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Abstract. The field of Knowledge Tracing (KT) aims to understand
how students learn and master knowledge over time by analyzing their
historical behaviour data. To achieve this goal, many researchers have
proposed KT models that use data from Intelligent Tutoring Systems
(ITS) to predict students’ subsequent actions. However, with the devel-
opment of ITS, large-scale datasets containing long-sequence data began
to emerge. Recent deep learning based KT models face obstacles such as
low efficiency, low accuracy, and low interpretability when dealing with
large-scale datasets containing long-sequence data. To address these is-
sues and promote the sustainable development of ITS, we propose a
LSTM BERT-based Knowledge Tracing model for long sequence data
processing, namely LBKT, which uses a BERT-based architecture with
a Rasch model-based embeddings block to deal with different difficulty
levels information and an LSTM block to process the sequential char-
acteristic in students’ actions. LBKT achieves the best performance on
most benchmark datasets on the metrics of ACC and AUC.

Keywords: Knowledge Tracing · BERT · Student Modelling · Long-
Sequence Data Processing · Intelligent Tutoring Systems

1 Introduction

As one of the widely applied intelligent educational technologies, Knowledge
Tracing (KT) has drawn a lot of attention. KT is the field of modelling students’
learning trajectories and predicting their sequential actions based on historical
interaction data between students and ITS [2]. With the development of ITS,
large-scale datasets such as EdNet [5] and Junyi Academy [4] began to emerge.
In these datasets, long-sequence student interaction data were gathered as an
increasing number of students used the ITS for an extended period. The long- and
short-sequence data in these datasets are unbalanced, which satisfies the long-tail
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distribution [18]. For instance, within the EdNet dataset, a substantial amount
of student action sequences are included, ranging from the shortest sequence
that may comprise just a single action to the longest sequence that encompasses
40,157 actions. Notably, the average action sequence length of the EdNet dataset
is 121.5, indicating a moderate length of data sequences overall. However, it is
important to note that the distribution of sequence lengths is highly skewed,
and this unbalanced distribution has an impact on the overall performance of
the KT models. Although the quantity of short-sequence data is larger than the
long-sequence data, the latter is of more weight than the former in prediction
tasks [15].

In general, KT models could be divided into three categories: probabilistic
KT models, logistic KT models, and deep learning based KT methods (DKT)[2].
Traditional probabilistic KT models and logistic KT models are forced to con-
front difficulties such as decreased processing efficiency and increased memory
usage as growing amounts of longer sequence data are released. Deep learning
based KT models are known to suffer from inefficiencies when processing long-
sequence action data problems, including issues related to accuracy, speed, and
memory usage [18]. Therefore, allowing the processing of very long sequence data
is key to achieving high performance for next-generation KT models. Moreover,
due to the black-box nature of traditional deep learning methods, the current
deep learning based KT models also struggle with the lack of interpretability [8].

To address the above issues, in this paper, we propose LBKT, a novel LSTM
BERT Knowledge Tracing model, for processing long sequence data. The model
combines the strength of the Bidirectional Encoder Representations from Trans-
formers (BERT) model in capturing the relations of complex data [7] with the
strength of the LSTM model in handling long sequential data to improve its
performance on large-scale datasets containing long-sequence data (here, the
long-sequence data indicates a length longer than 400 interactions). Moreover,
we utilise a Rasch model-based embedding method to process the difficulty level
information in the historical behaviour data of students. The Rasch model is a
classic yet powerful model in psychometrics [21], which could be utilised to con-
struct raw questions and knowledge embeddings for KT tasks [8]. Rasch model
based embedding could improve the model’s performance and interpretability.
The experimental results show that our proposed LBKT outperforms the base-
line models in five datasets on metrics ACC and AUC. Moreover, it is faster at
processing long-sequence data at two long-sequence datasets we extract from the
two large-scale datasets. Furthermore, we use t-SNE as the visualisation tool to
demonstrate the interpretability of the embedding strategy.

The main contributions of our paper lie in the following two aspects:

1. We propose LBKT, a novel LSTM BERT Knowledge Tracing model for
long sequence data processing. The LBKT leverages the power of BERT,
Rasch-based embedding strategies, and LSTM.

2. The experimental results show that LBKT outperforms the baseline models
on five ITS datasets on the metric of AUC(assist12, assist17, algebra06,
EdNet, and Junyi Academy).
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2 Related Work

2.1 Knowledge Tracing

Knowledge Tracing (KT) models and predicts students’ mastery levels over
time in Intelligent Tutoring Systems, using observable behaviors to infer hidden
knowledge states [1]. It aims to personalize feedback and instruction, enhancing
learning outcomes. KT methods are categorized into probabilistic, logistic, and
deep learning-based models [6, 31, 29].

Probabilistic models, like Bayesian Knowledge Tracing (BKT), utilize Hid-
den Markov Models or Bayesian Belief Networks to track learning states, but
struggle with complexity and multi-skill scenarios [6, 27, 10, 30]. Logistic models
apply logistic regression to predict mastery levels, incorporating factors like prior
performance and response time [3, 20, 10, 28].

Deep learning-based KT, leveraging advancements like self-attention mecha-
nisms and Transformer architectures, has introduced models such as SAKT and
SAINT+ for higher performance through sequence prediction and attention to
temporal learning dynamics [19, 22, 8]. BERT-based KT models, though innova-
tive, have not surpassed state-of-the-art KT methods in handling long-sequence,
large-scale datasets [11, 25].

2.2 Transformer-based Model and Application

Transformers, with self-attention mechanisms, have revolutionized NLP and im-
age generation, exemplified by BERT and GPT [26, 7]. BERT’s bidirectional
training and large pre-training corpus have set new benchmarks in understanding
natural language, with applications extending into image processing, recommen-
dation systems, and music generation [7, 9, 23]. Despite their success, BERT vari-
ants in KT have not achieved superior performance on complex, long-sequence
datasets [25, 13, 14, 17, 12, 16].

3 Methodology

3.1 Proposed Model Architecture

We propose a novel model, LBKT, for the task of knowledge tracing on large-
scale datasets containing long-sequence data. While previous BERT-based KT
models have shown remarkable success in capturing the relations of complex
data, they also have inefficiencies when dealing with long sequence student ac-
tion data [25]. On the other hand, LSTM models have been proven to excel in
handling long sequential data. In response to these challenges, we propose a novel
KT model that combines the strengths of both the BERT and LSTM models
to improve performance on large-scale datasets containing long-sequence data
(where long-sequence data indicates a length longer than 400 interactions). The
Rasch embedding (also known as the 1PL IRT model) is a method to represent
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questions and concepts in a mathematical space [21]. The embeddings are cre-
ated using a vector that summarizes the variation in questions covering a concept
and a scalar difficulty parameter that controls how far a question deviates from
the concept it covers. The embeddings are used as raw embeddings for questions
and responses, which is a way to track a learner’s knowledge state. By lever-
aging the strengths of a BERT-based model, Rasch model-based embeddings,
and long short-term memory (LSTM) unit, our proposed model architecture has
the potential to effectively process and understand relationships among different
features in long-sequence data, as illustrated in Fig. 1.
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Fig. 1. The architecture of LBKT.

The first component of LBKT is the Rasch model-based embeddings pro-
posed by Ghosh [8]. The Rasch model-based embeddings consist of difficulty
level embeddings Ed and question embeddings Eq. These embeddings are multi-
plied and added to the BERT token embeddings and the sin and cos positional
embeddings to build the final embeddings, as shown in the following equation:

E = ERasch + EBert Token + EPosition (1)

where the Rasch model-based embeddings ERasch are defined as:

ERasch = Ed + Ed × Eq (2)

The segment embeddings, which are typically used to represent information
about the segment in the BERT model, are replaced by the Rasch embeddings
mentioned above in our model’s architecture. Rasch model-based embeddings are
able to more accurately estimate students’ knowledge states, as explained earlier,
making them a key contributor to the effectiveness of LBKT for knowledge
tracing tasks.

The second component of LBKT is a BERT-based block, which consists of
12 Transformer blocks. Each includes a multi-head attention mechanism, a feed-
forward network (FFN), and sublayer connections. The multi-head attention
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mechanism uses the “Scaled Dot Product Attention” method as implemented
in BERT, along with queries Q, keys K, values V , and an attention mask for
padded tokens. The FFN has a feedforward hidden layer with a size of four times
that of the model’s hidden layer and uses the GELU activation function rather
than RELU.

The sublayer connections in the Transformer block include a residual connec-
tion followed by layer normalization. The formulas for the attention mechanism
and the FFN are as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (3)

FFN(x) = GELU(W1x+ b1)W2 + b2 (4)

In the third component of LBKT, we use a neural network (NN) linear trans-
formation instead of the attention projection typically used in conjunction with
the LSTM unit. This is based on our observed improved performance with the
NN linear transformation in our experiments. It should be noted that this choice
is not necessarily related to the length or complexity of the sequence but rather
to the specific characteristics of the data and the task at hand.

Overall, LBKT is a model that is tailored specifically for use in the field
of knowledge tracing. It combines the natural language processing capabilities
of the BERT model with the ability to accurately estimate knowledge states
using Rasch model-based embeddings and the ability to effectively handle long
sequences of data using the LSTM unit and the NN linear transformation. This
makes it an ideal choice for the task of knowledge tracing in large-scale datasets
containing long-sequence data with unbalanced data distribution.

3.2 Experiment Setting

Datasets We used five benchmark datasets to validate the effectiveness of the
LBKT model, including assist125, assist176, algebra06 7, EdNet [5] 8, and Junyi
Academy[4]9. In general datasets, such as assist 12 and assist 17, it could be
challenging to identify and extract large amounts of long-sequence data. There-
fore, we validated the speed performance of every model on two datasets with
long-sequence student action data extracted from EdNet and Junyi Academy.
The mean action sequence length of EdNet is 121.5. The mean interaction length
of Junyi Academic is 104.7. Here, we define the longer action sequence as longer
than 100 records. We extract 200 students’ action sequences that include inter-
actions longer than 100 actions from each dataset as the long-sequence dataset
to validate the performance of different KT models. Lastly, we selected different
5 https://sites.google.com/site/assistmentsdata/home
6 https://sites.google.com/site/assistmentsdata/home
7 https://pslcdatashop.web.cmu.edu/KDDCup
8 https://github.com/riiid/ednet
9 https://pslcdatashop.web.cmu.edu/Files?datasetId=1275
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lengths of action sequences from Ednet to test the speed performance of each
model. We selected four groups with average records lengths of 100, 200, 300,
and 400, respectively. Each of these groups included 50 students.

Baseline Models We compared our LBKT to three state-of-the-art models,
BEKT [25], AKT [8], DKVMN [24], as well as the two top baseline models
in the Riiid Answer Correctness Prediction Competition provided by Kaggle10,
including SSAKT[32], and LTMTI[5].

Evaluation Metrics and Validation We used the accuracy (ACC) and the
area under the curve (AUC) as performance metrics to compare the models’
performance in five datasets.

Hyperparameters for Experiments To compare with each model, the same
parameters were used for model training. The batch size was set to 64, and the
train/test split was 0.8/0.2. The model used an embedding size of 128 and the
Adam optimizer with a learning rate of 0.001. The loss function used was the
Binary Cross Entropy with Logits Loss (BCEWithLogitsLoss). The scheduler
was set to OneCycleLR with a maximum learning rate of 0.002. Dropout was
also being used at a rate of 0.2. The training ran for a total of 100 epochs,
with early stopping set to 10 epochs. If the validation loss does not decrease
for the first three epochs, the training stops, in order to prevent overfitting and
save resources. The maximum sequence length was 200, with an eight-attention
head. Hidden sizes were 128 for BERT, 512 for FFN, and 128 for LSTM. The
Transformer block/encoder layer was set to 12.

4 Results and Discussion

4.1 Overall Performance

LBKT outperforms four baseline models on most metrics in the experiments on
five benchmark datasets. Tabel 1 shows the overall performance of each model.
We used five-fold cross-validation to estimate their performances. LBKT per-
formed the best on EdNet and Junyi Academy datasets on both ACC and AUC
metrics. It also achieved the best performance on the ACC metric on assist12
and AUC on assist17. On algebra06, AKT achieved the best performance on
the ACC metric, BEKT achieved the best performance on the AUC metric,
and LBKT achieved the second-best performance on both metrics. This result
indicates that LBKT is an efficient KT model on most datasets, especially large-
scale datasets containing long-sequence interaction data. This was affected by
the unique architecture of our LBKT model. The LSTM block enables the model
to learn the sequential features of the long sequence and gives more importance
to the recent actions of the students, which prevents the model from giving too
much weight to the long-ago and low-relevance actions and thus improving the
training efficiency.
10 https://www.kaggle.com/code/datakite/riiid-answer-correctness
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Table 1. Comparison of different KT models on five benchmark datasets. The best
performance is denoted in bold.

Dataset Metrics LBKT BEKT SSAKT LTMTI AKT DKVMN
assist12 ACC 0.799 0.786 0.675 0.813 0.769 0.756

AUC 0.768 0.813 0.741 0.785 0.753 0.701
assist17 ACC 0.792 0.795 0.771 0.796 0.733 0.797

AUC 0.814 0.801 0.735 0.683 0.803 0.709
algebra06 ACC 0.801 0.797 0.795 0.811 0.831 0.800

AUC 0.799 0.815 0.774 0.791 0.814 0.793
EdNet ACC 0.803 0.781 0.761 0.799 0.756 0.800

AUC 0.815 0.795 0.798 0.802 0.798 0.796
Junyi ACC 0.832 0.807 0.777 0.797 0.791 0.790

Academy AUC 0.851 0.831 0.845 0.812 0.799 0.769

Tabel 2 shows the performance comparison on the two large-scale datasets.
On both datasets, LBKT achieved the best training efficiency. It was 4.29x faster
than BEKT on EdNet and 4.77x faster than BEKT on Junyi Academy. Com-
pared with the second-best model, AKT, LBKT was 1.32x faster on EdNet and
1.42x faster on Junyi Academy. For the memory cost, LBKT was about one-
third of BEKT and lower than LTMTL on both datasets. Although the memory
cost of LBKT was not the smallest, LBKT has achieved the best results in both
ACC and AUC metrics running on the same GPU. This allows LBKT to run on
middle-range GPUs. To improve the training efficiency, we used a last input as
the query method in the Transformer block instead of the whole sequence, which
decreased the complexity of the encoder to improve training speed and reduce
memory cost.

Table 2. Performance comparison on the two large-scale datasets, EdNet and Junyi
Academy. The best performance is denoted in bold.

Model EdNet Junyi Academy
speed ↑ speed ratio ↑ memory ↓ speed↑ speed ratio ↑ memory ↓

BEKT 4.93 1.00x 16.7 GB 4.85 1.00x 16.6 GB
SSAKT 7.13 1.44x 3.4 GB 6.22 1.28x 3.2 GB
LTMTI 13.8 1.32x 7.69 GB 12.1 1.19x 8.82 GB
AKT 17.1 3.25x 4.32 GB 16.4 3.35x 4.37 GB

DKNMN 5.97 2.34x 7.68 GB 4.67 3.75x 8.53 GB
LBKT 21.3 4.29x 6.09 GB 22.2 4.77x 6.08 GB

4.2 Analysis of Embedding Strategy

In this section, We used t-SNE as the visualisation tool to show the interpretabil-
ity of LBKT’s embedding strategy. Fig. 2-left shows the results of No-Rasch-
embedding, and Fig.2-right shows the Rasch embedding strategy. We can see
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that, in the No-Rasch-embedding scenario, the difficult questions’ embeddings
(dark blue vectors) mixed with the easy questions’ embeddings (yellow to light
blue vectors). In figure 2-right, the difficult level embeddings were separated to
avoid mixing with easy level embeddings.

Fig. 2. Visualisation of the embedding vector using t-SNE: without Rasch embeddings
(on the left) and with Rasch embeddings (on the right). The colour bar is the predicted
probability of the outputs.

Questions at a higher difficulty level are typically associated with longer
sequence data, as students spend more time and steps on difficult exercises,
which results in longer interaction sequences. Rasch model-based embeddings
could divide different difficulty-level parts before the start of the model training
and not mix them with other difficulty-level embeddings. As a result, it might
increase training efficiency to converge faster.

5 Conclusion

In this study, we have developed LBKT, which employs a BERT-based architec-
ture with an LSTM block for processing long-sequence data, and Rasch model-
based embeddings for different difficulty levels of questions. Experiments show
that LBKT outperforms baseline models on most benchmark datasets. We also
conducted the speed performance experiment on the two large-scale datasets
containing long-sequence data. The results suggest that LBKT could process
long-sequence data faster and is more resource-efficient. Furthermore, we con-
ducted an analysis of the embedding strategy using t-SNE. The result shows
that Rasch embedding could process the difficulty-level features effectively.
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