃

∫ ∞

−∞
𝑝𝑚 (𝑟, 𝑘𝑧 , 𝜔)e− 𝑗𝑘𝑧 𝑧𝑑𝑘𝑧 . (39)

which when applied to Eq. 38 gives,

𝑝 ( 𝑓 𝑓 ) (𝑅, 𝜙, 𝜃, 𝜔) = 1
8𝜋

∞∑︁
𝑚=−∞

e− 𝑗𝑚(𝜃−𝜃0)𝐹 (𝜔 − 𝑚Ω)∫ ∞

−∞

(
𝑚

𝑟0
sin 𝛾 − 𝑘𝑧 cos 𝛾

)
𝐽𝑚 (𝜅𝑟0)𝐻 (2)

𝑚 (𝜅𝑅 sin 𝜙)e− 𝑗𝑘𝑧 (𝑅 cos 𝜙−𝑧0)𝑑𝑘𝑧 .

(40)

The final step in the derivation for the far-field acoustic pressure due to a rotating free-field point dipole source is

the evaluation of Eq. 40 using the method of stationary phase. When applied to Eq. 40, the integral over 𝑘𝑧

in the far-field 𝑅 >> 𝑧0 is approximated by its value evaluated at the wavenumber 𝑘𝑧 of stationary phase [8],

computed to be 𝑘𝑧 = 𝑘 cos 𝜙, and has the solution,
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𝑝
( 𝑓 𝑓 )
𝑚 (𝑅, 𝜙, 𝜃, 𝜔) = 𝑗𝑚−1 1

4𝑆
𝑎

𝑅
e− 𝑗𝑘 (𝑅−𝑧0 cos 𝜙)− 𝑗𝑚(𝜃−𝜃0) 𝐽𝑚 (𝑘𝑟0 sin 𝜙)𝐹 (𝜔 − 𝑚Ω)

(
𝑎

𝑟0
𝑚 sin 𝛾 + 𝑘𝑎 cos 𝜙 cos 𝛾

)
.

(41)

B Far-field radiation from ducted rotating point dipole sources

In this section the modal weighting 𝐴𝑚𝑛 (𝜔) valid above and below cut-off for point rotating dipole sources is

derived.

The in-homogeneous wave equation to obtain the pressure field 𝑝(𝑟, 𝜃, 𝑧, 𝑡) from a rotating point dipole source at

a single axial plane in cylindrical polar coordinates inside an infinite duct is of the form,

𝜕2𝑝

𝜕𝑟2
+ 1
𝑟

𝜕𝑝

𝜕𝑟
+ 1
𝑟2
𝜕2𝑝

𝜕𝜃2
+ 𝜕

2𝑝

𝜕𝑧2
− 1
𝑐20

𝜕2𝑝

𝜕𝑡2
= 𝑠(𝑟0, 𝜃0, 𝑡0)𝛿(𝑧 − 𝑧0), (42)

To solve Eq. 42, a Green’s function approach is used, which separates the pressure into a source term and a

Green’s function,

𝑝𝑚𝑛 (𝑟, 𝜃, 𝑧, 𝑡) =
∫
𝑆

∫ ∞

−∞
𝑠(𝑟0, 𝜃0)𝐺̂𝑚𝑛 (𝑿, 𝑡 |𝑿0, 𝑡0)𝑑𝑡0𝑑𝑆(𝑟0, 𝜃0). (43)

where 𝑠(𝑟0, 𝜃0) is the source term. The frequency domain Green’s function 𝐺𝑚𝑛 (𝑿 |𝑿0, 𝜔) can be determined by

Fourier transform,

𝐺̂𝑚𝑛 (𝑿, 𝑡 |𝑿0, 𝑡0) =
1
2𝜋

∫ ∞

−∞
𝐺𝑚𝑛 (𝑿 |𝑿0, 𝜔)e 𝑗𝜔 (𝑡−𝑡0)𝑑𝜔. (44)

It was shown by, for example Goldstein’s [21] Eq. 1.C.13, that the frequency domain Green’s function for a

source at a single axial plane 𝑧0 is of the form

𝐺𝑚𝑛 (𝑿 |𝑿0, 𝜔) =
𝑗

2𝑆
Ψ𝑚𝑛 (𝑟, 𝜃)Ψ∗

𝑚𝑛 (𝑟0, 𝜃0)
e 𝑗𝑘𝑧,𝑚𝑛 (𝑧0−𝑧)

𝑘𝑧,𝑚𝑛

, (45)
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where Ψ𝑚𝑛 (𝑟, 𝜃) is the normalised mode shape function,

Ψ𝑚𝑛 (𝑟, 𝜃) =
𝐽𝑚 (𝜅𝑚𝑛𝑟)√︃(

1 − 𝑚2

𝜅2𝑚𝑛𝑎
2

)
𝐽𝑚 (𝜅𝑚𝑛𝑎)

𝑒− 𝑗𝑚𝜃 , (46)

which exhibits the normalisation property
∫
𝑆
|Ψ𝑚𝑛 (𝑟, 𝜃) |2𝑑𝑆 = 𝑆 note the radial wave numbers 𝜅𝑚𝑛 are assumed

to those of the hard-walled duct case. The general case of a point dipole, with arbitrary orientation in the 𝜃 − 𝑧

plane, has term 𝑠(𝑟0, 𝜃0) of the form of Eq. 29, which can be substituted along with the modal Green’s function

of Eq. 45 into the pressure of Eq. 43 to give,

𝑝
(𝐷)
𝑚𝑛 (𝑟, 𝜃, 𝑧, 𝑡) = 𝑗

4𝜋𝑆

∫
𝑆

Ψ∗
𝑚𝑛 (𝑟0, 𝜃0)

𝛿(𝑟0 − 𝑟0)
𝑟0

∫ ∞

−∞
𝐹̂ (𝑡0)𝛿(𝜃0 − 𝜃0)[

1
𝑟

𝜕

𝜕𝜃
sin 𝛾 + 𝜕

𝜕𝑧
cos 𝛾

]
· Ψ𝑚𝑛 (𝑟, 𝜃)

∫ ∞

−∞

e 𝑗𝑘𝑧,𝑚𝑛 (𝑧0−𝑧)

𝑘𝑧,𝑚𝑛

e 𝑗𝜔 (𝑡−𝑡0)𝑑𝜔𝑑𝑡0𝑑𝑆.

(47)

Computing the integral across the surface area 𝑆 in Eq. 47 utilizing the sifting property of the Delta function,

𝑝
(𝐷)
𝑚𝑛 (𝑟, 𝜃, 𝑧, 𝑡) = 𝑗

4𝜋𝑆
Ψ𝑚𝑛 (𝑟, 𝜃)

∫ ∞

−∞

[
1
𝑟

𝜕

𝜕𝜃
sin 𝛾 + 𝜕

𝜕𝑧
cos 𝛾

]
· 𝐹̂ (𝑡0)

Ψ∗
𝑚𝑛 (𝑟0, 𝜃0)

∫ ∞

−∞

e 𝑗𝑘𝑧,𝑚𝑛 (𝑧0−𝑧)

𝑘𝑧,𝑚𝑛

e 𝑗𝜔 (𝑡−𝑡0)𝑑𝜔𝑑𝑡0.

(48)

The differentiation 𝜕/𝜕𝜃 and 𝜕/𝜕𝑧 in Eq. 48 is computed using integration by parts,

𝑝
(𝐷)
𝑚𝑛 (𝑟, 𝜃, 𝑧, 𝑡) = 1

4𝜋𝑆
Ψ𝑚𝑛 (𝑟, 𝜃)

∫ ∞

−∞

e 𝑗𝑘𝑧,𝑚𝑛 (𝑧0−𝑧)

𝑘𝑧,𝑚𝑛

(
𝑚

𝑟0
sin 𝛾 + 𝑘𝑧,𝑚𝑛 cos 𝛾

) ∫ ∞

−∞
𝐹̂ (𝑡0)Ψ∗

𝑚𝑛 (𝑟0, 𝜃0)e 𝑗𝜔 (𝑡−𝑡0)𝑑𝑡0𝑑𝜔,

(49)

The azimuthal coordinate rotating with the dipole 𝜃0 from Eq. 34 is introduced, performing this substitution into

Eq. 50, noting Ψ∗
𝑚𝑛 (𝑟0, 𝜃0) has azimuthal dependence e 𝑗𝑚𝜃0 , as can be seen from Eq. 46, gives,
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𝑝
(𝐷)
𝑚𝑛 (𝑟, 𝜃, 𝑧, 𝑡) = 1

4𝜋𝑆
Ψ𝑚𝑛 (𝑟, 𝜃)Ψ∗

𝑚𝑛 (𝑟0, 𝜃0)
∫ ∞

−∞

e 𝑗𝑘𝑧,𝑚𝑛 (𝑧0−𝑧)

𝑘𝑧,𝑚𝑛

(
𝑚

𝑟0
sin 𝛾 + 𝑘𝑧,𝑚𝑛 cos 𝛾

)
e 𝑗𝜔𝑡

∫ ∞

−∞
𝐹̂ (𝑡0)e− 𝑗 (𝜔−𝑚Ω)𝑡0𝑑𝑡0𝑑𝜔,

(50)

The integral across 𝑡0 in Eq. 50 is the inverse Fourier transform in (𝜔 − 𝑚Ω) and is readily evaluated to give,

𝑝
(𝐷)
𝑚𝑛 (𝑟, 𝜃, 𝑧, 𝑡) = 1

4𝜋𝑆
Ψ𝑚𝑛 (𝑟, 𝜃)Ψ∗

𝑚𝑛 (𝑟0, 𝜃0)
∫ ∞

−∞

e 𝑗𝑘𝑧,𝑚𝑛 (𝑧0−𝑧)

𝑘𝑧,𝑚𝑛

(
𝑚

𝑟0
sin 𝛾 + 𝑘𝑧,𝑚𝑛 cos 𝛾

)
e 𝑗𝜔𝑡𝐹 (𝜔 − 𝑚Ω)𝑑𝜔.

(51)

Equation 51 is the Fourier transform of the frequency domain pressure, which can be extracted to show,

𝑝
(𝐷)
𝑚𝑛 (𝑟, 𝜃, 𝑧, 𝜔) = 1

2𝑆
Ψ𝑚𝑛 (𝑟, 𝜃)Ψ∗

𝑚𝑛 (𝑟0, 𝜃0)
e 𝑗𝑘𝑧,𝑚𝑛 (𝑧0−𝑧)

𝑘𝑧,𝑚𝑛

(
𝑚

𝑟0
sin 𝛾 + 𝑘𝑧,𝑚𝑛 cos 𝛾

)
𝐹 (𝜔 − 𝑚Ω). (52)

Finally, following the classical solution for the pressure inside an infinite duct,

𝑝
(𝐷)
𝑚𝑛 (𝑟, 𝜃, 𝑧, 𝜔) = 𝐴𝑚𝑛 (𝜔)Ψ𝑚𝑛 (𝑟, 𝜃)e− 𝑗𝑘𝑧,𝑚𝑛𝑧 , (53)

derived by for example Goldstein [21], the modal weighting 𝐴𝑚𝑛 (𝜔 − 𝑚Ω) may be obtained by comparison of

Eq. 52 to Eq 53, which yeilds,

𝐴𝑚𝑛 (𝜔 − 𝑚Ω) = 1
2𝑆

Ψ∗
𝑚𝑛 (𝑟0, 𝜃0)

e 𝑗𝑘𝑧,𝑚𝑛𝑧0

𝑘𝑧,𝑚𝑛𝑎

(
𝑎

𝑟0
𝑚 sin 𝛾 + 𝑘𝑧,𝑚𝑛𝑎 cos 𝛾

)
𝐹 (𝜔 − 𝑚Ω) (54)

The modal weighting 𝐴𝑚𝑛 (𝜔 − 𝑚Ω) can be used to predict radiation from a hard-walled duct in the far-field

using,

𝑝 (𝐷) (𝑅, 𝜙, 𝜃, 𝜔) =
∞∑︁

𝑚=−∞

∞∑︁
𝑛=1

𝑝
(𝐷)
𝑚𝑛 (𝑅, 𝜙, 𝜃, 𝜔), (55)
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where each mode radiates of the form,

𝑝
(𝐷)
𝑚𝑛 (𝑅, 𝜙, 𝜃, 𝜔) =

( 𝑎
𝑅

)
𝐴𝑚𝑛 (𝜔 − 𝑚Ω)𝐷𝑚𝑛 (𝜙, 𝑘𝑎) e− 𝑗 (𝑘𝑅+𝑚𝜃) , (56)

Note the effect of reflections due to the mode reaching the open end of the duct is included in the directivity factor.
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