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•  Background and Aims  Large brown macroalgae serve as foundation organisms along temperate and polar 
coastlines, providing a range of ecosystem services. Saccorhiza polyschides is a warm-temperate kelp-like species 
found in the northeast Atlantic, which is suggested to have proliferated in recent decades across the southern UK, 
possibly in response to increasing temperatures, physical disturbance and reduced competition. However, little is 
known about S. polyschides with regard to ecological functioning and population dynamics across its geograph-
ical range. Here we examined the population demography of S. polyschides populations in southwest UK, located 
within the species’ range centre, to address a regional knowledge gap and to provide a baseline against which to 
detect future changes.
•  Methods  Intertidal surveys were conducted during spring low tides at three sites along a gradient of wave ex-
posure in Plymouth Sound (Western English Channel) over a period of 15 months. Density, cover, age, biomass 
and morphology of S. polyschides were quantified. Additionally, less frequent sampling of shallow subtidal reefs 
was conducted to compare intertidal and subtidal populations.
•  Key Results   We recorded pronounced seasonality, with fairly consistent demographic patterns across sites and 
depths. By late summer, S. polyschides was a dominant habitat-former on both intertidal and subtidal reefs, with 
maximum standing stock exceeding 13 000 g wet weight m−2.
•  Conclusions  Saccorhiza polyschides is a conspicuous and abundant member of rocky reef assemblages in the 
region, providing complex and abundant biogenic habitat for associated organisms and high rates of primary prod-
uctivity. However, its short-lived pseudo-annual life strategy is in stark contrast to dominant long-lived perennial 
laminarian kelps. As such, any replacement or reconfiguration of habitat-forming macroalgae due to ocean warming 
will probably have implications for local biodiversity and community composition. More broadly, our study dem-
onstrates the importance of high-resolution cross-habitat surveys to generate robust baselines of kelp population 
demography, against which the ecological impacts of climate change and other stressors can be reliably detected.

Key Words: Saccorhiza polyschides, Furbelows, kelp, marine forests, seaweeds, macroalgae, foundation species, 
habitat-former, temperate rocky reefs, seasonality, wave exposure, ocean warming.

INTRODUCTION

Kelps – large brown macroalgae – are widely distributed across 
the world’s temperate and polar coastlines (Jayathilake and 
Costello, 2021), where they form vital ‘marine forest’ habi-
tats (Duarte et al., 2022). These forests typically exhibit high 
levels of biodiversity and primary productivity (Steneck et al., 
2002; Teagle et al., 2017; King et al., 2021; Smale et al., 2021; 
Pessarrodona et al., 2022a; United Nations (UN) Environment 
Programme, 2023), and provide a range of ecosystem services 
with direct and indirect socioeconomic value (Smale et al., 2013; 
Eger et al., 2023). While the ecological structure and function 
of kelp species vary to some extent across regions and habitats, 
they generally serve as foundation organisms within coastal eco-
systems (Lüning, 1985; Steneck et al., 2002; Smale et al., 2013).

Kelp species dominate shallow rocky habitats along the ex-
tensive coastline of the northeast Atlantic (Smale et al., 2013). 

Whereas some kelp species have been intensively studied (e.g. 
Laminaria hyperborea, L. digitata, Saccharina latissima) (e.g. 
Kain, 1979; Bartsch et al., 2008; Diehl et al., 2023 and ref-
erences therein), information on the distribution and demog-
raphy for other species (e.g. Saccorhiza polyschides, Laminaria 
ochroleuca, Alaria esculenta) remains more spatially limited or 
lacking for many areas. Furthermore, species and populations 
inhabiting intertidal and/or wave-sheltered environments are 
generally better studied than those occupying subtidal and/or 
wave-exposed habitats (Smale et al., 2013; Araújo et al., 2016), 
due to their restricted accessibility.

Impacts of climate change on kelp forests

Marine forests are currently threatened by a range of human-
mediated stressors, including climate change factors (e.g. 
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ocean warming and marine heatwaves, ocean acidification, 
increased storminess, rising sea levels), the spread of invasive 
species, fishing impacts (e.g. mechanical damage and sedi-
mentation from trawling, and trophic cascades) and decreased 
coastal water quality (, Harley et al., 2006; Filbee-Dexter et 
al., 2020; Norderhaug et al., 2020; Smith et al., 2021b; IPCC, 
2022). Ocean warming, in particular, is emerging as a perva-
sive driver of ecosystem change, causing species range shifts, 
local and regional extirpations, species replacements, altered 
ecological interactions, changes in population demography 
and community composition, and even reconfigurations of en-
tire ecosystems (Hawkins et al., 2009; Merzouk and Johnson, 
2011; Harley et al., 2012; Koch et al., 2013; Araújo et al., 
2016; Assis et al., 2018; Smale, 2020). In some regions, the 
‘tropicalization’ of former kelp beds, the rise of turf algae and 
shifts to barren grounds caused by increased herbivory (from 
sea urchins, for example) have been observed and attributed 
to ocean warming and related environmental changes (Vergés 
et al., 2014; Pessarrodona et al., 2021, 2022b). Ecological re-
sponses of marine forests to anthropogenic climate change 
can also have substantial socioeconomic impacts (Smith et al., 
2021a and references therein).

Species range shifts in the NE Atlantic related to ocean warming, 
and long-term monitoring efforts

In the northeast Atlantic, recent ocean warming trends have 
affected several forest-forming macroalgal species across mul-
tiple regions, most often manifesting as species range shifts or 
changes in population demography (Assis et al., 2018; Smale, 
2020). For example, populations of Laminaria hyperborea, L. 
ochroleuca and Saccorhiza polyschides have declined towards 
their southern (trailing) range edges and, conversely, prolif-
erated and expanded towards their northern (leading) edges 
(Müller et al., 2009; Fernández, 2011; Smale et al., 2013; 
Casado-Amezúa et al., 2019). In addition, local extinctions 
of populations found towards species’ trailing range edges 
have also been observed (Fernández, 2011; Díez et al., 2012; 
Casado-Amezúa et al., 2019).

Along parts of the coastline of the UK and Ireland, warm-
tolerant species such as L. ochroleuca and the non-native kelp 
Undaria pinnatifida have proliferated and expanded their dis-
tributions (Epstein and Smale, 2017b; Teagle and Smale, 2018; 
Schoenrock et al., 2019), whereas some more northerly dis-
tributed cold-adapted species, such as Alaria esculenta, have 
undergone population declines and probable range contractions 
(Simkanin et al., 2005; Birchenough and Bremner, 2010).

It is likely, however, that other impacts of ocean warming on 
marine forests have gone undetected and under-reported, due 
to a lack of baseline data and monitoring efforts in many areas. 
That said, in some well-studied regions, long-term monitoring 
of kelp forests using a range of approaches, such as snorkelling 
and diving, towed video, remotely operated vehicles, satellite-
derived imagery, and citizen/community science initiatives, 
has reliably quantified temporal trends (Thompson, 2021; 
Reshitnyk et al., 2023). Even in regions or countries with a 
strong track record of marine monitoring, however, tropical 
ecosystems have received far more resources and attention 
than their temperature counterparts, which are typically dom-
inated by kelp forests (e.g. Australia, see Bennett et al., 2015). 

Historically, the NE Atlantic is a relatively data-poor region 
of macroalgae research, particularly concerning sustained ob-
servation and monitoring (Smale et al., 2013) when compared 
to well-studied ecosystems such as the Giant Kelp forests 
(Macrocystis pyrifera) along the Californian coast (Schiel and 
Foster, 2015).

A deeper understanding of spatiotemporal variability pat-
terns in kelp population demographics persisting under a range 
of environmental conditions and stressors is needed to monitor 
and predict responses to environmental changes. Given that 
kelp populations exhibit high levels of intra- and inter-annual 
variability due to, for example, temporal growth strategies and 
winter storm disturbances (Kain, 1979; Seymour et al., 1989; 
Smale and Vance, 2015), it is imperative that any efforts to 
address kelp demography capture seasonal changes. Similarly, 
kelp species and populations are highly variable across spa-
tial gradients, as morphology, density and standing stock are 
strongly influenced by key abiotic and biotic variables (e.g. 
wave exposure, light availability, grazing pressure). As such, 
spatial variability should be considered in any baseline survey. 
While sustained observations through long-term monitoring 
represent the optimal approach for detecting climate change im-
pacts, monitoring programmes are generally costly and logistic-
ally challenging and are lacking for most kelp species, habitats 
and regions. Citizen or community science initiatives represent 
a useful low-cost tool to collect long-term data while engaging 
the local stakeholders in marine research and drawing atten-
tion to the health of marine species, habitats and ecosystems 
(Sandahl and Tøttrup, 2020; Fraisl et al., 2022). Community 
science projects that involve kelp forest observations are, for 
example, currently undertaken by Reef Check in California, 
Reef Life Survey in temperate Australia and Seasearch along 
parts of the British coast (Bull et al., 2013; Freiwald et al., 
2021; Lucrezi, 2021; Edgar et al., 2023). However, in the ab-
sence of long-term monitoring or well-established community 
science initiatives, appropriately designed focused surveys that 
target key or indicator species can fill knowledge gaps, provide 
a baseline against which to detect changes and inform about the 
general condition of the ecosystem.

We focus on one kelp species, Saccorhiza polyschides, which 
is expected to proliferate under ongoing ocean warming and 
other environmental changes, in a biogeographical transition 
zone in the Western English Channel (Dinter, 2001; Dauvin, 
2019). We examine spatiotemporal variability in demography 
to generate a robust baseline on range-centre populations that 
can be used to predict, detect and test future changes of a 
habitat-forming kelp species under climate change.

Saccorhiza polyschides in the NE Atlantic

Saccorhiza polyschides (Lightfoot) Batters 1902, com-
monly known as ‘Furbelows’, is a large canopy-forming brown 
macroalga belonging to the order Tilopteridales. Although 
not a ‘true kelp’ in the traditional taxonomic definition (i.e. 
belonging to the order Laminariales), it serves a similar eco-
logical function as other marine forest formers and is com-
monly included within kelp assemblages (Smale et al., 2013). 
Saccorhiza polyschides sporophytes become fertile and repro-
duce in late summer/early autumn, with new recruits appearing 
in the following spring. Recruits exhibit rapid growth through 
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summer and autumn to mature sporophytes before the onset of 
senescence (Norton and Burrows, 1969). As the overall lifespan 
of the macroscopic sporophyte does not exceed 12–18 months 
(Sauvageau, 1915; Norton and Burrows, 1969), S. polyschides 
is a so-called ‘pseudo-annual’ species, whereas most ‘true’ kelp 
species in the NE Atlantic are longer-lived, multi-year peren-
nials (i.e. Laminaria sp.). Due to its fast growth and high prod-
uctivity within one season, S. polyschides has been described as 
an opportunistic pioneer species (Norton and Burrows, 1969; 
Kain and Jones, 1975; Assis et al., 2013; Smale et al., 2013; 
Pereira, 2014; Fernández et al., 2022).

As with other kelp species, sporophytes of S. polyschides 
comprise three main morphological components: a digitated 
blade (i.e. lamina), stipe and holdfast. Unlike true kelps, how-
ever, S. polyschides exhibits a distinctive hollow bulbous 
holdfast with many haptera, converging into a flattened stipe, 
which is twisted at its base just above the holdfast (see Barber, 
1889). Kelp sporophytes, and especially their holdfasts, pro-
vide an important habitat for faunal assemblages by offering 
shelter, nursery grounds and increased food supply for inverte-
brates (McKenzie and Moore, 1981; Thiel and Vásquez, 2000; 
Feehan et al., 2014; Teagle et al., 2017, 2018) and coastal 
fishes (McKenzie and Moore, 1981; Gordon, 1983; Salland and 
Smale, 2021; Christie et al., 2022). The large bulbous holdfast 
of S. polyschides offers plentiful living space for fauna (Norton, 
1971), and it can persist for much of the year even following 
the senescence of the rest of the sporophyte, representing im-
portant habitat for over-wintering assemblages (Salland and 
Smale, 2021).

Saccorhiza polyschides extends from the low intertidal zone 
into subtidal habitats to depths of 25 m or more (Arnold et al., 
2016; Smale and Moore, 2017; D. A. Smale, unpubl. data) and 
is distributed in the NE Atlantic from the Mediterranean and 
Morocco polewards to Norway and the Faroes (Norton, 1977; 
Lüning, 1985; Smale et al., 2013). In warmer, more south-
erly regions within its latitudinal distribution, S. polyschides 
is often the dominant habitat-former and exhibits high popula-
tion densities (Fernández and Niell, 1982; Fernández, 2011), 
while in cooler, more northerly regions it tends to be outcom-
peted by Laminaria species and is generally found in mixed 
stands or restricted to disturbed or marginal habitats (Hawkins 
and Harkin, 1985; Smale and Moore, 2017). Limited evi-
dence suggests that this species has increased in abundance 
and spatial extent along the southern coastline of the UK in 
recent decades (Birchenough and Bremner, 2010; Smale et 
al., 2013). This is perhaps in response to rising temperatures 
becoming more favourable for its performance, as well as 
increased disturbance to Laminaria forests reducing competi-
tion and other environmental changes (Kain and Jones, 1975). 
It has therefore been described as a potential ‘winner’ of ocean 
warming (Smale et al., 2013), particularly for populations 
found towards the range centre or leading range edge, such 
as those in UK waters. However, only limited data on local S. 
polyschides populations in SW England are available to con-
firm this assumption and the empirical evidence base remains 
limited. Notwithstanding some early natural history work 
on its morphology, demography and ecological role within 
the ecosystem (Barber, 1889; Burrows, 1958; Norton, 1969; 
Norton and Burrows, 1969), the only recent study focused on 

S. polyschides in the UK and across the wider central area 
of its latitudinal distribution examined spatial variability in 
sporophyte density and morphology from a single sampling 
event (Salland and Smale, 2021).

Aim of baseline study on S. polyschides populations in a 
biogeographical transition zone

Given the role of S. polyschides as a habitat-forming foun-
dation species and the rapid growth rates observed for sporo-
phytes through spring and summer, this species may be 
important for local biodiversity and primary productivity, yet 
robust information on population dynamics within a biogeo-
graphical transition zone (i.e. the Western English Channel, 
see Dinter, 2001; Southward et al., 2005; Cox et al., 2016; 
Dauvin, 2019) and its range-centre is lacking. Without this 
knowledge, it is not possible to detect nor assess the wider 
ecological consequences of future changes. We conducted sur-
veys at three intertidal rocky shores over 15 months, as well 
as a less frequent survey of three subtidal reefs, to quantify 
the structure of S. polyschides populations within a region of 
probable climate-driven expansion, to address this pressing 
knowledge gap.

MATERIALS AND METHODS

Survey design

Surveys of intertidal S. polyschides populations were con-
ducted every month during periods of spring low tides at a tidal 
height of +0.5–0.8 m (relative to chart datum) at three rocky 
shore sites in and around Plymouth Sound (50°N), southwest 
UK. A mean tidal range of 4.7 m influences Plymouth Sound 
and sea temperature typically ranges between 8 and 18 °C 
throughout the year (Pessarrodona et al., 2018b). The three 
survey sites were situated along a gradient of wave ex-
posure (Supplementary Data S1) from semi-sheltered Mount 
Batten (MB-sh; protected by the coastline of the Sound and a 
man-made breakwater structure) to moderately sheltered/ex-
posed Bovisand (BS-mod; open towards the Western English 
Channel, partly sheltered from prevailing swell by an adjacent 
headland) to fully exposed Heybrook Bay (HY-exp; open to 
the Western English Channel with minimal protection) (Fig. 1) 
(Salland and Smale, 2021). All sites were deemed representa-
tive of the wider region (i.e. shallow rocky reef with silt/sandy 
patches and deeper gullies; see Supplementary Data S1) and 
were without obvious local anthropogenic impacts (i.e. pollu-
tion, trawling).

Surveys commenced in February 2020 (survey month 1) 
and continued until April 2021 (survey month 15). Due to ad-
verse weather conditions, surveys were not feasible in January 
2021 (survey month 12) and therefore data were not collected 
in this month. Additionally, S. polyschides populations on ad-
jacent shallow subtidal reefs (2–4 m below chart datum) at all 
three sites were surveyed by SCUBA diving on three occasions 
(June, August and October 2020; survey months 5, 7 and 9, re-
spectively) to examine differences in population demography 
and morphology with increasing water depth.
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Density and cover

During each survey, ten 1-m2 quadrats were haphazardly 
placed in areas of appropriate habitat (stratified for emergent 
rocky substrate rather than rock pools or sandy patches) within 
the appropriate tidal height, positioned at least 2 m apart 
from one another. The density (number of individuals) and 
cover (visually estimated as a percentage) of S. polyschides 
sporophytes of each age class were recorded in situ. Age 
classes were defined as either juveniles, healthy adults, or 

senescent adults based on a modified classification scheme 
from Norton and Burrows (1969) (detailed further in Fig. 1 
and Supplementary Data S2). The cover of ‘other kelps’ (i.e. 
L. hyperborea, L. ochroleuca, L. digitata, Saccharina latissima 
and U. pinnatifida) was also recorded (from May 2020 on-
wards; visual estimation). Due to the three-dimensional multi-
layered structure within the water column in a marine forest, 
estimates of total percentage cover often exceeded 100 % since 
different species and size classes overlap within the quadrat 
(Smale and Moore, 2017).
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Fig. 1.  Survey location and morphological differences between sporophyte age classes of S. polyschides. (A) Map indicating region of study area in southwest 
England (grey box) and (B) location of three sites along a wave exposure gradient in Plymouth Sound. (C–E) Representative examples of the three age/size classes 
of S. polyschides: (C) juvenile recruits with a total length < 30 cm and incomplete development of bulbous holdfast; (D) healthy adult ‘plants’ with total length > 
30 cm, complete development of closed, bulbous holdfast (bottom right), possible presence of fertile sporophyll tissue (top right) and some limited tissue loss at 

the distal tips of blades caused by grazing and wave action; (E) senescing, ‘old’ adults exhibiting partial or complete decay of blade, stipe and/or holdfast.
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Sporophyte biomass and morphology

During each survey, ten representative sporophytes per site 
and month were randomly collected by carefully removing 
each one from the substratum and transferring it into a cotton 
bag. These samples were taken from a separate part of the shore 
to the density quadrats. On return to the laboratory, individuals 
were assigned to one of the three age classes, photographed, 
measured and weighed. Measurements of length and fresh 
weight biomass (blotted tissue dry) were obtained separately 
for the different sporophyte components (i.e. holdfast, stipe 
and blade), while the weight of the sporophyll (reproductive 
frills) and mature sorus tissue was obtained where present. 
Sorus tissue forms ‘a palisade-like cell layer at the surface of 
the thallus’ (Norton and Burrows, 1969), which permits visible 
detection of the mature tissue.

Estimation of standing stock and biomass accumulation

To estimate the standing stock of S. polyschides, mean 
density values were multiplied by mean sporophyte biomass 
for each month and site, to yield g wet weight m−2 (g WW m−2). 
Maximal biomass accumulation (maximal standing stock), the 
gain of biomass from a juvenile recruit to a fully grown mature 
sporophyte, was used to estimate total biomass accumulation 
during a growing season, as a proxy for primary productivity.

Statistical analysis

Between-site and between-month variation in response vari-
ables was examined with univariate permutational analysis of 
variance (PERMANOVA), conducted with R version 4.0.0 (R 
Core Team, 2020), R Studio and PRIMER 7.0.21 (Anderson et 
al., 2008; Clarke et al., 2014). If not stated otherwise, results 
are given as monthly means with standard error (± s.e.) per site 
and depth. Data (untransformed) were used to construct simi-
larity matrices based on Euclidean distances (dummy value of 
‘1’). Intertidal (three sites, 14 months) and subtidal (three sites, 
three months) datasets were analysed separately with ‘site’ and 
‘month’ as fixed factors (9999 permutations under a reduced 
model with Monte Carlo correction). Pairwise post-hoc tests 
were conducted where significant effects were detected.

RESULTS

Density and cover

The density of S. polyschides sporophytes and the composition 
of age classes across the year in the intertidal zone exhibited 
high variability between months, following a seasonal pattern 
of recruitment and growth (Fig. 2A, B). Mean total density 
ranged from 0 ± 0 to 118 ± 44 individuals m−2.

Juvenile sporophytes dominated in spring and early summer 
(March/April until June), with mean density increasing more 
than 100-fold over 2–3 months. Maximum mean density of ju-
veniles was observed at the more wave-exposed sites HY-exp 
in June 2020 and at BS-mod in April 2021, at 118.1 ± 44 
and 118 ± 43 individuals m−2, respectively. Following rapid 
growth of recruits, populations were dominated by an ‘older’, 

mature adult sporophyte cohort in summer and autumn (July–
October), with a maximum mean density of 14.4 ± 2.4 in-
dividuals m−2 recorded at MB-sh in July 2020. In the winter 
months (November–February/March), populations comprised 
senescing ‘old’ adults. The maximum mean density of senes-
cing sporophytes (8.8 ± 1.7 individuals m−2) was recorded at 
BS-mod in November 2020. We observed a smaller cohort of 
late recruits, appearing in late summer, which did not become 
fertile until the following year. We also observed an overlap 
between decaying holdfasts, late recruits and newly observed 
recruits in late winter 2020 and early spring 2021.

Kelps (i.e. S. polyschides and Laminariales) dominated the 
intertidal habitat between July and October, covering more than 
half of the surveyed shore (Fig. 2C). The cover of S. polyschides 
increased markedly through summer into autumn, becoming 
the dominant space occupier between July and October (ran-
ging from 132.6 ± 7.9 % at MB-sh in July to 60 ± 11.4 % at 
HY-exp in October).

For all response variables, univariate PERMANOVA de-
tected a highly significant effect of the ‘site × month’ interaction 
term, as well as the main effect of ‘month’ (Table 1). However, 
there were no significant differences between the term ‘site’ in 
density and cover. Post-hoc comparisons within levels of the 
interaction term showed that the magnitude of differences be-
tween ‘month’ were not always consistent between sites and 
therefore along the wave exposure gradient (Supplementary 
Data S3).

For subtidal populations (sampled only in June, August 
and October), maximum mean density was observed in June 
(67 ± 27.4 individuals m−2 at HY-exp), dominated by juvenile 
recruits. This was followed by high adult density in August 
(22.6 ± 6.2 individuals m−2 at BS-mod), and a mixed stand 
of healthy and senescing adults in October (14.7 ± 6.2 indi-
viduals m−2 at BS-mod) (Fig. 3A, B). We recorded juvenile 
recruits at all subtidal sampling events with the exception of 
MB-sh in October. The coverage of S. polyschides contrib-
uted to more than half of all subtidal habitat-forming sea-
weeds at BS-mod and HY-exp in August, and at MB-sh and 
BS-mod in October (Fig. 3C). In August, S. polyschides was 
the most dominant kelp at all sites, but in June and October, 
the contribution of other kelps exceeded that of S. polyschides. 
Univariate PERMANOVA (Table 2) detected a significant ‘site 
× month’ interaction for both density and cover, but a main 
effect of ‘site’ was only detected for density and a main effect 
of ‘month’ was only detected for cover. Post-hoc comparisons 
within levels of the interaction term for density showed that 
the magnitude of differences between ‘month’ was not always 
consistent between sites (Supplementary Data S4), but for 
coverage, we could detect no differences between sites in June 
and October (Supplementary Data S4). In general, the density 
of S. polyschides in subtidal habitats was lower than that ob-
served in intertidal habitats for corresponding months, but the 
cover of S. polyschides was broadly comparable.

Biomass and morphology

At all intertidal sites, sporophyte size and biomass exhibited 
pronounced seasonality, increasing throughout the develop-
ment period from a juvenile recruit to full maturity, followed by 
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a decrease in biomass and size during the period of decay and 
senescence (Fig. 4). Maximum mean biomass (Fig. 4A, B) of 
598.1 ± 97.8 g was recorded in September at BS-mod, whereas 
maximum mean length (Fig. 4C, D) of 182.95 ± 12.8 cm was 
recorded in July 2020 at BS-mod. During periods of peak bio-
mass (i.e. summer months), the structural blade compartment 
consisted of ~50 % of the total sporophyte weight, whereas the 
relative contribution of holdfasts to total weight was greater in 
other periods (Fig. 4B). With regard to total length, the relative 
contribution of blade structures was generally greater than that 
of stipes and holdfasts (Fig. 4D).

Development of mature sorus was recorded between August 
and December 2020 (Fig. 5). Additionally, minor sorus tissue 

production outside the fertile summer months was recorded in 
March and April 2021 in some individuals. We recorded clear 
differences between sites in the weight of sorus tissue (Fig. 
5A), with the highest values at the least exposed/most sheltered 
site (MB-sh) and lowest sorus production at the most exposed 
site (HY-exp). Sorus tissue was recorded on all structural com-
partments of the sporophyte (Fig. 5B), not only on the sporo-
phyll. The most prominent fertile sporophyll tissue and highest 
sporophyll biomass were observed in September and October 
(Fig. 5B). Univariate PERMANOVA detected significant dif-
ferences in all response variables between the main factors 
of ‘site’ and ‘month’, as well as the interaction term (Table 
1). Post-hoc tests within the interaction term of main factors 
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Fig. 2.  Spatiotemporal variability in density and cover of S. polyschides populations in intertidal habitats at three sites (with increasing levels of wave exposure 
from left, MB-sh, to right, HY-exp) in Plymouth Sound over 15 months. (A) Mean total density (± s.e.) and (B) mean density of each age class at each site 
and month during the intertidal survey. (C) Mean habitat percentage cover (± s.e.) of S. polyschides (differentiated between three age classes) and other kelps 

(Laminaria spp., Saccharina latissima, U. pinnatifida) recorded at each site and month.
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(Supplementary Data S3) showed that the magnitude of differ-
ences between sites varied across months, but did not exhibit a 
clear seasonal pattern.

For subtidal populations, sporophyte biomass and length in-
creased from June to August at all sites (to varying degrees), 
while trends from August to October varied between sites 
(Fig. 6). Maximum mean sporophyte biomass was observed at 
MB-sh in October (655.3 ± 114.4 g), with blades comprising 
~50 % of total biomass (Fig. 6A, B). Maximum mean length 
was recorded at BS-mod in October (134.3 ± 12.3 cm) and was 
more consistent between sites and sampling events (Fig. 6C, 
D). Univariate PERMANOVA detected a significant ‘site’ × 
‘month’ interaction term for biomass (Table 2) with post-hoc 
tests indicating that sites did not differ in August and October 
but did in June (Supplementary Data S4). A significant ‘site × 
month’ interaction term for sorus biomass, however, indicated 
differences in August and October, but not in June. Total sporo-
phyte length varied between the main factors of site (pairwise 
post-hoc test: BS-mod > HY-exp = MB-sh) and month (pairwise 
post-hoc test: June < August = October). In general, sporophyte 
biomass and length in subtidal habitats was greater than that 
observed in intertidal habitats for the corresponding months of 
June and October, but less in the intermediate month (August).

Standing stock

Estimates of standing stock ranged from 0 to over 13 000 
g WW m−2 and exhibited high variability between sites and 
months (Fig. 7). For intertidal populations, standing stock 
peaked at HY-exp in August (13 176 g WW m−2), and at BS-mod 
(9809 g WW m−2) and MB-sh (5565 g WW m−2) in September, 
following rapid increases from June onwards (Fig. 7). Standing 
stock declined rapidly after September, returning to negligible 
values through winter when holdfasts represented the majority 
of the biomass. Univariate PERMANOVA detected a signifi-
cant interaction term (Table 1), with post-hoc tests indicating 
that differences between sites did not persist in all months 
(Supplementary Data S3).

For subtidal populations, estimates of standing stock were 
greatest at BS-mod (10 132 g WW m−2) and HY-exp (9476 g 
WW m−2) in August, and peaked in October at MB-sh (1966 g 
WW m−2) (Fig. 7). On average, standing stock at HY-exp (more 
exposed site) was about six times greater than at MB-sh (more 
sheltered site). Indeed, univariate PERMANOVA detected a 
significant main effect of ‘site’ (Table 2), with higher standing 
stock values recorded at HY-exp and BS-mod compared with 
least exposed MB-sh. In general, standing stock estimates 
were lower in the sheltered/moderate sites than at the more ex-
posed sites in the intertidal as well as in the subtidal zone (MB-
sh < BS-mod < HY-exp). In June, standing stock estimates for 
subtidal populations were four-fold higher than those of inter-
tidal populations, but estimates were more comparable between 
habitats by August and October.

Due to the pseudo-annual growth strategy of S. polyschides, 
maximum standing stock values can be considered proxies 
for annual biomass accumulation, as almost all organic matter 
fixed later senesces and is released into the environment. As 
such, estimates of biomass accumulation across both depths 
(mean of intertidal and subtidal measurements) were lowest at 
the most wave-sheltered site (3765 g WW m−2 year−1 at MB-sh) 
and markedly higher at the more wave-exposed sites (9970 g 
WW m−2 year−1 at BS-mod; 11 326 g WW m−2 yr−1 at HY-exp).

DISCUSSION

We present the first study on population demography of S. 
polyschides situated within the central area of the species’ range, 
in the Western English Channel (southwest UK). Previous re-
search on the population dynamics of S. polyschides and their 
associated communities in the UK was conducted 40–60 years 
ago (Burrows, 1958; Norton, 1968, 1969, 1971, 1977; Norton 
and Burrows, 1969), towards the (former) leading range edge 
on the Isle of Man (54°N).

In our study, we observed marked seasonality in the density, 
coverage, biomass, morphology and standing stock of S. 
polyschides, with relatively minimal variation between sites 

Table 1.  Results of a univariate PERMANOVA to test for differences in intertidal kelp density, cover and biometric measurements be-
tween sites and sampling months of intertidal S. polyschides populations. PERMANOVAs (9999 permutations) are based on Euclidean 
distances with a dummy value of 1, under a reduced model with Monte Carlo (MC) correction. ‘Site’ and ‘month’ as fixed factors. 

Significant values are indicated in bold (P ≤ 0.05). Post-hoc pairwise test followed PERMANOVAs (Supplementary Data S3).

Response variable Site Month Site × month

Intertidally d.f. F P (MC) d.f. F P (MC) d.f. F P (MC) Res d.f.

Density of S. polyschides per m2

S. polyschides (sum) 2 0.48 0.6223 13 8.9854 0.0001 26 4.9851 0.0001 378

Cover of S. polyschides per m2

S. polyschides (sum) 2 0.152 0.8539 11 68.28 0.0001 22 5.5141 0.0001 324

Biometrics per S. polyschides individual

Total biomass/WW 2 8.6256 0.0004 13 51.211 0.0001 26 2.2436 0.0005 378

Total length 2 13.501 0.0001 13 134.7 0.0001 26 2.4561 0.0001 378

Sorus biomass/WW 2 21.049 0.0001 13 22.738 0.0001 26 8.3645 0.0001 378

Standing stock

g WW m−2 2 2.197 0.1116 13 15.872 0.0001 26 3.275 0.0001 378

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article/133/1/117/7420149 by H

artley Library user on 22 April 2024

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcad181#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcad181#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcad181#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcad181#supplementary-data


Salland et al. ― Population dynamics of a habitat-forming macroalga124

situated along a gradient of wave exposure, and depths. Density 
and cover data show an expected structural development of 
individuals and an ‘ageing’ population through several sporo-
phyte life stages during one growth season: progressing from 
juvenile to healthy adult sporophytes in spring and summer, 
followed by a senescing population in late autumn and winter.

Along the shores of the Western English Channel, S. 
polyschides usually forms mixed stands with ‘true’ Laminarian 
kelps. Intertidal stands are typically characterized by L. digitata 
and to a lesser extent Saccharina latissima and U. pinnatifida 
(Yesson et al., 2015a; Epstein et al., 2019), while subtidal habi-
tats are typically dominated by L. hyperborea and, to a lesser 

extent, L. ochroleuca (Smale and Moore, 2017; Smale et al., 
2022). Our study showed that these mixed kelp stands are, in 
fact, dominated by S. polyschides in summer, which provides 
substantial habitat and covers over 50 % of the rocky substrate. 
Our estimates of the standing stock of S. polyschides peaked 
at ~13 000 g WW m−2 in late summer. We recorded peak pro-
duction of fertile sorus tissue in late summer/early autumn. In 
winter, no fertile tissue was recorded, and population density 
and standing stock were drastically reduced. Only a small 
component of the population remained as remnant holdfasts 
throughout winter, persisting until the beginning of the fol-
lowing recruitment season. The marked contrast from dense 
space-occupying S. polyschides populations in summer to col-
lapsed, remnant populations in winter is driven by the pseudo-
annual life cycle of the species as described by Norton and 
Burrows (1969).

We recorded some variation in population dynamics across 
our survey sites, which were situated along a gradient of wave 
exposure. It is well established that variation in wave ex-
posure can influence kelp population demography, by affecting 
settlement, recruitment, sporophyte density and morphology, 
productivity, and fitness (Smale et al., 2011; Burrows, 2012; 
Pedersen et al., 2012). For example, positive responses to 
increasing wave exposure have been reported for Sargassum 
muticum in Ireland (Baer and Stengel, 2010), whereas negative 
responses to increasing wave exposure have been recorded for 
both the non-native kelp U. pinnatifida in SW England (Epstein 
and Smale, 2017a) and the giant kelp Macrocystis pyrifera in 
California (Graham et al., 1997). As such, site-level variability 
between populations of S. polyschides may have been driven, 
at least in part, by differences in wave exposure, although other 
abiotic and biotic factors can drive variability at this spatial 
scale, including competition (Epstein et al., 2019), grazing 
pressure (Plouguerné et al., 2006), habitat topography (Harries 
et al., 2007a, b) and oceanographic features (e.g. upwelling, 
freshwater input, turbidity) (Fernandez et al., 1988; Fernández, 
2011; Pereira et al., 2015; Bermejo et al., 2016).

We recorded greater production of sorus material 
under sheltered rather than exposed conditions (MB-
sh > BS-mod > HY-exp), whereas peak standing stock, and 
therefore annual productivity, was greater under exposed ra-
ther than sheltered conditions (HY-exp > BS-mod > MB-sh), 
in both intertidal and subtidal habitats. This suggests that wave 
exposure could influence growth and energy strategies, as has 
been shown for other kelp species (Buschmann et al., 2006; 
Pedersen et al., 2012). However, the causative effect of wave 
exposure on the production of fertile material by S. polyschides 
sporophytes remains speculative at this point.

We recorded a high density of late-season (October) recruits 
in subtidal populations, similar to observations by Norton and 
Burrows (1969), who recorded recruitment and the presence 
of mature sporophytes in subtidal populations throughout the 
whole year at the Isle of Man (~54°N). Reduced wave action 
and lower thermal stress in subtidal, compared with intertidal, 
habitats might favour year-round development of recruits, in-
crease sporophyte longevity and lead to greater standing stock 
in the late season. For example, at the end of the peak-growth 
season (October), we recorded greater biomass and total length 
of sporophytes in subtidal compared with intertidal habitats, 
where sporophytes showed increased shredding of blade tissue 
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Fig. 3.  Spatiotemporal variability in density and cover of S. polyschides popu-
lations in subtidal habitats. (A) Mean total density (± s.e.), and (B) mean 
density of age classes at each site (along a gradient of wave exposure) and 
month. (C) Mean habitat percentage cover (± s.e.) of S. polyschides (differen-
tiated between three age classes) and other kelps (Laminaria spp., Saccharina 
latissima, U. pinnatifida). Note that subtidal survey months are not consecutive.
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and signs of decay. That said, the maximum recorded standing 
stock of S. polyschides did not differ significantly between 
depths.

Saccorhiza polyschides sporophytes were shorter-lived than 
perennial Laminaria species, and, as such, offered less stable 
and persistent habitat for associated species, such as epiphytes, 
benthic invertebrates but also small fishes (Salland and Smale, 
2021). Similarly, standing stock within S. polyschides popu-
lations was strongly seasonal, with maximum values in late 
summer/autumn, followed by a period of release of organic 
matter into the environment as detritus. This intense late-season 
pulse of detritus release is in contrast to dominant laminarial 
kelp species in the northeast Atlantic, which either release a 
pulse of detritus in spring or release detritus more gradually 
through the year (Pessarrodona et al., 2018a; Gilson et al., 
2023). Differences in biomass accumulation and detritus pro-
duction between dominant species may have implications for 
local carbon cycling or supply for detrital foodwebs (Gilson et 
al., 2021; Guerrero-Meseguer et al., 2023). The mean standing 
stock of S. polyschides, across all sites and surveys, was ~2300 
g WW m−2, which is about one-third of the average standing 
stock values reported for the dominant kelp L. hyperborea in 
the southwest of the UK (Smale et al., 2016, 2020). However, 
due to the pronounced seasonality in the productivity of S. 
polyschides, maximum observed standing stock values ex-
ceeded 13 000 g WW m−2. This is more than double the annual 
mean standing stock values reported for L. hyperborea popula-
tions in the UK.

Saccorhiza polyschides is an opportunistic kelp that is 
thought to be thriving and proliferating along the Western 
English Channel (Birchenough and Bremner, 2010; Smale et 
al., 2013, 2015). To date, several studies on S. polyschides 
have been conducted towards its southern distribution range 
(Iberia–Morocco), where this species can be (or has been) lo-
cally dominant and a key habitat-former (Fernández, 2011; 
Díez et al., 2012; Tuya et al., 2012; Voerman et al., 2013; 
Pereira, 2014; Assis et al., 2017; Casado-Amezúa et al., 
2019). Along the coasts of Morocco and the Iberian Peninsula, 

population declines have been reported (Fernández, 2011; Díez 
et al., 2012; Assis et al., 2017; Casado-Amezúa et al., 2019), 
probably as a result of ocean warming leading to unfavourable 
thermal conditions, as well as shifts in nutrient availability 
related to upwelling events (Lüning, 1985; Fernandez et al., 
1988; Fernández, 2011; Pereira et al., 2015). In a compar-
able study on seasonal dynamics of intertidal S. polyschides 
populations, Pereira et al. (2015) found contrasting patterns 
between populations from different latitudes. Populations 
persisting at lower latitudes (~41°N) exhibited shorter sea-
sonal life cycles with sporophytes only present between 
April and September, whereas populations found at higher 
latitudes (~48°N) exhibited year-round presence and recruit-
ment of sporophytes. In the current study (~50°N), we also 
observed the presence of sporophytes throughout the year but 
recruitment of sporophytes into intertidal populations exhib-
ited seasonality, with the highest rates in spring and summer. 
Clearly, population dynamics differ across the distribution of 
S. polyschides, probably due to variation in environmental 
conditions and/or species interactions, and further research on 
patterns of spatiotemporal variability of S. polyschides popu-
lations across its wider biogeographical range in the northeast 
Atlantic is warranted.

CONCLUSION

Our study showed that S. polyschides is a conspicuous and 
seasonally dominant component of macroalgal assemblages 
on rocky reefs towards the centre of its range (i.e. the Western 
English Channel), where it probably contributes considerably 
to ecosystem functioning through habitat provisioning and 
biomass accumulation and release. We observed distinct sea-
sonal variability, characterized by high recruitment in spring, 
peak sporophyte biomass and high standing stock in summer, 
followed by declines in density, cover and biometric measure-
ments during winter. These patterns exhibited a reasonable 
level of consistency across sites and depths. By late summer, 
S. polyschides was a dominant habitat-former with maximum 

Table 2.  Results of univariate PERMANOVA for subtidal kelps in June, August and October 2020. PERMANOVAs (9999 permutations) 
are based on Euclidean distances with a dummy value of 1, under a reduced model with Monte Carlo (MC) correction. ‘Site’ and ‘month’ 
as fixed factors. Significant values are indicated in bold (P ≤ 0.05). Post-hoc pairwise test followed PERMANOVAs (Supplementary Data 

S4).

Response variable Site Month Site × month

subtidally d.f. F P (MC) d.f. F P (MC) d.f. F P (MC) Res d.f.

Density of S. polyschides per m2

S. polyschides (sum) 2 5.6284 0.0047 2 2.9474 0.0568 4 3.5225 0.0114 81

Cover of S. polyschides per m2

S. polyschides (sum) 2 1.0583 0.3504 2 12.785 0.0001 4 3.6592 0.0078 81

Biometrics per S. polyschides individual

Total biomass/WW 2 0.3 0.7434 2 13.556 0.0001 4 4.7573 0.0015 81

Total length 2 5.2642 0.0066 2 7.2153 0.001 4 1.4334 0.2223 81

Sorus biomass/WW 2 0.2506 0.78 2 7.2847 0.0012 4 4.4964 0.0027 81

Standing stock

g WW m−2 2 3.9109 0.0231 2 0.3802 0.6829 4 0.9631 0.4316 81
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mean standing stock > 13 000 g WW m−2, providing a complex 
and abundant biogenic habitat for associated organisms.

Saccorhiza polyschides is a warm-tolerant, opportunistic 
species with high local population densities. It has probably 

proliferated in recent years across the southwest of the UK 
(Smale et al., 2013), and has extended, or is predicted to ex-
tend, its distribution polewards (Yesson et al., 2015b; Assis et 
al., 2017, 2020). As such, we expect this species to become 
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Fig. 4.  Spatiotemporal variability in biometric measurements from individuals sampled from intertidal S. polyschides populations. Mean total biomass (A, B) and 
total length (C, D) (± s.e.). Stacked bar plots indicate values for each structural tissue component.
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increasingly dominant under projected climate change, particu-
larly in response to ocean warming, increased storminess and 
other environmental changes. Our study provides a robust base-
line on the population demographics of S. polyschides against 

which to detect future changes in the Western English Channel, 
although more information on interannual variability and 
long-term trends is needed. More generally, it offers a useful 
case study and approach and provides a foundation for further 
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research on the ecological role of the species within the wider 
temperate reef ecosystem.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.
oup.com/aob and consist of the following. SI2: Detailed method 
description/age classification of S. polyschides. SI3: Post-hoc 
table. SI4: Post-hoc table.
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