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The benefits of exercise and physical activity are well-known and documented. However, most
recommendations do not consider the stress caused on the joint and bone structure in the
context of musculoskeletal conditions. A committee of selected experts recognise the importance
of measuring the ground force reaction on the lower limbs. However, measuring load rate

estimates is not standardised and requires specialised facilities.

The primary aim of this project was to develop a framework to measure load rate outside of
the clinical setting. A methodology was developed to monitor load rate estimates using
smartphones, as cheap and broadly available technology to achieve this. The method was used to
investigate the reliability in ideal conditions, as part of a clinical trial and over an extended

timeframe.

The novelty of this project was to develop a protocol using smartphones as a surrogate of the
lower limbs to monitor patients affected by musculoskeletal conditions. The key finding was that
significant challenges are associated with using smartphones, but passive monitoring can be
achieved to record substantial amounts of data without patient input. Secondly, load rate
provides more qualitative details on the physical activity than measures such as energy
expenditure, step count and met-min. However, the interpretation and visualisation of load rate

are more complex.

To conclude, this thesis tested and verified a methodology that can continuously monitor load
rate estimates on the lower limbs. This methodology addresses the need to measure joint loading

in activity and time, which can further be used in healthcare for musculoskeletal diseases.
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Introduction

Chapter1 Introduction

1.1 Overview

Musculoskeletal (MSK) conditions affect over 20 million people in the UK (ArthritisResearchUK,
2021). They account for the third most significant area of NHS England’s objectives and budget
mandated by the government (Gov.UK, 2018a), with a program spent of £4.7 billion following the
policy paper published by the Department of Work and Pensions (Gov.uk, 2017). Musculoskeletal
comprises diseases affecting the motion ability of joints (e.g., inflammatory conditions such as
rheumatoid arthritis affecting the joints), cartilage (e.g., osteoarthritis) and bone density (e.g.

osteoporosis) (gov.uk, 2021).

The risks of developing osteoarthritis (OA) or rheumatoid arthritis (RA) increases with age, with
the highest prevalence being seen among individuals aged between 40 and 60 years old years and
even higher in those aged over 70 (NAO, 2009), but it can affect any age. According to the State of
Musculoskeletal Health 2021 report (ArthritisResearchUK, 2021), over 8 million people are
diagnosed with OA, which represents 18.2% of the population of adults aged over 45 in England;
and over 400k people are currently diagnosed with RA in the UK which represents 0.84% of adults
aged over 16 in England. Women are more prevalent than men, and being diagnosed with RA is
two to three times more common in women than men (O'Fallon, 2001). Smokers' risk of
developing RA increases (Sugiyama et al., 2009), (Kallberg et al., 2010). Obesity and unhealthy
weight/BMI are known factors that increase the risks of developing OA and RA 15% higher for RA
when overweight and 21-31% when obese (Zhong et al., 2015, Feng et al., 2016).

Staying physically active and exercising generally improves well-being but the mechanical stress
caused on the bones and joints that affects MSK conditions is not currently monitored outside of
clinical setting, nor standardised, and therefore “healthy” load is not characterised. This project
aims at assessing the feasibility in using smartphones to estimate mechanical loads on the lower
limb of MSK patients in free living conditions. The current fitness solutions measure step counts
and energy expenditure but do not consider the mechanical loads. Smartphone sensor data is
available but continuous tracking relies on user intervention, e.g. to proactively start an app.
Therefore, we built a purpose-based framework that records smartphones’ sensor data to
estimate loads without user intervention. This approach provides greater visibility on the data
recorded, control over the sampling parameter and flexibility to define a user experience

acceptable for OA and RA patients. The novelty of this project is to use smartphones, as broadly
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available technology, to estimate mechanical load in free living conditions, which is not currently

monitored although recognised in MSK guidelines.

1.2 Thesis Structure

The overall aim is to investigate how continuously monitoring load rates could be used as valuable
fitness insight to investigate the relationship between an individual’s physical activity and disease
activity. The objective is to develop a smartphone framework with different front end for RA and
OA (respectively RApp™ and OApp™). This project is cross-disciplined between Engineering and
Life Sciences and, therefore, incorporates standard practices used in both fields of expertise in the

study design.

This thesis continues with a literature review detailing MSK diseases and their relationship with
physical activity and ground force reaction on the lower limbs in Chapter 2. The thesis is
structured in exploratory studies, so each study's rationale is detailed in the corresponding
chapters. Chapter 3 describes the study methodology developed as well as the framework of data
capture and analysis. The subsequent studies (see fig 1) assess the feasibility and results, with
chapter 4 (study 1) being the first proof of concept with rheumatoid arthritis patients. Chapter 5
(study 2) reviews the smartphone tracking capabilities used in optimal conditions with healthy
volunteers. Chapter 6 (study 3) examines the results obtained in a clinical trial with OA patients.

Finally, chapter 6 (study 4) reviews the monitoring over an extended timeframe with RA patients.

+ Device: Sony Xperia Z1 Compact (Secondary
Smartphone) and Fitbit HR
+ Duration: 6 weeks
StU dy 1 : RAp p 1 * Participants: 5 patients diagnosed with
Rheumatoid Arthritis
+ Log collected: Raw accelerometer data stored in
txt files
* Device: Sony Xperia Z5 Compact (Secondary
Smartphone) and Sony Smartwatch 3
. * Duration: 7 days
St U d y 2 . OAp p 1 ® Participants: 10 participants (no specific conditions)
* Log collected: Raw accelerometer stored in .txt files
and processed LRE stored in .sql database
* Device: Samsung A5 (Secondary Smartphone) and Fitbit
Flex 2
Stu dy 3 . OAp p2 « Duration: 7 days + 7 days, 2 months after injection
. * Participants: 66 patients diagnosed with Osteoarthritis
+ Log collected: processed LRE stored in .sql database
e Device: Participant’s owned Android device (Primary smartphone)
¢ Duration: 3 months
St u dy 4 o RAp p 2 * Participants: 3 patients diagnosed with Rheumatoid Arthritis and
* the Researcher
* Log collected: processed LRE stored in .sql database
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Figure 1: Study summary

Chapter 2 Literature review

2.1 Musculoskeletal conditions overview

The Musculoskeletal (MSK) system refers to the muscles and bones typically grouped as the back,
upper and lower limbs (Agrawal, 2019). According to the WHO, more than 150 MSK conditions
(National Academies of Sciences, 2020) affect the locomotory part of the human body of people
from all demographic groups and ages. MSK conditions include osteoporosis which lowers bone

density and all forms of arthritis which target the joints and cartilage.

Osteoporosis constantly affects the bone’s ability to grow and rebuild, reducing bone mineral
density. As illustrated in figure 2, more bone is lost than formed, so the internal structure
deteriorates and becomes more porous (Australia, 2021). The weakened structure's strength

increases fracture risk.

Comparison of normal bone and healthy
joint (left) with

- Osteoporosis (top),

- Rheumatoid arthritis (center) and

- Osteoarthritis (right)

Normal bone

Osteoporosis

Source: (Australia, 2021)
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Cartilage
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Figure 2: MSK impact on the bone and joint structure

Arthritis includes disease conditions such as lupus, gout and ankylosing spondylitis that commonly
affects joints and specific organs, leading to pain, swelling, stiffness and decreased range of

motion. Osteoarthritis (OA) and rheumatoid arthritis (RA) are the most common types of arthritis
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and cause thinning of the cartilage. OA is a non-inflammatory disease characterised by thinner
cartilage causing friction with the bone ends. RA is a chronic inflammatory in which the immune
system attacks the synovia-lined joints, causing inflammation and destruction of the synovial
membrane, which can lead to severe disability. The outer covering of the joints becomes the
target of the body’s immune system causing swelling and change in joint shape, ultimately leading

to a breakdown of the bone and cartilage.

Osteoporosis does not cause pain and so is considered a silent disease. The changes in the bone
structure become apparent if the fracture caused or visible change in posture, height or
breathing. In contrast, OA and RA's main symptoms are joint pain and stiffness, most commonly
affecting the hands, wrists, knees and feet. OA can affect any joint, while RA typically affects the
joints symmetrically. Early diagnosis can help significantly prevent disease progression and bone
erosion by starting medication and treatment earlier (Heidari, 2011). According to a meta-analysis
study (Fautrel et al., 2017), early therapeutic intervention may also significantly reduce the risk of
RA onset for arthritis patients. However, the guidelines for musculoskeletal system assessment
(ArthritisResearchUK, 2019), as well as the criteria defined by the American Rheumatism
Association in 1987 (Association, 1988), had limitations in predicting RA for patients with early
arthritis (Alain Saraux, 2001). Besides, it is not always possible for patients to be seen by
specialists, and in some cases, symptoms experienced can be due to biomechanical loading on the
body (Shakoor and Moisio, 2004). OA can be diagnosed through a physical examination of the
joint, looking into the creaking, tenderness, movement restriction and weakness or thinning of
the supporting muscles. X-Rays can then help to check if the symptoms are due to a fracture or
calcium deposit in the joint, and MRI scans of the knee or hip can identify bones or other possible
joint problems. Unless a fracture occurs, Osteoporosis does not present visible symptoms and is
diagnosed using dual-energy X-ray absorptiometry (DXA) scans. The results are reported as T-
scores (and Z-scores) to compare the standard deviation of bone mineral density (in g/cm2) with
the equivalent healthy person of the same age, sex and ethnicity (Kanis et al., 1997). Blood tests
are not usually needed but will usually be conducted to evaluate other arthritis. In 2010, the RA
disease classification criteria were reviewed by ACR and EULAR to consider more emphasis on
laboratory values. Including serology (examination of blood serum) and acute-phase reactants,
that is, a measure of plasma variations of acute-phase proteins (APP/APR) (Kay and Upchurch,

2012) throughout symptoms of more or less than six weeks.

Bone loss is a normal part of the ageing process, and no treatments to date can completely cure
osteoarthritis and rheumatoid arthritis. But medications and supportive treatments are available
to reduce bone loss, joint damage and inflammation. Osteoporosis patients use calcium and

vitamins to supplement bone mass. Drug therapy is based on the probability of fracture using
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Bisphosphonates and hormones such as Parathyroid, Selective oestrogen receptor modulators
(SERMs) to maintain and slow the rate of bone loss. RA patients use disease modifying anti
rheumatic (DMARD) drugs such as azathioprine, gold injections, hydroxychloroquine, leflunomide,
methotrexate and sulfasalazine to address joint inflammation and subsequent damage by
reducing the effects of the immune system attacking synovial joints. Anti-tumour necrosis factor
(Anti-TNF) drugs such as adalimumab, certolizumab pegol, etanercept, golimumab and infliximab
target TNF proteins specifically while other biological therapies including abatacept, rituximab and
tocilizumab target different proteins. In the first part of the treatment, DMARDs are usually
provided in the form of tablets and might be used as a combination to increase the effects.
Prescription of biological therapies occurs only if DMARDs have not worked or have side effects.
These newer drugs are provided by injections, which act faster by stopping specific proteins and

chemicals in the blood responsible for activating the immune system from attacking the joints.

Besides addressing disease progression, patients concentrate on addressing pain and flares to
help in daily activities, which can be managed with simple analgesia such as codeine (co-codamol
and paracetamol). NSAID (non-steroidal anti-inflammatory drugs) such as Ibuprofen and
Naproxen or alternative COX-2 inhibitors, including ascelecoxib or etoricoxib relieve both pain and
inflammation but with an increased risk of internal bleeding. Corticosteroids are powerful
medications for short-term pain relief, stiffness and swelling, but their usage should be limited
due to side effects such as weight gain, easy bruising, muscle weakness and thinning of the skin or

the bones.

2.2 Musculoskeletal diseases & physical activity

2.2.1 Personalised recommendations

The priority for patients is to manage their pain and reduce their medication. Thus instructions
beyond prescriptions are expected to achieve their goals (Leach, 2018). The benefits of physical
activity and regular exercise are known to improve heart and muscle strength and are promoted
across most specialised online resources such as the NHS (NHS, 2018) and NRAS (NRAS, 2014). As
of 2010, physical activity was not included in the top 10 recommendations developed on the
matter of treating rheumatoid arthritis (Gomez et al., 2010), but in 2017, the EULAR
recommendations for pain management for inflammatory and osteoarthritis (Austin et al., 2018)
included physical activity and exercise interventions due to their positive effects on pain.
Considering the benefits, a task force has been organised to review the literature and agree that
physical activity should now be advocated as standard care for people with rheumatoid and

musculoskeletal diseases (Kiltz et al., 2018, Verhoeven et al., 2016).
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Nevertheless, arthritis patients are much less active than the general population (van den Berg et
al., 2007). A survey of 5235 patients across 21 countries has shown that only a small proportion of
RA patients exercise regularly (Sokka et al., 2008). Early survey results amongst people with
arthritis (Gecht et al., 1996) have shown that physical activity is directly related to the patient’s
understanding of the benefits and ability to perform. Yet, studies have shown that even when the
benefits are understood, the anxiety associated with pain remains a barrier for patients to stick to
such programmes, and the adherence rate remains low (Vervloesem et al., 2012). According to a
systematic review of 20 studies (Kirsten Jack, 2010), the barriers to treatment adherence in
musculoskeletal physiotherapy are associated with motivational and psychological factors such as
anxiety, depression, and social and family support. Low physical activity at baseline and worsening
pain during exercise supplement the logistics challenges caused by work schedules, lack of time
and financial constraints. A qualitative study (Wang et al., 2014) has identified a fear that joint
damage and infection symptoms might increase with exercise when under medication to manage
existing pain. Pain and drugs mediate the ability to exercise. Still, misapprehensions and
conflicting information received from healthcare professionals are a source of frustration for all
participants not being able to engage in exercise. “Rheumatoid cachexia” is a severe symptom of
RA characterised by accelerated loss of muscle mass, a progression of cardiovascular disease and
fatigue, contributing to functional limitation, disability, comorbidities, and reduced quality of life.
Those symptoms might be lessened through regular exercise. A study across 39 patients with
chronic heart failure has demonstrated that moderate-intensity resistance exercise training for
three months produces constructive changes to skeletal muscle strength and endurance (Hare et
al., 2004). Besides, a personalised exercise program can have a positive impact not only in slowing
down the progress of arthritis but also on the patient's overall well-being (Jennifer K. Cooney,
2010). A study has found improvement in the microvascular and macrovascular as well as disease
characteristics because of using a personalised aerobic program on a cohort of 40 RA patients

(Metsios et al., 2014).

Therefore, HCP must personalise their recommendations to improve patients” physical fitness
considering the components of PA which have been reviewed (Kell et al., 2001). Muscular
strength is the maximum force that can be generated, which is instrumental in performing daily
activities. Endurance is the maximum amount of time that an action can be repeated over time
and is typically associated with injury and falls risks. Flexibility defines the range of motion that
can be covered. A well-designed exercise program is required to support an effective
rehabilitation program. A case study on a soccer player with a Grade 2 ankle sprain has shown
that it was possible to achieve a pain-free and short recovery from running (Kern-Steiner et al.,

1999). The program was designed with specific sets and repetitions of exercises, but the crucial
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element was the lab setup's ability to support a gradual gravitational increase of the weight
bearing. Rehabilitation programs consider the individual's ability to recover, and a similar strategy

could benefit patients with MSK conditions.

The rest of this project follows the definitions per (Caspersen et al., 1985), which defines physical
activity as “any bodily movement produced by skeletal muscles that result in energy expenditure
above resting levels”. This definition broadly encompasses exercise, sports and physical activities
as part of daily living, occupation, leisure and active transportation. Exercise is a subcategory of
physical activity “that is planned, structured and repetitive and has, as a final or intermediate

objective, the improvement or maintenance of one or more dimensions of physical fitness”.

2.2.2 Physical activity and bones

The loss of bone strength caused by Osteoporosis is associated with the loss of minerals and
collagen caused by ageing and inactivity. Bones adapt their density based on an individual’s
environment, including physiological factors (e.g. diet) and mechanical constraints. The principle
of bone adaptation is known as Wolff’s law which has been extensively reviewed through
experimental and observational studies of bone changes (Ruff et al., 2006). Time in space is an
example of an extreme environment causing bone loss, as shown in a study on astronauts. The
space environment does not have gravitational forces, which induces a lack of mechanical load on
the bones and presents a risk of developing osteoporosis (Stavnichuk et al., 2020). It has also been
found that bone density might not be fully recovered after a year back from space (Gabel et al.,

2022).

Bone density and remodelling can be improved as a response to the mechanical caused by
exercise, but it is essential to distinguish the different types of exercises (O’Brien, 2001). Although
there is not enough evidence to quantify the risks of falls and fractures due to activities, an
international panel agreed in 2014 that an exercise program should include multiple components
and avoid aerobic training, except for resistance or balance training (Giangregorio et al., 2014).
The change in mineral content is an adaptation to force and stress caused. Hence, an effective
exercise program needs to consider the type of activity, frequency, intensity and duration to
cause a significant change in physical activity (Dalsky, 1987). A literature review found that
resistance and weight-bearing aerobic exercises can stimulate bone osteogenesis. However,
strength exercises are effective only if they cause a joint reaction greater than daily activities.
Aerobic exercises are helpful only if performed with an intensity causing a significant ground
reaction force (Benedetti et al., 2018). Any exercise applies an amount of mechanical loading, and

besides the intensity, a study has found correlations between the frequency of load applied and
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bone density growth. The bone tissues respond to dynamic loading, and higher frequencies
stimulate osteogenesis, but extended exercise can be detrimental to the bones. Recent studies
have observed better results in bone building when shortening the amount of time at load in a

session than reducing the number of sessions (Turner and Robling, 2003).

223 Physical activity and joints

Thus, increasing load is good for bone density, but it is essential also to consider the negative
impact that might incur because of excessive physical activity. In 2016, a consensus by the
international Olympic committee reached a statement that the recommendations in the amount
of training need to follow a methodology to prevent the risk of injury in athletes. Such
recommendations consider medical results (e.g. blood lactate concentration) as well as the
frequency and intensity of training (Soligard et al., 2016). Indeed, a retrospective study on
endurance runners has found an increase in the risk of injury depending on the foot strike pattern
and position (Daoud et al., 2012). Besides endurance, a review of the hospital admissions of OA
between 1970 and 1990 has shown that Olympic male athletes (representing Finland) presented
risks of OA for high frequency (i.e. endurance) sports and both high intensity (i.e. power sports)
(Kujala et al., 1994). A study on a similar cohort of female ex-elite athletes found that the
excessive loading in the joint caused by weight-bearing sports activities increases the risks of
developing OA of the knees and hips (Spector et al., 1996). According to a review of data on
degenerative joint disease done in 1994, the stress caused by excessive loading on joints might
speed up the development of OA, and physios still need more information to be able to build

effective programs (Panush and Lane, 1994).

The physical strain associated with sports and exercises also applies to other occupations besides
athletes. A study on 1566 US army soldiers found OA to be the most common disability for US
soldiers unable to return to duty (Rivera et al., 2012). A military report has defined tactical
athletes as individuals with similar occupational activities and a higher fitness load, such as the
military, law enforcement and rescue services (Scofield and Kardouni, 2015). Although further
research is needed to identify all the factors, a systematic review of the literature has found an
increased risk of developing OA in these occupations (Cameron et al., 2016). A more recent
review has found the risk of developing OA to be more generally associated with any occupations
requiring to perform movements with heavy physical workloads on the lower limbs, such as
squats or heavy lifting (Schram et al., 2020). Biomechanical components cause OA, as shown in a
study on 228 veterans, which also identified misalignment of the lower limbs and being
overweight as risks (Felson et al., 2004). The effects of exercises and occupational activities

require further studies, and in 2017, a consensus study was conducted to harmonise the
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classification methods. The group included OA and PA international professionals that agreed to
use MET-min per week for studies measuring PA. The key recommendations also raised the need
to measure the intensity and duration of the joint load (Gates et al., 2017), which at the time of

this study are yet to be standardised.

2.3 Physical Activity & load forces

The guidelines and fitness recommendations to stay healthy are associated with aerobic
(cardiorespiratory) and anaerobic (intensity) exercise programs which can be measured in a lab or
fitness environment, e.g. using equipment such as treadmills, bicycles and elliptic. However, the
mechanical load on the joints can affect MSK disease progression, as illustrated in fig 3.
Underloading might limit induced loss of bone density leading to osteoporosis, while overloading
can affect the joint structure leading to OA. The load intensity and frequency associated with

healthy joints are not characterised and thus should be measured.

Osteoporosis Normal bone
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Figure 3: Under Vs Overloading

MSK studies typically focus on the medical impact of the mechanical load, e.g. before and after
load changes or in the context of recovery. Typically, osteoporosis studies measure bone
composition. OA and RA studies look at the joints' alignment and cartilage composition.
Mechanical load’s effects have been reviewed through in vitro and in vivo studies (Griffin and
Guilak, 2005). In vivo studies have been conducted on animals using implants, and implant
modelling consider the biomechanical environment as suggested by a review of Wolff's law

(Prendergast and Huiskes, 1995). The dynamic loading is measured as strains and can be
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expressed mathematically per equation derived from the Fourier method (Turner, 1998). The
strain stimulus E, measured in microstrain (ug), is proportional to the characteristics of the load
where k is a proportionality constant, € is the strain’s peak-to-peak magnitude and f is the
loading frequency. It can be noted that for a static load, represented with a frequency f=0,E =0

so no bone adaptation is induced because of strain.

E =k zn:(&fz)
i=1

It is impractical to set up in vivo implants on humans outside a diagnosed clinical need. So in vitro
methods are also used, e.g. using cartilage explant but do not provide an accurate representation
of the impact on humans. Therefore, epidemiological studies are the most practical, and multiple
protocols have been set to manipulate the load bearing. Astronauts have tested water immersion,
parabolic aircraft flights, supine and erect cable suspension, and centrifugal methods to simulate
gravity-free conditions as experienced in long space flights (Davis and Cavanagh, 1993). Other
custom setups can also be put in place, allowing to adjust of the weight bearing, e.g. using an
underwater treadmill with a harness in another study with astronauts (Newman et al., 1994) or a
lab setup to allow gravitational alterations for the rehabilitation of a soccer player (Kell et al.,
2001). A more recent study tested using mice suspended with a spring with tension adjusted

between 10% and 80% of the mice’s body weight (Wagner et al., 2010).

Strain measured from implants
(in microstrain - pe)

E=k Zn (&f0) Load Force measured from
i
i=1 tri-accelerometers
1 (in kg m/s3)
F=m ,axz +a,? +a,?
2 X

Accelerometer

Load measured from sensors under
force plates or treadmill belt
(unit depends on the manufacturer) Impjgt

] Vertical gravity force reaction

E J oravitve

Force plates

Figure 4: Measure of mechanical loading (1) via implant; (2) force plate; (3) accelerometer

The force on the lower limbs is caused by the bearing of the person’s weight reacting with the

ground due to gravity, as shown in fig 4. A literature review has been conducted to identify the
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main methods to measure weight bearing while standing and walking (Hurkmans et al., 2003) and
found clinical examination using scales as the most common evaluation, although limited to
standing position. Biofeedback systems, ambulatory devices and the use of platforms are also
common. Force plates are platforms that can be used to measure the vertical ground reaction
forces of the body weight in a static movement, as shown in a study with patients affected with
paraplegia (paralysis of the legs) (Bernhardt et al., 2012). Treadmills can be combined with video
cameras to evaluate dynamic movement, as used in a study comparing rearfoot with forefoot
strikes to assess the rate of a stress injury in runners (Daoud et al., 2012a). Anti-gravity treadmills
are available in the specialised market and can be used in rehabilitation and training to evaluate
the effects of progressive loading (AlterG, 2012). A preliminary study has shown that the load
caused in the ground reaction can be measured in dynamic loading (e.g. walking, running) from
the pressure applied on treadmills with strain gauge force sensors fitted which highlighted the
dependencies on the distance between the sensor and the centre of pressure (Dierick et al.,
2004). However, this measuring method requires specialised equipment and is typically
conducted in biomechanical laboratories, which cannot easily be replicated for day-to-day

tracking.

According to the general principles of kinetic and Newton’s laws (Elvan and Ozyurek, 2020), the
gravity applied to the body reacts, producing an equal ground force reaction in the opposite

direction (3" law). Unless external forces are applied, the body maintains a constant velocity (2™

law). The load force (ﬁ) generated is proportional to the weight and velocity (3™ law), which can
be mathematically expressed in proportion to the weight (m) and acceleration perceived on the

body (a).

F =ma

F= m\/ax2 +a,? +a,?

Although the sensor setup and unit is different, studies have also compared the performance of
accelerometers to force plates in static and dynamic movement. A study asking participants to
stand has found the measurement from tri-axial accelerometers worn in the back to perform as
well as the force platform (P<0.05) (Mayagoitia et al., 2002). A similar correlation was found with
participants who were asked to perform different movements (walking, running and dropping a
box) on a force platform while wearing the accelerometers at the wrist and the hip (Rowlands and
Stiles, 2012). Accelerometry studies have considered the location of the sensors on the human
body (Bouten et al., 1997) and concluded that the use of accelerometer sensors presents a viable

method for long-term monitoring of the ambulatory movement of the human body (Mathie et al.,

29



Literature review

2004). The reliability of accelerometers to measure the effects of loading and unloading
generated by physical activity has been confirmed for squats movement (Bobbert, 2014) as well
as with a football (Boyd et al., 2011) and a rugby team (McLean et al., 2018). Accelerometers have
also been used to evaluate physical activity in musculoskeletal studies but outside the clinical
environment, concluding that RA patients are more sedentary than control participants
(Prioreschi et al., 2013). That correlation exists with their disease activity (Hernandez-Hernandez

et al., 2014).

2.4 Smartphones Applications & remote monitoring

A review of the techniques to measure weight bearing was conducted in 2003 (Hurkmans et al.,
2003), but since then, accelerometers have been embedded in devices such as smartphones and
wearables. They have become more broadly available to the general public. The usage of a
smartphone to record physical activity has been verified with comparative devices such as
Actigraph (Eric B Hekler, 2015) as well as to send readings from sensors worn on the body (Seeger
et al., 2014) and for physical activity recognition (Wanmin Wu, 2012). Moreover, systematic
reviews concluded that wearables and smartphone applications could lead to an increase in
physical activity (Gal et al., 2018). However, evaluation guidelines are needed to optimise the
research design (McCallum et al., 2018). Smartphones are already widely available to the general
population and present the advantages of being convenient, low-cost, easy to deploy, and already
broadly used and part of everyone’s day-to-day life (Woollaston, 2014). Business models exist to
generate revenues either by charging the users directly when accessing the app, premiums, gated
features and in-app purchases (Apple, 2019); or indirectly, e.g. through sponsorship,
advertisement or data reselling (Mey, 2017). The commercial success can be measured with

global ranking found on specialised websites such as SimilarWeb (2019).

A wide range of fitness and workout apps is available and continuously updated, including apps
from leading sports brands such as Nike+ Training Club, Adidas MiCoach and Freeletics, focusing
on exercise programs, guidelines and videos (Haslam, 2018). Tracker apps such as Nike+ Club and
Strava track time and distances, focusing on GPS data to track geographic location rather than
movement (Runner'sworld, 2018). Sensor trackers and analysers also exist but focus on sensor
data visualisation rather than tracking and recording. A review of 60 studies has shown that being
used within medicine is perceived as promising and exciting by clinicians (Ozdalga et al., 2012).
The RA population share the same interest and a questionnaire answered by 100 RA patients
showed that 94% believe that they could have a more active role in self-management and that an
app explicitly developed would be helpful (Azevedo et al., 2015). The benefits of this approach

have been demonstrated with an app used as part of an integrated platform (Dixon and Michaud,
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2018). As seen in Table 1, the top apps made available (Veronica Hackethal, 2018) to the OA and

RA population focus on providing information on the disease rather than physical activity tracking

features.

Smartphone application Feature Type
Epocrates Pharma and medical reference General Health/Medidne
Dynalled Medical and pharmacologic reference General Health/Medicdne
Johns Hopkins' Antibictics Guide Antimicrobial reference General Health/Medidne
Sanford Guide to Antimicrobial Therapy Antimicrobial reference General Health/Medicdne
Diagnosaurus Differential diagn osis General Health/Medicdne

Taber's Medical Dictionary, Stedman’s Medical

Dictionary, and Dotland’s Medical Dictionary Medical dictionaries and referen ce General Health/Medidne
Archimedes | Archime des 3607 Medical calculator General Health/Medidne
AHRO ePSS Primary care prevention General Health/Medidne
Medscape Medical reference, news, and education General Health/Medidne
Massachusetts General Hospital's Pocket Medidne Medical referen ce General Health/Medidne
Washingten Manual of Medical Therapeutics Medical reference General Health/Medidne
CuantiahMD Medical education with interactive cases General Health/Medidne
MedPage Today Medical news General Health/Medidne
Doximity S odal networking for physidans General Health/Medicdne
HealthLo Diray to track all health measure | weight, blood pressure, workouts,
e sleep, diet, mood, and checkup history, nutrition, fitness, and sleep | General Health/Medidne
overtime] through graphs and charts.
Rxmindile Diary and remin der- Medication General Health/Medidne
MyMeds Diary - Medication General Health/Medicdne
IMyMedschedule Diary and remin der- Medication General Health/Medicdne
Mediguations Information - calculators General Health/Medidne
Lab Gear Information - calculators and common symptoms info General Health/Medidne
READY Diary - dinician tracking of patient data RA specific
Bheumatoid Arthritis Diagnosis and Management Information - calculators and common symptoms info RA specific
Diary - Track joints pain and stiffness, adivities and sendthe datate . .
BheumaTrack ’ - - RA specific
your dector. Includes medicine remin ders,
IMyRA Diary - symptoms RA specific
Iy Pain Diary Diary - pain RA specific
Diary - Analysis of symptoms and activity based on user input
Track + R eact L u. C v L o - ! ) ) RA specific
information (symptoms, nutrition habits, sleep, medication, fitness)
RAVE Diary - medication RA specific
Hand: Rheumatology Checklist Information - medication RA specific
EheumaHelper Information - caleulators and arthritis info RA specific
Body P ain Management Hypnosis Pain management techniques (hyphosis) RA specific
Eheumatoid Arthritis (RA) @P oint of Caretm Edition  (Information - Diagn osis, treatment RA specific

Table 1: Smartphone app feature review

The amount of physical activity performed is personal and depends on the conditions of each
individual thus, organised exercise programs might be helpful. However, the recommendations
made by healthcare professionals remain based on an evaluation of the physical activity reported
through patient feedback. A self-assessment of physical activity is not quantified or objective, as

shown in a literature review (Prince et al., 2008). A review has shown that in most studies, self-
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reports do not accurately estimate the absolute amount of physical activity (Sallis and Saelens,
2000). Assessing physical activity requires an objective sense of measures, and the findings on
using paper diaries suggest that electronic journals with compliance-enhancing features would be
more effective (Stone et al., 2003). Indeed, the results comparing self-assessments to data
recorded through Actigraph have shown a weak correlation (Dyrstad et al., 2013) and a review
demonstrated that there are not enough studies (Flizéki et al., 2017) on low activity recorded
through accelerometers. A solution providing convenient physical activity monitoring using
objective data will help better advise patients on the most appropriate program of activities to

follow.

The overall physical activity hinges on an individual’s daily routine, and the perception often
overlooks the living conditions (e.g., living in a two-story house rather than the ground floor) and
daily chores such as housework or children's care. All these apps require user intervention (i.e. to
start/stop the app) and run in the foreground (i.e., with the app always displayed), which is a
barrier to continuous monitoring. Similarly, wearable such as smartwatches and insole are
available but not as broadly adopted as smartphone and less likely to be used by individuals over
50 (Chandrasekaran et al., 2020). The nature of this project is to gain insight into the day-to-day
level of physical activity, implying that the monitoring should be non-intrusive, seamless and
wholly integrated into the user's lifestyle. The users should not be burden with smart wearable
nor restricted to holding the phone in specific positions, and any app running should have
minimum battery performance and storage impact. All these apps require user intervention (i.e.
to start/stop the app) and run in the foreground (i.e. with the app always displayed), which is a

barrier to continuous monitoring.

Bespoke apps have been developed to support specific studies. A study has developed a custom
app running on LG smartphones (Android OS) to use a variety of smartphone sensors to develop a
human activity recognition system able to recognize 15 activities with high accuracy (Khan et al.,
2014). A study has demonstrated that data recording apps can be developed as shown with
MyHealthAssistant, which retrieves data from sensors worn close to the body (Seeger et al.,
2015). The performance review shows that an app can be designed to run background data
processing that does not require user intervention (e.g., to start and stop the logging). Such
background running apps can be developed without inducing bias in the data recorded, as shown
in a systematic review of the effect of a digital intervention on the physical activity of people with

inflammatory arthritis (Griffiths et al., 2018).
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2.5 Project Hypothesis

In summary, the force load on the lower limbs resulting from physical activity plays a critical role
in the well-being and evolution of musculoskeletal diseases. Too little might lead to osteoporosis
and too much could lead to osteoarthritis. Therefore, the recommendations should be tailored to
fit the patient’s needs and daily lifestyle. However, the amount of physical activity is currently
assessed based on patients reporting, typically biased as being self-reported, and mechanical load
is measured only in dedicated facilities or via implant. Fitness trackers allow continuous
monitoring of sensor movement but the commercially available solutions do not focus on people
with limited movement capability and the stress and load caused on the bones and joints is not

monitored nor quantified outside of clinical setting.

The hypothesis of this project is that smartphones can be used to assess the amount of physical
activity performed and provide objective and valuable insight for patients diagnosed with
musculoskeletal diseases. The novelty is using smartphones, as affordable access to the
technology for continuous tracking, to continuously estimate the load rate on lower limbs in

patients’ daily routine and natural environment.

The primary objective is to validate that smartphones can be used as surrogates to estimate lower
limb loads. The secondary objective is to validate the ability to continuously monitor
musculoskeletal patients' physical activity outside the clinical setting and for an extended
timeframe. An additional outcome is to evaluate the viability of the method for further healthcare

studies to correlate load rate and physical activity, e.g., with disease activity.
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Chapter 3  General Methodology

3.1 Study design

The project aims to evaluate the physical activity estimates obtained from smartphones
considering the disease condition of patients recruited within the NHS. Therefore, the protocol
has been approached as medical research (Kapoor, 2016), however, without intentions to
experiment or treat patients and with no causality to the disease condition and activity expected
as a result of taking part for the participants. The focus is to collect prospective data (load rate
estimate), so this project is defined as a pilot (Leon et al., 2011) epidemiological observational

study.

The objective is to validate the developed methodology and framework, which could be applied
to full-scale clinical trials and experimental studies. The studies have been designed to evaluate
the feasibility of the process's critical steps, the project stakeholders' management (clinical and
patient), and the time and resources required for future clinical studies. A PPl session has been
conducted with rheumatoid arthritis patients to validate the benefits of the study capturing actual
patient feedback. Clinicians' and patients' points of view have consistently been tracked, but this
is not a clinical study nor trial, so there is no need for a control group nor to randomise the cohort

of participants.

The key details for each study are summarised in table 2. Study 1 (Chapter 4) served as the first
end-to-end proof of concept (POC) to identify the key challenges. Using a methodical triangulation
(Bekhet and Zauszniewski, 2013), both quantitative and qualitative data were collected
respectively from smart devices (Smartphone and Fitbit) and self-assessed by recruited

participants diagnosed with rheumatoid arthritis (questionnaire).

The consequent activities have then been defined to validate critical aspects of using
smartphones to estimate load rates. Study 2 (Chapter 5) compares the load rate estimates from
smartphones and smartwatches with uniform data collection (i.e. smartphone power save turned
off). Study 3 (Chapter 6) compares the variations of real-life sampling, in clinical trial conditions
with osteoarthritis participants, with the physical activity recorded using Fitbit. Study 4 (Chapter
7) evaluates the trends of physical and disease activity that can be recorded, in real-life
conditions, from the personal smartphones (as opposed to secondary device) of participants

diagnosed with rheumatoid arthritis.
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Study Participants Devices Sample Data collected
9 patients
. diagnosed with . Survey before session
PPI Session Rheumatoid Sony Xperia 1 Compact 1day Feedback during session
Arthritis
5 patients Fitbit HR Fitbit Daily step count summary
Study 1 diagnosed with Sony Xperia Z1 Compact 6 weeks Raw accelerometer data stored as .txt files
v Rheumatoid preloaded with RApp v1.0 Processed Load rate mean stored in SQL
Arthritis (window=10s, interval=20s) database
10 participants sony Sn?artwatch 3 Smartwatch & Smartphone
X e Sony Xperia Z5 Compact .
Study 2 with no specific . 7 days Raw accelerometer data stored as .txt files
. preloaded with OApp v1.0 .
conditions ) . Processed Load rate mean in SQL database
(window=5s, interval=55s)
60 patients Fitbit Flex 2 14 days Fitbit Daily step count summary
. P . Samsung A5 preloaded with (7+7,2 Processed Load rate mean stored in SQL
Study 3 diagnosed with R
" OApp v2.0 (window=5s, months after database
Osteoarthritis . L
interval=15s) injection) Google API step count
3 patients .
diagnosed with RApp v2.0 |nst:t,1||ed from Processed Load rate mean stored in SQL
Study 4 . Google Play (window=5s, 3 Months
Rheumatoid interval=15s) database
Arthritis B

3.2 Ethical approval & Participants

Table 2: Study summary

Although this project is not a clinical study, NHS approval and additional documents, including the

patient information sheet and patient consent form (Study 1 and 4), have been reviewed, along

with the study protocol, and approved by London Stanmore’s ethics committee (REC reference:

16/L0O/0182; IRAS ID: 192803). The Faculty of Engineering and Environment Ethics committee at

the University of Southampton has approved studies 1 and 4 (ERGO ID: 18061). Study 2 uses

datasets generated as part of a project (Nazirizadeh, 2018) approved by the University of

Southampton’s Faculty of Engineering and Environment Ethics Committee (n0.30213, see

Appendix B). The Northern Sydney Local Health District HREC has approved study 3 (Reference

number: LNR/17/HAWKE/370). No ethical approval is required for activities solely focused on app

development and testing.

Several variables and formulas are used in clinical studies to accurately define the minimum

sample size of participants required (Charan and Biswas, 2013). However, this project gathers

prospective data, so the number of participants recruited in each study has been defined to focus

on the particular point of interest evaluated. The participants in the PPl session were adults

diagnosed with rheumatoid arthritis, recruited from an existing research group for a biotherapy

project. Inclusion criteria were defined for studies 1 and 4 to recruit participants aged above 18

years old, diagnosed with rheumatoid arthritis and willing to take part in the study for the entire

duration (6 weeks for study 1 and 3 months for study 4). No aspects of disease activity were of
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interest for study 2. So, inclusion criteria were defined to recruit healthy participants who were
willing to participate in the study, who were above 18 years old and who were without
neurological, systemic illnesses or other physical disabilities that may have limited their mobility.
The cohort for study 3 were patients over 50 with symptomatic, radiographic knee osteoarthritis
recruited as part of clinical research before and after knee injection (Yu et al., 2022). No exclusion
criteria were specifically included but the scope of study includes the use of smartphones which is

naturally not appealing to individuals with negative perception on technology.

RA patients were recruited from the rheumatoid arthritis population treated at Southampton
General Hospital, and patients were screened during weekly clinics at the hospital. Recruiting
patients as part of a research study requires GCP (good clinical practice) training at Southampton
General Hospital. Access to patient notes (i.e., NHS paper-based records) requires obtaining a
“Research passport” (see NHRA docs) to track the consent date, follow up and end of
participation in the study. Patient participation is also recorded electronically through EDGE
(Edge, 2018). All face-to-face interactions with patients (consent, follow up and end of study) are
done within the Clinical Research Facility of the Southampton General Hospital in the presence of

at least one nurse.

3.3 Equipment

Smartphones

Smartphones are used for their convenience (low-cost and broadly used) of access to
accelerometer sensors. Android offers the most extensive range of devices and has the broadest
portion of users, which makes it easier to obtain the technology. Therefore, iPhones have
intentionally not been included in this project. Android-based devices that include Samsung S7
Edge, HTC M8, and HTC M8 mini have been used for development purposes, and Sony Xperia Z1
Compact, Sony Xperia Z5 Compact and Samsung A5 have been provided to recruited participants

(Study 1, 3 and 4).
Smartwatch

Android also provides a range of wearables that includes smartwatches. In this project, we used
the Sony Smartwatches 3 (Study 2) to record accelerometer data using Google Android Wear 2.0

API.

Fitbit
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Fitbit devices are wristbands that measure daily step counts and physical activity. Considering the
recent commercial grasp it has amongst the broader population, these were used as a reference
and electronic, physical activity baseline. Fitbit uses proprietary algorithms that are not publicly
available, and the review of their performance is not part of this project. In the context of this
study, we accept these as being a reliable measure of performance already validated in other

studies ((Adam Noah et al., 2013) ; (Diaz et al., 2015); (Dontje et al., 2015); (Takacs et al., 2014).

Fitbit HR (Fitbit, 2016) were used for Study 1 and Fitbit Flex 2 in Study 3. As of the beginning of
this study, Fitbit provided access only to processed data (e.g., step count) but opened their APIs
on 2018 models (Versa and lonic). It should be noted that while the use of Fitbit’s APIs is not part
of the scope of this project, raw Fitbit accelerometer data could be considered for future work
and could bring commercial value, e.g., in the context of comparative data analysis paired with

data recorded via smartphones.

3.4 Smartphone considerations

Data collected using commercially available devices (Fitbit and smartwatch) are used as a
benchmark, and disease activity data are obtained directly from patients using self-assessed

guestionnaires.

The primary focus of work is on evaluating the physical activity estimated using smartphone
accelerometer data. So, designing a specific app provides a better user experience that increases
the retention of the app. This approach also dramatically simplifies the ability to obtain ethics
approval and expand the possibilities for further development, e.g. for commercial purposes by
adhering more strictly to the UK regulation and guidelines on medical devices that have been
extended to the medical apps (Gov.uk, 2018b). This section details the implementation of the

monitoring framework resulting in two smartphone apps that are Rapp™ and Oapp™.

3.4.1 Smartphone architecture & sensors

The architecture of the smartphone combines hardware and software components at various
levels (see fig 5). As well as the screen and overall casing, the hardware consists of integrated
sensors that are used for multiple functions, such as adjusting the operating conditions and user
experience (Abiresearch, 2019), and the trend shows that more sensors are included to expand
the use case to fitness, gaming or security (Qualcomm, 2014). Chipsets manufacturers provide
their proprietary software stack (middleware) to manage the multiple technologies supported,
such as the radio protocol (e.g. Qualcomm or Apple), the Wi-Fi (e.g. Texas Instruments) and

Bluetooth.
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Figure 5: Smartphone architecture and sensor growth trend

The overall user experience and front end are based on the OS used (e.g., Android, Apple,
Blackberry) and manufacturers (e.g. HTC, Sony, Samsung...) design and build their devices based
on the hardware components supported, e.g. on Android (Google, 2018a); Apple combines the
requirement and support of iOS along the iPhone specifications (Apple, 2018). Smartphone
manufacturers typically add a proprietary software layer to customise further the user
experience, such as “HTC Sense” or “Samsung Experience”, which must comply with the OS
provider regulations (e.g., obtain Google Technical Acceptance). A smartphone app is specifically
developed to be compatible with the targeted OS that can access other software (i.e. other apps)
and hardware components but is limited to the API capabilities. For this project, the smartphone
apps were designed only for Android, but the principles apply to any other OS (e.g. Apple,
Blackberry, and Windows).

Sensor data

Google’s Android platform provides a Hardware Abstraction Layer (HAL) representing the sensors
as virtual devices that can be accessed programmatically via API. As detailed in figure 6, Base
sensors are a single type of physical sensor, such as the accelerometer, gyroscope and
magnetometer; and Composite sensors are processed data, e.g. for activity (e.g. step count),

attitude (e.g. rotation vector) or interaction (e.g. wake up gesture) (Google, 2018b).

In this thesis, we focus on the accelerometer sensors to calculate the load rate and refer to these
as “raw”, but are readings calibrated using temperature compensation, online bias calibration and
online scale calibration, not raw output from the physical sensors. As per fig 6, the format of the
readings includes both the gravity and rate of change of velocity along the three sensor axes,

represented as time (t) and coordinates (x, y and z). Composite sensors combine sensors and
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processed data, but Android considers each sensor independently. The step count reading has

been later added (see study 3) and does not alter the overall logging (Google, 2016).

Description Unit__|Sensor event data Description
SensorEvent.values[8]|Acceleration force along the x axis (including gravity).
TYPE_ACCELEROMETER mfs*  |SensorEvent.values[1]|Acceleration force along the y axis (including gravity).
SensorEvent.values[2]|Acceleration force along the z axis (including gravity).

SensorEvent.values[@]|Force of gravity along the x axis.
TYPE_GRAVITY mis?  [SensorEvent.values[1]|Force of gravity along the y axis.
SensorEvent.values[2]|Force of gravity along the z axis.
SensorEvent.values[@]|Rate of rotation around the x axis.
TYPE_GYROSCOPE radls |SensorEvent.values[1]|Rate of rotation around the y axis.
SensorEvent.values[2]|{Rate of rotation around the z axis
SensorEvent.values[8]|Rate of rotation (without drift ) around the x axis.
SensorEvent.values[1]|Rate of rotation (without drift compensation) around the y axis.
SensorEvent.values[2]|Rate of rotation (without drift compensation) around the z axis.
SensorEvent.values[3]|Estimated drift around the x axis.
SensorEvent.values[4]|Estimated drift around the y axis.

X SensorEvent.values[5]|Estimated drift around the z axis.

SensorEvent. values 0] |Acceleration force along the x axis (excluding gravity).
TYPE_LINEAR_ACCELERATION mis?  [SensorEvent.values[1]|Acceleration force along the y axis ing gravity).
SensorEvent. values 2] |Acceleration force along the z axis (excluding gravity).
SensorEvent.values[0]|Rotation vector component along the x axis (x * sin(6/2)
SensorEvent.values[1]|Rotation vector component along the y axis (y * sin(6/2)).

TYPE_GYROSCOPE_UNCALIBRATED |  rad/s

TYPE_ROTATION_VECTOR
N N Unitiess SensorEvent.values [ 2]|Rotation vector component along the z axis (z * sin(6/2)).
SensorEvent. values[3]|Scalar component of the rotation vector ((cos(872))
TYPE_STEP_COUNTER St sensorEvent. values[0] Number of steps taken by the user since the last reboot while
i eps ) the sensor was activated.

Source: Google, 2018b

Figure 6: Android sensors (Google, 2016)

Gyroscope data could be helpful for smartphone positioning but not used in this project, as
accelerometer data provide the same insight. GPS data could also be helpful, e.g. to estimate
sunlight exposure or to track the distances and routine. However, GPS is not a sensor and uses a
different reporting mechanism (like the camera, touchscreen, and fingerprint). GPS requires
satellite coverage which limits the capability to gather data indoors and raise practical issues with
low mobility and sedentary users. Besides, the tracking of users ‘location might raise ethics and
privacy concerns, so GPS data was not used, and the project focused on estimating mechanical

load from accelerometers data.

3.4.2 Software development lifecycle

The research team continuously measures the results and performance of the apps at various
stages of the development, which allows verification of the correct implementation of features
and fixes used for extended period, unlike studies limited to specific timeframes and limited by
protocol. The traditional Waterfall methodology follows sequential phases from requirements to
design, implementation, verification, and maintenance. Considering that this project is a pilot and
that various requirements might change, it has been decided to follow an Agile methodology

which permits flexibility in code changes and be reactive to issues found.

For research purpose, the code does not need to be optimised but follows an Agile methodology
using Sprints. Each sprint defines the functionalities and blocks of code required, which are then

tested and validated (or not) as part of each study.

As shown in figure 7, we use the main branch that includes all the code changes; the feature

branch is to work on specific features that might include bugs or take longer to verify; the release
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branches are the code version deployed to users, i.e. used for the study. Git is a code repository

that allows functionality, development and to revert through code branches (see Appendix L).

Feature
branches

m Branch/Fork merge

®—>®  Branch/Fork out

Figure 7: Branching strategy

The version of code changes is tracked with two digits (e.g., 1.5) indicating major feature release
with the first digit and less significant changes or bug fixes with the second digit. Rapp™ went
through multiple versions to develop the user interface for disease activity score (DAS),
questionnaires and the first implementation of continuous monitoring. The first version (i.e.
Rapp™ v1.0) has been used for the patient and public involvement (PPI) session and improved in
study 1. Rapp™ v1.0 has then been forked out to an Oapp™ branch where modifications have
been made to the user interface, including fixes to the continuous monitoring and add support for
Android Wear (i.e. smartwatch); resulting in Oapp™ v1.0 which has been used for study 2.
Following the observations with both variants (study 1 & 2), monitoring of step count has been

added along layout optimisations for Oapp™ v2.0 (study 3) and Rapp™ v2 (study 4).

App coding environment

Throughout this project, an app refers to a program that developed for smartphones. Advanced
integrated development environment (IDE) such as Xamarin allow building mobile apps across
platforms (i.e., Android, Apple and Windows) using C# as coding language. However, these
solutions rely heavily on APIs and consequently dismissed to ensure more control over the

sensors and data layer used.

Android is a Linux based Operating System that considers each app as different users. Android
apps are coded in Object-Oriented Language (e.g., Java, C++) and compiled through Android SDK
into Android packages (APK) that can be installed on Android devices. Any integrated

development environment (IDE) can be used, and Eclipse was initially used but migrated to
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Android Development Tools (ADT), as seen on figure 8, to benefit from in-depth features such as

debugging tools, code version tracking and integration with GitHub.
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Figure 8: Screenshot of Android Development Tool (ADT)

Apple follows a similar approach but with critical differences such as coding language being
Objective-C based with the possibility to use Apple’s coding language (Swift), and the IDE (Xcode)
runs exclusively on Apple OS devices (e.g. iMac, MacBook) to be able to compile the code loaded

onto iOS devices (i.e., for iPhone, iPad...).

App architecture

Smartphone apps are typically implemented in blocks of code that define specific behaviour and
entry points of the app for the user or the system. Figure 9 details the components used for this
study. The Android API defines four fundamental types of components that each have their
lifecycle and own use case. Activities usually are the visual components run in the foreground
such as the main view or any of the child views that the user would navigate to; Services are used
for tasks running in the background that do not require user interventions; Broadcast receivers
allow interaction with the app by the system, outside of the regular flow triggered by the user;

and Content providers manage the file system.
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Blocks of code Class extends Activity Class extends Service & IntentService

( { Service launched
-
~ | onCreate() | | onCreate() |
| onStart()llolnRestart() | | onStartC:mmand() |
| onResume() |

i

Service logic
Service is running

Monitoring | |

Auto-upload onPaILfse() |
| onStop() |
Storage & T
| onDestroy() | | onDestroy()

Sensors On-board

processing M

Accelerometer

Service stops running

Step count

Figure 9: App architecture & Lifecycles

The continuous background monitoring and data upload are coordinated through a series of
Android Services as detailed in figure 10. The ServiceManager handles the coordination of
services and once started, verifies the settings (e.g., window, interval) to define the monitoring
configuration and trigger SensorLoggingServices which oversees collecting the samples within the
specified window, CPU frequency and specified format (i.e. raw and SQL entry). The scheduling of
sampling (i.e., interval) and uploads is managed through Alarms which will trigger the

corresponding Services.

SensorloggingServices ] AlarmReceiverLogging
JftimeSet > time to upload to server Start |
Logging . i onstart(f onReceive
v __— Notification /fwindow> duration of logs for(window, cpuSensitivity)( Stan(éi(m,m ingServices)
\ — /lcpuSensitivity > CPU frequency startListener()} BEINg
/finterval > frequency of logs 1 t
® T ® =
vae AL ¥ T | onstop()l AlarmReceiverUpload
€ Seftings € Settings erviceManager | start(Al verLogging(interval)) )
onstart{){ stopService() onReceive(){

notification.start() start(UploadService)

start(SensorLoggingServices)
start(AlarmReceiverUpload(timeSet)) startListener(){

} accSensor.registerListener() Uploadservice
saveToFile()}
onstop(i ) onStart(){
notification.stop() startFTPConnection()
stop(SensarLoggingServices) stoplistener(){ uploadLogs()
stop(AlarmReceiverLogging) accSensar.unregisterListenerf) updateDatabase()
} } }
RAPP Enable Logging Upload every 24hours
(foreground)  (background) (background)
Timeline i
Main !

Questionnaire, Joint count...

Thread | y

T | I I
wingow | interval | window | | windew | interval
| | | | |

|

! |
| | |
Loggi | | ' ;
T;fg;f Dﬁlﬁ) Sleep >Dﬁin_qr>l \?Iﬁ!n_q')'i Sleep_ > LogsmgSErvly
|
i
|

dateset

Upload \

Thread | Upload Service

Figure 10: App lifecycle
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The user interactions are defined as foreground activities designed considering the User Interface
(Ul) and User Experience (UX) that are respectively the visual layout and overall navigation.
RApp™ and OApp™ have been developed as two variants of the same app with front end designed
respectively for OA and RA patients. The Settings activity for both is hidden to the user and is
accessed by clicking three times on the right corner of the banner. OApp™ has been developed for
patients with Osteoarthritis with a single Home view that allows recording the intensity of overall

pain on an ad-hoc basis and from either the smartphone or the smartwatch as per figure 11.

G
° [ @
SUBMIT SUBMIT
1: Settings

2: OApp (Smartphone)
3: OApp (SmartWatch)

Figure 11: Settings and OApp™ navigation

RApp™ focuses on RA patients and launches an Activity upon opening the app built with
Fragments allowing users to swipe between Home and Pain tab. The Home tab lists the last 30
days of Questionnaire activity in a List of Buttons and each day opens either the daily summary (if

recorded) or the daily Questionnaire activity (if not filled).

Questionnaire Main Menu Joint count

Questionnaire:

List of questions to be answered
using a VAS scale

BSR: To be filled daily

RAPID3: To be filled once per week

Joint Count (DAS28):

Count of Pain and Inflammation to
be filled anytime (at least once per
day)

Sub-menu

SWIPE

Figure 12: RApp™ navigation

Patient Reported Outcome Measues (PROMs) are self reported questionnaires by patients to self-

assess their health status. The user interface included PROMs that do not require clinical
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dependancy (such as blood tests). The Questionnaire activity prompts the user with the questions
listed either as part of a questionnaire based on the British Society of Rheumatology (BSR), for the
daily report, or based on the routine assessment of patient index 3 (RAPID3) questionnaire, for
weekly reports (see figure 12). The user response is recorded through a visual analogue scale
(VAS) which is widely used and recommend for medical assessment (Harrison et al., 2009).
Preloading scores with the last value entered has been considered but dismissed not to influence
the patient when answering. Randomising the order of questions has been found to prevent
patients from responding without reading but has not been incorporated to retain the integrity of

using validated questionnaires.

- — - e Questionnaire.class
€ Rapid3 or BSR € Rapid3 or BSR
layout.inflate() Swipe.listener(){
4 usns P 4 swipeClass.load() if(rightToLeft){ goNext()
B0 © ¥4l G570 EELITCE O ¥ .4l G5 1703 }
€ Rapid3 or BSR € Rapid3 or BSR setQuestionnaire(){ else {goBack()}
if(rapid3Day){ //RAPID3 layout.update()
questionField.set() Seekbar.getValue()
seekbar.set() }
}else {//BSR
questionField.set() goNext(){
seekbar.set()} if(lastQuestion)
} {database.add(values)}
}
Seekbar.startListener(){
if(seekbar.moved()){store value} goBack({
if(firstQuestion(){doNothing()}
}

User Input

Figure 13: RApp™ questionnaire

The Disease Activity Score is a measured on 28 specific joints (DAS28) typically used by clinicians
has been designed to record the joint count of pain and swelling (Ozlem Pala, 2006). The Pain tab
launches the PainAndIinflammation activity, which follows the model of DAS28 paper forms used
at the hospital with a skeleton (see figure 14) and joints highlighted. However, the layout of the
app includes only the shoulders, elbow, hands, knees, and feet to focus on large joints. Patient’s
daily sensitivity and perception (e.g., chronic pain, used to a certain level of pain) might help to
correlate specific patterns of physical activity to flares. Subsequently an intensity factor, which is
not a validated criterion, has been introduced to the layout allowing to quantify, from 0 to 4, the

pain and swelling on each joint.
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PainAndInflammation.class

actionBar.remove()
background.load()
jointButtons.load()
swipeClass.load()

If (swipeRightToLeft or click inflamButton){
store value in inflamArray
//Inflammation
}else{
store value in painArray //Pain}

If jointButton.onClickListener()
{ coeflointUpdate()
inflamArray or painArray . Add()}

coeflointUpdate(){from 0 to 4}

If submiButton.onClickLstener()
{ database.add(array)
clear arrays
back to main screen}

Figure 14: RApp™ DAS28

3.5 Data collection & analysis

Data format

The app is tracking user input but also a significant amount of raw accelerometer data. As detailed

in figure 15, the design choice for Study 1 has been to save each sample of accelerometer data as

individual text files stored on the smartphone’s memory, and that can be accessed via USB

connection. For the following studies, the accelerometer data are processed for load calculation,

and the storage uses SQL databases which significantly reduces the amount of storage required

and improved data access security as the database can only be accessed by the app (unlike data

stored on the smartphone’s internal memory). This solution also addresses Big Data challenges as

a significantly lower amount of data is uploaded via secured HTTPS protocol to Microsoft Azure

storage tables (instead of raw files uploaded as Azure Blobs).
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5)
id Date IRapidB_id Pain_id Inflammation_id [Sensor_id
| ) Inflammation
id Date oint 1 oint X
| BSR/Rapid3 ]
M Date |Question 1 | Trvsactinn v |

Sensor Log path and file name:
/linternal storage/.../soton

Log e txt

Figure 15: Storage and data format
Data storage

The data recorded are stored on the smartphone (or SD card) which relies on the read/write
speed to hardware storage and generates a large amount of data for an extended period which
causes storage size limitations and corruption (see study 1). A remote solution is preferred to
prevent data loss caused by smartphone might malfunction or patients, e.g., not losing the device.
There are many factors to consider for online solutions such as data redundancy, backup, security,
data privacy regulations, scalability and deciding which components to implement. Cloud
solutions offered by Amazon (AWS), Google (Google Cloud) and Microsoft (Azure) provide a range
of products and services that natively address those concerns. Making use of these services is not
limited to a single provider and multiple combinations of services (see figure 16.2) and providers
could be used, e.g. to address cost-saving or to obtain a scalable architecture built with no single

point of failure as shown in figure 16.1.
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Figure 16: Cloud architecture

At the point of writing, Azure is the cloud provider with the most certifications (Microsoft, 2017a).
Azure’s recognition in the health industry is a particularly good fit for this project considering that
the data stored might include patient data (Microsoft, 2017b), which is particularly sensitive in
terms of approval by the NHS. The geographic location used for storage can be specified (e.g.

specified to the UK only) and defined to segregate resources (e.g. across study and applications).

Microsoft has granted this project with an allowance to experiment with the various components
available. Figure 16.3 showcases the elements used for an end to end solution using loT (internet
of things) devices tracking GPS locations (Microsoft, 2017d). The solution uses an loT hub that acts
as gateway for the data uploaded and Azure App Services to support the various API calls. All data
are stored in storage that facilitates the processing, analysis operations and real-time visualisation

and services for both business and consumer experience.

This project uses the same principles applied to the sensor data but mainly focused on using the
cloud-based blob and table storage component with most of the analysis done offline using
MATLAB. Raw sensor data recorded are stored as text files, in the internal storage of the phone,
and then uploaded as Azure Blobs, which is the preferred type for files (Microsoft, 2017c). Data
processed by the smartphones (i.e., calculated load samples) are stored, in the internal memory,
using Android SQL (Structured Query Language) database. Azure SQL is available, but Azure table
storage is more flexible and allows the same functionalities without the constraints associated

with relational databases.
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Further capabilities might include integration with other platforms, e.g. to aggregate other data
sources such as Fitbit or Garmin and could be achieved through commercial APIs. The value of

data visualisation could be optimised and made available to more than one system, e.g. through
the admin dashboard, purpose-fit layout for individuals and integrated with hospital records for

clinicians (Dixon and Michaud, 2018).
Data processing

Analysis of the data collected is a core part of the project and is being reviewed in relevant
section. Fitbit data were exported already aggregated as JSON file from Fitbit’s online portal.
Smartphone’s data were exported directly from phone storage (Study 1&2) and from Azure
storage (Study 3&4) using Azure storage explorer. Data processing was done through MATLAB and
Python. Power Bl was used for additional flexibility on the data visualisation. Data integrity in

sample extraction, file corruption and sampling errors are reviewed throughout the project.

Smartphones continuously generate sensors data which were captured in sample chunks. The
sampling for each study defines a window size (w), which represents the length or duration
covered in the sample; and an interval (i), which represents a gap or timer before capturing the
next samples. Accelerometer data are generated with a time (t) and coordinates along each axis
(x, y and z) with a value that ranges from -10 to +10 m/s2 on each axis. The load rate estimates
(LRE) are defined as the rate of change in load with respect to time, which is the body mass times

the physical quantity jerk. The infinitesimal calculus of the load rate is defined as:

df  da

f=%="a

The estimated mean load rate magnitude (in kg m/s3) is defined as:

Py t(i=n) Axt=i+1 — Axt=i 2 Ay t=i+1 — Ay t=i 2 Azt=i+1 — Az t=i 2
T mx (G ey (G 2O (et e
At n

where ax = is the acceleration in x direction, a, = is the acceleration in y direction, a, = is the

acceleration in z direction, n = the number of data samples at interval At (i.e., 1/sample frequency).
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Chapter4 RAppl: Proof of concept with rheumatoid

arthritis patients

This chapter covers the steps undertaken, considering the input from rheumatoid arthritis

patients, to identify and assess the feasibility and key challenges of the project.

4.1 Introduction

The symptoms of RA patients develop gradually; therefore, monitoring the disease activity is
critical and achieved using score-based assessment. The score calculation considers the lab results
of blood samples, a joint assessment by the clinician, and a questionnaire-based assessment. The
aim for patients is to become less dependent on medication, but the trend of the score drives the
dosages. Increasing or higher scores imply that the patient’s condition is getting worse, which can
signify that a change might need to be introduced, e.g., an increase or new medication should be
used. A trend in remission might show that a patient is responding well, e.g., that a particular

treatment is working or could be lowered.

How to calculate DAS28 scores:

1. Performa swollen and tender joint
examination noting each affected joint on
Form A, add all of the swollen and tender
joints and record the totalsin the
appropriate boxes on Form B.

2. Obtainand record the patient’s erythrocyte
sedimentation rate (ESR) in mm/h in the
appropriate box on Form B. Note: C-reactive
protein (CRP) levels may be used as a
substitute for an ESR.

3. Obtainand record the patient’s general
health on a Visual Analog Scale (VAS) of 100

Metacarpophalangsal (MCP)

1
2
3
4
5
Proximal Inesphalangsal (PIP) 1
2
3
4
5

) mm in the appropriate box on Form B.
Subtonl .
Note: DAS28 calculations may be performed
ron -
_ without a VAS measurement.
4. Calculate the score using the formula at the
bottom of Form B.
FORM B
swollen (0-28) DAS Score Interpretation: EULAR Response criteria:
>51 high disease activit
LG ; . . Y Present DAS | [DAS28 Improvement over time point
<32 low disease activity .
ESR (o CRP) X o >1.2 0612 <0.6
<2.6 in remission Moderat
VAS disease activity (0-100mm) 3.2 Good response, re:pz:was: No response
DAS28-0.56'yTTENDER JOINTS) + 0.28" [ 1 |
YTSWOLLEN JOINTS) + 0.70'LN(ESR/CRP) + 0.014°VAS 32.51 Moderate | Moderate |\ o nee
response response
Sousa: DAS-Sansm.ol. Avalable st hitpfurch - Visdex hirol Aocassed February 5, 2000 ’ ”
>5.1 Moderate No response | No response
response

Figure 17: DAS28 Form and EULAR response (source: DAS-score.nl (DAS-Score.nl, 2009))
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The Disease Activity Score 28 (DAS28) is a clinical index calculated by clinicians using a form
similar to figure 17 (DAS-Score.nl, 2009). The variables consider the measure of blood markers
ESR (erythrocyte sedimentation rate) or CRP (C reactive protein), the GH (Global Health) of the
patient and an assessment counting the pain and swelling across 28 joints. The trend of disease
activity is evaluated using the EULAR criteria by comparing the current to the previous score. An
improvement lower than 0.6 is considered non-responsive and moderate otherwise. For DAS

lower than 3.2, a score improvement above 1.2 is regarded as a good response.

Several disease scorings exists, and the DAS28 scoring is the most widely used but considers a
weighted scoring and has to be performed in a clinical setting to run the blood tests. The SDAI is
an alternative that does not need to weight each variable and is calculated as a simple addition
(Smolen et al., 2003); the CDAI does not consider the response of APP/APR, which means that
blood tests are not required and provides the ability to conduct a disease activity evaluation out
of clinical environments. CDAI and SDAI are less accurate and do not replace DAS28, but their
validity has been demonstrated through various studies (Aletaha and Smolen, 2005). Recent
research has shown a positive correlation between DAS-28-CRP, CDAI and SDAI at initial
evaluation and SDAI and CDAI performing better than DAS for remission criteria (Dhaon et al.,

2017).

« DAS28 = 0.56 X VTJC28 + 0.28 x VSJC28 +
0.36 x In(CRP + 1) + 0.014 x GH + 0.96

« SDAI = TJC28 + SJC28 + PaGH + PrGH + CRP
« CDAI = TJC28 + SJC28 + PaGH + PrGH

= TJC28: Count of tender joints (0-28) * PaGH: Patient global health assessment

(from O=best to 10=worst)
+ SJC28: Count of swollen joints (0-28)

¢ PrGH: Provider (care provider) global
* CRP: Concentration of C-Reactive Protein (in health assessment (from O=best to

mg/dl, between 0 and 10) 10=worst

Figure 18: DAS28, SDAI and CDAI score calculation

Clinicians routinely use PROs (Patient-reported Outcome) which is recognised by the American
College of Rheumatology (ACR) as being a core component for providing the patient’s perspective
on their disease activity (Gossec et al., 2016). The GH value (Global Health) used in the DAS28
calculation is measured through either PGA (Patient Global Assessment) or PTGA (Patient Global
Assessment of Disease Activity), which can be used interchangeably (Khan et al., 2012). The PGA is
one of the most used PROs that can be recorded either by the care professional (PrGH) or the
patient (PaGH) by asking to grade their RA disease activity with a single value, typically between 0
and 10 (or 0 to 100) using a VAS (Visual Analogue Scale).
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The principle of using questions answered by the patients has been expanded, and the HAQ
(Health Assessment Questionnaire) is the first assessment developed to be completed by the
patient rather than the doctor through a series of questions. It is widely used to assess the
physical functionality (Bruce and Fries, 2003). Further questionnaires have been developed to
focus on other matters, such as the HAQ-DI (Health Assessment Disability Index), which has been
designed to measure the quality of life. The MDHAQ (Multi-Dimensional HAQ), also known as
RAPID3 (Routine of Patient Assessment Index Data), has been developed to include physical
function, pain, and global estimate, which are the three core data for RA (Pincus, 2007). The
RAPID3 score is calculated by filling in a form as per figure 19 (Rheumatology, 2014) and has been
compared to other disease activity indexes (Anderson et al., 2011). Studies have shown that
similar quantitative information to DAS28 and CDAI can be obtained (Pincus et al., 2010) with
equivalent values to DAS28, CDAI, and SDA in patients with lower disease activity (Kim et al.,
2014). The severity of the disease activity is interpreted using the cumulative score (or weighted
score in figure 19) and considered near remission for scores lower than 3, low for scores between

3 and 6, moderate for a score between 6 and 12 and high for a score above 12 (up to 30).

HECK THE ONE BEST ANSWER. KO Lo R 10y How to calculate RAPID 3 scores:

1.PL TR F 5 K 15 TIME:
: 1. Askthe patientto complete questions 1, 2
- WITHOUTANY | WITH SOME | wami MUCH UNABLE ' 1 &
o s
v Dress yowself, including tying shoslaces and = : .. 5 :
-0 1 —2 —3 . Question 1: Patient’s functional status (FN).

00 160
2

daing buttans? 4al3 1963

17 W7 . .
B R oo —0 L e Add up the scoresin questions A-J only (K-
Liftafull ¢ k th? ] 1 2 3 a2} W73 i .
eibliabe el ol = — =i = 7 27 M informative but not scored formally) and
d. Walk ourdoors on flat ground? 0 1 2 3 030 Hal N
1033 343 use the formula on the right to calculate the
& Wahand dry your entire body? __0 1 __2 __3 11e37 27
f. Bend down to pick up dlothing from the floar? 0 —1 —2 3 :i”:: ;:2 formal score (0'10)'
¢ T egubar et on and off _0 1 _2 3 ks 37 3. Question2: Patient’s pain tolerance (PN).
hGeinmdosdacubsmnophy | 0 1 2 | _3 | Enter the raw score (0-10) in the box.
SN kol 0 e IR T o L S B O —! —2 —3 4. Question3: Patient’s global estimate
. Pan o 1 ¢ and :
Pt | —0 | —1 | —2 | 3 | s (PTGE). Enter the raw score (0-10) in the
k. Get 4 good nights dasp? _0 11 | 22 | __33 box.
L Dalvibilogrofmsyabengmvons | __0 | __11 | __22 | __33 | U™ e paninacomulative score: Add the total
n Dl vith feelings of depression ot fadling bhe? _0 11 22 33

= | e score (0-30) from questions 1, 2, and 3 and
use the final conversion table to simplify the
patient’s weighed RAPID 3 score.

NOPAIN BAINAS BADAS IT COULD BE
® & ® & & 0 0 0 0 0 O 0 O O O O B P PO OO

0 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 05 10 Scorelnterpretation:

0-1.0 Near remission (NR)
/ 1.3-2.0 Low severity (LS)
S0 000000 EONOOOOOOOOS 23-40 Moderate severity (MS)
0 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 K0 85 90 95 10 43-100  Highseverity (HS)

Figure 19: RAPID3 Score (source: American College of Rheumatology (Rheumatology, 2014))

Protocols and tools for monitoring of RA disease activity are already well established but generally
must be run in a clinical environment which is restrictive. The assessment of joints measures their
state at a given time (the patient’s visit) but not the level of mobility routinely undergone as part

of the patient’s lifestyle. The motivation for this study is to evaluate how smart devices could
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complement the clinician’s visibility of a patient’s physical activity routine, beyond the details

reported by a patient, through remote monitoring.

4.2 Aim & Objectives

4.2.1 Aim

This study aims to investigate the feasibility of using smartphones as a way to monitor RA
patients’ physical activity in actual life conditions and the correlations that could be drawn with

their disease activity.

4.2.2 Objectives

The objectives for this study are:

1) Evaluate patients’ perception of using smartphones to monitor their experience with the
disease.
2) Assess whether smartphone sensor (accelerometers) can be used to monitor patients’

physical activity without proactive user interventions continuously.
For this study, RA patients have been engaged in two parts:

1) Feedback and review through PPl session organised with RA patient screened from
Biotherapy group

2) Data capture, in natural conditions of usage, recruiting 5 RA patients over six weeks.

4.2.3 Hypothesis

If patients use a smartphone, it is possible to use the smartphone’s capabilities to monitor their

physical and disease activity remotely, outside of a clinical environment.

4.3 Methodology

43.1 RApp™ design

Blood tests require a clinical environment and healthcare professionals. However, patients can
perform joint counts and validated questionnaires by themselves. Diaries and productivity apps
already exist (see chapter 2). So, the front end of the app has been designed specifically to allow

capturing these self-assessments on a more frequent basis. OA and RA have different
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requirements, and RApp™ is a proof of concept (RApp™ v1.0, see chapter 3) used to get feedback
on the Ul, which includes DAS28 and RAPID3 for self-assessment, by RA patients. OApp™ provides
a Ul to record pain using a VAS. Additional features such as social media, productivity and
gamification might make the app more engaging and increase the user retention rate but have

been dismissed as not directly serving the purpose of this project.

An indication of successful app development would be allowing the evaluation of the correlation
between disease activity and physical activity outside of a clinical setting. The app developed
continuously monitors the load rate to draw an overall physical activity baseline, not specific to an
activity type or exercise program. Subsequently, the framework could be applied to a broader
range of diseases where continuous physical activity monitoring might be a key indicator.
Patients’ impressions and feedback are consistently captured along this project, on the
methodology as well as the design of the user interface to aim at constructing an intuitive

experience for patients.

ﬂ Swipe — swipe between tabs

—- Click— opens new window B ote
Y MEES=S= _ Upload data
: - \.L - Settings
7 Rapp" ICON On N Vesterday I 1& _ Start/StOp
the desktop os/0272015 Sensor
= Monitoring
IEEEEEERN

Dress yourself, including
and

Trend Overview —
Generated to
overview self
assessed reports
and sensors
monitored data

ces
doing buttons?

* k

Getin and out of bed?

Tk ok w

Lift a full cup or glass to
your mouth?

RAPID3 - Daily report - Pain/Inflammation—

Questions with Review of self Self-assessment of

rating from 0 assessment (rapid3 and affected joints with

to4 pain/inflammation intensity from 0 to 4
points)

Figure 20: RApp™ Layout (PPl session)

4.3.2 Patient recruitment and study procedure

As described, the front end of RApp™ has been explicitly developed for RA patients and includes

DAS28 joint count and validated questionnaires. Following INVOLVE recommendations

53



RAppl: Proof of concept with rheumatoid arthritis patients

(healthtalk.org, 2017), patient and public involvement in research is a way to drive the
investigation “with” rather than “to”. So, a PPI group session was conducted for the first part of
this study to gather RA patients’ impressions. Participants recruited for a Biotherapy study have
been used for convenience and representation of a mixed population of RA patients with no
specific interest in smartphones or technological aspects of the project. The group was composed
of 9 patients (8 females and one male), aged 36 to 65 years old and diagnosed with rheumatoid
arthritis for 4 to 23 years. A questionnaire (see Appendix A) was sent to participants before the
session to capture their perception before seeing RApp™. The first 20 min spent passing a Sony
Xperia smartphone preloaded with the beta version of RApp™ around the group, without
introduction or presentation, to gather raw feedback on the usability. The remaining 20 min

focused on reviewing the comments to draw several conclusions and refine the app requirements.

The second part of this study is a pilot, observational and quantitative, focusing on comparing the
trends of physical activity recorded via smartphones and Fitbit. Each participant wore a Fitbit HR
wristband and used a Sony Xperia Z1 Compact preloaded with RApp™ v1.0. The Faculty of
Engineering and Environment Ethics Committee at the University of Southampton approved this
study (ERGO Ethics ID: 18061). The protocol and additional documentation, including the patient
information sheet and patient consent form, have been reviewed and approved by London
Stanmore’s ethics committee (REC reference 16/L0/0182). Inclusion criteria were defined to
recruit participants diagnosed with rheumatoid arthritis, willing to participate in this study and
above 18 years old. Participants were five adults diagnosed with rheumatoid arthritis (female n=2,
male n=3; aged 26 to 67 years old) recruited from the University Hospital Southampton NHS
Foundation Trust database. The clinicians and nurses screened participants during Monday clinics,
focusing on patients already or newly diagnosed with rheumatology arthritis. Patients interested
were provided with a copy of the Participant Information sheet to allow a minimum period of 24
hours for review. Interested patients were invited for an initial interview at the Clinical Research

Facility (CRF).

This first face-to-face meeting was focused on introducing the project and gathering initial
thoughts about using the technology and about attitudes toward trust in technology and
healthcare more generally. Once the consent form was signed, participants were provided with
instructions and contact details in case of questions or issues. A loaned Fitbit wristband and
smartphone preloaded with RApp™ v1.0 were then handed over to be used over the recruitment
period. Each patient visit was logged in the patient note stored at the hospital, with the follow-up
meeting and closing session scheduled to ensure that the six-week timeline also fitted with the
patient’s diary. Follow-ups were used to back up collected data, address questions, and gather

continuous feedback. The closing meeting was used to gather participants’ input on the overall
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user experience. It included questions about post-experience attitudes to trust in the App and its

impact on care delivery.

433 Data collection

For each patient, the data recorded on the first day has been dismissed and considered for the
patient to get familiar with the instructions and for consistency of the datasets. Participants
completed daily reports through the user interface of RApp™, specifically in the morning, usually
when symptoms (e.g., pain) are most distinct. The daily report includes a DAS28-based joint self-
assessment of pain and swelling, an MDHQ based questionnaire (BSR) during weekdays and
RAPID3 weekly to fill in using VAS for each question. Patients were also invited to record joint
assessments whenever experiencing significant pain or inflammation through the skeleton-based
user interface, which allows highlighting of pain and swelling for each joint as well as the level of

intensity with a scoring of 0 to 4 (see figure 20).

The monitoring aimed at covering a third of the continuous duration in a day (i.e., 20 sec per min)
set to record data samples of 10 seconds (window=10) every 20 seconds (interval=20). The
samples have been stored in raw format on text files on the internal storage of the phones along
with the daily self-reports and uploaded every day at 23h59 in a daily batch of data to Azure Blob
storage. Additionally, the files and reports stored in the smartphone were extracted mid-way
manually and at the end of the recruitment period during the interviews with patients. Fitbit daily

step count has been exported as an excel spreadsheet through Fitbit’s online portal.

434 Data Analysis

For each patient, we evaluate the performance and accuracy of the app logging in the context of
continuous monitoring for the recruitment duration (6 weeks). The daily amount of samples
collected is compared to the amount expected to be collected, which, considering the settings
used, should be two load rate values per min (i.e. two files per min, 2880 files per day). Periods
without samples recorded indicate app and smartphone issues but recorded null values suggest
that the smartphone is in a static position (e.g., on a table). The integrity of each sample is
assessed by comparing the duration collected to the window set (i.e., each sample should contain
~10 sec of accelerometer data). Samples with a significantly wider window include multiple
samples but have been considered corrupted, as there is no clear way to weigh each sub-sample.
The Fitbit report is used as a baseline to identify peaks and drops of activity that could be used as
data points of direct correlation. It should be noted that Fitbit recommends doing 10k steps per

day (ROSENBAUM, 2019), which is widely encouraged through user interface and notifications.
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However, the number of steps performed depends on each patient’s routine and no specific
amount of steps was recommended nor set as expectation. With the Fitbit report limited to daily
step count, the load rate values have been calculated through MATLAB for each sample and
summed into daily means, allowing comparison of the trends of physical activity tracking over the
recruitment period. The visualisation of data has been implemented through Power BI

dashboards.

As detailed in the literature review, scores are used to evaluate disease activity, and,
subsequently, the daily reports are used to identify significant peaks of disease activity, pain and
inflammation reported by the patients that can be compared to the fitness baseline recorded.
RAPID3 score calculation allows interpretation of the disease activity (high for a score above 12,
moderate for a score of 6.1-12, low for a score of 3.1-6 and in remission for a score below or
equal to 3). The BSR questionnaire is a lighter version of MDHAQ, and so we considered the score
as the total sum from the questions, which is sufficient to draw a baseline while not being an
accurate scoring. Likewise, the DAS28 score allows the interpretation of the disease activity
(active for a score above 5.1, low for a score under 3.2 and in remission for a score under 2.6). The
user interface of RApp™ allows reporting of pain and inflammation with a level of intensity but
with the caveat of being limited to 10 joints (instead of 28). Therefore, the score used in this study
might identify peaks and monitor the most sensitive joints but is not a validated DAS28 scoring.
Joints 1,3,5,7, and 9 are the right shoulder, elbow, hand, knee, and foot; and correspondingly,

joints are the left shoulder, elbow, hand, knee and foot.

4.4 Results

44.1 Patients’ perception and feedback

Interacting with diagnosed RA patients is critical to understand how to capture their perception of
this study. One of the RA clinics at Southampton General Hospital (see figure 21) is conducted on
Monday mornings, where patient visits are typically scheduled and prioritised depending on

patients’ needs, from routine check-ups to injections or to be diagnosed.

The first observation while shadowing the interaction of healthcare professionals is that patients
diagnosed with RA often have other family members, parents, spouses, or partners, involved in
the disease monitoring and treatment. Secondly, it has been observed that medications and
prescriptions are thoroughly agreed upon between the clinician and the patient [see Annexe C].
The efficiency of medicines and dosages is assessed through a review of the blood test results but

also based on the patient’s inputs and referred to as an “experiment” asking questions such as
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“Should we try to lower/increase the dosage?” or “Should we try a different injection?”. Patients
appear to be informed, and their preference might overrule the most efficient remedy. During
one of the visits, it was observed that one of the patients wanted to stay on tablet rather than
getting injections, which may have been more effective due to potential side effects of hair loss.
These observations were significant indications that patients” engagement with RA disease is not
limited to the time spent in the clinic. It affects their day-to-day routine as well as their social
circle. In contrast, anyone has experienced catching the flu, getting healed and then moving on.
For RA patients, extensive self-learning and proactive symptom monitoring occur daily. So, these
observations were particularly encouraging and supported the thought that RA patients would be

willing to use their smartphones as a tool to help their disease monitoring.

Figure 21: Southampton General Hospital (Victoria House)

The PPI group session allowed interaction with RA patients in the context of a clinical study. The
first part of the pre-session questionnaire (figure 22) evaluates patients’ perception towards their
clinical visits and follow up and was worded in partnership with TRIFORM (TRust in IT: Factors,
metRics, Models) (Hooper et al., 2015). When RA patients were asked if they could recall their
disease activity (1.1 and 1.2), including pain and swelling, 100% of patients indicated that they
could remember details on the whole period, or at least the last month, since the previous visit.
When asked if they would like their GP/Rheumatologist to be able to monitor their overall status
between visits (1.3), 89% of patients responded that it would be useful for patients newly
diagnosed or with high disease activity as the gaps between visits can be long. Still, it is not useful
for patients in remission or with disease activity already under control. When it comes to
monitoring physical activity (1.4), 100% of patients expressed interest, e.g., to see the impact on

their disease activity, but not as an invasive metric that could dictate their day-to-day.
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The second part of this questionnaire (fig 23 to 25) focuses on patients’ relationships with
smartphones. 89% of patients already own a smartphone (2.1), more than half running on
Android OS (2.2), that they typically always carry with them or at least whenever being out of
their house (2.3). 86% of patients use a smartphone above the minimum size, larger than 4.7
inches (2.4), with apps for managing their everyday life (2.5) that include email, calendar, and
social media (2.6). When asked if an app could (2.7) and whether they’d be willing to use it to
support their arthritis (2.8), 100% were keen to or neutral based on not having enough details on
the usage. Specifically, the feeling is closely related to the disease activity, and not all patients
would necessarily be willing to have phones continuously tracking their physical activity (2.9), nor
might they be able always to carry it (2.10) as it also depends on the individual circumstances,
e.g., not possible when the workplace does not allow mobile. 86% of patients would likely (or very
likely) to use a smartphone to record their pain and activity (2.11), assuming that the user

interface is easy to use to supplement face-to-face consultations and not replace them.

The PPl session allowed us to capture patients’ feedback and impression on the app Ul layout as
much as usage point of view. A short introduction of RApp™ and the summary of answers to the
survey sent before the session is in Appendix B and the most relevant patient quote for each
question is listed in figure 26. The most frequent comment was that questionnaire and pain entry
are great, but the overall layout and navigation should be more explicit. A “fun” factor and
improved personalisation capabilities should be included for RApp™ to be perceived as an “app”
rather than a medical tool. The wording of the questionnaire (Rapid3), in American English and
aimed at consultations, are confusing for daily usage. Patients clearly expressed that they would
need a reason to use an app, and several suggested medication tracking as improvements. RA
patients with active disease are likely to be more responsive to using an app between visits but
might not want to think about and monitor their activity if they are healthy or in remission. After
seeing and testing the app, PPI participants understood how it could be used, which validated
recruiting patients to use it, and further feedback was captured as part of the face-to-face

interviews, which overall also received positive feedback.
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1.1 When you see your rheumatologist, can you recall how active your arthritis has been during the
period since your previous visit? How would your rate this from 0 to 57

Easy to recall when in remission

1 - can recall the past week in detail

5 - can recall the whole period in detail

&4 - the past three months in detail

2 - the past month in detail

5 - can recall the whole period in detail

1.2 When you see your rheumatologist, can you easily list areas of pain and inflammation during the
period since your previous visit? How would you rate this from 0 to 57

Easy to recall when in remission

5 - can recall the whole period in detail

5 - can recall the whole period in detail

2 - the past month in detail

1.3 Would you like your rheumatologist/GF to
monitord your overall status (including pain and
physical activity) between visits?

Mot sure

Mo

1.3 Additional comments?
w

1.4 Are you interested in how your physical activity
(e.g.. amount of walking) may influence your
arthritis?

Mot Sure

Yes this would be good as you do tend to wait until
your next consultation or make a Drs appointment and
sometimes you have been in pain for weeks and weeks
When there are long gaps between appointments it's
not always easy to realise when things have got worse,
Such monitoring could be useful when newly
diagnosed + where disease is not in remission + if
reducing medication

Mow that treatment is working well this seems less
necessary but when trying new medication this would
have been very useful,

Mot unless | was in a poorly condition again

Because my RA is so well controlled now, | do not feel
the need for this. However before this, | would have
liked this to happen.

14 Additicnal comments?

Feel it is important to be aware of impact of physical
activity on arthritis but not to allow it to control outlook
on life

It would show how things improve or get worse related
to exercise,

Figure 22: Pre-session survey questions 1.1 to 1.4 (9 RA patients)
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2.1 Do you currently have a smariphone (the type
of phone with a touch-sensitive screen)?

Mo

2.2 Which type?

Mot sure

iFhone Android

2.3 Do you wsually have your phone/smartphone with you?

4 - whenever you are out of the house

5 - all the time

2.4 How big is your phone/smartphone?

&4 inches

5.5 inches
4.7 inches

2.5 How often do you use smartphone apps to
manage your everyday life (e.g. calendar, email,
exercise, calorie counter)?

2 = unlikely

0 - never

& = likely

5 - very likely

Figure 23: Pre-session survey questions 2.1 to 2.5 (9 RA patients)
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2.6 If you do use your smartphone in that way, which apps do you use? Please list them here.

Social Media (e.g. Facebook, Instagram, Twitter) WhatshApp

Media (e.g. iTunes, Shazam, Kindle) Emall/Massagas

Internet le.g. Shopping, Browsing)

Google Maps/'Weather /
Banking/Bills

Exercise le.q. Straval

Calendar

2.7 Do you think a smartphone app could support
the treatment of your arthritis? How would you rate

2.7 Additional comments?

this from 0 to 57 3 answered at this stage as don’t know enough

As mmentioned previocuasly, regarding bein newly
5 - very likely

diagnosed+active disease+if reducing medication
Depends on the information on the app as you can
get a lot of info from the internet and arthritis care
groups

4 - likely [t would help with recerding pain & problems on a
regular basis

Until | know moere and how it works | need to keep
3 - neutral/not s... open minded

Would be useful to know what other factors, other

than medication affect level of flare-ups e.g, time of
manth, level of activity, type of activity, and alse
whether the effect of treatment is wearing off over
time or if other factors are making more of an effect

2.8 Would you be willing to use a smartphone app
to support the treatment of your arthritis? How
would you rate this from 0 to 57

& - likely

3 - neutral/not... N
2.8 Additional comments?

As above

Happy to, but can see times during early treatment
when it would have been much more useful. Just
logging treatment, niggles and unusual levels of
physical exercise only.

5 - very likely If in remissicn, would not ke useful

2.9 Would you be willing to use a smartphone app, which
continuously menitors and records your physical activity in

2.9 Additional comments?

relation to your arthritis? How would you rate this from 0 to 57 As above, feel it is important to enjoy 3 positive
cutlook and not allow arthritis to dominate my
2 - unlikely thoughts

| definitely weould if my symptoms were more
unstable.

I would have been willing to do this at certain

4 - likely 5 - very likely

times during treatment (i.e before it was
working properly)

If | felt my condition was in poorly state, as it
once was

3 - neutral/not sure

Figure 24: Pre-session survey questions 2.6 to 2.9 (9 RA patients)
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2.10 To record your physical activity, you would need to be
carrying your smartphone. Would you be prepared to do this?

2.10 Additional comments?

As above

3 - neutral/not sure | have my phone within my site most of the day
but not always physically on me - | don't mind
2 - unlikely occasionally having it in a pocket e.g. When |
leave the house, but | wouldn't necessarily want
it on my person all day...

I work in & secure unit at a hospital and mobiles
5 - very likely are not allowed

4 - likely If in remission, would not be useful - would
rather forget about arthritis + enjoy being
"narmal" partaking in fun activities

2.11 To support the management of your condition, you would
alzo need to input information about levels of pain and activity.
How likely would you be prepared to do this? As above

Az above+remaining aware of physical

211 Additional comments?

1 . i - . -
3 - neutral/not sure status+when to seek medical help maintaining

a sensible balance between health +outlook.

Distance maonitering could be useful ressource

but anly to support face to face cconsultations
: . not as a replacement.

& - likely 5 - very likely = drepla

Arthritis requires human contact to ensure both

physical +emotional well being.

Interface weuld need to be simple and easy to

use.

Figure 25: Pre-session survey questions 2.10 to 2.11 (9 RA patients)

Comments pre overview:

“I was expecting to receive more reminders to rest, do more or not”

“It feels a bit too clinical or being at school”

“The App should be more fun”

“It should be more user friendly”

“Feels too much like a diary”

“I'm already using myclinicaloutcomes.co.uk to track”

“I would like being able to press a button when it hurts and when it stops”

“How would patient benefit from using the app is not obvious if already at advanced stage. It seems more appropriate for
patients early diagnosed”

“Could we personalize the body” (George Clooney mentioned as a joke)
“Questions are not great and too long”

“What happens if | can’t take my mobile at work, would it still work remotely? This should be clearly taken into
consideration by anyone taking part in the project”

Comments post overview:

“Great but | didn’t see that”

“I didn’t realize we could switch between the pain and inflammation”
“There is no save button to record your today’s activity”

Figure 26: PPl comments pre and post an overview of RApp™

4.4.2 Patients using RApp™

The next part of this study consisted in getting the app used by RA patients. The smartphone

application (RApp™) has been preloaded on smartphones we loaned to the participants to use as
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a secondary smartphone, preventing them from transferring their personal accounts and SIM
card. Table 3 shows the patient details and participation timeframes. The cohort included females
(patients 1 and 4) and males (2, 3 and 5). The range of age was wide, with patients 1 to 5 being,
respectively, 67, 57, 39, 45 and 29 years old at the time of the study. Patient 1 was recruited for
six weeks, as expected, from 05/08/2016 to 16/09/2016, but duration varied due to schedule
conflicts to meet patients and retrieve devices. As a result, patient 2 has been recruited from
06/09/2016 to 06/12/2016 (3 months); patient 3 from 13/10/2016 to 06/12/2016 (8 weeks),
although no reports were completed after 06/11; patient 4 from 23/11/2016 to 16/01/2017 (7
weeks), although no Fitbit data recorded until the 07/12; and patient 5 from the 13/12/2016 to
02/03/2017 (10 weeks).

Patient Smartphone Recruitment
ID F/M | Age Xperia ID Use Start End Duration
1 F 66 1 Secondary 05/08/2016 16/09/2016 | 6 weeks
2 M 57 2 Secondary 06/09/2016 06/12/2016 | 3 months
3 M 39 3 Primary 13/10/2016 06/12/2016 | 8 weeks
4 F 45 4 Secondary 23/11/2016 16/01/2017 | 7 weeks
5 M 29 5 Secondary 13/12/2016 02/03/2017 | 10 weeks

Table 3: Patient recruitment summary
Interview results

The patients recruited were provided with contact details in case of issues. There were no
specific challenges in following the protocol or using RApp™ throughout the recruitment period
nor during the follow-up interviews designed with questions to drive patient feedback that were

approved for the study (see Annexe D).

Table 1 summarises the feedback when introducing the study. All patients expressed that RApp™
appeared easy to use (1.2) and agreed that it would not affect their treatment in any negative
way (1.3), so the feeling toward using it was positive (1.4). The participants recruited were
confident that internet-based technologies work correctly (1.5) and generally comfortable that it
achieves their goal (1.6) and what they expect it to do (1.7). Table 5 and 6 summarise the
feedback gathered during the follow up and last visit. At the conclusion of the study, the ease of
use was highlighted alongside other feature improvements on the user interface. It should be
mentioned that while patients expressed that they would not find an app useful when in
remission, Fitbit’s report and step count tracking has been well received and encouraged

engaging in more walking activities.
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Visit 1: Introduction
Patientsid  2) How easy 3) Do you think using 4} How do you feel 51 Generally how confident 6)  Generally how helpful do 71 Generally how predictable
does RApp RApp could affect your about using RApp? are you that Internet based you find Internet technologies in -~ do you think Internet
appear touse?  Rheumatoid Arthritis and its technolegies actually do what  supporting you to achieve your technalegies in carrying cut
treatment in anyway? they claim to do? goals? what you expect them to do?
1 1/10 0/10 2410 7/10 3710 8/10
1 It seems ok No Apprehensive of using it Love using internet and can Very good Very good
find anything with Google.
2 3710 o/10 10410 g/10 9/10
2 seems ok Good as could help Confident Don't use muh tech, know it's High expectations of technology
other people (being part there if need it, amount used
of a research) would be 5/10. Don't rely much
on tech but likes it when need it.
3 0/10 5/10 7710 7710
3 \Very easy. No Mo worries, even if not that they do what they claim. Mot too used, Satnav and FB. very reliable
for me it's still beneficial.
4
5 7/10 10/10 10/10 10/10
5 Very easy. In the future, possibly. Up forit, good, would be  Very confident. The way it will Extremely helpful. Very predicatble.
Questions are better if could use on be in the future,
not clear. any phaone.

Table 4: Summary Visit 1 (Introduction)

t 2: Follow-up

Patients id Other comments:

1 - Fitibit is encouraging to do 10k steps
- Doas more in the merning, tired in the afterncon
- Would like to see the reporting even when feel good. For eg, it is rewarding to see when doing 5k steps

2 - Iphone has already an health app formonitoring steps. Fithit seems to track more steps (806 through iphone vs 1251 for Fibit) but wear Fitbit longer.
- Could fill the form every day.
- No logs for period of 3rd to 21st of Sept 2016 but happy to extend participation in the study.

3 -Would use as ok for now.
- Not too intensive.
- Just bought a new phone but will stick to Xperia
- When switch between P&, it should be O (not the last value entered).
- The dates should show the reports.

4 - The scale goes back to previous screen.
- Questionnaire summary, swipe to go back takes to the beginning.
- P&, enter pain then tick does not go to Inflamation.
- Missing joints: Ankle, hips, neck, back.
- Questions (RAPID3): "physical well-being". Label "without any", difficulty... so scale is not clear. Should be on the scale.
- Skeleton: which is left or right (is it mirrorad image of you?). Maybe highlight if left or right. Click on the joint is nice but should be clearer.
- P&l: 0 to 5 is nice to record.

5 - Mot complicated.

- The weekly questionnaire doesn't seem related to RA.
- Phone keeps running cut of battery (1.5 day), sometime dead battery.
- Plays drum 3 times par week (for 2-3 hours). Could affect thiz fithit reading. Don't keep the phone.

Table 5: Summary Visit 2 (Follow-up after six weeks)
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Patientsid 1) How easy was it to use RApp? 2) How easy was it to understand RApp?
1 1710 2/10
1 Easy once explained. Questions every day is too much. Long questionnaire 3 times per week would
be better. Same for P&l but to keep open for when flare happen. Using
became part of routine and was not hard to do, takes 2 min.

2 1/10 110

2 Very straigth forward. Self explanatory. Flows on its own. Very easy. Not complicated in any ways.

3 0/10 /10

3 Easy Easy but reports not always working.

Good to have: to see the difference after stopped the medication (2 weeks
before) as had MTX stopped for 2 weeks then back on lower doses. Could see
the trend.

Not used when was in Venice,

4 0710 8-9/10

4 Easy

5 8/10 8/10

5 Easily used. Questions were not that easy.

P8l: doesn't always work when press the buttons.
Q: Easy to do. Never drag the VAS, just tap. Difficult and hard to know how to address, likely to
always be the same.
Knee was really bad in that period.
If was run by specialist, would listen the recomendation in form filling.
- Liked RAPID3 scoring better. Easier to do than 0 to 10 as 0 to 10 is very difficult to know how to
gage. 10 implies disability, 7 hurts but can live with it, it depends on people. Scale from "without
any difficulty" to "unable to do" is more useful for patient perspective. Explanation is very
important to know how to answer.
Patients id  3) Did using RApp make you feel positive  4) Did using RApp make 5) Could you highlight 5 positives commeants? 6) Could you highlight 5 negative
about your Rheumatoid Arthritis? you feel negative about your comments?
Rheumatoid Arthritis?
1 810
1 Encourage to move more, did lots of steps.  No, you got to live with it. Tech is the way forward. Can't think of anything negative. No
Positive as need to move with RA. hardship in using RApp.
2 Didn't make feel any different. Didn't make feel any Info callected can be good. MNothing negative. Would be good on
differant. Mot difficult to use. iPhone. Mot all joints ars included ifor eg
elbow)
3 As positive as can be, it's got its purpose. Not at all. Good app and good for RA. Ability to monitor. Not fully working.
Would like to see the trend. Easy to use and to understand.
Ability to look back would be usafull for People would use it. Layout is good and self
GP&inurses, explanatory for users.
4 - Notin pain so don't think about pain. So  See above. - Easy to use. - If notin pain, make think about it.
more of a negative because had to think - Notification would be good for questionnaire, - Enter infos but don't get anything from it.
about it while feel well, medication.
- Report everydat is too much when no - Reporting (Fitbit style).
pain. - Simplified Ul would be gocd.
- But if was in pain, it would be a comfort
and positive.

5 Positive. Scale helps put things in contrast.  Didn't feel negative at all. - Easy to use. Xperia is bad, would use it on his phone.
- Made feel good, felt as was being recorded, goed  Couldn't see results/reporting.
psychologically.

- Valid doctor Q, helps understand RA as a disease.
- Light weight app, doesn't take long to load.
Patients id 7]  Any additional 8) Would you use RApp 9} How well do you think 10} How much do you think  11) How much do you trust 12} How secure do you think the
comments? again? this app achieves your goals?  you can rely on it? the app's performance? processes behind the app are?

1 10/10 9/10 10/10

1 Battery was draining even  Yes App side is more directed to  Perfect, only problem was Trust that it's doing its job Very secure | would think. Security is

without using the phone. clinicians. Need to upload to server. with taking the information.  very important. Anything that | don't

Last for about 2 days. incorporate more to be Same as when submiting understand, | don't touch. For eg, don't
patient focus (for eg, include something online. accept the friends requests from
steps). people | don't know.

2 10/10 7410

2 Nothing. Yes, no personal use but for  Don't know how to answer. Reliable except for legging.  Good. Logging not working  Fine

other people. Could be used Battery charge lasts only for  and if battery is flat, needs
to show history to clinicians. aday (vs iphone that last3  to re-enable.
Would use it if on App store days)
(even for nominal payment).
3
3 When is it available, Yes Good. No problems, no issues, no Haven't seen the report but  Fine, no personal data. If someone
please keep up to date crashes, fine. wants to see what I've done for a day,
when can be used. that's ok,
4 9/10 9/10 9/10
4 Son has diabeteses and It depends on disease See above. Completely Mo reasons to questions it.  Hadnt thought about it so must mean
uses medical dev ice to activity, so not really, But Trustworthy. that trust it. Don’t put anything
record and upload the would use if newly confidential, it doesn't matter who
results. Then goes every 3 diagnosed. gets hold of it (no credit card details).
months at the clinic. Also
self manage a bit by
checking once per wesk.

5 10/10 10/10 10/10

5 Yes, not without stats to use  If there were a doctor Never crashed. Logging to See above. Trust it

for doctor involved, it would achieve re-enable when phone dies.

recommendations.

taking the results.
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Patients id  13) 16) Do

v much  people

you think that the 17) How confident are you  18) Tell us whether or not you trust
o might provide  that the app will continue  the purposes to which the app is

you can trust the pro: es the app have your best to provide benefits inthe  being used to help your care.
behind the app? interests at heart? future?
1 No dictable, the questions Can't trust complately. Yes, of course. Otherwise Yes, only will get better as npletely also because
s the same. would not be able to sell it.  this is for research. h the hospital.
y of Medical body is
important.
2 People getyour data. If  Fine for recording. Can't see any ~ Nothing specifial. - Yes, if not charged for a Very confident. Yes, definitely to help.
nothing to hide, it problems lot of money.
doesn‘t matter. - If funded by NHS, for well
being.
- If Apple, for the money.
Even if 1gbp, for the money.
3 No. put se many different Mo thoughts. Yes, If payable, would use it Confident, Trust it
ions. if tie with a doctor/GP.
4 Yes. Anyone in the family Don't understand the questions.  Hadnt thought about it. AC it think of any other  Yes, | think it will after a do trust the purpose.
could but not sure Would trust it. T to doiit. few teaks: usefull for
anyone would 1o.

There is no PIN or

Password.
5 MNothing personal and Predicatable, questions are the See above. Guess so. They want to More infa is always better
believe it's secured. If same Y /. Mixing might be keep making maney. Yes
someone does, doesn't good. No reward. and No.
really care.

The bigger picture is that when it
goes live, it will help.

Table 6: Summary Visit 3 (Closing interview)

BSR & RAPID3 Self-assessments

All participants expressed that the questions were too redundant for daily purposes, but most

completed the questionnaires. As shown in Fig27, patients 1, 2 and 5 completed the BSR (daily)

and Rapid3 (weekly) questionnaires as expected, while patients 3 and 4 were intermittent. Yet, all

patients utilised the DAS joint count to record pain and swelling.

Patients 3 and 4 completed the questionnaire more sporadically with BSR under 5 and RAPID3

under 2, indicating disease activity in remission. Patient 1’s BSR questionnaire was answered daily

and reached a maximum score of 28.2 with an average of 17.5; RAPID3 can be calculated as being

above 7.6 for the last three weeks, which indicates moderate disease activity. Patient 2 also
responded daily to the questionnaires over a longer time frame of recruitment, with the BSR
averaging at 32 and reaching a peak of 39; RAPID3 be calculated for most weeks as being
consistently above 10, indicating moderate disease activity. Patient 5 scored the highest BSR,
above 40 on most days, and RAPID3 was calculated between 10 and 19 over the recruitment

period, which indicates a moderate to high disease activity.
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DAS28 Joint counts

Figures 28 and 29 show all joints' joint count of self-assessed pain and swelling (between 0 and 5).
While the responses to patient 1's questionnaire might indicate moderate disease activity, the
patient recorded pain on the left hand, knee and foot, scoring a max DAS score of 4 with an

average of 0.64, which would indicate disease activity in remission.

Patient 2 recorded pain on both the left and right hand, knee and foot, consistently scoring a DAS
score of 10 throughout the entire duration. No pain or inflammation was reported on the
shoulders and elbow, but pain on the hand, knee and feet peaked at an intensity of 3 and
consistently scored at two as well as being scored as inflated as 2 for the entire period. Patient 3
recorded pain on both shoulders, elbow and hands, consistently scoring a max DAS score of 5 with
an average of 3, which indicates low disease activity. No pain or inflammation was reported on
the knees and feet, but pain on the hands peaked at an intensity of 4 and consistently scored at

one, as well as being scored as inflated for the entire period.

Patient 4 recorded pain only on the left knee with an average score of 0.62 during the recruitment
period, which indicates a disease activity in remission. Still, a peak of pain has been highlighted
through the intensity factor on weeks 5 and 6. Patient 5 recorded pain on the left knee and both
hands and feet through the DAS, scoring with an average of 8.65, indicating an active disease

activity over the recruitment period.
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44.3.1

Continuous monitoring (RApp™)

Sample summary

RAppl: Proof of concept with rheumatoid arthritis patients

Table 7 summarises the recruitment period with a number of readings captured. Patients 1 to 5,
respectively generated 11.9, 24.8, 30.9, 31.8 and 56.1 million lines of sensor events (t, %, y, z). The
difference in the range of data generated is mainly due to the recruitment timeframe but

investigating the sampling rate performance is critical to accurate load rate estimates.

All patients showed significant variations in the number of logs generated per day. Patients 1 and
2 averaged 304.9 and 330 thousand lines daily, while patients 3, 4 and 5 averaged more than
twice this quantity, with 753.8, 662.9 and 825.5 thousand lines daily. The number of readings was
also dispersed across the day with standard variations of 107.8, 158.7, 156.1, 188.8 and 224.3
thousand. On their highest days, over a million lines were generated beside patients 1 and 2,

which peaked at 0.5 and 0.7 million readings, the lowest days being when no data was generated.

Patient Recruitment Amount of Readings (per day)
ID Start End Total Average Min Max Std Dev
1 05/08/2016 16/09/2016 | 11891673| 304914.7 6550 555294| 107845.1
2 06/09/2016 06/12/2016 | 24791018| 330546.9 8783 710874| 158715.1
3 13/10/2016 06/12/2016 | 30905571| 753794.4 269565 1008348| 156179.7
4 23/11/2016 16/01/2017 | 31820357| 662924.1 494 1063115| 188839.6
5 13/12/2016 02/03/2017 | 56149771| 825731.9 94461 1178147| 224340.4

Table 7: Lines of sensor readings per day

Table 8 shows the daily amount of .txt files generated to store the lines of raw sensor readings.

Patients 3 and 5 averaged 779 and 793 files per day which is more than twice that generated by

patients 1, 2 and 4, with respectively 225, 244 and 573 files per day. The number of files

generated daily was dispersed with standard deviations of 158, 174, 216, 234 and 337. On their

highest days, a maximum of 639, 927, 1590, 1570 and 1984 files were generated.

Patient Amount of files (per day)
ID Total Average Min Max Std Dev
1 8776 225.03 12 639 158.48
2 18317 244.23 3 927 174.07
3 31966 779.66 226 1590 216.5
4 27522 573.38 1 1570 235.43
5 53957 793.49 139 1984 337.64

Table 8: Amount of files collected per day

The number of sensor readings per file also had much variation. Table 9 shows the average

number of readings per file is above 1100 for most patients except patient 3, with 966 lines per
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file and high standard deviations of 1432, 1453, 879, 1054 and 949. The highest number of

readings per file was seen with patients 1, 2 and 3, respectively at 13795, 13557 and 12252 lines.

Patient Amount of Readings (per file)
ID Total Average Min Max Std Dev
1 11891673 1355.02 117 13795 1432.64
2 24791018 1353.44 25 13557 1453.11
3 30905571 966.83 8 12252 879.94
4 31820357 1156.18 14 8655 1054.85
5 56149771 1040.64 3 9726 949.45

Table 9: Lines of sensor readings per file

4.4.3.2 Smartphone movements

The top plot of figures 30 to 34 shows the smartphones’ accelerometer over the x, y and z axis,
and the bottom plot shows the corresponding jerk calculated. Quantifying the phone's movement

requires looking at all axes so the jerks can identify the movement's peak.

The period of blanks corresponds to periods where no samples were collected and occurred only
intermittently for patients 2 and 3 but more frequently for patients 1, 4 and 5, where multiple
days of data were missed. The sensor values vary from -10 to +10 m/s® on each axis, and a more
prominent colour (e.g. orange) means more prominent movement over the corresponding axis
(e.g. z). The activity on the z-axis is more prominent than on the x and y-axis because of the force
of gravity that constantly applies to the phone. A higher average of z means that the phone is at
constant acceleration, i.e., not actively used, as can be seen for patients 1 and 3. The variations on
the x and y axis are less common and signify that the phone is in motion, either interacted with,
which would typically be through short and sharp interactions, or as a surrogate of the user’s

movement while carrying the phone, which is typical as part of a pattern of movements.

The average jerk values observed (in kg.m/s%), 9.58, 9.69, 9.67 and 9.72, are expected, considering
the force of gravity of 9.8, which is where the phone is inactive and not moving. The movement is
characterised by values greater and lower than 9.8 with the latter, not to misinterpret as less
movement but rather as the phone’s jerk countering gravity’s force. The max values, however,
highlight the highest load which reaches 14.63, 26.95, 36.91, 28, and 31.66. The overall shape of
the jerk shows the patterns of movement with patient 1 as the least active, with jerks rarely
above 13. In contrast, the other patients exhibit patterns of jerk density, indicating routine of

more frequent activity.
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Figure 30: Smartphone’s sensor Patient 1
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4433 Fitbit steps and smartphone’s LRE

Figures 35 to 39 show the daily amount of steps recorded through Fitbit and the daily sum of load
rate recorded by the smartphone. All patients considered their lifestyle physically active apart
from patient 1, who was considered as not particularly active and relatively sedentary. This is
confirmed by looking at Patient 1’s daily average of 3,711 which is significantly lower than other
patients, averaging at 11044, 17404, 12478, and 9146 steps per day. Patients 1, 2 and 3 have max
daily steps similar across months while patients 4 and 5 show more spikes of daily steps. The
standard deviation of 1253 steps shows that patient 1 is the most consistent, with patient 3 and 5

having the highest standard deviations at 7441 and 5229 steps.

The jerks have been aggregated as daily sum to compare with Fitbit’s daily sum of steps. As
expected, the daily sum of jerks is proportional to the recruitment period, and Fitbit’s daily sum of
steps. However, the sum of jerks varies much more across patients than the sum of steps seen
between patients 3 and 5, both totalling 73 thousand steps but with the sum of jerks at 299 and
545 thousand, almost double each other. It is also noticeable that patient 2 takes two months to

generate as much jerk as patient 3 did in two months.

Daily Sum of Jerk (raw)
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. )
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= Patientl | 159594 3711.49 6435 1253.80 113,931,215.55 9.58 38.57
7 August | 99191 3673.74 6010 957.51 62,987,313.26 9.59 3857
September | 60403 3775.19 6435 1634.37 50,943,902.29 9.58 3792
Total | 159594 3711.49 6435 1253.80 113,931,215.55 9.58 38.57

Figure 35: Daily Step count and Jerk (Patient 1)
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Daily Sum of Jerk (raw)
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Figure 36: Daily Step count and Jerk (Patient 2)
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Figure 37: Daily Step count and Jerk (Patient 3)
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Daily Sum of Jerk (raw)
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Figure 38: Daily Step count and Jerk (Patient 4)
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Figure 39: Daily Step count and Jerk (Patient 5)
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4,5 Discussion

45.1 Patient’s perception

Patient’s perceptions recorded during the PPI session and during the recruitment period while
using the app allow us to conclude that using smartphones appears to be a popular proposition,
and developing apps could support a broad range of features in categories such as social media,
games, or productivity. User retention in using an app relies on the ability to respond to a need
and requires careful consideration on the way that the phone is used. Therefore, the scope of the
framework used to capture data is constantly evaluated by tracking patients and clinicians’
feedback. The features of RApp™ have been implemented and reviewed considering users’
perspectives (patients and clinicians) but prioritising the purpose of data collection to define the
components implemented. Features not functional (e.g., social media and Ul personalisation) for

this project were dismissed but could be added for a commercial version.

Patient input recorded during face-to-face interviews at the beginning, middle and end of the
recruitment period helped to drive the dialogues. The questionnaire used (see Appendix D) and
comments can be found in Appendix E. This feedback provides insights not only on the front end
but also on the usability by rheumatoid arthritis patients. The layout of RApp™ should improve,
but no functional issues, crashes, or app freeze (e.g., “app not responding”) were reported, which
is perceived as good app responsiveness. The background monitoring of activity received praise,
which is a positive sign that patients could be willing to use RApp™ outside of the study context.
Patients in remission do not necessarily want to think about their disease activity, and an app
should not give rise to the feeling that it controls the patient’s life. The app is a way to observe
patients’ behaviour but should not influence or motivate them. Therefore, data capture should be
seamless to participants and available for remote monitoring. Still, reporting, incentives,
reminders (e.g., medication) and the addition of instructions (e.g., daily exercises) are not

included in the current version of the application.

The range of scores (DAS and questionnaire) observed across the group varies from moderate to
high disease activity, but the individual trends are similar. A patient might be used to a certain
amount of pain, with the perception attributed to the patient's awareness but it is also based on
the resistance built over time. While the consistency of the scores does not provide significant
insights, RApp™ allows tracking of specific joints and areas of concern. The correlation between
the scores resulting from questionnaires and DAS highlights the reliability of patient self-

assessment in evaluating significant changes in their disease activity. The lack of substantial
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change in pain and disease activity does not allow obtaining enough evidence to draw a

conclusive correlation against the physical activity recorded.

At the time of recruitment, all participants were diagnosed with rheumatoid arthritis for more
than two years and were comfortable in filling the questionnaires provided and joint self-
assessments. However, each patient highlighted that filling out an assessment daily could only be
helpful for newly diagnosed patients and is too frequent when the disease activity is stable. The
BSR questionnaire being completed daily allows us to monitor the patient closely but does not
add much value as no scoring can be attributed to it. The RAPID3 questionnaire filled weekly
provides a better representation as it allows for a validated score, but the wording of the
questions is confusing and not designed for weekly usage. The user interface to record pain and
swelling is helpful but does not include enough joints to calculate a validated DAS28 score.
Identifying the joints from the left or right is not trivial but assigning an intensity is a valuable

feature to quantify the values reported.

4.5.2 Continuous monitoring

The file corruptions and inconsistency in the number of samples generated indicate that both the
window and interval are affected, implying issues with the smartphone's service logic and timers.
Smartphone’s services also appear to stop running with the phone low in battery, not in charge,
restarting or following updates. The activity detected by the phone triggers internal mechanisms
such as power save mode and resources prioritisation, and smartphones used by patients as
secondary devices most likely result in extended periods of inactivity, disrupting the service
schedule. Patient 003 used the smartphone as the primary device, which resulted in significantly
more samples recorded. It should be noted that if used as the primary device, inactivity recorded
could be interpreted as a period of physical inactivity of the patient rather than issues in sampling.
There has been no sign of corruption in storing the user self-assessments in SQL databases. Azure
uploading once daily could take up to an hour, but the files uploaded are identical to those
extracted from the phone’s storage. The number of logs collected confirms that the smartphones
can record a trend of physical activity. Still, the number of samples collected is less than half of
the amount expected, which could be due to issues in writing text files or specific to file

management and phone storage.

The Fitbit devices are continuously on the user’s body, worn at the wrist, which provides an
efficient way to record a reliable fitness baseline. However, Fitbit’s recommendation to perform
10k steps per day did not apply to all participants recruited. Specifically, 10k daily steps at least

twice the daily amount for patient 1 while being much lower than the amount of daily steps for
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patient 3. The load rate values cannot easily correlate with step count, which raised challenges in
the protocol. Besides, the smartphone is a secondary phone, which is significantly different in
body location. A number of wearable devices for data collection and connected care is available
(Akerberg et al., 2016) but at the time of this study, raw accelerometer data recorded from Fitbit
were not accessible. So load rate values at the wrist could not be calculated, which prevents side-
by-side comparison and no common baseline between the smartphone and Fitbit. The only unit of
measure available is the step count estimated through Fitbit algorithms which are not publicly
disclosed (Fitbit, 2018). Furthermore, Fitbit only provides daily statistics, and consequently, the
load rate recorded by the smartphone had to be converted to daily summaries, preventing data

analysis into hourly, or peak-based activity timeframes.

Passive monitoring and ambient processing are valid concepts. Still, they require considerations of
the data sampling, the timeframe of sampling (i.e., days, months, years), and the way the device is
handled (i.e., in hand, pocket, handbag, desk or not with the user) and generally used (i.e., as
primary, or secondary). Besides, changes in a patient s’ behaviour and habits might incur following
significant medication changes. Still, it is not possible to correlate physical activity with disease
activity without significant variations of joint pain or inflammation, and multiple factors such as
ad-hoc illnesses, weather, seasons, work, and holidays might affect the self-assessments reported

by patients.

4.6 Conclusion

In this study, we see that using smartphones to continuously monitor physical and disease activity
is a reasonable and technically feasible approach. The user interface and type of questionnaires
could be further optimised and tailored to specific disease conditions (e.g., back pain), but the
overall feedback and reactions from all participants were positive and demonstrated that a cohort
of rheumatoid arthritis patients is comfortable using smartphones, as part of their day to day.
Nonetheless, patients do not want to be burdened with continuously filling out questionnaires or
being forced to interact with their phones. Fitbit shows that it is possible to monitor physical
activity passively but requires being worn on the wrist and at the time of this study is not able to

quantify load forces and is limited to step count estimated daily via proprietary algorithms.

This study shows that using smartphones represents a reasonable approach to patients’
continuous monitoring of physical activity and load forces. The amount of self-reporting
convenient for patients was introduced and some of the challenges associated to passive
monitoring were raised. The subsequent studies have been designed to further assess these

points. Study 2 addresses the technical challenges and introduces a comparison with load rate
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values obtained from smartwatches. Study 3 introduces step count obtained from smartphone to
compare the trends of physical activity obtained from Fitbit devices. Study 4 evaluates a
smartphone's ability to continuously monitor physical activity through a user’s primary phone (as

opposed to secondary), in real-life conditions and over an extended timeframe.
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Chapter5 OApp Southampton: Continuous monitoring

with power saving disabled

This chapter covers the steps undertaken to compare the load force estimates between

smartphone and smartwatch, when disabling power saving.

5.1 Introduction

As described in the previous chapter, monitoring physical activity without the patient’s
intervention is possible. Still, continuous monitoring requires a lot of storage space which cannot
scale to an extended timeframe. The performance and tracking accuracy also rely on internal
algorithms (i.e., power saving), so we need to consider sample-based estimates and the
smartphone’s processing capacity. Moreover, Fitbit’s step count data is aggregated daily,
preventing side-by-side comparison of smartphone’s load rates with the wrist-worn device. So, for
this study, we compare estimates of load rates from smartphones and smartwatches. RA patients
were recruited as a sample of convenience for study 1, but the methodology is generic. So, for

this study, participants were not required to be diagnosed with any specific conditions.
5.2 Literature review

5.2.1 Smartphone’s battery optimisation

Smartphones offer processing capabilities like a microcomputer, but with a significant challenge
for all manufacturers: the battery drain. The smartphone’s battery supports lighting of the screen,
support of protocol on the cellular network (e.g., GSM, GPRS, UMTS, LTE), additional wireless and
radio stacks (i.e., GPS, WI-FLI...) and applications with their background activities (e.g. OS tasks,
email push and notifications). Qualcomm is one of the major smartphone chipset manufacturers.
It allows battery optimisations at the hardware level for their Snapdragon range (see fig 40). It
releases further optimisation at the application level with “Qualcomm GURU”, which learns the
user habits to trigger and free resources. Handheld manufacturers aim to develop slicker designs
with smaller and thinner handsets while increasing the power requirements. So, besides
optimising the battery, shortening the charging times is also an area of focus, releasing

technologies such as the proprietary Quick charge from Qualcomm (Qualcomm, 2022).
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Figure 40: Qualcomm chipset approach to power optimisation (Qualcomm, 2013)

The behaviour of smartphones on the cellular network has been defined following the evolution
of radio technology from GSM (2G) to LTE (4G). The mode of operation of smartphones is
standardised through the 3" Generation Partner Project (3GPP), which covers the technological
standards and protocols that cellular network providers and manufacturers aim to comply with.
These typically use timers defined on the network provider's SIM card to ensure that the
connected mobiles use only the network resources allocated. Fig 41(a) shows the smartphone’s
location area update (LAU), a protocol for the smartphone to update its location on the cellular
network. This operation occurs when registering on the cellular network (i.e., when the phone is
turned on) when the user's location changes and periodically as defined by the timer (ETSI,
2016a). Fig 41(b) shows the fast dormancy protocol (ETSI, 2016b), designed to optimise the
network resources and the smartphone’s battery consumption. Radio resource control (RRC) is a
protocol defined at the network layer to define the network resources allocated as well as the
state of the phone. When a phone is inactive (i.e., no active data connection), it is considered by
the RRC to be in an idle mode with the lowest battery consumption. The network allocates radio
resources when the smartphone needs to support an active data connection (e.g., when the user
is browsing). It sets the phone to enter Cell_DCH, a dedicated channel state with the highest
battery consumption. Fast dormancy is triggered following the inhibit timer defined by the
network to check if the connection is inactive. Network resources are then released, and the state
of the phone is set to Cell_FACH (or Cell_PCH), which has a much lower battery consumption than

Cell_DCH. If the data connection remains inactive, the phone returns to idle mode.
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Figure 41: LAU & FD

Timers are also used, e.g., to dim the screen or shut down applications to release resources when
inactive for extended periods. Android power management evaluates the user’s usage pattern to
free resources affecting the usage of the CPU or battery (Google, 2022b). The CPU resources are
allocated based on whether the app is active (e.g., an app that has just been launched) and
frequency of usage (frequently or never). Further battery optimisation might also be implemented
directly by the manufacturers, such as “Power save mode” for HTC (HTC) or “Stamina Mode”
found in Sony’s Xperia range (Sony, 2019). Fig 42 shows the effect of the doze mode for apps on
standby (i.e., not actively used by the user). The algorithm considers the battery's state and will
not be in effect if the device is on charge. When charging, the device will be regarded as not used
by the user if the screen is off and entered in app standby mode, which defers all background
activities by up to 24 hours. Doze mode prevents using network and CPU-intensive resources
while periodically opening a window of resources (every 9 min or less, depending on
manufacturer’s implementation) that allows background operations to be performed (e.g., email,

social media, etc..).
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Figure 42: Android Power management

Android power management represents a challenge for any app running background services and
so is a challenge for this project that aims at estimating jerks without user intervention. The
framework (i.e., RApp™ and OApp™) records raw accelerometer data and uses the storage and
CPU of the phone to process data. Therefore, considerations should be made on the phone’s data

sampling constraints to estimate load rates.

5.2.2 Smartwatch & tracker position

Load rate estimates (LRE) are affected by power saving, the device handling, and the sensors'
location on the user. The way that smartphones are handled affects the data sampling and is
specific to each individual day-to-day usage. Moreover, smartphones are typically held in multiple
locations on the body. A survey and pilot study on women’s risk perception carrying their
smartphones (Redmayne, 2017) showed that 96% kept their phones on standby throughout the
day. The device location changed based on usage, characterised as passive, active (e.g., on call)
and asleep. When passively used, the device was noticeably kept in hand, skirt/pocket or against

the breast for 86% of the 197 participants (women aged 15-40).

The impact of the smartphone location on the body has been reviewed in a study comparing the
step count recorded from an Android smartphone (Galaxy Nexus GT-19250) to the video recording
of 27 participants over a straight-line route at a different speed (Brajdic and Harle, 2013).
According to this study, step count estimates undercount when worn in the back trouser pocket
and overcount when carried in a handbag but comparable in all other positions such as being held
by a hand, by hand with interaction (e.g., typing a message) or on the front trouser pocket. This
study also highlights that none of the step count algorithms was 100% reliable and recommends

using probabilistic methods.

Accelerometer-based systems have been reviewed and can be integrated for unsupervised

monitoring of free-living subjects (Mathie et al., 2004). The accelerometric nature of the human
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body’s movement considers the amplitude and frequency range. These can be used to estimate
metabolic energy expenditure, physical activity, postural sway, gait, fall detection, and postural
orientation and activity classification. However, calculating load rates raises multiple challenges
when using accelerometer data in healthcare. This has been discussed in a study with data
collected from 49 participants (with ActiGraph GT3x+) to compare activities performed in a lab
and free-living conditions for seven days (Karas et al., 2019). Noticeably, the study highlights the
impact of the data size and sampling frequency while recommending storing raw and processed
data, confirming the findings from study 1. The smartphone placement in free usage is dynamic
and potentially kept away from the body, which furthers the complexity. Still, a study validated
that smartphones can be used without constraints to estimate step count using a Fast Fourier-

based algorithm (Kang et al., 2018).

As of this project, continuous load rate estimate has not been explored in free-living conditions. A
benchmark of reference should be defined to validate smartphone estimates, and wearable
devices offer possibilities as they have been used in other studies. A systematic review of the
literature published between 2013 and 2017 identified key research themes (Shin et al., 2019).
The wearable used in the various studies included wrist-worn devices such as Actigraph, Misfit,
Fitbit, Nike+, Fuelband and Jawbone. Most studies focused on the technical aspects of PA or
incorporating these devices in medical settings, e.g., for monitoring. The other prominent themes

were wearable technology adoption, behaviour change, and self-assessment.

In recent years, wearable devices have become more readily available to the public. A study has
shown a solid correlation to measure steps with research-grade devices using BodyMedia
SenseWear, and ActiGraph GT3X+ as references. The consumer devices included the Fitbit
wristband, Jawbone UP, Misfit Shine, Nike Fuelband, Striiv Smart Pedometer and Withings Pulse
(Ferguson et al., 2015). The study recruited 21 participants and was limited to 2 days of sampling,
but it has shown the performance of wristband wearables to measure PA and step count in free-
living conditions. A systematic review further gathered the validity for using consumer-level
devices to estimate steps and PA. The studies reviewed found high reliability in measuring step

count and generally reliable between Jawbone and Fitbit devices (Evenson et al., 2015).

5.2.3 Rationale

Smartphone handling affects sensors' recording ability, so power save mode is disabled to
uniform sensor sampling. Smartphones are typically handled dynamically and not always worn or

carried in the same positions, so we compare them with the load rate obtained at a static location
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on the body (at the wrist). Load rates are not a standardised unit of measure, so we compare

estimates using raw accelerometer data obtained from smartphones and smartwatches.

5.3 Aim & objectives

5.3.1 Aim

This study aims to assess whether smartphones are as reliable as smartwatches to evaluate

participant load forces trends.

5.3.2 Objectives

The objectives of this study are:

1) Ascertain the ability of a smartphone to capture accelerometer data continuously

2) Ascertain the smartphone’s processing capability of raw accelerometer data to estimate
load rates

3) Compare the load forces estimated from smartphones and smartwatches to assess the

impact of the device location on the body

5.3.3 Hypothesis

If smartphone’s sampling and processing of accelerometer data is manipulated to be uniform and

unbiased, load forces estimated are comparable to smartwatch's estimate.

5.4 Methodology

5.4.1 Patient recruitment and study procedure

This study is observational and quantitative, focusing on accelerometer data recorded via
smartphones and smartwatches. Each participant maintained a physical activity diary as a
baseline for activity classification. Each participant wore a Sony Smartwatch 3 and used a Sony

Xperia Z5 Compact, both preloaded with OApp™.

The data collected for this study have been collected as part of a project approved by the
University of Southampton’s Faculty of Engineering and Environment Ethics Committee (ERGO

Ethics ID:30213) and presented in another PhD thesis (Nazirizadeh, 2018).

90



OApp Southampton: Continuous monitoring with power saving disabled

Monitoring of disease activity is not part of the scope of this study, and to be eligible, inclusion
criteria were defined to recruit participants willing to participate in the study, above 18 years old
and without neurological, systemic illnesses or other physical disabilities that may have limited
their mobility. Participants were ten healthy adults (female n=6, male n=4; aged 27.2 + 3.6 years;
height: 172.6 £ 9.6cm; body mass: 73 + 14.7kg; meanst standard deviation) recruited via posters

on multiple noticeboards around the University of Southampton.

Participants interested in participating in the study signed a consent form following an
introduction to the app. Once the consent form was signed, participants were provided with a

patient information sheet, smartphone, and smartwatch for seven days.

5.4.2 Data collection

Participants were asked to wear the smartwatch on the non-dominant wrist and keep the
smartphone as close to the hip as possible, e.g. in a pocket or using a phone belt provided.
Participants did not have to perform specific activities. Still, they were required to maintain a
paper-based diary to record moderate to vigorous physical activity times and report instances of

devices running out of battery.

Smartphone (SP) Smartwatch (SW)

OAppv1.0

Window = 5s
Interval = 55s

OAppvl.0

Window = 5s
Interval = 55s

Raw data (.txt)

Raw data (.txt) \\\
h SQL (LR estimates)

SQL (LR estimates) A

Sony Xperia Z5 Compact Sony Smartwatch 3

Smartwatch data transferred
to Smartphone for storage

FAGAED
& o

Figure 43: Smartphone & Smartwatch

For this study, the monitoring has been set up to record data samples of 5 seconds (window=5)
every 55 seconds (interval=55) to obtain a load value calculated per minute. The samples have
been stored on the internal storage of the phone in raw format on text files (as per Study 1).

Calculated load rates have been stored in segregated SQL databases and storage folders to avoid
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conflicts to create, read, update, and delete (CRUD). The samples were extracted manually from

the smartphone at the end of the recruitment period of seven days.

5.4.3 Data analysis

For each participant, we evaluate the performance and accuracy of the app logging in the context
of continuous monitoring for the recruitment duration (7 days). The hourly amount of samples
collected is compared to the amount expected to be collected, which considering the settings
used, aims at obtaining one load rate value per min (i.e. one file per min, 60 files per hour, 1440
files per day). Periods without samples recorded indicate issues but recorded null values suggest
that the device is in a static position (e.g., on a table). The integrity of each sample is assessed by
comparing the duration collected to the window set (i.e., each sample should contain ~5sec of
accelerometer data). A significantly wider window indicates multiple samples are considered

corrupted samples as there is no way to weigh each sub-sample.

The smartphone on-board data processing capability is evaluated by comparing the load rates
calculated and stored in SQL in-app to those calculated from the raw accelerometer data stored
as text files and processed in MATLAB. The amount of physical activity performed depends on
each participant and has already been identified in the diaries (Nazirizadeh, 2018). Still, the load
rate is also calculated for the smartwatch comparison of trends recorded between devices worn

at the wrist and smartphone, using the same unit of measure.

5.4.4 Individual phenotype

Load rate estimates (LRE) are measured using the jerks generated by the accelerometer over
time. Continuous plots of raw accelerometer data over time are confusing and unwieldy. So, we
define a methodology to extract meaningful and concise characteristics to evaluate an individual’s
data. Drawing physical activity characteristics of an individual requires defining features of

Ill

interest. This group of components can be referred to as individual “phenotype”. Fig 44 illustrates
the proportion of time (i.e., the amount of time in percentage) spent at load forces applied
represented by LRE (in kg m/s3) for two individuals. The plot’s left side shows the greatest amount
of time spent at the lowest LRE which are periods of low physical activity. The plot’s right side
shows the lowest amount of time spent at higher LRE which are periods of high physical activity.
The amount of time logged represents the amount of samples recorded. In this context, we
propose to use a continuous monitoring score (CMS) which is derived from the correlation

formula of 2 applied to LRE and proportion of time. The CMS gives confidence on the phenotype

being reliable, not that data is reliable. A CMS equals 1 means that all LRE variations can be
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explained by the variations in proportion of time, which means that all the samples within the
period can be explained and correctly captured. So, high CMS indicates that the samples were
captured at the expected interval (i.e., 5 sec samples every 55 sec), and the slope gives a good
representation. Low CMS means that the samples captured cannot all be explained, so the slope
is not a reliable representation of the level of physical activity. The peak is the LRE recorded for
the highest proportion of time. The slope of the linear regression indicates the trend of physical
activity (measured in kg m/s3). For instance, a slope of -1 indicates that an individual is more
active overall than a slope of -1.5. Intersections between the linear regression and the curve
might indicate regular activity (e.g., sitting, running, and walking). However, activity classification

is out of the scope of this project.

Peak=1.2 Slope=-1.8 Peak=1.7 Slope=-0.9

© mean data from phone
P)
— linear regression r° = .78

102 - o o mean data from phone
E . 2
— linear regression r~ = (.92

proportion of time at load [

107! 10° 10’ 10° 107 10° 10' 10?
load [Nkg~1s7!] load [Nkg~'s71]

Figure 44: Example of individual phenotypes

5.5 Results

5.5.1 Continuous monitoring

The cohort of 10 participants completed the recruitment period of seven days, and raw and
processed data were collected for the smartphone and smartwatches of all patients. Table 7
shows the total amount of readings collected from smartphones (SP) and smartwatches (SW) of

participants from 1 to 10.

Participants 1, 7, 8 and 10 generated the most smartphone readings, respectively, with 3.55, 3.01,
2.94 and 3.56 million lines. All other participants generated over 2 million lines except participant
2, which did not record data after the third day. The average number of readings per day is
around 300 thousand for all participants, ranging from 262.9 to 395.6 thousand lines for

participants 6 and 10. The number of readings is dispersed across the day, with standard
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variations ranging from 72 to 125 thousand. On their highest days, participants peaked at around

400 thousand readings.

Participants 2, 7 and 10 generated the most smartwatch readings, respectively, with 3.12, 3.24
and 3.37 million lines. All other participants generated over 2 million lines except participant 8,
who did not record smartwatch data on the last day. The average amount of readings per day, as
for smartphones, is around 300 thousand for all participants but ranges from 174 to 375 thousand
lines for participants 1 and 10. The number of readings is dispersed across the day, with standard
variations ranging from 71 to 128 thousand. On their highest days, participants peaked at over

400 thousand readings.

Patient Recruitment Amount of Readings (per day)

ID Start End Total Average Min Max Std Dev

1 SP 14/08/2017| 23/08/2017| 3551704| 355170.4 111195 506067| 125100.6
SW 16/08/2017| 23/08/2017| 1218298| 174042.6 33062 419287( 116060.8

5 Sp 15/08/2017| 17/08/2017 802634 267544.7 121935 374453 106660.5
SW 15/08/2017| 23/08/2017| 3120699| 346744.3 192521 422348| 94874.6

3 SP 15/08/2017| 23/08/2017| 2680747| 297860.8 104417 418143| 90596.42
SW 15/08/2017| 23/08/2017 2534310 281590 137026 426364| 91551.94

4 Sp 16/08/2017| 24/08/2017| 2559999| 284444.3 153779 379456 88800.38
SW 16/08/2017| 24/08/2017| 2000224| 222247.1 33660 408746| 128685.4

s SP 15/08/2017| 23/08/2017| 2578417 286490.8 98447 343736| 81175.51
SW 15/08/2017| 23/08/2017| 2595041| 288337.9 121134 407239 91230.67

6 SP 23/08/2017| 31/08/2017| 2366498 262944.2 140728 347059 75158.06
SW 23/08/2017| 31/08/2017| 2893154| 321461.6 207935 429423| 83410.82

; SP 23/08/2017| 31/08/2017| 3010061| 334451.2 113825 471059| 89954.76
SW 23/08/2017| 31/08/2017| 3247407| 360823 138275 428373| 103337.4

8 SP 24/08/2017| 31/08/2017| 2945113| 368139.1 192611 444117 72530.45
SW 24/08/2017| 30/08/2017| 1873400| 267628.6 157656 406521| 90786.39

9 SP 25/08/2017| 01/09/2017| 2229569| 278696.1 22711 371446 109016.9
SW 25/08/2017| 01/09/2017| 2264227| 323461 229608 425580( 71708.46

10 SP 23/08/2017| 31/08/2017| 3561119| 395679.9 116904 522637| 115339.1
SW 23/08/2017| 31/08/2017| 3378534| 375392.7 124112 427465| 92627.65

SP - Smartphone
SW- Smartwatch

Table 7: Lines of sensor readings per day

Table 8 shows the daily amount of .txt files generated to store the lines of smartphone and
smartwatch’s raw sensor readings. The average of daily smartphone files collected is consistent
across participants and ranges from 804 for patient 4 to 1160 for patient 7. For the smartwatch,
the daily amount of files collected for patients 1 to 10 averages 553, 1106, 906, 723, 940, 1047,
1162, 850, 1053 and 1196. The number of smartphone files generated was consistently dispersed,
with standard deviations from 269 to 410. Similarly, the standard deviations of smartwatch files
range from 235 to 368 for patients 1 to 10. The highest amount of files generated daily is around

1300 across participants for smartphones and smartwatches.
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Patient Amount of files (per day)
ID Total Average Min Max Std Dev
1 SP 9683 968.3 334 1321 373.75
SW 3874 553.43 105 1332 368.53
5 SP 2423 807.67 465 1273 341.08
SW 9956 1106.22 614 1347 302.4
3 SP 8400 933.33 233 1326 315.04
SW 8162 906.89 441 1373 294.76
4 SP 7237 804.11 290 1258 351.18
SW 6509 723.22 109 1332 419.29
s SP 9981 1109 398 1387 349.85
SW 8465 940.56 395 1330 297.79
6 SP 9472 1052.44 560 1403 310.51
SW 9429 1047.67 678 1400 272.08
7 SP 10440 1160 433 1348 299.86
SW 10458 1162 445 1378 333.13
8 SP 7251 906.38 531 1292 269.88
SW 5951 850.14 500 1290 288.52
9 SP 7825 978.13 43 1358 410.5
SW 7375 1053.57 747 1389 235.16
10 SP 10413 1157 381 1310 284.56
SW 10769 1196.56 396 1362 295.06

Table 8: Amount of files collected per day

Table 9 shows the average amount of readings per file, around 300 for smartphone and

smartwatch participants. The max for smartphones is consistently around 300, with peaks

between 1290 and 2180 and a significantly lower minimum value, indicating that several files

were generated with substantially less data than expected. The standard deviation for

smartwatches is under 5 for all and between 35 and 273 for smartphones, indicating fewer

inconsistencies in the files generated from SW than SP. Therefore, the sample data corruptions

and inconsistencies observed in the previous study appeared to be lessened.
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Patient Amount of Readings (per file)
ID Total Average Min Max Std Dev
1 SP 3551704 366.8 6 2214 246.39
SW 1218298 314.48 306 408 2.05
5 SP 802634 331.26 42 1693 204.93
SW 3120699 313.45 11 324 4.87
3 SP 2680747 319.14 110 1823 192.87
SW 2534310 310.5 173 316 2.9
4 SP 2559999 353.74 8 2180 242.31
SW 2000224 307.3 298 607 5.71
c SP 2578417 258.33 16 2072 84.07
SW 2595041 306.56 4 312 4.81
6 SP 2366498 249.84 49 862 35.87
SW 2893154 306.84 297 310 1.07
7 SP 3010061 288.32 26 1374 154.67
SW 3247407 310.52 164 314 3.58
8 SP 2945113 406.17 65 1894 273.35
SW 1873400 314.8 221 587 4.19
9 SP 2229569 284.93 5 1290 141.77
SW 2264227 307.01 192 315 3.63
10 SP 3561119 341.99 9 1539 214.83
SW 3378534 313.73 243 319 1.61

5.5.2

Smartphone & smartwatch comparison

Table 9: Lines of sensor readings per file

The accelerometer’s variations of the smartphone and smartwatches worn over the recruitment

period on all axis (x, y and z) for each participant can be seen in Appendix E. Participant 10 (fig 47)

captured data continuously for the entire recruitment on both devices. Participant 2 (fig 45)

recorded the shortest amount with only a single day of SP data. Periods of missing recording can

easily be identified on the plots as periods without data. Most of the other participants managed

to capture data correctly whilst recording gaps with at least a day of missing data on either or

both devices, except participant 3 (fig 46), where only a few gaps were observed. The periods of

sensor variations show device activity, and the flat lines (i.e., constant sensor value) indicate that

the device was inactive but still recording. Both types of events can be seen to start and end at

the same time between SW & SP devices for all participants.
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Figure 45: SP & SW raw acceleromter (x, y and z) over time (Participant 2)
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Figure 46: SP & SW raw acceleromter (x, y and z) over time (Participant 3)
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Figure 47: SP & SW raw acceleromter (x, y and z) over time (Participant 10)

As per Android API, raw accelerometer values are recorded between -10 m/s2 and 10 m/s2 for
each axis. The plots mean of jerks calculated from each axis over time for both SW and SP can be
seen for all participants in Appendix F. Besides showing the periods of inactivity, the value of the
load estimation can be seen over time. Participant 2 (fig 48) recorded only a single day but
illustrated that spikes of activity can be identified with either device, although reaching higher
values on SW (23.45) compared to SP (16.22). Similar spikes can be seen for all patients and
consistently getting higher values for SW, over 20, while the highest for SP was observed with

participant 7 (fig 49) once at 23.3. The frequency of jerk activity shows that participant 7 was the

most frequently active and participant 9 (fig 50) was the least often active.
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Figure 48: SP & SW jerk (mean) over time (Participant 2)
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Figure 49: SP & SW jerk (mean) over time (Participant 7)
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Figure 50: SP & SW jerk (mean) over time (Participant 9)
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The phenotypes and characteristics generated for all participants on both SP & SW can be seen
for all participants in Appendix G. The CMS permits to verify of the amount of time logged by the
device, which is not always perceivable, looking only at the continuous trends. For instance,
participant 10 (fig 51) continuously monitored more data on SP (35.6 million lines) with a CMS of
0.95 than on SW (33.7 million lines) with a CMS of 0.77. The linear regression shows a slope of -
1.7 on SW compared to -1.6 on SP, indicating more movement recorded on SW than on SP. The
average SP peak is above 1.7, which is higher than SW, averaging at 1.2, which means that the

most common LRE recorded on SP is higher.
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Phenotype Phenotype
Patient ID Peak Slope CMS Patient ID Peak Slope CMS
(kg m/s3) (kg m/s3)
1 SP 1.8 -1.5 0.89 6 SP 1.7 -1.2 0.94
SwW 1.1 -1.2 0.8 SwW 1.1 -1.4 0.79
5 SP 1.8 -1.2 0.93 ; SP 1.7 -1.2 0.85
SW 1.1 -1.5 0.81 SwW 1.2 -1.5 0.83
3 SP 1.7 -0.9 0.92 g SP 1.8 -1.4 0.92
SW 1.2 -1.8 0.78 Sw 1.1 -1.1 0.82
4 SP 1.8 -1.4 0.92 9 SP 1.8 -1 0.87
SW 1.1 -1.6 0.77 SW 1.1 -1.7 0.79
s SP 1.7 -1.1 0.84 10 SP 1.8 -1.6 0.95
SW 1.1 -1.3 0.77 SwW 1.1 -1.7 0.77
Table 10: Phenotype characteristics
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Figure 51: SP & SW Phenotype (Participant 10)

5.6 Discussion

5.6.1 Smartphone monitoring

The sampling for this study was set to capture 5 sec samples of data every 55 sec (equivalent to 5
sec per minute). Yet, more readings were generated compared to study 1, which was set with a
window twice larger to capture 10 sec samples every 20 seconds (equivalent to 20 sec per
minute). The amount of readings generated per hour is different between patients but consistent
across the day, as seen in figure 52. A specific period of inactivity over the day (e.g., at night)
might have caused the phone to stop recording data, but the file count, grouped per hour, shows
that there is no specific timeframe causing the loss of data. The average amount of files generated
per day was around 1000, compared to 225 to 793 for patients from study 1. Each hour, between
50 and 60 data samples were collected for most patients. On most days, no samples have been

corrupted, indicating a much higher data collection reliability than for Study 1.
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The logging over time is also less scattered, with consistency in the amount of samples generated
over time. It is not the same for all patients and ranges between 112 and 432 files per hour, but
the trend is consistent without spikes of logging seen. So, the sample recording was not affected
by the time of the day or whether the device was on charge. This validates that the impact of the
power sample on the interval of samples (every 55 sec here) can be disabled and that the

frequency of data sampling can be manipulated to be uniform and unbiased.

Count of Load by Time (binsHour) and PatientID Count of SampleRateBin by SampleRateBin
PatientlD @Part 01 @ Part 02 ®Part_03 @Part_04 ®Part_05 @Part_06 @ Part_07 @ Part_08 @Part_09 @Part_10 SampleRateBin @ <10 @ <20 ® <30 @ <40 ® <50 ® <500 ® <50 @ <70
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Figure 52: SP sample count and sample rate per hour

Study 1 showed variations in intervals and windows, which can be translated as the count of
samples per hour and sample rate for the calculated means. In this study, SP sample rate (<50)
when processing the estimates of LR reached 96.87% of the data samples captured. This means
that the sample files consistently capture data samples as per the expected window length (of 5
sec here) and validates that the load rates can be estimated using consistent samples. SW
sampling is higher than SP due to the mechanism of data sampling by itself, as the samples are
transferred from SW to SP via Android APIS. So, SW sample rate (<70) reaches the expected 100%,
as seen in fig 53. This sample rate range means that the data processing is reliable and validates

that SP onboard processing can be used to estimate load rates.

The estimates stored in SQL match the data calculated for each patient, whether the data were
collected through a smartphone or smartwatch. The linear correlation between the samples
collected and database entries, neither corrupted, indicates that using SQL database is a reliable
way to record and store the data. This approach significantly reduces the amount of data storage
and the risks of data corruption related to reading and writing on phone storage. Therefore, we
can reliably use the LR estimates stored in SQL rather than raw accelerometer data stored in

many txt files.
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Figure 53: SW sample count and sample rate per hour

5.6.2 Smartphone & smartwatch correlation

When looking at sensor recording on each axis (x, y and z), we can see that the density of sensor
events shows more variations on more axis on SW than SP. Fig 54 illustrates an example of daily
sensor activity recorded using participant 10 data. The zoom in shows that between 00h00 and
08h00, both SP and SW were at rest (i.e., unused, likely on a table). The constant value recorded is
noticeably higher on the x-axis for SW and the z-axis for the SP, corresponding to the force caused
by gravity. It is important to note that recordings at constant value denote the inactivity of the
device as opposed to the periods of missing data, which indicate missing recordings. After 08h00,
we can see that both devices start being used with activity mainly on the x and z axes for the SP

while on all axes for the SW.

This trend indicates more movement variations recorded on SW than SP. These movements are
expected since arm gestures are generally more frequent than hip gestures and are not
associated only to lower limb movements (e.g., arms moving when speaking). Movements
associated with arm swing might be beneficial, e.g., to count steps (see Study 3) or for activity
classification (Atallah et al., 2011), but introduce noise in the context of jerk estimations. The jerks
highlight significant load spikes at 08h30 (likely user waking up) and 18h30 on both devices. The
jerks were found to be generally lower on SP than SW, which might be due to the phone being
less sensitive and biased to the noise introduced by arm swing or by jolting on the skin (Bouten et
al., 1997). It was observed in another study that higher accelerometer readings are found at the

waist than chest line (Balogun et al., 1988) (Balogun et al., 1988).
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Figure 54: SP & SW raw accelerometer (x, y and z) over time (Participant 10)
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Fig 55 shows the relation of load rate mean estimated hourly between SP and SW for all

participants, and table 11 lists the Pearson coefficient for each participant. The highest correlation

was reached for Participant 2 (0.96), but the amount of samples was limited to a single day. The

correlation was above 0.6 for all participants, except the lowest correlation (0.57) for Participant

4. The highest correlations were found for Participants 9 and 10, respectively, reaching 0.83 and

0.86.
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Figure 55: SP&SW LR (mean) correlation

Participant |Correlation | |Participant |Correlation

Part_01 0.67] |Part_06 0.72
Part_02 0.96] |Part_07 0.58
Part_03 0.8] |Part_08 0.51
Part_04 0.57] |Part_09 0.84
Part_05 0.62] |Part_10 0.86

Table 11: SP & SW Correlation

In the context of self-assessments, Smartphones are able to estimate steps as well as traditional

pedometer but it also depends on the environment and location of the phone on the body
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(Akerberg et al., 2016). Jerks are estimated from accelerometer values recorded, which are
sensitive to the velocity of movements such as arm swing and demonstrated to be higher on the
upper limbs (Brambilla et al., 2022). So, it is expected for smartwatches to record higher peaks
and values of load rates than smartphones due to their location at the wrist. However, the trends
are comparable, which indicates that smartphones can perform as well as a wristband to record
physical activity while being worn closer to the body, which is more representative of the load

rate on the lower limbs.

Continuous trends can be used to visualize patterns over time, but LRE needs to be quantified to
allow comparisons. The phenotypes allow to visualise the amount of LRE over time and provide
values that can be compared. The previous study has shown that SP handling affects the data
sampling. Here, the CMS provides a representation of the amount of logging recorded providing a
single score, here more significant on SP than SW, which means that the amount of samples
recorded on SP was closer to the expectations (samples of 5 sec every 55 sec) than on SW. It is
expected as Android API's mechanics require the samples recorded on SW to be passed to the SP.
The CMS correlates with the amount of files generated and observations on continuous trends, so
CMS appears reliable in estimating the device logging. The linear regression slope is very similar
for both and ranges from -0.9 to -1.7 on SP compared to SW, from -1.1 to -1.8. . A paired t-test
conducted on the values of slope provides a p-value of 0.158 which is not statistically significant.
The measured difference could be due to randomness of data and is not significant, indicating
that the same motion is recorded on both SP and SW. The peaks recorded on SP were greater or
equal to 1.7 for all participants which is consistently greater than peaks recorded on SW, equal to
1.1 for most. A paired t-test conducted on these peaks provides a p-value of 0.0020. The peak
value difference indicates that the most common LRE recorded are higher on the hips than on the
wrist. Therefore, phenotypes show that similar movements are recorded on both devices but with
a different magnitude which is consistent with the location and handling of the devices. These
characteristics are consistent with observations of LRE over time while providing a simplified view.

So, this methodology will be further used and evaluated in subsequent studies.

5.6.3 Study considerations

This study aimed at evaluating the smartphone capabilities, in data recording and on-board
processing, enforcing control over the smartphone settings and disabling power-saving mode.
This represents the ideal data recording conditions, yet days of missing samples could be
observed. These monitoring issues are likely due to patients using the devices as secondary

phones and read/write interaction with the phone storage (raw logs saved as text files), which
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triggers battery optimisations and power saving. However, consideration should be made of

technological challenges when using smartphones.

Furthermore, participants were asked to keep the smartphone as close to the hip as possible, but
the smartphone’s handling varies per user, e.g., carried by hand, in a pocket or in a handbag.
Therefore, the handling of the smartphone was biased and did not represent the smartphone’s
usage by common users. Therefore, further studies should evaluate the amount of data samples
obtained in free living conditions without power-saving restrictions and using the primary
smartphone of the participants to provide a more accurate representation of continuous LRE

monitoring.

5.7 Conclusion

This study confirms that smartphone sampling can be uniform and unbiased by user’s usage
conditions by disabling power save mode. Raw accelerometer data can consistently be captured
and stored on the phone’s memory but require significant storage space. The load rates
calculated and stored in SQL database, as opposed to raw data, demonstrate that the
smartphone’s on-board processing capabilities are reliable, and match raw data processed offline

(MATLAB/Python).

Smartwatches are more sensitive to wrist movements, but the overall pattern and load trends
measured by smartphones and smartwatches are similar. Smartwatches show higher peaks, but
the trends, slope and intersect are comparable, which supports the use of smartphones to

evaluate load rates on the lower limbs while being closer to the user's centre of gravity.

Individual phenotypes look at physical activity characteristics (i.e., trend, slope, intersect and
peak) and will be further utilised in subsequent studies. Study 3 evaluates the impact of clinical
interventions (knee injection) in OA patients’ physical activity, compared to wristbands (Fitbit)
commercially available, using step count as a standard unit of measure. Study 4 evaluates the
trends of load forces that can be measured using the primary smartphone over an extended

period.
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Chapter6 OApp Sydney: Continuous monitoring in

osteoarthritis clinical trial

This chapter covers the steps undertaken, considering the input from osteoarthritis patients, to

compare load force estimates and step count, before and after clinical intervention.

6.1 Introduction

The results of study 2 (chapter 4) have shown that the sampling discrepancies identified in study 1
(chapter 3) can be addressed by manipulating the power save settings of the phone. Moreover,
load rate trends obtained from smartphone recordings are comparable to smartwatches worn at
the wrist. It represents the ideal usage conditions but not how smartphones are used in free-living
conditions. To date, not enough studies have been made on load rate to validate smartphone’s
estimates, so we compare estimates of step count from smartphone and Fitbit to use an accepted
unit of physical activity (PA). Moreover, it is impossible to correlate disease and physical activity
(as per study 1) without significant changes in the patient’s condition or treatment. So, OA
patients were recruited as part of a clinical trial to validate that the methodology can measure

changes in behaviour before and after injection.
6.2 Literature review

6.2.1 Osteoarthritis and clinical treatments

There is no cure for OA, but unlike RA, the disease does not necessarily worsen, and several
treatments can help relieve the symptoms (see chapter 2). The damage to tissue and cartilage of
OA patients might progress and be monitored using patients-based questionnaires such as the
Western Ontario and McMaster Universities Arthritis Index (WOMAC), Knee Injury and
Osteoarthritis Outcome Score (KOOS) and Hip disability and osteoarthritis outcome score (HOOS).
The use of questionnaires and diaries in the context of PA assessment has already been reviewed,
with a positive correlation found using self-reported WOMAC and objectively monitored with
Fitbit (Morcos et al., 2020). The key features to consider have been identified as quality and
objectivity of PA measures along with cost and limitations (Sylvia et al., 2014). Although
guestionnaires can add valuable insights, this study does not use them as the focus is identifying
the change in PA. The relation between knee loading and pain has been investigated in a cross-
sectional study using VAS scales to measure pain intensity (Henriksen et al., 2012). The study

identified a positive correlation but only for patients with severe OA. Guidelines for pain
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management exist (Bannuru et al., 2019), including prescriptions of paracetamol, NSAIDs and
COX-2 inhibitors to manage pain. In most extreme cases, joint surgery might be required to
replace the affected joint with a prosthesis. Injections provide an alternative to knee surgery
while being stringer than drugs. Injections of corticosteroid injections help reduce inflammation,
and injections of hyaluronic acid help support the thinning caused by OA (Ayhan, 2014). Platelet-
Rich Plasma (PRP) helps heal injuries and is injected after being mixed with a blood sample. Still,
the efficacy of this approach remains the subject of multiple studies (Gato-Calvo et al., 2019)

(Paterson et al., 2018).

Supposedly, reducing the pain should remove the patient’s barrier to exercise and improve
overall mobility towards following PA guidelines. A systematic review of studies has concluded
that only a small amount of OA patients meet the PA guidelines (Wallis et al., 2013). The review
included studies measuring moderate to vigorous PA and step counts. A consensus statement in
2022 was released to recommend exercises for OA considering PA to strengthen the bones,
prevent falls and reduce the risks of vertebral fractures (Brooke-Wavell et al., 2022). The use of
MET was identified by an international cohort (Gates et al., 2017) to standardise the
measurements of PA. Metabolic Equivalent of Task (MET) is a unit of energy expenditure defined
by the amount of oxygen consumed by an individual at rest. The measure of oxygen at rest is
about 3.5 millilitres per kilogram per minute, representing the baseline for comparing activities
requiring more oxygen (Jetté et al., 1990). The METs required per activity have extensively been
defined in a compendium in 1999 (AINSWORTH et al., 1993) and updated in 2000 (AINSWORTH et
al., 2000). The classification describes PA considering major activity groups such as walking,
cycling, occupation and home activities. Activities are then assigned a level of intensity which
ranges from 0.9 METs (sleeping) to 18 METs (e.g., running) and consider numerous activities such
as cycling (8.0 METs) and walking (2.5 METs). Recent years have seen a significant evolution of
fitness trackers (Shanes, 2017) routinely used to measure moderate to high level of activities
performed outdoor. The commercial expansion of brands such as Fitbit indicates that the
broadest audience generally accepts these devices as mean to monitor exercise and physical
activity, continuously and outside of specialised fitness environment. Fitness conscious people
focus on measuring their performance and improvements while OA patients have to consider that
the impact of repetitive motion can lead to damage in muscles, joint cartilage and bones (Milner
et al., 2006). The tracking of step count and exercises focuses on repetitive movement with a
population already active but does not consider the quality of movement and stress caused on
the lower limbs. However, the method can be applied to OA considering that METs-min can be

obtained from step count estimates.
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6.2.2 Wearable and step count estimates

Wristbands and smartwatches typically use embedded sensors that allow tracking of energy
expenditure (calories) and heart rate and are positioned at the wrist are ideal for monitoring arm
swing and defining patterns, e.g. activity recognition (Attila Reiss, 2013) and step counts. These
devices encourage a competitive mindset, and pedometers have shown effects on diabetes
patients (Delfien Van Dyck, 2013). This effect has also been demonstrated in RA patients through
a significant increase in physical activity and subsequent decrease in fatigue in a population of 96
participants after using a pedometer for a week (Katz PP, 2015). The level of participation in
activities such as walking can be increased through structured classes, as shown in a study with
eighteen older adults (Tudor-Locke et al., 2002). Fitbit’s daily target is set by default to 10000
steps (ROSENBAUM, 2019) which is not typically achieved in daily activities, as identified in a
literature review (Choi et al., 2007). The search included studies published between 1982 and
2006 that used pedometers and step counters. The daily count can be improved through sports
and home activities, but the results found a deficit of 4000 to 6000 steps when performing only
routine activities. So, expecting OA patients to perform 10 000 steps routinely is not suitable and
a preliminary study identified the step count range to classify the level of PA (Tudor-Locke and
Bassett, 2004). In this context, the daily step count considers individuals as active 210 000 and
highly active 12500 steps/day. Under 10 000 steps/day is considered somewhat active for 7500-
9999, low active at 5000-7499 and sedentary under 5000 steps/day. A literature review that
covered 1594 articles was further commissioned in 2010 by the Public Health Agency of Canada
(PHAC) and concluded that using step count estimate is a good baseline for PA guidelines

communicated to the general public (Tudor-Locke et al., 2011).

Besides acceptance from the public measured by the commercial success, wrist-worn devices
wristbands have been validated amongst other commercially available devices, PA trackers (Wahl
et al., 2017) to provide reliable step count estimates. Fitbit was also validated against research-
grade devices such as Actigraph GT3X+ in various studies found in a library of publications that
have used Fitbit devices in research (Fitabase, 2022). The step count recording was validated with
a community of 32 older people over seven days (Paul et al., 2015). Assessment of active minutes
in free-living environment was also validated, with 53 participants wearing the device for seven
days (Brewer et al., 2017). The usage is also acceptable for a more extended timeframe, as shown
in a study with 42 female breast cancer patients (Hartman et al., 2018). The findings
demonstrated that over 12 weeks, the Fitbit trends allowed us to visualize changes in PA habits
triggered by a research intervention. Therefore, Fitbit provides a reliable way to track PA although
a systematic review of 67 studies identified caveat such as overestimating step count in free living

conditions (Feehan et al., 2018).
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Step counters have become popular but the principle for counting steps is not new and can be
achieved in several ways, as identified in a literature review of step count measurement
considerations (Bassett et al., 2017). The devices can be worn at the waist, pocket, thigh or foot
and the most accurate position is at the ankle. A basic method is to identify the steps measuring
the vertical variations of ups and downs at the waist, which can be achieved using a spring levered
or, more recently, with accelerometers. Devices worn at the wrist consider the movements
related to arm swing, and algorithms have been developed for PA classification (Zhang et al.,
2012) as well as optimising step count estimates. Smartphones” ability to estimate step count has
been measured, and multiple algorithms have been developed to handle the noise introduced by
free usage and device handling. The general principle is to capture accelerometer data and apply
noise filtering to identify peaks. A study used a low pass filter (Myo et al., 2018). It was also
proposed to estimate steps by flattening insignificant acceleration changes using a discrete
Kalman filter (Kinh et al.) on iPhone accelerometers. Walk detection and step count might filter
the angular movement using Fast Fourier Transform, as seen in studies using unconstrained
Android devices (Kang et al., 2018, Dirican and Aksoy, 2017). Adaptive threshold calculation for
magnitude and temporal filtering following the peak extraction was used to deal with the
dynamics of smartphones in various device handling, such as texting and calling (Lee et al., 2015).
Another proposed technique adaptively tunes the filters and thresholds without the need for pre-
sets classifier (Khedr and EI-Sheimy, 2017). Android provides a set of sensor APIs and, in more
recent releases, improved the support for fitness applications by releasing the ability to record
step count (Google, 2022a). This project does not focus on the algorithms provided by Android,
but step count is a unit typically used by most fitness trackers as an intuitive measure and widely
advertised by Fitbit. The most significant benefit in using the step count API is preventing the risks

of tracking termination due to power save identified in Study 2.

6.3 Rationale

The correlation between disease and physical activity requires continuously monitoring a patient
with significant symptoms for an extended amount of time. So, we measure smartphone
monitoring with patients before and after a clinical intervention. The changes in behaviour

triggered by injection emulate disease activity changes usually seen in an extended timeframe.

Load rate estimation is not a standardised way to measure physical activity, so we compare the
step count measured by smartphones with Fitbit estimates to validate the smartphone’s ability to

perceive significant variations.
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6.4 Aim & objectives

6.4.1 Aim

This study aims to evaluate the variations of physical activity, load forces and step count,
measured by smartphone in a clinical trial that introduces a noticeable medication change

through knee injection of OA patients.

6.4.2 Objectives

The objectives of this study are:

1) Evaluate the ability to continuously capture load forces measured by smartphones in free
usage conditions (i.e., without power save mode restrictions or handling restrictions)
2) Compare the amount of step counts measured by smartphone and Fitbit

3) Assess the patient’s behavioural changes before and after the injection

6.4.3 Hypothesis

If a clinical intervention introduces a change in physical activity behaviour, measuring the load

forces through a smartphone’s continuous monitoring could identify and assess this change.

6.5 Methodology

6.5.1 Patient recruitment and study procedure

This study is a pilot, observational and quantitative study, focusing on comparing the trends and
correlation of physical activity recorded via smartphones and Fitbit. Each participant wore a Fitbit
Flex 2 wristband and used a Samsung Galaxy A5 preloaded with OApp™. Samsung devices (12

phones) were loaned in rotation to cover the broader amount of participants.

The protocol and additional documentation, including consent forms, have been reviewed and
approved by Northern Sydney Local Health District HREC (Reference number:
LNR/17/HAWKE/370).

Patients recruited were sixty-six adults, part of the RESTORE trial (ANZCTR registration -
ACTRN12617000853347), split into placebo and intervention groups based on their consecutive
entry into the study. Inclusion criteria were defined to recruit patients diagnosed with

Osteophytes on x-ray, willing to participate in this study and above 50 years old. The clinical trial
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requires patients explicitly with a minimum pain score of 4 on an 11-point numeric rating scale for

the last week and knee pain on most days in the previous month.

The clinical team first screened participants, giving verbal descriptions and information on the
trial over the phone before sending the Participant Information Sheet and Consent form by postal
mail. The suitable participants then underwent X-ray, blood tests; and physical screening before

being invited to join the trial.

Once recruited, patients received the loaned Fitbit wristband and smartphone preloaded OApp™
for seven days. Fitbit and smartphone were then returned, and the clinician collected data.
Patients repeated this procedure for an additional seven days following a RESTORE trial’s standard

timeframe of two months.

6.5.2 Data collection

For this study, the monitoring aimed at recording hourly step count and data samples of 5
seconds (window=5) every 15 seconds (interval=15). Step count and LRE have been stored in
segregated SQL databases to avoid CRUD conflicts and uploaded to Azure table storage at the end
of each day. Fitbit data are synched online through the Fitbit app that was preloaded on the
phone. Fitbit daily step counts have been exported as an excel spreadsheet through Fitbit’s online

portal.
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Figure 56: Smartphone & Fitbit
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6.5.3 Data analysis

The previous study (study 2) showed that the sampling could be uniform with power saving
disabled. This study aims to emulate conditions of usage closer to real life. So, smartphones were
set with their default settings (i.e., power saving mode enabled) which causes variations in the
data capture interval preventing comparisons. As per previous study, the sampling can be
manipulated but the aim is to emulate free living conditions. Doze mode might extend the
sampling interval up to 5min (instead of 55sec). So missing LRE samples, for periods of interval
longer than 5 min, were assumed to be due to power saving and replaced with imputed samples
using the surrounding values, as illustrated in fig 57. The LRE samples were then interpolated into

fragments of 5 min to obtain uniform sampling across all patients.

For each participant, the steps recorded by the phone are compared with Fitbit’s daily step count
as a baseline of physical activity trends. As for study 2, we draw individual phenotypes to
represent the proportion of time at load. The continuous monitoring score (CMS) indicates
reliability on the amount of samples recorded. The peak represents the load with the highest

proportion of time, and the linear regression slope illustrates the overall trend of physical activity.
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Samples recorded

| Imputed sample ‘

Samples imputed oofimoooddooooomooooboochonnoo
[ Periodically release resources
Battery & Resources = - - 2 |
allocated ' T '
- 4V ra % + 5 A
Time

Figure 57: Data Sampling

6.6 Results

6.6.1 Overall participation

Table 12 summarises the amount of data collected over both sessions. Most of the 66 OA patients
completed the recruitment period except patient 2, who had technical issues and 8, who dropped
out of the study. The data collection of smartphones and Fitbit for both recruitment periods were
completed by 15 patients (23%). Most patients (60%) completed smartphone data collection at

baseline and after 2 months except 12 patients (17%) who couldn’t attend the second recruitment

113



OApp Sydney: Continuous monitoring in osteoarthritis clinical trial

period. A total of 146892 LRE were recorded for both periods across all participants. Patients
generated an average of 2260 LRE, with patient 3 generating the most (8350 estimates) and
patient 63 generating the least (98 estimates). Fitbit data were recorded successfully on both
sessions for 19 patients (29%), but 39 patients (60%) recorded less than ten days overall due to
technical issues or not being able to attend the second session, and the remaining eight patients

(12%) completed only the first session.

ID LRE Days |Fitbit Days ID LRE Days |Fitbit Days ID LRE Days |Fitbit Days
2 2 1 24 15 15 46 14 14
3 15 14 25 14 7 47 14 14
4 14 14 26 14 8 48 14 14
5 14 1 27 14 5 49 14
6 15 14 28 14 2 50 8 7
7 15 15 29 10 7 51 14 1
8 1 30 15 52 14 7
9 14 13 31 8 6 53 8 7
10 14 14 32 14 2 54 15 14
11 15 13 33 14 7 55 14 7
12 8 7 34 8 1 56 14 14
13 14 11 35 14 9 57 14 10
14 8 7 36 14 14 58 1
15 15 7 37 14 59 7 7
16 14 38 14 60 14 6
17 7 7 39 12 61 14 7
18 14 14 40 14 62 14 13
19 15 8 41 7 2 63 1 1
20 8 7 42 14 64 14 14
21 14 14 43 14 65 14 14
22 14 13 44 14 11 66 7
23 14 7 45 14 14
Table 12: Summary samples (SP LR estimates and Fitbit) across patients
6.6.2 LRE Monitoring

Smartphones were used with their default power save setting (i.e., disabled) which follows the
Android pattern of battery optimisation. As expected, the recording of samples follows the
patterns of usage of the phone, which experience LRE much lower at night than during the day.
Fig 58 shows that LRE is at least four times lower between 00h00 and 04h00 than during the rest
of the day and gradually reduces from 19h00 to 23h59.
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Figure 58: LRE (mean) per hour

As a result, the interval between samples is not uniform over time and less samples are generated
between 00h00 and 05h00 than the rest of the day, as seen in fig 59. A third of the sample
(29.9%) follows the window setting with an expected sample rate of 50. However, most samples

are smaller than expected, with 55.75% of samples generated with a rate lower than 10.
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Figure 59: Count of LRE per hour

The missing samples introduce a bias to the mean LRE from raw accelerometer data. Therefore,
samples are imputed based on the surrounding values and interpolated, as seen in fig 60, which
shows the hourly LRE from raw and interpolated data. As expected, the trend of interpolated is
like raw data and shows lower estimates between 00h00 and 04h00. However, looking only at
raw data overestimates the mean of LRE. Interpolated LRE mean is also much lower as considers

periods of inactivity which are frequent.
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Figure 60: LRE (mean) per hour (raw and interpolated)

Fig 61 illustrates an example of phenotype for the most significant between-person variation of

the most and least active sessions, respectively, of patient 47 at baseline (with a slope of 0.90)

and patient 55 after injection (slope of -2.40).

‘ Patient 47 (session 1) |

107
107 10° 10’ 10?

Patient 55 (session 2)

10
10"

10"

Raw Interpolated
D Session Peak Slope CMS Peak Slope CMS
47 1 1 -1.1 0.6 0.1 -0.9 0.99
55 2 1.1 -2 0.77 0.1 -2.4 0.99

- Raw (blue)
- Interpolated (black)

Figure 61: Raw & Interpolated Phenotype (Patients 47 and 55)

Fig 85 shows the phenotype characteristics from raw data on both sessions for all participants.

The CMS across patients and sessions ranges from 0.35 for the second session of patient 12 to

0.92 for the second session of patient 3, which means that not all samples are accurate LRE

representations. The slope should consider the interpolated data in combination with the CMS.

Most patients had a slope under -1.4, indicating a low amount of physical activity. This is expected

for a cohort of OA patients but could also suggest that the smartphone was not used if the CMS is
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low. The peak ranges from 0.6 during the first session of patient 36 to 1.3 in the second session of
patient 62. However, peak 1.3 occur with CMS lower than 0.37, so the most common LRE
recorded is similar for this cohort across patients and sessions. For most patients, the peak of raw
datais 1.1, and the interpolated average peak is 0.2 because of imputing missing samples, which

generally occurs when the phone is inactive.
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Figure 62: Phenotype characteristics

6.6.3 Step count monitoring

To evaluate the correlation, we consider the patient samples with at least five days of recording
more than one step on both smartphone and Fitbit, which reaches 0.78, as seen in fig 86 (left).
When looking at the correlation for days with a minimum of 1000 steps completed on both
devices, the overall correlation reaches 0.86, as seen in fig 63 (right). The plot shows a relation of
proportionality with a 1:1 ratio for most patients (56%) as seen in table 13. However, a proportion
twice higher can be seen, and patients 14 and 19, respectively, recorded three and four times

more steps with Fitbit than SP.
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|D. Steps (SP) and Steps (Fitbit)
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Figure 63: Daily step count correlation

ID | Days [ Steps (SP) [Steps (Fitbit) |Correlation| Ratio ID | Days | Steps (SP) |Steps (Fitbit) |Correlation| Ratio

3 14 72813 121052 0.18 2|| 27 5 22400 35534 0.5 2

4 14 98021 164367 0.45 2[] 31 6 40374 67416 0.9 2

6 13 52128 92245 0.31 2[| 33 7 41587 50329 -0.23 1

7 15| 105740 121353 0.56 1] 35 5 29905 60375 0.52 2

9 11 69040 117534 0.09 2| 36 12 60512 74824 0.39 1
10 14 78736 94138 0.25 1| 44 9 82485 107790 0.3 1
11 11 64785 107605 0.79 2| 45 14| 110277 131578 0.71 1
12 7 88324 102558 0.57 1| 46 14| 110751 178418 0.44 2
13 10 55545 101200 0.44 2| 47 14| 184170 214177 -0.01 1
14 6 23327 60180 0.85 3| 48 13 60354 103038 0.7 2
17 7 21153 27859 -0.57 1| 52 7 42972 47843 0.08 1
18 13| 161166 152327 -0.14 1| 53 7 30984 45183 0.46 1
19 7 17755 73057 -0.08 4| s4 13 71161 136002 0.29 2
20 7 93429 101430 0.94 1| 56 13 73516 92322 0.52 1
21 12 50447 120692 0.27 2| 59 7 31884 39770 0.84 1
22 9 46097 65276 0.84 1| 60 5 22180 38532 0.76 2
23 7 49982 60527 0.07 1| 62 5 19194 28711 0.38 1
24 15| 135719 169390 0.76 1| 64 14| 127039 102484 0.83 1
25 6 49797 49898 0.59 1| 65 14 90785 128873 0.83 1
26 8 54934 95020 0.69 2

Table 13: Correlation smartphone and Fitbit (daily step count)
6.6.4 Monitoring before & after injection

Figures 64 to 67 show the trends at baseline (left) and after 2 months (right) of daily Fitbit and SP

step count and accumulated load rates for patients that participated for more than 9 days overall

and recorded more than 1k daily steps. Most days, the smartphone’s count of steps follows the

same trend as Fitbit. However, no substantial behavioural changes can be observed on the daily

step counts before and after injection. Fig 68 shows the distribution of LRE for each participant

before and after clinical injection. As for step count, no perceivable changes in LRE behaviour can

be observed at baseline and two months after injection.
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Figure 64: Sum of LR and Step count (Fitbit & SP) at baseline and after 2 months (Patient 3)
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Figure 65: Sum of LR and Step count (Fitbit & SP) at baseline and after 2 months (Patient 36)
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Figure 66: Sum of LR and Step count (Fitbit & SP) at baseline and after 2 months (Patient 44)
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Figure 67: Sum of LR and Step count (Fitbit & SP) at baseline and after 2 months (Patient 45)
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Fig 91 shows the distribution of step count recorded across the cohort of patients, before and
after injection, through Fitbit and smartphones. A paired t-test conducted on the step count
recorded via Fitbit provides a p-value of 0.391 which is not statistically significant. Similarly, A
paired t-test conducted on the step count recorded via SP provides a p-value of 0.574 which is not

significant either.
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Figure 68: Boxplot of Step count across all patients, before and after injection

Fig 69 shows the distribution of LRE for each participant before and after clinical injection. As for
step count, no perceivable changes in LRE behaviour can be observed at baseline and two months
after injection. A paired t-test conducted on LRE recorded provides a p-value of 0.362 which is not

significant.
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Baseline and 2 months after injection
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Figure 69: Boxplot LRE for all patients, before and after injection
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6.7 Discussion

6.7.1 Continuous monitoring

The sampling for this study was set to capture 5 sec samples (window=5) every 15 seconds
(interval=15), equivalent to 20 sec per minute. As expected, Android’s power saving affects the
ability to record uniform sampling of accelerometer data. The mean LRE and amount of samples
recorded at night are significantly lower than during the rest of the day. Users are typically
sleeping at night and so this appears to confirm that the overall sampling is affected by the user's
interaction with the device, as seen in study 1. Furthermore, the proportion of samples recorded
at the correct window size was much smaller than in Study 2. The sample rate for 55.75% of
samples was five times smaller than expected, which means that estimates were generated for
smaller window sizes because of the power-saving algorithm shortening the data recording over a
smaller window. The sample window size was smaller than the setting (under 50, 70% of the time)
but there is no correlation with the value of LRE, as seen on fig 70. The distribution of samples is
not random, so the length of sample rate is not random. Therefore, smartphone samples are not
corrupted by the power save but bias the ability to estimate the individual mean of physical

activity.
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Figure 70: LRE and Sample rate

122



OApp Sydney: Continuous monitoring in osteoarthritis clinical trial

6.7.2 Step count comparison

Smartphone steps are recorded using Android’s APl and estimated using Google’s proprietary
algorithms, but APIs are not subject to the same restrictions as third-party apps (here OApp™). So,
the amount of steps recorded by smartphones can be considered a reliable representation of
smartphone estimates. Data recording challenges were also found with Fitbit, and not all patients
recorded data as expected. Fitbit uses a smartphone app to retrieve the daily step count but
manufactures the smartwatches and owns proprietary algorithms to estimate daily step counts.
Therefore, Android power save doesn’t appear to affect the ability to record step counts on a
smartphone or Fitbit HR. The performance and accuracy to evaluate step counts, measuring the
peak to peak of arm swing, is affected by the type of device and incurs false positive (Akerberg et
al., 2016). So, it is expected to see the correlation increase, when over 1000 steps have been
measured, as the proportion of false positive decreases with higher amounts of steps. The
Smartphone’s estimate of step count appears to be proportional to Fitbit estimates with a 1:1
ratio for 56% of participants. The remaining 44% observed ratios up to 4 times lower on
smartphone which indicates that the phone may have not been used when the Fitbit was worn.
Negative correlations, on the other hand, indicate more steps recorded by smartphone than by
Fitbit, potentially due to Fitbit not being worn. . The impact on samples is expected because of
power save. However, the step count results also show that smartphones were not carried as
much, in most cases, as Fitbit devices. These results are consistent with Study 1 and the study
protocol, as the phones were used as secondary, which caused limited interactions with

smartphones and in carrying them.

6.7.3 Behaviour changes before/after injection

Fitbit doesn’t allow access to raw accelerometer data, so it is impossible to compare LRE. The
amount of steps recorded by a smartphone is generally lower than by Fitbit. It is expected
considering the arm swing movement associated with devices worn at the wrist, as observed in
the previous study. However, the step count trend of smartphones and Fitbit are similar at
baseline for patients 7, 10, 11, 22, 24, 43 and 45, which confirms that the smartphone’s recording
is comparable to Fitbit. For patients 22 and 24, the trends after two months are also similar while
different for the other patients. The position and usage of the phone explain these discrepancies.
The step count reported by the phone is very low, which indicates that it was left in a static
location (e.g., on a desk) instead of being carried close to the body. The daily amount of step

count between participants is different, which indicates different levels of physical activity.
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The aggregated LRE, however, does not always follow the same trend as step count and lower
aggregated LRE can be seen on days with higher daily step count. The amount of force a patient
generates is not only to perform steps. So, evaluating LRE beyond daily aggregates allows for
gaining further monitoring insight. The CMS provides a measure of confidence in the amount of
time logged by the device (raw data). The variations observed indicate that the sampling reliability
was not the same across patients. As expected, CMS values are lower when power save is
enabled, with an average of 0.67. Interpolated CMS is closer to 1 as it is obtained by imputing
missing samples, so we consider only raw CMS. Low CMS affect the reliability of features
extraction from phenotypes as a mean of comparison between patients and changes following
injection. The slopes recorded are biased towards the most common LRE values recorded. The
peak recorded were low for most, indicating that the smartphones were not used most of the

time. As for CMS, the interpolated peak is biased towards low imputed values and can be ignored.

Knee injection is a substantial procedure for OA patients. The monitoring of behavioural and
physical activity using wearable presents technical challenges but appears feasible. However,
none of the patients showed drastic changes in physical activity and not enough variations were
observed on the trends of step count and LRE variations to establish a direct correlation between
knee injection and physical activity. Knee injections are typically scheduled shortly after being
recommended and so increasing the monitoring timeframe is practically challenging as it might
prevent access to care. It should also be noted that placebos were used in this trial, which
increases the complexity as changes might not be expected at the first place. Nevertheless, the
distribution of LRE intensity highlight outliers significantly outside the range of LRE. These spikes
of LRE represent jerks recorded beyond the mean of individual physical activity, which might

provide further insights into OA symptoms and conditions.

6.8 Conclusion

This study confirms that using smartphones as a secondary phone affects the sampling
performance due to the smartphone’s power saving. However, the number of steps recorded
shows that the sensors remain active when processed by the OS. The trends of step count

recorded by the phone are like Fitbit, which validates the smartphone’s tracking ability.

Fitbit consistently recorded more steps due to the sensor's location on the body (i.e., dominant
and non-dominant wrist) and sensitivity to upper limb movement (e.g., wider arm swing, hair
stroke). Smartphones are not always close to the body (i.e., kept on a desk), so they are likely to

record fewer steps than devices worn at the wrist, as seen in study 2.
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Wristbands are worn at a static position on the wrist (dominant or non-dominant), which is
optimised to estimate arm swing patterns and step counts. Smartphones can be held and carried
at multiple locations (e.g. pocket, hand) but are typically carried closer to the centre of gravity of
the human body. Therefore in the context of patient monitoring, smartphones provide a better
representation of the impact loading on the lower limbs and joints, including bursts of a sudden
jerks. As for study 1, the amount of recorded samples and timelines are insufficient to draw a
correlation between disease and physical activity. As a result, study 4 will recruit participants

willing to install the app on their phones.
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This chapter covers the steps undertaken to assess load force estimates, considering the input

from rheumatoid arthritis patients, over 3 months.

7.1 Introduction

The results of Study 1 raised the challenges associated with smartphone sampling, and study 2
confirmed that these can be addressed through power save settings. Study 3 observed a low
sampling performance, but the capability to continuously monitor the sensors of the phone
remains, with comparable step count trends as Fitbit trackers. Smartphone power-saving is
triggered by a long period of user inactivity. Therefore, smartphones used as secondary devices
do not provide an accurate representation of free usage and cause a significant amount of data
losses. So, for this study, we evaluate LRE that can be obtained in real-life use with RA patients
recruited, as for Study 1, but asked to load RApp™ on their smartphone (i.e. primary device) and

for a more extended recruitment period of 3 months (6 weeks in Study 1).
7.2 Aim & objectives

7.2.1 Aim

This study aims to assess whether smartphone’s continuous monitoring over an extended period

can be used to evaluate the variations of physical activity and load forces.
For this study, two sets of samples were collected:

1) RA patients recruited for three months

2) Researcher data over five years

7.2.2 Objectives

The objectives of this study are:

1) Evaluate the ability to continuously capture load forces by a smartphone used in free-
living conditions, as the primary device and with default power save mode optimisation

2) Assess the changes in physical activity, and load forces over an extended period
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7.23 Hypothesis

If load forces and step counts are continuously monitored on a patient’s primary smartphone, in
free living conditions and for an extended period, then physical activity trends and patterns can

be obtained, that can be useful to assess correlations with disease activity and symptoms.

7.3 Methodology

7.3.1 Patient recruitment and study procedure

This study is observational and quantitative and compares trends and correlations of self-assessed
disease activity and load rates recorded via smartphones. The protocol and additional
documentation, including consent forms, have been reviewed and approved by London
Stanmore’s ethics committee (REC reference 16/L0/0182). To be eligible, inclusion criteria were
defined to recruit any participants diagnosed with rheumatoid arthritis, willing to participate in
this study and above 18 years old. Participants were recruited from the database of patients of

the University Hospital Southampton NHS Foundation Trust.

Due to COVID restrictions, patients were invited to review the study details by accessing the
Participant Information sheet from a QR code advertised on a poster at the hospital. Patients
interested could then access an online consent form and receive an email confirmation, once
consented, with the details to download RApp™ from Google Play directly on their phone. Each
participant used their smartphone (Android based) and installed RApp™, which should address
the impact of power saving and quantify the amount of tracking obtained in real-life monitoring.
The updated user interface includes more joints (DAS) and only the RAPID3 questionnaire
provided, which is not designed for weekly use, nor validated but fits the purpose of self-
assessment by the recruited patients. No specific considerations are required on the medication,

as this is a pilot study, but the recruitment period has been extended to 3 months.

Obtaining ethics to recruit patients within the NHS requires obtaining approvals from the relevant
committee, so recruiting patients nationally (or across countries as for study 3) requires obtaining
all the relevant approval. Similarly, obtaining data from participants for longer than three months
requires unrealistic commitment on their end, considering that this study is observational and
does not provide intervention or improvement of their medical condition. Hence, the second part
of this study considers control data generated over the years by the researcher. RApp™ was
installed on personal smartphones, which changed over the years to control the protocol's correct

functioning and technical aspects.
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7.3.2 Data collection and analysis

For this study, the monitoring aimed at recording hourly step count and data samples of 5
seconds (window=5) every 15 seconds (interval=15). Self-assessments, step count and calculated
load rates have been stored in the smartphone’s segregated SQL databases and asynchronously
uploaded to Azure table storage whenever a cellular or Wi-Fi connection was available. The

samples were then exported.

For each participant, we evaluate smartphone performance to continuously monitor LRE for the
recruitment period (3 months). As for previous studies, we assess the amount and integrity of
recorded samples. The phenotype and characteristics introduced in Study 2 are further used to

evaluate the proportion of LRE over time.

7.4 Results

74.1 Patient’s continuous monitoring (3 months)

Due to COVID restrictions and associated safety preventions, a limited cohort of three RA patients
(two males and one female) was recruited at the hospital and consented remotely via online
form. All patients could download and install RApp™ correctly on their phones, as summarised in
Table 14. Patients were invited to use RApp™ for over three months if they wished. Patients p73
and p74 correctly completed the recruitment period and kept using the app for six months and

three months. Patient p75 had smartphone settings issues and completed a partial timeframe of 2

months.
Patient Recruitment Amount of Mean LR (per day)
ID F/M Start End Total | Average | Min Max |[Std Dev

p73 M |11/05/2021|05/11/2021| 69897 | 397.14 13 984 | 203.4
p74 M |25/05/2021(24/09/2021| 29339 | 916.84 13 2455 | 695.85
p75 F 125/05/2021|19/07/2021| 14665 | 977.67 110 2134 |610.43

Table 14: Patient recruitment summary

Fig 71 shows the trend of LREs for each patient. The density of the plot indicates that patient p73
consistently recorded LRE over the recruitment period. Patient p74 recorded LRE between 25/05
and 02/06 and a few random days in June. The peaks in August and September are related to days
of the RApp™ periodically restarting the sampling before being uninstalled on 24/09. Patient p75
recorded an overall of 11 days which can be seen as distinctive periods with density. The app did

not run correctly for the rest of the time until being uninstalled on 19/07.
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Figure 71: Smartphone’s LRE (Mean) over time
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Fig 72 shows that the amount of sample recorded over time is higher in the morning than the rest

of the day. This is expected as smartphones are generally put on charge overnight, which means

that the sample distribution is not uniform. On the other hand, most of the samples follow the

expected rate of 50 (70.5%) or slightly greater at 60 (26.5%).
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Figure 72: SP sample count and sample rate per hour

Fig 73 shows the mean of LRE evaluated from raw and interpolated data. Interpolated data

consider the whole period that each patient had the app installed. As a result of missing days, the

overall LRE mean is significantly lower than with raw data.
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Figure 73: LR (mean) estimates per hour (raw and interpolated)
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Fig 75 to 77 and Table 15 illustrates the phenotype and characteristics for patients p73, p74 and

p75. The CMS of p74 is the highest, which means that most samples can be explained. Although

p74 has the highest interpolated slope of -1.2, the LRE peak of 0.7 means that the phone recorded

less movement than p73 and p75, with a peak of 2.

The boxplot (Fig 74) shows a low distribution of movement for p74 compared to p73 and p75,

which recorded a wider range and higher maximum of LRE. Outliers of p73 reach LRE burst 800

times higher than its max LRE and at least 100 times higher for p74 and p75.

1000
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200

Raw Interpolated
ID Peak Slope CMS Peak Slope CMS
p73 2 -1.5 0.76 0.1 -1.3 1
p74 0.7 -1.5 0.98 0.1 -1.2 0.98
p75 2 -1.6 0.7 0.1 -1.6 1
Table 15: Phenotype characteristics
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Figure 74: Boxplot (with and without outliers)
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Figure 77: Phenotype (patient p75)

7.4.2 Continuous monitoring over 5 years

This project's development and technical follow-up required a control and troubleshooting
mechanism. So, RApp™ has been running on the primary device of the researcher between 2018
and 2022. Table 16 summarises the period each smartphone was for, along the quantity of
samples gathered. Early testing was done using HTC smartphones, but the first primary phone
used was a Samsung S7 from January to March 2018, referring to the datasets s72901, s7110218
and s7040318. A gap in data occurred until using a Samsung S9+ from September 2019 to May
2020, corresponding to datasets s9jimmymay and s9jimmymay2020 in the plots. Another gap
occurred until using an Xperia 1i from September to May 2022, corresponding to Xperia li and
p72UK. The last dataset was captured using a Samsung 22+ from April to December 2022,
referred to as p78. Fig 78 shows the timeline of samples recorded over time with each

smartphone.
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Patient Recruitment Amount of Mean LR (per day)
ID Model Start End Total Average Min Max Std Dev
s72901 Samsung S7 | 28/01/2018|11/02/2018| 29990 1999.33 69 3057 800.73
$7110218 Samsung S7 | 11/02/2018|04/03/2018] 28580 1299.09 259 2710 598.6
s7040318 Samsung S7 | 04/03/2018|07/04/2018 74170 2119.14 491 4119 869.5
s9jimmy Samsung S9+ | 09/09/2018 | 28/09/2019| 192668 500.44 11 2162 353.61
s9jimmymay2020| Samsung S9+ | 04/12/201917/05/2020] 115730 697.17 125 1952 345.07
Xperiali Sony Xperia 1i | 05/09/2020(21/11/2020 68755 881.47 223 1808 445.1
p72UK Sony Xperia 1i | 02/04/2021 | 05/11/2021| 213603 998.14 3 3025 633.03
p78 Samsung S22+ | 24/04/2022| 23/11/2022| 184388 861.63 151 1905 342.57

Table 16: Smartphone devices summary

ParticipantiD @ p7zUK @p73 @:7040315 @s7110218 @s72001 @ sSjimimy @ sSjimmymay2020 @ Xperial
70<

60K

50

30¢ . . . . . I . . . .

Figure 78: Smartphone devices and samples recorded over time

Fig 79 and 80 show the yearly LRE (mean) over time across all devices (top plot). 2022 shows a
higher overall LRE magnitude than the previous years. 2019 and 2020 shows the lowest

magnitude, which matches the timeline of working from home and Covid restrictions.
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Figure 80: Smartphone’s LRE (Mean) over time (2021-2022)
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The smartphones were used as primary device with default setting. Fig 81 shows that more

amounts were captured across the devices between 23h00 and 08h00. This is because the devices

were charging, which disables Android power saving. However, the sample rate remained

unaffected, so all samples collected were captured with the expected window size. Fig 82 shows

the LRE recorded over time which, as expected, is higher during the daytime than at night. Fig 83

shows that interpolated samples flatten the overall magnitude of LRE.
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Figure 81:

Count of LRE per hour
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Figure 83: LRE (mean) per hour (raw and interpolated)

Fig 84 shows the yearly phenotype between 2018 and 2022. The CMS was the highest in 2022 and

lowest in 2019, consistent with the observations in figs 74 to 78. The peak remains the same over

the years but the slope changes. Specifically, 2019 and 2020 were the least active years

corresponding to Covid restrictions and lockdown. 2022 shows a similar level to 2018, which is

consistent with the timeframe pre and post-Covid.
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Figure 84: Year on Year Phenotype (2018 to 2022)
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RApp2: Long-term monitoring

Fig 85 shows that the LRE (mean) is consistent across the years but with a higher maximum LRE
than the following years, indicating that more dynamic activities were performed. The outliers
reach higher values in 2021 and 2022 than in 2018. This might indicate a higher burst of jerk

occurring post than pre-Covid.
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Figure 85: Boxplot Year on Year (2018 to 2022)

Table 17 shows the monthly phenotype characteristics over the years. Most months had CMS
greater than 0.7. So, the peak and slope values can be compared for most of the timeline except
April 2018, which has a CMS of 0.33. The peak is consistently at one between 2018 and May 2020.
A lower peak of 0.9 can be seen from May 2021 to April 2022. The second half of 2022 (May to
November) recorded the highest movement, reaching 2.1 peaks. The slope shows a higher level of
physical activity in early 2018 than in later 2022. These variations of slope and LRE recorded for

the highest proportion of time are consistent with the timeline pre, post and during Covid.
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2018/01 |CMS=0.73 |Peak=1.2 Slope=-1.2 2021/05 |CMS=0.90 |Peak=0.9 Slope=-1.4
2018/04 |CMS=0.33 |[Peak=1.1 Slope=-1.1 2021/06 |CMS=0.96 |Peak=0.9 Slope=-1.3
2018/09 |CMS=0.49 [Peak=1 Slope=-1.3 2021/07 |CMS=0.91 |Peak=0.9 Slope=-1.1
2018/10 |CMS=0.66 |Peak=1 Slope=-1.4 2021/08 |CMS=0.83 |Peak=0.9 Slope=-0.9
2018/11 |CMS=0.58 [Peak=1 Slope=-1.5 2021/09 [CMS=0.85 |Peak=0.9 Slope=-1.1
2018/12 |CMS=0.54 |Peak=1 Slope=-1.6 2021/10 [CMS=0.81|Peak=0.9 Slope=-0.9
2019/01 |CMS=0.54 |Peak=1 Slope=-1.5 2021/11 |CMS=0.89 |Peak=0.9 Slope=-1.1
2019/02 |CMS=0.77 |Peak=1 Slope=-1.5 2021/12 |CMS=0.92 |Peak=0.9 Slope=-1.1
2019/03 |CMS=0.85 |Peak=1 Slope=-1.3 2022/01 |CMS=0.93 |Peak=0.9 Slope=-1.2
2019/04 |CMS=0.86 |Peak=1 Slope=-1.6 2022/02 [CMS=0.86 |Peak=0.9 Slope=-1.1
2019/05 |CMS=0.90 |Peak=1 Slope=-1.9 2022/03 [CMS=0.88 |Peak=0.9 Slope=-1.1
2019/06 |CMS=0.84 |Peak=1 Slope=-1.5 2022/04 |CMS=0.63 |Peak=0.9 Slope=-1.1
2019/07 |CMS=0.89 |Peak=1 Slope=-1.6 2022/05 |CMS=0.95 |Peak=2.1 Slope=-1.5
2019/08 |CMS=0.82 |Peak=1 Slope=-1.5 2022/06 [CMS=0.90 |Peak=2.1 Slope=-1.2
2019/09 |CMS=0.75 |Peak=1 Slope=-1.4 2022/07 [CMS=0.93 |Peak=2.1 Slope=-1.2
2019/12 |CMS=0.80 |Peak=1 Slope=-1.6 2022/08 [CMS=0.83 |Peak=2.1 Slope=-1.5
2020/01 |CMS=0.79 |Peak=1 Slope=-1.6 2022/09 |CMS=0.86 |Peak=2.1 Slope=-1.5
2020/02 |CMS=0.66 |Peak=1 Slope=-1.8 2022/10 |CMS=0.92 |Peak=2.1 Slope=-1.5
2020/03 |CMS=0.71 |Peak=1 Slope=-1.8 2022/11 [CMS=0.71 |Peak=2.1 Slope=-1.5
2020/04 |CMS=0.78 |Peak=1 Slope=-1.9

2020/05 |CMS=0.71 |Peak=1 Slope=-1.8

2020/09 |CMS=0.89 |Peak=0.5 Slope=-1.3

2020/10 |CMS=0.97 |Peak=0.4 Slope=-1.5

2020/11 |CMS=0.97 |Peak=0.4 Slope=-1.6

Table 17: Monthly phenotype characteristics

7.5 Discussion

The sampling for this study was set to capture 5 sec samples (window=5) every 15 seconds
(interval=15), which is equivalent to 20 sec per minute. Only one patient (33%) appeared able to
monitor uniform LRE samples across the recruitment period. Still, no issues were raised installing
RApp™ and interaction with the app was minimal, as intended by design. The other two patients
(66%) recorded only a partial amount of LRE samples with significant gaps across the recruitment
period. Nevertheless, the samples were recorded with the expected sample rate and high CMS.
This indicates that Android power save might have interrupted long-term recording but didn’t
affect the LRE sampling that occurred. Unlike study 3, the sampling and CMS observed by the
researcher showed consistent sampling with high CMS on multiple Android smartphones swapped
over the years. These results indicate that power saving alters the recording of samples but are

lessened when smartphones are used as primary device.

Fitbit promotes performing 10k steps per day which offer a simple way to compare the trends
over time. Unlike daily step counts, comparing physical activity using LRE is more complex and

looking only at daily LRE aggregates would be misleading. The relation between LRE
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characteristics should not be used as isolated metrics and instead be looked at in context. For
instance, the peak shows the LRE most recorded, which could identify p74 as being sedentary
compared to p73 and p75. However, it might also be due to smartphone recording more samples
on charge and placed on a table. The CMS of p73 is lower than p74 and appears close to p75°s
CMS, but p73 recorded a broader timeframe than the others. So, the CMS accurately evaluates
that p74 was the closest to capturing the expected amount of samples but only on specific time
slots rather than the entire period. Therefore, CMS comparison between patients should be
considered alongside the same timeframe. Similarly, using the slopes to compare the trend of

physical activity should be done on a common timeframe to be usable.

Moreover, patient differences might also occur because of habits and personal ways of handling
their phones. This concern is alleviated when comparing LRE within the same patient. The LRE
phenotype captured by the researcher allows us to identify patterns and changes over the years.
For instance, the peak gradually decreases from 1.1 in 2018 to 0.9 in 2022. Although the CMS
fluctuate and amount of months logged varies over the years, this decrease can be considered an
accurate representation. This indicates that the slope can be interpreted without the need to
impute data and shows that 2018 and 2022 were more active years than 2019 and 2020. In this
case, the year-on-year variations can easily be associated with pandemic restrictions and
lockdowns caused by Covid in the UK. Therefore, it is possible to identify drastic changes in

physical activity trends caused by changes in disease activity.

7.6 Conclusion

This study confirms that smartphones used as primary devices alleviate the impact of power
saving in obtaining LRE. In free-living conditions, there is a strong dependency on the way that
patients handle and interact with their phones. LRE obtained do not reach the performance in

ideal conditions seen in study 2 but are more reliable and accurate than in study 3.

The phenotype and its characteristics provide a methodology to compare LRE patterns and
physical activity among patients, but it is far more effective when comparing for an individual. A
trend evaluated over three months does not show significant physical activity changes and cannot
be correlated with disease activity. However, an impactful event, such as the lockdown

restrictions caused by Covid, is noticeable over an LRE monitoring timeframe of 5 years.
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Chapter 8 Conclusions and future research

8.1 General Discussion

This thesis developed, tested and verified a methodology to record load rate estimates using
smartphone sensors continuously and remotely. The app's ability, RApp™, was tested and
validated at the project's end to record load rate estimates on cloud-based services. The
methodology developed was able to interpret these estimates to draw individual characteristics

of physical ability, which can be used in further research.

In Chapter 2, the value for monitoring load rate estimate was explained in the context of
healthcare and musculoskeletal disease. The benefits of being active and exercising are already
known, and metrics such as step count and MET-min help quantify physical activity as aggregated.
Evaluating the impact of LRE is more complex by nature, as too much, too less, or sudden bursts
could lead to detrimental effects on the joints and bones. This project's novelty is using
smartphones, which provide cheap and broadly available technology, to monitor LREs outside of

specialised rehabilitation and clinical facilities continuously.

In Chapter 4 (study 1), rheumatoid arthritis patients were engaged to gather feedback and
validate the approach and challenges associated to using technology in healthcare. The insight
obtained through the PPI session validated and expanded the design of RApp™ to being a
smartphone app that anyone could use rather than a specialised clinical tool. The challenges in
recording and validating LRE were raised and used to design the subsequent studies. It was also
possible to conclude early on that drawing correlation with disease activity is associated to the
patient’s symptoms (pain and swelling). These cannot be enforced or controlled as this project is

observational rather than a medical intervention.

In Chapter 5 (study 2), the smartphone’s ability and performance to record LRE were assessed in
ideal usage conditions and compared to smartwatches. Smartphones were set up with power
save disabled to estimate the impact on the sampling. As seen in study 1, Fitbit wristbands focus
on estimating daily step counts and do not permit access to raw accelerometer data. So,
smartwatches were used as the baseline of LRE comparison at the wrist to validate LRE obtained
from smartphones. The concept of phenotype was introduced and tested to evaluate LRE’s

characteristics: the trend, CMS, slope and peak.

In Chapter 6 (study 3), smartphones were used in free-living conditions as part of a clinical trial
with osteoarthritis patients. Considering the lack of a benchmark to measure LRE, Fitbit were once

more used to validate smartphone monitoring but considering daily step count as a more broadly
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known and used unit of measure. The trial consisted in giving a knee injection to OA patients who
acted as a trigger to physical activity changes expected to be seen in disease progression. The
results showed a correlation with Fitbit in estimating daily step count. However, a smartphone’s
monitoring performance is substantially affected when used as a secondary device. The interval
between samples recorded and the sample rate (i.e., sample size) was significantly lower than

expected.

In Chapter 7 (study 4), smartphone LRE monitoring was evaluated on the primary device of
rheumatoid arthritis patients and the researcher for longer timeframes than in previous studies.
The methodology confirmed that the phenotype interpretation of LRE is valid, but comparing
patients' trends is not straightforward. LRE interpretation needs to consider the characteristics in
the overall context rather than aggregated and isolated values. In that sense, comparing LRE
variations of a patient is possible and allows us to see changes that occur over time. The timeline
coincided with the Covid pandemic and lockdown restrictions in the UK, indicating that significant

physical activity changes caused by disease or other factors could be perceivable.

8.2 Research contribution and future work

The work presented in this thesis focused on evaluating smartphones” ability to monitor and
remotely record LRE continuously. Smartphones are not designed as wearable devices, and the
user handling biases the sampling. OApp™ has been used in another PhD thesis to develop an
activity classifier (Nazirizadeh, 2018). More studies are needed to quantify the amount of samples
needed to assess LRE, and statistical models should be further evaluated accurately. For example,
a large amount of data might be used in machine learning models, e.g., to impute missing LRE
based on historical values recorded. This project was explicitly focused on smartphone’s
performance when used as an individual device. Other smartphone sensors and activity data
might provide further insights into the smartphone’s handling (e.g., on call or playing games),
which could be used to improve LRE accuracy further. The CMS provides confidence in the sample
reliability, but data captured from other wearable devices could be used to cross-check and
improve LRE accuracy further. Besides, smartphones were used as a surrogate for the lower limbs
but are not always worn at the hips. Since the first introduction of smartwatches and wristbands,
a considerable amount of smart devices has been made commercially available, in data collection
and connected care use cases, including smart in-sole and textiles (Vijayan et al., 2021).
Smartwatches, wristbands and other loT devices might allow subtracting the noise generated by

arm swings and upper limbs activity.
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Furthermore, energy expenditure, step count and MET-min provide a known unit of measure for a
range of activities that have been well documented (Mancuso et al., 2007) (White et al., 2016).
The measure of load rate is not standardised, and further studies might be able to map LRE
magnitude to these metrics. Maintaining a diary is recommended to identify patterns of physical
activity associated with seasonality (e.g., Christmas, summer holidays, travel, etc..). The questions
presented in study 1 were reviewed with TRIFORM (Hooper et al., 2015), which evaluates the
psychological impact of using technology (Hooper et al., 2015). The dashboard of platforms like
Strava and Fitbit has shown that the gamification (i.e., receiving trophies) and overall layout can
motivate in performing more physical activity. This project was observational, so it was decided
not to make the LRE analytics available to patients. More studies should be made on the impact of
physio-promoting exercise and making recommendations based on remote monitoring and

integrated dashboard as used in the Remora project (Dixon and Michaud, 2018).

British Society of Rheumatology accepted the project's abstract (Study 1) for a poster
presentation in Birmingham in 2017 (see Appendix G). The overall principle of the project
received very positive feedback, precisely as no other known projects are executing similar scope,
with a focus on patients with arthritis. Following the event, the project has been referenced in the
context of smartphone apps that may aid home rheumatoid arthritis monitoring (Freeman, 2017).
The project has also been referenced, amongst the CRF studies, on Southampton General Hospital
website and attracted interest for recruitment (Southampton, 2016) with patients reaching out to
take part as well as for general interest, notably by a consultant for Arthritis research Australia
that would like to introduce the project in Australia. Study 3 is a joint effort with the University of
Sydney, with results submitted to OARSI 2020 world congress and published (Yu et al., 2022). This
project aimed to correlate physical activity with disease activity in the context of musculoskeletal
disease. Specifically, passive monitoring has shown that bursts of LRE occur at a magnitude up to
800 times higher than the mean LRE. Further studies should be done to evaluate the significance
of musculoskeletal conditions and whether these represent micro fractures in the bone structure

leading towards osteoarthritis.

Finally, the methodology of this project was applied to a study to monitor LRE in the context of
occupational activity, and a paper has been published using OApp™ (Wang et al., 2021). Studies
have been made tracking weather and disease severity with smartphones (Reade et al., 2017).
Therefore, studies beyond healthcare use cases could use passive smartphone monitoring e.g., to

evaluate patterns in sleep, and digital dependencies.
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8.3 Summary

In summary, this project produced novel contributions in providing a methodology for monitoring
load rate estimates using smartphones. The results of this thesis have shown a means to interpret
load rate estimates that might support patients with musculoskeletal disease and other use cases.
The app developed is now available on Google Play and is considered for commercialisation
through a spinout with the University of Southampton. Further studies are needed, but the
protocol has already been applied and published in the context of osteoarthritis and occupational

paper with the key benefit of providing remote monitoring.
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Appendix A PPl Questionnaire

1.1 Q: When you see your rheumatologist, can you recall how active your arthritis has
been during the period since your previous visit? How would your rate this from 0 to 5?

A: 0 — cannot remember at all
1 — can recall the past week in detail
2 — the past month in detail
3 — the past two months in detail
4 — the past three months in detail

5 — can recall the whole period in detail

1.2 Q: When you see your rheumatologist, can you easily list areas of pain and
inflammation during the period since your previous visit? How would you rate this from 0 to
57
A: 0 — cannot remember at all

1 — can recall the past week in detail
2 — the past month in detail

3 — the past two months in detail

4 — the past three months in detail

5 — can recall the whole period in detail

1.3 Q: Would you like your rheumatologist/GP to monitor your overall status (including
pain and physical activity) between visits?

A: Yes Additional comments:
No
Not sure
1.4 Q: Are you interested in how your physical activity (e.g., amount of walking) may

influence your arthritis?

A: Yes Additional comments:
No
Not sure
2.1 Q: Do you currently have a smartphone (the type of phone with a touch-sensitive
screen)?
A: Yes
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2.1.1

2.2 Q:

2.3 Q:

24 Q:

25Q:

A:

No

Not sure

If not, would you like to have one?
Yes
No

Not sure

Which type?
iPhone
Android
Other

Not sure

Conclusions and future research

Do you usually have your phone/smartphone with you?

0 —never
1 — only pick it up to answer calls

2 — sometimes/not sure

3 — most of the time, e.g. when at work

4 — whenever you are out of the house

5 — all the time

How big is your phone/smartphone?

Please see annexes

How often do you use smartphone apps to manage your everyday life (e.g.
calendar, email, exercise, calorie counter)?

0 —never
1 — very unlikely
2 — unlikely

3 — neutral/not sure
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4 — likely

5 —very likely

2.6 Q: If you do use your smartphone in that way, which apps do you use? Please list
them here.
A:

2.7 Q: Do you think a smartphone app could support the treatment of your arthritis? How

would you rate this from 0 to 5?

A: 0 — never Additional comments:

1 — very unlikely
2 — unlikely
3 — neutral/not sure
4 — likely
5 —very likely
2.8 Q: Would you be willing to use a smartphone app to support the treatment of your
arthritis? How would you rate this from 0 to 5?

A: 0 — never Additional comments:

1 — very unlikely
2 — unlikely
3 — neutral/not sure
4 — likely
5 —very likely
2.9 Q: Would you be willing to use a smartphone app, which continuously monitors and

records your physical activity in relation to your arthritis (e.g. whether you are sitting or
walking)? How would you rate this from 0 to 5?

A: 0 — never Additional comments:

1 — very unlikely
2 — unlikely
3 —neutral/not sure

4 — likely
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5 —very likely
210 Q: To record your physical activity, you would need to be carrying your smartphone.
Would you be prepared to do this?

A: 0 — never Additional comments:

1 — very unlikely
2 — unlikely
3 — neutral/not sure
4 — likely
5 —very likely
211 Q: To support the management of your condition, you would also need to input
information about levels of pain and activity. How likely would you be prepared to do this?

A: 0 —never Additional comments:

1 — very unlikely

2 — unlikely

3 — neutral/not sure
4 — likely

5 —very likely

Annexe: Screen size comparison (Q 2.1.3):

149



\

Conclusions and future research

150



Appendix B

PPl survey summary

Summary

Project Continous Monitoring Patient Assessment Rhematoid Arthritis
Scope Survey provided to fill prior to PPI session

Date 11th Feb 2015

Participants

Jo, Chris, Susan and Jimmy

PPI

9 participants

Survey results

Survey Results'

Questions

Answer Summary Answer

CURRENT TREATMENT QUESTIONS

1.1 When you see
your
rheumatologist, can
you recall how
active your arthritis
has been during the
period since your
previous visit? How
would your rate this

from0to 5?

0 - cannot remember at all

1 - can recall the past week in detail 1

2 - the past month in detail 3

3 - the past two months in detail

4 - the past three months in detail 1

5 - can recall the whole period in detail 4

1.2 When you see
your
rheumatologist, can
you easily list areas

of pain and

0 - cannot remember at all

1 - can recall the past week in detail

2 - the past month in detail 4

3 - the past two months in detail
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inflammation during
the period since
your previous visit?
How would you rate

this from 0 to 5?

4 - the past three months in detail

5 - can recall the whole period in detail

1.3 Would you like |1 - Yes
your
rheumatologist/GP 2-No
to monitorA your 3 - Not sure
overall status
(including pain and
physical activity)
between visits?
1.4 Are you 1-Yes
interested in how
. 2- No
your physical
activity (e.g., 3 - Not sure
amount of walking)
may influence your
arthritis?
APP QUESTIONS
2.1 Do you currently |1 - Yes
have a smartphone
2-N
(the type of phone °
with a touch- 3 - Not sure
sensitive screen)?
2.1.1 Would you like |1 - Yes
to have one?
2- No
3 - Not sure
2.2 Which type? 1-iPhone
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2- Android

3 - Other
4 - Not sure
2.3 Do you usually |0 - Never
have your
phone/smartphone 1 - only pick it up to answer calls
with you?

2 - sommetimes/not sure

3 - most of the time

4 - whenever you are out of the house

5 - all the time

2.4 How big is your |5.5 inches

phone/smartphone

> 4.7 inches
4 inches
N/A

2.5 How often do 0 - never

you use smartphone
apps to manage
your everyday life
(e.g. calendar,
email, exercise,

calorie counter)?

1 - very unlikely

2 - unlikely

3 - neutral/not sure

4 - likely

5 - very likely

2.6 If you do use

your smartphone in
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that way, which
apps do you use?
Please list them

here.

2.7 Do you think a
smartphone app
could support the
treatment of your
arthritis? How

would you rate this

0 - never

1 - very unlikely

2 - unlikely

3 - neutral/not sure

from 0 to 5?

4 - likely

5 - very likely
2.8 Would you be 0 - never

willing to use a
smartphone app to
support the
treatment of your
arthritis? How

would you rate this

1 - very unlikely

2 - unlikely

3 - neutral/not sure

from 0to 5? 4 - likely
5 - very likely
2.9 Would you be 0 - never

willing to use a
smartphone app,
which continuously
monitors and
records your
physical activity in
relation to your
arthritis (e.g.

whether you are

1 - very unlikely

2 - unlikely

3 - neutral/not sure

4 - likely

5 - very likely
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sitting or walking)?
How would you rate

this from 0 to 5?

2.10 To record your
physical activity,
you would need to
be carrying your
smartphone. Would
you be prepared to

do this?

0 - never

1 - very unlikely

2 - unlikely

3 - neutral/not sure

4 - likely

5 - very likely

2.11 To support the
management of
your condition, you
would also need to
input information
about levels of pain
and activity. How
likely would you be

prepared to do this?

0 - never

1 - very unlikely

2 - unlikely

3 - neutral/not sure

4 - likely

5 - very likely
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Appendix C  Clinic shadowing notes

Notes from shadowing Southampton General Hospital’s Monday clinics.

> Reassurance and Communication is key with patients,

They feel most vulnerable when at doctor appointment

> Women that spoke about her divorce, husband having an affair when not asked.
Patient come to hospital are usually worried and want to leave with a feeling that they’ve
been taken care of and reassured — not with doubt

> Young girl had her MRI ok, not much pain but complaining of random right knee pain
(chronic pain)

Another one following knee pain surgery got reassured by being explained and walked
through. Happy to avoid MRI once joint examination completed

Once

Reassure can be done by testing even when there is nothing

> Many patients routed to RA visit even when not needed

Need to check if biomechanical rather than inflammatory

> Patient that had surgeries when shouldn’t have. When still in pain, ended up in RA
department

» Women in her 50s suffering of back pain, shoulder and neck pain. Should go to physio
as more exercises and a pillow might help

Need to check if other disease related (diabetes, overweight)

> patient blood sugar checked — no inflammatory but blood sugar fluctuates

> Routine visits

when no specific disease activity — however this reflects current state rather than full
period

next visit in 6 months

routine visit in 1 year

> Medicine and disease awareness

patient there for her daughter (uncapable to stand for herslf — incapacitated by JIA

arthritis) knew exactly what her daughter tried and

husband supporting his wife was answering the questions

medication is always discussed to reach an agreement

» should we experiment a bit more or less?

» Should we try a different injection?

> Patient that wanted to stay on tablet rather than injections due to potential side
effect (hair loss)
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Appendix D Study 1: Patient feedback

Other comments:

g00d. For eg, it is rewarding to see when doing 5k
steps

- Could fill the form every day.
- Nologs for period of 3rd to 215t of Sept 2016 but
happy to extend participation in the study.

the last value entered)
- The dates should show the reports.

Patientsid T 01 T 003 T 004 T 005
Visit1 (Patient'sintroduction/ recruitment)

1) ntroduction, instructions and tutorial on using the
smartphone and RApp

1710 itseems ok 3/10 seemsok 0710 Veryeasy. 7710 Very easy. Questions are not clear.
2) How easy does RAPp appear o use?
3) Do you think using RApp could affect your Rheumatoid |0/10  No 0/10 No Inthe future, possibly.
| Arthritis and its treatment in anyw ay?

2/10  Apprehensive of usingit 10/10  Good as could help other people (being] Nowarries, even if ot for me it's till Up for it, good, would be better if could
[4) How do you feel about using RApp? partofa research) beneficial. use on any phone.
5) Generaly how confident are you that nternet based |7/10  Love usinginternet and can find 8/10  Confident 5/10  thattheydowhat they claim. 10/10  Very confident. The way it will be in the
technologies actually do what they claim to do? anything with Google. future.

8/10  verygood Don'tuse muh tech, know t'sthereif [7/10  Nottoo used, Satnavand FB. 10/10  Extremely helpful
6) Generally how helpful do you find Internet technologies needit, amount used would be 5/10.
in supporting you to achieve your goals? Don't rely much on tech but lkes it

when need it
7) Generally how predictable do you think Internet 8/10  verygood 9/10  High expectations oftechnology. 7/10  Veryreliable 10/10  Very predicatble.
technologies in carrying out w hat you expect themto do?
Uses samsung Tohone 5 for text and ematls Usedtoh: 75 compact The hips and neck joints. Questions: Maybe add a bubble with
bought X5. clarification of what they mean (similar to
Other comments: Uses the Xperia as primary (put personal Sim hospital forms),
and provided with a cover) -Titel of PRI could change color of P&1
Visit2 (Patient follow up)

Fitibit s encouraging to do 10k steps “Iphone has already an health app formonitoring| - Would use as ok for now. The scale goes back to previous screen [“Not complicated.

Does more in the morning, tired in the steps. ( - doesn't seem related|

afternoon through iphone vs 1251 for Fibit) but wear Fitbit. [-Just bought a new phone but willstick to Xperia |to the beginning, toRA.

-Would like to see the reporting even when feel [longer. -When switch between P&, it should be O (not ~ [-P&, enter pain thentick does not goto -Phone keeps running out of battery (1.5 day),

Inflamation.
Missing joints: Ankle, hips, neck, back.
Questions (RAPID3): "physical well-being". Label

"without any", difficulty... so scale is not clear.

Should be on the scale.

Skeleton: whichis left or right (s it mirrored

image ofyou?). Maybe highlight ifleft or right.

Click onthe joint is nice but should be clearer.

-P&I:0to5is nice to record.

sometime dead battery.
- Plays drum 3 times per week (for 2-3 hours).
Could affect the fitbit reading. Don't keep the
phone.

1) How easy was itto use RApp?
2) How easy was it to understand RApp?
3) Did using RApp make you feel positive about your

Rheumatoid Arthritis?

4)  Did using RApp make you feel negative about your
Rheumatoid Arthriis?

5) Couid you highiight 5 positives comments?

6) Could you highight 5 negative comments?

7)  Any addiional comments?

8) Would you use RApp again?

9) How welldo you think this app achieves your goals?

10) How much do you think you can rely on it?

11) How much do you trust the app's performance?

12) How secure do you think the processes behind the app
are?

13) Do you think anyone Gould pretend to be you or access
your data?

14) How predictable do you think the app w hen handiing
your input or recording your activity?

15) What are your thoughts about how much you can trust
the processes behind the app?

16) Do you think that the people w ho might provide the app
have your best nterests at heart?

17) How confident are you that the app will continue to
provide benefits in the future?

18) Tell s w hether or not you trust the purposes to which
the app is being used to help your care.

done through the hospital. Credibility
ofMedical bodyis important.

Visit3 (Patient'sclosing review)

1710 Easyonce explained 1710 Verystraigth forward, 0/10  fasy 0/10  Easy 8/10  Easilyused
P& doesn't always work when press
the buttons.
Q: Easy to do. Never drag the VAS, just
tap. Difficult and hard to know how to
address, likely to always be the same.
Knee was really bad in that period
Ifwas run by specialist, would listen
the recomendation in form flling.
~Liked RAPID3 scoring better. Easier to
dothan0to 1025 0to 10is very
difficult to know how to gage. 10
implies disability, 7 hurts but can live
withit, it depends on people. Scale
from "without any difficulty” to "unable
todo”is more useful for patient
perspective. Explanation s very
important to know how to answer.

210 Questions every dayis too much. Long [1/10  Selfexplanatory. Flows onits own. Very|0/10  Easy but reports not always working. ~ [8-9/10 8/10  Questions were not that easy.
questionnaire 3 times per week would easy. Not complicated in any ways. Good to have: tosee the difference
be better. Same for P& but tokeep after stopped the medication (2 weeks
open for when flare happen. Using before)as had MTX stopped for 2.
became part of routine and was not weeks then back on lower doses. Could|
hardto do, takes 2 min. see the trend

Not used when was in Venice.

8/10  encourage tomove more, did lots of Didn't make feel any different. As positive as can be, it's gotits ~Notin pain 5o don't think about pain. Positive. Scale helps put things in
steps. purpose. S0 more of a negative because had to contrast.
Positive as need to move with RA Would like to see the trend. thinkabout it while feel well

Ability to look back would be usefull for -Report everydat is too much when no
GP&nurses. pain.
-Butifwas in pain, it would be a
comfort and positive.
No, you got to live withiit Didn’t make feel any different, Notatall see above. Didn't feel negative atall.
Techis the way forward. Info callected can be good. Good app and good for RA. Ability to ~Easytouse -Easytouse.
Not difficult to use. monitor. ~Notification would be good for ~Made feel good, felt as was being
v medication. recorded, good psychologically.
People would use it. Layout is good and| ~Reporting (Fitbit style). ~Valid doctor Q, helps understand RA
selfexplanatory for users -simplified Ul would be good. asadisease
~Light weight app, doesn't take longto
load.
Can No Would be good on Not fully working. ~Ifnot in pain, make thinkabout it. Xperia is bad, would use it on his
hardship in using RApp. iPhone. Not all joints are included (for -Enter infos but don't get anything from phone.
e, elbow) it Couldn't see results/reportin,
Battery was draining even without Nothing. Whenis it available, please keep up to Son has diabeteses and uses medical
usingthe phone. Last for about 2 days. date when can be used. device torecord and upload the
results. Then goes every 3 months at
the clinic. Also selfmanage a bit by
checking once per week.
Yes Yes, no personal use but for other Yes It depends on disease activity, sonot [10/10  Yes, not without stats to use for doctor
people. Could be used to show history really. But would use ifnewly recommendations
toclinicians. Would use it ifon App. diagnosed.
store (even for nominal payment).
Appsideis Good, Ifthere were a doctor involved, it
Need toincarporate more ta be would achieve taking the results.
patient focus (for eg, include steps).
See above.

10/10  Perfect, only problem was uploadto  [10/10  Reliable except for logging. Battery No problems, no issues, nocrashes.  |3/10  Completely 10/10  Nevercrashed. Loggingto re-enable
server. charge lasts only for a day (vs iphone when phone dies.

thatlast 3 days)

5/10  Trustthatit's doingits jobwithtaking [7/10  Good if P 5/10 it see above.
the information. Same as when battery s flat, needs to re-enable. Trustworthy.
submiting something online.

10/10  Verysecure | would think. Securityis Fine Fine,no personal data. Ifsomeone  |9/10  Hadnt thought aboutitso mustmean [10/10  Trustit
veryimportant. Anything that | don't wants to see what Ive done for a day, thattrustit. Don't put anything
understand, I don't touch. For eg, don't that's ok. confidential, it doesn’t matter who
accept the friends requests from gets hold of it (o credit card details).
people | don't know.

No People get your data. Ifnothing to hide,| No. Yes. Anyone in d believe it's
it doesn't mater. sure anyone would want to. There is no| secured. If someone does, doesn't
PIN or Password. really care.
Very predictable, the questions are Fine for recording. Can't see any c Don Predicatable, questions are the same
always the same. problems every day. Mixing might be good. No
reward
Can'ttrust completely. Nothing specifial. Nothoughts. Hadnt thought about it. Would trust it See above.
Yes, of course. Otherwise would not be ~Yes,ifnot charged for a lot of money. Yes. If payable, would use it iftie witha Yes, cant think of any other reasions to Guess so. They want to keep making
able tosellit Iffunded by NHS, for well being doctor/GP. doit. money. Yes and No.
-If Apple, for the money. Even if 1gbp,
for the money.
Ves, only will get better as thisis for Very confident. Confident. Yes, Ithinkitwill aftera fewteaks:  |10/10  More nfois always better.
research. usefull for patients and clinicians
Makes you feel more in control and
involved
Yes, trust completely also because Yes, definitely to help. Trustit I dotrust the purpose. Knew what was goinginto and that

wouldn't actually being used for the
diseases. Don'ttrust it yet and
“benefits you, not me".

‘The bigger picture s that when it goes.
live, it will help.

Other comments

Made walkmore

~Questions not relevant for daily use. Once a

the appif
included (climb staris..), include heart monitor
- Questions don't mean much, just things that
happen. Can't see the point of it Infos beneficiat
o professionals, not patient

- Feels like need to record P& For patient, it's

week would be 3
- Questions might be more relevant for people
with higher disease activity.

P& once per dayis ok. Intensity is usefull (L to
10 would be too much). One of the wirts hurts
more than the other and so can record.

just pain. No point in knowing it i
take a painkiller.

- Some people like things monitored but are not
really monitoring often.

the scaleis
around.

Can't remember daily, great for nurses to look
at.

-vas scale a bit difficult to use. Want toset it to
0 but when N/Aor would logit. N/Ameans 0.

- ifapp s available in 6 months (ie study 2),
would use it ifcan be used as part of treatment
progress or results visible to nurses.

-In GP clinics, the form gives an input just for the
day, not the last month. When stop the
medication, pain can come back >more input

- Happy to use even if not part of the study.

-1 canseea future init.

Hates the phone as battery doesn'tlast.
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Appendix E  Study 2: SP & SW (x, y and z)

The figures below show the accelerometer’s variations of the smartphone and smartwatches

worn over the recruitment period on all axis (x, y and z) for each participant.
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Part_03 exey0: smartwatch
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Part_05 o0y 0: smartwatch
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Part_07 exey0: smartwatch
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Part_09 exey0: smartwatch
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Appendix F  Study 2: SP & SW jerk (mean)

The plots below show the mean of jerks calculated from each axis over time for both SW and SP.
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Part 06 jerk smartwatch
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Appendix G  Study 2: SP & SW Phenotypes

The figures below show the phenotypes and characteristics generated for all participants on both

SP & SW.
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Part 06 jerk smartwatch
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Part 09 jerk smartwatch
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Appendix H Study 3: Patient list

Baseline 2 Months
Patient ID Phone ID Start End Phone ID Start End

1 Samsung 1 04/06/2018

2 Samsung 2 26/06/2018 03/07/2018 Samsung 11 05/10/2018 11/10/2018
3 Samsung 3 19/06/2018 26/06/2018 Samsung 9 13/10/2018 19/10/2018
4 Samsung 4 03/07/2018 09/07/2018 Samsung 4 25/09/2018 01/10/2018
5 Samsung 5 26/06/2018 02/07/2018 Samsung 2 26/09/2018 02/10/2018
6 Samsung 6 02/07/2018 08/07/2018 Samsung 3 04/10/2018 11/10/2018
7 Samsung 7 03/07/2018 10/07/2018 Samsung 4 09/10/2018 15/10/2018
8 Samsung 8 09/07/2018 15/07/2018

9 Samsung 9 09/07/2018 15/07/2018 Samsung 11 11/10/2018 17/10/2018
10 Samsung 10 10/07/2018 16/07/2018 Samsung 5 27/09/2018 03/10/2018
11 Samsung 2 10/07/2018 16/07/2018 Samsung 2 04/10/2018 11/10/2018
12 Samsung 3 17/07/2018 23/07/2018

13 Samsung 4 16/07/2018 22/07/2018 Samsung 7 11/10/2018 17/10/2018
14 Samsung 5 16/07/2018 23/07/2018 Samsung 2 17/10/2018 23/10/2018
15 Samsung 6 16/07/2018 23/07/2018 Samsung 8 11/10/2018 17/10/2018
16 Samsung 7 23/07/2018 29/07/2018 Samsung 10 30/10/2018 05/11/2018
17 Samsung 8 23/07/2018 30/07/2018 Samsung 4 29/10/2018 04/11/2018
18 Samsung 9 30/07/2018 05/08/2018 Samsung 6 28/10/2018 03/11/0218
19 Samsung 10 30/07/2018 05/08/2018 Samsung 8 28/10/2018 04/11/2018
20 Samsung 2 31/07/2018 06/08/2018

21 Samsung 3 31/07/2018 06/08/2018 Samsung 3 19/10/2018 25/10/2018
22 Samsung 4 06/08/2018 12/08/2018 Samsung 4 08/11/2018 14/11/2018
23 Samsung 5 06/08/2018 12/08/2018 Samsung 11 10/11/2018 16/11/2018
24 Samsung 6 07/08/2018 14/08/2018 Samsung 6 09/11/2018 15/11/2018
25 Samsung 7 08/08/2018 14/08/2018 Samsung 2 06/12/2018 12/12/2018
26 Samsung 9 13/08/2018 19/08/2018 Samsung 10 09/11/2018 15/11/2018
27 Samsung 10 13/08/2018 19/08/2018 16/11/2018 22/11/2018
28 Samsung 2 14/08/2018 20/08/2018 Samsung 5 08/11/2018 14/11/2018
29 Samsung 4 20/08/2018 26/08/2018 Samsung 10 30/11/2018 06/12/2018
30 Samsung 5 21/08/2018 27/08/2018 Samsung 4 29/11/2018 06/12/2018
31 Samsung 6 21/08/2018 27/08/2018

32 Samsung 7 21/08/2018 27/08/2018 Samsung 6 27/11/2018 03/12/2018
33 Samsung 8 28/08/2018 03/09/2018 Samsung 13 31/12/2018 06/01/2019
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34 Samsung 10 28/08/2018 03/09/2018 Samsung 8 05/12/2018 11/12/2018
35 Samsung 2 03/09/2018 09/09/2018 Samsung 3 13/12/2018 19/12/2018
36 Samsung 3 04/09/2018 10/09/2018 Samsung 11 04/12/2018 10/12/2018
37 Samsung 5 04/09/2018 10/09/2019 Samsung 12 01/12/2018 07/12/2018
38 Samsung 6 10/09/2018 16/09/2018 Samsung 8 21/12/2018 27/12/2018
39 Samsung 4 11/09/2018 17/09/2018 Samsung 9 03/12/2018 10/12/2018
40 Samsung 9 01/10/2018 07/10/2018 Samsung 4 15/12/2018 21/12/2018
41 Samsung 7 17/09/2018 23/09/2018 Samsung 6 02/01/2019 08/01/2019
42 Samsung 8 18/09/2018 24/09/2018 Samsung 2 21/12/2018 27/12/2018
43 Samsung 10 25/09/2018 01/10/2018 Samsung 11 14/12/2018 20/12/2018
44 Samsung 6 01/10/2018 07/10/2018 Samsung 10 14/12/2018 20/12/2018
45 Samsung 7 01/10/2018 07/10/2018 Samsung 5 14/12/2018 20/12/2018
46 Samsung 8 02/10/2018 08/10/2018 Samsung 7 14/12/2018 20/12/2018
47 Samsung 5 08/10/2018 14/10/2018 Samsung 12 26/12/2018 01/01/2019
48 Samsung 10 08/10/2018 14/10/2018 Samsung 10 27/12/2018 02/01/2019
49 Samsung 6 09/10/2018 15/10/2018 Samsung 10 22/01/2019 28/01/2019
50 Samsung 3 05/11/2018 11/11/2018 Samsung 2 02/02/2019 08/02/2019
51 Samsung 2 05/11/2018 11/11/2018 Samsung 11 21/02/2019 27/02/2019
52 Samsung 7 05/11/2018 11/11/2018 Samsung 11 31/01/2019 06/02/2019
53 Samsung 9 06/11/2018 12/11/2018

54 Samsung 12 12/11/2018 19/11/2018 Samsung 8 04/02/2019 10/02/2019
55 Samsung 8 13/11/2018 19/11/2018 Samsung 13 31/01/2019 06/02/2019
56 Samsung 3 19/11/2018 25/11/2018 Samsung 4 19/02/2019 25/02/2019
57 Samsung 5 26/11/2018 02/12/2018 Samsung 12 22/02/2019 28/02/2019
58 Samsung 2 08/01/2019 14/12/2018

59 Samsung 3 28/01/2019 03/02/2019 Samsung 8 10/05/2019 16/05/2019
60 Samsung 9 29/01/2019 04/02/2019 Samsung 7 24/04/2019 30/04/2019
61 Samsung 12 29/01/2019 04/02/2019 Samsung 3 24/04/2019 30/04/2019
62 Samsung 10 04/02/2019 10/02/2019 Samsung 12 29/05/2019 04/06/2019
63 Samsung 6 11/02/2019 17/02/2019 Samsung 6 11/06/2019 17/06/2019
64 Samsung 7 18/02/2019 24/02/2019 Samsung 10 29/05/2019 04/06/2019
65 Samsung 13 26/02/2019 04/03/2019 Samsung 5 28/05/2019 03/06/2019
66 Samsung 2 05/03/2019 11/03/2019 Samsung 3 06/06/2019 13/06/2019
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Appendix |

Study 3: Phenotype characteristics

The table below describes the phenotype characteristics for all patients.

Raw Interpolated Raw Interpolated
ID |Session| Peak | Slope | CMS Peak | Slope | CMS ID |Session| Peak | Slope | CMS | Peak | Slope | CMS
2 1 1.2 -1.5 0.45 0.2 -1.5 0.98 33 1 0.8 -1.4 0.89 0.2 -1.6 0.96
2 2 1 -1.5 0.84 0.2 -1.5 0.99 33 2 1.1 -1.5 0.91 0.2 -1.5 0.98
3 1 1 -1.7 0.92 0.2 -1.5 0.98 34 1 1.1 -1.3 0.58 0.1 -1.4 1
4 1 1 -1.6 0.66 0.2 -1.5 0.98 34 2 1.2 -1.7 0.78 0.1 -1.5 1
5 1 1.1 -1.4 0.72 0.2 -1.4 0.98 35 2 1.1 -0.5 0.71 0.1 -1.3 1
5 2 1 -1.3 0.71 0.2 -1.4 0.99 36 1 0.6 -1.5 0.66 0.2 -1.4 0.98
7 2 1 -1.3 0.76 0.2 -1.4 0.98 37 1 1 -1.6 0.77 0.2 -1.7 0.98
8 2 1.3 -1.1 0.37 0.1 -1.1 0.98 39 1 1 -1.3 0.7 0.2 -1.4 0.99
9 2 1 -1.6 0.63 0.1 -1.4 1 40 1 0.8 -1.3 0.61 0.1 -1.3 0.99
11 2 1 -1.2 0.56 0.2 -1.2 0.98 43 2 1 -1.6 0.81 0.2 -1.6 0.98
12 2 1.3 -1.1 0.35 0.1 -1.1 0.98 44 1 0.7 -1.2 0.81 0.2 -1.2 0.99
14 1 1 -1.5 0.83 0.1 -1.6 1 44 2 1 -1.2 0.58 0.2 -1.2 0.99
15 1 1 -1.6 0.78 0.2 -1.6 0.98 47 1 1 -1.1 0.6 0.1 -0.9 0.99
16 1 0.9 -1.3 0.69 0.2 -1.5 0.98 47 2 0.7 -1.1 0.8 0.2 -1.1 0.99
16 2 1.1 -1.2 0.89 0.1 -1.4 1 49 1 1 -1.1 0.8 0.2 -1.5 1
18 1 0.9 -1.3 0.58 0.2 -1.2 0.94 50 1 0.7 -1.2 0.86 0.1 -1.2 0.99
18 2 0.9 -1.2 0.54 0.1 -1.1 0.99 51 1 0.8 -1.3 0.78 0.1 -1.4 1
19 1 0.9 -1.1 0.69 0.1 -1.1 1 51 2 0.8 -1.6 0.53 0.1 -1.5 0.97
20 2 1.3 -1.1 0.36 0.1 -1.1 0.98 52 2 1 -1.4 0.8 0.2 -1.4 0.98
21 2 1 -1.1 0.66 0.2 -1.3 1 53 1 1 -1.3 0.54 0.2 -14 0.98
22 1 1 -1.7 0.78 0.2 -1.4 0.97 53 2 1.3 -1.1 0.37 0.1 -1.1 0.98
23 2 0.9 -1.2 0.48 0.2 -1.1 0.95 54 2 1.1 -1.3 0.87 0.2 -14 0.99
25 2 1 -1.3 0.59 0.2 -1.3 1 55 2 1.1 -2 0.77 0.1 -2.4 0.99
27 1 1 -1.6 0.56 0.1 -1.5 0.98 58 2 1.3 -1.1 0.36 0.1 -1.1 0.98
27 2 0.9 -1.6 0.65 0.1 -1.5 0.98 60 1 1 -14 0.43 0.1 -1.5 1
28 1 1 -1.8 0.82 0.2 -1.6 0.98 61 1 1 -1.2 0.9 0.1 -1.5 1
28 2 1.1 -1.2 0.72 0.2 -1.3 0.99 61 2 1.1 -1.2 0.77 0.1 -1.4 1
29 1 1 -1.1 0.84 0.1 -1.6 0.99 63 2 0.9 -1.4 0.75 0.1 -1.4 0.97
30 2 1.1 -0.5 0.58 0.1 -1.9 1 64 1 1 -1.5 0.58 0.2 -1.4 0.98
31 2 1.3 -1.1 0.36 0.1 -1.1 0.98 65 1 1 -1.4 0.61 0.2 -1.4 0.98
32 2 1 -1.3 0.5 0.1 -1.3 1 65 2 1 -1.4 0.57 0.2 -1.3 0.97
66 1 1.1 -1.4 0.75 0.1 -1.5 1
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Appendix K BSR (April 2017) Poster & Abstract

Rheumatoid Arthritis, a study of continuous monitoring of

VERSITY OF

physical activity using smartphones (RApp) Southampton

Jimmy Caroupapoullé?, Dr Alex Forrester?, Prof. Chris Edwards?, Prof. Cyrus Cooper?

e o e

= Have you ever wondered how your smartphone knows which way up you Probabiity density function: likelihood of the mean for the specified day
are holding your phone, and twists the screen around to fit? Most now have *  Mecn jerk: value that the sensors {ie joints) withstand in N/kg/s
built-in devices that can sense movement. It’s these sensors that allow RApp
to track physical activity.

* Measuring disease activity to assess the effects of medical treatment for
patients with rheumatoid arthritis {RA} is well reported but far less
information on quantity and guality of day-to-day physical activity is
available. RA causes pain and stiffness that discourages physical movement
and reduces mobility while exercising helps to relieve symptoms.

¢ The aim of our study is to demonstrate that continuous measurement of RA
patient activity, recorded using a non-intrusive smartphones-based
approach can be used as an objective and reliable input to current disease
activity tools and help promote physical activity.

Methodology

Figure 1 shows the activity as a daily load
distribution:

The activity is much higher on the 03™ of
August and consistently lower for the rest
of the week. Similar trend can be seen on
the week of the 24" of August.

Understanding the data in this way allows
us to see the consistency in physical
activity.

Here, the patient has consistently a peak
of physical activity on the Tuesdays
compared to the rest of the week.

Designed with patients
Figure 2 shows the trend of an RA
patient compared to a healthy
+ Commercial aclivily monilers *+ Exploratory study with 3 * Study 1: Assess the stabilily, N
7 volunteer:
Tocus an slep counts and group of men and women usabilily and overall dala .
calaries bumed. aged 36-65 diagnased with RA gathering approach. + The most frequent activity level for
« Qur approach is to analyse far 4-23 years. RA patient is ~0.25 N/kg/s
vates of acceleration [jerk) + PPl tocus group and + Study 2&3: Expand to mare
and calculate matrics related Questionnaire to assess the R patients and release RARR ) .
10 impact and joint loading | designofRAppand scopethe | | onGoogle Play *  10x higher for healthy participant.
tload rate). " requirements. VRN A o
+ Beyond the most frequent activity, - ’ &
both distributions bacome linear S A

Patient self assessment

but with naticeably different trends

Using RApp, patients can record:

¢+ Self-assessed pain, inflammation and
perceived physical activity via daily
questionnaire {MDHAQ/RAPID3).

Online viewing/Portal
Activity and self-assessment are

regularly uploaded to a cloud based
Azure server

+ Upload to Azure mitigates the
smartphone’s storage limitation

= Online access allows analysis and
visualization of results through web-
based interface.

+ This could enable RA patients to take a
rale in monitoring their own health.

Self-reported DAS28 count, with an
intensity factor introduced to highlight
how painful and/cr swollen a joint is {0-4}.

I
3

Mictosoft A1 ! !

Statistical sampling

. RA patient
* On-board accelerometer
li | h P Fartal Lo inpul medical data: | | Porlal with agaregaled data:
sampling to evaluate the slood samples, ESK Wedical dala, physical
activity of a smartphone user. aclivily, sell assessment.

On-board computing power to
perform data analysis which

solves ‘big data” of 24/7 Conclus
¢ We developed an monitoring.

intermittent random + Itis possible to design an app looking at the quality of quantitative

‘Monte-Carlo’ strategy that * Sampling and analysis run in movement which RA patients find both usable and acceptable

breaks the sampling into the background, consuming « Preliminary data suggests the promise of using activity probability

small chunks performed at negligible power and without distributions to assess a patient’s physical activity.

random times. affecting other processes on = Online access provides scope for potential design of an integrated self
the phone. management platform.

« From this we can calculate
the jerk {f) which shows
the change of acceleration.

dfr et O —— s iy .
f =L _ —m i 200 the Fvironment, Universty of Southamglon
* And the load rate {L) which L= dt B dt B 7 ;nmhetn\-lrnnm;.M Il‘lm\-amt\(ol.‘imnham:nnn P - o
indicates the force applied ' 3 Cons itant Rreurvatalogist, Univarsity HOs3its] SoUEhampton NHES Foundetion Truse, Hanorary Chair of
L Chinical Rheumatalagy, Professor in Rheumatalogy, Faculty of Medicine, Univarsity of Southampzan,
to the joints. fssoriste Director, Sauthanpbon NIHR Welore Trust inicel Research Facility

4 Direcror & professor af Rheumatalagy, MAC Liferourse spidemiclezy UNIc vice-Dean, ar ulty af
Weglicine, University of Susthompton; and Prafessor of Epideniolagy, Universily of Oxford
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Rheumatoid Arthritis, a study of continuous monitoring of physical activity using smartphones

Background:

Measuring disease activity to assess the effects of medical treatment for patients with
rheumatoid arthritis (RA) is well reported. However, far less information on quantity and quality
of day-to-day physical activity is available. RA causes pain and stiffness that discourages physical
movement and reduces mobility. The aim of our study is to demonstrate that continuous
measurement of RA patient activity, recorded using a non-intrusive smartphones-based approach,

can be used as an objective and reliable input to current disease activity tools used.
Method:

Commercial activity monitors focus on quantitative data including steps count and calories
burned. The novelty of our approach is to gather smartphone sensor data to analyse rates of
acceleration (jerk) and calculate metrics related to impact and joint loading. Men and women
aged 36-65 diagnosed with rheumatoid arthritis for 4-23 years completed a questionnaire and
gave feedback during a focus group session to assess the design of a smartphone app and scope

the requirements according to real RA patients.

Truly continuous logging of acceleration is too resource intensive and affecting everyday use of
the smartphone. We therefore developed an intermittent random ‘Monte-Carlo’ strategy of
sampling activity that runs in the background on the phone, unnoticed by the user. From this we

can obtain statistically rigorous parameters relating to physical activity.

Using the app, patients can also record self-assessed pain and inflammation as well as perceived
physical activity via daily questionnaire (BSR and RAPID3). The user interface also includes self-
reporting of the DAS28 count, with addition of an intensity factor introduced to highlight how
painful and/or swollen a joint is (0-4). Activity and self-assessment are regularly uploaded to a
cloud based Azure server to mitigate the smartphone’s storage limitation and to allow

analysis/visualization of results through a web-based interface.
Results:

The app is currently being trialled by patients (six weeks) and we have preliminary data for
diagnosed RA and non-RA active participants. Commercial pedometer worn at the wrist shows a
daily average of step count, sedentary and active time. The activity recorded through smartphone
sensors shows different information and that the most frequent low activity level follows a linear
trend ~0.25 N/kg/s for the RA patient and roughly x10 higher for the healthy participant. Beyond

the region of peak activity, both distributions become linear (on the log/log scale) but with
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noticeably different trends. Furthermore, the spikes of mean jerk recorded highlight the intensity

of load generated that the joints withstand.

Conclusion:

It is possible to design an app looking at the quality of quantitative movement that is both usable
and acceptable by RA patient. Preliminary data suggests the promise of using activity probability

distribution to assess patient’ physical activity.
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Appendix L  Git repository and best practices

Branch strategy:

1) Master:
To simplify and limit the setup changes, we keep the “Master” branch as the testing branch, i.e.
this the branch of code to test with.

2) Release:

It’s important to ensure that we have a working version at any point of time. The “Release”
branch is to be kept as the branch of working version of the app. Once we all contributors agree
with a feature (that means that is has been tested and confirmed working), then the feature
branch can be merged to this Release branch.

3) Feature specific:

The changes are very difficult to track and in general, it is best practice to work on a specific
features/work/fixes at a time and so for each new major work, a new branch should be added to
be specific to that specific feature, e.g. new branches added specific to new db changes, service

logic, SW notifications...

ADT/Git:

There is no need to reinstall or create a new project each time, tracking can be done on the local
version.

1) Version control:
Very useful to check that the code on the local environment is the code you meant to be.

- Local changes tab:
Open the “version control” view at the bottom of ADT and if you make a change to the

code in your local environment, it will straight away.

.
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Log tab:
This shows you all the branch versioning.

178



If you click on any of the commits, you can see the details on the right panel.
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- Files diff:
Double click on the file that you want to further look at from the right panel will open

a diff panel so you can browse the highlighted changes.
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2) Update the project:
To pull the code, the blue ADT shortcut can be used. Assuming being in the correct local

folder, merge will make sure to have the latest code from the said branch.

- Merge:
Eq to git fetch and git merge

- Rebase:
Eq to git fetch and git rebase
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3)

ing VIEW TAG
Claan working tres befors update
:::‘,h:uurl'ﬂ?.cmd @.msm
(O Using Shelve

CENT INTEnt)

[[] Do not show this dislog in the future m Cancel || Heip

d{Incent intent, int flags, int =tartld) |

ServicaManamerT: anStartOommand™) =

Branch selection:
The Git branch that worked on can be seen at the bottom right of ADT.

/o~

l Q{uent Log [=] Gradle Console
3147 CRLF= UTF—B\ Git: ServicesLogic = ﬁ:ntext: <no context> (-] @'

~_J

From there, you can switch between branches:

[P0 PIOJE

- “Local branches”:
If working on multiple features at a time, allows to switch the local version.

- “Remote branches”:
This is what actually does get uploaded to Git.

- “Checkout”:

Loads the version of the files associated to the branch selected. It will prompt to
save/commit your changes if you try to checkout from git while having worked on

something.
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Git Branches
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® Puzh Commits b4
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e Rlsisasa branch =
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] Push Tags: &

ADT/Git setup:

1)
2)
3)
4)

5)

6)

7)
8)

Sign up and create a GitHub account in www.github.com.

Download git from https://git-scm.com/downloads and install it in your system.

Open the project in android studio and go to File -> Settings -> Version Control -> Git.
Click on test button to test "path to Git executables". If successful message is shown
everything is ok, else navigate to git.exe from where you installed git and test again.

Go to File -> Settings -> Version Control -> GitHub. Enter your email and password used to
create GitHub account and click on OK button.

Then go to VCS -> Import into Version Control -> Share Project on GitHub. Enter
Repository name, Description and click Share button.

In the next window check all files inorder to add files for initial commit and click OK.

Now the project will be uploaded to the GitHub repository and when uploading is finished
we will get a message in android studio showing "Successfully shared project on GitHub".
Click on the link provided in that message to go to GitHub repository.
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