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Abstract 22 

Microglia constitute the primary population of parenchymal macrophages in the brain and are 23 

considered a unique CNS subset of glial cells due to their extraembryonic origins in the yolk sac. During 24 

development, microglia progenitors readily proliferate and eventually colonise the entire brain. Here, 25 

we highlight the origins and entry routes for microglia progenitors in the brain and discuss the various 26 

molecular and non-molecular determinants of their fate which may inform their specific functions in 27 

the brain. Specifically, we explore novel mechanisms involved in microglial colonisation of the brain 28 

including the availability of space and how expansion of highly proliferative microglial progenitors 29 

facilitates the occupation of the microglial niche. Finally, we shed light on the factors involved in 30 

determining the fate of early progenitors towards the microglial identity in the brain opposed to other 31 

CNS macrophage subpopulations.  32 

1. Introduction 33 

The central nervous system (CNS) is a diverse environment comprised of various cell types including 34 

glial cells. Often thought of as ‘support cells’ to neurons, glia are highly diversified with multiple origins 35 

and functions that are vital for the overall viability of the CNS1. In particular, microglia make up a 36 

substantial portion of long-lived glial cells and act as the main tissue-resident macrophage population 37 

in the brain accounting for between 5 and 12% of all cells in the CNS (Lawson et al., 1990). Original 38 

descriptions of microglia noted their unique stellate morphology and apparent capability as 39 

phagocytes which led to their original coining as ‘mesoglia’ owing to their similarity with other cells of 40 

mesodermal origin2,3. The term ‘microglia’ was later coined by Rio-Hortega to account for his 41 

observation that microglia display a small cell soma and extensive ramifications3-5. Indeed, it is these 42 

ramifications which allow microglia to constantly survey the local cellular milieu and maintain 43 

homeostasis in the CNS6,7. Microglial vigilance is facilitated by their expression of a broad battery of 44 

pattern recognition receptors allowing them to ‘sense’ their environment and develop dynamic 45 

relationships with other cell types within the CNS8. Furthermore, microglia are topographically 46 

distributed throughout the brain-parenchyma, akin to a mosaic pattern, which allows them to 47 

effectively cover and survey the entire brain in a territory-dependent manner6,9,10. Upon sensing 48 

disruptions to normal homeostasis, microglia can engage a repertoire of immune functions in a 49 

context-dependent fashion11-14. 50 

 51 

The need to understand the developmental trajectory and processes of microglia is increasing as it 52 

emerges that they are involved in a number of neurodevelopmental disorders (NDDs)13,15-18 (Box 1). 53 

Not only this, but perturbations to normal microglial development may have long term consequences 54 
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in the form of immune memory which is linked with pathological outcomes in later life 19-22. Therefore, 55 

it is important to have a benchmark for the ‘normal’ development of microglia in the healthy brain in 56 

order to intervene when this goes awry. Here we discuss the origins and development of microglia 57 

with an emphasis on the molecular pathways underpinning these processes. 58 

 59 

Text Box  1 Microglial dynamics in Neurodevelopmental Disorders 60 

Neurodevelopmental disorders (NDDs) consist of those with an onset during the developmental period 61 

and have longstanding consequences in regard to proper brain function23 such as autism spectrum 62 

disorder (ASD) and schizophrenia24. Microglia have been directly implicated in the pathogenesis of 63 

NNDs due to their roles in neuronal maturation and wiring during development25. NNDs may arise when 64 

the normal development and functioning of microglia is impaired due to erroneous environmental 65 

input26,27. For example, in maternal immune activation (MIA), microglia numbers are increased15,26 and 66 

they display a more advanced profile during early postnatal life13,28. Moreover, the microglial release 67 

of TNF-α is elevated and associated with altered neurogenesis5,26,29 and cortical wiring30. These mice 68 

often display cognitive abnormalities and social deficits in adult life akin to ASD13. Other early-life 69 

adversities can induce microglial dysfunction that is associated with behavioural alterations16,31,32. In 70 

humans, post-mortem evidence has also shed light on the involvement of microglia in NDDs33-35. For 71 

example, a recent study has highlighted the potential involvement of IFN-γ producing microglia in the 72 

impairment of myelination in developing white-matter due to interference with oligodendrocyte 73 

function36. Importantly, several studies have shown that even in the absence of inflammatory stimuli 74 

or other environmental influences, impeding the expansion of microglia during development is 75 

associated with abnormal brain development in neuronal25,26,34 and non-neuronal populations including 76 

astrocytes37,38. In humans, homozygous mutations in the CSF1R gene can result in the partial or 77 

complete loss of microglia which associates with an abnormal cytoarchitecture in the corpus callosum 78 

and epilepsy during infancy17,38,3940,41. Overall, these studies demonstrate the importance of microglia 79 

during development in the healthy brain and how disruptions to their normal maturation can be 80 

detrimental in later life.  81 

2. Origins and early infiltration 82 

Early yolk sac origins of microglia 83 

Seminal descriptions of microglia highlighted their unique identity among the cellular subpopulations 84 

of the CNS due to their suspected mesodermal origins2-4. In opposition, another popular hypothesis 85 

during the 20th century was that microglial cells were of neuroectodermal origin40,41. However, with 86 

advancements in immunohistochemical techniques, there was a shift in acceptance towards a myeloid 87 

origin of microglia due to reports of overlap in the expression of several antigenic markers between 88 

embryonic microglia and macrophages42. The exact myeloid origin of microglia was identified by a 89 

landmark study which utilised the inducible Cre-recombinase system to fate map various myeloid 90 

progenitor sources43. Ginhoux et al., demonstrated that microglia are derived from RUNX1-dependent 91 

progenitors which give rise to a population of “early” erythromyeloid progenitors (EMPs) (also known 92 

as primitive macrophages) in the yolk sac from E7.5 during primitive haematopoiesis42-44. Indeed, 93 
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further studies have revealed that a portion of these “early” EMPs then differentiate to committed 94 

microglial progenitors in the yolk sac at E9 (A2 progenitors38) and eventually seed the embryonic brain 95 

from E9.5 38,43. Microglial progenitors in the yolk sac can be distinguished based on their expression of 96 

C-KIT-, PU.1+, CSF1R+, F4/80hi, CD45+, Cx3CR1hi 38,42-44. Conversely, another portion of “late” EMPs are 97 

generated in the yolk sac from E8 and seed the fetal liver where they expand and give rise to cells of 98 

the myeloid and erythroid lineage including monocytes 34,35,38,45,46. The question of microglia ontogeny 99 

in humans has been more difficult to address without such high-resolution fate-mapping approaches 100 

available in rodents. However, advancements in single-cell RNA sequencing and complimentary 101 

analyses have allowed for interrogation of the nature and developmental trajectory of microglia 102 

progenitors in humans47-49. Indeed, profiling of macrophage progenitors throughout development has 103 

led to the identification of MRC1+ CD163+ progenitors in the yolk sac at Carnegie stage (CS) 11 which 104 

share the same profile of microglia progenitors in the brain at the respective timepoint47. This study 105 

compared these aforementioned progenitors akin to “early” EMPs in the mouse47 suggesting an 106 

overlap between species. Moreover, the identification of a second yolk sac macrophage population 107 

characterised by CD34 and MYB expression, which are predicted to give rise to monocytes in the liver 108 

from CS17 similar to “late” EMPs in the mouse, further strengthens this idea47. Differentiation of 109 

human induced pluripotent stem cells (iPSCs) towards microglial-like cells provides a promising model 110 

for further understand the ontogeny of yolk sac macrophages and microglia in humans50-55. Indeed, 111 

Hislop et al., recently took advantage of an iPSC-embryoid model to mimic post-implantation 112 

embryogenesis56. They observed haematopoiesis-like events in extra embryonic yolk sac layers with 113 

the emergence of CX3CR1+ myeloid and CD235+ erythroid lineages corresponding to CS7-9 in the in 114 

vivo scenario47,56. Further harnessing the potential of such models will provide unforeseen insight to 115 

the origins and developmental kinetics of microglia. 116 

 117 

Over the years there have been some studies considering the possible contribution of “late” EMP 118 

and/or haematopoietic stem cells (HSCs) sources to the microglia pool, however, it is important to note 119 

that any contribution from such sources is zero to minimal57,58. One suggested non-yolk sac source of 120 

microglia are HSC-derived progenitors arising in the aorta-gonad-mesonephros (AGM) region at E10.5 121 

during definitive haematopoiesis59-62. Historical support for this HSC-microglia model is mainly 122 

observational and based on early findings that uncommitted HSC progenitors from the periphery can 123 

engraft into the microglial niche following lethal irradiation or during blood brain barrier (BBB) 124 

breakdown in adult mice63,64,65,66. In contrast, it is now broadly accepted that in the absence of 125 

irradiation or disease, circulating HSC-derived cells do not contribute to the microglial pool under 126 

physiological circumstances43,45,59,65,67,68. However, the topic of HSC-derived microglia has resurfaced 127 

again in recent years owing to the reports of a HSC-derived Hoxb8+ subset of microglia in the mouse 128 
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brain which were estimated to make up to 25% of all microglia at P1657,69. Utilising a constitutive 129 

Hoxb8Cre reporter, De et al., reported that Hoxb8-derived microglia are HSC derivatives originating in 130 

the AGM and fetal liver which enter the brain at E12.569, significantly later than bona fide yolk-sac 131 

derived microglia43. To add to the debate, a recent report suggests that Hoxb8+ progenitors give rise 132 

to both “late” EMPs and HSCs which seed the fetal liver giving rise to monocytes in an MYB-dependent 133 

manner70. However, without the use of an inducible Cre line it is difficult to discern the true nature of 134 

Hoxb8-derived progeny as even a transient expression of Hoxb8 in “early” EMPs, as is strongly 135 

suggested by the mRNA expression in the yolk sac at E8.569, would result in labelling of canonical 136 

microglia.  137 

Interestingly, a small number of brain-residing monocytes have been observed during late embryonic 138 

to early postnatal periods71-73 and are estimated to make up around 3-4% of total brain myeloid cells 139 

(macrophage/microglia and monocytes) during this time raising the question of a possible monocytic 140 

contribution to microglia72,74. Similar findings have been reported in human cases where monocyte-141 

like cells have been detected in the postnatal brain47,75. Whether fetal monocytes can truly transition 142 

to microglia has been addressed by several groups utilising different fate mapping approaches to track 143 

embryonic monocytes and has resulted in conflicting reports73,74. Our group has previously utilised the 144 

lentiviral system to directly induce fluorescent labelling of monocytes arising from the fetal liver at 145 

E1472. At P0, we detected labelled monocytes across different brain compartments which co-expressed 146 

Iba1 and CD206. However, these labelled monocytes were short lived and only persisted in the brain 147 

up to P6, therefore not seeming to contribute or transition to microglia. Similarly, utilising an inducible 148 

CCR2CreER lines to trace monocytic progenitors between at E14.5-E16.5, Utz et al., reported that the 149 

majority of labelled cells at E18.5 were CD11b+ Ly6Chi monocytes whereas virtually no microglia were 150 

labelled. Other studies utilising Flt3Cre, S100a4Cre and Ms4a3Cre strains of mice commonly used to fate 151 

map monocytes fail to show any contribution to the microglia population 46,76. Moreover, the number 152 

of microglia is not affected in CCR2-/- mice46,59 suggesting that any infiltrating monocytes do not 153 

transition to microglia. In contrast, following induction of labelling at E14 in another strain of CCR2CreER 154 

mice, Chen et al., observed labelling of P2RY12+ cells in the brain parenchyma at P273. Interestingly, 155 

the number of labelled CCR2+ cells increased following induction of labelling at E17 and persisted up 156 

until P24 expressing typical microglia markers such as TMEM119 and P2RY1273. The authors suggest 157 

that induction of labelling from E17 is likely to capture CCR2+ cells arising from BM haematopoiesis as 158 

opposed to fetal liver haematopoiesis at E14.572,73. Another possibility for this increased labelling could 159 

be due to a transient expression of CCR2 by in situ progenitors at this time. Discrepancies between Utz 160 

et al., and Chen at al., may also arise due to differences in the CCR2CreER line73,74 which can influence 161 
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selectivity of labelling. Therefore, further work should aim to address these potential issues of 162 

selectivity.  163 

In sum, the majority of studies support that microglia in the adult brain are derived from “early” EMPs 164 

in the yolk-sac with little to no contribution from “late” EMP or HSC sources.  165 

3. Entry and colonisation of microglia within the developing brain. 166 

Entry to the brain 167 

While there is an extensive expansion of yolk sac macrophages in the extra embryonic yolk sac, the 168 

CNS remains devoid of any myeloid progenitors until around E9.5 in the mouse42-44, while in humans, 169 

the first microglia are detected at 4 post-conception weeks (pcw) concomitant with the circulation 77-
170 

79. Indeed, the vasculature appears to be the primary route of entry for these foreign progenitors into 171 

the CNS (Fig. 1a). Intravital imaging of rodent embryos has revealed that intravascular trafficking of 172 

CSF1R+ macrophage/microglia progenitors to the CNS takes place in a timely manner and is restricted 173 

to a window between E9.5 until E14.580. In humans, microglia have been reported to localise with 174 

capillaries at 5 pcw suggesting blood vessels as a potential entry point 79. This claim is strengthened by 175 

reports where the disruption of circulation clearly impacts and reduces microglial coloniation43,81. 176 

Another potential source of entry for microglia progenitors is trans-tissue migration through 177 

neuroepithelial barriers into the parenchyma44,82 (Fig. 1a). This initial entry of microglia precursors 178 

occurs prior to proper vascularisation of the parenchyma83. Trans-tissue entry of microglia occurs 179 

predominantly at the ventricles where it has been noted that there is a dense population of microglia 180 

in the sub-ventricular zone10,82,84-87. Indeed, such accumulation of amoeboid microglial cells at the 181 

choroid plexus, ventricular and pial borders has also been noted in human cases 77-79. Reports from 182 

post-mortem human cases suggest that microglia initially enter the forebrain by traversing the 183 

meningeal, ventricular and choroid plexus borders at around 5 pcw 88. Convincing real-time evidence 184 

of a trans-tissue entry has been recently demonstrated utilising intravital imaging whereby yolk sac 185 

macrophages were reported to pass from the ventricles into the cortical plate at E12.5 in mice 87. It 186 

has recently been suggested that the presence of CSF-1 in the embryonic brain is an attractive signal 187 

for microglial progenitors and is crucial for their initial entry as neutralising antibodies targeting CSF-1 188 

impede microglial arrival and colonisation into the CNS89 (Fig. 1a). Conversely in the zebrafish, IL-34 189 

signalling is required for the entry of microglia into the CNS during early embryonic development and 190 

acts as a pro-migratory signal for microglia from the yolk sac to the brain90. Future studies will be 191 

needed to elucidate the intricate timings of both mechanisms of microglial entry and further 192 

understanding of  the role of pro-migratory cues such as CSF-1 and IL-34 is needed.   193 
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Molecular determination of microglial colonisation 194 

Throughout the course of development, microglia display a heterogenous topographical distribution 195 

as they gradually colonise the brain10. The developmental changes in the spatiotemporal distribution 196 

are influenced by a variety of signalling molecules and cellular interactions 77,85,91 (Fig. 1b-e). Of note, 197 

the distribution of microglia in the embryonic and postnatal brain is influenced by the regional 198 

distribution of IL-34 and CSF-1 within the layers of the developing cortex and also between gray (IL-34) 199 

and white (CSF-1) matter regions in the postnatal brain89,92. Altogether this implies that the expression 200 

of CSF-1 and IL-34 exhibits a level of spatio-temporal control over microglia colonisation patterns 201 

resulting in regional dependencies throughout development and adulthood. On a mechanistic basis, 202 

the CX3CL1/CX3CR1 axis appears to play an important role in directing microglial-synapse interactions 203 

and thereby facilitating development pruning 93-95. Impaired CX3CR1 signalling results in elevated 204 

synapse density and causes hyperexcitability 93,94. CX3CR1/CX3CL1 signalling may also be important for 205 

para-vascular migration of microglia as mice harbouring a genetic deletion of Cx3cr1 displayed delayed 206 

migration along blood vessels which resulted in a reduction in the number of microglia in the barrel 207 

cortex at P7 and P8 96. A similar trend was reported in the hippocampus of Cx3cr1-/- mice94 suggesting 208 

that CX3CR1-CX3CL1 interactions will guide microglial progenitors during development. Another set of 209 

pro-migratory cues which influences the migration of microglia is the glycoprotein fibronectin, a 210 

component of the extracellular matrix in the CNS. Live imaging of ex vivo cortical slices has revealed 211 

an age-dependent role for fibronectin in driving microglial migration. Interestingly, blockade of the 212 

fibronectin receptor in microglia during early embryonic development slows down migratory microglia 213 

97. In contrast, blockade during later embryonic development leads to an increase in the velocity of 214 

microglia. Altogether this indicates an opposing age-dependent function of the fibronectin receptor 215 

on microglial migration capabilities85,97.  216 

 217 

Several incidences of a dynamic spatio-temporal coupling between microglia and various cellular 218 

compartments have been described during development suggesting that the interactions between 219 

microglia and various cell types will influence their overall colonisation patterns. Historically microglia 220 

have been reported to couple with progenitor niches throughout the brain including the deep layers 221 

of the cortex and various axonal tracts such as the corpus callosum 85,91,98-100. This spatial coupling with 222 

axonal tracts is also observed in the human which are known as microglial ‘nests’29,88,101. Within these 223 

‘nests’, microglia have  been suggested to play important roles such as clearance of excess neuronal 224 

progenitors cells91 and synapses94, as well as aid proper maturation and differentiation of various 225 

neuronal and non-neuronal populations 30,91,102.  Therefore, the emergence and development of 226 

various neural niches will alter the motility and distribution of microglia 93. This can be seen in the 227 
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neocortex where microglia typically display a random distribution during early embryonic 228 

development 25. However, as development progresses microglia begin disappearing from the cortical 229 

plate and accumulate adjacent to the pial surfaces at the meninges and subventricular zone between 230 

E15 and E16 85,86,99. This change in distribution coincides with the maturation and differentiation of 231 

post-migratory neurons within the cortical plate and is facilitated by secretion of CXCL12 from basal 232 

progenitors in the meninges and subventricular zone which attracts microglia towards the pial surfaces 233 

86,99. Interestingly, genetic deletion of the CXCL12 receptor, CXCR4, in microglia impairs the 234 

differentiation of post-migratory neurons hinting that this transient exit of microglia from the cortical 235 

plate is vital for neuronal maturation 86. Knockout of CXCR4 is also associated with a regional decrease 236 

in microglia in the sub-ventricular zone suggesting that colonisation patterns are driven by local 237 

interactions27. There is also a decrease in the density of microglia within the cortical plate of humans 238 

in late gestational stages77, however it is unclear whether it is in a similar manner to the mouse86. As 239 

well as facilitating neuronal maturation, microglia may also influence the maturation and 240 

differentiation of oligodendrocyte precursor cells (OPCs)103,104 through release of soluble factors such 241 

as insulin-like growth factor 1 (IGF-1) 102. Microglia in the developing brain can be seen regionally 242 

associated with OPC niches in the hypothalamus84 and subventricular zone104. Together, these reports 243 

suggest that the spatiotemporal dependency of emerging neuronal and OPC subsets on microglia will 244 

influence their overall colonisation patterns in the developing brain.  245 

 246 

As phagocytes, microglia play an active role in the clearance of debris and apoptotic cells, which is 247 

particularly important during development when there is a large increase in the number of dying cells 248 

in the brain and myelin debris 91,105,106. Removal and phagocytosis of dead cells is mediated by the 249 

expression of several receptors including MERTK, TREM2 and P2RY12 which allow microglia to sense 250 

and migrate towards apoptotic bodies 107-109. Therefore, it has been questioned whether the 251 

distribution of apoptotic cells may influence microglia colonisation during development 110. In support 252 

of this notion, recent reports from zebrafish observed that colonisation of microglia was concomitant 253 

with an increase in neuronal apoptosis 111,112. Further, inhibition of apoptosis interfered with microglia 254 

colonisation resulting in a drastic decrease in their density and entry into the developing brain 111. The 255 

authors of this study questioned the mechanism behind this response and identified a role for 256 

nucleotide signalling in prompting the initial migration of microglia following the release of nucleotides 257 

from dying cells 111. As of yet, these findings are yet to be fully recapitulated in the mouse brain, 258 

although it has been recently shown that embryonic and postnatal microglia are spatially associated 259 

with apoptotic cells in the parenchyma suggesting there may be an influence of dying cells on the 260 

distribution of microglia9,10.  261 

 262 
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 263 

4. Microglial proliferation during development 264 

Microglia undergo mass expansion during development 265 

Microglia in the rodent brain steadily increase in number during embryonic development and 266 

subsequently undergo a rapid expansion during postnatal development when there density peaks 2 267 

and 3-fold during the first few postnatal weeks of life10,44,72,113,114. The rate of microglial expansion 268 

during development is proportional to the rate of brain growth in an allometric manner, particularly 269 

during embryonic stages 10,114. This expansion phase is followed by a refinement in cell number through 270 

apoptosis and egress of extranumerary cells10,72,114. Conversely, in humans the expansion of microglia 271 

is less linear and follows a wave-like pattern that coincides with various neurodevelopmental 272 

milestones that are more complex in nature in comparison to the development of the mouse brain 77. 273 
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In comparison to microglia in the adult brain72,115, embryonic and postnatal microglia a display  274 

tremendous capacity to proliferate in both humans and mice13,75,77. This can really be appreciated in 275 

several fate-mapping studies which show that the majority of the adult microglia population are a 276 

direct progeny of a small number of the original yolk sac progenitors10,38,43,46,116,117. Recent work from 277 

our group and others has shown that this profound increase in numbers is facilitated by clonal 278 

expansion10,116. Interestingly we observed a heterogenous distribution of clone size in the postnatal 279 

brain indicating that the proliferation potential is not equal among microglial progenitors 10. It is 280 

unclear whether this heterogeneity in proliferation is an innate feature of certain microglial cells that 281 

may represent a stem-like niche or whether this is the product of exposure to certain pro-mitogenic 282 

signals in a timely manner. Due to methodological limitations, the clonal dynamics of microglia in the 283 

human brain are less understood. Intriguingly, microglia are observed in clusters throughout the 284 

developing human brain and a peak in their proliferative potential is observed during embryonic 285 

development 77,79 similar to clonally expanding microglia in the mouse brain 10.  286 

Drivers and regulators of microglial proliferation 287 

A number of trophic factors and signalling pathways have been implicated in driving and regulating 288 

microglial proliferation (Fig. 2a). Of interest, the trophic cytokines CSF-1 and IL-34, which act as 289 

agonists for CSF1R, can induce microglial proliferation and regulate microglial survival during 290 

development and adulthood 89,118,119. Genetic and pharmacological approaches to blunt CSF1R 291 

signalling in the adult brain result in ablation of the microglial population 120,121. Within the brain, glial 292 

cells are the predominant source of CSF-1 while IL-34 is mainly neuron derived 89,118. It is important to 293 

note that while both ligands share similar tertiary structures, they have unique binding sites on the 294 

CSF1R with IL-34 displaying a higher affinity for CSF1R compared with CSF-1 92,122. Aside from regulating 295 

microglial survival during adulthood, a number of studies have demonstrated that the CSF1R pathway 296 

is crucial for microglial expansion during embryonic and postnatal development, as the developmental 297 

disruption of CSF1R signalling dramatically reduces the expansion of yolk sac microglial progenitors 298 

25,43,120. This has been elegantly demonstrated in recent studies whereby deletion of the Fms intronic 299 

regulatory element (FIRE), an enhancer within the CSF1R locus, leads to an absence of microglia due 300 

to impaired expansion and maturation of yolk sac EMPs123-125. CSF1R signalling leads to downstream 301 

activation of mTOR and and the transcription factor c/EBPβ which induce proliferation and survival of 302 

microglia 126-129. However, the mechanisms by which CSF-1 and IL-34 induce proliferation are unclear, 303 

as the basal levels of CSF-1 and IL-34 expression in the adult brain are associated with microglial 304 

survival rather than proliferation121. Therefore, it is possible that higher concentrations of CSF-1 and 305 

IL-34 are needed to induce a proliferative response, this idea being supported by recent findings 306 
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showing that CSF-1 overexpression results in aberrant proliferation of microglial cells that is associated 307 

with an elevated density 130.  308 

 309 

One of the other major signalling pathways involved in regulating microglial proliferation is the TGF-310 

βR axis which plays a role in regulating the expansion of microglia in the context of development 131. 311 

Genetic deletion of Tgfb1 in mice was associated with a decline in the number of microglial precursors 312 

and microglial specific genes from E14.5, with no change in the number of yolk sac EMPs, suggesting 313 

that it is important for the parenchymal expansion of microglia following entry 131. Similarly, inducible 314 

deletion of Tgfbr2 in Cx3CR1+ cells between E10.5 until E16.5 significantly decreases the number of 315 

microglia in the embryonic brain 74. This abolition of TGF-β signalling has a direct impact on microglia 316 

proliferation during embryogenesis as demonstrated by a reduction in the number of proliferating 317 

Ki67+ microglia at E14.5 74. In contrast, deletion of Tgfbr2 during early postnatal development (P1/P3) 318 

has no immediate effect on microglia proliferation and numbers demonstrating a time-sensitive role 319 

for the TGF-βR axis 74. Another receptor involved in driving microglial proliferation is triggering 320 

receptor expressed on myeloid cells 2 (TREM2) 14,28,132,133. Similar to CSF1R, TREM2 has been implicated 321 

in driving the proliferative response of microglia in response to disease 14,28 and also relies on 322 

downstream signalling via DAP12 and the Akt/mTOR and c/EBPβ pathways to induce proliferation 323 

129,134. Certain lipid species, ApoE and amyloid-β oligomers can activate TREM2 during health and 324 

disease 135. Evidence also suggests a synergistic action between CSF1R and TREM2, as CSF1R activation 325 

can induce phosphorylation of the adapter protein DAP12 which forms a transmembrane complex with 326 

TREM2 129,135. TREM2 can also promote proliferation and survival via β-catenin-dependent signalling. 327 

Loss of TREM2 from microglia results in a strong apoptotic response and induces cell-cycle arrest at 328 

the G1/S checkpoint and reduced β-catenin expression 132,133. Interestingly, genetic deletion does not 329 

inhibit microglia expansion on the same scale as CSF1R inhibition suggesting that it might be less 330 

important for the development of microglia, although further work is needed to investigate the extent 331 

of TREM2 dependence during development 133. An alternative family of receptors associated with 332 

microglial proliferation are the Fc receptors FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) which are 333 

found to be important for inducing microglial proliferation in a mouse model of Multiple Sclerosis and 334 

relies on downstream activation of Bruton’s tyrosine kinase (BTK) to induce a proliferative response 335 

136. Going forward, it will be interesting to compare the contribution of these canonical pathways 336 

during the developmental expansion of microglia. Overall, it appears that there is a significant overlap 337 

between the downstream cascades from each of these signalling pathways suggesting that there is a 338 

level of convergence in the regulation of microglia in a variety of contexts. This is corroborated by a 339 

recent study demonstrating that proliferating microglia share a similar core set of cell-cycle associated 340 

genes in a number of different developmental and disease contexts 137.  341 
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342 

Space availability as a driver of microglial proliferation 343 

Another potential source of pro-mitogenic cues for microglia is the availability of space or spatial niches 344 

(Fig. 2b). This type of influence over cellular expansion is referred to as mechanoregulation and 345 

describes a process whereby cells use their cytoskeleton to sense mechanical tension posed on them 346 

from other cells and surrounding tissue constraints 138. This process is also known as contact inhibition, 347 

whereby proliferation will be inhibited when mechanical stress is imposed, in other words cells will not 348 

normally proliferate if they are spatially constrained 138-141. Furthermore, a spatial checkpoint has been 349 

uncovered in epithelial cells at the G1/S phase boundary of cell division which will prevent a cell from 350 

dividing if there is not enough space available 142. In the context of cancer, this checkpoint is overridden 351 

which allows for abhorrent tumour growth 142. It is thought that this feature of cell division is important 352 

for reaching stable densities during development and to prevent overcrowding of cells 143.  353 

 354 

Indeed, recent evidence suggests that the expansion of the microglial population during development 355 

may be associated with space availability as changes in microglial numbers are coupled with changes 356 

in brain size. This can be seen by studying the changes in the nearest neighbour distance which 357 

inversely correlates with the changes in cell density until a plateau is reached during the third postnatal 358 

week 10. At this point it is thought that contact inhibition is achieved when microglia are reported to 359 

have a nearest neighbour distance between 40-50 µm10 which has been well characterised in the adult 360 

brain and is associated with a mosaic-like distribution 144. Potential regional differences in space 361 

availability during development may account for the variation in timings of density peaks observed 362 

across different areas of the brain 72,114. Lack or loss of contact inhibition as a pro-mitogenic signal 363 

would also explain the tremendous ability of microglia to repopulate the brain in different paradigms 364 

of depletion where the availability of space exponentially increases 144,145. The repopulation of 365 
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microglia continues until the space between cells is full as indicated by a reduction and eventual 366 

plateau in the nearest neighbour distance between cells 144 similar to what has been reported during 367 

development10. Together these findings suggest that microglia within an unoccupied territory will 368 

proliferate in order to effectively colonise the spatial niche. Note, it is expected that there would be a 369 

higher availability of trophic factors such as CSF-1 and IL-34 in an unoccupied territory compared to a 370 

colonised niche which may contribute to the promotion of proliferation146. Other evidence of anti-371 

overcrowding mechanisms regulating microglial expansion stems from Vav-Bcl2 mice where apoptosis 372 

is dysregulated in myeloid cells 10,72. In these mice, the density of microglia is significantly elevated 373 

throughout development and, unlike wild-type mice, there is no observed refinement of the microglial 374 

population. However, instead of continuing to expand in a non-controlled manner, the density of 375 

microglia eventually stabilise after the first month of postnatal development which suggests  some 376 

form of anti-crowding control regulating microglial numbers 72. Indeed, it is noted that there is a 377 

reduction in microglial territory size in order to prevent overlap between cells 10. The fundamental 378 

mechanisms underlying microglial contact inhibition are not well characterised, although membrane-379 

bound cell adhesion molecules (CAMs) may be involved such as Syndecan-4 and other proteoglycans 380 

144,147.         381 

5. Molecular determination of microglial fate in the CNS  382 

Intrinsic and environmental regulation of microglial maturation 383 

The shift in profile from early yolk sac EMP towards a canonical microglia signature is tightly regulated 384 

by a number of molecular and environmental factors which work in tandem (Fig. 3). The initial 385 

emergence of EMPs in the yolk sac is driven by the transcription factor RUNX143,148. Concomitantly, the 386 

transcription factor PU.1 (Spi1) acts as a fate-defining regulator of the myeloid lineage and drives the 387 

expression of canonical myeloid markers including CSF1R, CSF-1 and CD11b in primitive microglia 388 

progenitors of the yolk sac  38,149-153. Deletion of PU.1 inhibits the maturation and expansion of “early” 389 

and “late” yolk sac EMPs 38. The subsequent transition of yolk sac EMPs towards “A2” microglia 390 

progenitors depends on the transcription factor IRF8, which is vital for the emergence of microglia and 391 

macrophage-specific genes such as Cx3cr1, P2ry12 and Aif1 from E9.5 38,150,154. The activity of IRF8 is 392 

driven by PU.1 expression 38 and deletion of Irf8 will blunt the induction of such canonical microglial 393 

genes and also genes related to microglia ‘activation’ in response to immunological stimulation 38,155. 394 

Interestingly, while this regulator appears to be important for the emergence and maintenance of the 395 

microglial phenotype, it does not regulate microglial proliferation 155-157. Consequently, deletion of Irf8 396 

does not prevent microglial colonisation of the developing brain, only the emergence of the 397 

homeostatic microglial phenotype. Moreover, the development of yolk sac EMPs occurs independently 398 
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of the transcription factor Myb proto-oncogene protein (Myb), which is vital for the emergence of HSCs 399 

from the fetal liver 43,45-47,150.  400 

 401 

As development progresses, there is a shift in the immature profile of yolk sac progenitors towards 402 

that of adult homeostatic microglia. This is associated with stereotypical changes in the profile and 403 

morphology of microglia which transition from amoeboid to highly ramified cells13,43,158. Indeed, 404 

interrogation of the transcriptome during embryonic and postnatal stages has revealed that microglia 405 

display distinct signatures at various stages of development reflecting their maturity state and 406 

temporal functions throughout this window of life 13,156,159. The majority of embryonic microglia are 407 

enriched with genes involved in cell cycle and proliferation such as Mcm2 indicative of their high 408 

proliferative potential, whereas late embryonic-postnatal microglia are enriched with genes involved 409 

in neurogenesis and synaptic pruning such as Crybb1 and Cxcr2 13,160. In contrast, the profile of adult 410 

microglia is characterised by the expression of traditional homeostatic genes in a MAFB-dependent 411 

manner13. This developmental trajectory is also reflected in human microglia which are enriched in 412 

genes relating to the cell cycle during gestational development compared with genes related to 413 

immune sensing and cytokine signalling in later gestational47,75,77,161. Again, the acquisition of a mature 414 

microglial phenotype is associated with MAFB in postnatal stages75. Another hallmark of 415 

developmental microglia is the marked heterogeneity which is in stark contrast to more uniform state 416 

observed in adult microglia 98,156,162. This heterogeneity appears to be driven by the specific needs of 417 

local cellular milieu in various brain regions during development and highlight an important role for 418 

the microenvironment in driving the diversity and maturation of microglia during development. For 419 

example, a subset of microglia are found in close association with axonal tracts (proliferative-420 

associated microglia (PAM)162 or axon tract associated microglia (ATM) 98) and are thought to be critical 421 

for the clearance of excess myelin during development. Similarly, in humans, broad changes in the 422 

microglial transcriptome can be attributed to coincidental neurodevelopmental hallmarks such as 423 

neurogenesis and myelination which further drive heterogeneity 75,77,161. Another interesting finding is 424 

that the degree to which microglia in development express typical homeostatic microglia genes is 425 

varied, with some subtypes expressing very low or negligible levels of homeostatic genes suggesting 426 

immaturity 156,162. Indeed, Li and colleagues reported that a small number of microglia in the postnatal 427 

brain still resemble that of embryonic microglia162. This suggests that in the developing brain, microglia 428 

exist on a spectrum of maturity with some closer to embryonic or adult states than others. 429 

 430 

One of the ways in which the microenvironment can alter the phenotype of microglia is through 431 

influence on the enhancer and transcriptomic landscape of microglia. Enhancers are regulatory DNA 432 

sequences that bind transcription factors, enhancing gene expression, and are vital for lineage 433 
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differentiation and cell signature establishment163. Using different transplant techniques, it is possible 434 

to study how the enhancers of different cell types can change in response to a new microenvironment. 435 

In one setup, microglia and peritoneal macrophages were isolated from mice and cultured. As a result 436 

of moving these cells from their typical setting, there was a loss of their core transcriptomic 437 

signature164. Interestingly, supplementing these cultures with transforming growth factor β 1 (TGF-β1) 438 

restored the expression of their core microglial and macrophage signatures. The authors found that 439 

changes in the environment were associated with activation of enhancers which lead to the 440 

establishment of tissue-specific macrophage signatures164. These results are corroborated by a number 441 

of studies showing that TGF-β1 is vital for the development and maintenance of the microglial 442 

signature 74,131,165. In particular, genetic deletion of Tgfb1 in mice was associated with a decline in the 443 

number of microglial precursors and microglial specific genes from E14.5, however there was no 444 

change in the number of yolk sac EMPs highlighting the tissue-specific role of TGF-β1 signalling in the 445 

CNS131. Recent work has shown that the transcription factor SMAD4 is vital for TGF-β signalling and the 446 

induction of target genes including Sall1 166,167. Indeed, the transcription factor Sall1 has been shown 447 

to play a vital role in driving developmental microglia towards a homeostatic profile and also depends 448 

on TGFβ1 signalling154,168-170. Similar to the mouse, postnatal microglia in the human engage in TGFβ1 449 

signalling via SMAD4 and SMAD2 dependent pathways which drive the homeostatic phenotype 450 

through Sall147,75. Taken together these findings implement TGF-β1 as an important environmental cue 451 

that mediates the switch between the yolk sac progenitor to parenchymal microglia.  452 
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 453 

An important aspect of the microenvironment which may be important for microglial maturation and 454 

development is sex specification. Subtle regional changes in microglial density, morphology and 455 

function have already been described between male and females171,172. However, there are conflicting 456 

reports with regards to the influence of sex on microglia maturation with only a small number of 457 

differentially expressed genes reported between male and female microglia during embryonic and 458 

postnatal stages suggesting that the developmental trajectory is unaffected by sex98,173,174.  Another 459 

source of microenvironmental influence on maturation comes from the more distal microbiome 27,175. 460 

Several studies have shown that in germfree (GF) mice that lack a microbiome, the normal maturation 461 

of microglia is altered whereby cells display an immature phenotype 13,175. Further work has 462 

demonstrated that this influence of microbiota occurs in a sex-specific and time dependent manner 463 

whereby the profile of microglia from male GF mice was significantly dysregulated compared to 464 

microglia from females during embryonic stages27. Lack of a microbiome is also associated with an 465 

increased number of microglia during development27,176. The exact nature of this microbiome influence 466 

on microglial development remains to be deciphered. Other perturbations in the normal environment 467 

such as maternal exposure to infection have a profound impact on the maturation of embryonic 468 

microglia and was found to be associated with a more advanced or mature transcriptomic signature13. 469 
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Moreover, these mice display abnormal behaviours associated with ASD13,15. Another interesting 470 

report demonstrated that the stepwise development of microglia is halted in mice lacking resident CD4 471 

T cells and is associated with memory deficits and anxiety-like behaviour177. It is currently unknown 472 

which CD4 T cell-derived signals or interactions are required for microglia maturation. Altogether these 473 

findings suggest that the normal maturation of microglia is heavily influenced by the 474 

microenvironment and that disruption to the normal developmental program of microglia via 475 

environmental influences can contribute to the aetiology of neurodevelopmental disorders.  476 

Molecular determination of CNS macrophage fate  477 

Up until recently, it was postulated that other notable CNS macrophage populations such as BAMs 478 

derive from blood-borne precursors distinct from parenchymal microglia178. However, this notion has 479 

been challenged in recent years and it is now considered that microglia and certain BAM subsets such 480 

as those at the meninges derive from common “early” yolk sac EMPs45,74,117,179. This shared origin 481 

between microglia and BAMs has been described in a recent study utilising in vivo barcoding of early 482 

yolk sac progenitors within the brain at E9.5. Subsequent reconstruction of clones at a single-cell level 483 

revealed that microglia and BAMs were derivatives of the same progenitor cells in the yolk sac116. 484 

Moreover, work from Utz et al., demonstrates that similar canonical genes are expressed by both 485 

progenitors, however, there is an emergence of a subset-specific phenotype throughout 486 

development74. A question of interest is whether or not yolk sac progenitors possess the ability to 487 

transition between a BAM or microglia fate considering the aforementioned influence of 488 

environmental signals on cell fate of microglia. One possibility is that the fate of specific yolk sac 489 

progenitors is already predefined prior to colonisation. Indeed, the observation that CD206 is enriched 490 

in certain yolk sac progenitors which go on to form the BAM niche and absent from progenitors giving 491 

rise to microglia support this claim 74,125.  Similarly, in the human brain, BAMs are defined by their 492 

expression of CD20675. In contrast, the discovery of an Ms4a7+ subset of microglia at E14.5 which share 493 

a significant overlap in signature with BAMs suggests that there is plasticity between BAM and 494 

microglia states during development98. In support of this, a recent fate mapping study with the 495 

inducible Mrc1CreER strain to target CD206 expressing cells arising at E9 revealed that CD206+ yolk sac 496 

progenitors mature into both BAM and microglia179. This transition has been elegantly demonstrated 497 

in a series of live imaging experiments which show that intraventricular CD206+ BAM progenitors can 498 

enter the pallium of the embryonic brain up until at least E12.587. These seeming BAM progenitors 499 

transition to bona fide microglia following their entry to the parenchyma after 4 hours as defined by a 500 

loss of CD206 expression and gain of P2RY12 suggesting an important role of environmental influence 501 

on cell fate87. One such signal required for the BAM-to-microglia transition may be TGFβ1, as abolition 502 

of the TGFβ1/TGFBR2 signalling axis and downstream transcription factor, SMAD4, halts the 503 
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emergence of microglia whereas the expansion of BAMs is unaffected74,166. Taken together, these 504 

findings challenge the idea of hardwired CD206+ BAM or CD206- microglia subsets within the yolk sac. 505 

Further work will be required to unravel the extent of this potential plasticity in cell fate and whether 506 

microglia retain the potential to transition to BAMs.  507 

 508 

Altogether, it is evident that the establishment of the homeostatic microglia signature relies on a 509 

number of external factors in a time-dependent manner during development. Such findings highlight 510 

the importance of understanding what ‘normal’ microglia development looks like and act as a 511 

benchmark for healthy development.  512 

6. Conclusion 513 

Our knowledge regarding the development of microglia and their processes during this important 514 

window of life has increased massively during the last decade. This has been facilitated in part by the 515 

wider availability of fate-mapping models in rodents and an increased access to rare human foetal and 516 

postnatal tissues. Here we outlined several key molecular and non-molecular mechanisms governing 517 

microglial expansion and colonisation in the healthy brain. Additional characterisation of such 518 

mechanisms may provide further clarity about the aetiology of certain NDDs and potential targets for 519 

the treatment or prevention of such disorders. Another interesting avenue includes the study of how 520 

space availability, as a biophysical mechanism, may regulate microglial expansion as currently most of 521 

the evidence supporting this hypothesis is anecdotal or derived from in vitro studies. Therefore, further 522 

work will be needed to understand the biomolecular properties of this predominantly ‘physical’ theory 523 

of microglial expansion. In general, the influence of biophysical mechanisms influencing brain 524 

development is an untapped area with significant potential, considering the intrinsic challenges of 525 

growing a highly complex and specialised organ. The advent of more advanced techniques, nested 526 

within multidisciplinary teams, will allow uncovering some of these mechanisms. Finally, the field of 527 

study of microglial cells in development, ageing and disease, still relies extensively on the use of mouse 528 

as a model organism, and the future will need to accelerate the study of human microglia in context. 529 

Gaps in our knowledge with regards to microglial origin and development in the human require further 530 

attention and perhaps the combined use of iPSCs and 3D cell culture systems will help to address these 531 

burning questions.  It is now clear that mouse and human microglia are very distinct in terms of identity 532 

and dynamics, and it is time for our field to pivot to studying the human brain. 533 

 534 
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9. Figure Legends 1073 

 1074 

Figure 1 Entry and colonisation of microglia to the embryonic brain.  1075 

a, Microglia progenitors enter the brain via trans-tissue and trans-vascular routes and may rely on CSF-1076 

1-mediated attraction in the parenchyma. subsequently trafficked to the brain through the vasculature 1077 

with the onset of circulation. b, Colonisation and migration of microglia through the parenchyma is 1078 

facilitated by a number of processes including para-vascular migration, chemotaxis towards various 1079 
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cytokines and trophic factors and cell to cell interactions. c, During early embryonic development, 1080 

microglia primarily gain entry to the brain through the vasculature and are sparsely distributed in the 1081 

brain43,80. d, Following closure of the BBB, microglia proliferate in situ and colonise the developing brain 1082 

in accordance with local environmental input such as in the cortical plate where they are transiently 1083 

absent25,86 and can be observed accumulating near axonal tracts25. e, By late embryonic stages, 1084 

microglia are found in almost all brain regions and can be observed in close proximity to meningeal 1085 

and ventricular border zones and renter the cortical plate following their transient absence86. Microglia 1086 

also display both dispersed and clustered spatial patterns throughout the parenchyma10. f, By adult 1087 

stages (P21) microglia display a mosaic distribution within the cerebral cortex10. Regional differences 1088 

in morphology and density can also be observed72. 1089 

 1090 

Figure 2 Overview of drivers of microglial proliferation. 1091 

a, The proposed receptor-mediated signalling pathways involved in driving proliferation of microglia 1092 

during development and disease. There is a high level of convergence between CSF1R, TREM2 and 1093 

TGFβR signalling cascades which act via AKT and MEK/ERK pathways to induce survival and 1094 

proliferation of microglia. FcR receptors can also induce microglia proliferation via BKT signalling. 1095 

SMAD-dependent TGFβR signalling is involved in microglia maturation. b, Potential spatio-physical 1096 

niche-like model of microglial proliferation. As a niche expands, microglia progenitors may experience 1097 

a loss of contact inhibition and higher availability of trophic factors driving proliferation of cells at the 1098 

frontier of the expanding spatial niche.  1099 

 1100 

Figure 3 The stepwise maturation and diversity of microglia during development.  1101 

‘Early’ EMPs arising in the yolk sac from E7 rely on the transcription factors PU.1 and RUNX1 for 1102 

expression of a myeloid profile. Maturation of EMPs towards ‘A2’ microglia progenitors at E9 relies on 1103 

IRF8 which leads to the expression of several canonical microglia/macrophage genes. Having infiltrated 1104 

the CNS, microglia progenitors lose any expression of CD206 and further acquire typical microglia 1105 

markers which relies on TGF-βR signalling and downstream transcription factors SMAD4 and SALL1. 1106 

Embryonic and prenatal microglia also express a number of genes related to cell cycle and 1107 

neurogenesis. By P14 the majority of microglia display a transcriptomic profile akin to adult microglia 1108 

that is dependent on the transcription factor MAFB. The adult microglia phenotype is associated with 1109 

homoeostatic and surveillance functions.  1110 
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