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Abstract
A task of vital clinical importance, within Diabetes management, is the prevention of
hypo/hyperglycemic events. Increasingly adopted Continuous Glucose Monitoring (CGM)
devices offer detailed, non-intrusive and real time insights into a patient's blood glucose
concentrations. Leveraging advanced Machine Learning (ML) Models as methods of
prediction of future glucose levels, gives rise to substantial quality of life improvements, as
well as providing a vital tool for monitoring diabetes.

A regression based prediction approach is implemented recursively, with a series of Machine
Learning Models: Linear Regression, Hidden Markov Model, Long-Short Term Memory
Network. By exploiting a patient's past 11 hours of blood glucose (BG) concentration
measurements, a prediction of the 60 minutes is made. Results will be assessed using
performance metrics including: Root Mean Squared Error (RMSE), normalised energy of the
second-order differences (ESOD) and F1 score.

Research of past and current approaches, as well as available dataset, led to the
establishment of an optimal training methodology for the CITY dataset, which may be
leveraged by future model development. Performance was aligned with similar state-of-art
ML models, with LSTM having RMSE of 28.55, however no significant advantage was
observed over classical Auto-regressive AR models. Compelling insights into LSTM
prediction behaviour could increase public and legislative trust and understanding,
progressing the certification of ML models in Artificial Pancreas Systems (APS).
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Nomenclature
AI - Artificial Intelligence
APS - Artificial Pancreas Systems
AR - Autoregressive
BG - Blood glucose
BMI - Body Mass Index
CF - Correction factor
CGM - Continuous Glucose Monitoring
CITY - CGM Intervention in Teens and Young Adults with Type 1 Diabetes
CR - Carbohydrate-to-insulin ratio
EM - Expectation-Maximisation Algorithm
ESOD - Energy of Second Order Difference
GMM - Gaussian Mixture Modelling
GRU - Gated Recurrent Unit
HMM - Hidden Markov Models
HbA1c - Haemoglobin A1c test
LIME - Local Interpretable Model-agnostic Explanations
LRP - Layer-wise relevance propagation
LSTM - Long Short-Term Memory
ML - Machine Learning
MSE - Mean Square Error
PH - Prediction horizon
PMCC - Product Moment Correlation Coefficient
RMSE - Root Mean Square Error
RNN - Recurrent Neural Networks
S.D. - Standard Deviation
SHAP - Shapley Additive Explanations
T1D - Type 1 Diabetes
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1 Introduction
Artificial Intelligence has made large advances in preventive medicine and management of
chronic conditions, such as Diabetes. The symptoms of this chronic, metabolic disease
include unregulated blood glucose (BG) levels and hyperglycaemic events, which over time
can lead to irreversible damage to the heart, kidneys, blood vessels, eyes and nerves.

Type 1 Diabetes (T1D) Patients must use external insulin, with effective management
requiring optimal doses of insulin, through injection or infusion, multiple times per day.
Current technologies have found success in minimising risk of long-term complications,
however can also pose a significant burden on self-managing patients, reducing quality of
life.

Recent growth in digital disease management platforms and an increased use of
diabetes-related data sensors, such as Continuous Glucose Monitoring (CGM), have
resulted in rapid evolution towards Autonomous Diabetes Systems, which implement
Machine Learning (ML) approaches to predict future glucose levels, detect hyperglycaemic
events, assist with decision making and risk stratification for T1D patients.

The implementation of leading Neural Network based ML models could advance prediction
accuracy and provide more personalised predictions. This leads to the opportunity to explain
model predictions and justify conclusions reached, crucial for medical use.

7



2 Literature Review

2.1 Diabetes

Diabetes Mellitus affects the pancreas’ ability to regulate insulin. The condition is categorised
into different forms dependant on the cause: Prediabetes, Type 1 Diabetes, Type 2 Diabetes,
Gestational Diabetes [4]. The International Diabetes Foundation estimates there are over
463 million diabetics worldwide, with projected increases to 578 million by 2030 [3]. The
Insulin hormone is responsible for intake of glucose into muscles, effectively decreasing BG
levels. When digesting carbohydrates, glucose is introduced to the bloodstream, risking
excessively high levels (hyperglycemia). A bolus of insulin may need to be taken to reduce
glucose levels, or before performing exercise.

T1D is an autoimmune condition thought to be caused by the destruction of insulin-producing
beta type cells [2] by the immune system. Symptoms of marked hyperglycemia include
polyuria (excessive urination), polydipsia (extreme thirst), weight loss, sometimes with
polyphagia (extreme hunger), ketonemia and blurred vision [5]. Hood and Colleagues [6] also
indicated increased risk of elevated depression symptoms in children and adolescents.
Although the condition can appear at any age, it is most common to appear around the ages
of 4-7 and 10-14 [1]. Historically, T1D diagnosis has included fasting BG levels higher than
126 mg/dL or any measurement of 200 mg/dL. Diagnosis can also be made with a HbA1c
(average BG concentration over past 3 months) value over 864 mg/dL mmol/mol [2]. Despite
more recent efforts to standardise diagnosis, causes and typology remain unclear among
adults [2].

Although patients who self-monitor BG levels can see long-term benefits,  limitations such as
inconvenience, poor adherence to frequent measurements and financial costs of disposables
may result in erroneous readings [7] and therefore inaccurate predictions. Recent advances
in sensor technology enabled CGM devices to be developed. CGM devices greatly reduce
feelings of burden and of inconvenience [10]. These sensors are minimally invasive, using a
single electrode needle and  perform readings every 1-5 minutes for consecutive days or
weeks [9].
Juvenile Diabetes Research Foundation [8] demonstrated reductions in nocturnal
hypoglycaemia in children and adolescents when using CGM compared to self-monitoring.
The increasing amount of frequent data is causing the decision-making process to become
more complex. Current research is focused on developing algorithms to simplify this process
and  progressively automate in the future. Prototypes of closed loop Artificial Pancreas
Systems (APS) [11] are being investigated by the open source community, which integrate
CGM devices with Automatic Insulin Injection, enabling fully automated therapy with no input
from the patient or medical staff.
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The range of Autonomous Disease Management systems has been classified by Bitterman
and colleagues [22] into a set of 5 levels of autonomy, each with specific risk management
and legal liability, as presented in Figure 1 below.

Figure 1: levels of autonomy [22]

CGM devices alone are limited to data presentation functionality, however with addition of
predictive algorithms are classified as level 3. Future APS will have higher or full degrees of
automation, introducing legal responsibility for the AI developers.
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2.2 Past Approaches
Early Decision Support Systems are designed to help medical professionals in retrospective
analysis of patient’s data. Centralised Telemedicine services were enabled by remote
communication, through integrations of Web and Telephone access, between Patient Units
and central Patient Management Units [13, 14]. This allowed for the implementation of
empirical mathematical models that calculate the new dose of the medication required to
achieve therapeutic goals [15].

A standard T1D therapy includes the use of a Bolus Calculator to calculate the dose of
insulin bolus required using the equation:

𝐵 =  𝐶𝐻𝑂
𝐶𝑅 +

𝐺
𝐶
−𝐺

𝑇

𝐶𝐹 − 𝑃𝑆 × 𝐼𝑂𝐵
Equation 1: Bolus Calculator [12]

The first part of the formula is concerned with finding the meal boluses required to offset
ingested carbohydrates during the meal. This is calculated as the ratio between carbohydrate
intake (CHO) and carbohydrate-to-insulin ratio (CR), a parameter specific to each patient.

Next the correction insulin dose to alter BG concentrations to the target level is calculated
dividing the difference between measured concentration (GC) and the target concentration
(GT), by the correction factor (CF).

Finally, to avoid insulin stacking from the previous injection subtraction of the Insulin on
Board (IOB) is necessary. The multiplier physiological state (PS) can be introduced to
increase accuracy. PS is <1 when insulin sensitivity is increased, for example during exercise
and  PS >1 when sensitivity is decreased, for example during illness [16].

Despite standardisation and the success of these empirical approaches, prediction accuracy
is limited by the high degree of generalisation.

2.3 Current Approaches
Within this section more complex and personalised methods of glucose management will be
investigated.

Adaptive Tuning of Bolus Calculator Parameters could better personalise therapy and
automate periodic adjustments by clinicians, reducing the cost of care.
Herrero and colleagues [17] automatically adjusted the CR and CF parameters everyday in a
run-to-run methodology based on CGM data. Although results on simulated data were
promising, with significant reductions in time spent in hypoglycaemia, a fundamental flaw
exists in the assumption of repetitive BG levels. Many factors such as exercise, hormone
cycle, alcohol, stress, mental illness and others, can dramatically affect glucose levels and
are not accounted for.

With the addition of case-based reasoning to the run-to-run methodology situational context
can be comprehended by the algorithm. Successful recent approaches from Sun and
colleagues [18] incorporate reinforcement learning and produced encouraging results on
virtualized data by personalising parameters for better glycemic control even in extreme
scenarios. However this has not been thoroughly tested with real CGM data.
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CGM devices not only allow for detection of hypo/hyperglycemic events, but also permits
prediction. There are two main approaches in the literature. Firstly, viewing it as a regression
problem and predicting the values of BG concentration into the future until a prediction
horizon (PH). Secondly, forecasting the occurrence of future hypo/hyperglycemic events [9].

Another distinction can be made on the origin of training data. Some algorithms only use
CGM data while others implement external input for meal content and amount of injected
insulin, which have been shown to enhance predictions [20]. Furthermore, given the limited
amount of CGM data, some studies use simulated data (in silico trial) from the widely used
UVA/PADOVA simulator [21].

Population algorithms are standardised and reused throughout the whole population.
Although this approach can leverage large CGM datasets and  reduce development time, by
only needing to train a single model, predictions are not personalised to the patient.
By contrast, subject-specific algorithms which orchestrate various specialised models to
produce a combined prediction, account for the variability between individual’s characteristics
[19].

Prediction of glucose concentration models have a limited PH under 60 minutes. This allows
for the patient to be alerted up to 60 minutes before the glucose concentrations become too
high/low. As presented in Figure 2 below, predictions enable patients to pre-emptively digest
carbohydrates or inject insulin prior to surpassing dangerous thresholds, minimising the time
spent hyper/hypoglycemic.

Figure 2: predictions made on nocturnal CGM series plot [9]

Event prediction models reduce prediction difficulty by only forecasting the time of
occurrence without the exact glucose concentration levels. This simplification enables a
larger PH between 2-3 hours, giving the ability for the patient to identify postprandial
hypoglycaemia at the time of eating, allowing the patient to not have to eat extra
carbohydrates, managing their weight and promoting a healthier lifestyle.
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2.4 Machine Learning

The most recent CGM sensors [23] adopt simple prediction algorithms such as linear
extrapolation 15–30 min in advance and  generating alerts if a hypo/hyperglycemic threshold
is predicted to be surpassed [24]. Accuracy can be further improved by utilising LASSO (L1)
regularisation [29].

Autoregressive (AR) models capture the signal's frequency information and are invariant to
the signal's phase and amplitude [25]. AR is a popular approach for both Adaptive Tuning of
Bolus Calculator Parameters, as well as regression like glucose level prediction. The
simplified parameters allow for detailed interpretations, in contrast to more complex models
described below.

2.4.1 Hidden Markov Models
Hidden Markov Models (HMM) are an extension of the Markov process [26]
This state-space model in which latent variables represent discrete values, is
considered to be a double Stochastic process, consisting of Hidden States that cannot be
observed, in addition to a random sequence of observations dependent on previous states
[39]. This property makes them capable of predicting and analysing any temporal sequence.

Defined by the number of Hidden states (N), as well as number of observation symbols per
state (M). Model parameters dictate the state transitions and  are estimated by a special
case of Expectation-Maximisation (EM) Algorithm, known as the Baum-Welch algorithm [40].
Of note is that this algorithm is a gradient-based optimization method, which is vulnerable to
stagnation in local maximas [41]. Other recent approaches implement both supervised and
unsupervised training of HMM.

The Veterbi algorithm is most commonly used to infer optimal hidden states, hence predicting
the next time step. A decoder is also necessary to map the state-space of discrete random
variables to an comprehensible output value. By increasing the number of hidden states
output resolution is enhanced however at the expense of model complexity; leading to
increased computation and data requirements.

HMM has been demonstrated to be optimal for small training sets (N < 1000) [26].

2.4.2 Long-Short Term Memory
Introduced by Hochreiter and Schmidhuber in 1997 [45] Long-Short Term Memory (LSTM)
networks are a leading accuracy in complex time series prediction tasks [28], by leveraging
its capability to bridge long-term dependencies in excess of 1000 time steps [45].

LSTMs are well suited for temporal data and have shown advantages in Machine Translation
[56], Speech recognition [57] and mortality prediction in Intensive Care Units, based on
Electronic Healthcare Records [58].
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Figure 3: Graphic illustration of LSTM cell [51]

LSTM cells hold 2 types of memory: short and long. Hidden States (ht) are used throughout
Recurrent Neural Networks (RNN) to store immediate previous events and  are constantly
majorly altered by a series of gates. The internal Cell State stores long term dependencies,
with only minor linear interactions throughout the forward pass [44]. This enhances RNN
performance, which is inhibited by the vanishing gradient problem [53]. Both are represented
as vectors of predefined size, with larger vectors increasing model complexity.

Both the cell and hidden states are fed back to the input of the cell, alongside the next time
step and  the calculations are repeated until the whole sequence is processed. Once the final
time step is reached the terminal cell state is passed to a fully connected output layer, which
subsequently produces the final output [43].

Equation 2: Formulaic definition of LSTM cell [46]

Of note is the forget gate (ft), which is a sigmoid layer selecting what information to discard
from the cell state. The input (it) and output (ot) gates transform the previous hidden state
(ht-1), using a sigmoid activation function, to incorporate into cell state (Ct) and output hidden
state (ht) respectively.

LSTM flexible architecture offers a range of possible configurations.
Bidirectional LSTM (BiLSTM) architecture is similar to vanilla LSTM,  however the sequence
is processed in both the forward and backwards direction, which requires the entire
sequence to be available at once.
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Figure 4: Illustration of Stacked LSTM architecture [52]

The Recurrent nature of LSTM enables the forwarding of the cell state, not only to the next
cell, but also to a deep LSTM layer. These layers take the cell state from previous layers as
input as opposed to the input data, which allows for increasing levels of abstractions to form.

With these increased capabilities, multiple parallel series can be effectively analysed, forming
a single prediction. This can be utilised as a method of inputting static variables by creating a
constant time series for each. However complexity will be increased, strengthening
requirements for more layers and data to achieve sufficient accuracy.

Convolutional LSTMs (ConvLSTM) incorporate a one dimensional convolutional layer
previous to the initial LSTM layer [54], in order to allow for deeper understanding. Renzhuo
Wan et al. [55] has demonstrated ConvLSTM superiority in multivariate time series prediction
over other attention models. Although BiLSTM has lowest RMSE in Sequence-to-Sequence
prediction, ConvLSTM marginally improves upon it for individual models [42].

Other variants of LSTM include Gated Recurrent Unit (GRU) [59] and the addition of
peephole connections [60]. GRUs simplify the LSTM architecture and  reduce training cost
by combining the input and output gates to form a single update gate. However LSTMs
remain prevalent in most use cases.

A challenging problem with LSTM architecture most prevalent with stacked LSTMs, is
overfitting. A solution to overcome this is the use of Drop Out layers in between LSTM layers
for better generalisation, as seen in figure 4. This randomly discards node outputs, altering
the following layers perspective and  entices generalisation.

In contrast to HMM, LSTM harnesses greater accuracy using large datasets (N > 1000) [26].
However LSTM complexity is detrimental to prediction accuracy when using smaller
datasets.
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2.5 Model Explainability
Clinical practitioners and patients would like more granularity in alerts and to better
understand the reasoning behind it. Excessive risk notifications could lead to alert fatigue,
where patients or doctors become desensitised and are less likely to take necessary action.

Current algorithms, such as Shapley Additive Explanations (SHAP) and Local Interpretable
Model-agnostic Explanations (LIME), focus on extracting feature importance. SHAP
conditions on each feature, measuring change in prediction based on given changes in input
feature [63]. LIME samples neighbouring nodes in the region of interest and approximates
their behaviour with simpler surrogate functions [62]. Although demonstrating the importance
of a feature is vital in large multi-feature Neural Networks, temporal datasets with limited
features do not benefit from this approach. Instead it is crucial to survey event importance in
order to extract meaning from time-series prediction algorithms.

A common approach is Layer-wise relevance propagation (LRP) [30], which interprets
individual predictions in terms of input variables, by propagating the predictions backwards.
This method. It has been used to provide for state-of-the-art models such as VGG-16 [30]
and  can be effectively applied to any Neural Neural or LSTM model. [31]
When applied to LSTM networks, LRP procedures can be restricted to only utilise the
necessary many-to-one weighted linear connections and  two-to-one multiplicative
interactions evident in LSTMs [61]. One primary problem with LRP is that it requires the
definition of target classes, which is not suitable for continuous predictive models.

A specific method of analysing LSTM would be logging the forget gate, which controls the
importance of the previous cell state (as demonstrated in Section 2.4.2). Research has
shown that the forget gate is one of the most important gates in the LSTM, with
forget-gate-only versions outperforming standard LSTM models on certain benchmark
datasets [64]. Higher values of the forget gate vector indicate that the previous cell state
needs to be remembered, as opposed to lower values that justify forgetting the previous cell
[65]. By recording the state of the forget gate during each prediction at the inference stage,
the importance of the previous cell state can be viewed as the importance of a single time
step compared to the sequence as a whole.
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3 Methodology

3.1 Data Acquisition
Identifying a suitable CGM T1D Dataset is vital to the success of this project.
In addition to maximising the number of measurements, consistency within the dataset is
essential. Minimal interruptions and gaps, minimise interpolation required, enhancing the
quality of the data and true representation of trends. To add to that, a varied study cohort is
required to ensure good representation of population and promote generalisation in the
model.

Various Datasets [32, 33, 66, 67] have been found, however due to the privacy restrictions in
the UK/EU the search was limited to public datasets in the US.

Dataset Patients Age Duration

Tamborlane 2008 451 8 > 6 months

Chase 2005 200 7-18 6 months

CITY 2019 153 14-25 22 months

Aleppo 2017 224 25-40 6 months

OhioT1DM 2020 12 20-60 2 months

Maastricht 2010 197 (T2D) 40-57 3 months

Weinstock 2016 200 60 > 14 days
Figure 5: Tabular presentation of most prominent surveyed Datasets

OhioT1DM Dataset [66] commonly used in other studies [36], includes 8 weeks of data
collected from 12 anonymous T1D patients, between the ages 20 and 60 years old. Data
was highly unsynchronized as collected from multiple devices and sometimes logged
manually [66].

Most datasets focus on a specific age group, enabling a combination of 5 datasets to form a
complete lifespan sequence. Although joining datasets could expand the size and scope of
the model, the accuracy and usage between different models of prevalent CGM devices, as
well as environmental factors and testing methodology differences, can have a detrimental
impact on prediction accuracy, given increased variability of data quality.

CGM Intervention in Teens and Young Adults with T1D (CITY) Dataset [32] was chosen,
featuring data from 153 patients over a period of 22 months [34]. With the largest amount of
CGM data collected from similar CGM devices (Dexcom G4/G5/G6). Using a large dataset
would allow for more flexibility in model choice, training methodology and more accurate
testing.

*The source of the CITY dataset is Jaeb Center for Health Research, but the analysis, content and conclusions presented
herein are solely the responsibility of the authors and have not been reviewed or approved by Jaeb Center for Health Research
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3.2 Data Analysis

3.2.1 Patient Cohort
CITY focuses on teenagers and young adults, with a mean (s.d.) age of 17.46 (2.91), with
100 patients between the ages of 14 and 18 (inclusive) and 53 over 18, at the time of
enrollment. The maximum age was 24.

Insufficient frequency of patients' physical examinations, lead to the decision of representing
variable physical features as static by computing the mean or max as appropriate.
The mean (s.d.) weight was 74.26 kg (16.22) and 169 cm (10.28) for height.  Therefore the
mean (s.d.) Body Mass Index (BMI) was 25.96 (5.14), which means 50.9% of patients are
classified as atleast overweight with 17.6% obese. In comparison with the United States
adult average BMI of 29.3, with 71.0% being at least overweight [68], the studies cohort is
shown to be healthier on average.

Commonly expected biological trends, such as on average men being taller and heavier than
women, were represented in the population. Interestingly, the frequent assumption of a
positive correlation between weight and resting heart rate was absent. The same is true for
abnormal health judged by a detailed medical assessment, which was randomly distributed
within the population, independent of both weight and height. It is important to note that
correlations observed from this limited sample are not representative of the population at
large and should be taken with great caution.

Further Analysis of the patient population indicated patients were highly educated with over
74% attending university. Ethnicity was highly homogeneous with 129 out of 153 (84.3%)
patients being of white background. Annual Income in US Dollars had a mean (s.d.) of
$64,869 (58,348). This elevated standard deviation, alongside a high variance of 3,404.51,
quantifies a large division in annual income, with 36 patients earning over $100,000 and 41
earning less than $25,000. Results are consistent with the median household income of
$67,521 in 2020 [69].

Despite the scope of the data limited to teenagers and young adults with T1D, selection bias
in the study cohort is evident towards the white ethnic group and the highly educated. This
cohort may not be representative of common glucose concentration behaviour, therefore
limiting the generalisation and adaptability of the model.
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3.2.2 CGM Measurements
Of note are the Florida USA origins of the data, where the unit for BG concentration is mg/dL,
whereas the European standard is mmol/L (1 mmol/L = 18 mg/dL). CGM Readings were
distributed in a positively skewed normal distribution, with a mean of 204.56 mg/dL and
standard deviation of 87.21. Interestingly, the largest concentration of reading is at 401 with
3.59%. This could be due to the limited range of the CGM devices (Dexcom G4/G5/G6).
However further extreme readings exist, with 1009 readings (0.012%) above 401 mg/dL up
to a maximum of 600 mg/dL, which is diagnosed as a Diabetic Coma [70]

Figure 6: Mean (left) and s.d. (right) of daily CGM readings grouped at 5 minute intervals

Minimum average levels of 191.61 mg/dL can be observed at 7:05 with maximums of 218.08
at 21:40. Variability of readings remains very high at a minimum of 78.92 across the whole
day, with further increases up to a maximum of 91.08 during evening hours. This
demonstrates instability of BG levels and large variability between consecutive days (weak
cyclical behaviour), which can be medically correlated to the patient’s exercise regime and
diet throughout the day. Although this posed greater difficulty of prediction, it allowed for
more flexibility during training set creation.

Figure 7: Distribution of Lengths of consecutive CGM reading sequences

Readings were not performed consistently, with unpredictable periods of missing data as a
result of multiple factors such as: CGM device battery depletion, patient forgetting to apply
CGM device. This is quantified by a large standard deviation of 562.33. Half of the
sequences (N=14,079) were under 50 in length, with all sequences were under 4,000 (13.89
days) in length, except a single extrema of length 9,963 (34.59 days).
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3.2.3 Statistical Methods
Statistical Analysis of Patient Data was conducted in order to select essential static features,
in addition to temporal CGM readings.
Covariance Matrix and Correlation Matrix were computed with all values normalised previous
to calculations to eliminate value range bias. The covariance quantifies the direction of the
relationship, with a positive covariance signifying a positive correlation and similarly a
negative value for a negative correlation. Product Moment Correlation Coefficient (PMCC)
neatly accompanies the covariance matrix and is used to calculate the strength of a
correlation. Leveraging both matrices allows for the identification of both the direction and
strength of trends between features.

Figure 8: Covariance and Correlation Matrix for Patient Details
(normalised between 10 and -10 for illustration purposes)

HbA1c has a high variance (10.97 × 10-3) indicating the high variability in diabetic patients,
which could be detrimental to generalised prediction models.
Furthermore HbA1c covariance with weight and height are significantly reduced, with  -6.33 ×
10-4 and -8.14 × 10-4 respectively, in addition to further reductions with BMI. Interestingly
HbA1c and BMI are positively correlated (0.024), in contrast to the negative correlations with
Weight and Height (-0.048 and -0.151). This minor correlation goes against common belief,
presenting negligible correlations between BG levels and primitive health indicators such as
BMI, suggesting independence between body fat percentage and BG concentrations.
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Figure 9: Illustration of Annual Income (103 USD) against HbA1c (mg/dL) (m = -0.0955)

Analysing the correlation between HbA1c and Annual income presents a significant causal
relationship. Elevated PMCC between the two (-0.17), in addition to negative linear
correlation (presented above) reinforces the theory of lifestyle and dietary differences
between social classes impacting patient glucose levels. This could be attributed to the
increased cost of low glycemic food sources such as Protein and Vegetables, in comparison
to cheap processed foods, prohibiting access to lower income patients and elevating their
exposure to sugar-rich foods.

Most important features can be selected using variance thresholding [71] approach, which
removes all variables whose variance does not exceed threshold. This yields the most
meaningful features to be: Annual income, Education Level, HbA1c, Height and weight.
However as BMI is calculated from the combination of height and weight, it is a more
meaningful feature and  therefore better representative of patient health.
HbA1c, Annual income and BMI are concluded to be the most crucial features.

3.3 Clustering
Calculations of cohort variability revealed major divergences within the patient population,
advocating leveraging these differences by clustering patients into distinct cohorts, thus
decreasing variability in patient characteristics. Statistical methods quantified the large
covariances within patient details (Section 3.2.3). Correspondingly, CGM data was found to
have weak cyclical behaviour and extremas (Section 3.2.2). The aforementioned indicates
the scope of major divergences in the population.

An assumption can be made that contrasting patient characteristics lead to heterogeneous
behaviour of BG concentrations. In the case of similar patient characteristics a generalised
model trained upon a single population could be successfully implemented. By contrast, with
large variations between patients it may be necessary to train personalised models for each
patient, which could restrict the scope of CGM behaviour, decreasing prediction difficulty.
However this would significantly reduce the size of the training set, introducing a prevalent
risk of underfitting in complex models, such as LSTM.
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Gaussian Mixture Modelling (GMM) [72] was chosen over K-means clustering, which
assumes circular distribution by using the euclidean distance between points, whereas GMM
allows for the elliptical spread of data for better division. The expectation-maximisation (EM)
algorithm [73], was utilised to optimise centroid positioning. Insurances were made that the
solution was optimal by performing 200 iterations for each of the 20 random initial settings.

Figure 10: Relationship between HbA1c (horizontal) and Annual Income(vertical) across the coloured
3 cohort of patients.

Effectiveness of groupings could be quantified by the lower bound value on the log-likelihood
of the optimal clustering. Although combinations of most varianced variables such as sex and
annual income would provide the most distinct groupings, it is evident that these variables
would have the least impact on oscillations of CGM readings, which would not substantially
improve model performance. Experimentation with a range of more meaningful variables
directed to the choice of HbA1c and Annual Income with 3 distinct cohorts, resulting in the
lowest log-likelihood of -8.25.

Figure 11: Distribution of HbA1c across 3 cohorts.

Further analysis was conducted into the resulting distributions of variables for each cohort,
visually illustrating the distinctness of the clustering. It is evident that GMM was focused on
the separation of annual income brackets with high, medium and low groupings. However
HbA1c has significant overlap with limited distinction, which could be detrimental to model
performance.
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3.4 Design Methodology
Although Hypo/Hyperglycemic Event Forecast Models could give greater benefit to the
patient with longer PH, Glucose Concentration Prediction Models are more widely used, offer
a deeper insight into the explainability of the model’s prediction process, as well as potential
use in Artificial Pancreases in the future.

Such regressive models for Glucose concentration prediction can be used both in a recursive
and direct fashion. Recursive methods incorporate the previous prediction in their input,
whereas direct methods do not [36]. Direct methods require the implementation of sequence
to sequence models (many-to-many), which inflate model complexity exacerbating underfit
risk. Recursive predictions lead to the accumulation of error, resulting in a lesser accuracy,
however deeper explainability insights can be gained, by analysis of each individual time
step. More thorough analysis could promote faster adoption, in addition to trust and reliability
for patients and medical staff. Therefore a recursive approach will be implemented.

Analysis of varied Machine Learning Models (Section 2.4) has shown a range of trade-offs
between levels of model complexity. Therefore, it is most appropriate that a diverse span of
models be used, allowing for detailed comparison and selecting the highest performing.
Comparative investigation led to the choice of: Linear Regression, HMM and Stacked LSTM
models. Prevalent AR models will not be implemented as previous studies have indicated
disjointed sequential data, as quantified in Section 3.2.2, can severely impact accuracy [74].
Although a range of LSTM configurations, such as Bi-directional and Convolutional are
available, they significantly impede explainability investigations, as well as increasing the risk
of underfitting. Therefore a Stacked LSTM will be implemented enabling flexibility in model
complexity, by adjustment of stacked layers.
This chosen range of models enables a thorough comparison, given the same training data
and allows for better judgement of accuracy. Discrepancies during comparisons with other
predictive solutions for Autonomous Diabetes Systems, could arise from the scarcse use of
the CITY dataset, not allowing for equivalent judgement. Thus, internal model evaluation and
use of multiple models can help alleviate the aforementioned problems.

A multitude of two training methodologies will be implemented in a separate parallel form.
A generalised model will employ all available temporal data, in distinction to a clustering
approach, which will develop 3 independent models from each of the cohorts outlined in
Section 3.3. Both approaches will be independently trained on a sequence of 132
measurements, which approximates 11 hours, and predict the next 12 measurements (60
minutes). These will be tested against the validation set consisting of 12 readings. Insights
from Section 3.2.2 informed this decision, as 10,379 sequences (36.69%) of length more
than 144 will be available for training and testing. Although decreasing the required length
would allow for more training data, shorter sequences may not supply adequate context to
LSTM’s long-term memory impacting prediction performance.

It is vital that all CGM sequences belonging to a certain patient must be kept in the same
cluster to ensure there is no contamination between the training and testing data sets.
Standard randomised sampling of sequences for cross-validation method (Section 5.1),
would mix readings between clusters, therefore train-test split must be conducted
subsequent to clustering.

Performance will be evaluated using a series of metrics: Root Mean Squared Error (RMSE),
F1 score and Energy of Second Order Difference (ESOD). Details are outlined in Section 5.1.

HMM with fewer hyperparameters facilitate more detailed and thorough interpretation, as
opposed to LSTM, which are challenging to comprehend. However due to time constraints
explainability analysis will be limited to the best performing model. This will aim to quantify
the attention placed on each datapoint, emphasising significant events.
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4 Implementation

4.1 Data Preparation
Raw data stored in text-file format, from the CITY dataset, was imported and passed through
a preprocessing pipeline for training and testing set creation. Python packages such as
Pandas and Numpy were heavily utilised within the pipeline, in addition to all statistical
analysis documented in previous sections.

Figure 12: Illustration of CGM data loss (number of readings) throughout Preprocessing pipeline

As cohorts were divided by patient, all CGM data from one patient was included in the cohort
they belonged to. The same process is computed for the generalised dataset and each of the
cohorts, divided from clustering.

Consecutive measurements within sequences must be made within 15 mins, allowing
sufficient time for users to switch CGM devices once battery is depleted. 28,290 sequences
of connected measurements were identified. However only 10,379 sequences (36.69%) were
more than 144 in length (Section 3.4). Subsequently randomised division into test sets and
training is performed using a 5-fold cross-validation methodology.
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Segmentation into lengths of 144, of both training and test sets was performed (as specified
in Section 3.4), with the remaining readings being discarded. The first 132 readings were
used as input data with the following 12 used as validation during training. This data was
used to train the HMM and Linear Regression models.

Additional data augmentation was performed on LSTM training data, due to the inefficiency
of training HMM models. Therefore it was impractical to train HMM with such a large dataset.
Augmentation vastly enlarged the number of sequences from 49,769 to 6,391,075, using a
sliding window size of 144 samples (11 hours) and step size of 1 (5 minutes). Similarly 132
initial readings are used to train with the following 12 used as validation. Although duplication
of sequence segments will not provide unseen information, variations of sequences present
varied context, maximising the available training data. Also it is vital to note augmentation
was only performed on the training set and not validation set in order to avoid test set
contamination and duplication of test sequences producing unequal representation.

Dataset Patients Set Size
(sequences)

Training Set Size
(sequences)

Test Set Size
(sequences)

All 153 6,391,075 5,112,860 1,278,215

Cohort 1 86 3,296,488 2,637,190 659,298

Cohort 2 36 1,203,470 962,776 240,694

Cohort 3 31 1,891,117 1,512,893 378,224
Figure 13: Tabular comparison of all processed datasets used

Cohort 1 is the largest with 52% of data, followed by Cohort 2 and 3 which roughly share the
remaining data at 19% and 30% respectively.

Pandas’ Dataframes enabled versatile analysis of given features, however performance
limitations exist and Numpy Arrays were favoured for training. Serialisation of the arrays
using the python pickle library was conducted in order to limit computation and ensure data
consistency between models.

4.2 HMM
HMM model was created using the hmmlearn python library [41]. Regular step intervals in
the dataset promoted the use of a Discrete HMM as opposed to Continuous HMM, which
considers irregular measurements [77]. This would provide further context and
disproportionately favour HMM over LSTM. An implementation of Viterbi Training Algorithm
[76] was required, as it was not included in the python package. This dynamic programming
algorithm approximates the maximum likelihood explanation, predicting the next state, which
corresponds to a segment of the possible glucose concentrations. The initial formula
(X0) = P[Y0|X0]P[X0] is utilised to identify the initial best state, given observed data. Allµ

further best states (k) are recursively identified using (Xk) = (Xk-1)P[Xk|Xk-1]P[Yk|Xk].µ µ
Scaling of the Viterbi output was required to map the ordinal state values to real glucose
measurements.
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The default Baum-Welch Algorithm [75] implementation in the hmmlearn package was
utilised to train the HMM. Training was very slow, with limited parallelisation and no GPU
support. All computation was performed on a single CPU core (4.5GHz) with 32 GB of RAM.

Number of
States Iterations RMSE

3 1k 156.04 (18.07)
20 2k 146.15 (17.92)

100 10k 112.34 (15.73)
Figure 14: Table of all HMM models used in hyperparameter tuning

An array of hyperparameter combinations were investigated. Increases in the number of
states led to additional complexity in the model, requiring further iterations to fully train the
HMM. The best performant model had the included the most states and iterations, with 100
states and 10,000 iterations resulting in an RMSE of 112.34. Larger HMM models were
impractical to train, given that 10,000 iterations took over 12 hours of computation.

4.3 LSTM
Creation of the LSTM model was performed in an object-oriented approach permitted by the
PyTorch framework in Python. By leveraging polymorphism standardise LSTM PyTorch
classes can be inherited and adapted to specific dataset requirements, whilst remaining
compatible with other supporting logic through standardised interfaces.

The nn.Module base class [48] for all neural networks, must first be inherited to enable
interactions with other modules by implementing the interface through the __init__ () and
forward() functions. Specialised layers such as LSTM are defined within the __init__()
function and stored as local class properties. By storing key model attributes as local
variables rapid alterations to the architecture can be made by re-initialising the object with a
new set of starting parameters. Next a single forward pass and accompanying logic is
defined within the forward() function [48], ordering the execution of the previously defined
layers. The nn.LSTM layer [46] prediction internally computes the prediction from L stacked
layers, which is next flattened and passed to a fully connected output layer nn.Linear [47].
The output is returned in addition to the hidden state to be used in the following recursive
prediction.

The default Mini-Batch Gradient Descent methodology included within PyTorch was utilised,
alongside PyTorch CUDA implementation, enabling fast parallelised training on a GPU.
Training was performed on a Nvidia RTX 3070ti GPU consisting of 6144 CUDA cores and
8GB of VRAM. A DataLoader [49] was employed to iteratively load batches of 128
sequences to the GPU, which was limited by the size of the VRAM. Every model was trained
for a duration of 20 epochs, with a limited test subsequently performed. This employed a
randomised constrained testset (N=1000 sequences) as a heuristic of test loss. This
methodology facilitated the identification of overfitting by comparison of the Training loss and
Test loss, making it fundamental to the training of large models prevalent to overfitting.
ADAM optimiser with a default learning rate of 0.001 was incorporated to dynamically reduce
the learning rate. This enabled smaller changes to be made by the  Mini-batch Gradient
Descent Algorithm, fine tuning parameters to the identified minimum.
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4.3.2 Hyper parameter Tuning
Evaluation of a broad spectrum of hyperparameter combinations was performed for this deep
network. Hyperparameters such as number of layers and hidden memory cells are crucial
aspects of the model and highly dependent on the complexity of the dataset. Accuracy and
efficiency requirements are also a factor with increased hidden memory cells able to store
more greater context, but significantly elevate computation requirements and escalate the
risk of overfitting.

Figure 15: LSTM RMSE loss on limited test set across variable hidden sizes

Firstly, the effect of Hidden size on prediction performance was investigated.
Complexity of larger models was clearly illustrated by initial performance, where larger
models had worse initial performance and required more epochs to reach minimum loss.
Only 3 epochs were required for hidden size 8 to train, in contrast to 9 for 128 memory cells.
Overfit was evident across larger models with rising discrepancies between train loss and
test loss. This is clearly illustrated within epoch 4 for hidden size 128, which has the lowest
training loss of 41.42 across all sizes, but the highest test loss of 242.00.
The best models: epoch 3 of hidden size 8 and epoch 6 of hidden size 16 were tested upon
the whole testset, resulting in Root Mean Square Error (RMSE) of 33.31 and 33.07. Although
the hidden size 16 has better performance, training took twice as long, which would be
further exacerbated with the addition of stacked layers. Therefore 8 was chosen to be the
optimal hidden memory size.
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Secondly, the same approach was applied to investigate the layer depth.
A presumption can be made that the addition of stacked layers (Section 2.4.2) enabled
deeper insights from a more abstracted viewpoint.

Figure 16: LSTM RMSE loss on limited test set across variable amounts of layers

Slight improvement over single layered vanilla LSTM, with the second layer making the most
significant improvements to accuracy. Only marginal improvements were observed from the
third layer, when compared to the addition of the second. Layer 4 did not coverage during
training, having a consistent loss over 7300 and so it was inappropriate to test.

Epoch 5 of 2 stacked layers and epoch 8 of 3 layers were evaluated upon the whole test set,
resulting in RMSE of 29.05 and 28.55 respectively. The optimal final model is made up of
1,513 trainable parameters and consists of 8 hidden memory cells, with 3 stacked layers.
These hyperparameters were reused for all 5 repetitions of the cross-validation process.
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5 Evaluation

5.1 Evaluation methodology

The evaluation will be conducted using a 5-fold cross-validation strategy (20% of the
sequences being used to test and 80% to train), in addition to a random sampler, with a
predefined seed to ensure repeatability. Sequences of consecutive measurements derived
from a cohort, will be divided prior to segmentation and augmentation in order to eliminate
duplicate sequences between the training and test sets. This eliminates the risk of test set
contamination. Accuracy of the models will be evaluated with an array of metrics, for
thorough comparative inspection of different loss types.

Root Mean Squared Error (RMSE) quantifies the proximity of predictions to the validation set.
The PyTorch Mean Squared Error (MSE) loss function [50] used, had to be square rooted
and then averaged over the number of batches in a training epoch.

Threshold Classification of glucose concentration measurements into hyperglycaemia,
normal and hypoglycaemia, with thresholds of 70 mg/dL and 280 mg/dL, enabled the
calculations of Precision and Recall metrics. Precision calculates the percentage of positive
predictions given a real validation outcome. Similarly, Recall presents the relationship
between real positive cases and predicted positive cases. Due to the possibility of serious
consequences to patient health and life, an overestimation of false positives is most
desireable. False negative predictions could delay appropriate rehabilitative action and
exacerbate consequences. This creates a trade-off between precision and recall. A final
calculation of the harmonic mean between precision and recall, known as the F1 score [35],
is used to quantify an unbiased measure impartial to precision and recall manipulation.

Equation 3: Formula definition of ESOD metric, given set of predictions ( ) and validation set (y)𝑦

Energy of Second Order Difference (ESOD) reflects the risk of false alerts, indicating the
reliability of a model [36]. The ideal ESOD score is 1, meaning the prediction is identical to
the validation measurement.
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5.2 Training Comparison
Evaluation was independently conducted on all four LSTM models, trained on both
generalised and personalised methodologies, in order to recognise the best training
procedure. This was conducted on only one of the 5-fold datasets.

LSTM Model
RMSE

Cohort 1
RMSE

Cohort 2
RMSE

Cohort 3 Total RMSE

Cohort
Cohort 1, epoch 2 30.92

59.30Cohort 2, epoch 2 28.81
Cohort 3, epoch 7 77.29

All All, epoch 8 30.51 27.62 27.87 28.52
Difference -0.41 -1.19 -49.42 -30.78

Figure 17: Comparison of RMSE between Training Sets

A generalised training procedure is shown to yield higher performant models across the
whole population when compared to a personalised methodology.  Limited data availability
used to train cohort-specific models impacted performance, with the largest cohort 1 (86
patients) having the smallest performance impact of -0.41 RMSE, whereas the smallest
cohort 3 (31 patients) has a substantial accuracy loss of -49.42 RMSE. Performance could
be further degraded for cohort 3 specific model, which has the lowest mean annual income,
as this population was identified to have the greatest glucose concentration variability in
section 3.2.3.

Vital to note possible test set contamination as the test sets created for each cohort were
independently cross-validated from the generalised test set, meaning some sequences used
within the generalised training set could be present in the cohort-specific test sets used to
evaluate the generalised model.

Further investigations could be made into adapting the generalised model with transfer
learning for possible decreases in loss for specific cohorts. However significant data set
expansion would be necessary in order to avoid test set contamination, therefore
inappropriate for the current available data.
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5.3 Results
LSTM model was tested on the augmented test set, whereas the HMM and Heuristic models
were tested on just a segmented test set. Testing of LSTM and HMM model was arduous as
a result of the recursive prediction implementation , which introduced dependencies on
previous prediction and memory state, meaning parallelisation was inhibited.

Model RMSE (mg/dL) ESOD
Heuristic - Copy Last 33.75 (6.85) 0.00

Heuristic - Linear Regression 43.30 (7.31) 1.81E-28

HMM 112.34 (15.73) 7397.38

LSTM 28.55 (3.28) 0.12
Figure 18: Tabular evaluation of average model performance with corresponding s.d.

LSTM network outperformed all other architectures at the 60-minute prediction interval,
presenting excellent performance at predicting hypoglycaemia and hyperglycaemia, with
precision of 0.865, recall 0.183 and F1 score 0.303, in comparison to baseline Heuristic and
HMM models. Given the large discrepancies between precision and recall, it is evident that
thresholds require adjustments to be appropriate for medical use, with reasons outlined in
Section 5.1. Further analysis focused on LSTM performance.

Figure 19: Illustration of reference CGM readings (mg/dL) against LSTM predictions (mg/dL)
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The Surveillance error grid [78] quantifies accuracy by plotting predictions and reference
values and visually comparing against the coloured continuous risk error gradient.
This is similar to Clarke Error Grid Analysis, however a continuous risk error grid is used as
opposed to predefined zoning techniques [38]. It is evident that reference extrema readings
over 400 mg/dL were never predicted by the LSTM model. This could be a result of severe
under-representation in the dataset.

Predictions over yellow and orange areas, indicate elevated risk stratification, which poses
an increased likelihood of health consequences. To add to that, subtle underestimation can
be observed. This is highly agnostic in medical applications, as overestimation leading to
unnecessary treatment is a more favourable, less dangerous scenario.

5.4 Model Comparison

RMSE (mg/dL) Dataset

HMM 112.34 CITY

LSTM 28.55 CITY

LSTM [36] 55.34 OhioT1DM

LSTM [79] 16.94 The Maastricht Study (T2D)

ARIMA [79] 27.77 The Maastricht Study (T2D)
Figure 20: Comparison with State-of-Art Models (*subject to conversion)

Other studies have also demonstrated successful recursive predictions of glucose levels
using LSTM models. However direct comparison is not appropriate as a result of dataset
discrepancies, with the OhioT1DM having significantly limited amounts of data and the
Maastricht Study using data from Type 2 Diabetes patients.

31



5.5 Explainability
Deeper analysis with the aim of explaining decision processes, will be conducted upon the
best performant model. LSTM model explainability can be investigated by assigning an
importance to each datapoint in the time series. This could lead to the identification of trends
in which events are significant, allowing medical professionals and patients to gain a deeper
understanding of the reasoning behind each prediction. Furthermore there is potential for the
identification of a patient's detrimental behaviour that increases risk of an
hypo/hyperglycemic event occurring and should be altered. As featured in Section 2.5,
mapping values of the forget gate vector indicates importance of the previous cell state [80].

Predictions based on training data have been outlined with the green line and those made
recursively from previous predictions in red.

Figure 21: Importance of each CGM reading (mg/dL) in sequence, throughout all LSTM layers

It is clear elevated attention is placed on initial predictions as the hidden states are empty
and require assignment.

The initial LSTM layer only utilises 2 out of 8 hidden states at indexes 0 and 3 and all others
remain at a constant value of 1. A negative correlation is observed, with importance placed
on the lowest glucose concentrations through the day. This could be interpreted as a basic
identification of hypoglycemic events.

The first deep LSTM layer extracts more meaning, using all 8 hidden states.
Mean values increase around large variations of glucose levels, leading to the conclusion
that focus is placed on the identification of large glucose concentration fluctuations
throughout the day.
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The next deep layer derives further meaning by using all hidden states.
Although the presented correlations are not as evident as previously, it can be deduced that
importance is placed on high glucose values, which could improve predictions of
hyperglycemia, unaccounted for by the first layer.
Furthermore as this is the final LSTM layer, previous to the fully connected layer, its values
follow the desired output, and therefore positively correlate with CGM readings.

Investigating the explainability of the 2 stacked layer LSTM model, yielded similar findings
and given the insights into similar loss between the 2 and 3 layered LSTMs (Section 4.3.2),
the theory that the third layer had very minor contributions is reinforced.

It is vital to note the limitations of this method, which can only analyse a single sequence and
requires visual inspection for each. This means it is not possible to quantify the trends
observed in each layer, therefore comparison across all sequences in the test set is severely
impractical for large datasets.

5.6 Limitations
The CITY dataset used demonstrates bias towards white and educated patients, as analysed
in Section 3.2.1, so the cohort is unrepresentative of the American population.
This does not take into account the elevated demographic variations between countries such
as the United States and the United Kingdom. Studies of other populations in India, have
identified “high-calorie/high-fat and high sugar diets” [81], altering blood glucose
concentrations when compared to others. This could lead to deficient accuracy in
marginalised communities, which are not accurately represented in the patient cohort.

This could raise the need for personalised model trained at the state level to be better
representative of the demographic population. However alternative approaches should be
considered as patient clustering into smaller cohorts was shown to have a detrimental effect
on performance.
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6 Conclusions and Future work

6.1 Project Management
Given the research based nature of this project, covering a range of topics, significant
planning was required. By restricting time for certain tasks, the scope of the research was
limited and reducing the risk of overruns, therefore focus could be placed on the success
criteria. Appendix B presents the planned work schedule, whereas Appendix C shows the
schedule that took place.

Initial planning was formulated into a conventional waterfall methodology, with linear
progression of tasks from data acquisition to training set creation. Simultaneous research
was conducted in order to follow best practices, in addition to informing the ideation of the
design methodology. This workflow was followed until 13th December 2021, where
development was paused over the festive period, to allow more time for exam preparations
and vocational activities.

Subsequent technical development from 31st January 2022 altered planning schemes to an
Incremental Model, which appropriately divisioned end-to-end development of each model
into separate linear progressions, from creation to evaluation. The perceived most
challenging model: LSTM, was developed first, with Heuristics and HMM ensuing. Evaluation
and Model comparison were performed at the conclusion of all model development.
Concurrent report writing during model creation, enabled active recording of ideas and steps
taken, minimising the risk of forgetting details.

Later focus was placed on formal documentation of the project, through the writing of this
report. Visualisations were created using the python packages Matplotlib and Seaborn, in
order to enhance and assist the conveyance of complex concepts. Additional Analysis was
also necessary to assist with explanations.

6.2 Conclusions
Creation, Evaluation and Explainability Analysis was conducted on a range of techniques for
predicting BG levels up to a 60 minute interval. Section 5.4 demonstrates LSTM model
accuracy to be akin to state-of-art models in similar use cases. However as illustrated in
figure 19, inaccurate predictions persist, elevating risk of hypo/hyperglycemia events.
Therefore it is not considered appropriate for use in Artificial Pancreas applications.
Nonetheless meaningful guidance is still provided to T1D patients.

Study has established a thorough training methodology for future Machine Learning models.
Generalised models are proven to outperform personalised models (Section 5.2).
Analysis of LSTM layers has shown the importance placed on major fluctuations in glucose
concentration, as well as unconventional perspectives of high or low values.
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6.3 Future Work
Independent peer review would be necessary for academic integrity and reproducibility of
this approach which is crucial in the medical industry.

Future investigations could be conducted with addition of variable patient statistics such as
weight, age and annual income directly to the model to provide further context.

An opportunity for deployment of the LSTM model in edge devices could arise, due to its
small size and low energy requirements for inference. Sensitive medical data could be stored
locally on the device and predictions computed locally [82]. Differential Privacy [84]
techniques could also be implemented, leveraging the hidden state of LSTM to encode raw
input data. This would allow data to be anonymously stored in the cloud without
compromising the patient’s privacy, as well as allowing for more detailed replication of
prediction and deeper analysis of model error.

Furthermore, RMSE loss and other diagnostics may also be freely transmitted to web
storage to aid evaluation, as it will not make patients uniquely identifiable. Similar
approaches have already been implemented on Natural Language Processing of news
articles using LSTM models for stock prediction [85]. Apprehensive patients could be
persuaded by privacy enforcement, promoting patient cohort expansion and model
invariance.

Compliance with regulatory policies [83] is vital for successful deployment to medical
devices. These require extensive evaluation of each model, previous to certification,
therefore continuous training and personalisation would not be possible.
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Appendices

Appendix A: Project Brief

Artificial Intelligence has made large advances in preventive medicine and management of
chronic conditions, such as Diabetes. The symptoms of this metabolic disease include
elevated blood glucose levels and hyperglycaemic events, which over time can lead to
irreversible damage to the heart, kidneys, blood vessels, eyes and nerves.

Type 1 Diabetes Patients must use external insulin, with effective management requiring
optimal doses of insulin, through injection or infusion, multiple times per day.
Current technologies have found success in minimising risk of long-term complications,
however they can pose a significant burden on self-managing patients, reducing their quality
of life.

Recent growth in digital disease management platforms and an increased use of
diabetes-related data sensors, such as Continuous Glucose Monitoring (CGM), have
resulted in rapid evolution towards Autonomous Diabetes Systems, which implement
Machine Learning approaches to predict future glucose levels, detect hyperglycaemic
events, assist with decision making and risk stratification for Type 1 Diabetes patients.

The implementation of leading Neural Network based Machine Learning models could
advance prediction accuracy and  provide more personalised predictions. This leads to the
opportunity to explain model predictions and justify conclusions reached, crucial for medical
use.

Outlined below is my plan of approach:

1. Identify suitable Dataset for CGM use on patients with Type 1 Diabetes or
combination thereof.

2. Extract and manipulate to generate adequate training and validation datasets.
3. Investigate using a variety of machine learning models
4. Evaluation and comparison of each model between each other as well as with the

current leading predictive solutions for Autonomous Diabetes Systems.

Definition of success for the project:

● Creation of an accurate Neural Network Model to forecast glucose levels for patients
with Type 1 Diabetes.

● Explain and justify the model’s decision making process behind the predictions made.
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Appendix B: Planned Gantt Chart Brief
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Appendix C: Actual Event Gantt Chart
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