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ABSTRACT

Technology-Assisted Review (TAR) aims to reduce the human effort required for screening processes
such as abstract screening for systematic literature reviews. Human reviewers label documents
as relevant or irrelevant during this process, while the system incrementally updates a prediction
model based on the reviewers’ previous decisions. After each model update, the system proposes
new documents it deems relevant, to prioritize relevant documents over irrelevant ones. A stopping
criterion is necessary to guide users in stopping the review process to minimize the number of missed
relevant documents and the number of read irrelevant documents. In this paper, we propose and
evaluate a new ensemble-based Active Learning strategy and a stopping criterion based on Chao’s
Population Size Estimator that estimates the prevalence of relevant documents in the dataset. Our
simulation study demonstrates that this criterion performs well on several datasets and is compared to
other methods presented in the literature.

1 Introduction
In extensive studies such as legal proceedings, criminal investigations, and systematic reviews in academia, researchers
and investigators gather evidence or information by screening information found in large text databases or corpora. The
task is to find all pieces of information relevant to the subject of the investigation. Often, the investigator starts by using
(Boolean) search queries to pre-select documents from the database. Formulating these queries is not a trivial task, as
it is the objective to capture (nearly) all relevant documents. Often, the resulting set of candidate documents that the
researchers have to process is enormous, while the prevalence of relevant documents within these sets can be very low.

More formally, we have a dataset D containing candidate documents. During the review process, these documents are
read by domain experts and labeled as either relevant or irrelevant. Read documents are referred to as labeled, and we
maintain two sets L+ and L−, for the relevant and irrelevant documents, respectively. The objective is to find all the
remaining unlabeled relevant documents belonging to the set U+.

The prevalence for systematic review corpora ranges from below 1 to 35 % [8], so most candidate documents are not
relevant. Traditionally, the investigator reviewed each document in D, resulting in a large amount of work. Recently,
systems were proposed and built that potentially reduce the human effort needed by limiting the number of irrelevant
documents shown to the reviewer [9, 15, 37, 43]. These systems use machine learning to recommend documents based
on prior review decisions. We refer to these systems as Technology-Assisted Review (TAR) systems as coined in [15].
Many recent TAR systems use Active Learning (AL) to update the classifier after each or several review decisions
iteratively. AL is a machine learning technique that is used to train a classifier with fewer labeled data points while
retaining good performance. In this setting, the model can interactively query an oracle (i.e., the domain expert) to label
data points with the desired output of the Machine Learning model (i.e., in the case of a classification task, the class of
the data point). In our case, the model should predict the relevancy of each document. Because the model is frequently
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retrained, it could reduce the number of instances that should be labeled by querying the most informative documents.
Many TAR systems that use AL show the user the top-k unseen documents according to the classifier’s predictions. As
the classifier is retrained frequently, the ranking is refined as well, reducing the number of documents that have to be
screened.

In the case of abstract screening for systematic reviews, state-of-the-art systems can find all relevant documents after
screening only 5 – 40 % of the corpus by using this general methodology [9, 37]. A caveat is that these systems
lack reliable stopping criteria. Simulation studies show that we can reduce work if we know the prevalence a priori.
However, the number of relevant documents is not known beforehand in a real-world situation. Because of this, an
investigator may stop too early, resulting in the omission of important information. Conversely, stopping too late causes
unnecessary effort.

In this work, we describe a method to determine the prevalence of relevant documents using Population Size Estimation
(PSE) methods. These methods are used in official statistics and public health to estimate population size when only
part of the population is observed. PSE methods are related to Capture Mark Recapture models, originating from
ecology, where these models are used to estimate the population size of wildlife. In our case, we want to estimate the
size of the set of relevant documents, i.e., the number of relevant documents. During systematic reviews, only a subset
of the relevant documents is observed, that is, only the set of documents that the investigators read. A review can only
be stopped if the reviewers believe no relevant documents have been missed or their recall target is met.

In this work, we investigate if PSE is a suitable technique for deciding when to terminate the TAR procedure. As our
main contribution, we show how two versions of Chao’s Estimator [10], a PSE method, can be integrated into a TAR
system and used within a stopping criterion for the review process. Furthermore, we present the results of an extensive
simulation study in which we compared this stopping criterion to various other methods presented in the literature.

2 Related Work
The task of Technology Assisted Review (TAR) systems is to retrieve a significant number, if not all, of the relevant
documents within a dataset D. To achieve this, Active Learning is often continuously applied to the dataset, a process
commonly known as Continuous Active Learning (CAL) in the literature. Continuous Active Learning aims to minimize
the number of irrelevant documents while maximizing the number of retrieved relevant documents. Over the years,
Cormack and Grossman have developed a variety of CAL methods, with the most prominent method being AutoTAR
[14]. We describe the CAL procedure in Algorithm 1 .

Many CAL procedures require a set of seed documents provided by the reviewer. This set needs to contain at least one
relevant document, but it does not need to be a document from D; it may also contain a topic description. Additionally,
one example of an irrelevant document is needed. These are then used as inputs L+ and L− for Algorithm 1 . In each
iteration, a classifier is fitted to the currently labeled information. Then, a batch containing the top-b documents is
selected according to the ranking based on the classifier’s predictions. After the user has labeled each document in
the batch, the process is repeated until U is empty or a stopping criterion has been triggered. The procedure aims to
optimize the retrieval of relevant documents by updating the classifier each iteration. Given a good stopping criterion,
this procedure enables the user to minimize the workload while finding nearly all relevant documents.

AutoTAR is an adaptation of the CAL procedure [14]. Instead of just training on the labeled documents L+,L−, it
samples a set of documents from the unlabeled set U , which are temporarily assumed to be irrelevant. This is a fair
assumption, given the low prevalence of relevant documents in most datasets. Moreover, AutoTAR increases the batch
size of each iteration by 10 %. ASReview [37] has a fixed batch size of 1 and uses dynamic resampling to deal with
imbalanced training data to improve the classifier’s performance. In recent years, several other algorithms that also
adhere to the CAL paradigm have been proposed, with each their own adjustments, have been proposed (inter alia [9,
43]).

2.1 Stopping Criteria
As described above, the CAL procedure leaves the question open of how to stop the review process (i.e., the STOP-
PINGCRITERION procedure, line 15 in Algorithm 1 , is not given). Researchers have recently developed various
approaches to solve the stopping problem. In [30], the authors provide a taxonomy to classify the diverse range of
stopping criteria. The authors classify the criteria according to two axes, namely applicability to TAR methods and the
guarantees these methods offer. For applicability, each method can fall into one of the following three categories.

Interventional methods. This category of rules intervenes in the selection strategy of documents. Some interventional
methods depend on a specific sampling methodology; others even deviate from the general CAL paradigm.
These alterations enable the usage of specific statistical methods or tests. Some sampling strategies allow the
use of an estimator to estimate the number of relevant documents within the corpus.
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Algorithm 1 The Continuous Active Learning algorithm. The algorithm requires as parameters a dataset D, an
unlabeled set of documents U , labeled documents L+,L−, a classifier C, a batch size b. The Active Learning procedure
selects new documents according to the relevance predictions of the classifier C, which are updated after each batch of
labeling decisions.

1: procedure CAL(D,U ,L+,L−, C, b)
2: S ← false ▷ Variable indicating whether CAL can be stopped
3: while |U| > 0 and not S do
4: C .FIT(L+,L−)
5: B ← SELECT(U , C, b)
6: for d ∈ B do
7: y ← REVIEW(d) ▷ Performed by the human reviewer
8: if y = Relevant then
9: L+ ← L+ ∪ {d}

10: else
11: L− ← L− ∪ {d}
12: end if
13: U ← U \ {d}
14: end for
15: S ← STOPPINGCRITERION(D,U ,L+,L−, C, b)
16: end while
17: return L+,L−

18: end procedure
19: procedure SELECT(U , C, b)
20: P← C .PREDICT(U) ▷ Returns the relevance score for all d in U
21: R ←RANK(U , P)
22: B ← HEAD(R,U , b) ▷ Gets the top-b documents
23: return B
24: end procedure

Standoff methods. Methods that fall in this category can be used in combination with any TAR system, as these
methods do not depend on any sampling strategy.

Hybrid methods. Some methods interleave or divide the process into phases, alternating the original method with
periods in which another sampling strategy is used.

For the second axis, guarantees, each method falls into one of the following two categories.

Heuristic. Heuristic rules make a stopping decision based on general patterns observed in, for example, the recall
statistics of the review. However, as these methods do not have a formal statistical grounding, they do not offer
strong guarantees besides the results of the criterion on known datasets.

Certification rules. Certification rules provide a formal statistical guarantee that the stopping point has certain
properties and/or that the rule provides a formal statistical estimate of effectiveness at the stopping point.

In the following sections, we list several criteria and list their classification according to this taxonomy.

2.1.1 Pragmatic Criteria (Standoff & Heuristics)
Pragmatic criteria are often based on the recall statistics of the process. A commonly used heuristic is to stop the TAR
after k consecutive irrelevant document suggestions. Examples of values of k found in the literature are 50 and 200
[8]. However, studies have shown that this method often results in low recall or little work savings [8]. Moreover, this
method frequently fails to meet the widely used recall target of 95%.

Another trivial method is to stop screening after reviewing half of the documents in D [39]. A variant based on
this is the criterion Rule2399 [16], which stops the procedure if the size of the set of read documents satisfies
|L| ≥ 1.2 · |L+|+ 2399.

2.1.2 Baseline Inclusion Rate (Hybrid & Heuristic)
An example of a hybrid method is the Baseline Inclusion Rate [35]. In this approach, a random sample S of the dataset
D is taken initially, before the TAR procedure. All the documents in S are then reviewed. If S is large enough, the
ratio |S+|

|S| should approximate the ratio |D+|
|D| , where S+ and D+ denote the subsets of relevant documents in S and D,
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respectively. After labeling S , the Active Learning phase is started. The process is then stopped when |L+| ≥ |S+|
|S| |D|.

However, due to sampling uncertainty, a large sample may be needed to obtain a good estimate of the prevalence. This
process may consume a lot of time, and since the sample is random, there is no guarantee of saving any work during
this period. Furthermore, this estimation is static, which may lead to a review with no work savings if the estimate is
even slightly too high [8].

2.1.3 Target method (Hybrid & Heuristic)
In [15], the Target method is proposed, which aims for high recall and guarantees a recall of at least 70 %. This method
divides the TAR process into two phases. First, the method randomly samples documents from the dataset until k
relevant documents are found. The size of k depends on the user and the dataset, but the recommended value for k = 10,
according to [15]. When these documents have been found, the system proceeds to the second phase by starting a
standard TAR procedure, for example, AutoTAR. However, the documents’ judgments from the previous phase are not
given to the TAR system of the second phase, so, from the machine learning perspective, the TAR procedure restarts
from scratch. The stopping criterion is triggered when all k relevant documents from the first phase are rediscovered
during the second phase.

2.1.4 Knee method (Standoff & Heuristic)
An already established heuristic is the knee method [15]. Most recall curves from TAR systems have an inflection point
(which looks like a knee, hence the name). This method compares the slopes before and after the knee. When the ratio
ρ between the two slopes becomes larger than a specific threshold or bound, the review process should be stopped. The
slope ratio can be calculated as follows [15, 41]:

ρ(Lt) = |L
+
i |
|Lt|

|Lt| − |Li|
|L+

t | − |L+
i |+ 1

,

where t is the current iteration and i is the iteration that maximizes the perpendicular distance between the point
(|Li|, |L+

i |) and the line that goes through the origin (0, 0) and the point (t, |L+
t |). The bound is dynamic; it decreases

as the number of relevant documents increases. In [15], the bound for iteration t is defined as boundt = 156 −
min(|L+

t |, 150). The Knee criterion is triggered when ρ(Lt) ≥ boundt and |Lt| ≥ 1000. The Knee method is designed
with the batch size scheme of AutoTAR in mind. However, this method can easily be adjusted to work with any batching
scheme [30], so this method is a standoff method.

2.1.5 Budget method (Standoff & Heuristic)
The Budget method [15] combines aspects of both the Knee method and the Target method, as well as observations on
the recall statistics of TAR systems. This method can be stopped when either of the following two criteria are met:

1. The first criterion is based on the observation that after reading 75% of the dataset D using random sampling,
we can assume that we have found approximately 75% of the relevant documents. Additionally, we can assume
that most TAR methods will improve upon random sampling. Therefore, the Budget method specifies that we
can stop when the size of the read documents |L| ≥ 0.75|D|.

2. The second criterion is based on the Knee method and Target method. We can observe that during phase
one of the Target method, with target set size k, the number of randomly sampled documents would be
|Ltarget| = k |D|

|D+| for a dataset D and its positive component D+. At each iteration, we record the set of

relevant documents as L+. Since L+ ⊆ D+, k |D|
|L+| should be at least as large as the random sample size in

the Target method. Combined with the slope ratio of the Knee method, the Budget method is triggered when
ρ(L) ≥ 6 and L ≥ k |D|

|L+| .

Just like the Knee method, the Budget method is designed with the batch size scheme of AutoTAR in mind, but can be
adapted easily to work with any batching scheme [30].

2.1.6 AutoStop (Interventional & Certification)
Whereas the previously discussed methods are heuristics, the AutoStop method [31] is a topic-wise interventional
certification method and is thus tightly coupled to its sampling strategy. The method aims to estimate the number of
relevant documents D+ and use that estimate to decide when to stop by calculating the expected recall. AutoStop
consists of four modules.

1. Ranking module. The procedure is similar to AutoTAR from the machine learning perspective. However, the
main difference is on the inference side: the trained model is used to process all documents in D instead of
only the unlabeled set U . The resulting posterior probabilities are then used to produce a ranking.
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2. Sampling module. The sampling strategy is unique in that it makes major adjustments to the sampling
procedure of the CAL procedure (see Algorithm 1 ). The normal CAL procedure (as in Algorithm 1 ) selects a
batch with the top-k documents in U . Instead, AutoStop makes a ranking on D. Then, this ranking is used to
sample, with replacement, from D where each document d is weighted according to its rank so higher-ranked
documents have a higher sampling probability.

3. Estimation module. This sampling strategy enables us to produce an unbiased estimate of the total number
of relevant documents from the sampling history. An estimate can be calculated using either the Horvitz-
Thompson estimator or Hansen-Hurwitz estimator. Besides a point estimate, we can also calculate its variance
and, subsequently, a confidence interval of the estimate.

4. Stopping module. The stopping module offers two strategies: an optimistic stopping criterion calculates the
expected recall according to the point estimate. The stopping criterion is triggered when the recall target that
the user has set has been achieved. The other is a conservative criterion, which instead bases its decision on
the upper bound of the estimate’s CI.

The estimation module estimates the size of D+ and the variance of this estimate. This feature allows the creation of
stopping criteria with several recall targets and confidence levels. A downside of this method is its memory usage. The
estimation module consumes approximately 20 GB for a set of 15000 documents, and memory consumption grows
quadratically in terms of the dataset size [31]. Larger datasets must be divided into smaller manageable parts, and then
the AutoStop procedure is performed for each part separately to overcome memory limitations. Unfortunately, this
creates some additional overhead as knowledge is not shared between parts.

2.1.7 Quant (CI) Rule (Standoff & Certification)
The Quant rule [41] bases its estimate on the relevance probabilities of labeled documents and the unlabeled documents.
Assuming that the model is well calibrated, that is, supposing we take a large sample of documents with a given
probability p, then the prevalence of relevant documents is approximately p. Suppose at iteration t we have fitted a
model with parameters θt, then we can estimate the number of relevant documents in the set of labeled documents as
follows.

|̂L+
t | =

∑
j∈Lt

p (y = 1|dj ; θt) .

For the unlabeled documents, a similar procedure is performed:̂|U+
t | =

∑
j∈Ut

p (y = 1|dj ; θt) .

Then, the recall can be estimated as follows:

R̂t = |̂Lt|
|̂Lt|+ |̂Ut|

.

When R̂t ≥ Rtar, where Rtar denotes the target recall, then the stopping criterion is triggered. Besides this point
estimate, [41] provide a method to calculate the variance of this estimator, which in turn can be used to calculate a 95 %
confidence interval (± 2 standard deviations). Given the size of L+, the recall estimate R̂ can be used to produce an
estimate of the size of |̂D+|. These estimates can then be used for a conservative and optimistic stopping criterion in a
similar fashion as in AutoStop.

2.1.8 Hypergeometric method (Hybrid, Standoff & Certification)
In [8], a statistical stopping criterion for abstract screening for systematic reviews based on statistical testing is
introduced. In this work, both a hybrid and standoff method are proposed. Their method is centered around the
hypergeometric distribution. The authors assert that the number of missing relevant papers contained in a random
sample follows the hypergeometric distribution.

The standoff version of their method works as follows. After each iteration, the labeled set is divided into two parts
around a pivot iteration i. The method then calculates the probability that the current recall equals or exceeds the target
recall. The recall target is specified as τtar. Then, we iterate over each pivot i and calculate the probability

pi = P
(
X ≤ L+ − L+

i

)
,

where
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X ∼ Hypergeometric(D − L+
i , Ktar,L − Li) ,

and

Ktar =
⌊
L+

τtar
− L+

i + 1
⌋

.

After iterating over all pivots, the TAR process is stopped if there is an iteration i where min(pi) < α for some
confidence level α. In [8] α = 0.05 is chosen. We will refer to this method as CMH-Standoff.

Their hybrid (Ranked Quasi Sampling strategy in [8]) method consists of two phases. In the first phase, the TAR
procedure is followed as normal until the standoff criterion, as described above, is triggered (here α = 0.5). Random
sampling will then be used for the remaining part of the screening. Like the standoff version, the test is repeated each
iteration; however, with one alteration, the pivot iteration i is fixed on the iteration in which the standoff rule was
triggered. This version only misses the target recall of 95 % or above in a few scenarios ([8] reports 0.59 % of the runs
on several datasets with different seed documents). However, this robustness comes at a cost, as their method relies on
random sampling. The result is that the average work reduction over random sampling (WSS, see Equation 8) achieved
with their stopping criterion is only 17 %. We will refer to this method as CMH-Hybrid.

3 Methodology
In our work, we propose a novel stopping criterion for Technology-Assisted Review (TAR) that uses a Population Size
Estimator to estimate the size of the set of relevant documents D+. To be more precise, we adopt Chao’s moment
estimator [10] and a Poisson Regression version of this estimator [32]. The sampling procedure and estimator are
intertwined, that is, without this specific sampling procedure, these estimators cannot be used. First, we describe
Population Size estimators in the context of systematic search tasks and TAR. Then, we describe our sampling procedure,
followed by an overview of the aforementioned estimators. This is followed by an overview of the stopping criteria
that use the estimates. This section concludes with a more detailed description of the classification algorithms and the
Active Learning procedure.

3.1 Population Size Estimation for Technology-Assisted Review
Population Size Estimation (PSE) techniques are commonly used to estimate the total size of only partially observed
populations, such as animal and human populations [2]. Besides calculating the size of human and animal populations,
PSE methods were also applied to estimate the number of other partially observed sets of objects or phenomena, such
as the number of hidden faults within a software package [13]. PSE may involve linking multiple lists recording
observations of individuals or the number of times an individual is observed . These records can then be used to
determine the capture probabilities of individuals, which in turn can be used to estimate the size of the entire population.
In the case of TAR, the estimand is the number of relevant documents within a dataset, that is, the size of D+. The set
D+ consists of two parts, the set that has been found by the user (L+) and the set of documents that have yet eluded
the search process (U+). More formally, D+ = L+ ∪ U+. The user can stop the process once the estimate |̂D+|
approaches |L+| and consequently the ̂|U+| becomes low enough.

3.1.1 PSE for Search Tasks
The use of PSE techniques for search tasks has been explored previously in the literature [27, 33, 36, 40]. For example,
[40] presented a method employing a PSE to estimate the number of omissions from a systematic literature review. The
basic outline of this approach is as follows: multiple reviewers conduct independent searches for documents relevant to
a specific topic and decide for each document they review if it is relevant to this topic. For simplicity, we assume that
the reviewers are unanimous in deciding the relevancy of each encountered document i. The sets of relevant documents
L+

j for each reviewer j may differ, as the search skills of individual reviewers vary. In the end, upon completing their
tasks, the reviewers link their sets L+

j , to identify for each document i the reviewers by which it was discovered.

The linking procedure is performed as follows (we are using the notation from [10]). Suppose we have a review
committee C consisting of C = |C| reviewers. We represent the result of the search process as a N × C matrix
X = (Xij) where N is the size of the set of all relevant documents (that is, both the documents that were found and the
documents that eluded the reviewers) and C = |C| is the size of the committee. Then, we specify the elements of X as

Xij = I
[
document i is present in L+ of reviewer Cj

]
,

where I[A] is an indicator function: I[A] = 1 if the event A occurs and 0 otherwise. This results in a matrix in which
each row represents a document and each column a reviewer. The cells then contain a 1 if the document i has been
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found by reviewer Cj and 0 otherwise. Then,

n =
N∑

i=1
I

 C∑
j=1

Xij ≥ 1

 ,

denotes the number of distinct relevant documents that have been found by at least one reviewer, in other words, the
number of relevant documents that has been found by the committee as a whole. Furthermore, we specify the frequency
statistic

fk =
N∑

i=1
I

 C∑
j=1

Xij = k

 , k = 0, 1, . . . , C,

which denotes the number of documents that have been found by exactly k reviewers. Of course, matrix X is not
fully observed: only the n rows for the documents that were found at least once are observed and as we do not know
how many documents have been missed by all reviewers, we do not know the size of the N dimension of matrix X.
Consequently, we do not know how many documents have frequency statistic f0. Then, the estimand can be defined as

N̂ = n + f̂0 ,

where N̂ denotes the estimate for the total number of relevant documents, of which f̂0 are unobserved. In Section 3.2,
we will further discuss the models.

3.1.2 PSE without multiple reviewers
A limitation of the approach sketched above is the need for multiple human reviewers in the review procedure to
enable the estimation of the number of omitted relevant documents. In this work, we propose to adapt the sampling
strategy to allow us to estimate using PSE without relying on multiple reviewers. We employ an ensemble of Active
Learning methods that individually rank and propose documents. For each method, we maintain a registration list
containing the identifiers of documents identified by each method. Our approach draws on the Query-By-Committee and
Query-By-Bagging paradigms used in Active Learning, as introduced by [34]. In Query-By-Committee, an ensemble
C = C1, . . . , Cn is constructed, comprising multiple classifiers of different classification algorithms, such as Multinomial
Naïve Bayes, Logistic Regression, and Random Forest. Since each classifier has a distinct decision function, each
will likely produce a unique ranking. In Query-By-Bagging, each classifier is presented with a unique subset of the
labeled corpus. Our approach combines both methods; we incorporate a diverse range of classification algorithms and
independent training sets for each classifier.

The canonical Query-By-Committee method typically pools classifier decisions using a query strategy such as Vote
Entropy. This method involves each classifier in the ensemble voting for its prediction on an unlabeled instance, and
the instance with the most disagreement among committee members is selected for human review. However, in our
approach, each committee member has its own query strategy and functions as an independent TAR system. We do
not use an overarching query strategy that combines the results of these methods; instead, each proposed document is
selected by choosing one of the members in a round-robin or random fashion. The selected committee member then
presents an instance for review according to its individual query strategy.

In this approach, it is possible for a member Ci to propose an instance dk for review in iteration t, which was already
proposed by Cj in a previous iteration t′. To handle this situation, our method ensures that the label for dk is given to
the member Ci. This is illustrated in Figure 1, where document 22 is first proposed by C2 and then in the next iteration
by C1. The labeling decision is transferred to C2, and from the user’s perspective, there is no difference. The process
continues by selecting one of the committee members again until a document is proposed that has not been proposed by
any of the other methods.

After each label decision, the estimation module generates a matrix X from the system as follows.

Xij = I
[
document i is present in L+ from committee member Cj

]
.

Then, a PSE model uses X to estimate the number of omissions. The stopping module compares the estimate and
its confidence interval to the current recall statistics and decides if the TAR procedure can be terminated. If not, this
procedure is repeated by retraining the models and sampling new documents from the updated rankings.
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𝑦

L+ L−

U+

D

C1

𝑥1

𝑥2

𝑥3

𝑥4

𝑦

L+ L−

U+

D

C2

...
𝑥1

𝑥2

𝑥3

𝑥4

𝑦

L+ L−

U+

D

C𝑛

1. Doc 22 0.99
2. Doc 782 0.95
3. · · · · · ·

1. Doc 22 0.96
2. Doc 712 0.91
3. · · · · · ·

1. Doc 811 0.81
2. Doc 2 0.73
3. · · · · · ·

1. C𝑛 Doc 811 −
2. C2 Doc 22 +
3. C1 Doc 22 skip
3. C𝑛 Doc 2 +
4. · · · · · ·

id C1 C2 · · · C𝑛
· · · · · · · · · · · · · · ·
2 0 0 · · · 1
22 1 1 · · · 0
· · · · · · · · · · · · · · ·

Figure 1: This figure shows an architectural overview of our method. The Active Learning module consists of several
committee members {C1, . . . , Cn}, with each its own labeled and unlabeled state. Each of the members can have a
Machine Learning Model (for illustrative purposes represented as an Artificial Neural Network). The rankings of each
of the members are combined by going through each member in a round-robin or random fashion and selecting the top
of the stack. The estimation module can query the labeled states of each of the member to construct a contingency table
and fit a PSE model.

Table 1: Frequency statistics for the example run in Figure 2.
f0 f1 f2 f3 f4 f5 n

? 40 33 17 2 0 92

3.2 Chao’s Moment Estimator
In our work, we use Chao’s moment estimator [10] and a Poisson Regression adaptation by Rivest and Baillargeon [32].
While several PSE methods use the full matrix X to model N̂ , both models only use the frequency statistics fk. In the
following sections, we will introduce Chao’s estimator and the Poisson regression adaptation through an example.

We execute the procedure described in Section 3.1.2 on the dataset collected for a systematic review [29]. This dataset
is part of the test collection of [37]. This dataset contains 2481 documents, of which 120 are relevant, so the ground
truth for N = 120. We simulate 500 iterations (i.e., 500 review decisions) using our methodology. At iteration t = 500,
we have the following frequency statistics, displayed in Table 1. We omit matrix X for practical reasons.

At iteration t = 500, the number of retrieved relevant documents n = 92. Using the frequency statistics, we can use
Chao’s moment estimator to obtain a point estimate of the total number of omitted relevant documents f̂0 and the
resulting total number of relevant documents N̂ . Chao’s estimator is formulated as follows,

N̂ = n + f̂0, f̂0 =
{

f2
1

2f2
if f2 > 0

f1(f1−1)
2(f2+1) if f2 = 0

. (1)

For the derivation of Equation 1 for the case f2 > 0, we refer to [10 - 786]. The case for f2 = 0 is needed as the upper
formula cannot be calculated when f2 = 0 due to a division by zero. In [11], an adjusted formula is given for when
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Figure 2: An example run for 500 iterations on a dataset. The Ensemble curve shows the number of documents that
have been found by the overall system. The other curves display the number of relevant documents that have been found
by the individual members within C. The reader may notice that curves start slightly after 0 documents and end slightly
after 500 documents. This is caused by the fact that our method requires five relevant and five irrelevant documents at
the start of the process (see Section 3.5.4), which results in this shift.

f2 = 0. For the example data, the estimate is

N̂ = 92 + 402

2 · 33 = 116.24 ,

which differs 3.76 from the true value of N = 120.

3.2.1 Confidence Interval
In order to increase the reliability of the stopping criterion, it would be beneficial to have a measure of confidence for
our point estimates. Stopping at a moment when the variance is high is not ideal. As in [31], we introduce a conservative
stopping criterion, which uses the upper bound of a 95 % confidence interval as the stopping criterion (we describe the
criteria in more detail in Section 3.4). Chao [10, 11] provides the following variance estimator.

σ̂2
N̂

=

 f2

(
1
4

(
f1
f2

)4
+

(
f1
f2

)3
+ 1

2

(
f1
f2

)2
)

if f2 > 0
f1(f1−1)

2 + f1(2f1−1)2

4 − f4
1

4N̂
if f2 = 0

. (2)

Then the confidence interval can be estimated as,[
n + N̂ − n

Q
, n +

(
N̂ − n

)
Q

]
, (3)

where

Q = e

1.96

√
ln

(
1+

σ̂2
N̂

(N̂−n)2

)
, (4)

in which is 1.96 is the critical value of the normal distribution. For the case of f2 > 0 in Equation 2, we refer to [10],
for the case of f2 = 0, we refer to [11]1.

1In [11], the equation for variance for both cases contains a term k. Conform [11, Equation (6a)] we rewrite the formula for both
cases to a version without this term k so that it matches the equation for variance in [10].
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For the example data, the variance is 100.82. Then, according to Equation 3 and Equation 4, the 95 % CI for this data is
[103.11, 144.88]. In section Section 3.4, we further detail how the point estimates and intervals are used to stop the
review process.

3.2.2 Model assumptions

Chao’s estimator is based on the heterogeneity model Mh introduced in [6, 7]. The model Mh assumes that the capture
probability only varies among the individuals (so, the relevant documents in our case). Some documents have a
higher probability of being selected by the committee members than others. Chao [10] assumes that for (pij = pi),
where i = 1, 2, . . . , N and j = 1, 2, . . . , C, then, p1, p2, . . . , pN are a random sample from an unknown probability
distribution function. Chao’s estimator assumes that the number of observations of an individual (in our case, the
number of committee members that have found a relevant document i) is a realization from a zero-truncated Poisson
distribution. Therefore, it is crucial to verify that the number of observations of a relevant document (which can be one
of {1, 2, 3, 4, 5}) can be assumed to be a realization of a (truncated) Poisson distribution.

Poisson originally formulated his distribution as a limit of the binomial distribution [23] with a success probability
p and N realizations, with N approaching infinity, p tending to zero, and Np remaining finite and equivalent to the
Poisson parameter λ. However, even when N is small, the Poisson distribution can reasonably approximate the binomial
distribution, given that p is small enough [38]. In our case, N is small, and the chance of encountering a document is
also small.

The Poisson parameter can vary for each document i, allowing for heterogeneity in capture probabilities. This is
convenient as some documents may be harder to find than others. Moreover, some methods may be better suited to
finding a particular document than others. For example, the predictions of the Logistic Regression classifier may differ
from the predictions of a Random Forest, even when the same set of documents are given as training data. In this case,
for a document i the number of observations is stated as being λi = λi,LR + . . . + λi,RF. λi is a Poisson parameter
λi,LR and λi,RF are also Poisson parameters. This follows from a property of the Poisson distribution found by [12]; a
Poisson is infinitely divisible. If you have two independent Poisson random variables, X1 with parameter λ1 and X2
with parameter λ2, then the sum of these two random variables, X1 + X2, will also follow a Poisson distribution with
parameter λ1 + λ2. In our case, each relevant document i has Poisson parameter λij where j is one of the members of
the committee which uses a specific classification algorithm. The sum of, in our case, the five Poisson parameters leads
to a Poisson parameter for each document i: λi =

∑
j∈C λij .

An issue that sometimes arises in Population Size Estimation and Capture-recapture studies is contagion, which happens
when the capture of an individual changes the probability of capturing it a second time (for example, an animal may
change its behavior after capture, or the researcher may become better at finding that specific animal after observing it).
Contagion violates the Poisson assumption (which follows from the independence between the trials in the binomial
distribution). However, as our committee members search independently, we know that the contagion problem is not
present: the Poisson parameters λij for other members Cj do not change after its capture by any other member.

Given the properties of our problem and the Poisson distribution, we can state that this distribution is suitable and
fulfills the assumptions of Chao’s estimator. Accounting for the heterogeneity, Chao’s estimator provides a lower bound
on the number of relevant documents. However, a simulation study in [10] showed that, in many cases, it is a good
estimator for N in general. Notice that Chao’s estimator only uses the frequencies of the documents discovered once
and twice. The intuition behind the Chao estimator is that (for the ecology use-case) if you have seen many animals
once (relative to the number of animals seen twice), then probably there are a lot more that you have missed completely;
it would be surprising if you would have seen all unique animals exactly once. The more animals you have seen twice
(relative to those seen once), the larger the probability you have seen most of them. Chao’s estimator formalizes this
intuition and provides a lower bound by only considering the number of individuals seen once and twice.

3.3 Poisson Regression version

As mentioned earlier, we also use a Poisson regression version of Chao’s Moment estimator as presented by Rivest et al.
[32]. This model also takes the frequencies f3,4,5 into account, in addition to the frequencies f1,2. Moreover, this model
enables us to obtain a 95 % confidence interval using the profile likelihood instead of the asymptotic approach from
[10]. The profile likelihood method has been advocated by many statisticians [1, 17, 19, 21]. We describe this method
below. We will refer to this method as Chao (Rivest), while we will refer to Chao’s Moment Estimator as Chao (1987).

Using the data in Table 1, we can specify the design matrix for the Chao (Rivest) model in Table 2. The model has
C − 2 parameters, called η parameters, for modeling heterogeneity in capture probabilities within the set of relevant
documents. In our case, as C = 5, we have 3 η parameters. The Y variable contains the frequency statistics (from top
to bottom, f5 to f1).
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Table 2: The data (Y ), which contains f5 to f1 (above to below). The rest of the columns belong to the design matrix
for the Chao (Rivest) model.

Y Intercept (γ) beta (β) eta3 (η3) eta4 (η4) eta5 (η5)
0 1 5 3 2 1
2 1 4 2 1 0

17 1 3 1 0 0
33 1 2 0 0 0
40 1 1 0 0 0

Table 3: The fitted coefficients from the data presented in Table 2 before and after removal of negative η parameters.
Before removal After removal

Est. S.E. p Est. S.E. p
Intercept (γ) 3.19 0.36 <0.001 3.50 0.22 <0.001
beta (β) 0.50 0.24 0.033 0.29 0.11 0.010
eta3 (η3) −0.07 0.45 0.885
eta4 (η4) −1.19 0.87 0.174
eta5 (η5) −20.63 42 247.17 1.000

We use the package RCapture [32] to fit the model, which uses a standard Generalized Linear Model fitting algorithm.
Given the data in Table 1, this algorithm fits the model with the following parameters as presented in the first half
(“Before removal”) of Table 3. In this algorithm, all η parameters fitted with a negative coefficient are set to zero,
as these parameters should theoretically be greater than or equal to zero [32] (when set to zero, these parameters are
effectively removed from the design matrix). Note that after setting an η parameter to zero and fitting a new model,
the other η parameters could be fitted with a negative coefficient, so this process is repeated until all η parameters are
positive or removed. For this data, the algorithm does indeed remove all η parameters. The parameters of the final
model are presented in the second half (“After removal”) of Table 3.

Using the parameters in Table 3, we can calculate the estimate for the number of relevant documents as follows;

N̂ = n + eγ̂ = 92 + e3.5 = 125.18 .

This value differs differs by 5.18 from the ground truth N = 120 and is higher than the estimate by Chao (1987)
(116.24).

3.3.1 Confidence Interval
The confidence interval for Chao (Rivest) is calculated by using the deviance or log-likelihood ratio of the models from
complete tables, introduced in [17]. This procedure is set up as follows. Suppose we have an incomplete table with only
the observed counts (for example, Table 2). We can extend and complete this table by adding a row for the unobserved
count u. Then, we need to find the Poisson model for the extended table PE with the lowest deviance. We can find this
by a search for u in the interval u ∈

[
0, 3

2 f̂0

]
, equivalently N̂C = n + u, for a conditional estimate for N based on the

complete table. We record for each model the log likelihood for

L(N̂C , θ̂NC
; n) = DP E − 2ct,

where DP E is the deviance for model PE and a correction term [17, 32].

ct =


u− N̂C −

log u
N̂C

2 , if N̂C > 100 ∧ u ≥ 2
−N̂C + log 2πN̂C

2 , if N̂C > 100 ∧ u ∈ [0, 1]
log uu·N̂C !

N̂
N̂C
C

·u!
, otherwise

.

Then, we find the value û⋆ that maximizes this log-likelihood (or minimizes the deviance). By using the asymptotic χ2
1

distribution, we can find the values u that increase this value by an amount kα, where kα is a critical value calculated
using the quantile function from this χ2

1 distribution [32]. In this case, for a 95 % CI, the critical value kα=0.05 = 3.84.
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Figure 3: Calculating the 95 % confidence interval using the profile likelihood method for the frequency statistics in
Table 1. In this figure, the log-likelihood for u⋆ is subtracted from the likelihood in aid of the visualization. Additionally,
we inverted the y-axis for this purpose. By finding the values u that intersect with the line y = kα=0.05 = 3.84, we can
find the lower bound and upper bound of the interval.

This procedure is visualized in Figure 3 for the data in Table 1. Combining the interval found for f̂0 with n = 92, the
95 % CI obtained using this method is [108.88, 146.39], which is similar to the interval obtained using Chao (1987)
([103.11, 144.88]).

3.4 Stopping Criterion
Using the estimate N̂ and the corresponding 95 % CI for N , we can determine if we can terminate the TAR procedure.
The user can specify a recall target, such as 95 % recall (note that the 95% recall target is not be confused with the 95 %
of the CI). The system tracks the estimate and CI to determine if the stopping criterion has been met. However, there
are multiple ways to decide on the recall statistics and estimates.

In our implementation, similar to [31], we use the estimates as described in the previous sections in the following two
ways:

Conservative. We use the upper bound of the CI N̂sup to determine the current recall estimate. The current recall

estimate of iteration t is defined as R̂t = |L+
t |

N̂sup
.

Optimistic. Here, we use the point estimate N̂ of the estimator as to determine the current recall estimate. For this
criterion, the current recall of iteration t estimate is defined as R̂t = |L+

t |
N̂

.

Both methods are triggered when R̂t ≥ Rtarget. The estimated recall percentage is rounded to nearest integer value to
allow some numerical imprecision. Moreover, the criteria can also only be triggered after |Lt| > 100, as the estimates
may fluctuate heavily in the first phase of the procedure.

Combined with the two estimators, we provide four stopping criteria, which can be used with a user specified recall
target.

• Chao (1987) - Conservative
• Chao (1987) - Optimistic
• Chao (Rivest) - Conservative
• Chao (Rivest) - Optimistic
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3.5 Active Learning procedure
In the following sections, we describe the Machine Learning and Active Learning aspects of our method. First, we
briefly describe the feature extraction method that we employ, followed by the classifiers that are used within the
ensemble. As the data is often imbalanced, dynamic resampling is used as a balancing procedure. Finally, we describe
the query strategy and batching scheme.

3.5.1 Feature Extraction
All documents are represented as TF-IDF vectors for all classification algorithms. We only include terms with a
minimum document frequency of 2 and limit the term matrix to 3000 terms by selecting based on the term frequency
across the dataset in question. Moreover, English stop words are excluded from the term matrix. If desired, our
framework allows substituting the TF-IDF vectorizer with another algorithm; for example, Doc2Vec or SentenceBERT
on the committee member level, allowing the use of multiple vector representations concurrently. However, in our
experiments, we will not use this feature.

3.5.2 Classifiers
We create an ensemble of various learners, each of which uses a unique classification algorithm. The decision boundaries
of each algorithm will differ, resulting in a different order of document selection. The algorithms we use are:

Multinomial Naive Bayes. Multinomial Naive Bayes is a probabilistic classification algorithm frequently used for
text classification tasks. It is also used in TAR systems, e.g., it is the default classification algorithm in [37]. In
most cases, this algorithm is used with documents in Bag-of-Words representation, such as TF-IDF vectors.

Logistic Regression. Logistic Regression is a common classification algorithm used in TAR, for instance, in AutoTAR
[15] and derivatives. The method is also used or available as an option in [31, 37].

Random Forest. Random Forest [22] is an ensemble learning method that uses multiple decision trees to make
predictions. Each tree in the forest is trained on a randomly selected bootstrap sample of the training data, and
at each node, the best split is chosen among a randomly selected subset of the features. The final prediction is
made by a majority vote among the trees in the forest. Ranking is possible by using the mean predicted class
probabilities of the trees in the forest. The class probability of a single tree is defined as the fraction of training
samples in the leaf that have the same class as the leaf. The Random Forest classifier is available as an option
in [37].

Light Gradient Boosting Machine (LGBM) Light GBM [28] is a gradient boosting framework that uses a tree-based
learning algorithm. It is designed to be highly efficient and scalable, with faster training speeds and lower
memory usage compared to other popular gradient boosting frameworks. To our knowledge, it is not used in
any existing TAR systems, but it performs similarly to the Random Forest method for some datasets.

Random Sampling We also include one member that does not use machine learning nor active learning. The idea
behind this is that we may capture instances in unexplored areas of the search space that are not covered by the
greedy searching machine learning-based committee members.

Support Vector Machines (SVM) is another viable option to consider instead of one of the previously mentioned
machine learning methods. However, during our initial experiments, we discovered that using SVM significantly
impacted the training time for each iteration and, thus, the total runtime of each experiment. In practical applications,
this may not be a concern, as manual review time typically exceeds the training time of the models. We anticipate
substituting one of the classifier algorithms with SVM will not substantially impact the results.

3.5.3 Balancing
Many classification algorithms encounter difficulties when fitting models with limited data, especially in the case of
imbalanced datasets. This limitation may be because the prevalence of the relevant class is generally low in most
TAR datasets. To address this challenge, one potential solution is to balance the training data. One method called
dynamic resampling [20, 37], rebalances the training data by oversampling documents from the positive class L+ and
undersampling from L−. The amount of oversampling and undersampling is dynamic and depends on the sizes of the
sets L−,L+ and L. The methods ensures that the size of the training data remains the same in terms of |L|. A more
detailed description of this method is given in [20].

Our early experiments have demonstrated that using this method significantly improves the performance of our models,
particularly in terms of WSS@95 (Work Saved over Sampling at 95 % recall), leading us to employ this procedure to
balance the training data for all the classifier models in our system.
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3.5.4 Training, Ranking, and Sampling
Each of the members’ models is trained using their own labeled sets Li, and the training data is balanced using the
method described previously. Then, we predict for each document within the member’s Ui its relevancy probability.
These scores are used to rank each document. Each member i prepares a batch of bi documents, which are greedily
sampled from a batch which consists of the top-bi documents from the ranking produced by the model. Then, when the
user queries a document from the committee, one of the members is randomly selected to propose a document, which
will be the first document in the batch. When all documents from a member’s batch have been labeled, its model is
retrained. After retraining, we update the batch size bi in the same manner as in AutoTAR [15]: bi ← bi + ⌈ bi

10⌉. The
initial batch size bi = 1.

This process is repeated until the stopping criterion is met. Each committee member needs one document from each
class as initial training data to start the process. As there are five members in our committee, we need five relevant
documents in total (and five non-relevant ones).

4 Experimental Setup
Below, we describe our experimental setup and research questions. We also briefly describe the datasets that are used
for benchmarking. Furthermore, we list the existing methods that we take into account in our comparison.

4.1 Research questions
In TAR, the goal is to retrieve as many relevant documents as possible (achieving a high recall) while minimizing the
workload in terms of review work. A good stopping criterion should achieve its recall target with minimal cost. In
order to evaluate how our method performs (as well as compared to other methods), we study the following research
questions.

1. How does our Active Learning strategy perform in terms of WSS@95 and WSS@100 compared to other
methods?

2. Can our stopping criteria help the user achieve its recall target in a timely fashion?
3. How reliable are our stopping criteria?
4. How do our stopping criteria compare to other methods that estimate the number of relevant documents?
5. How do our stopping criteria compare to other methods that do not provide such an estimate?

4.2 Study design
To ensure that our findings are generalizable to new and unseen datasets, we run each Active Learning method and
corresponding stopping criteria on a large collection of datasets of various domains. Moreover, we will repeat the
experiment multiple times for each datasets. The datasets are described in more detail in Section 4.3.

4.2.1 Active Learning initialization
Many TAR procedures require a seed set of relevant and irrelevant documents to start the Active Learning loop. Earlier
work has shown that the documents in the seed set can influence the results [8]. Our method, consisting of several
committee members (each representing an active learning strategy), requires a seed set of five relevant and five irrelevant
documents. To ensure that our results do not depend on a single seed set, we repeat our experiments with varying sets
of seed documents. We use 30 distinct seed sets for each dataset and method. To ensure a fair comparison, the methods
that can work with a smaller seed set also get a seed set of the same size as our method. Moreover, the set of sampled
documents depends on the seed value that is given to the Pseudo Random Generator; this means that an experiment
for a method A with seed s and an experiment with method B with the same seed value s use the same documents to
initialize the Active Learning procedure.

4.2.2 Feature Extraction
All methods in our study use TF-IDF feature vectors. To ensure a fair comparison, we keep the configuration the same
for each method, so as per Section 3.5.1, limited to 3000 terms after filtering English stop words from the vocabulary.

4.2.3 Evaluation metrics
We let each algorithm run until all documents are screened. During the experiment, each criterion can signal when it is
triggered. Moreover, if the method produces an estimate for the size of D+, then this estimate is also registered. When
a method triggers a stopping criterion, the following metrics are recorded.

Effort. The percentage of documents that have been screened after triggering the stopping criterion.

E = |L|
|D|

(5)
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Table 4: Main statistics of the corpora included in our experiments. Here, N is the number of datasets/topics within
each corpus. We report the median and the interquartile range of the dataset statistics within each corpus.

SYNERGY, N = 20 clef2017, N = 31 clef2018, N = 24 clef2019, N = 19

# Relevant 67 (32, 106) 92 (49, 126) 67 (39, 277) 64 (33, 78)
# Irrelevant 3,554 (1,690, 6,864) 3,211 (1,498, 6,950) 5,064 (1,700, 8,553) 3,158 (1,770, 5,412)
Size 3,577 (1,725, 7,329) 3,241 (1,596, 7,261) 5,123 (1,898, 8,592) 3,169 (1,840, 5,506)
Prevalence (%) 1.5 (0.8, 5.0) 2.4 (1.0, 5.6) 2.8 (1.0, 6.6) 1.8 (0.9, 5.3)

Recall. The percentage of relevant documents that have been found based on the a priori knowledge from the ground
truth dataset. We will record the recall when the stopping criterion has been satisfied.

R = |L+|
|L+ ∪ U+|

(6)

Recall Error. For the methods that can specify a recall target; the error is the absolute difference between the achieved
recall and the target recall when the stopping criterion is triggered, divided by the recall target.

RE =
|Rstop −Rtarget|

Rtarget
(7)

Work Saved over Sampling. This metric expresses the work reduction over random sampling. We calculate this as
follows:

WSS = |U|
|D|
−

(
1− |L+|
|L+ ∪ U+|

)
(8)

losser. This metric introduced in [15] aims to assess both review costs and recall. It is defined as:

losser = (1−R)2 +
(

100
|D|

)2
·
(

|L|
|L+|+ 100

)2
, (9)

where R is the recall as defined in Equation 6. This metric consists of two term. The first is the loss due to
missing relevant documents, which becomes higher when the recall is low. The second term is the loss in
terms of effort. The two scalar values 100 in the metric are considered a correction for reasonable extra work
for achieving a high recall.

Target met. In this metric, we test for each individual run if the recall target was met. We report the percentage of runs
over all datasets in which this is the case.

Triggered. For each individual run, we record if the stopping criterion was triggered before all documents were
exhausted. As with the Target met metric, we report the percentage of runs over all datasets in which this is
indeed the case.

Running the experiment till exhaustion enables us to measure what would have happened if the method did not stop.
This enables us to assess how many documents would have remained for a method to achieve its target recall in case it
stopped the process too early.

4.3 Datasets
We use benchmark datasets of several corpora to ensure the results of our methods are generalizable to unseen datasets.
One of the corpora used in our experiments consists of systematic literature reviews from [18]. This corpus contains
datasets with inclusion and exclusion records from several real-world published systematic reviews from various
domains: psychology, the medical field, and information sciences, among others. We also include in our experiments
three corpora from the Conference and Labs of the Evaluation Forum (CLEF) Technology-Assisted Reviews in
Empirical Medicine datasets from the years 2017, 2018, and 2019 [24–26]. This corpus is in TREC format. The CLEF
Task was aimed to evaluate search methods aimed to identify all relevant works for a systematic literature review in
empirical medicine.

Table 4 shows some of the dataset characteristics of each of the corpora. We describe the individual datasets in more
detail in Appendix A in Table 12, Table 13, Table 14, and Table 15.
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4.3.1 Selection
As said earlier, our method needs at least five initial relevant documents to train a machine learning model for each
committee member. Moreover, methods such as the Target rely on the fact that there are at least ten documents within
the dataset. Therefore, we opt to only include datasets in our experiments that contain at least ten relevant documents
because the inclusion of runs in which more than half of all relevant documents as prior knowledge may distort the
results. The CLEF corpora contain datasets with an extremely small size. We decided to exclude datasets with less
than 500 documents for two reasons: first, many criteria do not work well on these datasets (e.g., Stop200, Stop400,
Budget, Knee, Conservative, and Optimistic). The second reason is that the advantage of using TAR on these datasets is
minimal compared to the work required to process the whole dataset. Furthermore, we exclude two datasets from the
CLEF corpora due to their large size; we cannot assess the standard version of AUTOSTOP on these datasets due to
memory limitations (see Section 2.1.6).

4.4 Comparison to other methods
To assess our method, we will compare the metrics to methods presented in earlier work. We will include several
methods discussed in Section 2.1. An overview of all the methods included in our experiments is given in Table 5.

Table 5: An overview of all methods included in the experiments. The I, S, and H in the Applicability column stand
for Interventional, Standoff, and Hybrid, whereas the C and H in the Certification column stand for Certification and
Heuristic. The AL column gives the Active Learning method that is used with the criteria in the experiments. The
CMH methods are the Hypergeometric methods from [8] referring to the first letters of the authors’ surnames. Our
implementation of some methods is based on the implementation in TARexp [42], if this is the case it is listed.

Method Applicability Certifcation AL Source
AutoStop I C AutoStop [31]

Budget S H AutoTAR [15, 42]
Chao (ours) I C Ensemble

CMH-Standoff S C AutoTAR [8, 42]
CMH-Hybrid H C AutoTAR [8]

Half S H AutoTAR [42]
Knee S H AutoTAR [15, 42]

Quant (CI) S C AutoTAR [41, 42]
Rule2399 S H AutoTAR [42]

Stop after k S H AutoTAR
Target H H AutoTAR [15]

For the standoff methods, we choose to apply them to AutoTAR, as this method is considered state of the art and does not
perform any additional work to decide when to stop. For AutoStop, we specifically implemented the Horvitz-Thompson
variant, as suggested by the authors [31].

4.5 Implementation
We provide a Python library, python-allib (see [5]), which implements our methods and all the baselines, some of
which are adapted from TARexp [42]. The TARexp package only allows the comparison of stop criteria that fall in the
standoff category (see Section 2.1), but not methods of interventional nature. Our framework allows various forms of
ranking and arranging the reviewer workload so interventional methods can be implemented. The library is based on
the Python package instancelib [4], enabling integration within annotation software. Furthermore, we provide a
repository on Github2 and ZENODO (see[3]) that contains the scripts which the reader can use to reproduce our results.

5 Results
5.1 Comparing Sampling strategies
In Table 6, we show the performance of each sampling strategy. The AutoTAR method globally outperforms the others,
which is to be expected as this method does not perform any additional work to enable the estimation of the current
recall. This is also a result reported in earlier work (e.g.,[31]). Overall, AutoTAR has a mean WSS@95 of 74.3 %
vs. ours (Ensemble) of 63 % and 45.5 % for AUTOSTOP. Our method does not outperform AutoTAR in terms of
WSS@95. This result was to be expected for our Ensemble method, because our method uses Random Sampling for

2The repository can be found on https://github.com/mpbron/allib-chao-experiments. The repository of python-allib can be
found on https://github.com/mpbron/allib.
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Table 6: Comparison of Work Savings between Active Learning strategies when using a Perfect Stopping criterion that
directly stops after the recall target has been achieved.

Sampling Strategy
Target AUTOSTOP AutoTAR Ensemble
95 % Effort (%) 51 ± 12 22 ± 16 33 ± 19

WSS (%) 45 ± 13 74 ± 16 63 ± 19
loss-er 0.09 ± 0.07 0.02 ± 0.05 0.05 ± 0.07

100 % Effort (%) 66 ± 18 42 ± 29 52 ± 26
WSS (%) 34 ± 18 58 ± 29 48 ± 26
loss-er 0.14 ± 0.10 0.07 ± 0.10 0.09 ± 0.10

selecting approximately 20 % of the instances. Note that the reported standard deviation in Table 6 indicates that some
datasets are more difficult than others. For example, AutoTAR only achieves a WSS@95 of 10.3 % on the Moran
dataset. Considering only the WSS@95 and WSS@100, our method stays closer to the performance of AutoTAR than
AUTOSTOP.

5.2 Recall and Estimator curves
In our experiments, the stopping criteria are called every ten review decisions. If the stopping criterion uses an estimator,
it will also record the current point estimate and confidence interval. In a real-world application, the system can plot
these estimates together with the recall statistics of the process. This plot can be an informative aid to users in deciding
whether or not to stop the review process.

In Figure 4, we show and compare the estimates and stopping points of our method, AUTOSTOP, Quant, and CMH
for runs of two datasets. These methods allow the specification of recall targets, however the CMH method does not
provide an estimate on the current level of recall or the number of relevant doucments. Note that for our method (Chao),
we show the results of the individual committee members from within the ensemble. These members are displayed in
light gray.

In Figure 4a, our estimator fluctuates drastically during the start of the process. When more documents are found by
multiple committee members, the estimates become more stable although new documents keep being discovered. A
similar behavior is visible for AUTOSTOP in Figure 4c. The Quant rule [41] overestimates the number of relevant
documents for an extended period. Because of the large CI, Quant’s Conservative recall criteria are never triggered for
the high recall targets. The Chao (Rivest) - Conservative 100 % target is not triggered for our method on the Van Dis
dataset. AUTOSTOP’s criterion is only triggered a few documents before all documents are exhausted (holds for both
datasets). Note that for the runs displayed in Figure 4, the seed sets for a dataset are kept the same among all methods,
allowing a fair comparison. For these runs, our methods need less reader effort than AUTOSTOP. Furthermore, the
AUTOSTOP requires less effort than the CMH and Quant methods, eventhough AutoTAR is more efficient in retrieving
all relevant documents than AUTOSTOP.

5.3 Criteria with recall targets
In this section, we compare the criteria with recall targets over all datasets. We will consider the result metrics for each
time the stop criteria were triggered. For each of the 94 datasets in our collection, we have 30 runs with for each run
a different seed sets. This results in 2820 runs per method. In Table 7 and Table 8, the results for all seven metrics
are given for all methods and, if applicable, for various recall targets. We report the mean and standard deviation (if
applicable) for each score, enabling the reader to assess the dispersion of each score. We discuss the results of the
Conservative and Optimistic criteria separately. Moreover, we report the results of the CMH method [8], which does
not provide estimates but allows the specification of a recall target. We list the standoff version as in Table 9. We will
discuss several recall targets, but we will mainly focus on the high 95 % and 100 % recall targets.

5.3.1 Conservative methods
In Figure 5 and Figure 6, the results of all the runs with a 95 % and 100 % recall target are displayed. The analysis and
figures are based on work performed in [8], in which the authors performed and presented a similar analysis.

When comparing the Conservative methods for 95 %, we can see that while the tail of the distribution of the Chao
(1987) method of the recall is 5.91 percent points lower than AUTOSTOP’s recall, our WSS is 32.46 points higher.
Our method’s recall vs. work savings trade-off is slightly more leaned towards the latter. The results of the two Chao
versions are similar but slightly in favor of Chao’s original estimator. Note that for Chao (Rivest), there are many runs
for which the work savings are below 5 %. This is still the case for Chao (1987); however, it is less pronounced.
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(a) Chao – CLEF2017-CD011548 dataset (ours)
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(b) Chao – Van Dis dataset (ours)
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(c) AUTOSTOP – CLEF2017-CD011548 dataset
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(d) AUTOSTOP – Van Dis dataset
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(e) Quant & CMH– CLEF2017-CD011548 dataset
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Figure 4: Recall curves for two datasets. The dashed blue diagonal line shows how many documents would have been
found at random. The horizontal lines show the 95 and 100 % recall targets. The vertical dashed lines show when the
stopping criteria have been triggered. The ribbons around the estimates show their confidence intervals.
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Figure 5: These figures display the results of all runs on all datasets in terms of Work Saved over Sampling and Recall
for the Conservative Stopping criteria with a 95 % recall target. The colors are indicative of the dataset size. The outer
graphs show the overall distribution of WSS and Recall. For each method, the mean WSS and the 5th percentile of the
recall are shown.
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Table 7: This table shows all metrics recorded for each Conservative criterion. Note that for the Effort, Recall, WSS,
losser and Error, the mean and standard deviation are reported.

Conservative Methods
Target AUTOSTOP Chao (1987) Chao (Rivest) Quant
70 % Effort (%) 28 ± 6 17 ± 13 17 ± 12 83 ± 23

Recall (%) 74 ± 9 74 ± 14 75 ± 14 100 ± 1
WSS (%) 46 ± 12 57 ± 16 58 ± 16 16 ± 22
loss-er 0.11 ± 0.06 0.10 ± 0.09 0.10 ± 0.08 0.33 ± 0.25
Error (%) 11 ± 10 18 ± 12 17 ± 12 42 ± 2
Target met (%) 66 64 65 100
Triggered (%) 100 100 100 44

80 % Effort (%) 37 ± 6 22 ± 16 21 ± 14 93 ± 16
Recall (%) 85 ± 8 83 ± 11 82 ± 11 100 ± 0
WSS (%) 47 ± 10 61 ± 16 61 ± 16 7 ± 15
loss-er 0.09 ± 0.05 0.07 ± 0.06 0.07 ± 0.06 0.36 ± 0.23
Error (%) 9 ± 7 12 ± 8 11 ± 8 25 ± 0
Target met (%) 76 65 62 100
Triggered (%) 100 100 100 20

90 % Effort (%) 56 ± 11 31 ± 20 29 ± 18 99 ± 3
Recall (%) 94.8 ± 5.3 92.1 ± 6.7 90.7 ± 7.1 100.0 ± 0.0
WSS (%) 39 ± 11 61 ± 19 62 ± 17 1 ± 3
loss-er 0.15 ± 0.14 0.06 ± 0.08 0.06 ± 0.07 0.36 ± 0.22
Error (%) 6.6 ± 4.4 6.4 ± 4.6 6.4 ± 4.8 11.1 ± 0.0
Target met (%) 86 68 59 100
Triggered (%) 100 100 100 5.3

95 % Effort (%) 74 ± 14 40 ± 23 41 ± 25 100 ± 0
Recall (%) 98.2 ± 3.3 95.9 ± 5.0 95.3 ± 4.2 100.0 ± 0.0
WSS (%) 24 ± 12 56 ± 22 55 ± 24 0 ± 0
loss-er 0.25 ± 0.21 0.08 ± 0.10 0.11 ± 0.19 0.37 ± 0.22
Error (%) 4.20 ± 2.39 3.88 ± 3.63 3.62 ± 2.51 5.26 ± 0.00
Target met (%) 89 70 59 100
Triggered (%) 100 100 94 0

100 % Effort (%) 100 ± 1 52 ± 27 84 ± 26 100 ± 0
Recall (%) 100.00 ± 0.07 98.02 ± 4.35 99.47 ± 1.06 100.00 ± 0.00
WSS (%) 0 ± 0 46 ± 26 15 ± 25 0 ± 0
loss-er 0.36 ± 0.22 0.10 ± 0.10 0.34 ± 0.25 0.37 ± 0.22
Error (%) 0.00 ± 0.07 1.98 ± 4.35 0.53 ± 1.06 0.00 ± 0.00
Target met (%) 100 53 70 100
Triggered (%) 56 99 33 0

For the 100 % target recall, the differences between the criteria are more pronounced. For instance, the AUTOSTOP
criterion is not triggered in many runs, and the work savings are minimal for the few runs it is triggered. This is even
more the case for the Quant Rule, as it is never triggered. There is a large difference between the Work Savings between
Chao (Rivest) and Chao (1987) for the 100 % criterion. This is because the Chao (Rivest) can also provide a CI for
when f1 and f2 both become zero, whereas Chao (1987) cannot. Also, when N̂ = n, the upper bound of the CI is by
definition n (see Equation 3).

For all conservative criteria, it holds that when the upper bound of the CI N̂sup > n, the stopping criteria for 100 %
recall cannot be triggered (unless R̂ is rounded up to 100 %). For several datasets, the Chao (1987) - Conservative
estimates are not triggered during the run due to the fact that the CI is still not small enough (e.g., visible in Figure 4b).
However, for the runs that it is triggered, this still results in a mean recall of 46.05 %.

Considering the lower recall targets (e.g., 70 % and 80%), our method’s mean recall (as presented in Table 7) is slightly
higher than the target recall. However, the standard deviation and error rates of all estimator methods decrease as the
recall target increases. This result was also reported in [31]. The Quant Conservative method is not often triggered; this
results in a very high recall, even for the lower recall targets. The percentage of times this criterion is triggered tends to
zero as the recall target increases.
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Regarding reliability for the high recall targets, our method does not achieve its recall target as often as AUTOSTOP.
However, our method is close, as reported by the low error rate. Given the higher work savings and the mean recall
compared to the other estimator methods, especially the Chao (1987) method provides a good alternative to the
AUTOSTOP Criterion. This is especially true for the 100 % criteria. As the Chao (1987) criterion is triggered 99.37 %
of the time vs. 55.93 % for AUTOSTOP.
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Figure 6: These figures display the results of all runs on all datasets in terms of Work Saved over Sampling and Recall
for the Conservative Stopping criteria with a 100 % recall target. The colors are indicative of the dataset size. The outer
graphs show the overall distribution of WSS and Recall. For each method, the mean WSS and the 5th percentile of the
recall are shown.

5.3.2 Optimistic methods
For the optimistic methods, the results are presented in Table 8. In Figure 7, the results of all the estimator methods are
displayed. The achieved recall by our stopping criteria is lower than AUTOSTOP reaches; this is especially visible
through the 5th percentile of the recall scores, which is 3.03 percent points lower for Chao (Rivest). There is also a
significant difference between our criteria, as the 5th percentile is 11.59 points higher for Rivest’s Poisson Regression
version. Our results show that Chao (Rivest) outperforms Chao (1987) for all recall targets in terms of recall. For the
100 % recall target, both our estimators improve over AUTOSTOP. For Chao (1987), the recall distributions are similar,
while the work savings are improved. For Chao (Rivest), the 5th percentile of the recall scores lies at 94.5 %, which
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Table 8: This table shows all metrics recorded for each Optimistic criterion, as well as the CMH method. Note that for
the Effort, Recall, WSS, losser and Error, the mean and standard deviation are reported.

Optimistic Methods
Target AUTOSTOP Chao (1987) Chao (Rivest) Quant
70 % Effort (%) 23 ± 7 11 ± 9 12 ± 10 45 ± 10

Recall (%) 66 ± 9 57 ± 17 63 ± 16 98 ± 3
WSS (%) 42 ± 11 47 ± 16 51 ± 16 53 ± 10
loss-er 0.15 ± 0.07 0.22 ± 0.14 0.17 ± 0.12 0.10 ± 0.08
Error (%) 11 ± 10 24 ± 17 20 ± 15 40 ± 5
Target met (%) 27 24 33 100
Triggered (%) 100 100 100 100

80 % Effort (%) 30 ± 8 13 ± 11 15 ± 11 57 ± 10
Recall (%) 76 ± 9 65 ± 16 71 ± 14 99 ± 2
WSS (%) 46 ± 11 52 ± 16 56 ± 15 43 ± 11
loss-er 0.10 ± 0.06 0.16 ± 0.12 0.12 ± 0.08 0.14 ± 0.12
Error (%) 9 ± 8 22 ± 16 16 ± 12 24 ± 2
Target met (%) 28 17 27 100
Triggered (%) 100 100 100 100

90 % Effort (%) 38 ± 8 18 ± 14 20 ± 14 72 ± 10
Recall (%) 86 ± 7 77 ± 13 82 ± 10 100 ± 1
WSS (%) 48 ± 11 59 ± 15 62 ± 15 28 ± 10
loss-er 0.08 ± 0.05 0.09 ± 0.08 0.06 ± 0.05 0.22 ± 0.16
Error (%) 7 ± 7 16 ± 13 11 ± 9 11 ± 1
Target met (%) 24 12 21 100
Triggered (%) 100 100 100 100

95 % Effort (%) 43 ± 9 23 ± 17 25 ± 16 82 ± 8
Recall (%) 90 ± 7 84 ± 11 88 ± 7 100 ± 1
WSS (%) 47 ± 10 62 ± 16 64 ± 16 18 ± 8
loss-er 0.08 ± 0.05 0.06 ± 0.06 0.05 ± 0.04 0.27 ± 0.19
Error (%) 6 ± 6 12 ± 11 8 ± 6 5 ± 1
Target met (%) 16 10 19 100
Triggered (%) 100 100 100 100

100 % Effort (%) 55 ± 11 39 ± 24 46 ± 21 98 ± 2
Recall (%) 95.9 ± 5.4 95.9 ± 5.5 98.3 ± 2.1 100.0 ± 0.1
WSS (%) 41 ± 10 56 ± 22 52 ± 21 2 ± 2
loss-er 0.10 ± 0.06 0.06 ± 0.07 0.09 ± 0.10 0.35 ± 0.22
Error (%) 4.1 ± 5.4 4.1 ± 5.5 1.7 ± 2.1 0.0 ± 0.1
Target met (%) 20 23 39 98
Triggered (%) 100 100 100 99

is a large improvement over AUTOSTOP (86.21 %). However, AUTOSTOP provides a slightly higher recall than
Chao (Rivest) for the lower recall targets. A trait that is visible for all Optimistic criteria is that all methods tend to
underestimate the number of relevant documents. However, the Recall Error decreases as the recall target becomes
higher.

The Quant method overestimates the number of relevant documents for all recall targets. While the Quant method meets
the recall target in nearly all cases, the error in recall prediction is very high. This is visible in the results for the 70 %
recall target: for nearly all runs, the method stops at a point where (almost) all relevant documents from the dataset are
retrieved.

5.3.3 CMH method (Standoff version)
The results for the standoff version of the CMH method are displayed in Table 9. In Figure 9, the WSS and Recall
scores for the CMH methods are displayed. In Figure 4e and Figure 4f, the results of the 95 % target are shown for that
particular run. The results are similar to the results of the Quant Optimistic method, although the percentage of runs
that this criterion is triggered is lower. This holds especially for the 100 % and 95 % targets: the 100 % criterion is
never triggered, and the 95 % recall target is only triggered 77.02 % of the time. As the average recall for the 70 %
recall target is already 60.1 %, it is evident that this criterion underestimates the recall for a long time.
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Figure 7: These figures display the results of all runs on all datasets in terms of Work Saved over Sampling and Recall
for the Optimistic Stopping criteria with a 95 % recall target. The colors are indicative of the dataset size. The outer
graphs show the overall distribution of WSS and Recall. For each method, the mean WSS and the 5th percentile of the
recall are shown.

Table 9: This table shows all metrics recorded for the CMH standoff method, for each of the studied recall targets. Note
that for the Effort, Recall, WSS, losser and Error, the mean and standard deviation are reported.

CMH Standoff Method
70 % 80 % 90 % 95 % 100 %

Effort (%) 38 ± 13 48 ± 15 65 ± 18 82 ± 16 100 ± 0
Recall (%) 98.54 ± 2.23 99.18 ± 1.43 99.64 ± 0.74 99.87 ± 0.37 100.00 ± 0.00
WSS (%) 60 ± 14 51 ± 15 35 ± 18 18 ± 16 0 ± 0
loss-er 0.07 ± 0.07 0.11 ± 0.12 0.20 ± 0.21 0.30 ± 0.24 0.37 ± 0.22
Error (%) 41 ± 3 24 ± 2 11 ± 1 5 ± 0 0 ± 0
Target met (%) 100 100 100 100 100
Triggered (%) 100 100 97 77 0
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Figure 8: These figures display the results of all runs on all datasets in terms of Work Saved over Sampling and Recall
for the Optimistic Stopping criteria with a 100 % recall target. The colors are indicative of the dataset size. The outer
graphs show the overall distribution of WSS and Recall. For each method, the mean WSS and the 5th percentile of the
recall are shown.
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Figure 9: These figures display the results of all runs on all datasets in terms of Work Saved over Sampling and Recall
for the CMH criteria.

Table 10: This table shows all metrics recorded for all hybrid methods. The target recall of the CMH method is 95 %,
the Target method does not allow the specification of a recall target. Note that for the Effort, Recall, WSS, and losser,
the mean and standard deviation are reported. Furthermore, we report the rate various recall targets are achieved.

Hybrid Methods
CMH TARGET

Effort (%) 82 ± 16 38 ± 20
Recall (%) 100 ± 0 92 ± 9
WSS (%) 18 ± 15 54 ± 18
loss-er 0.30 ± 0.24 0.10 ± 0.13
Target@70 (%) 100 97
Target@80 (%) 100 90
Target@90 (%) 100 69
Target@95 (%) 100 48
Target@100 (%) 80 19
Triggered (%) 92 100

5.4 Hybrid methods

In this section, we study the results of two hybrid methods: the CMH-Hybrid method [8] and the Target method [15].
While the CMH method discussed in the previous section is a standoff method; this CMH method is not a standoff
method, as it consists of two phases: the first phase consists of sampling using AutoTAR until the null hypothesis of
the hypergeometric test, as described in Section 2.1.8 is rejected with α = 0.5 with a target recall of 95 %. Then, the
method proceeds with screening through random sampling. The procedure is stopped until the null hypothesis of the
hypergeometric test is rejected, but now with an α = 0.05. We studied the scenario where the target recall is 95 % for
both phases (given the fact that the 100 % method is never triggered). The results of this test are reported in Table 10.
The results are similar to the results reported in [8], which indicated a recall above 95 % accompanied by a WSS of 17
% (in our experiments 18.2%), on a different, but partially overlapping collection of test datasets. The Target method
reports a mean recall of 91.85 %, with a WSS of 54.17 %, which just differs 2.03 percent points from ours (our recall is
95.92 % for Chao (1987) - Conservative).

For the hybrid version of the CMH method, we can make the same remarks as for the standoff version. The burden of
rejecting the null hypothesis of the Hypergeometric test is high, especially when α = 0.05. This results in low work
savings, although the achieved recall levels is high.
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Figure 10: These figures display the results of all runs on all datasets in terms of Work Saved over Sampling and Recall
for the hybrid stopping criteria.

Table 11: This table shows all metrics recorded for all heuristic standoff methods. Note that for the Effort, Recall, WSS,
losser, the mean and standard deviation are reported. Furthermore, we report the rate at which various recall targets are
achieved, even though these are not specified by the heuristics.

Standoff Methods
Budget Half Knee Rule2399 Stop200 Stop400

Effort (%) 35 ± 20 53 ± 2 82 ± 29 68 ± 32 41 ± 29 52 ± 31
Recall (%) 97.04 ± 3.77 98.96 ± 3.15 99.25 ± 1.96 98.78 ± 4.74 98.13 ± 4.54 99.22 ± 2.23
WSS (%) 62 ± 19 46 ± 4 18 ± 28 31 ± 31 57 ± 28 47 ± 31
loss-er 0.08 ± 0.12 0.10 ± 0.06 0.34 ± 0.25 0.22 ± 0.22 0.07 ± 0.10 0.11 ± 0.14
Target@70 (%) 100 100 100 98 100 100
Target@80 (%) 99 99 100 98 99 100
Target@90 (%) 95 98 100 98 97 99
Target@95 (%) 76 95 93 95 89 96
Target@100 (%) 41 67 77 80 51 72
Triggered (%) 100 100 34 60 94 85

5.5 Standoff Heuristics
The standoff criteria presented in Table 11 do not allow specifying recall targets. All heuristics seem to achieve a high
recall; however, some methods are not always triggered. Especially the Knee heuristic, which is only triggered 33.72 of
the time. We suspect that this is due to the fact that there are many datasets for which the number of relevant documents
is below 100, in which case the Knee has problems [15]. The Budget method, which is the best-performing adaptive
heuristic, is more adjusted to this. The (mostly) static heuristics Half and Rule2399 heuristic also offer good results in
terms of recall but are not efficient on which AutoTAR can provide a good ranking. Moreover, for datasets containing
less than 2399 documents, Rule2399 does not trigger. In Table 11, the success rates of achieving various recall targets
are presented. Our experiments show that the Budget method achieves the 95 % target in 76.25 % of the experiments
(for Chao (1987) - Conservative, this is 69.86 %). For the 95 % recall level, our method does not outperform the Budget
method in terms of recall and work savings. However, for the 100 % recall level, it does (Budget 40.63 % success rate
vs. Chao (1987) - Conservative 53.09 %).

6 Discussion
In the previous section, we described the results of our simulation experiment. In this section, we discuss the results and
answer the research questions as posed in Section 4.1.
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Figure 11: These figures display the results of all runs on all datasets in terms of Work Saved over Sampling and Recall
for the standoff heuristic stopping criteria. 27



6.1 Research Questions
6.1.1 How does our Active Learning strategy perform in terms of the WSS@95 and WSS@100 metrics

compared to other methods?
Here, we compare the retrieval capabilities of the three sampling strategies used by the stopping criteria we included
in our experiments: AutoTAR, AUTOSTOP, and our Ensemble method. Our method outperforms AUTOSTOP’s
sampling strategy but does not outperform AutoTAR in terms of WSS@95 and WSS@100 (see Table 6). One can
expect this result as our method performs extra work to enable the use of Population Size Estimation methods to
determine the number of relevant documents within the dataset. Moreover, our method selects approximately 20 % of
the documents through random sampling, which is not an efficient retrieval strategy. Despite this, our method stays
closer to AutoTAR’s performance, which has a mean WSS@95 score of 74.3 % vs. ours (Ensemble) of 63 % and 45.5
% for AUTOSTOP. The overhead introduced by our method is less than AUTOSTOP’s, enabling a reduction of the
reviewers’ effort given a good stopping criterion.

6.1.2 Can our stopping criteria help the user achieve its recall target in a timely fashion?
The Chao (1987) - Conservative method with a recall target of 95 % has a mean recall of 95.92 % with a Work Saved
over Sampling of 56.21 %. For the 100 % target, the Chao (1987) - Conservative criterion has a mean recall of 98.02 %,
which is slightly below the target recall. The Chao (Rivest) - Optimistic - 100 % criterion achieves an average recall of
98.29 % with a WSS of 52.33 %. Although these results do not always deliver a perfect recall of 100 %, the additional
burden of using our stopping criterion is not large. When we compare that effort, the percentage of the dataset the
reviewer read, that was performed up to the point the criterion was triggered (45.96 %) with the effort required for a
perfect stopping criterion (apriori knowledge; same selection strategy) 51.97 %, we see that on average the difference is
small; this means that when the criterion would have been perfect, a similar effort would have been required. Compared
to the most efficient sampling method, AutoTAR, (42.42 %), our method would require 3.53 percentage points more
work than the most efficient stopping point.

6.1.3 How reliable are our stopping criteria?
Here, we consider the 95 % and 100 % criteria only. While the Chao (1987) - Conservative - 95 % method has a very
high mean recall, which is slightly above its target (95.92 %), the amount of times the target has been met is 69.86 %.
However, the mean error in predicting the recall is small (3.88 points), so when the target is not achieved, the result is
often close to its target. The 100 % recall target is achieved in 53.09 % of the runs for Chao (1987) - Conservative
- 100 %. The Optimistic methods are less reliable than the Conservative methods due to lacking a CI. Yet, the Chao
(Rivest) - Optimistic - 100 % method provides excellent results, with a mean recall of 98.29. For all targets, the Chao
(Rivest) version of this criterion provides better results than the Chao (1987) variant. Considering point estimates only,
the Rivest method is the obvious choice.

6.1.4 How do our stopping criteria compare to other methods that estimate the size of relevant documents?
Considering the Conservative criteria, our methods outperform AUTOSTOP in terms of WSS and Effort and losser,
while retaining a similar recall, although slightly lower. However, on average, the 95 % criterion, reaches a recall above
its target. As we can see in Table 7, the number of times the 95 % target is met is higher for AutoSTOP. However, when
considering the Optimistic criteria (Table 8), the Chao (Rivest) method outperforms AutoSTOP for both the 95 % and
the 100 % targets in terms of Work Savings/Effort, Recall, and Reliability. Compared to the Chao (1987) - Optimistic,
Chao (1987) - Conservative methods with a recall target of 100 % also outperform their AUTOSTOP counterparts in
terms of WSS and Effort while providing a similar recall. Moreover, for the Chao (1987) - Conservative method, our
method is more functional compared to AUTOSTOP’s counterpart, as our method is triggered 99.37 % of the time, vs.
55.93 %.

The Quant method [41] overestimates the number of relevant documents with a large number, which results in the
fact that this method is not often triggered on time (for the 70 % recall target, the mean recall is already 98.27 %).
Considering the Conservative Criterion, the situation worsens due to the overestimation, resulting in this method never
being triggered with a high recall target.

6.1.5 How do our stopping criteria compare to other methods that do not provide an estimate?
The main other criteria in our experiments are the Knee Method [15], Budget Method [15], Target Method [15] and
the CMH Method [8]. From these methods, the Budget method is very close in terms of recall, outperforming our
method in terms of WSS for the 100 % recall target. Considering reliability for the 100 % target, the Chao (1987) -
Conservative method is a better choice, as the success rate is higher. The Budget method also lacks an estimate for the
current level of recall, which does not give the user any information. The CMH method allows the specification of a
recall target, yet it suffers a similar fate as the Quant method, as it overestimates the current level of recall.
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6.2 Limitations
There are some limitations to the generalizability of our results resulting from how we designed our experiments. We
will describe these below.

6.2.1 Dataset selection
We selected datasets for which the number of relevant documents was at least ten. The main reason for this selection is
that our method needs at least five relevant documents as seed data. Moreover, the Target and Budget methods expect
at least ten relevant documents in the dataset. As all methods are initialized with seed sets that contain five relevant
documents, we deemed that including datasets that contain less than ten documents would provide unrealistic results.
The consequence is that we cannot extend our findings to all datasets in general; however, the vast majority of the
datasets/topics within the corpora included in our study contained more than ten relevant documents. Moreover, we
excluded dataset sets with less than 500 documents; however, the merits using TAR in datasets that small is low.

6.2.2 Size and contents of the seed set
As mentioned, our methods need a seed set that contains five relevant documents. The choice of seed documents may
influence the results of our method. In our experiments, we aimed to control for the effect of the seed set by repeating
the experiment 30 times. In each run, a different seed set was used by using 30 random samples. In a real-world
application, the set of seed documents the user provides may contain relevant documents that were selected not at
random (for example, documents with very similar content). The 30 seed sets are likely not exhaustive enough to
capture all these scenarios. Further investigation is needed to control for these scenarios, for example, by increasing the
number of experiments or testing for specific seed sets.

6.2.3 Strictness of the Conservative Criterion
In the Conservative Criterion, the recall is calculated using the upper bound of the confidence interval provided by the
Estimator. For very high recall targets (e.g., 95 % and especially 100 %), the confidence interval must be negligible to
trigger the criterion. In some scenarios, for example, in Figure 4b, the confidence interval of the Chao (Rivest) method
is only one unit above the point estimates at iteration t = 8000, which already coincides with the recall curve. The
dataset in question, the Van Dis dataset, contains 72 relevant documents so the upper bound of the recall estimate is
currently 98.6 % (given an upper bound of 73), thus smaller than the 100 % required by the criterion. This strictness is
not only present within our method but also for AUTOSTOP and Quant. This effect is less pronounced in datasets with
much more relevant documents, as a single document has less influence on the recall estimate. In a real-world scenario,
the user may deviate from the strictness of this criterion and be more lenient; for example, if the point estimates or CI
are stable for a long time, the user may accept a slightly smaller predicted recall. It is not trivial to make a stopping
criterion that considers this leniency. We opted to be very strict in our criterion, as making the stopping criterion
more complex also makes interpreting the results more challenging. In a real-world setting, the results of our methods
and AUTOSTOP may be better (or worse) if the user freely decides to stop based on the estimates produced by the
estimators.

6.3 Future work
While the results of our experiments are promising, some areas can be further investigated. As mentioned before, the
results of the optimistic criteria and, in turn, the point estimates of the Chao Estimators are not as reliable as desired.
This result was also observed for AUTOSTOP and the methods the authors tested in [31]. Moreover, the error of
the estimators is higher for the lower recall targets, also when we consider the confidence interval. Besides Chao’s
Estimator, there are various other Population Size Estimators available (for instance, models that take dependencies
between committee members into account), as well as extensions to Chao’s Estimator (e.g., extending the model with
covariates found in the dataset). In future research, these methods can be explored and compared to the results presented
here.

A second line of work is to perform a user study, which studies how and when users stop the review given the decision
by a stopping criterion or an estimate. This study could give insights into how users respond to the predictions by PSE
methods, which could be further used to adapt the stopping criterion.

As mentioned above, the seed set’s size and contents may influence the performance of our method. Moreover, in a
real-world setting, the user must have five relevant documents available to initialize the AL procedure, which is not
always possible. In the scenario where little prior known relevant documents are available, a system can be designed
that first finds relevant documents with (for example) AutoTAR and switches to our method when sufficient documents
are found. Another option is to generate several distinct synthetic documents using Large Language Models to start
the procedure in place of real relevant documents. Research and development of these extensions may improve the
applicability of our method.
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7 Conclusion

In this work, we used Chao’s Population Size Estimator to determine the number of relevant documents during the
TAR process. This estimate can indicate if the number of documents that have yet eluded the reviewers. The reviewers
can then, given this information, decide to stop the review when a recall target has been satisfied. Population Size
Estimators are not directly applicable to the general CAL paradigm. In this work, we presented a novel sampling
strategy that makes these methods possible while minimizing the number of irrelevant documents the system proposes.
We employed two versions of Chao’s estimator, Chao (1987), based on Chao’s Moment estimator as presented in
[10]. The other, Chao (Rivest) is based on Rivest’s Poisson Regression version of the former as presented in [32]. The
estimates from these methods are then used within a stopping criterion for the review process. For each estimator,
we built two criteria: an Optimistic method, which uses the point estimates, while the Conservative uses the 95 %
confidence interval. An extensive simulation study showed us that the proposed estimators and criteria work well.
The Chao (Rivest) - Optimistic method clearly outperforms other estimator-based methods regarding recall and work
savings. The Chao (1987) - Conservative method challenges methods presented in previous work, as it achieves a
similar level recall while improving work savings. We expect that further research into PSE and extensions of our
method will improve the reliability and applicability of this method.
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A Dataset statistics

Table 12: Dataset statistics for the SYNERGY corpus [18]

Dataset # Relevant # Irrelevant Size Prevalence (%)
Appenzeller-Herzog 26 2847 2873 0.9
Brouwer 62 38052 38114 0.2
Chou 15 1893 1908 0.8
Hall 104 8689 8793 1.2
Jeyaraman 96 1079 1175 8.2

Leenaars 583 6633 7216 8.1
Meijboom 37 845 882 4.2
Menon 74 901 975 7.6
Moran 111 5103 5214 2.1
Muthu 336 2383 2719 12.4

Oud 20 932 952 2.1
Radjenovic 48 5887 5935 0.8
Smid 27 2600 2627 1.0
Walker 762 47613 48375 1.6
Wassenaar 111 7557 7668 1.4

Wolters 19 4261 4280 0.4
van Dis 72 9056 9128 0.8
van de Schoot 38 4506 4544 0.8
van der Valk 89 636 725 12.3
van der Waal 33 1937 1970 1.7

Table 13: Dataset statistics for the CLEF 2017 corpus [24]

Dataset # Relevant # Irrelevant Size Prevalence (%)
CD009135 77 714 791 9.7
CD008081 26 944 970 2.7
CD010023 52 929 981 5.3
CD009944 98 1064 1162 8.4
CD008691 67 1243 1310 5.1

CD007427 59 1398 1457 4.0
CD010632 27 1472 1499 1.8
CD009020 154 1422 1576 9.8
CD009185 92 1523 1615 5.7
CD009551 46 1865 1911 2.4

CD011134 200 1738 1938 10.3
CD009372 25 2223 2248 1.1
CD007394 92 2450 2542 3.6
CD009647 56 2729 2785 2.0
CD008054 206 2940 3146 6.5

CD010438 30 3211 3241 0.9
CD009323 98 3757 3855 2.5
CD008803 99 5121 5220 1.9
CD010173 23 5472 5495 0.4
CD010276 54 5441 5495 1.0

CD009519 104 5867 5971 1.7
CD009579 138 6317 6455 2.1
CD009925 460 6071 6531 7.0
CD009591 143 7847 7990 1.8
CD010653 45 7957 8002 0.6
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(continued)
Dataset # Relevant # Irrelevant Size Prevalence (%)

CD011984 442 7738 8180 5.4
CD011975 604 7582 8186 7.4
CD008782 45 10462 10507 0.4
CD011548 109 12591 12700 0.9
CD010339 114 12689 12803 0.9

CD009593 63 14844 14907 0.4

Table 14: Dataset statistics for the CLEF 2018 corpus [25]

Dataset # Relevant # Irrelevant Size Prevalence (%)
CD012009 37 499 536 6.9
CD008759 60 872 932 6.4
CD011431 297 885 1182 25.1
CD011912 36 1370 1406 2.6
CD008892 69 1430 1499 4.6

CD010657 139 1720 1859 7.5
CD008122 272 1639 1911 14.2
CD011053 12 2223 2235 0.5
CD010864 44 2461 2505 1.8
CD010502 229 2756 2985 7.7

CD011926 40 4010 4050 1.0
CD010296 53 4549 4602 1.2
CD009175 65 5579 5644 1.2
CD011126 13 5987 6000 0.2
CD012010 290 6540 6830 4.2

CD011515 127 7117 7244 1.8
CD012599 575 7473 8048 7.1
CD010680 26 8379 8405 0.3
CD008587 79 9073 9152 0.9
CD011686 64 9665 9729 0.7

CD012179 304 9528 9832 3.1
CD012281 23 9853 9876 0.2
CD012165 308 9914 10222 3.0
CD010213 599 14599 15198 3.9

Table 15: Dataset statistics for the CLEF 2019 corpus [26]

Dataset # Relevant # Irrelevant Size Prevalence (%)
CD001261 72 499 571 12.6
CD012551 68 523 591 11.5
CD007867 17 926 943 1.8
CD012669 71 1189 1260 5.6
CD009069 78 1679 1757 4.4

CD009642 62 1860 1922 3.2
CD008874 118 2264 2382 5.0
CD010753 29 2510 2539 1.1
CD010558 37 2778 2815 1.3
CD009044 11 3158 3169 0.3

CD012661 192 3175 3367 5.7
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(continued)
Dataset # Relevant # Irrelevant Size Prevalence (%)
CD012069 320 3159 3479 9.2
CD006468 52 3821 3873 1.3
CD011787 111 4258 4369 2.5
CD012080 77 6566 6643 1.2

CD012567 11 6724 6735 0.2
CD010038 23 8844 8867 0.3
CD011768 54 9104 9158 0.6
CD011686 64 9665 9729 0.7
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