The University of Southampton
University of Southampton Institutional Repository

Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The MMs Challenge

Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The MMs Challenge
Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The MMs Challenge

The emergence of deep learning has considerably advanced the state-of-the-art in cardiac magnetic resonance (CMR) segmentation. Many techniques have been proposed over the last few years, bringing the accuracy of automated segmentation close to human performance. However, these models have been all too often trained and validated using cardiac imaging samples from single clinical centres or homogeneous imaging protocols. This has prevented the development and validation of models that are generalizable across different clinical centres, imaging conditions or scanner vendors. To promote further research and scientific benchmarking in the field of generalizable deep learning for cardiac segmentation, this paper presents the results of the Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation (MMs) Challenge, which was recently organized as part of the MICCAI 2020 Conference. A total of 14 teams submitted different solutions to the problem, combining various baseline models, data augmentation strategies, and domain adaptation techniques. The obtained results indicate the importance of intensity-driven data augmentation, as well as the need for further research to improve generalizability towards unseen scanner vendors or new imaging protocols. Furthermore, we present a new resource of 375 heterogeneous CMR datasets acquired by using four different scanner vendors in six hospitals and three different countries (Spain, Canada and Germany), which we provide as open-access for the community to enable future research in the field.

Cardiovascular magnetic resonance, data augmentation, deep learning, domain adaption, generalizability, image segmentation, public dataset
0278-0062
3543-3554
Campello, Victor M.
70b294e4-d5f3-4f65-9d26-d0d6c6c8227d
Gkontra, Polyxeni
bf8e2eda-7fb2-4de0-b884-edd345e2712d
Izquierdo, Cristian
6aea4a1f-2fd5-4700-acf5-0c9c07a326a0
Martin-Isla, Carlos
7501fb82-b913-4b2a-b0e0-19ccc9a4e60c
Sojoudi, Alireza
97b6089b-8af9-4e35-a63b-59e47a45aa5c
Full, Peter M.
19c9b780-e8a0-421a-aba7-d6dd77bc525b
Maier-Hein, Klaus
121be07a-6230-41c8-9c85-15bb45aafb01
Zhang, Yao
a4f30318-ab42-4b38-a60d-f7199ff3a02a
He, Zhiqiang
32b641d5-24e8-4f39-94ab-69d1b0acf513
Ma, Jun
323bc837-8088-4602-9259-df8fecebbe58
Parreno, Mario
640c750d-f8ef-402d-b68f-92d04bb67434
Albiol, Alberto
ecd82f16-6031-4ea9-95d8-0aac2a53b5ad
Kong, Fanwei
fa69d7de-d040-4c81-9905-392dec0fcc5d
Shadden, Shawn C.
ab604179-1e10-4206-8b30-fb8e48dccdf5
Acero, Jorge Corral
2269f60b-03bb-49cc-bde7-3c72d1607261
Sundaresan, Vaanathi
b3f18209-0b7d-41d9-85de-8f2c968e82ab
Saber, Mina
9bcb0033-ff04-4f1d-9ece-701d47d20c9a
Elattar, Mustafa
2397a9c2-5fd4-4113-8b11-854af7843899
Li, Hongwei
6c14e527-e06b-4740-91ac-4f8360d0157c
Menze, Bjoern
6e3f6a99-bef6-4ed0-a0ef-d8c3416ede82
Khader, Firas
785a59d2-b291-495d-84c6-14db459b45ee
Haarburger, Christoph
ab40f267-a5a3-4cca-9d6d-670526188323
Scannell, Cian M.
8421fc2e-c36d-4089-813d-aa55d99a4e29
Veta, Mitko
15fdb22f-8fb3-42cb-a469-15a3871f2d61
Carscadden, Adam
9e720f1a-ff0b-4c0d-9888-45aa9d1156d0
Punithakumar, Kumaradevan
aa889b41-cf21-4d60-ad7e-299793a64d8b
Liu, Xiao
8f9d7220-3c89-4e2f-be07-8603acd25320
Tsaftaris, Sotirios A.
7f8a6824-a789-4398-8f23-cd38a03d18ef
Huang, Xiaoqiong
2d1080aa-3f76-42be-99d5-3364683a95ee
Yang, Xin
b30e4b6a-8971-4482-a456-f2edb1aa84d9
Li, Lei
2da88502-0bd8-4e6b-8f7d-0c01a48b399e
Zhuang, Xiahai
c58e977b-e70e-4b37-9acd-b7f8070d98a8
Vilades, David
87dca06e-c56a-407b-bbdf-2a0fe5dc34d8
Descalzo, Martin L.
f5a17429-75db-4a05-b383-e646b139d1dd
Guala, Andrea
10d4a793-1a76-43b1-820c-8b2b1fbec662
Mura, Lucia La
938c8bf3-21e6-4518-81fc-58c640959f94
Friedrich, Matthias G.
d5aaa676-2f7a-4a17-8e51-0d6d769392e5
Garg, Ria
e7250d2d-5b25-4361-89e2-ec913f734ccf
Lebel, Julie
a3a46075-38e8-4eb9-b24b-3a220a99c6b2
Henriques, Filipe
b418b886-b97b-4360-88fb-119211d4932d
Karakas, Mahir
0a366fcc-4a90-4a87-9f7c-c2c187f3ea91
Cavus, Ersin
2b0fe329-e4eb-4808-bcc8-cacb03cb26e6
Petersen, Steffen E.
04f2ce88-790d-48dc-baac-cbe0946dd928
Escalera, Sergio
56972ae3-d232-4b25-a451-abf7e0e0f2ca
Segui, Santi
4073fef1-80e9-4cb0-8990-58bb36f7ce61
Rodriguez-Palomares, Jose F.
a08fec2d-af60-429f-a0c5-be5d7f9eeb08
Lekadir, Karim
b8de558a-869c-4574-b0d3-005dc52c3106
et al.
Campello, Victor M.
70b294e4-d5f3-4f65-9d26-d0d6c6c8227d
Gkontra, Polyxeni
bf8e2eda-7fb2-4de0-b884-edd345e2712d
Izquierdo, Cristian
6aea4a1f-2fd5-4700-acf5-0c9c07a326a0
Martin-Isla, Carlos
7501fb82-b913-4b2a-b0e0-19ccc9a4e60c
Sojoudi, Alireza
97b6089b-8af9-4e35-a63b-59e47a45aa5c
Full, Peter M.
19c9b780-e8a0-421a-aba7-d6dd77bc525b
Maier-Hein, Klaus
121be07a-6230-41c8-9c85-15bb45aafb01
Zhang, Yao
a4f30318-ab42-4b38-a60d-f7199ff3a02a
He, Zhiqiang
32b641d5-24e8-4f39-94ab-69d1b0acf513
Ma, Jun
323bc837-8088-4602-9259-df8fecebbe58
Parreno, Mario
640c750d-f8ef-402d-b68f-92d04bb67434
Albiol, Alberto
ecd82f16-6031-4ea9-95d8-0aac2a53b5ad
Kong, Fanwei
fa69d7de-d040-4c81-9905-392dec0fcc5d
Shadden, Shawn C.
ab604179-1e10-4206-8b30-fb8e48dccdf5
Acero, Jorge Corral
2269f60b-03bb-49cc-bde7-3c72d1607261
Sundaresan, Vaanathi
b3f18209-0b7d-41d9-85de-8f2c968e82ab
Saber, Mina
9bcb0033-ff04-4f1d-9ece-701d47d20c9a
Elattar, Mustafa
2397a9c2-5fd4-4113-8b11-854af7843899
Li, Hongwei
6c14e527-e06b-4740-91ac-4f8360d0157c
Menze, Bjoern
6e3f6a99-bef6-4ed0-a0ef-d8c3416ede82
Khader, Firas
785a59d2-b291-495d-84c6-14db459b45ee
Haarburger, Christoph
ab40f267-a5a3-4cca-9d6d-670526188323
Scannell, Cian M.
8421fc2e-c36d-4089-813d-aa55d99a4e29
Veta, Mitko
15fdb22f-8fb3-42cb-a469-15a3871f2d61
Carscadden, Adam
9e720f1a-ff0b-4c0d-9888-45aa9d1156d0
Punithakumar, Kumaradevan
aa889b41-cf21-4d60-ad7e-299793a64d8b
Liu, Xiao
8f9d7220-3c89-4e2f-be07-8603acd25320
Tsaftaris, Sotirios A.
7f8a6824-a789-4398-8f23-cd38a03d18ef
Huang, Xiaoqiong
2d1080aa-3f76-42be-99d5-3364683a95ee
Yang, Xin
b30e4b6a-8971-4482-a456-f2edb1aa84d9
Li, Lei
2da88502-0bd8-4e6b-8f7d-0c01a48b399e
Zhuang, Xiahai
c58e977b-e70e-4b37-9acd-b7f8070d98a8
Vilades, David
87dca06e-c56a-407b-bbdf-2a0fe5dc34d8
Descalzo, Martin L.
f5a17429-75db-4a05-b383-e646b139d1dd
Guala, Andrea
10d4a793-1a76-43b1-820c-8b2b1fbec662
Mura, Lucia La
938c8bf3-21e6-4518-81fc-58c640959f94
Friedrich, Matthias G.
d5aaa676-2f7a-4a17-8e51-0d6d769392e5
Garg, Ria
e7250d2d-5b25-4361-89e2-ec913f734ccf
Lebel, Julie
a3a46075-38e8-4eb9-b24b-3a220a99c6b2
Henriques, Filipe
b418b886-b97b-4360-88fb-119211d4932d
Karakas, Mahir
0a366fcc-4a90-4a87-9f7c-c2c187f3ea91
Cavus, Ersin
2b0fe329-e4eb-4808-bcc8-cacb03cb26e6
Petersen, Steffen E.
04f2ce88-790d-48dc-baac-cbe0946dd928
Escalera, Sergio
56972ae3-d232-4b25-a451-abf7e0e0f2ca
Segui, Santi
4073fef1-80e9-4cb0-8990-58bb36f7ce61
Rodriguez-Palomares, Jose F.
a08fec2d-af60-429f-a0c5-be5d7f9eeb08
Lekadir, Karim
b8de558a-869c-4574-b0d3-005dc52c3106

Campello, Victor M., Gkontra, Polyxeni and Izquierdo, Cristian , et al. (2021) Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The MMs Challenge. IEEE Transactions on Medical Imaging, 40 (12), 3543-3554. (doi:10.1109/TMI.2021.3090082).

Record type: Article

Abstract

The emergence of deep learning has considerably advanced the state-of-the-art in cardiac magnetic resonance (CMR) segmentation. Many techniques have been proposed over the last few years, bringing the accuracy of automated segmentation close to human performance. However, these models have been all too often trained and validated using cardiac imaging samples from single clinical centres or homogeneous imaging protocols. This has prevented the development and validation of models that are generalizable across different clinical centres, imaging conditions or scanner vendors. To promote further research and scientific benchmarking in the field of generalizable deep learning for cardiac segmentation, this paper presents the results of the Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation (MMs) Challenge, which was recently organized as part of the MICCAI 2020 Conference. A total of 14 teams submitted different solutions to the problem, combining various baseline models, data augmentation strategies, and domain adaptation techniques. The obtained results indicate the importance of intensity-driven data augmentation, as well as the need for further research to improve generalizability towards unseen scanner vendors or new imaging protocols. Furthermore, we present a new resource of 375 heterogeneous CMR datasets acquired by using four different scanner vendors in six hospitals and three different countries (Spain, Canada and Germany), which we provide as open-access for the community to enable future research in the field.

This record has no associated files available for download.

More information

Accepted/In Press date: 11 June 2021
e-pub ahead of print date: 17 June 2021
Published date: 1 December 2021
Keywords: Cardiovascular magnetic resonance, data augmentation, deep learning, domain adaption, generalizability, image segmentation, public dataset

Identifiers

Local EPrints ID: 488993
URI: http://eprints.soton.ac.uk/id/eprint/488993
ISSN: 0278-0062
PURE UUID: 20796cd1-0526-463c-bcb5-6423e4b99018
ORCID for Yao Zhang: ORCID iD orcid.org/0000-0002-3821-371X
ORCID for Lei Li: ORCID iD orcid.org/0000-0003-1281-6472

Catalogue record

Date deposited: 10 Apr 2024 16:56
Last modified: 11 Apr 2024 02:08

Export record

Altmetrics

Contributors

Author: Victor M. Campello
Author: Polyxeni Gkontra
Author: Cristian Izquierdo
Author: Carlos Martin-Isla
Author: Alireza Sojoudi
Author: Peter M. Full
Author: Klaus Maier-Hein
Author: Yao Zhang ORCID iD
Author: Zhiqiang He
Author: Jun Ma
Author: Mario Parreno
Author: Alberto Albiol
Author: Fanwei Kong
Author: Shawn C. Shadden
Author: Jorge Corral Acero
Author: Vaanathi Sundaresan
Author: Mina Saber
Author: Mustafa Elattar
Author: Hongwei Li
Author: Bjoern Menze
Author: Firas Khader
Author: Christoph Haarburger
Author: Cian M. Scannell
Author: Mitko Veta
Author: Adam Carscadden
Author: Kumaradevan Punithakumar
Author: Xiao Liu
Author: Sotirios A. Tsaftaris
Author: Xiaoqiong Huang
Author: Xin Yang
Author: Lei Li ORCID iD
Author: Xiahai Zhuang
Author: David Vilades
Author: Martin L. Descalzo
Author: Andrea Guala
Author: Lucia La Mura
Author: Matthias G. Friedrich
Author: Ria Garg
Author: Julie Lebel
Author: Filipe Henriques
Author: Mahir Karakas
Author: Ersin Cavus
Author: Steffen E. Petersen
Author: Sergio Escalera
Author: Santi Segui
Author: Jose F. Rodriguez-Palomares
Author: Karim Lekadir
Corporate Author: et al.

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×