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The benefits of exercise and physical activity are well-known and documented. However, most 

recommendations do not consider the stress caused on the joint and bone structure in the 

context of musculoskeletal conditions. A committee of selected experts recognise the importance 

of measuring the ground force reaction on the lower limbs. However, measuring load rate 

estimates is not standardised and requires specialised facilities. 

The primary aim of this project was to develop a framework to measure load rate outside of 

the clinical setting. A methodology was developed to monitor load rate estimates using 

smartphones, as cheap and broadly available technology to achieve this. The method was used to 

investigate the reliability in ideal conditions, as part of a clinical trial and over an extended 

timeframe.  

The novelty of this project was to develop a protocol using smartphones as a surrogate of the 

lower limbs to monitor patients affected by musculoskeletal conditions. The key finding was that 

significant challenges are associated with using smartphones, but passive monitoring can be 

achieved to record substantial amounts of data without patient input. Secondly, load rate 

provides more qualitative details on the physical activity than measures such as energy 

expenditure, step count and met-min. However, the interpretation and visualisation of load rate 

are more complex. 

To conclude, this thesis tested and verified a methodology that can continuously monitor load 

rate estimates on the lower limbs. This methodology addresses the need to measure joint loading 

in activity and time, which can further be used in healthcare for musculoskeletal diseases. 
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Chapter 1 Introduction 

1.1 Overview 

Musculoskeletal (MSK) conditions affect over 20 million people in the UK (ArthritisResearchUK, 

2021). They account for the third most significant area of NHS England’s objectives and budget 

mandated by the government (Gov.UK, 2018a), with a program spent of £4.7 billion following the 

policy paper published by the Department of Work and Pensions (Gov.uk, 2017). Musculoskeletal 

comprises diseases affecting the motion ability of joints (e.g., inflammatory conditions such as 

rheumatoid arthritis affecting the joints), cartilage (e.g., osteoarthritis) and bone density (e.g. 

osteoporosis) (gov.uk, 2021). 

The risks of developing osteoarthritis (OA) or rheumatoid arthritis (RA) increases with age, with 

the highest prevalence being seen among individuals aged between 40 and 60 years old years and 

even higher in those aged over 70 (NAO, 2009), but it can affect any age. According to the State of 

Musculoskeletal Health 2021 report (ArthritisResearchUK, 2021), over 8 million people are 

diagnosed with OA, which represents 18.2% of the population of adults aged over 45 in England; 

and over 400k people are currently diagnosed with RA in the UK which represents 0.84% of adults 

aged over 16 in England. Women are more prevalent than men, and being diagnosed with RA is 

two to three times more common in women than men (O'Fallon, 2001). Smokers' risk of 

developing RA increases (Sugiyama et al., 2009), (Kallberg et al., 2010). Obesity and unhealthy 

weight/BMI are known factors that increase the risks of developing OA and RA 15% higher for RA 

when overweight and 21-31% when obese (Zhong et al., 2015, Feng et al., 2016).  

Staying physically active and exercising generally improves well-being but the mechanical stress 

caused on the bones and joints that affects MSK conditions is not currently monitored outside of 

clinical setting, nor standardised, and therefore “healthy” load is not characterised. This project 

aims at assessing the feasibility in using smartphones to estimate mechanical loads on the lower 

limb of MSK patients in free living conditions. The current fitness solutions measure step counts 

and energy expenditure but do not consider the mechanical loads. Smartphone sensor data is 

available but continuous tracking relies on user intervention, e.g. to proactively start an app. 

Therefore, we built a purpose-based framework that records smartphones’ sensor data to 

estimate loads without user intervention. This approach provides greater visibility on the data 

recorded, control over the sampling parameter and flexibility to define a user experience 

acceptable for OA and RA patients. The novelty of this project is to use smartphones, as broadly 
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available technology, to estimate mechanical load in free living conditions, which is not currently 

monitored although recognised in MSK guidelines. 

1.2 Thesis Structure 

The overall aim is to investigate how continuously monitoring load rates could be used as valuable 

fitness insight to investigate the relationship between an individual’s physical activity and disease 

activity. The objective is to develop a smartphone framework with different front end for RA and 

OA (respectively RApp™ and OApp™). This project is cross-disciplined between Engineering and 

Life Sciences and, therefore, incorporates standard practices used in both fields of expertise in the 

study design.  

This thesis continues with a literature review detailing MSK diseases and their relationship with 

physical activity and ground force reaction on the lower limbs in Chapter 2. The thesis is 

structured in exploratory studies, so each study's rationale is detailed in the corresponding 

chapters. Chapter 3 describes the study methodology developed as well as the framework of data 

capture and analysis. The subsequent studies (see fig 1) assess the feasibility and results, with 

chapter 4 (study 1) being the first proof of concept with rheumatoid arthritis patients. Chapter 5 

(study 2) reviews the smartphone tracking capabilities used in optimal conditions with healthy 

volunteers. Chapter 6 (study 3) examines the results obtained in a clinical trial with OA patients. 

Finally, chapter 6 (study 4) reviews the monitoring over an extended timeframe with RA patients. 
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Figure 1: Study summary 

Chapter 2 Literature review 

2.1 Musculoskeletal conditions overview 

The Musculoskeletal (MSK) system refers to the muscles and bones typically grouped as the back, 

upper and lower limbs (Agrawal, 2019). According to the WHO, more than 150 MSK conditions 

(National Academies of Sciences, 2020) affect the locomotory part of the human body of people 

from all demographic groups and ages. MSK conditions include osteoporosis which lowers bone 

density and all forms of arthritis which target the joints and cartilage.  

Osteoporosis constantly affects the bone’s ability to grow and rebuild, reducing bone mineral 

density. As illustrated in figure 2, more bone is lost than formed, so the internal structure 

deteriorates and becomes more porous (Australia, 2021). The weakened structure's strength 

increases fracture risk. 

 

Figure 2: MSK impact on the bone and joint structure 

Arthritis includes disease conditions such as lupus, gout and ankylosing spondylitis that commonly 

affects joints and specific organs, leading to pain, swelling, stiffness and decreased range of 

motion. Osteoarthritis (OA) and rheumatoid arthritis (RA) are the most common types of arthritis 
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and cause thinning of the cartilage. OA is a non-inflammatory disease characterised by thinner 

cartilage causing friction with the bone ends. RA is a chronic inflammatory in which the immune 

system attacks the synovia-lined joints, causing inflammation and destruction of the synovial 

membrane, which can lead to severe disability. The outer covering of the joints becomes the 

target of the body’s immune system causing swelling and change in joint shape, ultimately leading 

to a breakdown of the bone and cartilage. 

Osteoporosis does not cause pain and so is considered a silent disease. The changes in the bone 

structure become apparent if the fracture caused or visible change in posture, height or 

breathing. In contrast, OA and RA's main symptoms are joint pain and stiffness, most commonly 

affecting the hands, wrists, knees and feet. OA can affect any joint, while RA typically affects the 

joints symmetrically. Early diagnosis can help significantly prevent disease progression and bone 

erosion by starting medication and treatment earlier (Heidari, 2011). According to a meta-analysis 

study (Fautrel et al., 2017), early therapeutic intervention may also significantly reduce the risk of 

RA onset for arthritis patients. However, the guidelines for musculoskeletal system assessment 

(ArthritisResearchUK, 2019), as well as the criteria defined by the American Rheumatism 

Association in 1987 (Association, 1988), had limitations in predicting RA for patients with early 

arthritis (Alain Saraux, 2001). Besides, it is not always possible for patients to be seen by 

specialists, and in some cases, symptoms experienced can be due to biomechanical loading on the 

body (Shakoor and Moisio, 2004). OA can be diagnosed through a physical examination of the 

joint, looking into the creaking, tenderness, movement restriction and weakness or thinning of 

the supporting muscles. X-Rays can then help to check if the symptoms are due to a fracture or 

calcium deposit in the joint, and MRI scans of the knee or hip can identify bones or other possible 

joint problems. Unless a fracture occurs, Osteoporosis does not present visible symptoms and is 

diagnosed using dual-energy X-ray absorptiometry (DXA) scans. The results are reported as T-

scores (and Z-scores) to compare the standard deviation of bone mineral density (in g/cm2) with 

the equivalent healthy person of the same age, sex and ethnicity (Kanis et al., 1997). Blood tests 

are not usually needed but will usually be conducted to evaluate other arthritis. In 2010, the RA 

disease classification criteria were reviewed by ACR and EULAR to consider more emphasis on 

laboratory values. Including serology (examination of blood serum) and acute-phase reactants, 

that is, a measure of plasma variations of acute-phase proteins (APP/APR) (Kay and Upchurch, 

2012) throughout symptoms of more or less than six weeks. 

Bone loss is a normal part of the ageing process, and no treatments to date can completely cure 

osteoarthritis and rheumatoid arthritis. But medications and supportive treatments are available 

to reduce bone loss, joint damage and inflammation. Osteoporosis patients use calcium and 

vitamins to supplement bone mass. Drug therapy is based on the probability of fracture using 
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Bisphosphonates and hormones such as Parathyroid, Selective oestrogen receptor modulators 

(SERMs) to maintain and slow the rate of bone loss. RA patients use disease modifying anti 

rheumatic (DMARD) drugs such as azathioprine, gold injections, hydroxychloroquine, leflunomide, 

methotrexate and sulfasalazine to address joint inflammation and subsequent damage by 

reducing the effects of the immune system attacking synovial joints. Anti-tumour necrosis factor 

(Anti-TNF) drugs such as adalimumab, certolizumab pegol, etanercept, golimumab and infliximab 

target TNF proteins specifically while other biological therapies including abatacept, rituximab and 

tocilizumab target different proteins. In the first part of the treatment, DMARDs are usually 

provided in the form of tablets and might be used as a combination to increase the effects. 

Prescription of biological therapies occurs only if DMARDs have not worked or have side effects. 

These newer drugs are provided by injections, which act faster by stopping specific proteins and 

chemicals in the blood responsible for activating the immune system from attacking the joints.  

Besides addressing disease progression, patients concentrate on addressing pain and flares to 

help in daily activities, which can be managed with simple analgesia such as codeine (co-codamol 

and paracetamol). NSAID (non-steroidal anti-inflammatory drugs) such as Ibuprofen and 

Naproxen or alternative COX-2 inhibitors, including ascelecoxib or etoricoxib relieve both pain and 

inflammation but with an increased risk of internal bleeding. Corticosteroids are powerful 

medications for short-term pain relief, stiffness and swelling, but their usage should be limited 

due to side effects such as weight gain, easy bruising, muscle weakness and thinning of the skin or 

the bones.  

2.2 Musculoskeletal diseases & physical activity 

2.2.1 Personalised recommendations 

The priority for patients is to manage their pain and reduce their medication. Thus instructions 

beyond prescriptions are expected to achieve their goals (Leach, 2018). The benefits of physical 

activity and regular exercise are known to improve heart and muscle strength and are promoted 

across most specialised online resources such as the NHS (NHS, 2018) and NRAS (NRAS, 2014). As 

of 2010, physical activity was not included in the top 10 recommendations developed on the 

matter of treating rheumatoid arthritis (Gomez et al., 2010), but in 2017, the EULAR 

recommendations for pain management for inflammatory and osteoarthritis (Austin et al., 2018) 

included physical activity and exercise interventions due to their positive effects on pain. 

Considering the benefits, a task force has been organised to review the literature and agree that 

physical activity should now be advocated as standard care for people with rheumatoid and 

musculoskeletal diseases (Kiltz et al., 2018, Verhoeven et al., 2016). 
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Nevertheless, arthritis patients are much less active than the general population (van den Berg et 

al., 2007). A survey of 5235 patients across 21 countries has shown that only a small proportion of 

RA patients exercise regularly (Sokka et al., 2008). Early survey results amongst people with 

arthritis (Gecht et al., 1996) have shown that physical activity is directly related to the patient’s 

understanding of the benefits and ability to perform. Yet, studies have shown that even when the 

benefits are understood, the anxiety associated with pain remains a barrier for patients to stick to 

such programmes, and the adherence rate remains low (Vervloesem et al., 2012). According to a 

systematic review of 20 studies (Kirsten Jack, 2010), the barriers to treatment adherence in 

musculoskeletal physiotherapy are associated with motivational and psychological factors such as 

anxiety, depression, and social and family support. Low physical activity at baseline and worsening 

pain during exercise supplement the logistics challenges caused by work schedules, lack of time 

and financial constraints. A qualitative study (Wang et al., 2014) has identified a fear that joint 

damage and infection symptoms might increase with exercise when under medication to manage 

existing pain. Pain and drugs mediate the ability to exercise. Still, misapprehensions and 

conflicting information received from healthcare professionals are a source of frustration for all 

participants not being able to engage in exercise. “Rheumatoid cachexia” is a severe symptom of 

RA characterised by accelerated loss of muscle mass, a progression of cardiovascular disease and 

fatigue, contributing to functional limitation, disability, comorbidities, and reduced quality of life. 

Those symptoms might be lessened through regular exercise. A study across 39 patients with 

chronic heart failure has demonstrated that moderate-intensity resistance exercise training for 

three months produces constructive changes to skeletal muscle strength and endurance (Hare et 

al., 2004). Besides, a personalised exercise program can have a positive impact not only in slowing 

down the progress of arthritis but also on the patient's overall well-being (Jennifer K. Cooney, 

2010). A study has found improvement in the microvascular and macrovascular as well as disease 

characteristics because of using a personalised aerobic program on a cohort of 40 RA patients 

(Metsios et al., 2014).  

Therefore, HCP must personalise their recommendations to improve patients´ physical fitness 

considering the components of PA which have been reviewed (Kell et al., 2001). Muscular 

strength is the maximum force that can be generated, which is instrumental in performing daily 

activities. Endurance is the maximum amount of time that an action can be repeated over time 

and is typically associated with injury and falls risks. Flexibility defines the range of motion that 

can be covered. A well-designed exercise program is required to support an effective 

rehabilitation program. A case study on a soccer player with a Grade 2 ankle sprain has shown 

that it was possible to achieve a pain-free and short recovery from running (Kern-Steiner et al., 

1999). The program was designed with specific sets and repetitions of exercises, but the crucial 
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element was the lab setup's ability to support a gradual gravitational increase of the weight 

bearing. Rehabilitation programs consider the individual's ability to recover, and a similar strategy 

could benefit patients with MSK conditions.  

The rest of this project follows the definitions per (Caspersen et al., 1985), which defines physical 

activity as “any bodily movement produced by skeletal muscles that result in energy expenditure 

above resting levels”. This definition broadly encompasses exercise, sports and physical activities 

as part of daily living, occupation, leisure and active transportation. Exercise is a subcategory of 

physical activity “that is planned, structured and repetitive and has, as a final or intermediate 

objective, the improvement or maintenance of one or more dimensions of physical fitness”. 

2.2.2 Physical activity and bones 

The loss of bone strength caused by Osteoporosis is associated with the loss of minerals and 

collagen caused by ageing and inactivity. Bones adapt their density based on an individual´s 

environment, including physiological factors (e.g. diet) and mechanical constraints. The principle 

of bone adaptation is known as Wolff´s law which has been extensively reviewed through 

experimental and observational studies of bone changes (Ruff et al., 2006). Time in space is an 

example of an extreme environment causing bone loss, as shown in a study on astronauts. The 

space environment does not have gravitational forces, which induces a lack of mechanical load on 

the bones and presents a risk of developing osteoporosis (Stavnichuk et al., 2020). It has also been 

found that bone density might not be fully recovered after a year back from space (Gabel et al., 

2022).  

Bone density and remodelling can be improved as a response to the mechanical caused by 

exercise, but it is essential to distinguish the different types of exercises (O’Brien, 2001). Although 

there is not enough evidence to quantify the risks of falls and fractures due to activities, an 

international panel agreed in 2014 that an exercise program should include multiple components 

and avoid aerobic training, except for resistance or balance training (Giangregorio et al., 2014). 

The change in mineral content is an adaptation to force and stress caused. Hence, an effective 

exercise program needs to consider the type of activity, frequency, intensity and duration to 

cause a significant change in physical activity (Dalsky, 1987). A literature review found that 

resistance and weight-bearing aerobic exercises can stimulate bone osteogenesis. However, 

strength exercises are effective only if they cause a joint reaction greater than daily activities. 

Aerobic exercises are helpful only if performed with an intensity causing a significant ground 

reaction force (Benedetti et al., 2018). Any exercise applies an amount of mechanical loading, and 

besides the intensity, a study has found correlations between the frequency of load applied and 
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bone density growth. The bone tissues respond to dynamic loading, and higher frequencies 

stimulate osteogenesis, but extended exercise can be detrimental to the bones. Recent studies 

have observed  better results in bone building when shortening the amount of time at load in a 

session than reducing the number of sessions (Turner and Robling, 2003). 

2.2.3 Physical activity and joints 

Thus, increasing load is good for bone density, but it is essential also to consider the negative 

impact that might incur because of excessive physical activity. In 2016, a consensus by the 

international Olympic committee reached a statement that the recommendations in the amount 

of training need to follow a methodology to prevent the risk of injury in athletes. Such 

recommendations consider medical results (e.g. blood lactate concentration) as well as the 

frequency and intensity of training (Soligard et al., 2016). Indeed, a retrospective study on 

endurance runners has found an increase in the risk of injury depending on the foot strike pattern 

and position (Daoud et al., 2012). Besides endurance, a review of the hospital admissions of OA 

between 1970 and 1990 has shown that Olympic male athletes (representing Finland) presented 

risks of OA for high frequency (i.e. endurance) sports and both high intensity (i.e. power sports) 

(Kujala et al., 1994). A study on a similar cohort of female ex-elite athletes found that the 

excessive loading in the joint caused by weight-bearing sports activities increases the risks of 

developing OA of the knees and hips (Spector et al., 1996). According to a review of data on 

degenerative joint disease done in 1994, the stress caused by excessive loading on joints might 

speed up the development of OA, and physios still need more information to be able to build 

effective programs (Panush and Lane, 1994). 

The physical strain associated with sports and exercises also applies to other occupations besides 

athletes. A study on 1566 US army soldiers found OA to be the most common disability for US 

soldiers unable to return to duty (Rivera et al., 2012). A military report has defined tactical 

athletes as individuals with similar occupational activities and a higher fitness load, such as the 

military, law enforcement and rescue services (Scofield and Kardouni, 2015). Although further 

research is needed to identify all the factors, a systematic review of the literature has found an 

increased risk of developing OA in these occupations (Cameron et al., 2016). A more recent 

review has found the risk of developing OA to be more generally associated with any occupations 

requiring to perform movements with heavy physical workloads on the lower limbs, such as 

squats or heavy lifting (Schram et al., 2020). Biomechanical components cause OA, as shown in a 

study on 228 veterans, which also identified misalignment of the lower limbs and being 

overweight as risks (Felson et al., 2004). The effects of exercises and occupational activities 

require further studies, and in 2017, a consensus study was conducted to harmonise the 
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classification methods. The group included OA and PA international professionals that agreed to 

use MET-min per week for studies measuring PA. The key recommendations also raised the need 

to measure the intensity and duration of the joint load (Gates et al., 2017), which at the time of 

this study are yet to be standardised. 

2.3 Physical Activity & load forces 

The guidelines and fitness recommendations to stay healthy are associated with aerobic 

(cardiorespiratory) and anaerobic (intensity) exercise programs which can be measured in a lab or 

fitness environment, e.g. using equipment such as treadmills, bicycles and elliptic. However, the 

mechanical load on the joints can affect MSK disease progression, as illustrated in fig 3. 

Underloading might limit induced loss of bone density leading to osteoporosis, while overloading 

can affect the joint structure leading to OA. The load intensity and frequency associated with 

healthy joints are not characterised and thus should be measured. 

 

Figure 3: Under Vs Overloading 

MSK studies typically focus on the medical impact of the mechanical load, e.g. before and after 

load changes or in the context of recovery. Typically, osteoporosis studies measure bone 

composition. OA and RA studies look at the joints' alignment and cartilage composition. 

Mechanical load´s effects have been reviewed through in vitro and in vivo studies (Griffin and 

Guilak, 2005). In vivo studies have been conducted on animals using implants, and implant 

modelling consider the biomechanical environment as suggested by a review of Wolff’s law 

(Prendergast and Huiskes, 1995). The dynamic loading is measured as strains and can be 
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expressed mathematically per equation derived from the Fourier method (Turner, 1998). The 

strain stimulus 𝐸𝐸, measured in microstrain (με), is proportional to the characteristics of the load 

where 𝑘𝑘 is a proportionality constant, ε is the strain´s peak-to-peak magnitude and 𝑓𝑓 is the 

loading frequency. It can be noted that for a static load, represented with a frequency 𝑓𝑓= 0, 𝐸𝐸 = 0 

so no bone adaptation is induced because of strain.  

𝐸𝐸 = 𝑘𝑘1�(𝜀𝜀𝑖𝑖𝑓𝑓𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

It is impractical to set up in vivo implants on humans outside a diagnosed clinical need. So in vitro 

methods are also used, e.g. using cartilage explant but do not provide an accurate representation 

of the impact on humans. Therefore, epidemiological studies are the most practical, and multiple 

protocols have been set to manipulate the load bearing. Astronauts have tested water immersion, 

parabolic aircraft flights, supine and erect cable suspension, and centrifugal methods to simulate 

gravity-free conditions as experienced in long space flights (Davis and Cavanagh, 1993). Other 

custom setups can also be put in place, allowing to adjust of the weight bearing, e.g. using an 

underwater treadmill with a harness in another study with astronauts (Newman et al., 1994) or a 

lab setup to allow gravitational alterations for the rehabilitation of a soccer player (Kell et al., 

2001). A more recent study tested using mice suspended with a spring with tension adjusted 

between 10% and 80% of the mice´s body weight (Wagner et al., 2010).  

 

Figure 4: Measure of mechanical loading (1) via implant; (2) force plate; (3) accelerometer 

The force on the lower limbs is caused by the bearing of the person´s weight reacting with the 

ground due to gravity, as shown in fig 4. A literature review has been conducted to identify the 
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main methods to measure weight bearing while standing and walking (Hurkmans et al., 2003) and 

found clinical examination using scales as the most common evaluation, although limited to 

standing position. Biofeedback systems, ambulatory devices and the use of platforms are also 

common. Force plates are platforms that can be used to measure the vertical ground reaction 

forces of the body weight in a static movement, as shown in a study with patients affected with 

paraplegia (paralysis of the legs) (Bernhardt et al., 2012). Treadmills can be combined with video 

cameras to evaluate dynamic movement, as used in a study comparing rearfoot with forefoot 

strikes to assess the rate of a stress injury in runners (Daoud et al., 2012a). Anti-gravity treadmills 

are available in the specialised market and can be used in rehabilitation and training to evaluate 

the effects of progressive loading (AlterG, 2012). A preliminary study has shown that the load 

caused in the ground reaction can be measured in dynamic loading (e.g. walking, running) from 

the pressure applied on treadmills with strain gauge force sensors fitted which highlighted the 

dependencies on the distance between the sensor and the centre of pressure (Dierick et al., 

2004). However, this measuring method requires specialised equipment and is typically 

conducted in biomechanical laboratories, which cannot easily be replicated for day-to-day 

tracking.  

According to the general principles of kinetic and Newton´s laws (Elvan and Ozyurek, 2020), the 

gravity applied to the body reacts, producing an equal ground force reaction in the opposite 

direction (3rd law). Unless external forces are applied, the body maintains a constant velocity (2nd 

law). The load force (𝐹⃑𝐹) generated is proportional to the weight and velocity (3rd law), which can 

be mathematically expressed in proportion to the weight (𝑚𝑚) and acceleration perceived on the 

body (𝑎⃑𝑎).  

𝐹⃑𝐹 = 𝑚𝑚𝑎⃑𝑎 

𝐹⃑𝐹 = 𝑚𝑚�𝑎𝑎𝑥𝑥2 + 𝑎𝑎𝑦𝑦2 + 𝑎𝑎𝑧𝑧2 

Although the sensor setup and unit is different, studies have also compared the performance of 

accelerometers to force plates in static and dynamic movement. A study asking participants to 

stand has found the measurement from tri-axial accelerometers worn in the back to perform as 

well as the force platform (P<0.05) (Mayagoitia et al., 2002). A similar correlation was found with 

participants who were asked to perform different movements (walking, running and dropping a 

box) on a force platform while wearing the accelerometers at the wrist and the hip (Rowlands and 

Stiles, 2012). Accelerometry studies have considered the location of the sensors on the human 

body (Bouten et al., 1997) and concluded that the use of accelerometer sensors presents a viable 

method for long-term monitoring of the ambulatory movement of the human body (Mathie et al., 
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2004). The reliability of accelerometers to measure the effects of loading and unloading 

generated by physical activity has been confirmed for squats movement (Bobbert, 2014) as well 

as with a football (Boyd et al., 2011) and a rugby team (McLean et al., 2018). Accelerometers have 

also been used to evaluate physical activity in musculoskeletal studies but outside the clinical 

environment, concluding that RA patients are more sedentary than control participants 

(Prioreschi et al., 2013). That correlation exists with their disease activity (Hernandez-Hernandez 

et al., 2014).  

2.4 Smartphones Applications & remote monitoring 

A review of the techniques to measure weight bearing was conducted in 2003 (Hurkmans et al., 

2003), but since then, accelerometers have been embedded in devices such as smartphones and 

wearables. They have become more broadly available to the general public. The usage of a 

smartphone to record physical activity has been verified with comparative devices such as 

Actigraph (Eric B Hekler, 2015) as well as to send readings from sensors worn on the body (Seeger 

et al., 2014) and for physical activity recognition (Wanmin Wu, 2012). Moreover, systematic 

reviews concluded that wearables and smartphone applications could lead to an increase in 

physical activity (Gal et al., 2018). However, evaluation guidelines are needed to optimise the 

research design (McCallum et al., 2018). Smartphones are already widely available to the general 

population and present the advantages of being convenient, low-cost, easy to deploy, and already 

broadly used and part of everyone’s day-to-day life (Woollaston, 2014). Business models exist to 

generate revenues either by charging the users directly when accessing the app, premiums, gated 

features and in-app purchases (Apple, 2019); or indirectly, e.g. through sponsorship, 

advertisement or data reselling (Mey, 2017). The commercial success can be measured with 

global ranking found on specialised websites such as SimilarWeb (2019).  

A wide range of fitness and workout apps is available and continuously updated, including apps 

from leading sports brands such as Nike+ Training Club, Adidas MiCoach and Freeletics, focusing 

on exercise programs, guidelines and videos (Haslam, 2018). Tracker apps such as Nike+ Club and 

Strava track time and distances, focusing on GPS data to track geographic location rather than 

movement (Runner'sworld, 2018). Sensor trackers and analysers also exist but focus on sensor 

data visualisation rather than tracking and recording. A review of 60 studies has shown that being 

used within medicine is perceived as promising and exciting by clinicians (Ozdalga et al., 2012). 

The RA population share the same interest and a questionnaire answered by 100 RA patients 

showed that 94% believe that they could have a more active role in self-management and that an 

app explicitly developed would be helpful (Azevedo et al., 2015). The benefits of this approach 

have been demonstrated with an app used as part of an integrated platform (Dixon and Michaud, 
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2018). As seen in Table 1, the top apps made available (Veronica Hackethal, 2018) to the OA and 

RA population focus on providing information on the disease rather than physical activity tracking 

features. 

 

Table 1: Smartphone app feature review 

The amount of physical activity performed is personal and depends on the conditions of each 

individual thus, organised exercise programs might be helpful. However, the recommendations 

made by healthcare professionals remain based on an evaluation of the physical activity reported 

through patient feedback. A self-assessment of physical activity is not quantified or objective, as 

shown in a literature review (Prince et al., 2008). A review has shown that in most studies, self-
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reports do not accurately estimate the absolute amount of physical activity  (Sallis and Saelens, 

2000). Assessing physical activity requires an objective sense of measures, and the findings on 

using paper diaries suggest that electronic journals with compliance-enhancing features would be 

more effective (Stone et al., 2003). Indeed, the results comparing self-assessments to data 

recorded through Actigraph have shown a weak correlation (Dyrstad et al., 2013) and a review 

demonstrated that there are not enough studies (Füzéki et al., 2017) on low activity recorded 

through accelerometers. A solution providing convenient physical activity monitoring using 

objective data will help better advise patients on the most appropriate program of activities to 

follow. 

The overall physical activity hinges on an individual´s daily routine, and the perception often 

overlooks the living conditions (e.g., living in a two-story house rather than the ground floor) and 

daily chores such as housework or children's care. All these apps require user intervention (i.e. to 

start/stop the app) and run in the foreground (i.e., with the app always displayed), which is a 

barrier to continuous monitoring. Similarly, wearable such as smartwatches and insole are 

available but not as broadly adopted as smartphone and less likely to be used by individuals over 

50 (Chandrasekaran et al., 2020). The nature of this project is to gain insight into the day-to-day 

level of physical activity, implying that the monitoring should be non-intrusive, seamless and 

wholly integrated into the user's lifestyle. The users should not be burden with smart wearable 

nor restricted to holding the phone in specific positions, and any app running should have 

minimum battery performance and storage impact. All these apps require user intervention (i.e. 

to start/stop the app) and run in the foreground (i.e. with the app always displayed), which is a 

barrier to continuous monitoring.  

Bespoke apps have been developed to support specific studies. A study has developed a custom 

app running on LG smartphones (Android OS) to use a variety of smartphone sensors to develop a 

human activity recognition system able to recognize 15 activities with high accuracy (Khan et al., 

2014). A study has demonstrated that data recording apps can be developed as shown with 

MyHealthAssistant, which retrieves data from sensors worn close to the body (Seeger et al., 

2015).  The performance review shows that an app can be designed to run background data 

processing that does not require user intervention (e.g., to start and stop the logging). Such 

background running apps can be developed without inducing bias in the data recorded, as shown 

in a systematic review of the effect of a digital intervention on the physical activity of people with 

inflammatory arthritis (Griffiths et al., 2018).  
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2.5 Project Hypothesis 

In summary, the force load on the lower limbs resulting from physical activity plays a critical role 

in the well-being and evolution of musculoskeletal diseases. Too little might lead to osteoporosis 

and too much could lead to osteoarthritis. Therefore, the recommendations should be tailored to 

fit the patient’s needs and daily lifestyle. However, the amount of physical activity is currently 

assessed based on patients reporting, typically biased as being self-reported, and mechanical load 

is measured only in dedicated facilities or via implant. Fitness trackers allow continuous 

monitoring of sensor movement but the commercially available solutions do not focus on people 

with limited movement capability and the stress and load caused on the bones and joints is not 

monitored nor quantified outside of clinical setting. 

The hypothesis of this project is that smartphones can be used to assess the amount of physical 

activity performed and provide objective and valuable insight for patients diagnosed with 

musculoskeletal diseases. The novelty is using smartphones, as affordable access to the 

technology for continuous tracking, to continuously estimate the load rate on lower limbs in 

patients’ daily routine and natural environment. 

The primary objective is to validate that smartphones can be used as surrogates to estimate lower 

limb loads. The secondary objective is to validate the ability to continuously monitor 

musculoskeletal patients' physical activity outside the clinical setting and for an extended 

timeframe. An additional outcome is to evaluate the viability of the method for further healthcare 

studies to correlate load rate and physical activity, e.g., with disease activity.  
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Chapter 3 General Methodology 

3.1 Study design 

The project aims to evaluate the physical activity estimates obtained from smartphones 

considering the disease condition of patients recruited within the NHS. Therefore, the protocol 

has been approached as medical research (Kapoor, 2016), however, without intentions to 

experiment or treat patients and with no causality to the disease condition and activity expected 

as a result of taking part for the participants. The focus is to collect prospective data (load rate 

estimate), so this project is defined as a pilot (Leon et al., 2011) epidemiological observational 

study.  

The objective is to validate the developed methodology and framework, which could be applied 

to full-scale clinical trials and experimental studies. The studies have been designed to evaluate 

the feasibility of the process's critical steps, the project stakeholders' management (clinical and 

patient), and the time and resources required for future clinical studies. A PPI session has been 

conducted with rheumatoid arthritis patients to validate the benefits of the study capturing actual 

patient feedback. Clinicians' and patients' points of view have consistently been tracked, but this 

is not a clinical study nor trial, so there is no need for a control group nor to randomise the cohort 

of participants.  

The key details for each study are summarised in table 2. Study 1 (Chapter 4) served as the first 

end-to-end proof of concept (POC) to identify the key challenges. Using a methodical triangulation 

(Bekhet and Zauszniewski, 2013), both quantitative and qualitative data were collected 

respectively from smart devices (Smartphone and Fitbit) and self-assessed by recruited 

participants diagnosed with rheumatoid arthritis (questionnaire).  

The consequent activities have then been defined to validate critical aspects of using 

smartphones to estimate load rates. Study 2 (Chapter 5) compares the load rate estimates from 

smartphones and smartwatches with uniform data collection (i.e. smartphone power save turned 

off). Study 3 (Chapter 6) compares the variations of real-life sampling, in clinical trial conditions 

with osteoarthritis participants, with the physical activity recorded using Fitbit. Study 4 (Chapter 

7) evaluates the trends of physical and disease activity that can be recorded, in real-life 

conditions, from the personal smartphones (as opposed to secondary device) of participants 

diagnosed with rheumatoid arthritis.  
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Study Participants Devices Sample Data collected 

PPI Session 

9 patients 
diagnosed with 

Rheumatoid 
Arthritis 

Sony Xperia Z1 Compact 1 day Survey before session 
Feedback during session 

Study 1 

5 patients 
diagnosed with 

Rheumatoid 
Arthritis 

Fitbit HR 
Sony Xperia Z1 Compact 

preloaded with RApp v1.0 
(window=10s, interval=20s) 

6 weeks 

Fitbit Daily step count summary 
Raw accelerometer data stored as .txt files 

Processed Load rate mean stored in SQL 
database 

Study 2 
10 participants 
with no specific 

conditions 

Sony Smartwatch 3 
Sony Xperia Z5 Compact 

preloaded with OApp v1.0 
(window=5s, interval=55s) 

7 days 
Smartwatch & Smartphone  

Raw accelerometer data stored as .txt files 
Processed Load rate mean in SQL database 

Study 3 
60 patients 

diagnosed with 
Osteoarthritis 

Fitbit Flex 2 
Samsung A5 preloaded with 

OApp v2.0 (window=5s, 
interval=15s) 

14 days  
(7+7, 2 

months after 
injection) 

Fitbit Daily step count summary 
Processed Load rate mean stored in SQL 

database 
Google API step count 

Study 4 

3 patients 
diagnosed with 

Rheumatoid 
Arthritis 

RApp v2.0 installed from 
Google Play (window=5s, 

interval=15s) 
3 Months Processed Load rate mean stored in SQL 

database 

 

Table 2: Study summary 

3.2 Ethical approval & Participants 

Although this project is not a clinical study, NHS approval and additional documents, including the 

patient information sheet and patient consent form (Study 1 and 4), have been reviewed, along 

with the study protocol, and approved by London Stanmore’s ethics committee (REC reference: 

16/LO/0182; IRAS ID: 192803). The Faculty of Engineering and Environment Ethics committee at 

the University of Southampton has approved studies 1 and 4 (ERGO ID: 18061). Study 2 uses 

datasets generated as part of a project (Nazirizadeh, 2018) approved by the University of 

Southampton’s Faculty of Engineering and Environment Ethics Committee (no.30213, see 

Appendix B). The Northern Sydney Local Health District HREC has approved study 3 (Reference 

number: LNR/17/HAWKE/370). No ethical approval is required for activities solely focused on app 

development and testing. 

Several variables and formulas are used in clinical studies to accurately define the minimum 

sample size of participants required (Charan and Biswas, 2013). However, this project gathers 

prospective data, so the number of participants recruited in each study has been defined to focus 

on the particular point of interest evaluated. The participants in the PPI session were adults 

diagnosed with rheumatoid arthritis, recruited from an existing research group for a biotherapy 

project. Inclusion criteria were defined for studies 1 and 4 to recruit participants aged above 18 

years old, diagnosed with rheumatoid arthritis and willing to take part in the study for the entire 

duration (6 weeks for study 1 and 3 months for study 4). No aspects of disease activity were of 
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interest for study 2. So, inclusion criteria were defined to recruit healthy participants who were 

willing to participate in the study, who were above 18 years old and who were without 

neurological, systemic illnesses or other physical disabilities that may have limited their mobility. 

The cohort for study 3 were patients over 50 with symptomatic, radiographic knee osteoarthritis 

recruited as part of clinical research before and after knee injection (Yu et al., 2022). No exclusion 

criteria were specifically included but the scope of study includes the use of smartphones which is 

naturally not appealing to individuals with negative perception on technology. 

RA patients were recruited from the rheumatoid arthritis population treated at Southampton 

General Hospital, and patients were screened during weekly clinics at the hospital. Recruiting 

patients as part of a research study requires GCP (good clinical practice) training at Southampton 

General Hospital. Access to patient notes (i.e., NHS paper-based records) requires obtaining a 

“Research passport” (see NHRA docs) to track the consent date, follow up and end of 

participation in the study. Patient participation is also recorded electronically through EDGE 

(Edge, 2018). All face-to-face interactions with patients (consent, follow up and end of study) are 

done within the Clinical Research Facility of the Southampton General Hospital in the presence of 

at least one nurse.  

3.3 Equipment 

Smartphones 

Smartphones are used for their convenience (low-cost and broadly used) of access to 

accelerometer sensors. Android offers the most extensive range of devices and has the broadest 

portion of users, which makes it easier to obtain the technology. Therefore, iPhones have 

intentionally not been included in this project. Android-based devices that include Samsung S7 

Edge, HTC M8, and HTC M8 mini have been used for development purposes, and Sony Xperia Z1 

Compact, Sony Xperia Z5 Compact and Samsung A5 have been provided to recruited participants 

(Study 1, 3 and 4). 

Smartwatch 

Android also provides a range of wearables that includes smartwatches. In this project, we used 

the Sony Smartwatches 3 (Study 2) to record accelerometer data using Google Android Wear 2.0 

API.  

Fitbit 
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Fitbit devices are wristbands that measure daily step counts and physical activity. Considering the 

recent commercial grasp it has amongst the broader population, these were used as a reference 

and electronic, physical activity baseline. Fitbit uses proprietary algorithms that are not publicly 

available, and the review of their performance is not part of this project. In the context of this 

study, we accept these as being a reliable measure of performance already validated in other 

studies ((Adam Noah et al., 2013) ; (Diaz et al., 2015); (Dontje et al., 2015); (Takacs et al., 2014).  

Fitbit HR (Fitbit, 2016) were used for Study 1 and Fitbit Flex 2 in Study 3. As of the beginning of 

this study, Fitbit provided access only to processed data (e.g., step count) but opened their APIs 

on 2018 models (Versa and Ionic). It should be noted that while the use of Fitbit’s APIs is not part 

of the scope of this project, raw Fitbit accelerometer data could be considered for future work 

and could bring commercial value, e.g., in the context of comparative data analysis paired with 

data recorded via smartphones.  

3.4 Smartphone considerations  

Data collected using commercially available devices (Fitbit and smartwatch) are used as a 

benchmark, and disease activity data are obtained directly from patients using self-assessed 

questionnaires.  

The primary focus of work is on evaluating the physical activity estimated using smartphone 

accelerometer data. So, designing a specific app provides a better user experience that increases 

the retention of the app. This approach also dramatically simplifies the ability to obtain ethics 

approval and expand the possibilities for further development, e.g. for commercial purposes by 

adhering more strictly to the UK regulation and guidelines on medical devices that have been 

extended to the medical apps (Gov.uk, 2018b). This section details the implementation of the 

monitoring framework resulting in two smartphone apps that are Rapp™ and Oapp™. 

3.4.1 Smartphone architecture & sensors 

The architecture of the smartphone combines hardware and software components at various 

levels (see fig 5). As well as the screen and overall casing, the hardware consists of integrated 

sensors that are used for multiple functions, such as adjusting the operating conditions and user 

experience (Abiresearch, 2019), and the trend shows that more sensors are included to expand 

the use case to fitness, gaming or security (Qualcomm, 2014). Chipsets manufacturers provide 

their proprietary software stack (middleware) to manage the multiple technologies supported, 

such as the radio protocol (e.g. Qualcomm or Apple), the Wi-Fi (e.g. Texas Instruments) and 

Bluetooth.  
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Figure 5: Smartphone architecture and sensor growth trend 

The overall user experience and front end are based on the OS used (e.g., Android, Apple, 

Blackberry) and manufacturers (e.g. HTC, Sony, Samsung...) design and build their devices based 

on the hardware components supported, e.g. on Android (Google, 2018a); Apple combines the 

requirement and support of iOS along the iPhone specifications (Apple, 2018). Smartphone 

manufacturers typically add a proprietary software layer to customise further the user 

experience, such as “HTC Sense” or “Samsung Experience”, which must comply with the OS 

provider regulations (e.g., obtain Google Technical Acceptance). A smartphone app is specifically 

developed to be compatible with the targeted OS that can access other software (i.e. other apps) 

and hardware components but is limited to the API capabilities. For this project, the smartphone 

apps were designed only for Android, but the principles apply to any other OS (e.g. Apple, 

Blackberry, and Windows).  

Sensor data 

Google’s Android platform provides a Hardware Abstraction Layer (HAL) representing the sensors 

as virtual devices that can be accessed programmatically via API. As detailed in figure 6, Base 

sensors are a single type of physical sensor, such as the accelerometer, gyroscope and 

magnetometer; and Composite sensors are processed data, e.g. for activity (e.g. step count), 

attitude (e.g. rotation vector) or interaction (e.g. wake up gesture) (Google, 2018b).  

In this thesis, we focus on the accelerometer sensors to calculate the load rate and refer to these 

as “raw”, but are readings calibrated using temperature compensation, online bias calibration and 

online scale calibration, not raw output from the physical sensors. As per fig 6, the format of the 

readings includes both the gravity and rate of change of velocity along the three sensor axes, 

represented as time (t) and coordinates (x, y and z). Composite sensors combine sensors and 



General Methodology 

39 

processed data, but Android considers each sensor independently. The step count reading has 

been later added (see study 3) and does not alter the overall logging (Google, 2016). 

 
Figure 6: Android sensors (Google, 2016) 

Gyroscope data could be helpful for smartphone positioning but not used in this project, as 

accelerometer data provide the same insight. GPS data could also be helpful, e.g. to estimate 

sunlight exposure or to track the distances and routine. However, GPS is not a sensor and uses a 

different reporting mechanism (like the camera, touchscreen, and fingerprint). GPS requires 

satellite coverage which limits the capability to gather data indoors and raise practical issues with 

low mobility and sedentary users. Besides, the tracking of users ‘location might raise ethics and 

privacy concerns, so GPS data was not used, and the project focused on estimating mechanical 

load from accelerometers data. 

3.4.2 Software development lifecycle 

The research team continuously measures the results and performance of the apps at various 

stages of the development, which allows verification of the correct implementation of features 

and fixes used for extended period, unlike studies limited to specific timeframes and limited by 

protocol. The traditional Waterfall methodology follows sequential phases from requirements to 

design, implementation, verification, and maintenance. Considering that this project is a pilot and 

that various requirements might change, it has been decided to follow an Agile methodology 

which permits flexibility in code changes and be reactive to issues found.  

For research purpose, the code does not need to be optimised but follows an Agile methodology 

using Sprints. Each sprint defines the functionalities and blocks of code required, which are then 

tested and validated (or not) as part of each study.  

As shown in figure 7, we use the main branch that includes all the code changes; the feature 

branch is to work on specific features that might include bugs or take longer to verify; the release 
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branches are the code version deployed to users, i.e. used for the study. Git is a code repository 

that allows functionality, development and to revert through code branches (see Appendix L). 

 

Figure 7: Branching strategy 

The version of code changes is tracked with two digits (e.g., 1.5) indicating major feature release 

with the first digit and less significant changes or bug fixes with the second digit. Rapp™ went 

through multiple versions to develop the user interface for disease activity score (DAS), 

questionnaires and the first implementation of continuous monitoring. The first version (i.e. 

Rapp™ v1.0) has been used for the patient and public involvement (PPI) session and improved in 

study 1. Rapp™ v1.0 has then been forked out to an Oapp™ branch where modifications have 

been made to the user interface, including fixes to the continuous monitoring and add support for 

Android Wear (i.e. smartwatch); resulting in Oapp™ v1.0 which has been used for study 2. 

Following the observations with both variants (study 1 & 2), monitoring of step count has been 

added along layout optimisations for Oapp™ v2.0 (study 3) and Rapp™ v2 (study 4). 

App coding environment 

Throughout this project, an app refers to a program that developed for smartphones. Advanced 

integrated development environment (IDE) such as Xamarin allow building mobile apps across 

platforms (i.e., Android, Apple and Windows) using C# as coding language. However, these 

solutions rely heavily on APIs and consequently dismissed to ensure more control over the 

sensors and data layer used. 

Android is a Linux based Operating System that considers each app as different users. Android 

apps are coded in Object-Oriented Language (e.g., Java, C++) and compiled through Android SDK 

into Android packages (APK) that can be installed on Android devices. Any integrated 

development environment (IDE) can be used, and Eclipse was initially used but migrated to 
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Android Development Tools (ADT), as seen on figure 8, to benefit from in-depth features such as 

debugging tools, code version tracking and integration with GitHub. 

 

Figure 8: Screenshot of Android Development Tool (ADT) 

Apple follows a similar approach but with critical differences such as coding language being 

Objective-C based with the possibility to use Apple’s coding language (Swift), and the IDE (Xcode) 

runs exclusively on Apple OS devices (e.g. iMac, MacBook) to be able to compile the code loaded 

onto iOS devices (i.e., for iPhone, iPad...).  

App architecture 

Smartphone apps are typically implemented in blocks of code that define specific behaviour and 

entry points of the app for the user or the system. Figure 9 details the components used for this 

study. The Android API defines four fundamental types of components that each have their 

lifecycle and own use case. Activities usually are the visual components run in the foreground 

such as the main view or any of the child views that the user would navigate to; Services are used 

for tasks running in the background that do not require user interventions; Broadcast receivers 

allow interaction with the app by the system, outside of the regular flow triggered by the user; 

and Content providers manage the file system. 
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Figure 9: App architecture & Lifecycles 

The continuous background monitoring and data upload are coordinated through a series of 

Android Services as detailed in figure 10. The ServiceManager handles the coordination of 

services and once started, verifies the settings (e.g., window, interval) to define the monitoring 

configuration and trigger SensorLoggingServices which oversees collecting the samples within the 

specified window, CPU frequency and specified format (i.e. raw and SQL entry). The scheduling of 

sampling (i.e., interval) and uploads is managed through Alarms which will trigger the 

corresponding Services.  

 

Figure 10: App lifecycle 
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The user interactions are defined as foreground activities designed considering the User Interface 

(UI) and User Experience (UX) that are respectively the visual layout and overall navigation. 

RApp™ and OApp™ have been developed as two variants of the same app with front end designed 

respectively for OA and RA patients. The Settings activity for both is hidden to the user and is 

accessed by clicking three times on the right corner of the banner. OApp™ has been developed for 

patients with Osteoarthritis with a single Home view that allows recording the intensity of overall 

pain on an ad-hoc basis and from either the smartphone or the smartwatch as per figure 11.  

 

Figure 11: Settings and OApp™ navigation 

RApp™ focuses on RA patients and launches an Activity upon opening the app built with 

Fragments allowing users to swipe between Home and Pain tab. The Home tab lists the last 30 

days of Questionnaire activity in a List of Buttons and each day opens either the daily summary (if 

recorded) or the daily Questionnaire activity (if not filled).  

 

Figure 12: RApp™ navigation 

Patient Reported Outcome Measues (PROMs) are self reported questionnaires by patients to self-

assess their health status. The user interface included PROMs that do not require clinical 
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dependancy (such as blood tests). The Questionnaire activity prompts the user with the questions 

listed either as part of a questionnaire based on the British Society of Rheumatology (BSR), for the 

daily report, or based on the routine assessment of patient index 3 (RAPID3) questionnaire, for 

weekly reports (see figure 12). The user response is recorded through a visual analogue scale 

(VAS) which is widely used and recommend for medical assessment (Harrison et al., 2009). 

Preloading scores with the last value entered has been considered but dismissed not to influence 

the patient when answering. Randomising the order of questions has been found to prevent 

patients from responding without reading but has not been incorporated to retain the integrity of 

using validated questionnaires. 

 

Figure 13: RApp™ questionnaire 

The Disease Activity Score is a measured on 28 specific joints (DAS28) typically used by clinicians 

has been designed to record the joint count of pain and swelling (Ozlem Pala, 2006). The Pain tab 

launches the PainAndInflammation activity, which follows the model of DAS28 paper forms used 

at the hospital with a skeleton (see figure 14) and joints highlighted. However, the layout of the 

app includes only the shoulders, elbow, hands, knees, and feet to focus on large joints. Patient’s 

daily sensitivity and perception (e.g., chronic pain, used to a certain level of pain) might help to 

correlate specific patterns of physical activity to flares. Subsequently an intensity factor, which is 

not a validated criterion, has been introduced to the layout allowing to quantify, from 0 to 4, the 

pain and swelling on each joint.  
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Figure 14: RApp™ DAS28 

 

3.5 Data collection & analysis 

Data format 

The app is tracking user input but also a significant amount of raw accelerometer data. As detailed 

in figure 15, the design choice for Study 1 has been to save each sample of accelerometer data as 

individual text files stored on the smartphone’s memory, and that can be accessed via USB 

connection. For the following studies, the accelerometer data are processed for load calculation, 

and the storage uses SQL databases which significantly reduces the amount of storage required 

and improved data access security as the database can only be accessed by the app (unlike data 

stored on the smartphone’s internal memory). This solution also addresses Big Data challenges as 

a significantly lower amount of data is uploaded via secured HTTPS protocol to Microsoft Azure 

storage tables (instead of raw files uploaded as Azure Blobs).  
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Figure 15: Storage and data format 

Data storage 

The data recorded are stored on the smartphone (or SD card) which relies on the read/write 

speed to hardware storage and generates a large amount of data for an extended period which 

causes storage size limitations and corruption (see study 1). A remote solution is preferred to 

prevent data loss caused by smartphone might malfunction or patients, e.g., not losing the device. 

There are many factors to consider for online solutions such as data redundancy, backup, security, 

data privacy regulations, scalability and deciding which components to implement. Cloud 

solutions offered by Amazon (AWS), Google (Google Cloud) and Microsoft (Azure) provide a range 

of products and services that natively address those concerns. Making use of these services is not 

limited to a single provider and multiple combinations of services (see figure 16.2) and providers 

could be used, e.g. to address cost-saving or to obtain a scalable architecture built with no single 

point of failure as shown in figure 16.1.  
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Figure 16: Cloud architecture 

At the point of writing, Azure is the cloud provider with the most certifications (Microsoft, 2017a). 

Azure’s recognition in the health industry is a particularly good fit for this project considering that 

the data stored might include patient data (Microsoft, 2017b), which is particularly sensitive in 

terms of approval by the NHS. The geographic location used for storage can be specified (e.g. 

specified to the UK only) and defined to segregate resources (e.g. across study and applications).  

Microsoft has granted this project with an allowance to experiment with the various components 

available. Figure 16.3 showcases the elements used for an end to end solution using IoT (internet 

of things) devices tracking GPS locations (Microsoft, 2017d). The solution uses an IoT hub that acts 

as gateway for the data uploaded and Azure App Services to support the various API calls. All data 

are stored in storage that facilitates the processing, analysis operations and real-time visualisation 

and services for both business and consumer experience.  

This project uses the same principles applied to the sensor data but mainly focused on using the 

cloud-based blob and table storage component with most of the analysis done offline using 

MATLAB. Raw sensor data recorded are stored as text files, in the internal storage of the phone, 

and then uploaded as Azure Blobs, which is the preferred type for files (Microsoft, 2017c). Data 

processed by the smartphones (i.e., calculated load samples) are stored, in the internal memory, 

using Android SQL (Structured Query Language) database. Azure SQL is available, but Azure table 

storage is more flexible and allows the same functionalities without the constraints associated 

with relational databases. 
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Further capabilities might include integration with other platforms, e.g. to aggregate other data 

sources such as Fitbit or Garmin and could be achieved through commercial APIs. The value of 

data visualisation could be optimised and made available to more than one system, e.g. through 

the admin dashboard, purpose-fit layout for individuals and integrated with hospital records for 

clinicians (Dixon and Michaud, 2018).  

Data processing 

Analysis of the data collected is a core part of the project and is being reviewed in relevant 

section. Fitbit data were exported already aggregated as JSON file from Fitbit´s online portal. 

Smartphone´s data were exported directly from phone storage (Study 1&2) and from Azure 

storage (Study 3&4) using Azure storage explorer. Data processing was done through MATLAB and 

Python. Power BI was used for additional flexibility on the data visualisation. Data integrity in 

sample extraction, file corruption and sampling errors are reviewed throughout the project.  

Smartphones continuously generate sensors data which were captured in sample chunks. The 

sampling for each study defines a window size (w), which represents the length or duration 

covered in the sample; and an interval (i), which represents a gap or timer before capturing the 

next samples. Accelerometer data are generated with a time (t) and coordinates along each axis 

(x, y and z) with a value that ranges from -10 to +10 m/s2 on each axis. The load rate estimates 

(LRE) are defined as the rate of change in load with respect to time, which is the body mass times 

the physical quantity jerk. The infinitesimal calculus of the load rate is defined as:  
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where ax = is the acceleration in x direction, ay = is the acceleration in y direction, az = is the 

acceleration in z direction, n = the number of data samples at interval Δt (i.e., 1/sample frequency).  
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Chapter 4 RApp1: Proof of concept with rheumatoid 

arthritis patients 

This chapter covers the steps undertaken, considering the input from rheumatoid arthritis 

patients, to identify and assess the feasibility and key challenges of the project. 

4.1 Introduction 

The symptoms of RA patients develop gradually; therefore, monitoring the disease activity is 

critical and achieved using score-based assessment. The score calculation considers the lab results 

of blood samples, a joint assessment by the clinician, and a questionnaire-based assessment. The 

aim for patients is to become less dependent on medication, but the trend of the score drives the 

dosages. Increasing or higher scores imply that the patient’s condition is getting worse, which can 

signify that a change might need to be introduced, e.g., an increase or new medication should be 

used. A trend in remission might show that a patient is responding well, e.g., that a particular 

treatment is working or could be lowered.  

 

 
 

Figure 17: DAS28 Form and EULAR response (source: DAS-score.nl (DAS-Score.nl, 2009)) 
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The Disease Activity Score 28 (DAS28) is a clinical index calculated by clinicians using a form 

similar to figure 17 (DAS-Score.nl, 2009). The variables consider the measure of blood markers 

ESR (erythrocyte sedimentation rate) or CRP (C reactive protein), the GH (Global Health) of the 

patient and an assessment counting the pain and swelling across 28 joints. The trend of disease 

activity is evaluated using the EULAR criteria by comparing the current to the previous score. An 

improvement lower than 0.6 is considered non-responsive and moderate otherwise. For DAS 

lower than 3.2, a score improvement above 1.2 is regarded as a good response.   

Several disease scorings exists, and the DAS28 scoring is the most widely used but considers a 

weighted scoring and has to be performed in a clinical setting to run the blood tests. The SDAI is 

an alternative that does not need to weight each variable and is calculated as a simple addition 

(Smolen et al., 2003); the CDAI does not consider the response of APP/APR, which means that 

blood tests are not required and provides the ability to conduct a disease activity evaluation out 

of clinical environments. CDAI and SDAI are less accurate and do not replace DAS28, but their 

validity has been demonstrated through various studies (Aletaha and Smolen, 2005). Recent 

research has shown a positive correlation between DAS‐28‐CRP, CDAI and SDAI at initial 

evaluation and SDAI and CDAI performing better than DAS for remission criteria (Dhaon et al., 

2017). 

 

Figure 18: DAS28, SDAI and CDAI score calculation 

Clinicians routinely use PROs (Patient-reported Outcome) which is recognised by the American 

College of Rheumatology (ACR) as being a core component for providing the patient’s perspective 

on their disease activity (Gossec et al., 2016). The GH value (Global Health) used in the DAS28 

calculation is measured through either PGA (Patient Global Assessment) or PTGA (Patient Global 

Assessment of Disease Activity), which can be used interchangeably (Khan et al., 2012). The PGA is 

one of the most used PROs that can be recorded either by the care professional (PrGH) or the 

patient (PaGH) by asking to grade their RA disease activity with a single value, typically between 0 

and 10 (or 0 to 100) using a VAS (Visual Analogue Scale). 
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The principle of using questions answered by the patients has been expanded, and the HAQ 

(Health Assessment Questionnaire) is the first assessment developed to be completed by the 

patient rather than the doctor through a series of questions. It is widely used to assess the 

physical functionality (Bruce and Fries, 2003). Further questionnaires have been developed to 

focus on other matters, such as the HAQ-DI (Health Assessment Disability Index), which has been 

designed to measure the quality of life. The MDHAQ (Multi-Dimensional HAQ), also known as 

RAPID3 (Routine of Patient Assessment Index Data), has been developed to include physical 

function, pain, and global estimate, which are the three core data for RA (Pincus, 2007). The 

RAPID3 score is calculated by filling in a form as per figure 19 (Rheumatology, 2014) and has been 

compared to other disease activity indexes (Anderson et al., 2011). Studies have shown that 

similar quantitative information to DAS28 and CDAI can be obtained (Pincus et al., 2010) with 

equivalent values to DAS28, CDAI, and SDA in patients with lower disease activity (Kim et al., 

2014). The severity of the disease activity is interpreted using the cumulative score (or weighted 

score in figure 19) and considered near remission for scores lower than 3, low for scores between 

3 and 6, moderate for a score between 6 and 12 and high for a score above 12 (up to 30). 

 

Figure 19: RAPID3 Score (source: American College of Rheumatology (Rheumatology, 2014)) 

Protocols and tools for monitoring of RA disease activity are already well established but generally 

must be run in a clinical environment which is restrictive. The assessment of joints measures their 

state at a given time (the patient´s visit) but not the level of mobility routinely undergone as part 

of the patient´s lifestyle. The motivation for this study is to evaluate how smart devices could 
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complement the clinician’s visibility of a patient´s physical activity routine, beyond the details 

reported by a patient, through remote monitoring. 

4.2 Aim & Objectives 

4.2.1 Aim 

This study aims to investigate the feasibility of using smartphones as a way to monitor RA 

patients’ physical activity in actual life conditions and the correlations that could be drawn with 

their disease activity. 

4.2.2 Objectives 

The objectives for this study are: 

1) Evaluate patients’ perception of using smartphones to monitor their experience with the 

disease.   

2) Assess whether smartphone sensor (accelerometers) can be used to monitor patients’ 

physical activity without proactive user interventions continuously.  

For this study, RA patients have been engaged in two parts: 

1) Feedback and review through PPI session organised with RA patient screened from 

Biotherapy group 

2) Data capture, in natural conditions of usage, recruiting 5 RA patients over six weeks.  

4.2.3 Hypothesis 

If patients use a smartphone, it is possible to use the smartphone´s capabilities to monitor their 

physical and disease activity remotely, outside of a clinical environment. 

4.3 Methodology 

4.3.1 RApp™ design 

Blood tests require a clinical environment and healthcare professionals. However, patients can 

perform joint counts and validated questionnaires by themselves. Diaries and productivity apps 

already exist (see chapter 2). So, the front end of the app has been designed specifically to allow 

capturing these self-assessments on a more frequent basis. OA and RA have different 
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requirements, and RApp™ is a proof of concept (RApp™ v1.0, see chapter 3) used to get feedback 

on the UI, which includes DAS28 and RAPID3 for self-assessment, by RA patients. OApp™ provides 

a UI to record pain using a VAS. Additional features such as social media, productivity and 

gamification might make the app more engaging and increase the user retention rate but have 

been dismissed as not directly serving the purpose of this project. 

An indication of successful app development would be allowing the evaluation of the correlation 

between disease activity and physical activity outside of a clinical setting. The app developed 

continuously monitors the load rate to draw an overall physical activity baseline, not specific to an 

activity type or exercise program. Subsequently, the framework could be applied to a broader 

range of diseases where continuous physical activity monitoring might be a key indicator.        

Patients’ impressions and feedback are consistently captured along this project, on the 

methodology as well as the design of the user interface to aim at constructing an intuitive 

experience for patients.  

 

Figure 20: RApp™ Layout (PPI session) 

4.3.2 Patient recruitment and study procedure 

As described, the front end of RApp™ has been explicitly developed for RA patients and includes 

DAS28 joint count and validated questionnaires. Following INVOLVE recommendations 
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(healthtalk.org, 2017), patient and public involvement in research is a way to drive the 

investigation “with” rather than “to”. So, a PPI group session was conducted for the first part of 

this study to gather RA patients’ impressions. Participants recruited for a Biotherapy study have 

been used for convenience and representation of a mixed population of RA patients with no 

specific interest in smartphones or technological aspects of the project. The group was composed 

of 9 patients (8 females and one male), aged 36 to 65 years old and diagnosed with rheumatoid 

arthritis for 4 to 23 years. A questionnaire (see Appendix A) was sent to participants before the 

session to capture their perception before seeing RApp™. The first 20 min spent passing a Sony 

Xperia smartphone preloaded with the beta version of RApp™ around the group, without 

introduction or presentation, to gather raw feedback on the usability. The remaining 20 min 

focused on reviewing the comments to draw several conclusions and refine the app requirements. 

The second part of this study is a pilot, observational and quantitative, focusing on comparing the 

trends of physical activity recorded via smartphones and Fitbit. Each participant wore a Fitbit HR 

wristband and used a Sony Xperia Z1 Compact preloaded with RApp™ v1.0. The Faculty of 

Engineering and Environment Ethics Committee at the University of Southampton approved this 

study (ERGO Ethics ID: 18061). The protocol and additional documentation, including the patient 

information sheet and patient consent form, have been reviewed and approved by London 

Stanmore’s ethics committee (REC reference 16/LO/0182). Inclusion criteria were defined to 

recruit participants diagnosed with rheumatoid arthritis, willing to participate in this study and 

above 18 years old. Participants were five adults diagnosed with rheumatoid arthritis (female n=2, 

male n=3; aged 26 to 67 years old) recruited from the University Hospital Southampton NHS 

Foundation Trust database. The clinicians and nurses screened participants during Monday clinics, 

focusing on patients already or newly diagnosed with rheumatology arthritis. Patients interested 

were provided with a copy of the Participant Information sheet to allow a minimum period of 24 

hours for review. Interested patients were invited for an initial interview at the Clinical Research 

Facility (CRF).  

This first face-to-face meeting was focused on introducing the project and gathering initial 

thoughts about using the technology and about attitudes toward trust in technology and 

healthcare more generally. Once the consent form was signed, participants were provided with 

instructions and contact details in case of questions or issues. A loaned Fitbit wristband and 

smartphone preloaded with RApp™ v1.0 were then handed over to be used over the recruitment 

period. Each patient visit was logged in the patient note stored at the hospital, with the follow-up 

meeting and closing session scheduled to ensure that the six-week timeline also fitted with the 

patient’s diary. Follow-ups were used to back up collected data, address questions, and gather 

continuous feedback. The closing meeting was used to gather participants’ input on the overall 
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user experience. It included questions about post-experience attitudes to trust in the App and its 

impact on care delivery.  

4.3.3 Data collection  

For each patient, the data recorded on the first day has been dismissed and considered for the 

patient to get familiar with the instructions and for consistency of the datasets. Participants 

completed daily reports through the user interface of RApp™, specifically in the morning, usually 

when symptoms (e.g., pain) are most distinct. The daily report includes a DAS28-based joint self-

assessment of pain and swelling, an MDHQ based questionnaire (BSR) during weekdays and 

RAPID3 weekly to fill in using VAS for each question. Patients were also invited to record joint 

assessments whenever experiencing significant pain or inflammation through the skeleton-based 

user interface, which allows highlighting of pain and swelling for each joint as well as the level of 

intensity with a scoring of 0 to 4 (see figure 20). 

The monitoring aimed at covering a third of the continuous duration in a day (i.e., 20 sec per min) 

set to record data samples of 10 seconds (window=10) every 20 seconds (interval=20). The 

samples have been stored in raw format on text files on the internal storage of the phones along 

with the daily self-reports and uploaded every day at 23h59 in a daily batch of data to Azure Blob 

storage. Additionally, the files and reports stored in the smartphone were extracted mid-way 

manually and at the end of the recruitment period during the interviews with patients. Fitbit daily 

step count has been exported as an excel spreadsheet through Fitbit’s online portal. 

4.3.4 Data Analysis 

For each patient, we evaluate the performance and accuracy of the app logging in the context of 

continuous monitoring for the recruitment duration (6 weeks). The daily amount of samples 

collected is compared to the amount expected to be collected, which, considering the settings 

used, should be two load rate values per min (i.e. two files per min, 2880 files per day). Periods 

without samples recorded indicate app and smartphone issues but recorded null values suggest 

that the smartphone is in a static position (e.g., on a table). The integrity of each sample is 

assessed by comparing the duration collected to the window set (i.e., each sample should contain 

~10 sec of accelerometer data). Samples with a significantly wider window include multiple 

samples but have been considered corrupted, as there is no clear way to weigh each sub-sample. 

The Fitbit report is used as a baseline to identify peaks and drops of activity that could be used as 

data points of direct correlation. It should be noted that Fitbit recommends doing 10k steps per 

day (ROSENBAUM, 2019), which is widely encouraged through user interface and notifications. 
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However, the number of steps performed depends on each patient´s routine and no specific 

amount of steps was recommended nor set as expectation. With the Fitbit report limited to daily 

step count, the load rate values have been calculated through MATLAB for each sample and 

summed into daily means, allowing comparison of the trends of physical activity tracking over the 

recruitment period. The visualisation of data has been implemented through Power BI 

dashboards. 

As detailed in the literature review, scores are used to evaluate disease activity, and, 

subsequently, the daily reports are used to identify significant peaks of disease activity, pain and 

inflammation reported by the patients that can be compared to the fitness baseline recorded. 

RAPID3 score calculation allows interpretation of the disease activity (high for a score above 12, 

moderate for a score of 6.1-12, low for a score of 3.1-6 and in remission for a score below or 

equal to 3). The BSR questionnaire is a lighter version of MDHAQ, and so we considered the score 

as the total sum from the questions, which is sufficient to draw a baseline while not being an 

accurate scoring. Likewise, the DAS28 score allows the interpretation of the disease activity 

(active for a score above 5.1, low for a score under 3.2 and in remission for a score under 2.6). The 

user interface of RApp™ allows reporting of pain and inflammation with a level of intensity but 

with the caveat of being limited to 10 joints (instead of 28). Therefore, the score used in this study 

might identify peaks and monitor the most sensitive joints but is not a validated DAS28 scoring. 

Joints 1,3,5,7, and 9 are the right shoulder, elbow, hand, knee, and foot; and correspondingly, 

joints are the left shoulder, elbow, hand, knee and foot. 

4.4 Results 

4.4.1 Patients’ perception and feedback 

Interacting with diagnosed RA patients is critical to understand how to capture their perception of 

this study. One of the RA clinics at Southampton General Hospital (see figure 21) is conducted on 

Monday mornings, where patient visits are typically scheduled and prioritised depending on 

patients’ needs, from routine check-ups to injections or to be diagnosed.  

The first observation while shadowing the interaction of healthcare professionals is that patients 

diagnosed with RA often have other family members, parents, spouses, or partners, involved in 

the disease monitoring and treatment. Secondly, it has been observed that medications and 

prescriptions are thoroughly agreed upon between the clinician and the patient [see Annexe C]. 

The efficiency of medicines and dosages is assessed through a review of the blood test results but 

also based on the patient’s inputs and referred to as an “experiment” asking questions such as 
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“Should we try to lower/increase the dosage?” or “Should we try a different injection?”. Patients 

appear to be informed, and their preference might overrule the most efficient remedy. During 

one of the visits, it was observed that one of the patients wanted to stay on tablet rather than 

getting injections, which may have been more effective due to potential side effects of hair loss. 

These observations were significant indications that patients´ engagement with RA disease is not 

limited to the time spent in the clinic. It affects their day-to-day routine as well as their social 

circle. In contrast, anyone has experienced catching the flu, getting healed and then moving on. 

For RA patients, extensive self-learning and proactive symptom monitoring occur daily. So, these 

observations were particularly encouraging and supported the thought that RA patients would be 

willing to use their smartphones as a tool to help their disease monitoring.   

 

Figure 21: Southampton General Hospital (Victoria House) 

The PPI group session allowed interaction with RA patients in the context of a clinical study. The 

first part of the pre-session questionnaire (figure 22) evaluates patients’ perception towards their 

clinical visits and follow up and was worded in partnership with TRIFoRM (TRust in IT: Factors, 

metRics, Models) (Hooper et al., 2015). When RA patients were asked if they could recall their 

disease activity (1.1 and 1.2), including pain and swelling, 100% of patients indicated that they 

could remember details on the whole period, or at least the last month, since the previous visit. 

When asked if they would like their GP/Rheumatologist to be able to monitor their overall status 

between visits (1.3), 89% of patients responded that it would be useful for patients newly 

diagnosed or with high disease activity as the gaps between visits can be long. Still, it is not useful 

for patients in remission or with disease activity already under control. When it comes to 

monitoring physical activity (1.4), 100% of patients expressed interest, e.g., to see the impact on 

their disease activity, but not as an invasive metric that could dictate their day-to-day. 
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The second part of this questionnaire (fig 23 to 25) focuses on patients’ relationships with 

smartphones. 89% of patients already own a smartphone (2.1), more than half running on 

Android OS (2.2), that they typically always carry with them or at least whenever being out of 

their house (2.3). 86% of patients use a smartphone above the minimum size, larger than 4.7 

inches (2.4), with apps for managing their everyday life (2.5) that include email, calendar, and 

social media (2.6). When asked if an app could (2.7) and whether they’d be willing to use it to 

support their arthritis (2.8), 100% were keen to or neutral based on not having enough details on 

the usage. Specifically, the feeling is closely related to the disease activity, and not all patients 

would necessarily be willing to have phones continuously tracking their physical activity (2.9), nor 

might they be able always to carry it (2.10) as it also depends on the individual circumstances, 

e.g., not possible when the workplace does not allow mobile. 86% of patients would likely (or very 

likely) to use a smartphone to record their pain and activity (2.11), assuming that the user 

interface is easy to use to supplement face-to-face consultations and not replace them. 

The PPI session allowed us to capture patients’ feedback and impression on the app UI layout as 

much as usage point of view. A short introduction of RApp™ and the summary of answers to the 

survey sent before the session is in Appendix B and the most relevant patient quote for each 

question is listed in figure 26. The most frequent comment was that questionnaire and pain entry 

are great, but the overall layout and navigation should be more explicit. A “fun” factor and 

improved personalisation capabilities should be included for RApp™ to be perceived as an “app” 

rather than a medical tool. The wording of the questionnaire (Rapid3), in American English and 

aimed at consultations, are confusing for daily usage. Patients clearly expressed that they would 

need a reason to use an app, and several suggested medication tracking as improvements. RA 

patients with active disease are likely to be more responsive to using an app between visits but 

might not want to think about and monitor their activity if they are healthy or in remission. After 

seeing and testing the app, PPI participants understood how it could be used, which validated 

recruiting patients to use it, and further feedback was captured as part of the face-to-face 

interviews, which overall also received positive feedback. 
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Figure 22: Pre-session survey questions 1.1 to 1.4 (9 RA patients) 
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Figure 23: Pre-session survey questions 2.1 to 2.5 (9 RA patients) 
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Figure 24: Pre-session survey questions 2.6 to 2.9 (9 RA patients) 
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Figure 25: Pre-session survey questions 2.10 to 2.11 (9 RA patients) 

 

Figure 26: PPI comments pre and post an overview of RApp™ 

4.4.2 Patients using RApp™ 

The next part of this study consisted in getting the app used by RA patients. The smartphone 

application (RApp™) has been preloaded on smartphones we loaned to the participants to use as 
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a secondary smartphone, preventing them from transferring their personal accounts and SIM 

card. Table 3 shows the patient details and participation timeframes. The cohort included females 

(patients 1 and 4) and males (2, 3 and 5). The range of age was wide, with patients 1 to 5 being, 

respectively, 67, 57, 39, 45 and 29 years old at the time of the study. Patient 1 was recruited for 

six weeks, as expected, from 05/08/2016 to 16/09/2016, but duration varied due to schedule 

conflicts to meet patients and retrieve devices. As a result, patient 2 has been recruited from 

06/09/2016 to 06/12/2016 (3 months); patient 3 from 13/10/2016 to 06/12/2016 (8 weeks), 

although no reports were completed after 06/11; patient 4 from 23/11/2016 to 16/01/2017 (7 

weeks), although no Fitbit data recorded until the 07/12; and patient 5 from the 13/12/2016 to 

02/03/2017 (10 weeks). 

 

Table 3: Patient recruitment summary 

Interview results 

The patients recruited were provided with contact details in case of issues. There were no      

specific challenges in following the protocol or using RApp™ throughout the recruitment period 

nor during the follow-up interviews designed with questions to drive patient feedback that were 

approved for the study (see Annexe D).   

Table 1 summarises the feedback when introducing the study. All patients expressed that RApp™ 

appeared easy to use (1.2) and agreed that it would not affect their treatment in any negative 

way (1.3), so the feeling toward using it was positive (1.4). The participants recruited were 

confident that internet-based technologies work correctly (1.5) and generally comfortable that it 

achieves their goal (1.6) and what they expect it to do (1.7). Table 5 and 6 summarise the 

feedback gathered during the follow up and last visit. At the conclusion of the study, the ease of 

use was highlighted alongside other feature improvements on the user interface. It should be 

mentioned that while patients expressed that they would not find an app useful when in 

remission, Fitbit’s report and step count tracking has been well received and encouraged 

engaging in more walking activities. 
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Table 4: Summary Visit 1 (Introduction) 

 

Table 5: Summary Visit 2 (Follow-up after six weeks) 
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Table 6: Summary Visit 3 (Closing interview) 

BSR & RAPID3 Self-assessments 

All participants expressed that the questions were too redundant for daily purposes, but most 

completed the questionnaires. As shown in Fig27, patients 1, 2 and 5 completed the BSR (daily) 

and Rapid3 (weekly) questionnaires as expected, while patients 3 and 4 were intermittent. Yet, all 

patients utilised the DAS joint count to record pain and swelling. 

Patients 3 and 4 completed the questionnaire more sporadically with BSR under 5 and RAPID3 

under 2, indicating disease activity in remission. Patient 1’s BSR questionnaire was answered daily 

and reached a maximum score of 28.2 with an average of 17.5; RAPID3 can be calculated as being 

above 7.6 for the last three weeks, which indicates moderate disease activity. Patient 2 also 

responded daily to the questionnaires over a longer time frame of recruitment, with the BSR 

averaging at 32 and reaching a peak of 39; RAPID3 be calculated for most weeks as being 

consistently above 10, indicating moderate disease activity. Patient 5 scored the highest BSR, 

above 40 on most days, and RAPID3 was calculated between 10 and 19 over the recruitment 

period, which indicates a moderate to high disease activity.  
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Figure 27: BSR & RAPID3 
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DAS28 Joint counts 

Figures 28 and 29 show all joints' joint count of self-assessed pain and swelling (between 0 and 5). 

While the responses to patient 1’s questionnaire might indicate moderate disease activity, the 

patient recorded pain on the left hand, knee and foot, scoring a max DAS score of 4 with an 

average of 0.64, which would indicate disease activity in remission.  

Patient 2 recorded pain on both the left and right hand, knee and foot, consistently scoring a DAS 

score of 10 throughout the entire duration. No pain or inflammation was reported on the 

shoulders and elbow, but pain on the hand, knee and feet peaked at an intensity of 3 and 

consistently scored at two as well as being scored as inflated as 2 for the entire period. Patient 3 

recorded pain on both shoulders, elbow and hands, consistently scoring a max DAS score of 5 with 

an average of 3, which indicates low disease activity. No pain or inflammation was reported on 

the knees and feet, but pain on the hands peaked at an intensity of 4 and consistently scored at 

one, as well as being scored as inflated for the entire period.  

Patient 4 recorded pain only on the left knee with an average score of 0.62 during the recruitment 

period, which indicates a disease activity in remission. Still, a peak of pain has been highlighted 

through the intensity factor on weeks 5 and 6. Patient 5 recorded pain on the left knee and both 

hands and feet through the DAS, scoring with an average of 8.65, indicating an active disease 

activity over the recruitment period.  
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Figure 28: Summary Self Assessed Pain 
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Figure 29: Summary Self Assessed Swelling 
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4.4.3 Continuous monitoring (RApp™) 

4.4.3.1 Sample summary 

Table 7 summarises the recruitment period with a number of readings captured. Patients 1 to 5, 

respectively generated 11.9, 24.8, 30.9, 31.8 and 56.1 million lines of sensor events (t, x, y, z). The 

difference in the range of data generated is mainly due to the recruitment timeframe but 

investigating the sampling rate performance is critical to accurate load rate estimates. 

All patients showed significant variations in the number of logs generated per day. Patients 1 and 

2 averaged 304.9 and 330 thousand lines daily, while patients 3, 4 and 5 averaged more than 

twice this quantity, with 753.8, 662.9 and 825.5 thousand lines daily. The number of readings was 

also dispersed across the day with standard variations of 107.8, 158.7, 156.1, 188.8 and 224.3 

thousand. On their highest days, over a million lines were generated beside patients 1 and 2, 

which peaked at 0.5 and 0.7 million readings, the lowest days being when no data was generated.  

 

Table 7: Lines of sensor readings per day 

Table 8 shows the daily amount of .txt files generated to store the lines of raw sensor readings. 

Patients 3 and 5 averaged 779 and 793 files per day which is more than twice that generated by 

patients 1, 2 and 4, with respectively 225, 244 and 573 files per day. The number of files 

generated daily was dispersed with standard deviations of 158, 174, 216, 234 and 337. On their 

highest days, a maximum of 639, 927, 1590, 1570 and 1984 files were generated.  

 

Table 8: Amount of files collected per day 

The number of sensor readings per file also had much variation. Table 9 shows the average 

number of readings per file is above 1100 for most patients except patient 3, with 966 lines per 
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file and high standard deviations of 1432, 1453, 879, 1054 and 949. The highest number of 

readings per file was seen with patients 1, 2 and 3, respectively at 13795, 13557 and 12252 lines. 

 

Table 9: Lines of sensor readings per file 

4.4.3.2 Smartphone movements 

The top plot of figures 30 to 34 shows the smartphones’ accelerometer over the x, y and z axis, 

and the bottom plot shows the corresponding jerk calculated. Quantifying the phone's movement 

requires looking at all axes so the jerks can identify the movement's peak. 

The period of blanks corresponds to periods where no samples were collected and occurred only 

intermittently for patients 2 and 3 but more frequently for patients 1, 4 and 5, where multiple 

days of data were missed. The sensor values vary from -10 to +10 m/s2 on each axis, and a more 

prominent colour (e.g. orange) means more prominent movement over the corresponding axis 

(e.g. z). The activity on the z-axis is more prominent than on the x and y-axis because of the force 

of gravity that constantly applies to the phone. A higher average of z means that the phone is at 

constant acceleration, i.e., not actively used, as can be seen for patients 1 and 3. The variations on 

the x and y axis are less common and signify that the phone is in motion, either interacted with, 

which would typically be through short and sharp interactions, or as a surrogate of the user’s 

movement while carrying the phone, which is typical as part of a pattern of movements.  

The average jerk values observed (in kg.m/s3), 9.58, 9.69, 9.67 and 9.72, are expected, considering 

the force of gravity of 9.8, which is where the phone is inactive and not moving. The movement is 

characterised by values greater and lower than 9.8 with the latter, not to misinterpret as less 

movement but rather as the phone´s jerk countering gravity´s force. The max values, however, 

highlight the highest load which reaches 14.63, 26.95, 36.91, 28, and 31.66. The overall shape of 

the jerk shows the patterns of movement with patient 1 as the least active, with jerks rarely 

above 13. In contrast, the other patients exhibit patterns of jerk density, indicating routine of 

more frequent activity.      
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Figure 30: Smartphone’s sensor Patient 1 
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Figure 31: Smartphone’s sensor Patient 2 
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Figure 32: Smartphone’s sensor Patient 3 
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Figure 33: Smartphone’s sensor Patient 4 
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Figure 34: Smartphone’s sensor Patient 5 
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4.4.3.3 Fitbit steps and smartphone´s LRE 

Figures 35 to 39 show the daily amount of steps recorded through Fitbit and the daily sum of load 

rate recorded by the smartphone. All patients considered their lifestyle physically active apart 

from patient 1, who was considered as not particularly active and relatively sedentary. This is 

confirmed by looking at Patient 1’s daily average of 3,711 which is significantly lower than other 

patients, averaging at 11044, 17404, 12478, and 9146 steps per day. Patients 1, 2 and 3 have max 

daily steps similar across months while patients 4 and 5 show more spikes of daily steps. The 

standard deviation of 1253 steps shows that patient 1 is the most consistent, with patient 3 and 5 

having the highest standard deviations at 7441 and 5229 steps. 

The jerks have been aggregated as daily sum to compare with Fitbit´s daily sum of steps. As 

expected, the daily sum of jerks is proportional to the recruitment period, and Fitbit’s daily sum of 

steps. However, the sum of jerks varies much more across patients than the sum of steps seen 

between patients 3 and 5, both totalling 73 thousand steps but with the sum of jerks at 299 and 

545 thousand, almost double each other. It is also noticeable that patient 2 takes two months to 

generate as much jerk as patient 3 did in two months.  

 

Figure 35: Daily Step count and Jerk (Patient 1) 
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Figure 36: Daily Step count and Jerk (Patient 2) 

 

Figure 37: Daily Step count and Jerk (Patient 3) 
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Figure 38: Daily Step count and Jerk (Patient 4) 

 

Figure 39: Daily Step count and Jerk (Patient 5) 
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4.5 Discussion 

4.5.1 Patient´s perception 

Patient’s perceptions recorded during the PPI session and during the recruitment period while 

using the app allow us to conclude that using smartphones appears to be a popular proposition, 

and developing apps could support a broad range of features in categories such as social media, 

games, or productivity. User retention in using an app relies on the ability to respond to a need 

and requires careful consideration on the way that the phone is used. Therefore, the scope of the 

framework used to capture data is constantly evaluated by tracking patients and clinicians’ 

feedback. The features of RApp™ have been implemented and reviewed considering users’ 

perspectives (patients and clinicians) but prioritising the purpose of data collection to define the 

components implemented. Features not functional (e.g., social media and UI personalisation) for 

this project were dismissed but could be added for a commercial version.  

Patient input recorded during face-to-face interviews at the beginning, middle and end of the 

recruitment period helped to drive the dialogues. The questionnaire used (see Appendix D) and 

comments can be found in Appendix E. This feedback provides insights not only on the front end 

but also on the usability by rheumatoid arthritis patients. The layout of RApp™ should improve, 

but no functional issues, crashes, or app freeze (e.g., “app not responding”) were reported, which 

is perceived as good app responsiveness. The background monitoring of activity received praise, 

which is a positive sign that patients could be willing to use RApp™ outside of the study context. 

Patients in remission do not necessarily want to think about their disease activity, and an app 

should not give rise to the feeling that it controls the patient’s life. The app is a way to observe 

patients’ behaviour but should not influence or motivate them. Therefore, data capture should be 

seamless to participants and available for remote monitoring. Still, reporting, incentives, 

reminders (e.g., medication) and the addition of instructions (e.g., daily exercises) are not 

included in the current version of the application.  

The range of scores (DAS and questionnaire) observed across the group varies from moderate to 

high disease activity, but the individual trends are similar. A patient might be used to a certain 

amount of pain, with the perception attributed to the patient's awareness but it is also based on 

the resistance built over time. While the consistency of the scores does not provide significant 

insights, RApp™ allows tracking of specific joints and areas of concern. The correlation between 

the scores resulting from questionnaires and DAS highlights the reliability of patient self-

assessment in evaluating significant changes in their disease activity. The lack of substantial 
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change in pain and disease activity does not allow obtaining enough evidence to draw a 

conclusive correlation against the physical activity recorded. 

At the time of recruitment, all participants were diagnosed with rheumatoid arthritis for more 

than two years and were comfortable in filling the questionnaires provided and joint self-

assessments. However, each patient highlighted that filling out an assessment daily could only be 

helpful for newly diagnosed patients and is too frequent when the disease activity is stable. The 

BSR questionnaire being completed daily allows us to monitor the patient closely but does not 

add much value as no scoring can be attributed to it. The RAPID3 questionnaire filled weekly 

provides a better representation as it allows for a validated score, but the wording of the 

questions is confusing and not designed for weekly usage. The user interface to record pain and 

swelling is helpful but does not include enough joints to calculate a validated DAS28 score. 

Identifying the joints from the left or right is not trivial but assigning an intensity is a valuable 

feature to quantify the values reported. 

4.5.2 Continuous monitoring 

The file corruptions and inconsistency in the number of samples generated indicate that both the 

window and interval are affected, implying issues with the smartphone's service logic and timers. 

Smartphone’s services also appear to stop running with the phone low in battery, not in charge, 

restarting or following updates. The activity detected by the phone triggers internal mechanisms 

such as power save mode and resources prioritisation, and smartphones used by patients as 

secondary devices most likely result in extended periods of inactivity, disrupting the service 

schedule. Patient 003 used the smartphone as the primary device, which resulted in significantly 

more samples recorded. It should be noted that if used as the primary device, inactivity recorded 

could be interpreted as a period of physical inactivity of the patient rather than issues in sampling. 

There has been no sign of corruption in storing the user self-assessments in SQL databases. Azure 

uploading once daily could take up to an hour, but the files uploaded are identical to those 

extracted from the phone’s storage. The number of logs collected confirms that the smartphones 

can record a trend of physical activity. Still, the number of samples collected is less than half of 

the amount expected, which could be due to issues in writing text files or specific to file 

management and phone storage.  

The Fitbit devices are continuously on the user´s body, worn at the wrist, which provides an 

efficient way to record a reliable fitness baseline. However, Fitbit´s recommendation to perform 

10k steps per day did not apply to all participants recruited. Specifically, 10k daily steps at least 

twice the daily amount for patient 1 while being much lower than the amount of daily steps for 
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patient 3. The load rate values cannot easily correlate with step count, which raised challenges in 

the protocol. Besides, the smartphone is a secondary phone, which is significantly different in 

body location. A number of wearable devices for data collection and connected care is available 

(Åkerberg et al., 2016) but at the time of this study, raw accelerometer data recorded from Fitbit 

were not accessible. So load rate values at the wrist could not be calculated, which prevents side-

by-side comparison and no common baseline between the smartphone and Fitbit. The only unit of 

measure available is the step count estimated through Fitbit algorithms which are not publicly 

disclosed (Fitbit, 2018). Furthermore, Fitbit only provides daily statistics, and consequently, the 

load rate recorded by the smartphone had to be converted to daily summaries, preventing data 

analysis into hourly, or peak-based activity timeframes. 

Passive monitoring and ambient processing are valid concepts. Still, they require considerations of 

the data sampling, the timeframe of sampling (i.e., days, months, years), and the way the device is 

handled (i.e., in hand, pocket, handbag, desk or not with the user) and generally used (i.e., as 

primary, or secondary). Besides, changes in a patient s’ behaviour and habits might incur following 

significant medication changes. Still, it is not possible to correlate physical activity with disease 

activity without significant variations of joint pain or inflammation, and multiple factors such as 

ad-hoc illnesses, weather, seasons, work, and holidays might affect the self-assessments reported 

by patients. 

4.6 Conclusion 

In this study, we see that using smartphones to continuously monitor physical and disease activity 

is a reasonable and technically feasible approach. The user interface and type of questionnaires 

could be further optimised and tailored to specific disease conditions (e.g., back pain), but the 

overall feedback and reactions from all participants were positive and demonstrated that a cohort 

of rheumatoid arthritis patients is comfortable using smartphones, as part of their day to day. 

Nonetheless, patients do not want to be burdened with continuously filling out questionnaires or 

being forced to interact with their phones. Fitbit shows that it is possible to monitor physical 

activity passively but requires being worn on the wrist and at the time of this study is not able to 

quantify load forces and is limited to step count estimated daily via proprietary algorithms. 

This study shows that using smartphones represents a reasonable approach to patients’ 

continuous monitoring of physical activity and load forces. The amount of self-reporting 

convenient for patients was introduced and some of the challenges associated to passive 

monitoring were raised. The subsequent studies have been designed to further assess these 

points. Study 2 addresses the technical challenges and introduces a comparison with load rate 
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values obtained from smartwatches. Study 3 introduces step count obtained from smartphone to 

compare the trends of physical activity obtained from Fitbit devices. Study 4 evaluates a 

smartphone's ability to continuously monitor physical activity through a user’s primary phone (as 

opposed to secondary), in real-life conditions and over an extended timeframe.  
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Chapter 5 OApp Southampton: Continuous monitoring 

with power saving disabled 

This chapter covers the steps undertaken to compare the load force estimates between 

smartphone and smartwatch, when disabling power saving. 

5.1 Introduction 

As described in the previous chapter, monitoring physical activity without the patient’s 

intervention is possible. Still, continuous monitoring requires a lot of storage space which cannot 

scale to an extended timeframe. The performance and tracking accuracy also rely on internal 

algorithms (i.e., power saving), so we need to consider sample-based estimates and the 

smartphone’s processing capacity. Moreover, Fitbit’s step count data is aggregated daily, 

preventing side-by-side comparison of smartphone’s load rates with the wrist-worn device. So, for 

this study, we compare estimates of load rates from smartphones and smartwatches. RA patients 

were recruited as a sample of convenience for study 1, but the methodology is generic. So, for 

this study, participants were not required to be diagnosed with any specific conditions.  

5.2 Literature review 

5.2.1 Smartphone´s battery optimisation 

Smartphones offer processing capabilities like a microcomputer, but with a significant challenge 

for all manufacturers: the battery drain. The smartphone’s battery supports lighting of the screen, 

support of protocol on the cellular network (e.g., GSM, GPRS, UMTS, LTE), additional wireless and 

radio stacks (i.e., GPS, WI-FI...) and applications with their background activities (e.g. OS tasks, 

email push and notifications). Qualcomm is one of the major smartphone chipset manufacturers. 

It allows battery optimisations at the hardware level for their Snapdragon range (see fig 40). It 

releases further optimisation at the application level with “Qualcomm GURU”, which learns the 

user habits to trigger and free resources. Handheld manufacturers aim to develop slicker designs 

with smaller and thinner handsets while increasing the power requirements. So, besides 

optimising the battery, shortening the charging times is also an area of focus, releasing 

technologies such as the proprietary Quick charge from Qualcomm (Qualcomm, 2022). 
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Figure 40: Qualcomm chipset approach to power optimisation (Qualcomm, 2013) 

The behaviour of smartphones on the cellular network has been defined following the evolution 

of radio technology from GSM (2G) to LTE (4G). The mode of operation of smartphones is 

standardised through the 3rd Generation Partner Project (3GPP), which covers the technological 

standards and protocols that cellular network providers and manufacturers aim to comply with. 

These typically use timers defined on the network provider's SIM card to ensure that the 

connected mobiles use only the network resources allocated. Fig 41(a) shows the smartphone´s 

location area update (LAU), a protocol for the smartphone to update its location on the cellular 

network. This operation occurs when registering on the cellular network (i.e., when the phone is 

turned on) when the user's location changes and periodically as defined by the timer (ETSI, 

2016a). Fig 41(b) shows the fast dormancy protocol (ETSI, 2016b), designed to optimise the 

network resources and the smartphone´s battery consumption. Radio resource control (RRC) is a 

protocol defined at the network layer to define the network resources allocated as well as the 

state of the phone. When a phone is inactive (i.e., no active data connection), it is considered by 

the RRC to be in an idle mode with the lowest battery consumption. The network allocates radio 

resources when the smartphone needs to support an active data connection (e.g., when the user 

is browsing). It sets the phone to enter Cell_DCH, a dedicated channel state with the highest 

battery consumption. Fast dormancy is triggered following the inhibit timer defined by the 

network to check if the connection is inactive. Network resources are then released, and the state 

of the phone is set to Cell_FACH (or Cell_PCH), which has a much lower battery consumption than 

Cell_DCH. If the data connection remains inactive, the phone returns to idle mode. 
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Figure 41: LAU & FD 

Timers are also used, e.g., to dim the screen or shut down applications to release resources when 

inactive for extended periods. Android power management evaluates the user´s usage pattern to 

free resources affecting the usage of the CPU or battery (Google, 2022b). The CPU resources are 

allocated based on whether the app is active (e.g., an app that has just been launched) and 

frequency of usage (frequently or never). Further battery optimisation might also be implemented 

directly by the manufacturers, such as “Power save mode” for HTC (HTC) or “Stamina Mode” 

found in Sony’s Xperia range (Sony, 2019). Fig 42 shows the effect of the doze mode for apps on 

standby (i.e., not actively used by the user). The algorithm considers the battery's state and will 

not be in effect if the device is on charge. When charging, the device will be regarded as not used 

by the user if the screen is off and entered in app standby mode, which defers all background 

activities by up to 24 hours. Doze mode prevents using network and CPU-intensive resources 

while periodically opening a window of resources (every 9 min or less, depending on 

manufacturer´s implementation) that allows background operations to be performed (e.g., email, 

social media, etc..).  
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Figure 42: Android Power management 

Android power management represents a challenge for any app running background services and 

so is a challenge for this project that aims at estimating jerks without user intervention. The 

framework (i.e., RApp™ and OApp™) records raw accelerometer data and uses the storage and 

CPU of the phone to process data. Therefore, considerations should be made on the phone´s data 

sampling constraints to estimate load rates.  

5.2.2 Smartwatch & tracker position 

Load rate estimates (LRE) are affected by power saving, the device handling, and the sensors' 

location on the user. The way that smartphones are handled affects the data sampling and is 

specific to each individual day-to-day usage. Moreover, smartphones are typically held in multiple 

locations on the body. A survey and pilot study on women´s risk perception carrying their 

smartphones (Redmayne, 2017) showed that 96% kept their phones on standby throughout the 

day. The device location changed based on usage, characterised as passive, active (e.g., on call) 

and asleep. When passively used, the device was noticeably kept in hand, skirt/pocket or against 

the breast for 86% of the 197 participants (women aged 15-40).  

The impact of the smartphone location on the body has been reviewed in a study comparing the 

step count recorded from an Android smartphone (Galaxy Nexus GT-I9250) to the video recording 

of 27 participants over a straight-line route at a different speed (Brajdic and Harle, 2013). 

According to this study, step count estimates undercount when worn in the back trouser pocket 

and overcount when carried in a handbag but comparable in all other positions such as being held 

by a hand, by hand with interaction (e.g., typing a message) or on the front trouser pocket. This 

study also highlights that none of the step count algorithms was 100% reliable and recommends 

using probabilistic methods. 

Accelerometer-based systems have been reviewed and can be integrated for unsupervised 

monitoring of free-living subjects (Mathie et al., 2004). The accelerometric nature of the human 
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body´s movement considers the amplitude and frequency range. These can be used to estimate 

metabolic energy expenditure, physical activity, postural sway, gait, fall detection, and postural 

orientation and activity classification. However, calculating load rates raises multiple challenges 

when using accelerometer data in healthcare. This has been discussed in a study with data 

collected from 49 participants (with ActiGraph GT3x+) to compare activities performed in a lab 

and free-living conditions for seven days (Karas et al., 2019). Noticeably, the study highlights the 

impact of the data size and sampling frequency while recommending storing raw and processed 

data, confirming the findings from study 1. The smartphone placement in free usage is dynamic 

and potentially kept away from the body, which furthers the complexity. Still, a study validated 

that smartphones can be used without constraints to estimate step count using a Fast Fourier-

based algorithm (Kang et al., 2018). 

As of this project, continuous load rate estimate has not been explored in free-living conditions. A 

benchmark of reference should be defined to validate smartphone estimates, and wearable 

devices offer possibilities as they have been used in other studies. A systematic review of the 

literature published between 2013 and 2017 identified key research themes (Shin et al., 2019). 

The wearable used in the various studies included wrist-worn devices such as Actigraph, Misfit, 

Fitbit, Nike+, Fuelband and Jawbone. Most studies focused on the technical aspects of PA or 

incorporating these devices in medical settings, e.g., for monitoring. The other prominent themes 

were wearable technology adoption, behaviour change, and self-assessment.  

In recent years, wearable devices have become more readily available to the public. A study has 

shown a solid correlation to measure steps with research-grade devices using BodyMedia 

SenseWear, and ActiGraph GT3X+ as references. The consumer devices included the Fitbit 

wristband, Jawbone UP, Misfit Shine, Nike Fuelband, Striiv Smart Pedometer and Withings Pulse 

(Ferguson et al., 2015). The study recruited 21 participants and was limited to 2 days of sampling, 

but it has shown the performance of wristband wearables to measure PA and step count in free-

living conditions. A systematic review further gathered the validity for using consumer-level 

devices to estimate steps and PA. The studies reviewed found high reliability in measuring step 

count and generally reliable between Jawbone and Fitbit devices (Evenson et al., 2015). 

5.2.3 Rationale 

Smartphone handling affects sensors' recording ability, so power save mode is disabled to 

uniform sensor sampling. Smartphones are typically handled dynamically and not always worn or 

carried in the same positions, so we compare them with the load rate obtained at a static location 
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on the body (at the wrist). Load rates are not a standardised unit of measure, so we compare 

estimates using raw accelerometer data obtained from smartphones and smartwatches. 

5.3 Aim & objectives 

5.3.1 Aim 

This study aims to assess whether smartphones are as reliable as smartwatches to evaluate 

participant load forces trends. 

5.3.2 Objectives 

The objectives of this study are: 

1) Ascertain the ability of a smartphone to capture accelerometer data continuously 

2) Ascertain the smartphone´s processing capability of raw accelerometer data to estimate 

load rates 

3) Compare the load forces estimated from smartphones and smartwatches to assess the 

impact of the device location on the body 

5.3.3 Hypothesis 

If smartphone’s sampling and processing of accelerometer data is manipulated to be uniform and 

unbiased, load forces estimated are comparable to smartwatch's estimate. 

5.4 Methodology 

5.4.1 Patient recruitment and study procedure 

This study is observational and quantitative, focusing on accelerometer data recorded via 

smartphones and smartwatches. Each participant maintained a physical activity diary as a 

baseline for activity classification. Each participant wore a Sony Smartwatch 3 and used a Sony 

Xperia Z5 Compact, both preloaded with OApp™. 

The data collected for this study have been collected as part of a project approved by the 

University of Southampton’s Faculty of Engineering and Environment Ethics Committee (ERGO 

Ethics ID:30213) and presented in another PhD thesis (Nazirizadeh, 2018). 
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Monitoring of disease activity is not part of the scope of this study, and to be eligible, inclusion 

criteria were defined to recruit participants willing to participate in the study, above 18 years old 

and without neurological, systemic illnesses or other physical disabilities that may have limited 

their mobility. Participants were ten healthy adults (female n=6, male n=4; aged 27.2 ± 3.6 years; 

height: 172.6 ± 9.6cm; body mass: 73 ± 14.7kg; means± standard deviation) recruited via posters 

on multiple noticeboards around the University of Southampton. 

Participants interested in participating in the study signed a consent form following an 

introduction to the app. Once the consent form was signed, participants were provided with a 

patient information sheet, smartphone, and smartwatch for seven days.  

5.4.2 Data collection 

Participants were asked to wear the smartwatch on the non-dominant wrist and keep the 

smartphone as close to the hip as possible, e.g. in a pocket or using a phone belt provided. 

Participants did not have to perform specific activities. Still, they were required to maintain a 

paper-based diary to record moderate to vigorous physical activity times and report instances of 

devices running out of battery. 

 

Figure 43: Smartphone & Smartwatch 

For this study, the monitoring has been set up to record data samples of 5 seconds (window=5) 

every 55 seconds (interval=55) to obtain a load value calculated per minute. The samples have 

been stored on the internal storage of the phone in raw format on text files (as per Study 1). 

Calculated load rates have been stored in segregated SQL databases and storage folders to avoid 
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conflicts to create, read, update, and delete (CRUD). The samples were extracted manually from 

the smartphone at the end of the recruitment period of seven days.  

5.4.3 Data analysis 

For each participant, we evaluate the performance and accuracy of the app logging in the context 

of continuous monitoring for the recruitment duration (7 days). The hourly amount of samples 

collected is compared to the amount expected to be collected, which considering the settings 

used, aims at obtaining one load rate value per min (i.e. one file per min, 60 files per hour, 1440 

files per day). Periods without samples recorded indicate issues but recorded null values suggest 

that the device is in a static position (e.g., on a table). The integrity of each sample is assessed by 

comparing the duration collected to the window set (i.e., each sample should contain ~5sec of 

accelerometer data). A significantly wider window indicates multiple samples are considered 

corrupted samples as there is no way to weigh each sub-sample.  

The smartphone on-board data processing capability is evaluated by comparing the load rates 

calculated and stored in SQL in-app to those calculated from the raw accelerometer data stored 

as text files and processed in MATLAB. The amount of physical activity performed depends on 

each participant and has already been identified in the diaries (Nazirizadeh, 2018). Still, the load 

rate is also calculated for the smartwatch comparison of trends recorded between devices worn 

at the wrist and smartphone, using the same unit of measure. 

5.4.4 Individual phenotype 

Load rate estimates (LRE) are measured using the jerks generated by the accelerometer over 

time. Continuous plots of raw accelerometer data over time are confusing and unwieldy. So, we 

define a methodology to extract meaningful and concise characteristics to evaluate an individual´s 

data. Drawing physical activity characteristics of an individual requires defining features of 

interest. This group of components can be referred to as individual “phenotype”. Fig 44 illustrates 

the proportion of time (i.e., the amount of time in percentage) spent at load forces applied 

represented by LRE (in kg m/s3) for two individuals. The plot´s left side shows the greatest amount 

of time spent at the lowest LRE which are periods of low physical activity. The plot´s right side 

shows the lowest amount of time spent at higher LRE which are periods of high physical activity. 

The amount of time logged represents the amount of samples recorded. In this context, we 

propose to use a continuous monitoring score (CMS) which is derived from the correlation 

formula of 𝑟𝑟2 applied to LRE and proportion of time. The CMS gives confidence on the phenotype 

being reliable, not that data is reliable. A CMS equals 1 means that all LRE variations can be 
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explained by the variations in proportion of time, which means that all the samples within the 

period can be explained and correctly captured. So, high CMS indicates that the samples were 

captured at the expected interval (i.e., 5 sec samples every 55 sec), and the slope gives a good 

representation. Low CMS means that the samples captured cannot all be explained, so the slope 

is not a reliable representation of the level of physical activity. The peak is the LRE recorded for 

the highest proportion of time. The slope of the linear regression indicates the trend of physical 

activity (measured in kg m/s3). For instance, a slope of -1 indicates that an individual is more 

active overall than a slope of -1.5. Intersections between the linear regression and the curve 

might indicate regular activity (e.g., sitting, running, and walking). However, activity classification 

is out of the scope of this project. 

 

Figure 44: Example of individual phenotypes 

5.5 Results 

5.5.1 Continuous monitoring 

The cohort of 10 participants completed the recruitment period of seven days, and raw and 

processed data were collected for the smartphone and smartwatches of all patients. Table 7 

shows the total amount of readings collected from smartphones (SP) and smartwatches (SW) of 

participants from 1 to 10.  

Participants 1, 7, 8 and 10 generated the most smartphone readings, respectively, with 3.55, 3.01, 

2.94 and 3.56 million lines. All other participants generated over 2 million lines except participant 

2, which did not record data after the third day. The average number of readings per day is 

around 300 thousand for all participants, ranging from 262.9 to 395.6 thousand lines for 

participants 6 and 10. The number of readings is dispersed across the day, with standard 
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variations ranging from 72 to 125 thousand. On their highest days, participants peaked at around 

400 thousand readings. 

Participants 2, 7 and 10 generated the most smartwatch readings, respectively, with 3.12, 3.24 

and 3.37 million lines. All other participants generated over 2 million lines except participant 8, 

who did not record smartwatch data on the last day. The average amount of readings per day, as 

for smartphones, is around 300 thousand for all participants but ranges from 174 to 375 thousand 

lines for participants 1 and 10. The number of readings is dispersed across the day, with standard 

variations ranging from 71 to 128 thousand. On their highest days, participants peaked at over 

400 thousand readings. 

 

 

Table 7: Lines of sensor readings per day 

Table 8 shows the daily amount of .txt files generated to store the lines of smartphone and 

smartwatch’s raw sensor readings. The average of daily smartphone files collected is consistent 

across participants and ranges from 804 for patient 4 to 1160 for patient 7. For the smartwatch, 

the daily amount of files collected for patients 1 to 10 averages 553, 1106, 906, 723, 940, 1047, 

1162, 850, 1053 and 1196. The number of smartphone files generated was consistently dispersed, 

with standard deviations from 269 to 410. Similarly, the standard deviations of smartwatch files 

range from 235 to 368 for patients 1 to 10. The highest amount of files generated daily is around 

1300 across participants for smartphones and smartwatches.  

Start End Total Average Min Max Std Dev
SP 14/08/2017 23/08/2017 3551704 355170.4 111195 506067 125100.6
SW 16/08/2017 23/08/2017 1218298 174042.6 33062 419287 116060.8
SP 15/08/2017 17/08/2017 802634 267544.7 121935 374453 106660.5
SW 15/08/2017 23/08/2017 3120699 346744.3 192521 422348 94874.6
SP 15/08/2017 23/08/2017 2680747 297860.8 104417 418143 90596.42
SW 15/08/2017 23/08/2017 2534310 281590 137026 426364 91551.94
SP 16/08/2017 24/08/2017 2559999 284444.3 153779 379456 88800.38
SW 16/08/2017 24/08/2017 2000224 222247.1 33660 408746 128685.4
SP 15/08/2017 23/08/2017 2578417 286490.8 98447 343736 81175.51
SW 15/08/2017 23/08/2017 2595041 288337.9 121134 407239 91230.67
SP 23/08/2017 31/08/2017 2366498 262944.2 140728 347059 75158.06
SW 23/08/2017 31/08/2017 2893154 321461.6 207935 429423 83410.82
SP 23/08/2017 31/08/2017 3010061 334451.2 113825 471059 89954.76
SW 23/08/2017 31/08/2017 3247407 360823 138275 428373 103337.4
SP 24/08/2017 31/08/2017 2945113 368139.1 192611 444117 72530.45
SW 24/08/2017 30/08/2017 1873400 267628.6 157656 406521 90786.39
SP 25/08/2017 01/09/2017 2229569 278696.1 22711 371446 109016.9
SW 25/08/2017 01/09/2017 2264227 323461 229608 425580 71708.46
SP 23/08/2017 31/08/2017 3561119 395679.9 116904 522637 115339.1
SW 23/08/2017 31/08/2017 3378534 375392.7 124112 427465 92627.65

SP - Smartphone
SW- Smartwatch

5

Patient Recruitment Amount of Readings (per day)
ID

1

2

3

4

6

7

8

9

10
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Table 8: Amount of files collected per day 

Table 9 shows the average amount of readings per file, around 300 for smartphone and 

smartwatch participants. The max for smartphones is consistently around 300, with peaks 

between 1290 and 2180 and a significantly lower minimum value, indicating that several files 

were generated with substantially less data than expected. The standard deviation for 

smartwatches is under 5 for all and between 35 and 273 for smartphones, indicating fewer 

inconsistencies in the files generated from SW than SP. Therefore, the sample data corruptions 

and inconsistencies observed in the previous study appeared to be lessened. 

 

Total Average Min Max Std Dev
SP 9683 968.3 334 1321 373.75
SW 3874 553.43 105 1332 368.53
SP 2423 807.67 465 1273 341.08
SW 9956 1106.22 614 1347 302.4
SP 8400 933.33 233 1326 315.04
SW 8162 906.89 441 1373 294.76
SP 7237 804.11 290 1258 351.18
SW 6509 723.22 109 1332 419.29
SP 9981 1109 398 1387 349.85
SW 8465 940.56 395 1330 297.79
SP 9472 1052.44 560 1403 310.51
SW 9429 1047.67 678 1400 272.08
SP 10440 1160 433 1348 299.86
SW 10458 1162 445 1378 333.13
SP 7251 906.38 531 1292 269.88
SW 5951 850.14 500 1290 288.52
SP 7825 978.13 43 1358 410.5
SW 7375 1053.57 747 1389 235.16
SP 10413 1157 381 1310 284.56
SW 10769 1196.56 396 1362 295.06

10

4

5

6

7

8

9

Amount of files (per day)
ID

1

2

3

Patient
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Table 9: Lines of sensor readings per file 

5.5.2 Smartphone & smartwatch comparison 

The accelerometer’s variations of the smartphone and smartwatches worn over the recruitment 

period on all axis (x, y and z) for each participant can be seen in Appendix E. Participant 10 (fig 47) 

captured data continuously for the entire recruitment on both devices. Participant 2 (fig 45) 

recorded the shortest amount with only a single day of SP data. Periods of missing recording can 

easily be identified on the plots as periods without data. Most of the other participants managed 

to capture data correctly whilst recording gaps with at least a day of missing data on either or 

both devices, except participant 3 (fig 46), where only a few gaps were observed. The periods of 

sensor variations show device activity, and the flat lines (i.e., constant sensor value) indicate that 

the device was inactive but still recording. Both types of events can be seen to start and end at 

the same time between SW & SP devices for all participants.  

Total Average Min Max Std Dev
SP 3551704 366.8 6 2214 246.39
SW 1218298 314.48 306 408 2.05
SP 802634 331.26 42 1693 204.93
SW 3120699 313.45 11 324 4.87
SP 2680747 319.14 110 1823 192.87
SW 2534310 310.5 173 316 2.9
SP 2559999 353.74 8 2180 242.31
SW 2000224 307.3 298 607 5.71
SP 2578417 258.33 16 2072 84.07
SW 2595041 306.56 4 312 4.81
SP 2366498 249.84 49 862 35.87
SW 2893154 306.84 297 310 1.07
SP 3010061 288.32 26 1374 154.67
SW 3247407 310.52 164 314 3.58
SP 2945113 406.17 65 1894 273.35
SW 1873400 314.8 221 587 4.19
SP 2229569 284.93 5 1290 141.77
SW 2264227 307.01 192 315 3.63
SP 3561119 341.99 9 1539 214.83
SW 3378534 313.73 243 319 1.61

6

7

8

9

10

5

Patient
ID

1

2

3

4

Amount of Readings (per file)
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Figure 45: SP & SW raw acceleromter (x, y and z) over time (Participant 2) 

 

Figure 46: SP & SW raw acceleromter (x, y and z) over time (Participant 3) 
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Figure 47: SP & SW raw acceleromter (x, y and z) over time (Participant 10) 

As per Android API, raw accelerometer values are recorded between -10 m/s2 and 10 m/s2 for 

each axis. The plots mean of jerks calculated from each axis over time for both SW and SP can be 

seen for all participants in Appendix F. Besides showing the periods of inactivity, the value of the 

load estimation can be seen over time. Participant 2 (fig 48) recorded only a single day but 

illustrated that spikes of activity can be identified with either device, although reaching higher 

values on SW (23.45) compared to SP (16.22). Similar spikes can be seen for all patients and 

consistently getting higher values for SW, over 20, while the highest for SP was observed with 

participant 7 (fig 49) once at 23.3. The frequency of jerk activity shows that participant 7 was the 

most frequently active and participant 9 (fig 50) was the least often active. 

 

Figure 48: SP & SW jerk (mean) over time (Participant 2) 
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Figure 49: SP & SW jerk (mean) over time (Participant 7) 

 

Figure 50: SP & SW jerk (mean) over time (Participant 9) 

The phenotypes and characteristics generated for all participants on both SP & SW can be seen 

for all participants in Appendix G. The CMS permits to verify of the amount of time logged by the 

device, which is not always perceivable, looking only at the continuous trends. For instance, 

participant 10 (fig 51) continuously monitored more data on SP (35.6 million lines) with a CMS of 

0.95 than on SW (33.7 million lines) with a CMS of 0.77. The linear regression shows a slope of -

1.7 on SW compared to -1.6 on SP, indicating more movement recorded on SW than on SP. The 

average SP peak is above 1.7, which is higher than SW, averaging at 1.2, which means that the 

most common LRE recorded on SP is higher.  
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Table 10: Phenotype characteristics 

 

Figure 51: SP & SW Phenotype (Participant 10) 

5.6 Discussion 

5.6.1 Smartphone monitoring 

The sampling for this study was set to capture 5 sec samples of data every 55 sec (equivalent to 5 

sec per minute). Yet, more readings were generated compared to study 1, which was set with a 

window twice larger to capture 10 sec samples every 20 seconds (equivalent to 20 sec per 

minute). The amount of readings generated per hour is different between patients but consistent 

across the day, as seen in figure 52. A specific period of inactivity over the day (e.g., at night) 

might have caused the phone to stop recording data, but the file count, grouped per hour, shows 

that there is no specific timeframe causing the loss of data. The average amount of files generated 

per day was around 1000, compared to 225 to 793 for patients from study 1. Each hour, between 

50 and 60 data samples were collected for most patients. On most days, no samples have been 

corrupted, indicating a much higher data collection reliability than for Study 1.  

Peak 
(kg m/s3)

Slope CMS
Peak 

(kg m/s3)
Slope CMS

SP 1.8 -1.5 0.89 SP 1.7 -1.2 0.94
SW 1.1 -1.2 0.8 SW 1.1 -1.4 0.79
SP 1.8 -1.2 0.93 SP 1.7 -1.2 0.85
SW 1.1 -1.5 0.81 SW 1.2 -1.5 0.83
SP 1.7 -0.9 0.92 SP 1.8 -1.4 0.92
SW 1.2 -1.8 0.78 SW 1.1 -1.1 0.82
SP 1.8 -1.4 0.92 SP 1.8 -1 0.87
SW 1.1 -1.6 0.77 SW 1.1 -1.7 0.79
SP 1.7 -1.1 0.84 SP 1.8 -1.6 0.95
SW 1.1 -1.3 0.77 SW 1.1 -1.7 0.77

10

3

4

5

6

7

1

2

Phenotype
Patient ID Patient ID

8

9
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The logging over time is also less scattered, with consistency in the amount of samples generated 

over time. It is not the same for all patients and ranges between 112 and 432 files per hour, but 

the trend is consistent without spikes of logging seen. So, the sample recording was not affected 

by the time of the day or whether the device was on charge. This validates that the impact of the 

power sample on the interval of samples (every 55 sec here) can be disabled and that the 

frequency of data sampling can be manipulated to be uniform and unbiased. 

 

Figure 52: SP sample count and sample rate per hour 

Study 1 showed variations in intervals and windows, which can be translated as the count of 

samples per hour and sample rate for the calculated means. In this study, SP sample rate (<50) 

when processing the estimates of LR reached 96.87% of the data samples captured. This means 

that the sample files consistently capture data samples as per the expected window length (of 5 

sec here) and validates that the load rates can be estimated using consistent samples. SW 

sampling is higher than SP due to the mechanism of data sampling by itself, as the samples are 

transferred from SW to SP via Android APIS. So, SW sample rate (<70) reaches the expected 100%, 

as seen in fig 53. This sample rate range means that the data processing is reliable and validates 

that SP onboard processing can be used to estimate load rates.  

The estimates stored in SQL match the data calculated for each patient, whether the data were 

collected through a smartphone or smartwatch. The linear correlation between the samples 

collected and database entries, neither corrupted, indicates that using SQL database is a reliable 

way to record and store the data. This approach significantly reduces the amount of data storage 

and the risks of data corruption related to reading and writing on phone storage. Therefore, we 

can reliably use the LR estimates stored in SQL rather than raw accelerometer data stored in 

many txt files. 
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Figure 53: SW sample count and sample rate per hour 

5.6.2 Smartphone & smartwatch correlation 

When looking at sensor recording on each axis (x, y and z), we can see that the density of sensor 

events shows more variations on more axis on SW than SP. Fig 54 illustrates an example of daily 

sensor activity recorded using participant 10 data. The zoom in shows that between 00h00 and 

08h00, both SP and SW were at rest (i.e., unused, likely on a table). The constant value recorded is 

noticeably higher on the x-axis for SW and the z-axis for the SP, corresponding to the force caused 

by gravity. It is important to note that recordings at constant value denote the inactivity of the 

device as opposed to the periods of missing data, which indicate missing recordings. After 08h00, 

we can see that both devices start being used with activity mainly on the x and z axes for the SP 

while on all axes for the SW.  

This trend indicates more movement variations recorded on SW than SP. These movements are 

expected since arm gestures are generally more frequent than hip gestures and are not 

associated only to lower limb movements (e.g., arms moving when speaking). Movements 

associated with arm swing might be beneficial, e.g., to count steps (see Study 3) or for activity 

classification (Atallah et al., 2011), but introduce noise in the context of jerk estimations. The jerks 

highlight significant load spikes at 08h30 (likely user waking up) and 18h30 on both devices. The 

jerks were found to be generally lower on SP than SW, which might be due to the phone being 

less sensitive and biased to the noise introduced by arm swing or by jolting on the skin (Bouten et 

al., 1997). It was observed in another study that higher accelerometer readings are found at the 

waist than chest line (Balogun et al., 1988) (Balogun et al., 1988).  
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Figure 54: SP & SW raw accelerometer (x, y and z) over time (Participant 10) 
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Fig 55 shows the relation of load rate mean estimated hourly between SP and SW for all 

participants, and table 11 lists the Pearson coefficient for each participant. The highest correlation 

was reached for Participant 2 (0.96), but the amount of samples was limited to a single day. The 

correlation was above 0.6 for all participants, except the lowest correlation (0.57) for Participant 

4. The highest correlations were found for Participants 9 and 10, respectively, reaching 0.83 and 

0.86.  

 

Figure 55: SP&SW LR (mean) correlation 

 

Table 11: SP & SW Correlation 

In the context of self-assessments, Smartphones are able to estimate steps as well as traditional 

pedometer but it also depends on the environment and location of the phone on the body 

Participant Correlation Participant Correlation
Part_01 0.67 Part_06 0.72
Part_02 0.96 Part_07 0.58
Part_03 0.8 Part_08 0.51
Part_04 0.57 Part_09 0.84
Part_05 0.62 Part_10 0.86
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(Åkerberg et al., 2016). Jerks are estimated from accelerometer values recorded, which are 

sensitive to the velocity of movements such as arm swing and demonstrated to be higher on the 

upper limbs (Brambilla et al., 2022). So, it is expected for smartwatches to record higher peaks 

and values of load rates than smartphones due to their location at the wrist. However, the trends 

are comparable, which indicates that smartphones can perform as well as a wristband to record 

physical activity while being worn closer to the body, which is more representative of the load 

rate on the lower limbs.  

Continuous trends can be used to visualize patterns over time, but LRE needs to be quantified to 

allow comparisons. The phenotypes allow to visualise the amount of LRE over time and provide 

values that can be compared. The previous study has shown that SP handling affects the data 

sampling. Here, the CMS provides a representation of the amount of logging recorded providing a 

single score, here more significant on SP than SW, which means that the amount of samples 

recorded on SP was closer to the expectations (samples of 5 sec every 55 sec) than on SW. It is 

expected as Android API's mechanics require the samples recorded on SW to be passed to the SP. 

The CMS correlates with the amount of files generated and observations on continuous trends, so 

CMS appears reliable in estimating the device logging. The linear regression slope is very similar 

for both and ranges from -0.9 to -1.7 on SP compared to SW, from -1.1 to -1.8. . A paired t-test 

conducted on the values of slope provides a p-value of 0.158 which is not statistically significant. 

The measured difference could be due to randomness of data and is not significant, indicating 

that the same motion is recorded on both SP and SW. The peaks recorded on SP were greater or 

equal to 1.7 for all participants which is consistently greater than peaks recorded on SW, equal to 

1.1 for most. A paired t-test conducted on these peaks provides a p-value of 0.0020. The peak 

value difference indicates that the most common LRE recorded are higher on the hips than on the 

wrist. Therefore, phenotypes show that similar movements are recorded on both devices but with 

a different magnitude which is consistent with the location and handling of the devices. These 

characteristics are consistent with observations of LRE over time while providing a simplified view. 

So, this methodology will be further used and evaluated in subsequent studies. 

5.6.3 Study considerations 

This study aimed at evaluating the smartphone capabilities, in data recording and on-board 

processing, enforcing control over the smartphone settings and disabling power-saving mode. 

This represents the ideal data recording conditions, yet days of missing samples could be 

observed. These monitoring issues are likely due to patients using the devices as secondary 

phones and read/write interaction with the phone storage (raw logs saved as text files), which 
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triggers battery optimisations and power saving. However, consideration should be made of 

technological challenges when using smartphones. 

Furthermore, participants were asked to keep the smartphone as close to the hip as possible, but 

the smartphone´s handling varies per user, e.g., carried by hand, in a pocket or in a handbag. 

Therefore, the handling of the smartphone was biased and did not represent the smartphone´s 

usage by common users. Therefore, further studies should evaluate the amount of data samples 

obtained in free living conditions without power-saving restrictions and using the primary 

smartphone of the participants to provide a more accurate representation of continuous LRE 

monitoring. 

5.7 Conclusion 

This study confirms that smartphone sampling can be uniform and unbiased by user’s usage 

conditions by disabling power save mode. Raw accelerometer data can consistently be captured 

and stored on the phone’s memory but require significant storage space. The load rates 

calculated and stored in SQL database, as opposed to raw data, demonstrate that the 

smartphone’s on-board processing capabilities are reliable, and match raw data processed offline 

(MATLAB/Python). 

Smartwatches are more sensitive to wrist movements, but the overall pattern and load trends 

measured by smartphones and smartwatches are similar. Smartwatches show higher peaks, but 

the trends, slope and intersect are comparable, which supports the use of smartphones to 

evaluate load rates on the lower limbs while being closer to the user's centre of gravity.  

Individual phenotypes look at physical activity characteristics (i.e., trend, slope, intersect and 

peak) and will be further utilised in subsequent studies. Study 3 evaluates the impact of clinical 

interventions (knee injection) in OA patients’ physical activity, compared to wristbands (Fitbit) 

commercially available, using step count as a standard unit of measure. Study 4 evaluates the 

trends of load forces that can be measured using the primary smartphone over an extended 

period. 
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Chapter 6 OApp Sydney: Continuous monitoring in 

osteoarthritis clinical trial 

This chapter covers the steps undertaken, considering the input from osteoarthritis patients, to 

compare load force estimates and step count, before and after clinical intervention. 

6.1 Introduction 

The results of study 2 (chapter 4) have shown that the sampling discrepancies identified in study 1 

(chapter 3) can be addressed by manipulating the power save settings of the phone. Moreover, 

load rate trends obtained from smartphone recordings are comparable to smartwatches worn at 

the wrist. It represents the ideal usage conditions but not how smartphones are used in free-living 

conditions. To date, not enough studies have been made on load rate to validate smartphone´s 

estimates, so we compare estimates of step count from smartphone and Fitbit to use an accepted 

unit of physical activity (PA). Moreover, it is impossible to correlate disease and physical activity 

(as per study 1) without significant changes in the patient’s condition or treatment. So, OA 

patients were recruited as part of a clinical trial to validate that the methodology can measure 

changes in behaviour before and after injection. 

6.2 Literature review 

6.2.1 Osteoarthritis and clinical treatments 

There is no cure for OA, but unlike RA, the disease does not necessarily worsen, and several 

treatments can help relieve the symptoms (see chapter 2). The damage to tissue and cartilage of 

OA patients might progress and be monitored using patients-based questionnaires such as the 

Western Ontario and McMaster Universities Arthritis Index (WOMAC), Knee Injury and 

Osteoarthritis Outcome Score (KOOS) and Hip disability and osteoarthritis outcome score (HOOS). 

The use of questionnaires and diaries in the context of PA assessment has already been reviewed, 

with a positive correlation found using self-reported WOMAC and objectively monitored with 

Fitbit (Morcos et al., 2020). The key features to consider have been identified as quality and 

objectivity of PA measures along with cost and limitations (Sylvia et al., 2014). Although 

questionnaires can add valuable insights, this study does not use them as the focus is identifying 

the change in PA. The relation between knee loading and pain has been investigated in a cross-

sectional study using VAS scales to measure pain intensity (Henriksen et al., 2012). The study 

identified a positive correlation but only for patients with severe OA. Guidelines for pain 
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management exist (Bannuru et al., 2019), including prescriptions of paracetamol, NSAIDs and 

COX-2 inhibitors to manage pain. In most extreme cases, joint surgery might be required to 

replace the affected joint with a prosthesis. Injections provide an alternative to knee surgery 

while being stringer than drugs. Injections of corticosteroid injections help reduce inflammation, 

and injections of hyaluronic acid help support the thinning caused by OA (Ayhan, 2014). Platelet-

Rich Plasma (PRP) helps heal injuries and is injected after being mixed with a blood sample. Still, 

the efficacy of this approach remains the subject of multiple studies (Gato-Calvo et al., 2019) 

(Paterson et al., 2018). 

Supposedly, reducing the pain should remove the patient´s barrier to exercise and improve 

overall mobility towards following PA guidelines. A systematic review of studies has concluded 

that only a small amount of OA patients meet the PA guidelines (Wallis et al., 2013). The review 

included studies measuring moderate to vigorous PA and step counts. A consensus statement in 

2022 was released to recommend exercises for OA considering PA to strengthen the bones, 

prevent falls and reduce the risks of vertebral fractures (Brooke-Wavell et al., 2022). The use of 

MET was identified by an international cohort (Gates et al., 2017) to standardise the 

measurements of PA. Metabolic Equivalent of Task (MET) is a unit of energy expenditure defined 

by the amount of oxygen consumed by an individual at rest. The measure of oxygen at rest is 

about 3.5 millilitres per kilogram per minute, representing the baseline for comparing activities 

requiring more oxygen (Jetté et al., 1990). The METs required per activity have extensively been 

defined in a compendium in 1999 (AINSWORTH et al., 1993) and updated in 2000 (AINSWORTH et 

al., 2000). The classification describes PA considering major activity groups such as walking, 

cycling, occupation and home activities. Activities are then assigned a level of intensity which 

ranges from 0.9 METs (sleeping) to 18 METs (e.g., running) and consider numerous activities such 

as cycling (8.0 METs) and walking (2.5 METs). Recent years have seen a significant evolution of 

fitness trackers (Shanes, 2017) routinely used to measure moderate to high level of activities 

performed outdoor. The commercial expansion of brands such as Fitbit indicates that the 

broadest audience generally accepts these devices as mean to monitor exercise and physical 

activity, continuously and outside of specialised fitness environment. Fitness conscious people 

focus on measuring their performance and improvements while OA patients have to consider that 

the impact of repetitive motion can lead to damage in muscles, joint cartilage and bones (Milner 

et al., 2006). The tracking of step count and exercises focuses on repetitive movement with a 

population already active but does not consider the quality of movement and stress caused on 

the lower limbs. However, the method can be applied to OA considering that METs-min can be 

obtained from step count estimates. 
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6.2.2 Wearable and step count estimates 

Wristbands and smartwatches typically use embedded sensors that allow tracking of energy 

expenditure (calories) and heart rate and are positioned at the wrist are ideal for monitoring arm 

swing and defining patterns, e.g. activity recognition (Attila Reiss, 2013) and step counts. These 

devices encourage a competitive mindset, and pedometers have shown effects on diabetes 

patients (Delfien Van Dyck, 2013). This effect has also been demonstrated in RA patients through 

a significant increase in physical activity and subsequent decrease in fatigue in a population of 96 

participants after using a pedometer for a week (Katz PP, 2015). The level of participation in 

activities such as walking can be increased through structured classes, as shown in a study with 

eighteen older adults (Tudor-Locke et al., 2002). Fitbit´s daily target is set by default to 10000 

steps (ROSENBAUM, 2019) which is not typically achieved in daily activities, as identified in a 

literature review (Choi et al., 2007). The search included studies published between 1982 and 

2006 that used pedometers and step counters. The daily count can be improved through sports 

and home activities, but the results found a deficit of 4000 to 6000 steps when performing only 

routine activities. So, expecting OA patients to perform 10 000 steps routinely is not suitable and 

a preliminary study identified the step count range to classify the level of PA (Tudor-Locke and 

Bassett, 2004). In this context, the daily step count considers individuals as active ≥10 000 and 

highly active ≥12500 steps/day. Under 10 000 steps/day is considered somewhat active for 7500–

9999, low active at 5000–7499 and sedentary under 5000 steps/day. A literature review that 

covered 1594 articles was further commissioned in 2010 by the Public Health Agency of Canada 

(PHAC) and concluded that using step count estimate is a good baseline for PA guidelines 

communicated to the general public (Tudor-Locke et al., 2011).  

Besides acceptance from the public measured by the commercial success, wrist-worn devices 

wristbands have been validated amongst other commercially available devices, PA trackers (Wahl 

et al., 2017) to provide reliable step count estimates. Fitbit was also validated against research-

grade devices such as Actigraph GT3X+ in various studies found in a library of publications that 

have used Fitbit devices in research (Fitabase, 2022). The step count recording was validated with 

a community of 32 older people over seven days (Paul et al., 2015). Assessment of active minutes 

in free-living environment was also validated, with 53 participants wearing the device for seven 

days (Brewer et al., 2017). The usage is also acceptable for a more extended timeframe, as shown 

in a study with 42 female breast cancer patients (Hartman et al., 2018). The findings 

demonstrated that over 12 weeks, the Fitbit trends allowed us to visualize changes in PA habits 

triggered by a research intervention. Therefore, Fitbit provides a reliable way to track PA although 

a systematic review of 67 studies identified caveat such as overestimating step count in free living 

conditions (Feehan et al., 2018). 
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Step counters have become popular but the principle for counting steps is not new and can be 

achieved in several ways, as identified in a literature review of step count measurement 

considerations (Bassett et al., 2017). The devices can be worn at the waist, pocket, thigh or foot 

and the most accurate position is at the ankle. A basic method is to identify the steps measuring 

the vertical variations of ups and downs at the waist, which can be achieved using a spring levered 

or, more recently, with accelerometers. Devices worn at the wrist consider the movements 

related to arm swing, and algorithms have been developed for PA classification (Zhang et al., 

2012) as well as optimising step count estimates. Smartphones´ ability to estimate step count has 

been measured, and multiple algorithms have been developed to handle the noise introduced by 

free usage and device handling. The general principle is to capture accelerometer data and apply 

noise filtering to identify peaks. A study used a low pass filter (Myo et al., 2018). It was also 

proposed to estimate steps by flattening insignificant acceleration changes using a discrete 

Kalman filter (Kinh et al.) on iPhone accelerometers. Walk detection and step count might filter 

the angular movement using Fast Fourier Transform, as seen in studies using unconstrained 

Android devices (Kang et al., 2018, Dirican and Aksoy, 2017). Adaptive threshold calculation for 

magnitude and temporal filtering following the peak extraction was used to deal with the 

dynamics of smartphones in various device handling, such as texting and calling (Lee et al., 2015). 

Another proposed technique adaptively tunes the filters and thresholds without the need for pre-

sets classifier (Khedr and El-Sheimy, 2017). Android provides a set of sensor APIs and, in more 

recent releases, improved the support for fitness applications by releasing the ability to record 

step count (Google, 2022a). This project does not focus on the algorithms provided by Android, 

but step count is a unit typically used by most fitness trackers as an intuitive measure and widely 

advertised by Fitbit. The most significant benefit in using the step count API is preventing the risks 

of tracking termination due to power save identified in Study 2. 

6.3 Rationale 

The correlation between disease and physical activity requires continuously monitoring a patient 

with significant symptoms for an extended amount of time. So, we measure smartphone 

monitoring with patients before and after a clinical intervention. The changes in behaviour 

triggered by injection emulate disease activity changes usually seen in an extended timeframe.  

Load rate estimation is not a standardised way to measure physical activity, so we compare the 

step count measured by smartphones with Fitbit estimates to validate the smartphone´s ability to 

perceive significant variations. 



OApp Sydney: Continuous monitoring in osteoarthritis clinical trial 

111 

6.4 Aim & objectives 

6.4.1 Aim 

This study aims to evaluate the variations of physical activity, load forces and step count, 

measured by smartphone in a clinical trial that introduces a noticeable medication change 

through knee injection of OA patients.  

6.4.2 Objectives 

The objectives of this study are: 

1) Evaluate the ability to continuously capture load forces measured by smartphones in free 

usage conditions (i.e., without power save mode restrictions or handling restrictions) 

2) Compare the amount of step counts measured by smartphone and Fitbit  

3) Assess the patient´s behavioural changes before and after the injection 

6.4.3 Hypothesis 

If a clinical intervention introduces a change in physical activity behaviour, measuring the load 

forces through a smartphone’s continuous monitoring could identify and assess this change. 

6.5 Methodology 

6.5.1 Patient recruitment and study procedure 

This study is a pilot, observational and quantitative study, focusing on comparing the trends and 

correlation of physical activity recorded via smartphones and Fitbit. Each participant wore a Fitbit 

Flex 2 wristband and used a Samsung Galaxy A5 preloaded with OApp™. Samsung devices (12 

phones) were loaned in rotation to cover the broader amount of participants.  

The protocol and additional documentation, including consent forms, have been reviewed and 

approved by Northern Sydney Local Health District HREC (Reference number: 

LNR/17/HAWKE/370). 

Patients recruited were sixty-six adults, part of the RESTORE trial (ANZCTR registration - 

ACTRN12617000853347), split into placebo and intervention groups based on their consecutive 

entry into the study. Inclusion criteria were defined to recruit patients diagnosed with 

Osteophytes on x-ray, willing to participate in this study and above 50 years old. The clinical trial 
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requires patients explicitly with a minimum pain score of 4 on an 11-point numeric rating scale for 

the last week and knee pain on most days in the previous month. 

The clinical team first screened participants, giving verbal descriptions and information on the 

trial over the phone before sending the Participant Information Sheet and Consent form by postal 

mail. The suitable participants then underwent X-ray, blood tests; and physical screening before 

being invited to join the trial. 

Once recruited, patients received the loaned Fitbit wristband and smartphone preloaded OApp™ 

for seven days. Fitbit and smartphone were then returned, and the clinician collected data. 

Patients repeated this procedure for an additional seven days following a RESTORE trial’s standard 

timeframe of two months. 

6.5.2 Data collection 

For this study, the monitoring aimed at recording hourly step count and data samples of 5 

seconds (window=5) every 15 seconds (interval=15). Step count and LRE have been stored in 

segregated SQL databases to avoid CRUD conflicts and uploaded to Azure table storage at the end 

of each day. Fitbit data are synched online through the Fitbit app that was preloaded on the 

phone. Fitbit daily step counts have been exported as an excel spreadsheet through Fitbit’s online 

portal. 

 

Figure 56: Smartphone & Fitbit 
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6.5.3 Data analysis 

The previous study (study 2) showed that the sampling could be uniform with power saving 

disabled. This study aims to emulate conditions of usage closer to real life. So, smartphones were 

set with their default settings (i.e., power saving mode enabled) which causes variations in the 

data capture interval preventing comparisons. As per previous study, the sampling can be 

manipulated but the aim is to emulate free living conditions. Doze mode might extend the 

sampling interval up to 5min (instead of 55sec). So missing LRE samples, for periods of interval 

longer than 5 min, were assumed to be due to power saving and replaced with imputed samples 

using the surrounding values, as illustrated in fig 57. The LRE samples were then interpolated into 

fragments of 5 min to obtain uniform sampling across all patients. 

For each participant, the steps recorded by the phone are compared with Fitbit’s daily step count 

as a baseline of physical activity trends. As for study 2, we draw individual phenotypes to 

represent the proportion of time at load. The continuous monitoring score (CMS) indicates 

reliability on the amount of samples recorded. The peak represents the load with the highest 

proportion of time, and the linear regression slope illustrates the overall trend of physical activity. 

 

Figure 57: Data Sampling 

6.6 Results 

6.6.1 Overall participation 

Table 12 summarises the amount of data collected over both sessions. Most of the 66 OA patients 

completed the recruitment period except patient 2, who had technical issues and 8, who dropped 

out of the study. The data collection of smartphones and Fitbit for both recruitment periods were 

completed by 15 patients (23%).  Most patients (60%) completed smartphone data collection at 

baseline and after 2 months except 12 patients (17%) who couldn’t attend the second recruitment 
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period. A total of 146892 LRE were recorded for both periods across all participants. Patients 

generated an average of 2260 LRE, with patient 3 generating the most (8350 estimates) and 

patient 63 generating the least (98 estimates). Fitbit data were recorded successfully on both 

sessions for 19 patients (29%), but 39 patients (60%) recorded less than ten days overall due to 

technical issues or not being able to attend the second session, and the remaining eight patients 

(12%) completed only the first session. 

 

Table 12: Summary samples (SP LR estimates and Fitbit) across patients 

6.6.2 LRE Monitoring 

Smartphones were used with their default power save setting (i.e., disabled) which follows the 

Android pattern of battery optimisation. As expected, the recording of samples follows the 

patterns of usage of the phone, which experience LRE much lower at night than during the day. 

Fig 58 shows that LRE is at least four times lower between 00h00 and 04h00 than during the rest 

of the day and gradually reduces from 19h00 to 23h59. 

ID LRE Days Fitbit Days ID LRE Days Fitbit Days ID LRE Days Fitbit Days
2 2 1 24 15 15 46 14 14
3 15 14 25 14 7 47 14 14
4 14 14 26 14 8 48 14 14
5 14 1 27 14 5 49 14
6 15 14 28 14 2 50 8 7
7 15 15 29 10 7 51 14 1
8 1 30 15 52 14 7
9 14 13 31 8 6 53 8 7

10 14 14 32 14 2 54 15 14
11 15 13 33 14 7 55 14 7
12 8 7 34 8 1 56 14 14
13 14 11 35 14 9 57 14 10
14 8 7 36 14 14 58 1
15 15 7 37 14 59 7 7
16 14 38 14 60 14 6
17 7 7 39 12 61 14 7
18 14 14 40 14 62 14 13
19 15 8 41 7 2 63 1 1
20 8 7 42 14 64 14 14
21 14 14 43 14 65 14 14
22 14 13 44 14 11 66 7
23 14 7 45 14 14
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Figure 58: LRE (mean) per hour 

As a result, the interval between samples is not uniform over time and less samples are generated 

between 00h00 and 05h00 than the rest of the day, as seen in fig 59. A third of the sample 

(29.9%) follows the window setting with an expected sample rate of 50. However, most samples 

are smaller than expected, with 55.75% of samples generated with a rate lower than 10.  

 

Figure 59: Count of LRE per hour 

The missing samples introduce a bias to the mean LRE from raw accelerometer data. Therefore, 

samples are imputed based on the surrounding values and interpolated, as seen in fig 60, which 

shows the hourly LRE from raw and interpolated data. As expected, the trend of interpolated is 

like raw data and shows lower estimates between 00h00 and 04h00. However, looking only at 

raw data overestimates the mean of LRE. Interpolated LRE mean is also much lower as considers 

periods of inactivity which are frequent. 
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Figure 60: LRE (mean) per hour (raw and interpolated) 

Fig 61 illustrates an example of phenotype for the most significant between-person variation of 

the most and least active sessions, respectively, of patient 47 at baseline (with a slope of 0.90) 

and patient 55 after injection (slope of -2.40).  

 

Figure 61: Raw & Interpolated Phenotype (Patients 47 and 55) 

Fig 85 shows the phenotype characteristics from raw data on both sessions for all participants. 

The CMS across patients and sessions ranges from 0.35 for the second session of patient 12 to 

0.92 for the second session of patient 3, which means that not all samples are accurate LRE 

representations. The slope should consider the interpolated data in combination with the CMS. 

Most patients had a slope under -1.4, indicating a low amount of physical activity. This is expected 

for a cohort of OA patients but could also suggest that the smartphone was not used if the CMS is 
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low. The peak ranges from 0.6 during the first session of patient 36 to 1.3 in the second session of 

patient 62. However, peak 1.3 occur with CMS lower than 0.37, so the most common LRE 

recorded is similar for this cohort across patients and sessions. For most patients, the peak of raw 

data is 1.1, and the interpolated average peak is 0.2 because of imputing missing samples, which 

generally occurs when the phone is inactive. 

 
Figure 62: Phenotype characteristics 

6.6.3 Step count monitoring 

To evaluate the correlation, we consider the patient samples with at least five days of recording 

more than one step on both smartphone and Fitbit, which reaches 0.78, as seen in fig 86 (left). 

When looking at the correlation for days with a minimum of 1000 steps completed on both 

devices, the overall correlation reaches 0.86, as seen in fig 63 (right). The plot shows a relation of 

proportionality with a 1:1 ratio for most patients (56%) as seen in table 13. However, a proportion 

twice higher can be seen, and patients 14 and 19, respectively, recorded three and four times 

more steps with Fitbit than SP.  
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Figure 63: Daily step count correlation 

 

Table 13: Correlation smartphone and Fitbit (daily step count) 

6.6.4 Monitoring before & after injection 

Figures 64 to 67 show the trends at baseline (left) and after 2 months (right) of daily Fitbit and SP 

step count and accumulated load rates for patients that participated for more than 9 days overall 

and recorded more than 1k daily steps. Most days, the smartphone´s count of steps follows the 

same trend as Fitbit. However, no substantial behavioural changes can be observed on the daily 

step counts before and after injection. Fig 68 shows the distribution of LRE for each participant 

before and after clinical injection. As for step count, no perceivable changes in LRE behaviour can 

be observed at baseline and two months after injection.  

ID Days Steps (SP) Steps (Fitbit) Correlation Ratio ID Days Steps (SP) Steps (Fitbit) Correlation Ratio
3 14 72813 121052 0.18 2 27 5 22400 35534 0.5 2
4 14 98021 164367 0.45 2 31 6 40374 67416 0.9 2
6 13 52128 92245 0.31 2 33 7 41587 50329 -0.23 1
7 15 105740 121353 0.56 1 35 5 29905 60375 0.52 2
9 11 69040 117534 0.09 2 36 12 60512 74824 0.39 1

10 14 78736 94138 0.25 1 44 9 82485 107790 0.3 1
11 11 64785 107605 0.79 2 45 14 110277 131578 0.71 1
12 7 88324 102558 0.57 1 46 14 110751 178418 0.44 2
13 10 55545 101200 0.44 2 47 14 184170 214177 -0.01 1
14 6 23327 60180 0.85 3 48 13 60354 103038 0.7 2
17 7 21153 27859 -0.57 1 52 7 42972 47843 0.08 1
18 13 161166 152327 -0.14 1 53 7 30984 45183 0.46 1
19 7 17755 73057 -0.08 4 54 13 71161 136002 0.29 2
20 7 93429 101430 0.94 1 56 13 73516 92322 0.52 1
21 12 50447 120692 0.27 2 59 7 31884 39770 0.84 1
22 9 46097 65276 0.84 1 60 5 22180 38532 0.76 2
23 7 49982 60527 0.07 1 62 5 19194 28711 0.38 1
24 15 135719 169390 0.76 1 64 14 127039 102484 0.83 1
25 6 49797 49898 0.59 1 65 14 90785 128873 0.83 1
26 8 54934 95020 0.69 2
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Figure 64: Sum of LR and Step count (Fitbit & SP) at baseline and after 2 months (Patient 3) 

 

 
Figure 65: Sum of LR and Step count (Fitbit & SP) at baseline and after 2 months (Patient 36) 

 

Figure 66: Sum of LR and Step count (Fitbit & SP) at baseline and after 2 months (Patient 44) 

 

Figure 67: Sum of LR and Step count (Fitbit & SP) at baseline and after 2 months (Patient 45) 
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Fig 91 shows the distribution of step count recorded across the cohort of patients, before and 

after injection, through Fitbit and smartphones. A paired t-test conducted on the step count 

recorded via Fitbit provides a p-value of 0.391 which is not statistically significant. Similarly, A 

paired t-test conducted on the step count recorded via SP provides a p-value of 0.574 which is not 

significant either. 

 

Figure 68: Boxplot of Step count across all patients, before and after injection 

 

Fig 69 shows the distribution of LRE for each participant before and after clinical injection. As for 

step count, no perceivable changes in LRE behaviour can be observed at baseline and two months 

after injection. A paired t-test conducted on LRE recorded provides a p-value of 0.362 which is not 

significant. 
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Figure 69: Boxplot LRE for all patients, before and after injection 
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6.7 Discussion 

6.7.1 Continuous monitoring 

The sampling for this study was set to capture 5 sec samples (window=5) every 15 seconds 

(interval=15), equivalent to 20 sec per minute. As expected, Android´s power saving affects the 

ability to record uniform sampling of accelerometer data. The mean LRE and amount of samples 

recorded at night  are significantly lower than during the rest of the day. Users are typically 

sleeping at night and so this appears to confirm that the overall sampling is affected by the user's 

interaction with the device, as seen in study 1. Furthermore, the proportion of samples recorded 

at the correct window size was much smaller than in Study 2. The sample rate for 55.75% of 

samples was five times smaller than expected, which means that estimates were generated for 

smaller window sizes because of the power-saving algorithm shortening the data recording over a 

smaller window. The sample window size was smaller than the setting (under 50, 70% of the time) 

but there is no correlation with the value of LRE, as seen on fig 70. The distribution of samples is 

not random, so the length of sample rate is not random. Therefore, smartphone samples are not 

corrupted by the power save but bias the ability to estimate the individual mean of physical 

activity.  

 

Figure 70: LRE and Sample rate 



OApp Sydney: Continuous monitoring in osteoarthritis clinical trial 

123 

 

6.7.2 Step count comparison 

Smartphone steps are recorded using Android´s API and estimated using Google´s proprietary 

algorithms, but APIs are not subject to the same restrictions as third-party apps (here OApp™). So, 

the amount of steps recorded by smartphones can be considered a reliable representation of 

smartphone estimates. Data recording challenges were also found with Fitbit, and not all patients 

recorded data as expected. Fitbit uses a smartphone app to retrieve the daily step count but 

manufactures the smartwatches and owns proprietary algorithms to estimate daily step counts. 

Therefore, Android power save doesn’t appear to affect the ability to record step counts on a 

smartphone or Fitbit HR. The performance and accuracy to evaluate step counts, measuring the 

peak to peak of arm swing, is affected by the type of device and incurs false positive (Åkerberg et 

al., 2016). So, it is expected to see the correlation increase, when over 1000 steps have been 

measured, as the proportion of false positive decreases with higher amounts of steps. The 

Smartphone´s estimate of step count appears to be proportional to Fitbit estimates with a 1:1 

ratio for 56% of participants. The remaining 44% observed ratios up to 4 times lower on 

smartphone which indicates that the phone may have not been used when the Fitbit was worn. 

Negative correlations, on the other hand, indicate more steps recorded by smartphone than by 

Fitbit, potentially due to Fitbit not being worn. . The impact on samples is expected because of 

power save. However, the step count results also show that smartphones were not carried as 

much, in most cases, as Fitbit devices. These results are consistent with Study 1 and the study 

protocol, as the phones were used as secondary, which caused limited interactions with 

smartphones and in carrying them. 

6.7.3 Behaviour changes before/after injection 

Fitbit doesn’t allow access to raw accelerometer data, so it is impossible to compare LRE. The 

amount of steps recorded by a smartphone is generally lower than by Fitbit. It is expected 

considering the arm swing movement associated with devices worn at the wrist, as observed in 

the previous study. However, the step count trend of smartphones and Fitbit are similar at 

baseline for patients 7, 10, 11, 22, 24, 43 and 45, which confirms that the smartphone’s recording 

is comparable to Fitbit. For patients 22 and 24, the trends after two months are also similar while 

different for the other patients. The position and usage of the phone explain these discrepancies. 

The step count reported by the phone is very low, which indicates that it was left in a static 

location (e.g., on a desk) instead of being carried close to the body. The daily amount of step 

count between participants is different, which indicates different levels of physical activity.  
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The aggregated LRE, however, does not always follow the same trend as step count and lower 

aggregated LRE can be seen on days with higher daily step count. The amount of force a patient 

generates is not only to perform steps. So, evaluating LRE beyond daily aggregates allows for 

gaining further monitoring insight. The CMS provides a measure of confidence in the amount of 

time logged by the device (raw data). The variations observed indicate that the sampling reliability 

was not the same across patients. As expected, CMS values are lower when power save is 

enabled, with an average of 0.67. Interpolated CMS is closer to 1 as it is obtained by imputing 

missing samples, so we consider only raw CMS. Low CMS affect the reliability of features 

extraction from phenotypes as a mean of comparison between patients and changes following 

injection. The slopes recorded are biased towards the most common LRE values recorded. The 

peak recorded were low for most, indicating that the smartphones were not used most of the 

time. As for CMS, the interpolated peak is biased towards low imputed values and can be ignored.  

Knee injection is a substantial procedure for OA patients. The monitoring of behavioural and 

physical activity using wearable presents technical challenges but appears feasible. However, 

none of the patients showed drastic changes in physical activity and  not enough variations were 

observed on the trends of step count and LRE variations to establish a direct correlation between 

knee injection and physical activity. Knee injections are typically scheduled shortly after being 

recommended and so increasing the monitoring timeframe is practically challenging as it might 

prevent access to care.  It should also be noted that placebos were used in this trial, which 

increases the complexity as changes might not be expected at the first place. Nevertheless, the 

distribution of LRE intensity highlight outliers significantly outside the range of LRE. These spikes 

of LRE represent jerks recorded beyond the mean of individual physical activity, which might 

provide further insights into OA symptoms and conditions. 

6.8 Conclusion 

This study confirms that using smartphones as a secondary phone affects the sampling 

performance due to the smartphone’s power saving. However, the number of steps recorded 

shows that the sensors remain active when processed by the OS. The trends of step count 

recorded by the phone are like Fitbit, which validates the smartphone’s tracking ability. 

Fitbit consistently recorded more steps due to the sensor's location on the body (i.e., dominant 

and non-dominant wrist) and sensitivity to upper limb movement (e.g., wider arm swing, hair 

stroke). Smartphones are not always close to the body (i.e., kept on a desk), so they are likely to 

record fewer steps than devices worn at the wrist, as seen in study 2.  
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Wristbands are worn at a static position on the wrist (dominant or non-dominant), which is 

optimised to estimate arm swing patterns and step counts. Smartphones can be held and carried 

at multiple locations (e.g. pocket, hand) but are typically carried closer to the centre of gravity of 

the human body. Therefore in the context of patient monitoring, smartphones provide a better 

representation of the impact loading on the lower limbs and joints, including bursts of a sudden 

jerks. As for study 1, the amount of recorded samples and timelines are insufficient to draw a 

correlation between disease and physical activity. As a result, study 4 will recruit participants 

willing to install the app on their phones. 
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Chapter 7 RApp2: Long-term monitoring 

This chapter covers the steps undertaken to assess load force estimates, considering the input 

from rheumatoid arthritis patients, over 3 months. 

7.1 Introduction 

The results of Study 1 raised the challenges associated with smartphone sampling, and study 2 

confirmed that these can be addressed through power save settings. Study 3 observed a low 

sampling performance, but the capability to continuously monitor the sensors of the phone 

remains, with comparable step count trends as Fitbit trackers. Smartphone power-saving is 

triggered by a long period of user inactivity. Therefore, smartphones used as secondary devices 

do not provide an accurate representation of free usage and cause a significant amount of data 

losses. So, for this study, we evaluate LRE that can be obtained in real-life use with RA patients 

recruited, as for Study 1, but asked to load RApp™ on their smartphone (i.e. primary device) and 

for a more extended recruitment period of 3 months (6 weeks in Study 1). 

7.2 Aim & objectives 

7.2.1 Aim 

This study aims to assess whether smartphone’s continuous monitoring over an extended period 

can be used to evaluate the variations of physical activity and load forces.  

For this study, two sets of samples were collected: 

1) RA patients recruited for three months 

2) Researcher data over five years 

7.2.2 Objectives 

The objectives of this study are: 

1) Evaluate the ability to continuously capture load forces by a smartphone used in free-

living conditions, as the primary device and with default power save mode optimisation 

2) Assess the changes in physical activity, and load forces over an extended period 
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7.2.3 Hypothesis 

If load forces and step counts are continuously monitored on a patient’s primary smartphone, in 

free living conditions and for an extended period, then physical activity trends and patterns can 

be obtained, that can be useful to assess correlations with disease activity and symptoms. 

7.3 Methodology 

7.3.1 Patient recruitment and study procedure 

This study is observational and quantitative and compares trends and correlations of self-assessed 

disease activity and load rates recorded via smartphones. The protocol and additional 

documentation, including consent forms, have been reviewed and approved by London 

Stanmore’s ethics committee (REC reference 16/LO/0182). To be eligible, inclusion criteria were 

defined to recruit any participants diagnosed with rheumatoid arthritis, willing to participate in 

this study and above 18 years old. Participants were recruited from the database of patients of 

the University Hospital Southampton NHS Foundation Trust.  

Due to COVID restrictions, patients were invited to review the study details by accessing the 

Participant Information sheet from a QR code advertised on a poster at the hospital. Patients 

interested could then access an online consent form and receive an email confirmation, once 

consented, with the details to download RApp™ from Google Play directly on their phone. Each 

participant used their smartphone (Android based) and installed RApp™, which should address 

the impact of power saving and quantify the amount of tracking obtained in real-life monitoring. 

The updated user interface includes more joints (DAS) and only the RAPID3 questionnaire 

provided, which is not designed for weekly use, nor validated but fits the purpose of self-

assessment by the recruited patients. No specific considerations are required on the medication, 

as this is a pilot study, but the recruitment period has been extended to 3 months.  

Obtaining ethics to recruit patients within the NHS requires obtaining approvals from the relevant 

committee, so recruiting patients nationally (or across countries as for study 3) requires obtaining 

all the relevant approval. Similarly, obtaining data from participants for longer than three months 

requires unrealistic commitment on their end, considering that this study is observational and 

does not provide intervention or improvement of their medical condition. Hence, the second part 

of this study considers control data generated over the years by the researcher. RApp™ was 

installed on personal smartphones, which changed over the years to control the protocol's correct 

functioning and technical aspects. 
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7.3.2 Data collection and analysis 

For this study, the monitoring aimed at recording hourly step count and data samples of 5 

seconds (window=5) every 15 seconds (interval=15). Self-assessments, step count and calculated 

load rates have been stored in the smartphone´s segregated SQL databases and asynchronously 

uploaded to Azure table storage whenever a cellular or Wi-Fi connection was available. The 

samples were then exported. 

For each participant, we evaluate smartphone performance to continuously monitor LRE for the 

recruitment period (3 months). As for previous studies, we assess the amount and integrity of 

recorded samples. The phenotype and characteristics introduced in Study 2 are further used to 

evaluate the proportion of LRE over time.  

7.4 Results 

7.4.1 Patient´s continuous monitoring (3 months) 

Due to COVID restrictions and associated safety preventions, a limited cohort of three RA patients 

(two males and one female) was recruited at the hospital and consented remotely via online 

form. All patients could download and install RApp™ correctly on their phones, as summarised in 

Table 14. Patients were invited to use RApp™ for over three months if they wished. Patients p73 

and p74 correctly completed the recruitment period and kept using the app for six months and 

three months. Patient p75 had smartphone settings issues and completed a partial timeframe of 2 

months. 

 

Table 14: Patient recruitment summary 

Fig 71 shows the trend of LREs for each patient. The density of the plot indicates that patient p73 

consistently recorded LRE over the recruitment period. Patient p74 recorded LRE between 25/05 

and 02/06 and a few random days in June. The peaks in August and September are related to days 

of the RApp™ periodically restarting the sampling before being uninstalled on 24/09.  Patient p75 

recorded an overall of 11 days which can be seen as distinctive periods with density. The app did 

not run correctly for the rest of the time until being uninstalled on 19/07. 

ID F/M Start End Total Average Min Max Std Dev
p73 M 11/05/2021 05/11/2021 69897 397.14 13 984 203.4
p74 M 25/05/2021 24/09/2021 29339 916.84 13 2455 695.85
p75 F 25/05/2021 19/07/2021 14665 977.67 110 2134 610.43

Recruitment Amount of Mean LR (per day)Patient
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Figure 71: Smartphone’s LRE (Mean) over time 
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Fig 72 shows that the amount of sample recorded over time is higher in the morning than the rest 

of the day. This is expected as smartphones are generally put on charge overnight, which means 

that the sample distribution is not uniform. On the other hand, most of the samples follow the 

expected rate of 50 (70.5%) or slightly greater at 60 (26.5%). 

 

Figure 72: SP sample count and sample rate per hour 

Fig 73 shows the mean of LRE evaluated from raw and interpolated data. Interpolated data 

consider the whole period that each patient had the app installed. As a result of missing days, the 

overall LRE mean is significantly lower than with raw data.  

 

Figure 73: LR (mean) estimates per hour (raw and interpolated) 
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Fig 75 to 77 and Table 15 illustrates the phenotype and characteristics for patients p73, p74 and 

p75. The CMS of p74 is the highest, which means that most samples can be explained. Although 

p74 has the highest interpolated slope of -1.2, the LRE peak of 0.7 means that the phone recorded 

less movement than p73 and p75, with a peak of 2.  

The boxplot (Fig 74) shows a low distribution of movement for p74 compared to p73 and p75, 

which recorded a wider range and higher maximum of LRE. Outliers of p73 reach LRE burst 800 

times higher than its max LRE and at least 100 times higher for p74 and p75.  

 

Table 15: Phenotype characteristics 

 

Figure 74: Boxplot (with and without outliers) 

 

ID Peak Slope CMS Peak Slope CMS
p73 2 -1.5 0.76 0.1 -1.3 1
p74 0.7 -1.5 0.98 0.1 -1.2 0.98
p75 2 -1.6 0.7 0.1 -1.6 1

Raw Interpolated
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Figure 75: Phenotype (patient p73) 

 

Figure 76: Phenotype (patient p74) 
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Figure 77: Phenotype (patient p75) 

7.4.2 Continuous monitoring over 5 years 

This project's development and technical follow-up required a control and troubleshooting 

mechanism. So, RApp™ has been running on the primary device of the researcher between 2018 

and 2022. Table 16 summarises the period each smartphone was for, along the quantity of 

samples gathered. Early testing was done using HTC smartphones, but the first primary phone 

used was a Samsung S7 from January to March 2018, referring to the datasets s72901, s7110218 

and s7040318. A gap in data occurred until using a Samsung S9+ from September 2019 to May 

2020, corresponding to datasets s9jimmymay and s9jimmymay2020 in the plots. Another gap 

occurred until using an Xperia 1i from September to May 2022, corresponding to Xperia 1i and 

p72UK. The last dataset was captured using a Samsung 22+ from April to December 2022, 

referred to as p78. Fig 78 shows the timeline of samples recorded over time with each 

smartphone. 
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Table 16: Smartphone devices summary 

 

Figure 78: Smartphone devices and samples recorded over time 

Fig 79 and 80 show the yearly LRE (mean) over time across all devices (top plot). 2022 shows a 

higher overall LRE magnitude than the previous years. 2019 and 2020 shows the lowest 

magnitude, which matches the timeline of working from home and Covid restrictions.  

ID Model Start End Total Average Min Max Std Dev
s72901 Samsung S7 28/01/2018 11/02/2018 29990 1999.33 69 3057 800.73

s7110218 Samsung S7 11/02/2018 04/03/2018 28580 1299.09 259 2710 598.6
s7040318 Samsung S7 04/03/2018 07/04/2018 74170 2119.14 491 4119 869.5
s9jimmy Samsung S9+ 09/09/2018 28/09/2019 192668 500.44 11 2162 353.61

s9jimmymay2020 Samsung S9+ 04/12/2019 17/05/2020 115730 697.17 125 1952 345.07
Xperia1i Sony Xperia 1i 05/09/2020 21/11/2020 68755 881.47 223 1808 445.1
p72UK Sony Xperia 1i 02/04/2021 05/11/2021 213603 998.14 3 3025 633.03

p78 Samsung S22+ 24/04/2022 23/11/2022 184388 861.63 151 1905 342.57

Patient Recruitment Amount of Mean LR (per day)



RApp2: Long-term monitoring 

135 

 

Figure 79: Smartphone’s LRE (Mean) over time (2018-2020) 
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Figure 80: Smartphone’s LRE (Mean) over time (2021-2022) 
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The smartphones were used as primary device with default setting. Fig 81 shows that more 

amounts were captured across the devices between 23h00 and 08h00. This is because the devices 

were charging, which disables Android power saving. However, the sample rate remained 

unaffected, so all samples collected were captured with the expected window size. Fig 82 shows 

the LRE recorded over time which, as expected, is higher during the daytime than at night. Fig 83 

shows that interpolated samples flatten the overall magnitude of LRE. 

 

Figure 81: Count of LRE per hour 

 

Figure 82: LRE (mean) per hour 



RApp2: Long-term monitoring 

138 

 

Figure 83: LRE (mean) per hour (raw and interpolated) 

Fig 84 shows the yearly phenotype between 2018 and 2022. The CMS was the highest in 2022 and 

lowest in 2019, consistent with the observations in figs 74 to 78. The peak remains the same over 

the years but the slope changes. Specifically, 2019 and 2020 were the least active years 

corresponding to Covid restrictions and lockdown. 2022 shows a similar level to 2018, which is 

consistent with the timeframe pre and post-Covid. 

 

Figure 84: Year on Year Phenotype (2018 to 2022) 
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Fig 85 shows that the LRE (mean) is consistent across the years but with a higher maximum LRE 

than the following years, indicating that more dynamic activities were performed. The outliers 

reach higher values in 2021 and 2022 than in 2018. This might indicate a higher burst of jerk 

occurring post than pre-Covid.  

 

Figure 85: Boxplot Year on Year (2018 to 2022) 

Table 17 shows the monthly phenotype characteristics over the years. Most months had CMS 

greater than 0.7. So, the peak and slope values can be compared for most of the timeline except 

April 2018, which has a CMS of 0.33. The peak is consistently at one between 2018 and May 2020. 

A lower peak of 0.9 can be seen from May 2021 to April 2022. The second half of 2022 (May to 

November) recorded the highest movement, reaching 2.1 peaks. The slope shows a higher level of 

physical activity in early 2018 than in later 2022. These variations of slope and LRE recorded for 

the highest proportion of time are consistent with the timeline pre, post and during Covid. 
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Table 17: Monthly phenotype characteristics 

7.5 Discussion 

The sampling for this study was set to capture 5 sec samples (window=5) every 15 seconds 

(interval=15), which is equivalent to 20 sec per minute. Only one patient (33%) appeared able to 

monitor uniform LRE samples across the recruitment period. Still, no issues were raised installing 

RApp™ and interaction with the app was minimal, as intended by design. The other two patients 

(66%) recorded only a partial amount of LRE samples with significant gaps across the recruitment 

period. Nevertheless, the samples were recorded with the expected sample rate and high CMS. 

This indicates that Android power save might have interrupted long-term recording but didn’t 

affect the LRE sampling that occurred. Unlike study 3, the sampling and CMS observed by the 

researcher showed consistent sampling with high CMS on multiple Android smartphones swapped 

over the years. These results indicate that power saving alters the recording of samples but are 

lessened when smartphones are used as primary device. 

Fitbit promotes performing 10k steps per day which offer a simple way to compare the trends 

over time. Unlike daily step counts, comparing physical activity using LRE is more complex and 

looking only at daily LRE aggregates would be misleading. The relation between LRE 

2018/01 CMS=0.73 Peak=1.2   Slope=-1.2 2021/05 CMS=0.90 Peak=0.9   Slope=-1.4
2018/04 CMS=0.33 Peak=1.1   Slope=-1.1 2021/06 CMS=0.96 Peak=0.9   Slope=-1.3
2018/09 CMS=0.49 Peak=1   Slope=-1.3 2021/07 CMS=0.91 Peak=0.9   Slope=-1.1
2018/10 CMS=0.66 Peak=1   Slope=-1.4 2021/08 CMS=0.83 Peak=0.9   Slope=-0.9
2018/11 CMS=0.58 Peak=1   Slope=-1.5 2021/09 CMS=0.85 Peak=0.9   Slope=-1.1
2018/12 CMS=0.54 Peak=1   Slope=-1.6 2021/10 CMS=0.81 Peak=0.9   Slope=-0.9
2019/01 CMS=0.54 Peak=1   Slope=-1.5 2021/11 CMS=0.89 Peak=0.9   Slope=-1.1
2019/02 CMS=0.77 Peak=1   Slope=-1.5 2021/12 CMS=0.92 Peak=0.9   Slope=-1.1
2019/03 CMS=0.85 Peak=1   Slope=-1.3 2022/01 CMS=0.93 Peak=0.9   Slope=-1.2
2019/04 CMS=0.86 Peak=1   Slope=-1.6 2022/02 CMS=0.86 Peak=0.9   Slope=-1.1
2019/05 CMS=0.90 Peak=1   Slope=-1.9 2022/03 CMS=0.88 Peak=0.9   Slope=-1.1
2019/06 CMS=0.84 Peak=1   Slope=-1.5 2022/04 CMS=0.63 Peak=0.9   Slope=-1.1
2019/07 CMS=0.89 Peak=1   Slope=-1.6 2022/05 CMS=0.95 Peak=2.1   Slope=-1.5
2019/08 CMS=0.82 Peak=1   Slope=-1.5 2022/06 CMS=0.90 Peak=2.1   Slope=-1.2
2019/09 CMS=0.75 Peak=1   Slope=-1.4 2022/07 CMS=0.93 Peak=2.1   Slope=-1.2
2019/12 CMS=0.80 Peak=1   Slope=-1.6 2022/08 CMS=0.83 Peak=2.1   Slope=-1.5
2020/01 CMS=0.79 Peak=1   Slope=-1.6 2022/09 CMS=0.86 Peak=2.1   Slope=-1.5
2020/02 CMS=0.66 Peak=1   Slope=-1.8 2022/10 CMS=0.92 Peak=2.1   Slope=-1.5
2020/03 CMS=0.71 Peak=1   Slope=-1.8 2022/11 CMS=0.71 Peak=2.1   Slope=-1.5
2020/04 CMS=0.78 Peak=1   Slope=-1.9
2020/05 CMS=0.71 Peak=1   Slope=-1.8
2020/09 CMS=0.89 Peak=0.5   Slope=-1.3
2020/10 CMS=0.97 Peak=0.4   Slope=-1.5
2020/11 CMS=0.97 Peak=0.4   Slope=-1.6
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characteristics should not be used as isolated metrics and instead be looked at in context. For 

instance, the peak shows the LRE most recorded, which could identify p74 as being sedentary 

compared to p73 and p75. However, it might also be due to smartphone recording more samples 

on charge and placed on a table. The CMS of p73 is lower than p74 and appears close to p75´s 

CMS, but p73 recorded a broader timeframe than the others. So, the CMS accurately evaluates 

that p74 was the closest to capturing the expected amount of samples but only on specific time 

slots rather than the entire period. Therefore, CMS comparison between patients should be 

considered alongside the same timeframe. Similarly, using the slopes to compare the trend of 

physical activity should be done on a common timeframe to be usable. 

Moreover, patient differences might also occur because of habits and personal ways of handling 

their phones. This concern is alleviated when comparing LRE within the same patient. The LRE 

phenotype captured by the researcher allows us to identify patterns and changes over the years. 

For instance, the peak gradually decreases from 1.1 in 2018 to 0.9 in 2022. Although the CMS 

fluctuate and amount of months logged varies over the years, this decrease can be considered an 

accurate representation. This indicates that the slope can be interpreted without the need to 

impute data and shows that 2018 and 2022 were more active years than 2019 and 2020. In this 

case, the year-on-year variations can easily be associated with pandemic restrictions and 

lockdowns caused by Covid in the UK. Therefore, it is possible to identify drastic changes in 

physical activity trends caused by changes in disease activity.  

7.6 Conclusion 

This study confirms that smartphones used as primary devices alleviate the impact of power 

saving in obtaining LRE. In free-living conditions, there is a strong dependency on the way that 

patients handle and interact with their phones. LRE obtained do not reach the performance in 

ideal conditions seen in study 2 but are more reliable and accurate than in study 3.  

The phenotype and its characteristics provide a methodology to compare LRE patterns and 

physical activity among patients, but it is far more effective when comparing for an individual. A 

trend evaluated over three months does not show significant physical activity changes and cannot 

be correlated with disease activity. However, an impactful event, such as the lockdown 

restrictions caused by Covid, is noticeable over an LRE monitoring timeframe of 5 years. 

 

 

  



Conclusions and future research 

142 

Chapter 8 Conclusions and future research 

8.1 General Discussion 

This thesis developed, tested and verified a methodology to record load rate estimates using 

smartphone sensors continuously and remotely. The app's ability, RApp™, was tested and 

validated at the project's end to record load rate estimates on cloud-based services. The 

methodology developed was able to interpret these estimates to draw individual characteristics 

of physical ability, which can be used in further research. 

In Chapter 2, the value for monitoring load rate estimate was explained in the context of 

healthcare and musculoskeletal disease. The benefits of being active and exercising are already 

known, and metrics such as step count and MET-min help quantify physical activity as aggregated. 

Evaluating the impact of LRE is more complex by nature, as too much, too less, or sudden bursts 

could lead to detrimental effects on the joints and bones. This project's novelty is using 

smartphones, which provide cheap and broadly available technology, to monitor LREs outside of 

specialised rehabilitation and clinical facilities continuously. 

In Chapter 4 (study 1), rheumatoid arthritis patients were engaged to gather feedback and 

validate the approach and challenges associated to using technology in healthcare. The insight 

obtained through the PPI session validated and expanded the design of RApp™ to being a 

smartphone app that anyone could use rather than a specialised clinical tool. The challenges in 

recording and validating LRE were raised and used to design the subsequent studies. It was also 

possible to conclude early on that drawing correlation with disease activity is associated to the 

patient´s symptoms (pain and swelling). These cannot be enforced or controlled as this project is 

observational rather than a medical intervention.  

In Chapter 5 (study 2), the smartphone´s ability and performance to record LRE were assessed in 

ideal usage conditions and compared to smartwatches. Smartphones were set up with power 

save disabled to estimate the impact on the sampling. As seen in study 1, Fitbit wristbands focus 

on estimating daily step counts and do not permit access to raw accelerometer data. So, 

smartwatches were used as the baseline of LRE comparison at the wrist to validate LRE obtained 

from smartphones. The concept of phenotype was introduced and tested to evaluate LRE´s 

characteristics: the trend, CMS, slope and peak.  

In Chapter 6 (study 3), smartphones were used in free-living conditions as part of a clinical trial 

with osteoarthritis patients. Considering the lack of a benchmark to measure LRE, Fitbit were once 

more used to validate smartphone monitoring but considering daily step count as a more broadly 
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known and used unit of measure. The trial consisted in giving a knee injection to OA patients who 

acted as a trigger to physical activity changes expected to be seen in disease progression. The 

results showed a correlation with Fitbit in estimating daily step count. However, a smartphone´s 

monitoring performance is substantially affected when used as a secondary device. The interval 

between samples recorded and the sample rate (i.e., sample size) was significantly lower than 

expected.  

In Chapter 7 (study 4), smartphone LRE monitoring was evaluated on the primary device of 

rheumatoid arthritis patients and the researcher for longer timeframes than in previous studies. 

The methodology confirmed that the phenotype interpretation of LRE is valid, but comparing 

patients' trends is not straightforward. LRE interpretation needs to consider the characteristics in 

the overall context rather than aggregated and isolated values. In that sense, comparing LRE 

variations of a patient is possible and allows us to see changes that occur over time. The timeline 

coincided with the Covid pandemic and lockdown restrictions in the UK, indicating that significant 

physical activity changes caused by disease or other factors could be perceivable.  

8.2 Research contribution and future work 

The work presented in this thesis focused on evaluating smartphones´ ability to monitor and 

remotely record LRE continuously. Smartphones are not designed as wearable devices, and the 

user handling biases the sampling. OApp™ has been used in another PhD thesis to develop an 

activity classifier (Nazirizadeh, 2018). More studies are needed to quantify the amount of samples 

needed to assess LRE, and statistical models should be further evaluated accurately. For example, 

a large amount of data might be used in machine learning models, e.g., to impute missing LRE 

based on historical values recorded. This project was explicitly focused on smartphone´s 

performance when used as an individual device. Other smartphone sensors and activity data 

might provide further insights into the smartphone´s handling (e.g., on call or playing games), 

which could be used to improve LRE accuracy further. The CMS provides confidence in the sample 

reliability, but data captured from other wearable devices could be used to cross-check and 

improve LRE accuracy further. Besides, smartphones were used as a surrogate for the lower limbs 

but are not always worn at the hips. Since the first introduction of smartwatches and wristbands, 

a considerable amount of smart devices has been made commercially available, in data collection 

and connected care use cases, including smart in-sole and textiles (Vijayan et al., 2021). 

Smartwatches, wristbands and other IoT devices might allow subtracting the noise generated by 

arm swings and upper limbs activity.  
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Furthermore, energy expenditure, step count and MET-min provide a known unit of measure for a 

range of activities that have been well documented (Mancuso et al., 2007) (White et al., 2016). 

The measure of load rate is not standardised, and further studies might be able to map LRE 

magnitude to these metrics. Maintaining a diary is recommended to identify patterns of physical 

activity associated with seasonality (e.g., Christmas, summer holidays, travel, etc..). The questions 

presented in study 1 were reviewed with TRIFoRM (Hooper et al., 2015), which evaluates the 

psychological impact of using technology (Hooper et al., 2015). The dashboard of platforms like 

Strava and Fitbit has shown that the gamification (i.e., receiving trophies) and overall layout can 

motivate in performing more physical activity. This project was observational, so it was decided 

not to make the LRE analytics available to patients. More studies should be made on the impact of 

physio-promoting exercise and making recommendations based on remote monitoring and 

integrated dashboard as used in the Remora project (Dixon and Michaud, 2018). 

British Society of Rheumatology accepted the project's abstract (Study 1) for a poster 

presentation in Birmingham in 2017 (see Appendix G). The overall principle of the project 

received very positive feedback, precisely as no other known projects are executing similar scope, 

with a focus on patients with arthritis. Following the event, the project has been referenced in the 

context of smartphone apps that may aid home rheumatoid arthritis monitoring (Freeman, 2017). 

The project has also been referenced, amongst the CRF studies, on Southampton General Hospital 

website and attracted interest for recruitment (Southampton, 2016) with patients reaching out to 

take part as well as for general interest, notably by a consultant for Arthritis research Australia 

that would like to introduce the project in Australia. Study 3 is a joint effort with the University of 

Sydney, with results submitted to OARSI 2020 world congress and published (Yu et al., 2022). This 

project aimed to correlate physical activity with disease activity in the context of musculoskeletal 

disease. Specifically, passive monitoring has shown that bursts of LRE occur at a magnitude up to 

800 times higher than the mean LRE. Further studies should be done to evaluate the significance 

of musculoskeletal conditions and whether these represent micro fractures in the bone structure 

leading towards osteoarthritis. 

Finally, the methodology of this project was applied to a study to monitor LRE in the context of 

occupational activity, and a paper has been published using OApp™ (Wang et al., 2021). Studies 

have been made tracking weather and disease severity with smartphones (Reade et al., 2017). 

Therefore, studies beyond healthcare use cases could use passive smartphone monitoring e.g., to 

evaluate patterns in sleep, and digital dependencies. 
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8.3 Summary 

In summary, this project produced novel contributions in providing a methodology for monitoring 

load rate estimates using smartphones. The results of this thesis have shown a means to interpret 

load rate estimates that might support patients with musculoskeletal disease and other use cases. 

The app developed is now available on Google Play and is considered for commercialisation 

through a spinout with the University of Southampton. Further studies are needed, but the 

protocol has already been applied and published in the context of osteoarthritis and occupational 

paper with the key benefit of providing remote monitoring.  
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Appendix A PPI Questionnaire 

 
1.1 Q:  When you see your rheumatologist, can you recall how active your arthritis has 

been during the period since your previous visit? How would your rate this from 0 to 5? 

A: 0 – cannot remember at all 

  1 – can recall the past week in detail 

2 – the past month in detail 

3 – the past two months in detail 

4 – the past three months in detail 

5 – can recall the whole period in detail 

 
1.2 Q:  When you see your rheumatologist, can you easily list areas of pain and 

inflammation during the period since your previous visit? How would you rate this from 0 to 
5? 

A:  0 – cannot remember at all 

  1 – can recall the past week in detail 

2 – the past month in detail 

3 – the past two months in detail 

4 – the past three months in detail 

5 – can recall the whole period in detail 

 
1.3 Q:  Would you like your rheumatologist/GP to monitor your overall status (including 

pain and physical activity) between visits? 

A:  Yes    Additional comments: 

No 

Not sure 

 
1.4 Q:  Are you interested in how your physical activity (e.g., amount of walking) may 

influence your arthritis?  

A:  Yes    Additional comments: 

No 

Not sure 

 
2.1 Q:   Do you currently have a smartphone (the type of phone with a touch-sensitive 

screen)?  

A:  Yes 
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No 

Not sure  

 
2.1.1 Q: If not, would you like to have one? 

A: Yes 

 No 

 Not sure 

 
2.2 Q:   Which type?  

A:  iPhone 

Android 

Other 

Not sure 

 

 

 

 
2.3 Q:  Do you usually have your phone/smartphone with you?  

A:  0 – never 

1 – only pick it up to answer calls 

  2 – sometimes/not sure 

3 – most of the time, e.g. when at work 

4 – whenever you are out of the house 

5 – all the time 

 
2.4 Q:   How big is your phone/smartphone?  

A:  Please see annexes 

 

 
2.5 Q:  How often do you use smartphone apps to manage your everyday life (e.g. 

calendar, email, exercise, calorie counter)?  

A:  0 – never 

1 – very unlikely 

  2 – unlikely 

3 – neutral/not sure 
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4 – likely 

5 – very likely 

  
2.6 Q:  If you do use your smartphone in that way, which apps do you use? Please list 

them here. 

A:  

 

 

 

 
2.7 Q:   Do you think a smartphone app could support the treatment of your arthritis? How 

would you rate this from 0 to 5? 

A:   0 – never   Additional comments: 

1 – very unlikely 

  2 – unlikely 

3 – neutral/not sure 

4 – likely 

5 – very likely 

 
2.8 Q:  Would you be willing to use a smartphone app to support the treatment of your 

arthritis? How would you rate this from 0 to 5? 

A:  0 – never   Additional comments: 

1 – very unlikely 

  2 – unlikely 

3 – neutral/not sure 

4 – likely 

5 – very likely 

 
2.9 Q:  Would you be willing to use a smartphone app, which continuously monitors and 

records your physical activity in relation to your arthritis (e.g. whether you are sitting or 
walking)? How would you rate this from 0 to 5? 

A:  0 – never   Additional comments: 

1 – very unlikely 

  2 – unlikely 

3 – neutral/not sure 

4 – likely 
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5 – very likely 
2.10 Q: To record your physical activity, you would need to be carrying your smartphone. 

Would you be prepared to do this? 

A:  0 – never   Additional comments: 

1 – very unlikely 

  2 – unlikely 

3 – neutral/not sure 

4 – likely 

5 – very likely 

 
2.11 Q: To support the management of your condition, you would also need to input 

information about levels of pain and activity. How likely would you be prepared to do this? 

A:  0 – never   Additional comments: 

1 – very unlikely 

  2 – unlikely 

3 – neutral/not sure 

4 – likely 

5 – very likely 

 

 

 

Annexe: Screen size comparison (Q 2.1.3): 
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Appendix B PPI survey summary 

Summary 

Project Continous Monitoring Patient Assessment Rhematoid Arthritis 

Scope  Survey provided to fill prior to PPI session 

Date  11th Feb 2015 

Participants Jo, Chris, Susan and Jimmy 

PPI 9 participants 

Survey results Survey Results' 

    

Questions Answer Summary Answer 

CURRENT TREATMENT QUESTIONS  

1.1 When you see 

your 

rheumatologist, can 

you recall how 

active your arthritis 

has been during the 

period since your 

previous visit? How 

would your rate this 

from 0 to 5? 

 0 - cannot remember at all   

 1 - can recall the past week in detail 1 

 2 - the past month in detail 3 

 3 - the past two months in detail   

 4 - the past three months in detail 1 

 5 - can recall the whole period in detail 4 

1.2 When you see 

your 

rheumatologist, can 

you easily list areas 

of pain and 

 0 - cannot remember at all   

 1 - can recall the past week in detail   

 2 - the past month in detail 4 

 3 - the past two months in detail   
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inflammation during 

the period since 

your previous visit? 

How would you rate 

this from 0 to 5? 

 4 - the past three months in detail   

 5 - can recall the whole period in detail 5 

1.3 Would you like 

your 

rheumatologist/GP 

to monitorÂ your 

overall status 

(including pain and 

physical activity) 

between visits? 

1 - Yes 6 

2- No 2 

3 - Not sure 1 

1.4 Are you 

interested in how 

your physical 

activity (e.g., 

amount of walking) 

may influence your 

arthritis? 

1 - Yes 8 

2- No   

3 - Not sure 1 

APP QUESTIONS 

2.1 Do you currently 

have a smartphone 

(the type of phone 

with a touch-

sensitive screen)? 

1 - Yes 8 

2- No 1 

3 - Not sure   

2.1.1 Would you like 

to have one? 

1 - Yes   

2- No   

3 - Not sure 1 

2.2 Which type? 1 - iPhone 3 
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2- Android 5 

3 - Other 1 

4 - Not sure   

2.3 Do you usually 

have your 

phone/smartphone 

with you? 

0 - Never   

1 - only pick it up to answer calls   

2 - sommetimes/not sure   

3 - most of the time   

4 - whenever you are out of the house 4 

5 - all the time 5 

2.4 How big is your 

phone/smartphone

? 

5.5 inches 4 

4.7 inches 2 

4 inches 1 

N/A 1 

2.5 How often do 

you use smartphone 

apps to manage 

your everyday life 

(e.g. calendar, 

email, exercise, 

calorie counter)? 

0 - never 1 

1 - very unlikely    

2 - unlikely  1 

3 - neutral/not sure   

4 - likely 2 

5 - very likely 5 

2.6 If you do use 

your smartphone in 
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that way, which 

apps do you use? 

Please list them 

here. 

 

  
 

  
 

  

2.7 Do you think a 

smartphone app 

could support the 

treatment of your 

arthritis? How 

would you rate this 

from 0 to 5? 

0 - never   

1 - very unlikely    

2 - unlikely    

3 - neutral/not sure 5 

4 - likely 3 

5 - very likely 1 

2.8 Would you be 

willing to use a 

smartphone app to 

support the 

treatment of your 

arthritis? How 

would you rate this 

from 0 to 5? 

0 - never   

1 - very unlikely    

2 - unlikely    

3 - neutral/not sure 4 

4 - likely 1 

5 - very likely 4 

2.9 Would you be 

willing to use a 

smartphone app, 

which continuously 

monitors and 

records your 

physical activity in 

relation to your 

arthritis (e.g. 

whether you are 

0 - never   

1 - very unlikely    

2 - unlikely  1 

3 - neutral/not sure 2 

4 - likely 2 

5 - very likely 4 
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sitting or walking)? 

How would you rate 

this from 0 to 5? 

2.10 To record your 

physical activity, 

you would need to 

be carrying your 

smartphone. Would 

you be prepared to 

do this? 

0 - never   

1 - very unlikely    

2 - unlikely  1 

3 - neutral/not sure 1 

4 - likely 2 

5 - very likely 5 

2.11 To support the 

management of 

your condition, you 

would also need to 

input information 

about levels of pain 

and activity. How 

likely would you be 

prepared to do this? 

0 - never   

1 - very unlikely    

2 - unlikely    

3 - neutral/not sure 1 

4 - likely 3 

5 - very likely 5 

  



 

156 

Appendix C Clinic shadowing notes 

Notes from shadowing Southampton General Hospital’s Monday clinics. 

 
> Reassurance and Communication is key with patients,  

• They feel most vulnerable when at doctor appointment  
> Women that spoke about her divorce, husband having an affair when not asked. 

• Patient come to hospital are usually worried and want to leave with a feeling that they’ve 
been taken care of and reassured – not with doubt  
> Young girl had her MRI ok, not much pain but complaining of random right knee pain 
(chronic pain)  

• Another one following knee pain surgery got reassured by being explained and walked 
through. Happy to avoid MRI once joint examination completed  

• Once  
• Reassure can be done by testing even when there is nothing 

 
 
> Many patients routed to RA visit even when not needed 

• Need to check if biomechanical rather than inflammatory  
 Patient that had surgeries when shouldn’t have. When still in pain, ended up in RA 

department  
 Women in her 50s suffering of back pain, shoulder and neck pain. Should go to physio 

as more exercises and a pillow might help 
• Need to check if other disease related (diabetes, overweight)  

> patient blood sugar checked – no inflammatory but blood sugar fluctuates 
 
 
> Routine visits 

• when no specific disease activity – however this reflects current state rather than full 
period 

• next visit in 6 months 
• routine visit in 1 year 

 
 
> Medicine and disease awareness 

• patient there for her daughter (uncapable to stand for herslf – incapacitated by JIA 
arthritis) knew exactly what her daughter tried and  

• husband supporting his wife was answering the questions 
• medication is always discussed to reach an agreement 
 should we experiment a bit more or less?  
 Should we try a different injection? 
 Patient that wanted to stay on tablet rather than injections due to potential side 

effect (hair loss) 
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Appendix D Study 1: Patient feedback 

  

Patients id

1)    Introduction, instructions and tutorial on using the 
smartphone and RApp

2)    How  easy does RApp appear to use?
1/10 It seems ok 3/10 seems ok 0/10 Very easy. 7/10 Very easy. Questions are not clear.

3)    Do you think using RApp could affect your Rheumatoid 
Arthritis and its treatment in anyw ay?

0/10 No 0/10 No In the future, possibly.

4)    How  do you feel about using RApp?
2/10 Apprehensive of using it 10/10 Good as could help other people (being 

part of a research)
No worries, even if not for me it's still 
beneficial.

Up for it, good, would be better if could 
use on any phone.

5)    Generally how  confident are you that Internet based 
technologies actually do w hat they claim to do?

7/10 Love using internet and can find 
anything with Google.

8/10 Confident 5/10 that they do what they claim. 10/10 Very confident. The way it will be in the 
future.

6)    Generally how  helpful do you f ind Internet technologies 
in supporting you to achieve your goals?

8/10 Very good Don’t use muh tech, know it's there if 
need it, amount used would be 5/10. 
Don’t rely much on tech but likes it 
when need it.

7/10 Not too used, Satnav and FB. 10/10 Extremely helpful.

7)    Generally how  predictable do you think Internet 
technologies in carrying out w hat you expect them to do?

8/10 Very good 9/10 High expectations of technology 7/10 Very reliable 10/10 Very predicatble.

Other comments:

Other comments:

1)    How  easy w as it to use RApp?

1/10 Easy once explained. 1/10 Very straigth forward. 0/10 Easy 0/10 Easy 8/10 Easily used.
P&I: doesn’t always work when press 
the buttons.
Q: Easy to do. Never drag the VAS, just 
tap. Difficult and hard to know how to 
address, likely to always be the same.
Knee was really bad in that period.
If was run by specialist, would listen 
the recomendation in form filling.
- Liked RAPID3 scoring better. Easier to 
do than 0 to 10 as 0 to 10 is very 
difficult to know how to gage. 10 
implies disability, 7 hurts but can live 
with it, it depends on people. Scale 
from "without any difficulty" to "unable 
to do" is more useful for patient 
perspective. Explanation is very 
important to know how to answer.

2)    How  easy w as it to understand RApp?

2/10 Questions every day is too much. Long 
questionnaire 3 times per week would 
be better. Same for P&I but to keep 
open for when flare happen. Using 
became part of routine and was not 
hard to do, takes 2 min.

1/10 Self explanatory. Flows on its own. Very 
easy. Not complicated in any ways.

0/10 Easy but reports not always working. 
Good to have: to see the difference 
after stopped the medication (2 weeks 
before) as had MTX stopped for 2 
weeks then back on lower doses. Could 
see the trend.
Not used when was in Venice.

8-9/10 8/10 Questions were not that easy.

3)    Did using RApp make you feel positive about your 
Rheumatoid Arthritis?

8/10 Encourage to move more, did lots of 
steps.
Positive as need to move with RA.

Didn’t make feel any different. As positive as can be, it's got its 
purpose.
Would like to see the trend.
Ability to look back would be usefull for 
GP&nurses.

- Not in pain so don't think about pain. 
So more of a negative because had to 
think about it while feel well.
- Report everydat is too much when no 
pain.
- But if was in pain, it would be a 
comfort and positive.

Positive. Scale helps put things in 
contrast.

4)    Did using RApp make you feel negative about your 
Rheumatoid Arthritis?

No, you got to live with it. Didn’t make feel any different. Not at all. See above. Didn’t feel negative at all.

5)    Could you highlight 5 positives comments?

Tech is the way forward. Info callected can be good.
Not difficult to use.

Good app and good for RA. Ability to 
monitor.
Easy to use and to understand. 
People would use it. Layout is good and 
self explanatory for users.

- Easy to use.
- Notification would be good for 
questionnaire, medication. 
- Reporting (Fitbit style).
- Simplified UI would be good.

- Easy to use.
- Made feel good, felt as was being 
recorded, good psychologically. 
- Valid doctor Q, helps understand RA 
as a disease.
- Light weight app, doesn’t take long to 
load.

6)    Could you highlight 5 negative comments?
Can't think of anything negative. No 
hardship in using RApp.

Nothing negative. Would be good on 
iPhone. Not all joints are included (for 
eg, elbow)

Not fully working. - If not in pain, make think about it.
- Enter infos but don't get anything from 
it.

Xperia is bad, would use it on his 
phone. 
Couldn’t see results/reporting.

7)    Any additional comments?

Battery was draining even without 
using the phone. Last for about 2 days.

Nothing. When is it available, please keep up to 
date when can be used.

Son has diabeteses and uses medical 
dev ice to record and upload the 
results. Then goes every 3 months at 
the clinic. Also self manage a bit by 
checking once per week.

8)    Would you use RApp again?

Yes Yes, no personal use but for other 
people. Could be used to show history 
to clinicians. Would use it if on App 
store (even for nominal payment).

Yes It depends on disease activity, so not 
really. But would use if newly 
diagnosed.

10/10 Yes, not without stats to use for doctor 
recommendations.

9)    How  w ell do you think this app achieves your goals?

App side is more directed to clinicians. 
Need to incorporate more to be 
patient focus (for eg, include steps).

Don't know how to answer. Good.

See above.

If there were a doctor involved, it 
would achieve taking the results.

10) How  much do you think you can rely on it?

10/10 Perfect, only problem was upload to 
server.

10/10 Reliable except for logging. Battery 
charge lasts only for a day (vs iphone 
that last 3 days)

No problems, no issues, no crashes. 9/10 Completely 10/10 Never crashed. Logging to re-enable 
when phone dies.

11) How  much do you trust the app's performance?

9/10 Trust that it's doing its job with taking 
the information. Same as when 
submiting something online.

7/10 Good. Logging not working and if 
battery is flat, needs to re-enable.

Haven't seen the report but fine. 9/10 No reasons to questions it. 
Trustworthy.

See above.

12) How  secure do you think the processes behind the app 
are?

10/10 Very secure I would think. Security is 
very important. Anything that I don’t 
understand, I don’t touch. For eg, don’t 
accept the friends requests from 
people I don’t know. 

Fine Fine, no personal data. If someone 
wants to see what I've done for a day, 
that's ok.

9/10 Hadnt thought about it so must mean 
that trust it. Don’t put anything 
confidential, it doesn’t matter who 
gets hold of it (no credit card details).

10/10 Trust it

13) Do you think anyone could pretend to be you or access 
your data?

No People get your data. If nothing to hide, 
it doesn’t matter.

No. Yes. Anyone in the family could but not 
sure anyone would want to. There is no 
PIN or Password.

Nothing personal and believe it's 
secured. If someone does, doesn’t 
really care.

14) How  predictable do you think the app w hen handling 
your input or recording your activity?

Very predictable, the questions are 
always the same.

Fine for recording. Can't see any 
problems.

Can't put so many different questions. Don’t understand the questions. Predicatable, questions are the same 
every day. Mixing might be good. No 
reward.

15) What are your thoughts about how  much you can trust 
the processes behind the app?

Can't trust completely. Nothing specifial. No thoughts. Hadnt thought about it. Would trust it. See above.

16) Do you think that the people w ho might provide the app 
have your best interests at heart?

Yes, of course. Otherwise would not be 
able to sell it.

- Yes, if not charged for a lot of money. 
- If funded by NHS, for well being.
- If Apple, for the money. Even if 1gbp, 
for the money.

Yes. If payable, would use it if tie with a 
doctor/GP.

Yes, cant think of any other reasions to 
do it.

Guess so. They want to keep making 
money. Yes and No.

17) How  confident are you that the app w ill continue to 
provide benefits in the future?

Yes, only will get better as this is for 
research.

Very confident. Confident. Yes, I think it will after a few teaks: 
usefull for patients and clinicians. 
Makes you feel more in control and 
involved.

10/10 More info is always better.

18) Tell us w hether or not you trust the purposes to w hich 
the app is being used to help your care.

Yes, trust completely also because 
done through the hospital. Credibility 
of Medical body is important.

Yes, definitely to help. Trust it. I do trust the purpose. Knew what was going into and that 
wouldn’t actually being used for the 
diseases. Don't trust it yet and 
"benefits you, not me". 
The bigger picture is that when it goes 
live, it will help.

Other comments:

Visit 3 (Patient’s closing review)

- Made walk more
- Would definitely use the app if monitoring was 
included (climb staris..), include heart monitor.
- Questions don't mean much, just things that 
happen. Can't see the point of it. Infos beneficiat 
to professionals, not patient.
- Feels like need to record P&I. For patient, it's 
just pain. No point in knowing it and would just 
take a painkiller.
- Some people like things monitored but are not 
really monitoring often.

- Questions not relevant for daily use. Once a 
week would be more generalised.
- Questions might be more relevant for people 
with higher disease activity.
- P&I once per day is ok. Intensity is usefull (1 to 
10 would be too much). One of the wirts hurts 
more than the other and so can record.
- On Questionnaire, the scale is the wrong way 
around. 

- Can't remember daily, great for nurses to look 
at.
- VAS scale a bit difficult to use. Want to set it to 
0 but when N/A or would log it. N/A means 0.
- If app is available in 6 months (ie study 2), 
would use it if can be used as part of treatment 
progress or results visible to nurses.
- In GP clinics, the form gives an input just for the 
day, not the last month. When stop the 
medication, pain can come back > more input.
- Happy to use even if not part of the study.
- I can see a future in it.

Hates the phone as battery doesn’t last.

Visit 2 (Patient follow up)

- Fitibit is encouraging to do 10k steps
- Does more in the morning, tired in the 
afternoon
- Would like to see the reporting even when feel 
good. For eg, it is rewarding to see when doing 5k 
steps

- Iphone has already an health app formonitoring 
steps. Fitbit seems to track more steps (806 
through iphone vs 1251 for Fibit) but wear Fitbit 
longer.
- Could fill the form every day.
- No logs for period of 3rd to 21st of Sept 2016 but 
happy to extend participation in the study.

- Would use as ok for now.
- Not too intensive.
- Just bought a new phone but will stick to Xperia
- When switch between P&I, it should be 0 (not 
the last value entered).
- The dates should show the reports.

- The scale goes back to previous screen.
- Questionnaire summary, swipe to go back takes 
to the beginning.
- P&I, enter pain then tick does not go to 
Inflamation.
- Missing joints: Ankle, hips, neck, back.
- Questions (RAPID3): "physical well-being". Label 
"without any", difficulty... so scale is not clear. 
Should be on the scale.
- Skeleton: which is left or right (is it mirrored 
image of you?). Maybe highlight if left or right. 
Click on the joint is nice but should be clearer.
- P&I: 0 to 5 is nice to record.

- Not complicated.
- The weekly questionnaire doesn’t seem related 
to RA. 
- Phone keeps running out of battery (1.5 day), 
sometime dead battery.
- Plays drum 3 times per week (for 2-3 hours). 
Could affect thte fitbit reading. Don’t keep the 
phone.

Visit 1 (Patient’s introduction/recruitment)

Uses Samsung Iphone 5 for text and emails Used to have Xperia Z5 compact (ie same) then 
bought X5.
Uses the Xperia as primary (put personal Sim 
and provided with a cover)

- The app is missing hips and neck joints. - Questions: Maybe add a bubble with 
clarification of what they mean (similar to 
hospital forms).
- Titel of P&I could change color of P&I.

001 002 003 004 005
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Appendix E Study 2: SP & SW (x, y and z) 

The figures below show the accelerometer’s variations of the smartphone and smartwatches 

worn over the recruitment period on all axis (x, y and z) for each participant. 

 

SP & SW raw acceleromter (x, y and z) over time (Participant 1) 

 

SP & SW raw acceleromter (x, y and z) over time (Participant 2) 
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SP & SW raw acceleromter (x, y and z) over time (Participant 3) 

 

SP & SW raw acceleromter (x, y and z) over time (Participant 4) 
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SP & SW raw acceleromter (x, y and z) over time (Participant 5) 

 

SP & SW raw acceleromter (x, y and z) over time (Participant 6) 
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SP & SW raw acceleromter (x, y and z) over time (Participant 7) 

 

SP & SW raw acceleromter (x, y and z) over time (Participant 8) 
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SP & SW raw acceleromter (x, y and z) over time (Participant 9) 

 

SP & SW raw acceleromter (x, y and z) over time (Participant 10) 
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Appendix F Study 2: SP & SW jerk (mean) 

The plots below show the mean of jerks calculated from each axis over time for both SW and SP. 

 

SP & SW jerk (mean) over time (Participant 1) 

 

SP & SW jerk (mean) over time (Participant 2) 
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SP & SW jerk (mean) over time (Participant 3) 

 

SP & SW jerk (mean) over time (Participant 4) 

 

SP & SW jerk (mean) over time (Participant 5) 
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SP & SW jerk (mean) over time (Participant 6) 

 

SP & SW jerk (mean) over time (Participant 7) 

 

SP & SW jerk (mean) over time (Participant 8) 
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SP & SW jerk (mean) over time (Participant 9) 

 

SP & SW jerk (mean) over time (Participant 10) 

 

 

  



 

167 

Appendix G Study 2: SP & SW Phenotypes 

The figures below show the phenotypes and characteristics generated for all participants on both 

SP & SW. 

 

SP & SW jerk (mean) over time (Participant 1) 

 

SP & SW jerk (mean) over time (Participant 2) 
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SP & SW jerk (mean) over time (Participant 3) 

 

SP & SW jerk (mean) over time (Participant 4) 

 

SP & SW jerk (mean) over time (Participant 5) 
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SP & SW jerk (mean) over time (Participant 6) 

 

SP & SW jerk (mean) over time (Participant 7) 

 

SP & SW jerk (mean) over time (Participant 8) 
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SP & SW jerk (mean) over time (Participant 9) 

 

SP & SW jerk (mean) over time (Participant 10) 
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Appendix H Study 3: Patient list 
 

Baseline 2 Months 

Patient ID Phone ID Start End Phone ID Start End 

1 Samsung 1 04/06/2018         

2 Samsung 2 26/06/2018 03/07/2018 Samsung 11 05/10/2018 11/10/2018 

3 Samsung 3 19/06/2018 26/06/2018 Samsung 9 13/10/2018 19/10/2018 

4 Samsung 4 03/07/2018 09/07/2018 Samsung 4 25/09/2018 01/10/2018 

5 Samsung 5 26/06/2018 02/07/2018 Samsung 2 26/09/2018 02/10/2018 

6 Samsung 6 02/07/2018 08/07/2018 Samsung 3 04/10/2018 11/10/2018 

7 Samsung 7 03/07/2018 10/07/2018 Samsung 4 09/10/2018 15/10/2018 

8 Samsung 8 09/07/2018 15/07/2018       

9 Samsung 9 09/07/2018 15/07/2018 Samsung 11 11/10/2018 17/10/2018 

10 Samsung 10 10/07/2018 16/07/2018 Samsung 5 27/09/2018 03/10/2018 

11 Samsung 2 10/07/2018 16/07/2018 Samsung 2 04/10/2018 11/10/2018 

12 Samsung 3 17/07/2018 23/07/2018       

13 Samsung 4 16/07/2018 22/07/2018 Samsung 7 11/10/2018 17/10/2018 

14 Samsung 5 16/07/2018 23/07/2018 Samsung 2 17/10/2018 23/10/2018 

15 Samsung 6 16/07/2018 23/07/2018 Samsung 8 11/10/2018 17/10/2018 

16 Samsung 7 23/07/2018 29/07/2018 Samsung 10 30/10/2018 05/11/2018 

17 Samsung 8 23/07/2018 30/07/2018 Samsung 4 29/10/2018 04/11/2018 

18 Samsung 9 30/07/2018 05/08/2018 Samsung 6 28/10/2018 03/11/0218 

19 Samsung 10 30/07/2018 05/08/2018 Samsung 8 28/10/2018 04/11/2018 

20 Samsung 2 31/07/2018 06/08/2018       

21 Samsung 3 31/07/2018 06/08/2018 Samsung 3 19/10/2018 25/10/2018 

22 Samsung 4 06/08/2018 12/08/2018 Samsung 4 08/11/2018 14/11/2018 

23 Samsung 5 06/08/2018 12/08/2018 Samsung 11 10/11/2018 16/11/2018 

24 Samsung 6 07/08/2018 14/08/2018 Samsung 6 09/11/2018 15/11/2018 

25 Samsung 7 08/08/2018 14/08/2018 Samsung 2 06/12/2018 12/12/2018 

26 Samsung 9 13/08/2018 19/08/2018 Samsung 10 09/11/2018 15/11/2018 

27 Samsung 10 13/08/2018 19/08/2018   16/11/2018 22/11/2018 

28 Samsung 2 14/08/2018 20/08/2018 Samsung 5 08/11/2018 14/11/2018 

29 Samsung 4 20/08/2018 26/08/2018 Samsung 10 30/11/2018 06/12/2018 

30 Samsung 5 21/08/2018 27/08/2018 Samsung 4 29/11/2018 06/12/2018 

31 Samsung 6 21/08/2018 27/08/2018       

32 Samsung 7 21/08/2018 27/08/2018 Samsung 6 27/11/2018 03/12/2018 

33 Samsung 8 28/08/2018 03/09/2018 Samsung 13 31/12/2018 06/01/2019 
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34 Samsung 10 28/08/2018 03/09/2018 Samsung 8 05/12/2018 11/12/2018 

35 Samsung 2 03/09/2018 09/09/2018 Samsung 3 13/12/2018 19/12/2018 

36 Samsung 3 04/09/2018 10/09/2018 Samsung 11 04/12/2018 10/12/2018 

37 Samsung 5 04/09/2018 10/09/2019 Samsung 12 01/12/2018 07/12/2018 

38 Samsung 6 10/09/2018 16/09/2018 Samsung 8 21/12/2018 27/12/2018 

39 Samsung 4 11/09/2018 17/09/2018 Samsung 9 03/12/2018 10/12/2018 

40 Samsung 9 01/10/2018 07/10/2018 Samsung 4 15/12/2018 21/12/2018 

41 Samsung 7 17/09/2018 23/09/2018 Samsung 6 02/01/2019 08/01/2019 

42 Samsung 8 18/09/2018 24/09/2018 Samsung 2 21/12/2018 27/12/2018 

43 Samsung 10 25/09/2018 01/10/2018 Samsung 11 14/12/2018 20/12/2018 

44 Samsung 6 01/10/2018 07/10/2018 Samsung 10 14/12/2018 20/12/2018 

45 Samsung 7 01/10/2018 07/10/2018 Samsung 5 14/12/2018 20/12/2018 

46 Samsung 8 02/10/2018 08/10/2018 Samsung 7 14/12/2018 20/12/2018 

47 Samsung 5 08/10/2018 14/10/2018 Samsung 12 26/12/2018 01/01/2019 

48 Samsung 10 08/10/2018 14/10/2018 Samsung 10 27/12/2018 02/01/2019 

49 Samsung 6 09/10/2018 15/10/2018 Samsung 10 22/01/2019 28/01/2019 

50 Samsung 3 05/11/2018 11/11/2018 Samsung 2 02/02/2019 08/02/2019 

51 Samsung 2 05/11/2018 11/11/2018 Samsung 11 21/02/2019 27/02/2019 

52 Samsung 7 05/11/2018 11/11/2018 Samsung 11 31/01/2019 06/02/2019 

53 Samsung 9 06/11/2018 12/11/2018       

54 Samsung 12 12/11/2018 19/11/2018 Samsung 8 04/02/2019 10/02/2019 

55 Samsung 8 13/11/2018 19/11/2018 Samsung 13 31/01/2019 06/02/2019 

56 Samsung 3 19/11/2018 25/11/2018 Samsung 4 19/02/2019 25/02/2019 

57 Samsung 5 26/11/2018 02/12/2018 Samsung 12 22/02/2019 28/02/2019 

58 Samsung 2 08/01/2019 14/12/2018       

59 Samsung 3 28/01/2019 03/02/2019 Samsung 8 10/05/2019 16/05/2019 

60 Samsung 9 29/01/2019 04/02/2019 Samsung 7 24/04/2019 30/04/2019 

61 Samsung 12 29/01/2019 04/02/2019 Samsung 3 24/04/2019 30/04/2019 

62 Samsung 10 04/02/2019 10/02/2019 Samsung 12 29/05/2019 04/06/2019 

63 Samsung 6 11/02/2019 17/02/2019 Samsung 6 11/06/2019 17/06/2019 

64 Samsung 7 18/02/2019 24/02/2019 Samsung 10 29/05/2019 04/06/2019 

65 Samsung 13 26/02/2019 04/03/2019 Samsung 5 28/05/2019 03/06/2019 

66 Samsung 2 05/03/2019 11/03/2019 Samsung 3 06/06/2019 13/06/2019 
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Appendix I Study 3: Phenotype characteristics 

The table below describes the phenotype characteristics for all patients. 

 

ID Session Peak Slope CMS Peak Slope CMS ID Session Peak Slope CMS Peak Slope CMS
2 1 1.2 -1.5 0.45 0.2 -1.5 0.98 33 1 0.8 -1.4 0.89 0.2 -1.6 0.96
2 2 1 -1.5 0.84 0.2 -1.5 0.99 33 2 1.1 -1.5 0.91 0.2 -1.5 0.98
3 1 1 -1.7 0.92 0.2 -1.5 0.98 34 1 1.1 -1.3 0.58 0.1 -1.4 1
4 1 1 -1.6 0.66 0.2 -1.5 0.98 34 2 1.2 -1.7 0.78 0.1 -1.5 1
5 1 1.1 -1.4 0.72 0.2 -1.4 0.98 35 2 1.1 -0.5 0.71 0.1 -1.3 1
5 2 1 -1.3 0.71 0.2 -1.4 0.99 36 1 0.6 -1.5 0.66 0.2 -1.4 0.98
7 2 1 -1.3 0.76 0.2 -1.4 0.98 37 1 1 -1.6 0.77 0.2 -1.7 0.98
8 2 1.3 -1.1 0.37 0.1 -1.1 0.98 39 1 1 -1.3 0.7 0.2 -1.4 0.99
9 2 1 -1.6 0.63 0.1 -1.4 1 40 1 0.8 -1.3 0.61 0.1 -1.3 0.99

11 2 1 -1.2 0.56 0.2 -1.2 0.98 43 2 1 -1.6 0.81 0.2 -1.6 0.98
12 2 1.3 -1.1 0.35 0.1 -1.1 0.98 44 1 0.7 -1.2 0.81 0.2 -1.2 0.99
14 1 1 -1.5 0.83 0.1 -1.6 1 44 2 1 -1.2 0.58 0.2 -1.2 0.99
15 1 1 -1.6 0.78 0.2 -1.6 0.98 47 1 1 -1.1 0.6 0.1 -0.9 0.99
16 1 0.9 -1.3 0.69 0.2 -1.5 0.98 47 2 0.7 -1.1 0.8 0.2 -1.1 0.99
16 2 1.1 -1.2 0.89 0.1 -1.4 1 49 1 1 -1.1 0.8 0.2 -1.5 1
18 1 0.9 -1.3 0.58 0.2 -1.2 0.94 50 1 0.7 -1.2 0.86 0.1 -1.2 0.99
18 2 0.9 -1.2 0.54 0.1 -1.1 0.99 51 1 0.8 -1.3 0.78 0.1 -1.4 1
19 1 0.9 -1.1 0.69 0.1 -1.1 1 51 2 0.8 -1.6 0.53 0.1 -1.5 0.97
20 2 1.3 -1.1 0.36 0.1 -1.1 0.98 52 2 1 -1.4 0.8 0.2 -1.4 0.98
21 2 1 -1.1 0.66 0.2 -1.3 1 53 1 1 -1.3 0.54 0.2 -1.4 0.98
22 1 1 -1.7 0.78 0.2 -1.4 0.97 53 2 1.3 -1.1 0.37 0.1 -1.1 0.98
23 2 0.9 -1.2 0.48 0.2 -1.1 0.95 54 2 1.1 -1.3 0.87 0.2 -1.4 0.99
25 2 1 -1.3 0.59 0.2 -1.3 1 55 2 1.1 -2 0.77 0.1 -2.4 0.99
27 1 1 -1.6 0.56 0.1 -1.5 0.98 58 2 1.3 -1.1 0.36 0.1 -1.1 0.98
27 2 0.9 -1.6 0.65 0.1 -1.5 0.98 60 1 1 -1.4 0.43 0.1 -1.5 1
28 1 1 -1.8 0.82 0.2 -1.6 0.98 61 1 1 -1.2 0.9 0.1 -1.5 1
28 2 1.1 -1.2 0.72 0.2 -1.3 0.99 61 2 1.1 -1.2 0.77 0.1 -1.4 1
29 1 1 -1.1 0.84 0.1 -1.6 0.99 63 2 0.9 -1.4 0.75 0.1 -1.4 0.97
30 2 1.1 -0.5 0.58 0.1 -1.9 1 64 1 1 -1.5 0.58 0.2 -1.4 0.98
31 2 1.3 -1.1 0.36 0.1 -1.1 0.98 65 1 1 -1.4 0.61 0.2 -1.4 0.98
32 2 1 -1.3 0.5 0.1 -1.3 1 65 2 1 -1.4 0.57 0.2 -1.3 0.97

66 1 1.1 -1.4 0.75 0.1 -1.5 1

Raw Interpolated Raw Interpolated
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Appendix J NHRA Docs 
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Appendix K BSR (April 2017) Poster & Abstract  

 

 

 

Title: 
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Rheumatoid Arthritis, a study of continuous monitoring of physical activity using smartphones 

Background: 

Measuring disease activity to assess the effects of medical treatment for patients with 

rheumatoid arthritis (RA) is well reported.  However, far less information on quantity and quality 

of day-to-day physical activity is available. RA causes pain and stiffness that discourages physical 

movement and reduces mobility. The aim of our study is to demonstrate that continuous 

measurement of RA patient activity, recorded using a non-intrusive smartphones-based approach, 

can be used as an objective and reliable input to current disease activity tools used. 

Method:  

Commercial activity monitors focus on quantitative data including steps count and calories 

burned. The novelty of our approach is to gather smartphone sensor data to analyse rates of 

acceleration (jerk) and calculate metrics related to impact and joint loading. Men and women 

aged 36-65 diagnosed with rheumatoid arthritis for 4-23 years completed a questionnaire and 

gave feedback during a focus group session to assess the design of a smartphone app and scope 

the requirements according to real RA patients. 

Truly continuous logging of acceleration is too resource intensive and affecting everyday use of 

the smartphone. We therefore developed an intermittent random ‘Monte-Carlo’ strategy of 

sampling activity that runs in the background on the phone, unnoticed by the user. From this we 

can obtain statistically rigorous parameters relating to physical activity. 

Using the app, patients can also record self-assessed pain and inflammation as well as perceived 

physical activity via daily questionnaire (BSR and RAPID3). The user interface also includes self-

reporting of the DAS28 count, with addition of an intensity factor introduced to highlight how 

painful and/or swollen a joint is (0-4). Activity and self-assessment are regularly uploaded to a 

cloud based Azure server to mitigate the smartphone’s storage limitation and to allow 

analysis/visualization of results through a web-based interface. 

Results: 

The app is currently being trialled by patients (six weeks) and we have preliminary data for 

diagnosed RA and non-RA active participants. Commercial pedometer worn at the wrist shows a 

daily average of step count, sedentary and active time. The activity recorded through smartphone 

sensors shows different information and that the most frequent low activity level follows a linear 

trend ~0.25 N/kg/s for the RA patient and roughly x10 higher for the healthy participant. Beyond 

the region of peak activity, both distributions become linear (on the log/log scale) but with 
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noticeably different trends. Furthermore, the spikes of mean jerk recorded highlight the intensity 

of load generated that the joints withstand.  

Conclusion: 

It is possible to design an app looking at the quality of quantitative movement that is both usable 

and acceptable by RA patient.  Preliminary data suggests the promise of using activity probability 

distribution to assess patient’ physical activity. 
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Appendix L Git repository and best practices 

Branch strategy: 

1) Master:  

To simplify and limit the setup changes, we keep the “Master” branch as the testing branch, i.e. 

this the branch of code to test with. 

2) Release: 

It’s important to ensure that we have a working version at any point of time. The “Release” 

branch is to be kept as the branch of working version of the app. Once we all contributors agree 

with a feature (that means that is has been tested and confirmed working), then the feature 

branch can be merged to this Release branch. 

3) Feature specific: 

The changes are very difficult to track and in general, it is best practice to work on a specific 

features/work/fixes at a time and so for each new major work, a new branch should be added to 

be specific to that specific feature, e.g. new branches added specific to new db changes, service 

logic, SW notifications… 

ADT/Git:  

There is no need to reinstall or create a new project each time, tracking can be done on the local 

version.  

1) Version control: 
Very useful to check that the code on the local environment is the code you meant to be. 

- Local changes tab: 
Open the “version control” view at the bottom of ADT and if you make a change to the 

code in your local environment, it will straight away. 

 
 

- Log tab: 
This shows you all the branch versioning.  
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If you click on any of the commits, you can see the details on the right panel. 

 
 

- Files diff: 
Double click on the file that you want to further look at from the right panel will open 

a diff panel so you can browse the highlighted changes. 

 
2) Update the project: 

To pull the code, the blue ADT shortcut can be used. Assuming being in the correct local 

folder, merge will make sure to have the latest code from the said branch. 

- Merge: 
Eq to git fetch and git merge 

- Rebase: 
Eq to git fetch and git rebase 
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3) Branch selection: 
The Git branch that worked on can be seen at the bottom right of ADT. 

 
From there, you can switch between branches: 

- “Local branches”:  
If working on multiple features at a time, allows to switch the local version.  

- “Remote branches”: 
This is what actually does get uploaded to Git. 

- “Checkout”: 

Loads the version of the files associated to the branch selected. It will prompt to 
save/commit your changes if you try to checkout from git while having worked on 
something. 
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ADT shortcut to commit the changes to git. 
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ADT/Git setup: 

1) Sign up and create a GitHub account in www.github.com. 
2) Download git from https://git-scm.com/downloads and install it in your system. 
3) Open the project in android studio and go to File -> Settings -> Version Control -> Git. 
4) Click on test button to test "path to Git executables". If successful message is shown 

everything is ok, else navigate to git.exe from where you installed git and test again. 
5) Go to File -> Settings -> Version Control -> GitHub. Enter your email and password used to 

create GitHub account and click on OK button. 
6) Then go to VCS -> Import into Version Control -> Share Project on GitHub. Enter 

Repository name, Description and click Share button. 
7) In the next window check all files inorder to add files for initial commit and click OK. 
8) Now the project will be uploaded to the GitHub repository and when uploading is finished 

we will get a message in android studio showing "Successfully shared project on GitHub". 
Click on the link provided in that message to go to GitHub repository. 

 

 

 

http://www.github.com/
https://git-scm.com/downloads
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