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A B S T R A C T

This paper investigates the application of physics-informed neural networks (PINNs) to solve free-surface
flow problems governed by the 2D shallow water equations (SWEs). Two types of PINNs are developed and
analyzed: a physics-informed fully connected neural network (PIFCN) and a physics-informed convolutional
neural network (PICN). The PINNs eliminate the need for labeled data for training by employing the SWEs,
initial and boundary conditions as components of the loss function to be minimized. Results from a set of
idealized and real-world tests showed that the prediction accuracy and computation time (i.e., training time)
of both PINNs may be less affected by the resolution of the domain discretization when compared against
solutions by a Finite Volume (FV) model. Overall, the PICN shows a better trade-off between computational
speed and accuracy than the PIFCN. Also, our results for the idealized problems indicated that PINNs can
provide more than 5 times higher prediction accuracy than the FV model, while the FV simulation with coarse
resolution (e.g., 10 m) can provide sub-centimeter accurate (RMSE) solutions at least one order of magnitude
faster than the PINNs. Results from a river flood simulation showed that PINNs delivered better speed-accuracy
trade-off than the FV model in terms of predicting the water depth, while FV models outperformed the PINNs
for predictions of total flow discharge.
1. Introduction

Free-surface flow phenomena are usually modeled by the shallow
water equations (SWEs), a nonlinear system of partial differential equa-
tions (PDEs) governing the evolution of water depth and vertically
averaged velocity in the two horizontal dimensions. Over the last
decades, significant efforts have been made to approximate the solution
to the SWEs in a discretized form through numerical methods, such
as Finite Difference (FD) (e.g., Casulli, 1990; Molls and Chaudhry,
1995; Kurganov and Levy, 2002), Finite Volume (FV) (e.g., Alcrudo
and Garcia-Navarro, 1993; Bale et al., 2003; Botta et al., 2004; Yoon
and Kang, 2004; Toro and Garcia-Navarro, 2007), or Finite Element
(FE) (e.g., Lynch and Gray, 1979; Hanert et al., 2005; Dawson et al.,
2006; Marras et al., 2016). These methods are now well-established and
have been the object of extensive tests and validation (e.g., Toro and
Garcia-Navarro, 2007; Wilson et al., 2007; Liang and Marche, 2009;
LeVeque et al., 2011). While the ability of these models to capture the
main properties of free-surface flows has been widely verified, accurate
solutions to real-world problems typically require the use of a finely
resolved computational mesh, which tends to significantly increase the
computational cost (Bernard et al., 2009; Liang, 2011; Juez et al.,
2014). In explicit numerical schemes for the solution of the 2D SWEs,
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the computational cost 𝐶 scales cubically with the size of the compu-
tational grid 𝛥𝑥 (i.e., 𝐶 ∼ 𝛥𝑥−3). As a result, important applications
such as large-scale flood simulations are often beyond the capabilities
of available numerical methods given existing computational resources.
This is particularly challenging when simulations need to be performed
in real-time, or as part of a probabilistic flood risk analysis (Leskens
et al., 2014; Sanders and Schubert, 2019; Ferrari and Vacondio, 2022;
Li et al., 2022). Although the computational speed of models can be
improved by using state-of-the-art hardware and parallel computing
algorithms (Leandro et al., 2014; Monnier et al., 2016), such techniques
may still be insufficient to meet the computational requirements of
many important applications (Kabir et al., 2020). Owing to these
limitations, a cost-effective model for free-surface problems may offer
an appealing alternative. To this end, an avenue worth exploring is
Artificial Intelligence, as discussed next.

Over the last decades, Machine Learning (ML) models, and Artifi-
cial Neural Networks (ANNs) in particular, have found a wide range
of applications in water-related problems, such as in flood simula-
tion (Debbarma et al., 2024; Gurbuz et al., 2024), climate forecast-
ing (Yeganeh-Bakhtiary et al., 2022; Donnelly et al., 2024a), wave
prediction (Habib et al., 2023; Yeganeh-Bakhtiary et al., 2023), to cite
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only a few. The extraordinary increase in applications of ML models is
largely due to their ability to mathematically describe any nonlinear
relationship between inputs and outputs according to the universal
approximation theorem (Hornik et al., 1989), the increasing availability
of data for training, and increasing computational power.

The first works using ML for the solution of problems governed
by the SWEs are relatively recent and focused on the development of
simple meta-models (e.g., Kabir et al., 2020; Liu and Pender, 2015;
Bermúdez et al., 2019; Mahesh et al., 2022). In this type of model,
ML is used to build a prediction model to describe the input–output
relationship previously obtained through the solution of the governing
PDEs by another numerical approximation model; i.e. the ML model
thus becomes a surrogate model. These surrogate models typically need
to be trained using the results of a large number of numerical simula-
tions conducted at fine resolution, which can be very computationally
demanding.

Physics-informed neural networks (PINNs), for which large datasets
(and therefore computationally expensive numerical simulations) are
not required for training, have gained increasing attention in recent
years (Pang et al., 2019; Mao et al., 2020; Cai et al., 2021; Krish-
napriyan et al., 2021; Jin et al., 2021; Kharazmi et al., 2021; Jagtap
et al., 2023). A PINN is essentially a ML algorithm which uses the
information contained in the physical laws (such as the governing PDEs,
boundary and initial conditions) to train the model. This can reduce or
even eliminate the need for training data and thus, expensive numerical
simulations. In particular, training a data-free PINN (i.e. when labeled
input–output data is not used to train the network) is required to
only satisfy the governing PDEs, Initial Conditions (ICs) and Boundary
Conditions (BCs) simultaneously. Recent applications of ML algorithms
to solve complex physics phenomena have focused on the use of Deep
Learning (DL) models (e.g., Sun et al., 2020; Zhang et al., 2020;
Haghighat et al., 2020; Vlassis and Sun, 2021; Wu et al., 2023). DL is a
form of ANN with more than one hidden layer, which provides the com-
plexity required to model intricate nonlinear relationships (Voulodimos
et al., 2018; Khan and Yairi, 2018; Rastgoo et al., 2021; Zhu et al.,
2017). In the past few years, a large number of data-free PINNs have
been developed by employing DL techniques, such as the Fully Con-
nected Neural Networks (FCNNs) and Convolutional Neural Networks
(CNNs). For example, in Raissi et al. (2019) several FCNNs were trained
to predict the solutions to various systems of PDEs, including Allen–
Cahn, Schrödinger, Navier–Stokes, and Korteweg–de Vries equations. In
the context of fluid dynamics, other implementations of FCNNs include
those of Sun et al. (2020) and Mao et al. (2020), who used their DL
models to find solutions to the Navier–Stokes (in steady state) and
Euler equations (involving shock waves), respectively. The use of CNNs
has also been explored, for instance, for problems governed by the
Navier–Stokes (Cai et al., 2021) and Boltzmann transport equations (Li
et al., 2021), or for predicting steady flow in random heterogeneous
media (Zhu et al., 2019). The success of these works shows that data-
free PINNs should be considered as serious contenders for solving flow
problems that are typically modeled by PDEs, and which have been
traditionally solved using conventional numerical methods (FD, FV,
etc.).

While PINNs trained from labeled data (i.e., mainly conventional
numerical solutions) have been used to solve the SWEs (e.g., Mahesh
et al., 2022; Feng et al., 2023; Li et al., 2023; Donnelly et al., 2024b;
Fraehr et al., 2024), their model performance still relies on the quality
and quantity of the given labeled data. A data-free PINN, trained
without any labeled data, can be regarded as a completely independent
method for solving the SWEs. However, to the authors’ knowledge
only a very limited number of articles (e.g. Bihlo and Popovych, 2022)
has been published so far on the use of a data-free PINNs for this
purpose. In Bihlo and Popovych (2022), a data-free PINN (specifically,
based on a FCNN) was employed to find solutions to the SWEs on
a spherical domain, and the focus was on idealized problems which
2

may find applications in meteorology. Whether a similar DL technique
may be used to accurately and efficiently solve challenging free-surface
flow problems involving friction, wet-dry front and complex boundary
conditions, such as large-scale simulations of flood, remains an open
question.

The solution of PDEs, and in particular of the SWEs, using PINN
algorithms is still in its infancy and further investigation is required
to understand the main characteristics of solutions obtained by these
methods. Firstly, the trainset for PINNs needs to be generated from
a particular, discrete, set of points. It remains unclear how accuracy
and computational performance (i.e., training speed) depend on the
discretization of the domain. Additionally, both FCNNs and CNNs are
commonly used DL models in the research field of PINN. However, in a
specific problem governed by a system of PDEs, it is usually difficult to
determine which one will deliver the best performance before carrying
out tests.

The aim of this paper is to develop and test two different PINN
models to approximate solutions to various free-surface flow problems
governed by the 2D SWEs. The PINN models are based on the FCNN
and CNN approaches, and are hereafter referred to as PIFCN (physics-
informed fully connected network) and PICN (physics-informed con-
volutional network), respectively. These models are data-free in that
they do not require data from separate numerical simulations, or
laboratory/field measurements, to train the networks. In this paper
both PIFCNs and PICNs are compared against the Finite Volume (FV)
solver of the 2D SWE developed by de Almeida et al. (2016) through
a set of test cases including two idealized flow problems and one
real-world flood event. The rest of this paper is organized as follows.
First, the governing equations and the framework of both PINNs are
described in Section 2. This section also provides a concise review
of FCNNs and CNNs. In Section 3, the accuracy and computational
performance of the proposed physics-informed networks (PIFCN and
PICN) are investigated for the three test cases. The main outcomes of
the study are discussed and summarized in Section 4.

2. Methods

2.1. Overview

Most problems requiring the simulation of free-surface flows in the
horizontal plane, such as flow in rivers and estuaries, dam-breaks,
and flood wave propagation can be modeled by the SWEs. The 2D
SWEs represent a system of nonlinear, hyperbolic PDEs describing the
conservation of water mass and depth-average momentum, which can
be expressed as:
𝜕𝐔
𝜕𝑡

+
𝜕𝐅(𝐔)
𝜕𝑥
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here 𝑥 and 𝑦 are the spatial (horizontal) coordinates; 𝑡 is time; ℎ(𝑥, 𝑦, 𝑡)
s the water depth; 𝑢(𝑥, 𝑦, 𝑡) and 𝑣(𝑥, 𝑦, 𝑡) denote the 𝑥 and 𝑦 components
f the depth-averaged flow velocity, respectively; 𝑠𝑜𝑥 = −𝜕𝑧∕𝜕𝑥 and
𝑜𝑦 = −𝜕𝑧∕𝜕𝑦 are the bed slopes in the 𝑥 and 𝑦 directions, respectively,
nd 𝑧(𝑥, 𝑦) is the terrain elevation (assumed constant in time); 𝑠𝑓𝑥 and
𝑓𝑦 denote the friction slopes in the 𝑥 and 𝑦 directions, respectively. The
riction slopes can be modeled using Manning-Strickler’s expression,
𝑓𝑥 = 𝑛2𝑢

√

𝑢2 + 𝑣2ℎ−4∕3, 𝑠𝑓𝑦 = 𝑛2𝑣
√

𝑢2 + 𝑣2ℎ−4∕3, where 𝑛 is the
Manning coefficient. Solutions 𝐔 = (ℎ, ℎ𝑢, ℎ𝑣)𝑇 to this system (subject to
well-posed boundary and initial conditions) can be computed by several
numerical methods available, as discussed in the Introduction.
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In this paper we propose a ML-based solution to this problem,
whereby the input layer 𝐱 represents the independent variables and
parameters of the problem, 𝐱 = (𝑥, 𝑦, 𝑡, 𝑛, 𝑧), and the trained model ℵ is
expected to provide an approximate solution for ℎ(𝐱), ℎ𝑢(𝐱) and ℎ𝑣(𝐱)
in the corresponding domain; in other words:

𝐔(𝐱) ≅ �̃�(𝐱) = ℵ(𝐱 ;Γ), (3)

where �̃�(𝐱) denotes the output from the PINN, which is in turn defined
by the group of trainable parameters Γ (e.g., convolutional filter,
weights and biases). The PINN models proposed in this paper are
trained by minimizing the composite loss function, defined as:

L = 𝝀1⋅L𝑝 + 𝝀2⋅L𝑏 + 𝝀3⋅L0, (4)

where L (a scalar) is the loss function to be minimized, 𝝀1−3 are the
vectors of penalty coefficients for every specific loss term; namely,
L𝑝 penalizes the residuals of the SWEs, L𝑏 and L0 penalize the BCs
(subscript 𝑏) and ICs (subscript 0) residuals, respectively. These loss
terms are in turn given by:

L𝑝 =
1
𝑁

𝑁
∑

𝑖=1
|𝜕𝑡�̃�𝑖 + 𝜕𝑥𝐅(�̃�𝑖) + 𝜕𝑦𝐆(�̃�𝑖) − 𝐒(�̃�𝑖)| (5a)

L𝑏 =
1
𝑁𝑏

𝑁𝑏
∑

𝑖=1
|�̃�𝑏,𝑖 − 𝐔𝑏,𝑖| (5b)

0 =
1
𝑁0

𝑁0
∑

𝑖=1
|�̃�0,𝑖 − 𝐔0,𝑖| (5c)

The tilde symbol (̃) denotes neuronal network output and the
ubscript 𝑖 ∈ [1, 𝑁] refers to the 𝑖th collocation point. 𝑁 represents
he number of collocation points, which in this paper is defined from
uniformly discretized domain of the independent variables such that
= 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑡, where 𝑛𝑥, 𝑛𝑦 and 𝑛𝑡 are the number of points used to

iscretize the domain along the 𝑥, 𝑦 and 𝑡 coordinates, respectively. The
oundaries of the spatio-temporal domain are represented by a subset
f 𝑁 ; in particular, the model will employ 𝑁𝑏 < 𝑁 and 𝑁0 < 𝑁 points
o define the BCs and ICs, respectively. Therefore, the boundary and
nitial conditions of the problem are set via selected collocation points,
ith the loss function at these points evaluated using Eqs. (5b) and (5c),

espectively.
For each approximate solution produced by the PINN, the partial

erivatives in Eq. (5a) are computed through the method of automatic
ifferentiation (autodiff) (Paszke et al., 2017), which back-propagates
erivatives from the outputs to the targeted inputs through the chain
ule to compute the desired derivatives (Cai et al., 2021; Baydin et al.,
018). Thus, the partial derivatives of the approximate solution with
espect to the independent variables can be computed without the er-
ors common to numerical differentiation techniques. The loss function
s minimized using the gradient descent method, with gradients of the
oss function with respect to trainable parameters computed by back-
ropagation. These parameters can be updated either using all, or a
ubset (batch) of the collocation points.

One significant difficulty of solutions to flow problems modeled by
he SWEs is the so-called wet-dry front issue (i.e., moving boundary).
hysically, the value of the flow depth ℎ cannot be negative. Areas of
he domain where such solutions may be obtained correspond to dry
reas, which are not governed by the SWEs. To overcome this problem,
e set L𝑝 = 0 if the predicted value of ℎ̃ is negative. This ensures that

he model does not penalize predictions outside the wet domain.
Fig. 1 shows a diagram illustrating the overall modeling framework

roposed in this paper for solving the SWEs by a PINN method. Note
hat the collocation points can be chosen randomly in the space–time
omain and their number prescribed. The general steps are outlined
elow.

1. Generate the set of collocation points used to discretize the
domain, including the subset of points used to define the BCs
and ICs;
3

t

2. Define the architecture of the PINN;
3. Initialize the hyperparameters for the PINN;
4. Compute the outputs from the PINN with given inputs;
5. Compute the derivatives with respect to 𝑥, 𝑦, 𝑡 and the corre-

sponding loss L

6. Update the PINN based on L;
7. Repeat steps 3 to 5 until the end of the user-prescribed number

of training epochs.

.2. Fully connected neural network

The FCNN is the most commonly applied ML model and often
ncludes more than one hidden layer. Every hidden layer receives the
ignals from the previous layer, performs basic computations defined at
ach neuron, and passes the results to the next layer (Haykin, 2009).
ig. 2 shows a diagram of a FCNN. Mathematically, the basic function
f the output for the 𝑗th hidden layer 𝐲𝑗 is:

𝑗 = 𝜑
(

𝐖𝑗𝐲𝑗−1 + 𝐛𝑗
)

(6)

here 𝐖 is the matrix of weights, 𝐛 is the vector of biases and 𝜑() is
he activation function.

In the proposed method, solutions for each output variable 𝜂(𝐱) =
(𝐱) + 𝑧, ℎ𝑢(𝐱), ℎ𝑣(𝐱) are approximated by 3 separate FCNNs with
he same structure, as illustrated in Fig. 2. Every sub-FCNN receives
he same raw inputs. As a result, the trainable parameters of the
olution for each output variable are decoupled. This can significantly
mprove the prediction accuracy in multivariate problems, especially
hen the distributions and magnitudes of the variables are significantly
ifferent (e.g., Sun et al., 2020; Gao et al., 2021; Guo et al., 2020).

.3. Convolutional neural network

The CNN adds one or more convolutional layers that extract features
f the raw training dataset before feeding this onto the typical hidden
ayers used to build FCNNs. The general expression for the convolution
perator ⋆ with 1 stride is:

𝐬 ⋆ 𝐤)𝑖 =
𝑛
∑

𝑗=1
𝑘𝑗𝑠𝑖+𝑗−1 𝑖 = 1, 2,… , 𝑚 − 𝑛 + 1 (7)

here 𝐬 denotes the input signal vector of length 𝑚 (in this paper, this
s 𝐱), and 𝐤 denotes the trainable filter of length 𝑛. The convolution
peration is to slide the preset convolutional filter over the signal input
nd output the signal with a shorter length (i.e., the input vector is
hortened by 𝑛−1 elements). The shorter length of the convolved output
ignal allows the following typical hidden layer to have fewer neurons,
acilitating the network’s learning of large-scale problems with high
omplexity (Gao et al., 2021).

Fig. 3 shows the structure of the CNN used in this paper. The trainset
s generated from a number of points (i.e., collocation points) randomly
ampled from a grid of equally spaced points. Each output variable,
(𝐱), ℎ𝑢(𝐱), ℎ𝑣(𝐱), is also predicted by a separate sub-CNN.

.4. PINN design

The accuracy and computational performance of the PINNs de-
cribed in the previous sections will be assessed and compared against
he corresponding performance and solutions by a conventional FV
odel. There is currently no universal design approach to determine

he optimal, or even appropriate, structure for a neural network (Bihlo
nd Popovych, 2022). The general selection rule for PINN design is to
ind a structure with the lowest possible complexity that achieves the
esired accuracy of prediction. This rule can usually help provide an AI
odel with quick learning speed and improved prediction capabilities
hile avoiding overfitting issues (Blumer et al., 1987). In this paper,

he final decision for the model structure (i.e. hyperparameters such
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Fig. 1. A schematic diagram of a physics-informed neuronal network (PINN) for finding approximate solutions to the shallow water equations.
Fig. 2. (a) The architecture of the physics-informed fully connected networks (PIFCNs) employed in this paper. (b) An example of a typical fully connected neuronal network
(FCNN) which is employed as a sub-network within the PIFCN to predict each individual output; as illustration, 2 hidden layers with 7 neurons each are shown, but these
hyperparameters are varied in this study.
as the number of neurons, hidden layers, and convolutional layers and
channels in the case of CNN) was made after many practical attempts
(see Appendix A). As the evaluation of the PINNs performance in this
paper consists of two, often competing, criteria (accuracy and compu-
tational cost), it may be difficult to find a single assessment metric
to guide the PINNs design. Hence, we give priority to accuracy by
gradually increasing the complexity of the PINNs until similar or higher
accuracy than benchmark results (e.g. from an analytical solution or
a finely resolved FV simulation) is attained. Generally, in our design
iterations, the number of hidden layers and the corresponding neurons
for building PINNs (i.e., PIFCN and PICN) started from 1 and 50,
respectively. The number of convolutional layers and corresponding
channels started from 1 and 5, respectively. For both PICN and PIFCN,
we use the hyperbolic tangent activation function (Tanh). Note that the
PINN design may change significantly depending on domain and flow
conditions; i.e., it can be very problem-specific. Specific characteristics
regarding the architecture of the networks used to solve each problem
in this paper (and the corresponding computational time) are provided
for each individual test in subsequent sections. It is also important
to recognize that the networks chosen do not represent the strictly
optimal structure, but only the best out of the subset of structures that
were tested. Moreover, the predictive accuracy of PINNs may also be
sensitive to the random initialization of its parameters.
4

For improving the learning speed and reducing the effect of parame-
ter initialization, the Batch Normalization method of Ioffe and Szegedy
(2015) was used, which normalizes the signals between adjacent convo-
lutional or hidden layers. The Adam optimizer (Kingma and Ba, 2014),
along with the ‘1-cycle’ (Smith and Topin, 2019) strategy was used to
control the training of the PINNs. The PINNs were implemented on the
Pytorch platform (Paszke et al., 2017). The FV model used in this paper
solves the 2D SWEs using a Godunov-type scheme applied to unstruc-
tured triangular meshes (further details of the methods are described
in de Almeida et al. (2016)). The FV simulation and the training of the
PIFCNs and PICNs were performed using the same cluster of computer
nodes from the University of Southampton’s supercomputer Iridis 5.
Every computation was implemented on one computer node ensuring
that the exact same hardware resources were employed (thus ensuring
a fair comparison across all simulations performed).

3. Results and discussion

This section describes three case studies used to test the PINNs,
comparing their results against analytical and numerical (Finite Vol-
ume) solutions. The first and second tests are idealized 1D (unsteady
and steady, respectively) flow problems for which analytical solutions
are available. However, simulations were performed on a 2D domain
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Fig. 3. An example of the structure of a CNN-based model with 3 subnets for solving free-surface flow problems. Each output variable (𝜂, 𝑢 or𝑣) is approximated by a separate
CNN with the above structure; all sub-networks receive the same inputs. Each CNN has two convolutional layers and one hidden layer. The hyperparameters shown in the figure
are discussed in Section 2.4.
since the ultimate aim is to employ the PINNs developed here in 2D
flow problems. The third test case is an unsteady two-dimensional
simulation of a real-world flood event that took place in the Tiber river,
Italy. This case study has been previously employed to evaluate the
performance of other numerical models (e.g., Morales-Hernández et al.,
2016; Shamkhalchian and de Almeida, 2021).

Topographic data used in all tests are defined by square grids with
different resolutions. The grid points are used to generate a triangular
mesh for the FV model. These are also employed, along with defined
temporal steps, as the collocation points for the PINNs training. The
accuracy of the solutions will be assessed by the root mean square
error, , of the outputs of each model relative to the benchmark
solution. For example, in the evaluation of accuracy for the prediction
of ℎ with 𝑁𝑝 output points, the performance metric is defined as
ℎ =

√

∑

(ℎ𝑖 − ℎ̃𝑖)2∕𝑁𝑝, where ℎ𝑖 is the benchmark solution (i.e., the
analytical solution when available, or the solution of the FV model at
fine resolution). The second performance metric we employ is the com-
putational cost, 𝑐 , which represents training time for the PINNs (PICN
and PIFCN), and run time for the FV model. In the results presented in
the following sections, predictions by the FV, PIFCN and PICN models
are labeled with the different spatial resolutions used. For example,
FV (10) represents a 10 m resolved simulation using the FV hydraulic
model, and PICN (50) refers to the prediction of the PICN trained
from a 50 m resolved dataset. The temporal resolution of collocation
points used to train the PINN models was defined through several tests
in which the accuracy of the results was analyzed as a function of
the time resolution. A point of diminishing returns (i.e. when further
refinements of the temporal resolution do not translate into substantial
accuracy improvements) was chosen for each of the tests described in
this section. The PINN and FV simulations were not conducted using
the same ranges of spatial resolutions since the main focus of this study
is on the trade-offs between accuracy and computational performance,
which differed substantially as a function of the resolution for the two
types of models. In other words, while the resolution affects both accu-
racy and computational performance, it does so in a different way for
the two methods compared. We have thus set ranges of resolutions that
make final results comparable in terms of the aforementioned trade-off.
Other considerations include hardware limitations for training PINNs at
the finest resolutions used by the FV model, and the latter’s inability to
run at very coarse resolutions.
5

In the following sections, we present the benchmark solutions and
the corresponding prediction errors in the same figure (e.g., Figs. 5,
12 and 9(a)). Note that all the actual predictions compared against
the reference results are also presented in the ‘Supplementary Material’
document.

3.1. Flood wave propagation over a horizontal plane

3.1.1. Case description and model setup
The first test case is a one-dimensional simulation of an inundation

wave propagating over a horizontal bed. A time-dependent BC is im-
posed at 𝑥 = 0. Under the idealized assumption of a flow velocity that
is constant in space and time, the problem admits an analytical solution
to the 1D SWE, which can be expressed as Hunter et al. (2005):

ℎ𝑎(𝑥, 𝑡) =
{7
3
(

𝑛2𝑢2(𝑥 − 𝑢𝑡)
)

}3∕7
, (8)

where the subscript 𝑎 is used to denote the analytical solution. The
domain used is a 100 m wide, 1200 m long channel. The constant
velocity is set as 𝑢(𝑥, 𝑡) = 0.29 ms−1 and the boundary condition ℎ(𝑥 =
0, 𝑡) is given by Eq. (8). The domain is initially dry, i.e., ℎ(𝑥, 𝑡 = 0) = 0.
Manning’s coefficient 𝑛 is set to 0.03 s m−1∕3. The duration of the
simulation is 3600 s. The FV model was run at resolutions of 1, 2, 5
and 10 m, while the PINN models were trained with datasets defined
at resolutions of 10, 25, 50 and 100 m. While the time step of the
explicit FV scheme is controlled by the Courant–Friedrichs–Lewy (CFL)
stability condition, the regression approximation implemented by the
PINN model is not limited by temporal resolution. However, the time
step adopted to train the PINN model is a factor that clearly affects
both accuracy and computational performance. For this test, we use a
temporal resolution for the PINN of 300 s. The batch size used was the
full set of collocation points 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑡.

The architecture of the PICN consists of 2 convolutional layers (the
first and second layers have 5 and 20 channels, respectively) and 1 fully
connected hidden layer with 50 neurons. The architecture for the PIFCN
consists of 3 fully connected hidden layers, each of which has 1000
neurons.

3.1.2. Results and analysis
Figs. 4 give some examples of the predictions of ℎ compared against

the analytical solutions at 𝑡 = 1800 s. Figs. 5 and 6 illustrate the
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Fig. 4. Examples of longitudinal profiles (𝑦 = 50 m) of water depth ℎ obtained by each PICN, PIFCN and FV against the analytical solution (black line) at 𝑡 = 1800 s.
Fig. 5. Test 1: Longitudinal profiles (𝑦 = 50 m) of water depth errors 𝜖ℎ relative to the analytical solution obtained by each of the models at 𝑡 = 1800 s (a) and 3600 s (b), shown
against right 𝑦-axis. The analytical solution for ℎ (purple line) is plotted against the left 𝑦-axis; note that the right-side figure is the enlarged version of the rectangular box in the
left-side figure; both figures share the same right 𝑦-axis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
analytical solutions of ℎ(𝑥, 𝑦 = 50 m) and ℎ𝑢(𝑥, 𝑦 = 50 m) (left vertical
axes), and the corresponding error (right vertical axes) 𝜖ℎ(𝑥, 𝑦 = 50 m) =
ℎ̃(𝑥, 𝑦 = 50 m) − ℎ𝑎(𝑥, 𝑦 = 50 m) and 𝜖ℎ𝑢(𝑥, 𝑦 = 50 m) = ℎ̃𝑢(𝑥, 𝑦 =
50 m) − (ℎ𝑢) (𝑥, 𝑦 = 50 m) computed by all three models at 𝑡 = 1800
6

𝑎

and 3600 s, respectively. Values of ℎ𝑣 are not reported as the test case
is fundamentally one-dimensional. Overall, all the water depth predic-
tions, with the exception of PIFCN (100), show good agreement with
the analytical solution (i.e. most results displaying |𝜖| < 0.01 m). As the
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Fig. 6. Test 1: Longitudinal profiles (𝑦 = 50 m) of water discharge errors 𝜖ℎ𝑢 relative to the analytical solution obtained by each of the models at 𝑡 = 1800 s (a) and 3600 s (b),
shown against right 𝑦-axis. The analytical solution for ℎ𝑢 (purple line) is plotted against the left 𝑦-axis; note that the right-side figure is the enlarged version of the rectangular
box in the left-side figure; both figures share the same right 𝑦-axis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
position of the wet-dry front predicted by the models does not exactly
match the analytical solution, and the front is steep at that point, errors
are larger in this region. The largest prediction errors (of both ℎ and
ℎ𝑢) near the wet-dry front are from FV(10). The finely resolved PICN
(e.g. 10 m and 25 m) produced the most accurate solutions across
all models tested, as is further discussed in the following paragraph.
Upstream from the front, PICN and FV both display similar prediction
accuracy of both ℎ and ℎ𝑢, whereas PIFCNs with coarsely resolved
trainsets (i.e., 50 m and 100 m) provide higher prediction errors of ℎ𝑢.

Fig. 7 shows ℎ (relative to the analytical solution ℎ𝑎) for all results
obtained with the PICN, PIFCN, and FV models as a function of the
corresponding computational time 𝑐 . Table 1 also summarizes the
results for each model. The sum to compute ℎ is over all collocation
points; i.e., spanning the whole spatio-temporal domain. In this figure,
the various points (blue and red) presented for each PINN model
represent solutions obtained at different epochs during the training of
the networks, which correspond to different computation time and level
of accuracy. The green cross points represent the simulation accuracy
and computation time for the FV model. The results in this figure are
based on model (i.e. PICN, PIFCN, and FV) outputs at the same grid
points selected from the entire domain with a spatial and temporal
resolution of 10 m and 360 s. Predictions of ℎ𝑢 follow the general
pattern observed for ℎ on Fig. 7 and are not reported here to avoid
repetition. Fig. 7 allows us to comparatively assess the performance of
7

the models tested in terms of their speed-accuracy trade-off. Based on
this criterion, a model performs better than another when it provides
more accurate results under the same computational time, or vice-
versa; in other words, the best results are those closest to the bottom
left corner of the plot.

Fig. 7 shows that FV (10) and FV (5) produce sub-centimeter
ℎ (which is usually considered a good level of accuracy for many
applications) at least one order of magnitude faster than the PINN
models, whereas FV (2) takes slightly longer than PICNs (for the same
level of accuracy), and FV (1) only outperforms PIFCN (10) in terms of
the speed-accuracy trade-off. All PINNs except PIFCN (100) show the
potential to achieve higher accuracy of prediction than the FV model at
the highest resolution tested here (1 m), provided they are trained for
long enough. PICNs provide a faster solution (for similar ℎ values)
than PIFCNs. Also, for PIFCN, the trainset size (which in this case is
determined by the resolution) did not significantly affect its maximum
accuracy at resolutions ≤ 50 m, whereas the accuracy of the FV model
continues to improve as the mesh is refined below 10 m.

3.2. Subcritical steady flow over an undulating bed

3.2.1. Case description and model setup
The second test case represents a 1D, steady, non-uniform flow over

an undulating bed, for which an analytical solution is available (see
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Fig. 7. Test 1: Values of ℎ as a function of 𝑐 (training time for PICN and PIFCN and run time for FV); note that the right-most point of each cloud corresponds to the highest
accuracy that any given PINN can achieve. The number in brackets represents the resolution (in meters) of the training data set (for PICN and PIFCN) or mesh (for the FV model).
Table 1
Computation time and prediction accuracy of PICN, PIFCN and FV in the test 1.
Note that the value of 𝑐 indicates the training time when PINN achieve the optimal
prediction accuracy.

Model test1

𝑐 (s) ℎ (m) ℎ𝑢 (m2 s−1)

PICN(10) 674 1.4 × 10−3 3.9 × 10−4

PICN(25) 192 1.3 × 10−3 3.6 × 10−4

PICN(50) 111 1.4 × 10−3 3.9 × 10−4

PICN(100) 87 2.5 × 10−3 7.2 × 10−4

PIFCN(10) 6301 2.9 × 10−3 8.5 × 10−4

PIFCN(25) 1077 4.2 × 10−3 1.0 × 10−3

PIFCN(50) 467 4.7 × 10−3 1.4 × 10−3

PIFCN(100) 258 2.3 × 10−2 5.7 × 10−3

FV(1) 1206 5.4 × 10−3 2.7 × 10−3

FV(2) 140 4.8 × 10−3 2.7 × 10−3

FV(5) 11 5.9 × 10−3 2.7 × 10−3

FV(10) 2 1.0 × 10−2 3.3 × 10−3

MacDonald, 1996; de Almeida and Bates, 2013; Delestre et al., 2013).
This test case will be used to evaluate the solution obtained by the PICN
and PIFCN in a problem with variable topography. The (rectangular)
channel is 1000 m long, and Manning’s coefficient 𝑛 is set to 0.03
s m−1∕3. The constant inflow discharge per unit width of the channel is
𝑞𝑥 = 𝑢ℎ = 2 m2 s−1, and the downstream water depth is 9

8 m. We pre-
scribe the following function representing the water depth ℎ(𝑥) (which
is the benchmark solution against which the PINN approximations will
be compared):

ℎ(𝑥) = 9
8
+ 1

4
sin

( 𝜋𝑥
500

)

. (9)

We model this 1D problem in a 2D domain using a width of 50 m
(and 𝑞𝑦 = 0) for the reasons discussed previously. Also, although the
solution sought is for a steady flow problem, the steady condition was
reached via an unsteady flow simulation, as the object of this paper is
to test approximate methods to solve the time-dependent SWEs. The
unsteady simulations were run from an initially dry domain over a
period of 20 h, whereby the upstream BCs increase linearly with time
from zero to the aforementioned constant values over the first 10 h of
the simulation.

The training dataset for PICN and PIFCN was obtained from grids
resolved at 5, 10, 25 and 50 m at the following times: 0, 1, 3, 5, 10,
15 and 20 h. The selected batch size is 2∕7 × 𝑁 , where the value 2/7
comes from trial and error (larger batch sizes decreased the accuracy
of the results). The FV model was run at resolutions of 2, 5 and 10 m.
8

Table 2
Computation time and prediction accuracy of PICN, PIFCN and FV in the test 2.
Note that the value of 𝑐 indicates the training time when PINN achieve the optimal
prediction accuracy.

Model test2

𝑐 (s) ℎ (m) ℎ𝑢 (m2 s−1)

PICN(10) 996 8.9 × 10−4 1.9 × 10−6

PICN(25) 381 1.4 × 10−3 1.6 × 10−6

PICN(50) 375 1.4 × 10−3 4.2 × 10−6

PIFCN(10) 2573 1.2 × 10−3 5.6 × 10−7

PIFCN(25) 1232 1.8 × 10−3 9.0 × 10−7

PIFCN(50) 759 1.1 × 10−3 6.1 × 10−7

FV(2) 1860 1.7 × 10−3 4.8 × 10−3

FV(5) 134 4.2 × 10−3 1.2 × 10−2

FV(10) 17.5 8.4 × 10−3 2.4 × 10−2

For this case, the architecture of the PICN consists of 2 convolutional
layers (the first and second layers have 5 and 20 channels, respectively)
and 1 fully connected hidden layer with 50 neurons (same as in Test
1). The architecture of the PIFCN consists of 3 fully connected hidden
layers, each of which has 1000 neurons (same as in Test 1).

3.2.2. Results and analysis
Fig. 8 gives some examples of the predictions of ℎ compared against

the analytical solutions at the center of the channel ℎ(𝑥, 𝑦 = 30 m ).
As the analytical solution is for the steady state, only the results at
the end of the simulations are assessed. Fig. 9(a) shows the analytical
curve for depth profile (left axis) and the corresponding errors of each
of the approximate solutions 𝜖ℎ (right axis) predicted by the PICN (blue
points), PIFCN (red points), and FV models (green points). Fig. 9(b)
presents similar results but for the variable ℎ𝑢. Overall, all models
tested delivered results at sub-centimeter level of accuracy for ℎ. The
three PICNs showed the lowest errors of both ℎ and ℎ𝑢, followed by FV
(2). Values of 𝜖ℎ𝑢 obtained from FV models display small (mostly within
1% of the actual value of ℎ𝑢) spatial variations, while they nearly are
constant for both PIFCN and PICN.

Fig. 10 presents the values of ℎ against the corresponding compu-
tational time taken to train the PICN (blue points), PIFCN (red points),
and to run the FV model (green cross points) at different resolutions.
Table 2 also summarizes the similar results for each model. The value
of ℎ of each model is calculated from its steady-state predictions of

ℎ; namely: ℎ =
(

√

∑

(ℎ𝑖 − ℎ̃𝑖)2∕𝑁𝑝

)

|

|

|

|

|𝑡=𝑡𝑠

, where 𝑡𝑠 is the time after

which a steady state is reached for each PINN or FV model. For the
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Fig. 8. Examples of longitudinal profiles (𝑦 = 30 m) of water depth ℎ obtained by each PICN, PIFCN and FV against the analytical solution (black line) at the end of the
simulation/training.
Fig. 9. Test 2: Longitudinal profiles (y = 30 m) of water depth errors 𝜖ℎ (a) and water discharge errors 𝜖ℎ𝑢 (b) obtained by each of the models at the end of the simulation/training
(right 𝑦-axis). The analytical solution ℎ (purple line) is plotted against the left 𝑦-axis. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
computation time of FV models described in Fig. 10, the value of 𝑐 is
the time required for all FV models to reach steady state. The results for
ℎ𝑢 show a pattern similar to that in Fig. 10 and are not presented for
conciseness. All simulations achieve sub-centimetric ℎ, with FV (10)
delivering the results at least one order of magnitude faster than the
other solutions. PIFCN (10) was the slowest of all models. Fig. 10 shows
9

that the prediction of ℎ from PICN (10) displays the highest accuracy,
with an ℎ of 0.85 mm, although this was obtained at a computation
time that was 56 times longer than FV (10). All the PINN results also
attain an accuracy higher than or similar to that of FV(2). In this test
case, the relative differences in the prediction accuracy among the PICN
models is less than the difference observed from FV (5) to FV (10). In
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Fig. 10. Test 2: Values of ℎ as a function of 𝑐 (training time for PICN and PIFCN and run time for FV); note that the right-most point of each cloud corresponds to the highest
accuracy that any given PINN can achieve. The number in brackets represents the resolution (in meters) of the training data set (for PICN and PIFCN) or mesh (for the FV model).
Fig. 11. Test 3: Examples of water surface elevation 𝜂 obtained by each PICN, PIFCN and FV against the corresponding benchmark (black line) generated from FV (5) at
cross-sections S1.
terms of the influence of resolution on the computational speed, the
PICN is also less sensitive than PIFCN in this problem.

3.3. Simulation of real-world river flooding

3.3.1. Case description and model setup
While Tests 1 and 2 have assessed the ability of PINN models to

deal with important aspects of flow problems, such as unsteadiness
and variable topography, both case studies represented idealized, one-
dimensional problems. In order to investigate the performance of PINNs
under more complex and realistic problems, this section presents the
results of simulations of a real-world scenario. The scenario in question
is a flood event that occurred between 27 November and 1 December
2005 in the Tiber river (Morales-Hernández et al., 2016), which flows
from the Apennine Mountains to the Tyrrhenian Sea in Italy. The reach
of river employed in this simulation is approximately 6 km long and
is located near the city of Rome. In this region, the mean discharge
of the Tiber river is 267 m3 s−1, while its peak discharge for a 200-
year return period is around 3200 m3 s−1. The event modeled in this
paper was also previously simulated in Morales-Hernández et al. (2016)
and Shamkhalchian and de Almeida (2021). The domain comprises an
area of 6 km × 2 km. The duration of the event simulated is 113 h.
The values of Manning’s coefficient 𝑛 used are the same as in Morales-
Hernández et al. (2016) and Shamkhalchian and de Almeida (2021);
namely, 𝑛 = 0.035 s m−1∕3 for the main channel, and 𝑛 = 0.0446 s m−1∕3

for the floodplains.
The boundary conditions were obtained from Shamkhalchian and

de Almeida (2021), and correspond to the time series of flow discharge
and water surface elevation at the upstream and downstream sections
of the river at the boundary of the computational domain. The initial
10
conditions 𝐔(𝑥, 𝑦, 𝑡 = 0) were defined from the results of the FV
model under steady-state conditions (𝑄 = 374 m3s−1) performed at
5 m resolution. This steady-state FV solution was obtained running
the unsteady flow model with constant boundary conditions for long
enough (i.e. 𝑡 = 10 h) for the steady state to be reached. PINNs were
trained from datasets resolved at 50, 100 and 200 m, while the FV
model was run using meshes generated from gridded data at resolutions
of 10, 25 and 50 m. The corresponding temporal resolution for the
trainset for the PINNs is 4 h. The batch size was set to one-third of
the total number of collocation points.

For this test case, the architecture of the PICN consists of 2 con-
volutional layers (the first and second layers have 10 and 40 channels,
respectively) and 1 fully connected hidden layer with 100 neurons. The
architecture of the PIFCN consists of 3 fully connected hidden layers,
each having 2000 neurons. Our tests showed that further increasing
the network complexity would not significantly improve the model’s
prediction accuracy, and may substantially increase the training time
and/or cause the program to exceed the memory capacity of the
computer resources used.

Since an analytical solution is not available for this problem, the
results of the FV simulation at fine resolution (5 m) were used as
the benchmark. The accuracy of the solutions of the time-dependent
variables is assessed at two cross-sections (located approximately at
distances of 1∕3 and 2∕3 of the length of the river within the domain
from the upstream boundary, and hereafter referred to as S1 and S2,
respectively) at 1 h temporal resolution.

3.3.2. Results and analysis
Fig. 11 gives some examples of the predictions of water surface

elevation 𝜂 compared against the benchmarks at cross-sections S1.
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Figs. 12 and 13 illustrate the time series of prediction errors (right
vertical axes), along with the actual predicted values of the flow depth
ℎ and flow discharge 𝑄 (left vertical axes) at cross-sections S1 and
2 for each PICN, PIFCN, and FV models. Fig. 12 shows that the FV
nd PIFCN simulations consistently predict larger and lower depths
han the benchmark solution, respectively, at both cross sections in the
ain channel, while PICN results display both positive and negative

alues of 𝜖ℎ. Results from PICNs at S1 and S2 are markedly more
ccurate than those delivered by PIFCNs and the coarse-resolution FV
odels. For example, FV (50) and FV (25) produced results that deviate

ubstantially (i.e. up to approximately 1.2 m and 2.5 m at S1 and
2, respectively) from the benchmark solution. On the other hand, FV
10) generally produced the most accurate depth predictions out of all
odels tested. The ability of the models to predict flow velocities (and

herefore, the volumetric flow rate 𝑄) is assessed by 𝜖𝑄 = �̃�−|𝑄|, where
= ∫ ℎ�̃�⋅𝐧𝑑𝑙 is the total discharge (where  denotes the length of the

ross-section); 𝑙 is the length along the cross-sections (i.e., S1 and S2,
hich span across the whole domain) and 𝐧 is the unit vector normal

o the cross-section. Fig. 13 shows the predicted errors 𝜖𝑄 obtained by
ll models as a function of time. These results are markedly different
rom those previously presented for 𝜖ℎ. Namely, all FV models display
alues of 𝜖𝑄 that are substantially smaller than those predicted by PICN
nd PIFCN models. The maximum values of 𝜖𝑄 for PICN and PIFCN are
ore than 50% and 70% of the benchmark (FV (5)) in S2, respectively.
he possible reason behind these results might be that the water surface
𝜂 = ℎ+𝑧) presents much less spatial variation than discharges (i.e., ℎ𝑢
nd ℎ𝑣) in the domain. However, this hypothesis would need to be
ested thoroughly in the future through a set of specifically designed
ase studies.

Fig. 14 assesses the overall accuracy of temporal prediction for ℎ
f each model against the corresponding computational time, using the
etric 𝑡

ℎ =
(√

∑

(ℎ𝑖 − ℎ̃𝑖)2∕𝑁 𝑡
𝑝

)

|

|

|

|(𝑥,𝑦)∈
, where 𝑁 𝑡

𝑝 is the number of
collocation points in the testset. Table 3 also summarizes the results
for each model. The best values of 𝑡

ℎ (i.e., across all epochs) obtained
from all PICN models are within the range of 0.22 m < 𝑡

ℎ < 0.30 m
(S1) and 0.26 m < 𝑡

ℎ < 0.34 m (S2), while FV (10) delivered 𝑡
ℎ = 0.29

m (S1) and 0.35 m (S2), and results from FV (25) and FV (50) were
substantially less accurate. It is interesting to note that PINN models
trained with coarse datasets (e.g., 200 m) do not necessarily deliver
poorer accuracy compared to their fine-resolution counterparts; this
contrasts with what is typically observed in simulations with traditional
numerical methods such as FV. Fig. 14 also indicates that PICN models
may offer improved depth predictions at lower cost than a FV model.
For example, the accuracy of depth predictions by PICN (200) is better
than the accuracy delivered by FV (10), while the computational cost
is more than one order of magnitude lower. Overall, the PICN shows
better ℎ prediction performance than PIFCN and FV in terms of the
speed-accuracy trade-off.

Fig. 15 shows examples of flood depth maps at 𝑡 = 32 h obtained
by the FV model at resolutions of 5 m and 25 m, along with those
produced by PICN and PIFCN at 100 m resolved trainsets. As expected
from the results presented in Fig. 12, FV (25) overestimates ℎ during the
peak time (which also translates into a larger flooded area), while the
opposite is observed for PICN (100) and PIFCN (100). Further spatial
analysis can be seen in Appendix B.

4. Concluding remarks

In this paper, two physics-informed neuronal networks (PINNs)
were developed to predict the evolution of free-surface flows typically
modeled by the shallow water equations (SWEs). The PINN formulation
proposed in this paper eliminates the need for labeled data, which is
typically required in supervised learning. This is achieved by defining
a loss function that combines the SWEs, the boundary conditions (BCs)
and initial conditions (ICs), allowing the trained PINN to serve as an
11

n

Table 3
Computation time and prediction accuracy of PICN, PIFCN and FV in the test 3.
Note that the value of 𝑐 indicates the training time when PINN achieve the optimal
prediction accuracy.

Model 𝑐 (min) S1 S2

ℎ (m) 𝑄 (m3 s−1) ℎ (m) 𝑄 (m2 s−1)

PICN(50) 59.4 0.26 136.1 0.34 278.9
PICN(100) 15.3 0.29 118.3 0.28 317.2
PICN(200) 5.3 0.22 100 0.26 380.7

PIFCN(50) 504.9 0.20 342.3 0.28 502.8
PIFCN(100) 127.9 0.20 267.7 0.21 547.2
PIFCN(200) 30.2 0.24 564.8 0.21 576.5

FV(10) 2576.0 0.29 83.0 0.35 78.4
FV(25) 83.3 0.64 60.6 0.83 95.9
FV(50) 8.6 0.93 18.0 1.40 82.4

alternative method for solving the SWEs. The two PINNs developed and
tested here vary in their architecture and main features. The first is
based on the fully connected neural network (PIFCN), and the second
on the convolutional neural network (PICN) approach.

Three test cases were used to assess the accuracy and computational
performance of each model, including two idealized flow problems
for which analytical solutions are available, and one simulation of
a real-world flood event over a relatively large-scale and complex
topography domain. First, the trade-off between computational speed
and accuracy in PINN relative to FV varies and depends on specific
conditions. In the idealized problems, the PICN and PIFCN predictions
achieved higher accuracy (lower ℎ) than the Finite Volume (FV)
solver employed for comparison. However, in these problems, PINNs
generally took longer to reach the same prediction accuracy as the
coarsely resolved FV model. For the real-world flooding problem, in
general, PINNs were able to yield similarly accurate predictions of
flow depths compared to finely resolved FV simulations. However, all
FV models show much higher accuracy in their predictions of 𝑄. For
he spatial analysis of flow depths at the peak of the flood event,
INNs were able to produce flood maps with accuracy (relative to
he benchmark finely resolved FV simulation) that is comparable to
he results of FV models run at intermediate resolution (e.g., 25 m).
ome of the PINN models (e.g., PICN at 100 and 200 m resolution)
chieved the same level of accuracy as the 25 m resolution FV model at
east one order of magnitude faster. Second, the prediction capability
f PINNs may be less affected by changes in grid resolution than the
V solver, which may represent important advantages in real-world
pplications where finely resolved topographic data may not always
e available. Third, results show that, in most circumstances, PICNs
sually exhibit better performance in terms of speed-accuracy trade-
ff than PIFCNs. However, more comparative tests between PICN and
IFCN are necessary before reaching general conclusions in this regard.

While the results in this paper may not suggest that PINNs can
eplace other well-established numerical techniques, they indicate that
INNs (and in particular PICNs) should be considered as an emerging
echnique that has the potential to deliver accurate and efficient solu-
ions, and which should be further developed and assessed. Our results
how that the approach might be particularly useful under certain
ircumstances which are challenging to conventional techniques. For
xample, in simulations performed at coarse resolutions (a typical case
n real-world problems), PINN models may achieve a higher prediction
ccuracy with a lower computational cost than a FV solver.

The use of Physics-informed Neural Network is a relatively new
pproach for the solution of partial differential equations. As is often
he case with emerging technologies, the technique has a number of
imitations, which are outlined here with the aim of guiding further
esearch. First, prediction accuracy may be sensitive to model initializa-
ion, which deserves further research. Second, a single trained PINN can
nly solve the SWEs with a specific set of ICs and BCs. Therefore, each

ew problem (i.e. different sets of BCs and ICs) requires the network to
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Fig. 12. Test 3: Predicted water depths error 𝜖ℎ (plotted against right 𝑦-axis) at cross-sections S1 (a) and S2 (b) of the main channel in the Tiber river. Benchmark solution (from
a finely resolved FV simulation) shown by the purple line against the left 𝑦-axis.
be retrained from scratch. Finally, defining an appropriate set of hyper-
parameters (e.g. number of hidden layers and nodes, learning rate) for
the solution of a given problem is a time-consuming process requiring
several trial-and-error attempts before the final network architecture
can be defined.
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Appendix A. PINN design experiments

This section illustrates the heuristic approach followed to determine
the best possible design of the PINNs. We focus on Test 1, described
in Section 3.1. All the PINNs shown in this section are trained from
the same dataset resolved at 50 m resolution. Figs. A.16 and A.17
show the accuracy (ℎ) of the PICNs and PIFCNs, respectively, as
their architecture (number of layers and channels/neurons) is varied.
In short, these figures show that it is difficult to conclude whether
a single architecture can lead to significantly improved results, and
we thus prioritize simplicity in our PINNs design. While this heuristic
approach is, by definition, not guaranteed to find the optimal solution,
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Fig. 13. Test 3: Predicted water discharge error 𝜖𝑄 (plotted against right 𝑦-axis) at cross-sections S1 (a) and S2 (b) spanning across the whole domain in the Tiber river. Benchmark
solution (from a finely resolved FV simulation) shown by the purple line against the left 𝑦-axis. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Table A.4
Results of water depth prediction by using Relu, Sigmoid and Tanh activation functions
for PICN and PIFCN models. The trainset is a 50 m resolved dataset from Test 1; the
evaluation metric is ℎ.

Model Relu Sigmoid Tanh

PICN 0.021 m 0.002 m 0.002 m
PIFCN 0.154 m 0.028 m 0.004 m

it represents the summary of many iterations. This holds for other tests
and dataset resolutions considered in this study.

Similarly, we have tested three widely used activation functions:
Relu, Sigmoid and Tanh (see Table A.4). The chosen architecture for
testing the PICN and PIFCN models is CNN-5-20 and FCNN-3(1000),
respectively. For PICN, Sigmoid and Tanh display the same accuracy,
while the result of the Relu-based PICN has higher errors. The PIFCN
with Tanh yields better accuracy than using the other two activation
functions. As a result, Tanh was chosen as the activation function to be
employed in all PINNs discussed in this paper.
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Appendix B. Spatial variation analysis for peak floods in test 3

Tables B.5 and B.6 summarize the spatial prediction accuracy
(i.e. 𝑠

ℎ, 𝑠
ℎ𝑢, 

𝑠
ℎ𝑣) computed from a 50 m resolved set of points for

each model at 𝑡 = 32 and 68 h, as well as their overall 𝑐 (i.e. training
time for PINN and computation time for FV). Among all the models, FV
(10) and FV (50) achieve the highest and lowest accuracy, respectively.
All PINNs present lower 𝑠

ℎ than FV (25) and FV (50). On the other
hand, FV (25) is more accurate than all PINNs in terms of ℎ𝑢 prediction.
PIFCN show a relatively similar value of 𝑠

ℎ𝑢 to FV (50) at both time
points. Moreover, the prediction accuracy of the PICNs and PIFCNs is
less affected by the resolution of the input dataset than in the FV model.
This last point may potentially be a main advantage of PINNs relative
to conventional numerical methods in general, whose performance
(numerical stability and accuracy) tends to be highly dependent on the
mesh resolution.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jhydrol.2024.131263.

https://doi.org/10.1016/j.jhydrol.2024.131263
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Fig. 14. Test 3: 𝑡
ℎ as a function of 𝑐 (training time for PICN and PIFCN and run time for FV) at cross-sections S1 (a) and S2 (b) of the Tiber river; note that the right-most

point of each cloud corresponds to the highest accuracy that any given PINN can achieve. The number in brackets represents the resolution (in meters) of the training data set
(for PICN and PIFCN) or mesh (for the FV model). The benchmark results are those from the FV (5) simulation.
Table B.5
Computation time and spatial prediction accuracy relative to benchmark simulation for
the comparison at 𝑡 = 32 h.

Model 𝑐 (min) 𝑠
ℎ (m) 𝑠

ℎ𝑢 (m2 s−1) 𝑠
ℎ𝑣 (m2 s−1)

PICN (50) 59.4 0.52 1.68 1.16
PICN (100) 15.3 0.40 1.72 1.18
PICN (200) 5.3 0.48 1.69 1.12

PIFCN (50) 504.9 0.59 2.21 1.32
PIFCN (100) 127.9 0.59 2.16 1.28
PIFCN (200) 30.2 0.63 2.27 1.21

FV (10) 2576.0 0.19 0.89 0.56
FV (25) 83.3 0.64 1.20 1.25
FV (50) 8.6 1.24 2.18 1.95
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Table B.6
Spatial prediction accuracy relative to benchmark simulation for the comparison at 𝑡
= 68 h.

Model 𝑠
ℎ (m) 𝑠

ℎ𝑢 (m2 s−1) 𝑠
ℎ𝑣 (m2 s−1)

PICN (50) 0.41 1.87 1.21
PICN (100) 0.37 1.92 1.20
PICN (200) 0.39 1.88 1.17

PIFCN (50) 0.52 2.21 1.28
PIFCN (100) 0.50 2.21 1.18
PIFCN (200) 0.47 2.16 1.15

FV (10) 0.19 0.86 0.56
FV (25) 0.64 1.36 1.21
FV (50) 1.24 2.32 1.87
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Fig. 15. Examples of flood maps at time 𝑡 = 32 h produced by the FV model and PINNs.
FV (5) represents the benchmark results. Note that all the maps share the same color
bar (below FV (5) map) and are plotted at 50 m spatial resolution. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. A.16. Comparison of PICNs with different architectures; the last hidden layer of
all PICNs is one typical fully connected layer with 50 neurons. In the legend bar, the
following format is adopted: PICN-X-Y, where the PICN has X channels in the first
convolutional layer and Y channels in the second convolutional layer (thus, PICN-X
denotes a network with one convolutional layer only).

Fig. A.17. Comparison of PIFCNs with different architectures. In the legend bar, the
following format is adopted: PIFCN-X(Y), where X denotes the number of hidden layers
and Y is the number of neurons per layer.
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