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Abstract—The sparsity of millimeter wave (mmWave) channels
in the angular and temporal domains is beneficial to channel
estimation, while the associated channel parameters can be
utilized for localization. However, line-of-sight (LoS) blockage
poses a significant challenge on the localization in mmWave
systems, potentially leading to substantial positioning errors.
A promising solution is to employ reconfigurable intelligent
surface (RIS) to generate the virtual line-of-sight (VLoS) paths
to aid localization. Consequently, wireless localization in the RIS-
assisted mmWave systems has become the essential research
issue. In this paper, a multiple measurement vector (MMV)
model is constructed and a two-stage channel estimation based
localization scheme is proposed. During the first stage, by
exploiting the beamspace sparsity and employing a random
RIS phase shift matrix, the channel parameters are estimated,
based on which the precoder at base station and combiner at
user equipment (UE) are designed. Then, in the second stage,
based on the designed precoding and combining matrices, the
optimal phase shift matrix for RIS is designed using the proposed
modified temporally correlated multiple sparse Bayesian learning
(TMSBL) algorithm. Afterwards, the channel parameters, such
as angle of reflection, time-of-arrival, etc., embedding location
information are estimated for finally deriving the location of UE.
We demonstrate the achievable performance of the proposed
algorithm and compare it with the state-of-the-art algorithms.
Our studies show that the proposed localization scheme is capable
of achieving centimeter level localization accuracy, when LoS
path is blocked. Furthermore, the proposed algorithm has a low
computational complexity and outperforms the legacy algorithms
in different perspectives.

Index Terms—mmWave, localization/positioning, channel esti-
mation, reconfigurable intelligent surfaces, SBL algorithm.

I. INTRODUCTION

A. Motivation and Background

Recently, there has been a surge of interest in localization
due to its practical application in various fields, such as intelli-
gent transportation systems and unmanned aerial vehicles [1].
Traditional localization methods like the global positioning
system (GPS) have limited accuracy and high latency, par-
ticularly in indoor environments [2]. Due to this, the use of
millimeter wave (mmWave) based localization techniques has
gained significant attention owing to its merits of allowing to
employ a large number of antenna elements to achieve high
beamspace resolution [3]. However, mmWave also faces some
practical challenges, including the high path-loss, which can
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be mitigated by the beamforming provided by massive antenna
arrays [3, 4], and the possible line-of-sight (LoS) blockage,
which is suggested to be mitigated by the employment of
reconfigurable intelligent surface (RIS) [5].

In wireless research communities, RISs have recently gained
significant emphasis for their ability to control the signal prop-
agation environments for performance improvement [5–7]. A
RIS is composed of numerous reflectors positioned between
a transmitter and a receiver, where each individual element
of RIS can alter the phase and/or amplitude of the impinged
signal [8]. This enables the improvement of communication’s
energy efficiency, spectrum efficiency, positioning accuracy,
communication security, etc. [9, 10]. While estimating the cas-
caded channels in the RIS-supported systems is a challenging
task [11–13], the principles of passive beamforming or the
combination of active and passive beamforming, as outlined
in [11–15], can be employed for localization purpose.

Thanks to their high angular and temporal resolution,
mmWave signals have a high potential for accurate local-
ization, where the angles can be estimated from the angular
sparsity and the delay can be estimated with the aid of,
such as, the wideband multi-carrier signaling [14–20]. In [14],
a multi-stage codebook-based adaptive channel estimation
algorithm was presented, which enables angular estimation
while striking a beneficial trade-off between performance and
implementation complexity. In [19], the LoS path was firstly
employed to determine the user equipment’s (UE) location.
Afterwards, the scatterer’s (SC) location is estimated as a
vertex of a triangle formed by the SC, the estimated UE and
BS. However, when the LoS path is obstructed, the accuracy of
non-line-of-sight (NLoS) path-based localization is adversely
affected by significant reflection loss [12]. For instance, in
[15], it was demonstrated that the LoS-dependent localization
considerably outperforms the NLoS-based localization in the
conventional mmWave systems.

Research has shown that the performance of the LoS-
based localization is far superior to that of the NLoS-based
localization [15]. As a result, when LoS is blocked, the RIS-
aided localization may provide a promising alternative for
improving the localization accuracy in mmWave systems. In
[20], a successive localization and beamforming strategy was
proposed to achieve the joint UE localization and channel
estimation in mmWave multi-input-multi-output (MIMO) sys-
tems.

In literature, numerous studies have been conducted on the
RIS-assisted localization [12, 21–25]. Specifically in [21], the
concept of continuous intelligent surface (CIS) was introduced,
and the limits of RIS-aided localization and communication
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systems were discussed. More specifically, in [21], a general
signal model for the RIS-aided localization and communica-
tion systems was presented, when considering both the far
and near-field scenarios. Both CIS and discrete intelligent
surface (DIS) were introduced to enhance the localization
accuracy and spectral efficiency through RIS phase response
optimization. In [22], the holographic network localization and
navigation (NLN) were explored, where RISs were used in
the controlled electromagnetic environments by utilizing the
polarization and specific antenna patterns. The study shows
that RISs have the potential to improve the robustness of the
holographic localization against obstructions. In [23], a RIS-
assisted localization scheme supported by the adaptive beam-
forming design using the hierarchical codebook algorithm was
proposed for the joint localization and communication, when
assuming the absence of LoS path. In [24], a received signal
strength (RSS)-based positioning scheme was investigated in a
RIS-aided mmWave system. Furthermore, in [25], a multi-RIS-
assisted multiple-user beam training scheme was proposed for
Terahertz systems, where a ternary-tree hierarchical codebook-
based algorithm was employed to reduce complexity. Fur-
thermore, in [12], a joint active and passive beamforming
codebook based localization scheme was proposed for the RIS-
aided mmWave systems, when assuming that the LoS link’s
state is unknown. It is shown that the scheme is capable of
achieving a good trade-off between performance and training
overhead.

B. Research Problem and Contributions
Based on the research background, the authors of [19]

proposed a sparse Bayesian learning (SBL) algorithm assisted
localization scheme to exploit the beamspace channel sparsity,
where the single measurement vector (SMV) model was
employed for channel estimation. Although the SMV model
has the advantages of simplicity and low hardware complexity,
the counterpart multiple measurement vector (MMV) model
is capable of improving the robustness and positioning ac-
curacy, and also allows to employ the time/frequency/spatial
diversity [26]. Thus, in this paper, we focus on the MMV
model with the SMV model being used as the benchmark
for performance comparison. In literature, many methods,
such as the approximate message passing (AMP), orthogonal-
AMP (OAMP) algorithms have been introduced to take the
MMV-based problems [27–29]. However, these algorithms
have imposed constraints on the sensing matrix, requiring it
satisfy the restricted isometry property (RIP), and follow the
near Gaussian distribution to make Gaussian approximation
effective [27]. Moreover, in [15, 19], the RIS was not em-
ployed, and the localization is achieved via estimating the
LoS channel’s parameters. However, as above-mentioned, the
LoS path in mmWave communications has a high probability
of being blocked. In this case, the employment of RIS pro-
vides a promising solution for localization. Furthermore, we
consider the RIS-assisted MMV model with the multi-carrier
mmWave systems, i.e. orthogonal frequency division multi-
plexing (OFDM) mmWave systems. Comparatively, OFDM
was not considered in [30], and the time of arrival (ToA) is
unable to be estimated. By contrast, in our MMV model, with
the aid of the information extracted from both time domain
and frequency (subcarriers) domain, both the angle and ToA
information can be estimated.

More specifically, in this paper, we design and investigate a
localization scheme for the RIS-aided mmWave system with
OFDM signaling. Our localization scheme consists of two
stages. During the first stage, the angle of departure (AoD)
at base station (BS) and the angle of arrival (AoA) at UE for
designing the precoding and combining matrices are estimated
by exploiting beamspace sparsity. In the second stage, the time
and frequency domain observations are employed to build the
MMV model for estimating the channel parameters and de-
signing the RIS phase shift matrix. Finally, the localization of
UE is obtained from the estimated channel parameters. More
explicitly, our contributions can be summarized as follows.

• A two-stage localization algorithm for the OFDM
mmWave systems is proposed to allow a UE to estimate
its own location in a single-BS single RIS system, when
the LoS path between BS and UE is assumed to be
blocked.

• The localization is formulated as a compressed sensing
(CS) problem, where the channel parameters, such as
AoA, AoD, angle of reflection (AoR) and ToA, are
relied on the physical locations of BS, UE, SCs and
RIS. The localization problem is solved in two stages. In
the first stage, the conventional beamspace formulation
is introduced to estimate the channel parameters of the
channel between BS and UE, when randomly setting the
RIS’s phase shift matrix, based on which the precoding
and combining matrices used by BS and UE are designed.
Based on the designed precoding and combining matrices,
in the second stage, the observations from both time and
frequency domain are utilized to build the MMV model
for optimizing the RIS phase shift matrix. Afterwards, the
channel parameters of the AoR at RIS and ToA between
RIS and UE are estimated to ultimately estimate the UE’s
location.

• A large number of elements deployed at RIS leads to
high computational complexity on the cascaded chan-
nel estimation and localization, especially for the SBL-
based algorithms. Inspired by [26], a modified temporally
correlated multiple sparse Bayesian learning (TMSBL)
algorithm is proposed for the RIS-aided localization
systems. The proposed algorithm is able to reduce the
size of the matrices involving inversion and hence the
implementation complexity.

• We compare the localization performance of the proposed
modified TMSBL algorithm with the state-of-art algo-
rithms, including the orthogonal matching pursuit (OMP),
distributed compressed sensing simultaneous orthogonal
matching pursuit (DCS-SOMP), SBL and group SBL
(GSBL) algorithms. Our studies and simulation results
show that our proposed modified TMSBL algorithm
outperforms the OMP, DCS-SOMP and SBL algorithms
in terms of the localization accuracy, when the number
of training blocks is relatively large. At the same time,
it has much lower complexity than the conventional SBL
and GSBL algorithms. Furthermore, we demonstrate and
analyze the impact of different system parameters, such
as the number of training blocks, beamspace resolution
and the placement of RIS, on the localization accuracy.
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C. Organization of the Paper and Notations
The rest of the paper is organized as follows. Section II

introduces the system and signaling models for localization.
Section III introduces the framework of the two stage channel
estimation based localization scheme. Section IV presents the
localization problem formulation with the conventional GSBL
and the proposed modified TMSBL algorithms. The simulation
setup and simulation results are provided in Section V. Finally,
we concisely conclude this paper in Section VI.

Notations: a, a, A stand for scalar, vector and matrix,
respectively. AT, AH, A†, ∥a∥2 and ∥A∥F represent trans-
pose, Hermitian transpose, pseudoinverse, Euclidean norm and
Frobenius norm of matrix A, respectively. The (i, j)-th entry
of A is [A]i,j , and diag(a) is a diagonal matrix formed by the
diagonal elements of a. Trace(A) denotes the trace of matrix
A, E(A) is the expectation of A, vec(A) is the vectorization
operation of A, mod(i, j) denotes the modulo operation, and
j =

√
−1. (A)∗ denotes the conjugate of matrix A.

II. SYSTEM MODEL

In this paper, a downlink MIMO mmWave localization
system with a single BS and a single UE is considered, which
are equipped with NB and NM antennas, respectively, as shown
in Fig. 1. A RIS with NR antennas is employed to overcome
the line-of-sight (LoS) blockage between BS and UE, as shown
in Fig. 1. More explicitly, the OFDM modulated downlink
signals and the downlink position reference signals (PRSs)
are transmitted from BS, which are then reflected by RIS to
UE, due to the LoS blockage. Based on the reflected signals
received by UE, the UE estimates the channel parameters as
well as its location.

Blockage

BS

UE

Scatterer

RIS 

RIS 

controller

Scatterer

Fig. 1. Illustration of RIS aided localization model.

Let the location of BS be b = [bx, by]
T ∈ R2, and that

of UE be m = [mx,my]
T ∈ R2, while the location of RIS

is given as r = [rx, ry]
T ∈ R2. Furthermore, one scatterer

is assumed between BS and RIS, and another scatterer exists
between RIS and UE, whose locations are expressed as sl =
[sx,l, sy,l]

T ∈ R2, l = 1, 2. The locations of BS and RIS are
fixed and assumed to be known, while the location of UE is
to be estimated. As shown in Fig. 1, the LoS path between
BS and UE is blocked. In this case, the RIS is employed to
overcome the blockage problem and improve the localization
coverage. Using the received signal reflected by RIS, UE can
estimate the channel from RIS. Then, based on the channel

estimation results and the a prior location information (i.e, b
and r) of BS and RIS, UE can estimate its location. Below
we present the transmitter processing, channel modeling and
the receiver processing.

A. Transmitter Model
The aim of design is for the UE to estimate its location

based on the PRS transmitted from BS and reflected by
RIS, when OFDM signalling is employed. In detail, at BS
transmitter, ND data streams are first precoded by the digital
beamformer FBB[n] ∈ CNRF×ND for the n-th subcarrier, where
NRF denotes the number of radio frequency (RF) chains.
Then, for each RF chain, a N -point inverse fast Fourier
transform (IFFT) is implemented to transform the data from
frequency-domain to time-domain. Afterwards, a cyclic prefix
(CP) is added before the RF level precoding. We assume
that the CP length of TCP = SCPTs is longer than the
channel’s delay spread, where Ts is the sampling interval
and SCP denotes the CP length in samples. Following the
CP insertion, an analog beamformer FRF ∈ CNB×NRF is
implemented, which is independent of the subcarriers. Overall,
the hybrid beamformer is expressed as F[n] = FRFFBB[n],
which satisfies ∥FRFFBB[n]∥F = 1.

Let the g-th OFDM symbol transmitted for positioning be
expressed as xg[n] = [x1[n], x2[n], ..., xND

[n]]T ∈ CND , n =
1, ..., N ; g = 1, ..., G. Then, the transmitted position reference
signals can be expressed in baseband form as:

x̃g[n] =
√
PFg[n]xg[n] ∈ CNB×1, (1)

where P is the transmit energy, Fg[n] is the hybrid directional
beamforming matrix for the g-th reference signal, which sat-
isfies Trace(Fg[n]

H
Fg[n]) = 1 and E{xg[n]xg[n]H} = IND

.

B. Channel Model
Consider a mmWave channel, whose parameters, including

AoA, AoD/AoR, and ToA, are determined by the locations of
BS, UE and RIS. We assume that when BS is communicating
with UE, the LoS path between them is blocked. Therefore,
the downlink transmission has to rely on the virtual line-of-
sight path (VLoS), as depicted in Fig. 1. The AoD of BS
and the AoR of RIS are termed as θBR and θRM, while the
AoA of RIS and that of UE are expressed as ϕBR and ϕRM,
respectively. Moreover, the ToA between BS and RIS, and that
between RIS and UE are denoted as τBR and τRM, respectively.
The study assumes uniform linear array (ULA). Hence, the
steering vectors aB,n(θBR) and aR,n(ϕBR) at BS and RIS in
the context of subcarrier n are [31]

aB,n(θBR) =
1√
NB

[
1, e−j2π d

λn
sin(θBR), ...,

e−j2π d
λn

sin(θBR)(NB−1)
]T

∈ CNB×1, (2)

aR,n(ϕBR) =
1√
NR

[
1, e−j2π d

λn
sin(ϕBR), ...,

e−j2π d
λn

sin(ϕBR)(NR−1)
]T

∈ CNR×1, (3)

where d represents the antenna spacing between two adjacent
elements, and λn is the wavelength of the n-th subcarrier.
For simplicity, we assume that the signal bandwidth B ≪
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fc, yielding λn ≈ λc, where λc represents the wavelength of
the main carrier [15, 32]. Then, the mmWave channel model
introduced in [33, 34] can be applied to obtain the (NR×NB)-
dimensional frequency domain channel matrix from the BS to
the RIS, which can be represented as [19]:

HBR[n] = AR(ϕBR)[n]ΣBR[n]A
H
B(θBR)[n], (4)

where

AB(θBR)[n] = [aB,n(θBR,0),aB,n(θBR,1)...,aB,n(θBR,LBR−1)],
(5)

AR(ϕBR)[n] = [aR,n(ϕBR,0),aR,n(ϕBR,1)...,aR,n(ϕBR,LBR−1)],
(6)

and the diagonal matrix ΣBR[n] is given by [12]

ΣBR[n] =
√

NBNR

× diag{βBR,0ρBR,0e
−j2πnτBR,0

NTs , ...,

βBR,LBR−1ρBR,LBR−1e
−j2πnτBR,LBR−1

NTs }. (7)

In (5)-(7), LBR is the number of paths between BS and RIS,
βBR,l and ρBR,l

1 are respectively the Rician complex fading
gain and path-loss of the l-th path between BS and RIS, and
TS = 1/B is the sampling period. In (7), the time delay τBR,l,
i.e. ToA, is given by τBR,l = dBR,l/c, where c denotes the
speed of light, while dBR,l is the propagation distance of the l-
th path. Specifically, for LoS path (l = 0), the distance between
BS and RIS is evaluated as dBR,0 = ∥r− b∥2, while for NLoS
path (l > 0), the distance is dBR,l = ∥sl − b∥2 + ∥r− sl∥2,
where sl is the location of SC.

Similarly, the channel between RIS and UE can be repre-
sented as

HRM[n] = AM(ϕRM)[n]ΣRM[n]AH
R(θRM)[n], (8)

where AM(ϕRM)[n] and AR(θRM)[n] are defined similarly as
that in (4).

By combining (4) and (8), the frequency domain cascaded
channel from BS to UE can be represented as

Ht[n] =HRM[n]ΩtHBR[n], (9)

where Ωt ∈ CNR×NR is RIS’s phase shift matrix for t =
0, . . . , J , which is composed of the discrete phase shifters.
Thus, Ωt is a diagonal matrix that is unit-modulus on the
diagonal elements [36, 37]. Specifically, the diagonal element
[Ωt]i,i = ηejωi , where ωi ∈ [0, 2π] and η denotes the
reflection coefficient. Note that, for simplicity and also without
any loss of generality, as long as the reflection coefficient is
known, we assume that RIS is of perfect reflection, meaning
η = 1. More explicitly, if there is reflection loss (imperfect
reflection), the ToA cannot be estimated accurately, as the
result that the ToA is related to the channel gain. In literature,
the perfect reflection is assumed in many RIS-aided channel
estimation and localization [21, 23, 38].

On the other hand, considering that the RIS phase shift
matrix is only related to the angular parameters, i.e., θRM,k

1Note that, in mmWave systems, the NLoS paths reflected by SCs experi-
ence additional reflection loss, as the result that part of the energy is reflected
instead of penetrating or is absorbed when it encounters the surface of an
object [35].

and ϕBR,k [30], according to (9), the effective channel can be
further expressed as

Ht
eff[n] =diag(ρ̂RM[n])AH

R(θRM)[n]ΩtAR(ϕBR)[n]

× diag(ρ̂BR[n]), (10)

where ρ̂RM[n] = [βRM,0ρRM,0e
−j2πnτRM,0

NTs , . . . , βRM,LRM−1

ρRM,LRM−1e
−j2πnτRM,LRM−1

N Ts ]T, and ρ̂BR[n] is similarly de-
fined according to (7). Thus, the frequency domain channel
can then be represented as

Ht[n] = AM(ϕRM)[n]Ht
eff[n]A

H
B(θBR)[n], (11)

where Ht
eff[n] defined in (10) is a function of the phase shifter

matrix Ωt for the t-th data block, which shows the importance
of the angular parameters θRM and ϕBR, as well as of the
corresponding phase shifter design to the channel estimation
and localization.

C. Receiver Model
The signals received at UE are used for localization. After

the transmission over the mmWave channel as above de-
scribed, CP removal and FFT processing, the hybrid combin-
ing matrix W[n] = WRFWBB[n] is employed for processing
the reflected signals, giving the output denoted as

yg[n] =
√
P (wg[n])HHt[n]x̃g[n] + (wg[n])Hn[n], (12)

where wg[n] is the combining training vector for the g-th
OFDM symbol, which is the g-th column of the combining
matrix W[n]. n[n] is the corresponding additive white Gaus-
sian noise (AWGN) vector distributed with zero mean and a
variance σ2 per element.

To sense the location of UE, in this paper, we exploit the
sparsity of mmWave channel and propose a two-stage channel
estimation scheme, to estimate the channel parameters, includ-
ing θRM and τRM. Note that, as all the location parameters
are embedded in the channel impulse responses (CIR) of the
cascaded mmWave channel, the localization problem can be
converted to a two-stage estimation/design problem, which
contains the channel parameter estimation and the phase shifter
design, as detailed in the next section.

III. PROBLEM FORMULATION

In the state-of-the-art of the RIS-aided localization, the
channel parameters, such as AoR/AoD and ToA, are normally
estimated by exhaustively searching the predefined precod-
ing/combining matrices, for the optimal pair of precoding and
combining matrices [21, 23, 39]. In this paper, we propose a
multiple-block based MMV model, based on which we solve
the localization problem as a CS channel estimation problem.
In this section, the MMV CS model is first formulated. To
estimate the reflected angular parameter θRM and the time
delay parameter τRM, which are challenging tasks, we separate
the localization procedure into two stages, which are termed
as the channel estimation and localization stages, as shown in
Fig. 2. As shown in Fig. 2, the channel estimation frame is
divided into J + 1 time blocks, and the N subcarriers are
employed in all time blocks. More explicitly, for different
blocks t = 0, 1, ..., J , different phase shift matrices Ωt are
used by the RIS, meaning that Ω0 ̸= Ω1 ̸= ... ̸= ...ΩJ .
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Fig. 2. Illustration of multiple time blocks/subcarriers based channel estima-
tion. The red columns denote the OFDM symbols in the first stage, where
G ≫ LBR or LRM, while the yellow columns denote the OFDM symbols used
in the second stage, where the number of columns is equal to the number of
propagation paths.

This can be achieved by employing the n-type field-effect
transistor (nFET) switches, which guarantee that the RIS phase
shift’s change frequency is much lower than the symbol rate
within one coherence time of mmWave channel [30]. As
above-mentioned, the whole localization process consists of
two stages. Explicitly, during the first stage, the conventional
CS-aided channel estimation is first employed to estimate the
AoD and the AoA, respectively, at BS and at UE. Then, the
precoding and combining matrices are designed based on the
estimated AoD and AoA, associated with a randomly set RIS
phase shift matrix. Note that, there are many CS algorithms,
such as, the basis pursuit (BP), message passing (MP), SBL
algorithms, which can be employed for the AoD and AoA
estimation. As an example, the DCS-SOMP algorithm is
employed in this paper for the sake of simplicity. Then,
based on the beamformer and combiner designed in the first
stage, the MMV CS model is formulated. Then, during the
second stage, based on the designed precoding and combining
matrices, the AoR and ToA are estimated, based on which the
location of UE is estimated. Let us below analyze them in
detail.

A. Stage 1: DCS-SOMP Assisted Design of BS Precoder and
UE Combiner

During the first time block corresponding to t = 0,
as shown in Fig. 2, a random precoding matrix F0[n] =
[x̃1[n], ..., x̃G[n]] ∈ CNB×G with Gaussian distribution and
a random combining matrix W0[n] ∈ CNM×G with Gaussian
distribution are employed, where G denotes the number of
symbol durations, represented by the red columns in Fig. 2.
Note that, G is required to be larger than the number of
propagation paths to obtain angular sparsity. Furthermore, in
this stage, the phase shift matrix Ω0 at RIS is set randomly
and fixed during Stage 1. Thus, for the first stage in Fig. 2,
the observations corresponding to (12) can be further written

as

Y0[n] =
√
P (W0[n])HH0[n]F0[n] + (W0[n])HN0[n].

(13)

Let us introduce the beamspace channel representation [32],
which is obtained via uniformly sampling the spatial angles
in the beamspace, yielding:

UB = [uB (q0) , . . . ,uB (qNB−1)] ,

uB (ql) =
[
e−j2π

NB−1
2 ql , . . . , ej2π

NB−1
2 ql

]T
. (14)

In (14), UB is a unitary Discrete Fourier Transform (DFT)
matrix determined by the beamspace grid indices of ql =
−NB−1

2NB
+ l

NB
,∀l ∈ [0, NB − 1]. Then, the beamspace channel

representation of H0[n] in (13) for the t = 0 block can be
written as

H0
v [n] = UH

MH0[n]UB ∈ CNM×NB , (15)

where UM for the receiver array is obtained similarly as
UB. Since in mmWave communications, usually only a small
number of propagation paths from transmitter to receiver, the
beamspace channel matrix Hv[n] is a sparse matrix [40]. Upon
applying (15) into (13), we obtain

Y0[n] =
√
P (W0[n])HUMH0

v [n]U
H
BF

0[n]

+ (W0[n])HN0[n]. (16)

Furthermore, to represent the channel vector in a standard CS
form, let us vectorize the observations Y0[n], yielding [14]

vec(Y0[n]) =vec(
√
P (W0[n])HUMH0

v [n]U
H
BF

0[n]

+ (W0[n])HN0[n])

=[(F0[n])T ⊗ (W0[n])H][(U0
B)

∗ ⊗U0
M]vec(H0

v [n])

+ vec((W0[n])HN0[n])

=Φ0[n]Σ0h0
v [n] + n0[n], (17)

where Φ0[n] = (F0[n])T ⊗ (W0[n])H is the sensing matrix,
and Σ0 = (U0

B)
∗ ⊗ U0

M is the overcomplete dictionary
or beamspace transformation matrix [14, 19], h0

v [n] is the
vectorized beamspace channel vector to be estimated, while
n0[n] is the noise vector.

Based on (17), for the l-th, l = 0, ..., L− 1, path, where L
is the number of physical propagation paths between BS and
UE, the residual vector is initialized as r0 [n] = vec(Y0[n]).
Let si[n] be the i-th column of S[n] = Φ0[n]Σ0. Then, the
vector atom contributions and AoA/AoD at the BS and the
UE can be respectively estimated as

îl = argmax
i=1,...,NMNB

N−1∑
n=0

∣∣sH
i [n]r

0
l−1[n]

∣∣
∥si[n]∥2

, (18)

iBR,l =
⌈̂
il/NM

⌉
, (19)

iRM,l = mod
(̂
il − 1, NM

)
+ 1, (20)

θ̂BR,l =arcsin

(
λc

d

iBR,l − (NB − 1)/2− 1

NB

)
, (21)

ϕ̂RM,l =arcsin

(
λc

d

iRM,l − (NM − 1)/2− 1

NM

)
. (22)
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Afterwards, the basis vector is updated via the orthogonaliza-

tion on the processing as ρl[n] = ŝil [n]−
l−1∑̃
i=0

sH
îl
[n]ρî[n]

∥ρî[n]∥2

ρî[n],

while the residual vector for the next iteration is updated to
rl[n] = rl−1[n]−αn(l)ρl[n], where αn(l) =

ρH
l [n]rl−1[n]

∥ρl[n]∥2
2

. To
summarize, the DCS-SOMP assisted initial BS precoder and
UE combiner design are described in Algorithm 1. Note that,
(17) is a standard CS model, many CS algorithms, such as,
BP, MP, SBL algorithms, can be employed for the solutions.
As mentioned above, in this paper, for the sake of simplicity,
the DCS-SOMP algorithm is adopted for its low complexity.

Algorithm 1 DCS-SOMP Assisted Initial Design of BS pre-
coder And UE Combiner
Inputs: Observation vec(Y0[n]) ; Sensing matrix Φ0[n]; Dic-

tionary matrix Φ0[n]Σ0.
Objectives: To estimate θ̂BR, ϕ̂RM.

1: for n = 0, ..., N − 1 do
2: for l = 0, ..., L− 1 do
3:

îl = argmax
i=1,...,NMNB

N−1∑
n=0

|sH
i [n]r

0
l−1[n]|

∥si[n]∥2
,

iBR,l =
⌈̂
il/NM

⌉
, iRM = mod

(̂
il − 1, NM

)
+ 1,

4:
θ̂BR,l = arcsin

(
λc
d

iBR,l−(NB−1)/2−1
NB

)
,

ϕ̂RM,l = arcsin
(

λc
d

iRM,l−(NM−1)/2−1
NM

)
.

5: Update:

ρl[n] = ŝil [n]−
l−1∑̃
i=0

sH
îl
[n]ρî[n]

∥ρî[n]∥2

ρî[n]

rl[n] = rl−1[n]−αn(l)ρl[n], where
αn(l) =

ρH
l [n]rl−1[n]

∥ρl[n]∥2
2

.
6: end for
7: end for
8: return θ̂BR,l, ϕ̂RM,l.

After the estimation of the AoDs at BS and the AoAs at UE,
the precoding matrix at BS and the combining matrix at UE
remain fixed for the following J blocks, i.e., we set F1[n] =
F2[n] = ... = FJ [n] = F0[n] and W1[n] = W2[n] = ... =
WJ [n] = W0[n]. With the aid of these initially designed
precoder and combiner, the phase shift matrix Ωt>0 can then
be designed as detailed in the following subsection.

B. Stage 2: Parameter Estimation and Phase Shifter Design
for RIS

After the precoding matrices F1[n] = F2[n] = ... = FJ [n]
at BS and the combining matrix W1[n] = W2[n] = ... =
WJ [n] at UE for the blocks t > 0 are obtained, as shown
in the last subsection, the AoR at RIS can then be estimated
using the time block of t > 0, as shown in Fig. 2, which can
be further used in the localization of UE.

More specifically, as mentioned in the last subsection,
after the estimation of θBR,l and ϕRM,l in the first stage, the
corresponding beam training matrices at BS and UE for RIS
can be designed as follows:

Wt[n] ≈AM(ϕ̂RM),

Ft[n] ≈AB(θ̂BR). (23)

where t = 1, ..., J , and n = 0, ..., N − 1.
For the time block t = 0, we note that the number G of

symbol durations, as included by the red columns in Fig. 2
is much larger than the number of paths L, i.e. G ≫ L. By
contrast, for t > 0, as shown by the yellow columns in Fig. 2,
for each time block, the number of symbol durations is only
required to be the number of paths, making Wt[n] ∈ CNB×LRM

and Ft[n] ∈ CNB×LBR , where LRM denotes the number of
paths between RIS and UE, and LBR of that between BS and
RIS, respectively. In this regard, the training overhead can be
significantly reduced for the t > 0 blocks.

Following (13) and (23), the received signal at UE corre-
sponding to t > 0 time blocks can be derived as

Yt[n] =(Wt[n])HHt[n]Ft[n] + (Wt[n])HNt[n]

=(Wt[n])HAM(ϕRM)Ht
eff[n]AB(θBR)F

t[n]

+ (Wt[n])HNt[n]

≈Ht
eff[n] + (Wt[n])HNt[n], t = 1, ...J ;n = 0, ..., N − 1,

(24)

where we applied Wt[n]HAM(ϕRM) ≈ I and
AB(θBR)F

t[n] ≈ I, owing to the precoder and combiner
designed for BS and UE as shown in (23), and the effective
channel Ht

eff[n] is defined in (10). It can be shown that
the (a, b)-th entry of the effective channel Ht

eff[n] can be
expressed as

[Ht
eff[n]](a,b) = (ρ̂RM)aω

T
t a([θdiff ](a,b))(ρ̂BR)b, (25)

where ωt is a vector denoting the diagonal elements of
the phase shift matrix Ωt, and θdiff = asin(sin([ϕBR]b) −
sin([θRM]a)) is the spatial frequency to avoid the angle
ambiguity when recovering the angles [30]. Now let us vec-
torize (10), the effective channel vector can be represented as
ht
eff [n] = vec(Ht

eff[n]) ∈ CLRMLBR×1, and the elements of
ht
eff [n] can be written as

[ht
eff [n]]k = ρ̂k[n]ωta(θ̂diff,k), k = 1, ..., LRMLBR, (26)

where ρ̂k[n] = (ρ̂RM[n])a(ρ̂BR[n])b, θ̂diff,k =
arcsin(sin([ϕBR]b) − sin([θRM]a)), while a =
mod (k − 1, LRM) + 1 and b = ⌈k/LRM⌉. Consequently,
when considering all the observations over J blocks,
according to (24), we have

Y[n] =[vec(Y1)[n], vec(Y2)[n], ..., vec(YJ)[n]],

n = 0, ..., N − 1. (27)

Correspondingly, the effective channel is Ĥeff[n] =
[h1

eff[n],h
2
eff[n], ...,h

J
eff,k[n]]. Furthermore, based on (24), (25)

and (26), it can be shown that the k-th row of Y[n] is

Yk,:[n] ≈Ĥeff,k,:[n]
T + N̂k,:[n]

=Ω̂ρ̂k[n]a(θ̂diff,k) + N̂k,:[n], k = 1, ..., LRMLBR.
(28)

In (28), Ω̂ = [ω1,ω2, ...,ωJ ]T is from the phase shift
vectors used for the transmissions over J blocks, which
are random phases, as mentioned in Section III. N̂[n] =
[vec(W1[n]HN1[n]), vec(W2[n]HN2[n]), ..., vec(WJ [n]HNJ [n])]
is the stacked AWGN matrix, where the covariance matrix
of the AWGN vector with respect to the t-th block is
Rt = σ2Wt[n]HWt[n]. Moreover, the covariance matrix
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R ∈ CTLRMLBR×TLRMLBR of the vectorized noise matrix
vec(N̂[n]) is a block diagonal matrix, with the matrices Rt

on its diagonal.
Our objective is to estimate the AoR θRM and the ToA τRM

between RIS and UE. Thus, the problem can be formulated
as the estimation problem for ρ̂k[n] and θ̂diff,k, since the
locations of both BS and RIS are usually fixed in most
applications in practice, and hence the related angles such as
θBR, ϕBR, and the ToA τBR can be pre-measured [23]. Let
us introduce the DFT matrix UR for the sparse formulation
of a(θ̂diff,k) in (28). Hence UR is defined in the same way
as (14). Then, the received signal of (28) can be alternatively
expressed as

Yk,:[n] = Ψhk[n] + n̂[n], (29)

where Ψ = Ω̂T
kUR can be explained as a sensing matrix, and

hk[n] is the desired sparse vector, which embeds the location
information AoR and ToA.

It can be understood from (29) that the received signals
have three dimensions, namely time blocks, subcarriers, and
the possible propagation paths, which in total have the number
of LRMLBR. However, for localization purpose, only the path
with the highest power is effective, which can be extracted
from (28) via the power measurement, expressed as

k̂ = argmax ∥Yk,: [n]∥22. (30)

Consequently, when considering the J blocks, N subcarriers,
and k̂-th path components, corresponding to (29), the received
signals for localization can be expressed as

Ŷ = ΨĤ+ Z, (31)

where Ŷ ∈ CT×N , Ψ ∈ CT×NR and Ĥ ∈ CNR×N , while
each column of Z is the AWGN. Finally, after the vectorization
of (31), the received signal can be represented in a group
sparse format as

ŷ = Ψ̂ĥ+ z. (32)

In (32), ŷ = vec(ŶT) ∈ CNJ×1,Ψ̂ = (Ψ⊗IN ) ∈ CNJ×NNR ,
and ĥ = vec(ĤT) ∈ CNNR×1. Furthermore, according to
(28), the noise variance for the t-th time block and the n-
th subcarrier can be expressed as σ̂t = σ2Wt

k̃,:
[n]HWt

k̃,:
[n].

Hence, the covariance of the elements in z can be written as
R̂t,t = σ̂t, where R̂t,t denotes the t-th diagonal element of R̂.
Therefore, in (32), the covariance matrix of the noise vector
z can be expressed as R̃ = E

{
zzH

}
= (R̂⊗ IN ).

Based on (32), the group sparse channel vector can be
estimated. Then, the AoR and ToA can be extracted from the
estimated channel vector, from which the location of UE can
be estimated, as detailed in the next section.

IV. PROPOSED GROUP SPARSE BAYESIAN LEARNING FOR
UE LOCALIZATION

A. Conventional Group SBL

The desired channel vector ĥ, which is sparse in both time
and spatial domain, and contains the information of AoR and

ToA for localization, is group-sparse. Therefore, we have the
a prior about the desired channel vector ĥ as

p
(
ĥ;Γ,M

)
=

NR∏
j=1

p (hj ; γj ,M), (33)

where M denotes the correlation matrix of hj , which is
assumed to be unknown along with the hyperparameter γj ,
hj = ĥ[(j − 1)N + 1 : jN ] denotes the j-th group of ĥ,
which for given γj and M obeys the distribution of

p (hj ; γj ,M) =
1

(πγj)
N
det (M)

exp

(
−
hH
j M

−1hj

γj

)
,

(34)

According to the automatic relevance determination [41], hj

can be generated based on the hyperparameter γj . When
considering all the NR groups, we have a vector γ control-
ling the prior variance of the group of elements in h. Let
Γ = diag(γ) ∈ RNR×NR be a diagonal matrix with the
hyperparameter vector γ on its diagonal. According to [26],
the SBL-based algorithms consist of two stages, namely the
expectation and maximization, which are termed as E-step
and M-step. Specifically, to solve our problem, the expected
value for the (iter−1)-th iteration of the log-likelihood func-
tion ℓ(Γ,M|Γ̂iter−1, M̂iter−1), corresponding to the complete
data {ŷ, ĥ}, is determined by the E-step as

ℓ(Γ,M|Γ̂iter−1, M̂iter−1)

= E
ĥ|ŷ;Γ̂iter−1,M̂iter−1

{logp(ŷ, ĥ;Γ,M)}. (35)

As logp(ŷ|ĥ) is independent of the hyperparameter matrix
Γ and the correlation matrix M, By employing Bayes’ rule
on 35, the M-step for maximizing the log-likelihood func-
tion ℓ(Γ,M|Γ̂iter−1, M̂iter−1) to update Γ and M can be
expressed as

(Γ̂iter, M̂iter) = argmax
Γ,M

E{logp(ĥ;Γ,M)}. (36)

Then, based on (33) and (34), each γj is decoupled by the
M-step, and according to [26], the a posteriori probability
density function (PDF) for the iter-th iteration is given by
p
(
ĥ|y; Γ̂iter−1, M̂iter−1

)
∼ CN (µiter,Σiter) with

µiter =ΣiterΨ̂
HR̃−1ŷ,

Σiter =
[
(Γ̂iter−1 ⊗ M̂iter−1)

−1 + Ψ̂HR̃−1Ψ̂
]−1

. (37)

Then, the estimate to the hyperparamter γj,iter can be updated
as [42]

γj,iter =
1

N
Trace((M̂iter−1)

−1(Γ̂iter,j + µiter,j(µiter,j)
H)),

(38)

where µj,iter = µj [(j−1)N+1 : jN ] ∈ CN×1 and Σiter,j =
Σiter[(j − 1)N + 1 : jN, (j − 1)N + 1 : jN ] ∈ CN×N

denote respectively the a posteriori mean and covariance of
the channel vector hj of the j-th group in ĥ. Simultaneously,
the correlation matrix is updated as [42]

M̂iter =
1

NR

NR∑
iter=1

Γ̂iter,j + µiter,j(µiter,j)
H

γj,iter
. (39)
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At the end, when the estimation converges, the estimation
of the desired channel vector ˜̂h is given by the converged
a posteriori mean µiter.

To estimate the ToA from the multi-carrier signals, the
group-sparse channel vector ˜̂h is estimated on the subcarrier-
by-subcarrier basis, expressed as ˜̂

H = reshape(
˜̂
h, N) ∈

CNR×N . Then, the estimated channel gain ˜̂ρk̂ and spatial

frequency ˜̂θdiff,k̂ for the k̂-th path can be expressed as

˜̂ρk̂ =max(
˜̂
H, 2) ∈ C1×N ,

p̂ = argmax
p=1,...,NR

N∑
v=1

˜̂
H:,v,

θ̂diff,k̂ =arcsin

(
λc

d

p̂− (NR − 1)/2− 1

NR

)
. (40)

Based on (26) and (40), as the locations of BS and RIS are
assumed to be fixed, the AoA at RIS ϕBR,k̂ can be assumed to
be known, which can be pre-measured when RIS is deployed.
Thus, the AoR at RIS can be estimated as [30]

θ̂RM,k̂ = arcsin(sin(ϕBR,k̂)− sin(θ̂diff,k̂)). (41)

The ToA is related to the channel gain in OFDM systems.

Let us define g(τBRM,k̂) =
[
1, ..., e−j2π(N−1)τ

BRM,k̂
/(NTs)

]T

as one of the grid candidates found from the time between BS
and UE. Then, the ToA between BS and UE can be estimated
as

τ̂BRM,k̂ = argmax
τBRM,k

∣∣∣g(τBRM,k̂)
˜̂ρk̂

∣∣∣2, (42)

where ˜̂ρk̂ =
[˜̂ρk̂ [0] , ..., ˜̂ρk̂ [N − 1]

]T
holds the finally es-

timated channels of the N subcarriers. Ultimately, when
considering that the above delay consists of the delay between
BS and RIS and that between RIS and UE, the ToA τRM,k̂
between RIS and UE can be obtained as

τ̂RM,k̂ =τ̂BRM,k̂ − τBR,k̂. (43)

Finally, with the aid of the estimated θ̂RM,k̂ in (40) and τ̂BRM,k̂
of (42), the location of the UE can be estimated as

m̂ = r+ cτ̂RM,k̂[cos(θ̂RM,k̂), sin(θ̂RM,k̂)]
T. (44)

To sum up, the RIS-aided localization scheme based on the
GSBL algorithm, which is operated during the second stage,
as discussed in Section III-B, can be summarized as Algorithm
2.

B. Proposed Localization Scheme Using Modified Temporally
Correlated Multiple Sparse Bayesian Learning

The GSBL algorithm jointly considers N subcarriers, J
time blocks and NR grids/antennas of RIS, leading to the high
complexity of the inversion of R̃ ∈ CJN×JN and Σiter ∈
CNRN×NRN in (37). In order to reduce the size of these
matrices in (37) and hence the implementation complexity,

Algorithm 2 GSBL algorithm for the RIS-Aided Localization
in mmWave System

Inputs: Observations ŷ ; Sensing matrix Ψ̂; Maximum iter-
ation Kmax.

Objectives: To estimate θ̂RM,k̂, τ̂RM,k̂.
1: Initialize hyperparameters: Γ̂0 = INR

, Γ̂−1 = 0NR

2: for iter = 0, ...,Kmax do
3: Expectation: Evaluate the a postriori mean µiter and

covariance matrix Σiter according to (37).
4: Maximization: Update the hyperparameters γj,iter

based on (38), and the correlation matrix M̂iter based
on (39), with Γ̂iter = diag(γ1,iter, γ2,iter, ..., γNR,iter).

5: end for
6: AoR and ToA recovery based on (40) to (43).
7: return θ̂RM,k, τ̂RM,k.

inspired by (26) in [26], the covariance matrix Σiter in (37)
can be approximated as

Σiter =[(Γ̂iter−1 ⊗ M̂iter−1)
−1 + Ψ̂HR̃−1Ψ̂]−1

=[(Γ̂iter−1 ⊗ M̂iter−1)
−1 + (ΨHR̂−1Ψ)⊗ IN ]−1

≈((Γ̂iter−1)
−1 +ΨHR̂−1Ψ)−1 ⊗ M̂iter−1. (45)

From (45), Σiter can be constructed as Σiter,j =

[Σ̂iter]j,jM̂iter−1, where Σ̂ = ((Γ̂iter−1)
−1+Ψ̂HR̃−1Ψ̂)−1,

and Σiter,j is the j-th diagonal element. With the aid of the
approximation of (45), according to (23) and (24) in [26], the
mean µiter can then be approximated as

µiter =ΣiterΨ̂
HR̃−1ŷ

=Σiter[(Ψ
HR̂−1)⊗ IN ]ŷ

≈[(Σ̂iterΨ
HR̂−1)⊗ IN ]vec(ŶT)

=vec([
˜̂
Hiter]

T), (46)

where ˜̂Hiter = Σ̂iterΨ
HR̂−1Ŷ. Then, when substituting the

approximations of (45) and (46) into (37), the hyperparameter
γj,iter can be updated as

γj,iter = [Σ̂iter]j,j +
1

N
([
˜̂
Hiter]j,:)

H(M̂iter−1)
−1[
˜̂
Hiter]j,:,

(47)

associated with the correlation matrix M̂iter represented as

M̂iter =
1

NR
×NR∑

j=1

[Σ̂iter]j,j
γj,iter

+

NR∑
j=1

1

γj,iter
[
˜̂
Hiter]j,:([

˜̂
Hiter]j,:)

H

 .

(48)

Note that, in (48), the ambiguity between M̂iter and γj is
unable to be removed. Furthermore, it is not robust in low
SNR region due to the errors introduced from the unreliable
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estimates of γj and [
˜̂
Hiter]j,:. To increase the robustness, (48)

can be updated according to the formulas [26]

M̃iter =

NR∑
j=1

1

γj,iter
[
˜̂
Hiter]j,:([

˜̂
Hiter]j,:)

H + κIN ,

M̂iter =
M̃iter∥∥∥M̃iter

∥∥∥
F

, (49)

where the constant κ = 2 [26].
In summary, the proposed two-stage localization scheme

employs the conventional estimation for OFDM mmWave
channel in the first stage associated with a randomly generated
phase shift matrix at RIS in the beamspace domain, to design
the precoder of BS and combiner of UE. Then, during the
second stage, multiple time blocks with time-domain sparsity
are utilized to estimate the AoR at RIS and the ToA at UE from
RIS, from which the location is recovered by UE, according
to the down-link channel parameters estimated.

V. PERFORMANCE RESULTS AND ANALYSIS

A. Simulation Setup

TABLE I
SIMULATION PARAMETERS

Parameters Value
No. of Antennas Nb, Nm, Nr 8 [43] or 16 [23, 39]

Speed of Light c 2.99792× 108 m/s
Carrier Frequency fc 60 GHz

Bandwidth B 100 MHz [15, 23]
Path Loss of LoS path ρBR,0 ρBR,0 = λ

4πdBR,0
[5]

Path Loss of NLoS path ρBR,l ρBR,l =
√
ςλ

4πdBR,l
[5]

Reflection Loss ς -13 dB [39]
No. of Pilot Subcarriers N 10

Location of BS, b [0, 0]T

Location of RIS, r [2.5, 4]T

Location of UE, m [5, 3]T

Locations of the first scatterer s1 [1, 3]T

Locations of the second scatterer s2 [4, 2]T

In this section, we demonstrate the performance of the RIS-
aided localization by investigating the effect from the different
perspectives, such as different channel estimation algorithms,
the number of training blocks, and the position of RIS. As
detailed in Table I, we consider a system as shown in Fig. 1,
with BS, UE and RIS all employing 8 antennas [43] (or 16
antennas when investigating the impact of different number
of antennas [23, 39]). The number of time blocks is set to
J = 64, while the number of pilot subcarriers is N = 10,
unless specified. As shown in Table I, the locations of BS, UE,
and RIS are at b = [0, 0]T, m = [5, 3]T, and r = [2.5, 4]T,
respectively. The carrier frequency fc is set to 60 GHz, while
the bandwidth is B = 100 MHz [15, 23]2. The signal-to-noise
ratio (SNR) is defined as P/σ2. The reflection loss is set to ς =
−13 dB [39]. Finally, the estimation performance is measured
by the root mean squared error (RMSE), defined as:

RMSE =

√√√√ 1

K

K∑
k=1

∥q̂− q∥22, (50)

2In this paper, we assume a bandwidth of 100 MHz as a design example.
A wider bandwidth is also applicable, provided that B ≪ fc.

where K denotes the number of Monte Carlo trials, q and
q̂ are the true and estimated UE location or orientation. In
addition to the above-mentioned, there are also some other
parameters specified in Table I.

Benchmark: In this paper, we compare the RMSE perfor-
mance of the proposed modified TMSBL algorithm with the
OMP [44], DCS-SOMP [15], AMP [27], SBL [19] and the
GSBL [42] algorithms. The OMP and SBL algorithms are
employed in the SMV model, and applied on a subcarrier-
by-subcarrier basis. At the end, the average of the estimated
channel vectors is taken for the final channel estimation. The
stopping parameter for the SBL, GSBL and modified TMSBL
algorithms is set to Kmax = 100.

B. Complexity Comparison
The complexity of the SBL algorithm is on the order of

O(NN3
R+NJ3) [42]. The GSBL algorithm has a complexity

order of O(N3N3
R + J3) based on (37). Explicitly, it is

significantly higher than that of the SBL algorithm, as a
result that the group sparsity increases the dimension of
the involved dictionary matrix, whose inverse is required to
compute. The modified TMSBL has the complexity order
of O(N3

R + J3 + NRN
3) [26], which can be significantly

lower than that of the GSBL algorithm, due to the fact that it
requires smaller dimension matrices in (45) and (46). For the
SOMP algorithm, its complexity order is O(NN2

R+J3) [15],
which is lower than that of the SBL-based algorithms. For the
AMP algorithm, the complexity order is O(NRNJ). Table II
compares the complexity of the considered algorithms, when
setting J = 60, N = 10, and NR = 8. Explicitly, the proposed
algorithm and the DCS-SOMP algorithm have the lowest com-
plexity among the considered algorithms. Furthermore, Fig. 3
and Fig. 4 demonstrate respectively the impact of the number
of RIS elements NR and the number of training blocks J on
the computational complexity. Specifically from Fig. 3, it can
be found that the proposed and the AMP algorithm has a good
performance in terms of computational complexity, especially
when the number of RIS is large. As shown Fig. 4, the SBL
algorithm has the highest complexity, as it is operated on
subcarrier-by-subcarrier basis, resulting in that the complexity
of O(NJ3) contributed by matrix inverse is much higher than
that of the rest algorithms. On the other hand, our proposed
algorithm shows the lowest computational complexity, owing
to that the size of the matrices needing inversion during the
hyperparameter iterations is reduced. Hence, the proposed
algorithm has a significantly lower complexity from the GSBL
algorithm, especially when the system dimension is large.

TABLE II
COMPLEXITY COMPARISON

Algorithm Computational Complexity
DCS-SOMP O(216640)

SBL O(2165120)
GSBL O(5336000)

Modified TMSBL O(224512)
AMP O(4800)

C. Comparison of Channel Estimation Algorithms
Fig. 5 compares the RMSE performance of the AoR es-

timation, when different channel estimation algorithms are
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Fig. 3. Computational complexity of different CS algorithms for N = 10 and
J = 64, when different numbers of RIS element NR are employed.
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Fig. 4. Computational complexity of different CS algorithms for N = 10 and
NR = 8, when different numbers of training blocks J are employed.
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Fig. 5. RMSE performance of the estimated AoR for NB = NM = NR = 8
and J = 64, when different channel estimation algorithms are employed.

employed. As shown in Fig. 5, the proposed modified TMSBL
is capable of achieving more accurate estimation than the
other considered algorithms. The AMP algorithm attains worse
RMSE performance than the SBL-based algorithm, as the
result that the AMP algorithm has experts the sensing matrix
to satisfy RIP and follows near Gaussian distribution [45].
However, it can be seen that for all the channel estimation
algorithms, the RMSE floor appears, when SNR reaches a
relatively high value. This is the result of the beamspace
resolution, which unavoidably introduces quantization errors.

The ToA estimation mainly relies on the channel esti-
mation according to (42). As shown in Fig. 6, the GSBL
algorithm attains the best RMSE performance compared to
both the SOMP and the SMV-based schemes, such as, the
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Fig. 6. RMSE of the estimated ToA for NB = NM = NR = 8 and J = 64,
when different channel estimation algorithms are employed.

OMP and SBL algorithms, when SNR is sufficiently high,
typically higher than -12 dB. This is because the GSBL
algorithm can make use of the group sparsity, while the SOMP,
OMP and SBL algorithms do not utilize the group sparsity.
The performance of the SOMP algorithm is inferior to the
GSBL scheme, because it is sensitive to the dimension of
the dictionary matrix Ψ̂ and the employed stopping criterion.
More explicitly, the SBL-based algorithm estimates the sparse
coefficients from the posterior distribution, enabling to handle
the uncertainty of signals and noise better than the DCS-SOMP
algorithm, as mentioned in [46]. Consequently, the SBL-based
algorithms are able to provide more accurate recovery in the
ToA estimation. However, the computational complexity of
the SOMP algorithm is lower than that of the SBL-based
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approaches. Therefore, there is a trade-off between RMSE
performance and computational complexity. By contrast, when
SNR is reasonably high, the proposed TMSBL algorithm is
as effective as the GSBL algorithm, achieving the similar
RMSE performance as the GSBL algorithm, but with a signif-
icantly lower computational complexity. Furthermore, as seen
in Fig. 6, the AMP algorithm has worse RMSE performance
in ToA estimation than the proposed and GSBL algorithms.
This is because the AMP algorithm relies on the near Gaussian
distributed sensing matrix. Otherwise, it performs poorer than
the proposed and GSBL algorithm.

-20 -15 -10 -5 0 5

100

Fig. 7. RMSE performance of the estimated location of UE for NB = NM =
NR = 8 and J = 64, when different channel estimation algorithms are
employed.

Based on the observations from Fig. 5 and Fig. 6, the
corresponding RMSE of position estimation is shown in
Fig. 7. Again, the GSBL algorithm attains the best RMSE
performance compared to both the SOMP and the SMV-based
algorithms. The proposed TMSBL algorithm is also as efficient
as the GSBL algorithm in terms of the RMSE performance, but
outperforms the GSBL algorithm in terms of the computational
complexity. Compared to the SOMP algorithm, the proposed
TMSBL algorithm achieves better RMSE performance, when
SNR>-10 dB, at the cost of the slightly increased complexity.
For the AMP algorithm, due to its poor estimation of both
channel gain and the corresponding ToA, as depicted in Fig. 6,
it is unable to provide the positioning as accurate as the
proposed algorithm, as shown in Fig. 7. Therefore, the AMP
algorithm is in general not a good choice for localization in
the RIS-aided mmWave systems.

D. Effect of Number of Training Blocks

Fig. 8 investigates the RMSE performance of the position
estimation versus the number of training blocks J at SNR=-
5 dB. From the results, we can observe that when the number
of training blocks J < 20, the SOMP algorithm outperforms
all the other algorithms considered. In detail, owing to the
capability of the group sparsity awareness, the MMV model
has superiority compared to the OMP and SBL algorithms.
On the other hand, when J is relatively small, the column
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Fig. 8. RMSE performance of the estimated location of the UE versus the
number of time blocks J for NB = NM = NR = 8 and SNR=-5 dB, when
different channel estimation algorithms are employed.

in the dictionary matrix is less coherent. In this case, when
J increases, the GSBL algorithm outperforms the other the
algorithms.

E. Effect of Number of RIS Elements (Resolution)
Fig. 9 shows the RMSE performance of localization, when

RIS employs different number of reflection elements. As the
total power of the RIS reflection is fixed, when increasing the
number of RIS elements from 8 to 16, the error floor presents
at the same SNR value. From the simulation results shown in
Fig. 9, we can be inferred that at relatively high SNR, such
as SNR= 0 dB, when the number of RIS elements increases,
meaning that the beamspace resolution (size of the dictionary
matrix) increases, which results in better performance in the
estimation of AoR and ToA can be achieved. Specifically, the
localization accuracy can be increased from about 0.36 meters
to about 0.22 meters. However, when SNR is too low, such
as SNR = −10 dB, employing more RIS elements results in
worse performance in channel estimation and positioning. This
is because, when the received signal is noise dominant, the
estimator can only randomly select one possible value as the
estimation result. In this case, when the beamspace resolution
is higher owing to using more RIS elements, the probability of
error is also higher, leading to worse positioning performance,
as shown in Fig. 9.

F. Effect of Position of RIS
To investigate the effect of the location of RIS, the location

of BS is set at b = [0, 0]T, and the location of UE is set
at m = [5, 1]T. We consider an indoor scenario, assuming a
room of 5 × 5 and that the RIS can be deployed anywhere
in the room. The localization is implemented by the proposed
algorithm. From the results shown in Fig. 10, it can be seen
that the location of RIS has a big impact on the performance of
the localization of UE. This is the result of the grid mismatch
problem on the beamspace estimation. More explicitly, when
the numbers of antennas/elements are set to NB = NR =
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Fig. 9. RMSE performance of the estimated AoR, ToA, position of UE for N = 10 and J = 64, when NB = NM = NR = 8 and NB = NM = NR = 16
are employed.
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Fig. 10. RMSE performance with different RIS locations, when NB = NR =
NM = 8, where the location of BS is fixed at b = [0, 0]T, and the location
of UE is at m = [5, 1]T.

NM = 8, the beamspace angle range is divided into 8 portions,
with each of 2π/8. In this regard, the estimated angles mapped
from the beamspace grid leads to the quantization error. As
shown in Fig. 10, the positioning accuracy presents a grid-like
distribution.
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Fig. 11. RMSE performance with different RIS locations, when NB = NR =
NM = 8, the location of BS is at b = [0, 0]T, and the location of the UE is
at m = [5, 2]T.

Fig. 11 shows the RMSE performance of the localization
of UE against the distribution of RIS, when BS is set at b =
[0, 0]T, and UE is at m = [5, 2]T, and the numbers of antenna
elements are set to NB = NR = NM = 8. From Fig. 10 and

Fig. 11, we can find that when the RIS is placed with the
same x-axis value as BS and the same y-axis value of UE,
there appears an estimation error peak. This is because when
the spatial frequency estimation is on the opposite side, it gives
the same results, which leads to the ambiguity of localization
by (41). Thus, in practice, the placement of RIS should avoid
this kind of distribution, when the positioning relied services
are provided. Moreover, RIS should be located at a position
with a relatively high in y-axis value, as shown in Fig. 10, in
order to improve the localization coverage.
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Fig. 12. RMSE performance with different RIS placement, when NB =
NR = NM = 32, and BS is at b = [0, 0]T, and UE is set at m = [5, 1]T.

Finally, in Fig. 12, we show the RMSE performance of
the localization of UE with the distribution of RIS, when the
numbers of antenna elements are NB = NR = NM = 32.
Similar to Fig. 11, the location of BS is at b = [0, 0]T, and that
of UE is at m = [5, 1]T. Compared to Fig. 10 corresponding
to NB = NR = NM = 8, the localization coverage shown
in Fig. 12 is significantly improved, owing to the higher
beamspace resolution, as shown in Fig. 9. Furthermore, when
comparing the two figures, the positioning accuracy in Fig. 12
presents a denser grid-like distribution.

VI. CONCLUSIONS

In this paper, the problem on the downlink mmWave chan-
nel estimation based localization was studied with a RIS-
assisted system. Our localization process was divided into
two stages. During the first stage, the conventional mmWave
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channel estimation is carried out to design the precoder and
combiner used at BS and UE, respectively. Based on the initial
design obtained from the first stage, in the second stage, a
modified TMSBL algorithm was proposed to estimate the
AoR at RIS and ToA at UE, which takes the advantage of
the group sparsity existing in the multiple observation blocks.
In performance studies, the impact from different numbers
of antenna elements and time blocks, as well as from the
placement of RIS was demonstrated. Our studies and results
show that, with the aid of a RIS, the positioning accuracy can
reach the centimeter level, even when the LoS link between
BS and UE is blocked. However, when placing a RIS for
positioning purpose, we should avoid placing it at the position
that makes BS, RIS and UE form a rectangular with the RIS
on the right angle. If this is the case, the beamspace angle
mapping leads to the localization ambiguity, yielding large
positioning error. The problem of localization ambiguity may
be solved by employing two or more RISs, which provide extra
benefits but also impose other challenges that expect further
research.
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