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Abstract

Population size estimation from two incomplete surveys, known as dual system estimation, requires to

know which of the population elements are simultaneously captured in both of the surveys, the task

imperfectly accomplished by the means of record linkage. In this thesis we explore the conceptual

closeness of the fields of probabilistic record linkage and dual system estimation, and develop methods

for the population size estimation, called linkage free dual system estimation, that seamlessly inte-

grate probabilistic record linkage and dual system estimation. Unlike many existing record linkage

approaches, the one developed in this thesis is purely estimation-based and does not classify records

into links and non-links. It also does not require clerical resolution of possible links.

In order to theoretically justify the linkage free dual system estimation method, we revisited certain

problematic aspects of probabilistic record linkage and proposed a different approach conceptualizing

record linkage models. This conceptualization takes into account a very specific sampling mechanism

behind record linkage tasks. It also allows analysis of certain properties and limitations of parameter

estimation in linkage models. We also introduce a special case of data blocking that bridges the gap

between record linkage data and estimation with these data. Special attention is paid to between-

variables associations in the outcomes obtained by comparing the values of linkage variables. We also

assess linkage models for identifiability using a variety of methods from the field of algebraic statistics.

We demonstrate that in situations where the data in both surveys are collected for the same

geographical clusters, the linkage free dual system estimation is feasible and can yield outputs of similar

quality to the regular classification approaches that involve clerical interventions. We also develop

accompanying variance estimation methods, and these methods rely on less restrictive assumptions

than existing methods. All developments are undertaken within the frequentist paradigm.

Keywords: dual system estimation, probabilistic record linkage, justification of probabilistic record

linkage, identifiability, simulated annealing, Taylor series approximation, within and between link-

age variables associations, variance estimation, census and census coverage survey, simulations, no-

classification record linkage, linkage free dual system estimation.

i



Contents

List of tables v

1 Introduction 1

1.1 Automated probabilistic record linkage without classification for dual system population

size estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scope and limits of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature review and preliminaries 5

2.1 Capture-recapture and dual system estimation . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Dual system estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Variance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Record linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Preparing for linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Fellegi-Sunter approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Formulation of the Fellegi-Sunter approach in terms of mixture models . . . . . . 21

2.2.4 One-to-one linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.5 A linkage experiment and the invalidity of mixture models for record linkage . . 25

2.2.6 Notation in a context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 An overview of census coverage estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.1 Types of identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.2 Number of observables and number of parameters . . . . . . . . . . . . . . . . . 43

2.5.3 Assessing local identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.4 Tensor methods to assess identifiability . . . . . . . . . . . . . . . . . . . . . . . 44
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1 Introduction

In this chapter we explain motivation for this work, its objectives and provide a high-level overview of

problems we need to address along the way. We also outline the scope and limits of the ideas developed

in this thesis. Finally, we present the structure of the thesis.

1.1 Automated probabilistic record linkage without classification for dual system

population size estimation

The population size of a certain domain, be it a country, a district of a town or individuals with some

specific demographic characteristic, is one of the most basic and frequently used statistics describing

the population of interest. It is not often the case, however, that a population count gives the exact

figure of the population size. This is true even for the observed population count in a census or a

population register. Therefore, one must resort to population size estimation from multiple incomplete

surveys of the population. The term ‘survey’ does not always strictly mean ‘sample survey’ in this

thesis. Instead, it is a convenient general designation of different data and data collection types relevant

to the discussed topics.

Methods for population size estimation from several incomplete surveys of the target population in

the absence of a perfect sampling frame are known as capture-recapture methods. The simplest case

of capture-recapture methods uses two samples to produce a population size estimate and is usually

called dual system estimation. The key factor enabling dual system estimation, as well as other types of

capture-recapture approaches, is the ability to determine, in the absence of unique identifiers, whether

a member of the population captured in the first survey was or was not captured in the second survey.

The area of record linkage comprises the theory and practice of classifying pairs, or n-tuples in general,

of records from two or more sources as referring to the same unit in the target population or not.

Therefore, dual system population size estimation is infeasible without record linkage and linkage is a

prerequisite for estimation.

This thesis revolves around connections between record linkage and dual system estimation. There

are studies, discussed in literature review chapter, of the effect of linkage errors on dual system estimates

and ways to adjust for biases incurred by imperfect linkage. However, while dual system estimation

is always preceded by record linkage, there was surprisingly little research until recent on how the

two are related from the conceptual standpoint. In this thesis several closely interrelated tasks are

pursued. First and foremost, a more holistic approach to record linkage for dual system estimation is

proposed. It is shown that for a certain probabilistic record linkage model the dual system estimator

is a function of one of the parameters of the linkage model. The fact that the dual system estimator

is embedded in the linkage model has several implications. On the one hand, it motivates a purely

estimation-focused approach to record linkage. An approach that does not have a strict classification

of record pairs as links and non-links, but only high quality estimates of the linkage model parameters.

The dual system estimate would be simply an outcome of the estimation of linkage model parameters

without classification. On the other hand, knowing the dual system estimator is a transformation of

the record linkage model parameter, allows the properties of the dual system estimator to be used to
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study the properties of record linkage.

Going to the pure estimation-based approach for record linkage entails several problems and chal-

lenges on its own. The biggest one is that it effectively means no clerical review, resolution and

classification of record pairs that are half-way between likely links and likely non-links. This is because

of the difficulties in formalizing an estimation approach with clerical interventions. Also, it is some

sort of contradiction to develop a pure estimation approach without classification and have clerical

decisions at the same time. On the contrary, having a method that does not require clerical review

means a substantial reduction of the cost associated with the record linkage task. Hence, the prob-

lem of fully automated probabilistic record linkage is also present and discussed in this work. The

absence of clerical resolution is challenging in a number of ways. Apart from the obvious contribution

to the final quality of the linkage exercise, clerical review, in combination with certain constraints, can

mitigate the effect of model misspecification and non-identifiability.

Therefore, the no-classification approach to record linkage requires greater care with the linkage

model compared to the linkage where clerical review is available. First, it requires a good understanding

of the data generating mechanism associated with a record linkage exercise. Second, it requires a useful

and well-justified representation of the data generating mechanism in the form of a statistical model

and study of the properties of the model. Third, it requires understanding of how to parameterize

the corresponding model given the set of linkage variables. Fourth, it requires a parameter estimation

approach that reflects the peculiarities of the linkage model. Fifth, the study of identifiability of the

linkage model is required. Once the estimation, rather than classification, becomes the ultimate goal

of the linkage exercise, the question of measuring the related uncertainty in such estimation emerges

naturally.

In this thesis, a model which is parameterized as a finite mixture model but does not conform with

the sampling mechanism of a mixture is introduced and all the above tasks are addressed to enable

the no-classification linkage and the corresponding no-classification dual system estimation, referred to

as linkage free dual system estimation. Variance estimation for the linkage free dual system estimator

is discussed and an estimation approach is developed. All theoretical developments are assessed in

simulations.

1.2 Scope and limits of this work

There is a wide range of applications of dual system estimation. The method developed here is not

necessarily universally applicable for any type of a population or situation. Similarly, record linkage

can be seen as an entire branch not only of statistics, but also of machine learning and computer

science, where it is more commonly known under the name entity resolution. This means that it is

impossible to cover all aspects and ramifications of record linkage in this work. Below is a short list of

the key aspects that define the scope of this work. Other limitations will be mentioned in the following

chapters as the discussion evolves.

1. Only human populations in a stable modern country with individuals nested in households or

addresses are considered in this work.
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2. The data collection for both surveys is done in at least a reasonably controlled and well-designed

manner. For instance, not necessarily perfect but decent quality sampling frames and address

lists are used. There are similar, well-defined variables to be purposefully collected in both of

the surveys. Ideally, data are specifically collected for the population size estimation.

3. The performance of capture-recapture methods depends greatly on the data collection design

and strategies of carrying out estimation. Statistically efficient designs are often very expensive

and difficult to implement in large human populations. Many existing designs employ some

form of a cluster sampling and dual system population size estimation within those clusters. In

other words, for a selection of geographical clusters an attempt to capture as many individuals

as possible within those particular clusters is made on each capture (sampling) occasion. Dual

system estimation is carried out for such individual clusters or aggregations of neighbouring

clusters. These individual dual system estimates are used as an input to other estimators that

allow high quality population totals to be achieved. A real example of such data collection and

estimation exercises can be a decennial census of a population with a census post-enumeration

survey of a sample of postcodes. A potential example could be a population register or a nearly

exhaustive administrative data set, such as a health system registration, with an appropriate

coverage survey. No-classification record linkage and dual system estimation provide the most

benefits in large linkage and estimation exercises, where minimization of clerical resolutions results

in a substantial cost reduction. It also turns out that the no-classification methods as developed

in this thesis have the best performance when applied to estimate small subpopulations with

imperfect, but reasonably high coverage in both surveys. This is a set-up found in census coverage

estimation. Hence, we focus on applications where the no-classification methods would be most

needed and where the best performance can be achieved. This means that in general we are

interested in census coverage-like situations in this thesis. Specifically, we assume that data for

a certain selection of geographical clusters, such as a selection of postcodes in the UK, can be

collected in both surveys. We are exploring how well no-classification dual system estimation

can estimate the size of such a relatively small individual subpopulation. It does not mean

that the methods developed here cannot in principle be used with data collected by two surveys

not purposefully designed for the coverage estimation. However, such a general design does not

necessarily guarantee good performance of the no-classification methods and is not explored in

this thesis.

4. High-quality data pre-processing for analysis, linkage and estimation is assumed. This includes

tasks such as data coding, cleaning, standardization of the values of the linkage variables, etc.

Such tasks do not constitute the discussion in this work and are only briefly reviewed.

5. Linkage variables such as full address, first name, second name, date of birth are available on

both of the surveys.

6. There are several reasons to focus on linkage with exactly four linkage variables. Under the

linkage model considered in this work, the three linkage variable case has only one available
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parameterization, whereas the four variable case allows substantially more parameterizations.

This in turn makes it possible to deal with some cases of the dependence between the comparison

outcomes of certain combinations of linkage variables. Also, since there are multiple model

specifications for the four variable linkage models, establishing which model is identifiable and

which is not becomes important. Overall, the four variable case gives the sufficient material

for developing and testing the many general ideas. Moreover, in many situations similar to

census coverage estimation, the five and more variable cases are likely to result in non-identifiable

models because available linkage variables often lack independence leading to multi-way between-

variables associations.

1.3 Structure of the thesis

Chapter 2 is a combination of a literature review and all the preliminaries needed for the main develop-

ments of the thesis. Most of the notation used throughout the work is also introduced in this chapter.

The topics discussed include: the dual system estimator; record linkage; the Fellegi–Sunter and re-

lated mixture model-based approaches to record linkage; conceptual issues of mixture model-based

approaches and unfeasibility of the maximum likelihood approach; the data generating mechanism

behind the record linkage exercises; overview of the context of the census coverage estimation; the sim-

ulated annealing algorithm; and approaches to establish model identifiability using algebraic statistics.

Chapter 3 introduces the mixture-like model and justifies the use of such a model in record linkage.

Some consequences of the above modelling on properties of the related estimators are discussed. An

outline of constructing an estimator that agrees well with the mixture-like conceptualization is given.

A special case of blocking, called averaging blocking, is introduced and its importance for record linkage

and the linkage free dual system estimator is explained. Finally, we discuss the parameter estimation

of mixture-like models using the Markov chain Monte Carlo method known as the simulated annealing

algorithm.

Chapter 4 demonstrates how the dual system estimation follows from the estimation of parameters

of a mixture-like record linkage model. The classification or linkage free dual system estimator is

introduced. Several variants of the linkage free estimator are presented. Finally, the modified linkage

free estimator utilizing the 1-to-1 match constraint is introduced.

In Chapter 5 a variety of methods are used to establish identifiability of certain linkage models

with four linkage variables.

Chapter 6 develops a method for variance estimation of the linkage free dual system estimator. A

number of variants of this method are presented.

Chapter 7 describes the design, the purpose and the performance criteria of a simulation study. The

simulation results assessing the point estimation are presented for a range of scenarios and settings.

Chapter 8 is a continuation of the simulation study, but the focus is on the variance estimation.

Chapter 9 contains a summary and conclusions of the thesis along the outline of the further work.

Finally, there is additional material in the appendix. Since the discussion of identifiability refers

to algebraic statistics and specifically uses Gröbner bases, a topic which not every member of the

statistical community is familiar with, there is a section with the prerequisites needed to understand
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the topic. Additional simulation results and sample code for checking identifiability are also contained

in the appendix.

2 Literature review and preliminaries

We start with a combination of a literature review and some introductory ideas that are needed for the

discussion that will follow. There is a rather wide range of topics covered in this chapter: dual system

estimation, standard classification-based probabilistic record linkage, mixture-model representation of

record linkage including the criticism of such representation, an overview of census coverage estimation,

a summary of the simulated annealing algorithm and a brief introduction to algebraic statistics methods

that are used to assess identifiability of statistical models.

2.1 Capture-recapture and dual system estimation

Capture-recapture methods provide a way to estimate the size of a population from multiple but

incomplete surveys of that population, even when a union of surveys is still incomplete. One of the first

documented applications of what nowadays could be called a capture-recapture approach considered

estimation of the total population of France by Laplace (1783). A century later Petersen (1896) used

capture-recapture method with two samples to estimate the population of plaice in the Limfjord,

Denmark, while Lincoln (1930) used a similar method to estimate the abundance of waterfowl. Geiger

& Werner (1924) used capture-recapture to estimate the number of flashes on a zinc sulphide screen.

The first use of the maximum likelihood method in the context of capture-recapture and estimation

with multiple lists is discussed in Schnabel (1938), yet again in a fishery application. Sekar & Deming

(1949) focused on the estimation of births and deaths in human population. Starting from 1950–1960s,

the interest in capture-recapture grows rapidly and the number of research papers in this area becomes

vast. Therefore, only those papers and monographs that are the most relevant to this work will be

referred to as the discussion progresses.

It is astounding to see capture-recapture methods finding their application and generating new

research questions in so many areas. These methods have particularly, but not exclusively, been used to

estimate the size of animal populations (Seber, 1982; McCrea & Morgan, 2015), the under-enumeration

of a human population census (Wolter, 1986; Fienberg, 1992; Brown et al., 2019), the number of war

casualties (Ball et al., 2002), the number of duplicates in a database (Herzog et al., 2007, chap. 14),

the extent of human trafficking (Silverman, 2020), the number of homeless people (Coumans et al.,

2017) as well many other populations of interest in social and medical sciences (Böhning et al., 2018).

All items referenced here contain rich bibliographies relevant to particular areas of application.

In this thesis we are considering the special case of capture-recapture methods with two surveys,

which is often referred to as the dual system estimator. Moreover, we are dealing with the simple or

basic dual system estimator, to contrast it with more elaborate log-linear or logistic regression based

approaches (Alho, 1990). Essentially, we are dealing with the Petersen model in Wolter’s (Wolter,

1986) classification.

5



2.1.1 Setup

We start with the description of our target population and the two data sets used in the dual system

estimation. Some of the notation which is used throughout this work is introduced as well.

The target population is P = {ei : i = 1, . . . , τ}. Here ei is an element of the population, which

is an individual person in this thesis. Index i can be regarded as the hypothetical unique identifier,

which is unobserved in reality. The population has a fixed size τ ∈ Z+. Every element ei has a number

of associated attributes such as first name, surname, date of birth, address, etc. More detail related to

these attributes will be provided later.

There are two independent sample surveys, S1 and S2, of the population P. Since our goal is a

unified framework combining record linkage and dual system estimation, we choose to use a generic

term ‘sample survey’ instead of the terms such as ‘list’ or ‘file’ often used in record linkage literature.

‘Sample survey’ is not always technically accurate in the discussion that follows. For instance, dual

system estimation is often used to adjust censuses for the coverage errors and while the census is a

survey it is not a sample survey. However, it seems that there is no terminology general enough to cover

all the different nuances of the topics under discussion, hence we chose to use an imperfect term ‘sample

survey’. We often use ‘sample’ and ‘survey’ interchangeably as a short version of ‘sample survey’, or

whichever suits better a certain context. Each ei has the probability π1,i to be selected, or counted

in capture-recapture terminology, in S1 and the probability π2,i to be selected in S2. If the selection

probabilities are constant within each of the surveys, then the probabilities are π1 and π2 for S1 and S2,

respectively. In general, π1 ̸= π2. In the context of dual system estimation, the selection probabilities

are also often called the inclusion or count probabilities. These terms, as well as selection, count and

inclusion, will be used interchangeably. Observe, that in real-life applications the target population is

finite and sampling is carried out without replacement. Therefore, the inclusion probabilities cannot

be constant. However, it is more convenient to deal with constant inclusion probabilities, as done in

the majority of statistical models for capture-recapture. We discuss such a model in the next session.

The size of S1 is n1 ∈ Z+, while the size of S2 is n2 ∈ Z+. It is often convenient to think about nj ,

j = {1, 2}, as the realization of the random variable Nj . In this case Nj maps the outcome of drawing

the sample Sj from P to the size of this sample. We write s1,a and s2,b to denote ath and bth elements

of S1 and S2, respectively. We can write S1 = {s1,a : a = 1, . . . , n1} and S2 = {s2,b : b = 1, . . . , n2}.
Now let id(x) be the function that takes a record in a given survey and returns its corresponding

hypothetical unique identifier. Say, for a record s1,a of the first survey id(s1,a) = i, meaning that the

record corresponds to the element ei in P. Consider the set M of the population elements that are

sampled in both S1 and S2. This set is called the match-set or the set of matches and can be written

as M = {(s1,a, s2,b) : s1,a ∈ S1, s2,b ∈ S2, id(s1,a) = id(s2,b)}, where (s1,a, s2,b) is a record pair created

by binning one record from S1 and one record from S2 in a tuple. The size of the set of matches is

m ∈ Z+. Again, in the case of repeated sampling, m is the realization of the random variable M that

maps the outcomes of draws of two samples to the size of the resulting set of matches.
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2.1.2 Dual system estimator

With the set up as in Section 2.1.1, the goal is to estimate the population size τ having two incomplete

surveys S1 and S2 of the population P, such that S1 ∪ S2 ̸= P. Several assumptions must be satisfied

in order to obtain the dual system estimator of τ (Seber, 1982; Wolter, 1986). Throughout this work

all these assumptions are considered to hold unless stated otherwise.

The first assumption is that the target population P is closed. That is to say that both surveys

S1 and S2 are taken on the exactly the same population, no elements are taken out or added between

those two sampling occasions. In practice it means that there are no births, deaths or migrations in P
between the surveys.

The second assumption is that there is no overcount in the form of duplicated counting of ei or

counting ei in the wrong location. Duplication in the survey Sj , j = {1, 2}, means that there are

sj,x and sj,y such that id(sj,x) = id(sj,y). In practice it means that a certain population element

was counted twice by one of the surveys. To explain counting in the wrong location, consider the

geographical location attribute li of ei. For instance, the value of li can be a local authority where

ei is located in the population. Let loc(x) be the function that takes a record on a given survey and

returns the recorded location attribute. We say that s1,a is counted (overcounted) in the wrong location

whenever id(s1,a) = i, but loc(s1,a) ̸= li. In practice it means that the recorded location of an element

is different from the true location.

The third assumption is that for every ei, being captured (or missed) in the first survey does

not affect the chance of being captured (or missed) in the second survey. In other words, the joint

probability π11,i of ei being captured in both surveys is π11,i = π1,iπ2,i.

The fourth assumption is of constant inclusion probability at least in one of the surveys. That is,

for every ei in P, πj,i = πj at least for one j = {1, 2}. Again, π1 ̸= π2 in general.

Finally, perfect matching is assumed. Perfect matching means that all pairs (s1,a, s2,b) ∈ M can be

identified. Our main development will be around replacing this assumption with either the assertion

that the size M of the set of matches can be estimated, or that the estimate of τ can be obtained

directly from the estimate of a certain linkage model parameter. In any case, there is no ultimate

classification of pairs (s1,a, s2,b) in this work.

We will revisit some of these assumptions in more detail later. We can now introduce the dual

system estimator. Among the most widely used statistical models for the dual system estimation of the

population size τ is the multinomial model (Bishop et al., 1975; Pollock, 1976; Wolter, 1986). While

this model corresponds to the above setup, this set up and the model itself are not exact, since in the

majority of real-life applications sampling is carried out without replacement. However, such a model

is a good approximation and it is very useful in subsequent discussion. Therefore, the multinomial

model is assumed for dual system estimation throughout this work unless stated otherwise. Under this

model every ei in the population has four possible outcomes as the result of the two surveys taking

place. The element can be either captured by both surveys with the probability π11,i, captured in the

first survey only with the probability π10,i, captured in the second survey only with the probability

π01,i or not captured in either of the survey with the probability π00,i = 1 − π11,i − π10,i − π01,i. The

marginal capture probabilities for S1 and S2 are π1,i and π2,i, respectively. It is often convenient to
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summarize the resulting probabilities in a 2× 2 table, as shown in Table 1.

Table 1: Probabilities of outcomes for a person ei

Counted in S2 Missed in S2
π2,i 1− π2,i

Counted in S1 π1,i π11,i π10,i
Missed in S1 1− π1,i π01,i π00,i

Using the assumptions of independence between two surveys and constant selection probabilities

allows writing Table 1 as Table 2.

Table 2: Probabilities of outcomes for a person ei under the dual system estimation assumptions

Counted in S2 Missed in S2
π2 1− π2

Counted in S1 π1 π1π2 π1(1− π2)
Missed in S1 1− π1 (1− π1)π2 (1− π1)(1− π2)

Random variablesM,N10, N01, N00, which map the outcome of drawing two samples to the number

of people counted in both surveys, counted in the first only, counted in the second only and missed

from both, respectively, follow the multinomial distribution with the probabilities as in Table 2. The

corresponding realisations of these random variables, sometimes referred as cell counts, are m, n10,

n01 and n00. Note, that in dual system estimation the cell value n00 is unobservable and unknown.

The sum of the cell counts is equal to the population size τ . Table 3 is the related contingency table,

we treat these quantities as the objective truth, which not necessarily can be accurately established in

practice.

Table 3: Aggregate outcomes under the dual system estimation assumptions

Counted in S2 Missed in S2
N2 τ −N2

Counted in S1 N1 M N10

Missed in S1 τ −N1 N01 N00

Using the multinomial distribution has a number of implications both for the dual system estimation

and our discussion of the no-classification linkage and population size estimation. Two important

properties of the multinomial distribution are: (1) if (X1, . . . , Xz)
T have a multinomial distribution,

then (
∑︁

α1
Xi, . . . ,

∑︁
αj
Xi)

T , where α1, . . . , αj are partitions of 1, . . . , z with each Xi belonging to only

one partition, also have a multinomial distribution; (2) the conditional distribution of a subset of the

(X1, . . . , Xz)
T given the values of the remaining subset also has a multinomial distribution (Bishop

et al., 1975, chap. 13)

The first property means that the marginal distributions of N1, τ − N1 and N2, τ − N2 are also

multinomial. Since there are only two outcomes, and the binomial distribution is the special case of the

multinomial with only two outcomes, it follows that N1 ∼ Bin(τ, π1) and N2 ∼ Bin(τ, π2). Similarly,

M ∼ Bin(τ, π1π2).
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The second property allows the maximum likelihood estimates of π1, π2 and τ to be obtained

(Bishop et al., 1975, chap. 6). Let n = m + n10 + n01 be the total number of observed cases after

drawing both samples. Treating n as fixed and using the second property of a multinomial distribution

mentioned above, the distribution of (m,n10, n01) is multinomial with the corresponding probability

mass function (︃
n

m, n10, n01

)︃
πn1
1 πn2

2 (1− π1)
n01(1− π2)

n10

[1− (1− π1)(1− π2)]
n , (1)

where (︃
n

m, n10, n01

)︃
=

n!

m!n10!n01!

is the multinomial coefficient. The denominator of (1) comes from conditioning on the event that an

element ei is observed in at least one of the surveys, an event that has the probability 1−(1−π1)(1−π2).
Finding the values of π1 and π2 that maximise (1) given n,m, n10 and n01, yields the maximum

likelihood estimates for these parameters, which are

ˆ︁π1 = m

n2
, ˆ︁π2 = m

n1
. (2)

Note that the capture probability for the first survey is estimated using the size of the second and vice

versa.

Using the first property from the above, we have that the sum n = m+n10 +n01 has the binomial

distribution with the probability mass function(︃
τ

n

)︃
[1− (1− π1)(1− π2)]

n [(1− π1)(1− π2)]
τ−n . (3)

If the population size τ is fixed and the probability of success, pr(event occurs), is known (in this

context, success means being counted at least in one of the surveys), then the maximum likelihood

estimate of τ given the probability of success is ⌊n/pr(event occurs)⌋ (Bishop et al., 1975, chap. 13).

Here ⌊x⌋ is the greatest integer function, that is the function that returns the greatest integer smaller

than or equal to x for x ∈ R. Therefore, given π1 and π2 the maximum likelihood estimator of τ is

ˆ︁τ∗ = ⌊︃ n

1− (1− π1)(1− π2)

⌋︃
.

The greatest integer function is usually ignored in the maximum likelihood estimation of the population

size as it has little effect for a reasonably large τ .

Plugging the maximum likelihood estimates (2) into the above expression and ignoring the greatest

integer function, we obtain the simple or basic dual system estimator of the population size

ˆ︁τ =
n1n2
m

. (4)

There are several alternative ways to obtain the same estimator. Some of the derivations have

merits making them worth discussing here. All of the setup and assumptions are as before. The first

alternative is based on the expectation of the ratio of the number of matches to the number of elements
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in the second survey, M/N2. We have

E
(︃
M

N2

)︃
≈ E(M)

E(N2)
=
π1π2τ

π2τ
= π1 = E

(︃
N1

τ

)︃
=

E(N1)

τ
,

where the approximate equality of the expectation of the ratio and the ratio of expectations can be

demonstrated using Taylor series approximation. We do not include the related computations here,

but Taylor linearisation is used extensively in a similar context later in Section 3.2. From the above

expression it follows that

τ ≈ E(N1)E(N2)

E(M)
, (5)

and replacing the expectations with the observed values m,n1 and n2, gives the dual system estimator

(4). The importance of this derivation is that it makes explicitly visible that the dual system estimator

is a special case of the ratio estimator; see Cochran (1977, chap. 6). Inherently, the dual system

estimator has the properties of the ratio estimator. For instance, it is biased, but the bias decreases

as the sample size increases.

Another alternative is related to the theory of complete and incomplete contingency tables; see

Fienberg (1972), Bishop et al. (1975, chap. 6.2.3) and literature therein. Independence between the

two surveys is equivalent to the cross-product ratio of the expected values of the cells of the contingency

Table 3 to be equal to 1. Let the expected values of M,N10, N01, N00 be m,n10, n01, n00, respectively.

The cross-product ratio under the independence is

n00m

n10n01
= 1.

When estimating the population total, the missed from both cell is unobserved and the contingency

table is incomplete. The assumption of independence expressed as the cross-product ratio means that

n00 =
n10n01
m

.

Hence, the estimate for the non-observed cell is

ˆ︁n00 = ˆ︁n10ˆ︁n01ˆ︁m =
n10n01
m

,

and combining with the rest of the observed cells gives the basic dual system estimator (4):

ˆ︁τ = m+ n10 + n01 +
n10n01
m

=
n1n2
m

.

It is possible to use sampling weights within the dual system estimator if needed. The simplest

way is to up-weight each term of the estimator (4) by the appropriate sampling weight. However,

when using the dual system estimator in census coverage situations, a census provides population

counts for all clusters in the population. Hence, the census data can be used as auxiliary information,

which enables a substantially more efficient estimation by means of ratio estimation (Wolter, 1986;

Brown, 2000; Brown et al., 2019). Since the coverage survey samples clusters within a sample stratum,
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all elements within the cluster or neighbouring clusters have the same sampling weights. Therefore,

there is no need for sampling weights when computing dual system estimates for each individual

cluster. Sampling weights, if needed, are used within the ratio estimator. This usually happens when

individual dual system estimates from different strata are pooled together in the ratio estimator. In

this thesis we are focusing on application of the no-classification methods for the census coverage or

similar problems. Therefore, there is no need to use sampling weights when estimating the size of

small subpopulations with the no-classification methods and we leave the development of the weighted

no-classification approaches for future research.

No matter which way the dual system estimator is derived, what remains unchanged is that the

only two directly observed random variables are N1 and N2, the sizes of two surveys. The rest of the

variables needed for the estimation, such as M , come from a linkage process. Therefore, perfect or

at least very high quality linkage is needed in order to produce a reliable estimate for τ and the dual

system estimator is sensitive to errors in linkage; see for instance Biemer (1988); Tancredi & Liseo

(2011).

We will discuss record linkage in more detail in Section 2.2. For the time being we only need to be

aware of the useful distinction between matches and links. If a record pair represents the same element

in a population, it is said that the pair is a match. Otherwise, the pair is a non-match. If a record

pair is classified as a match, but its true match / non-match status is unknown, then it is said that the

pair is a link. If a pair is classified as a non-match, but its true match / non-match status is unknown,

then it is said that the pair is a non-link (Larsen & Rubin, 2001).

There are two possible errors in the linkage process. A pair (s1,a, s2,b) such that id(s1,a) = id(s2,b)

can be erroneously classified as a non-link. This type of error is known as a false negative. In this case,

the number of declared links will be smaller than the realisation m of M . If the error is systematic,

then the declared number of links is systematically smaller than the true number of links which leads

to overestimation of τ . By contrast, a pair (s1,a, s2,b) such that id(s1,a) ̸= id(s2,b) can be erroneously

classified as a link. This type of error is known as a false positive and in this case the number of declared

links is larger than the realisation m of M . If such errors are systematic, the number of declared links

is inflated relative to the true number of links which leads to underestimation of τ . It is easy to see

that the overall effect of the linkage errors on the dual system estimator is determined by the total

linkage error which is the sum of all false positive minus the sum of all false negative errors. More on

linkage errors is presented in Section 2.2. Usually, the practical difficulty of achieving perfect linkage

is recognized by setting some admissible level for linkage errors and accepting the consequent small

bias. In addition, linkage, and probabilistic linkage in particular, involves a trade-off between the level

of admissible errors and the amount of clerical resolution needed to resolve the set of potential links.

Essentially, it is a trade off between the quality of classification and the time and cost of processing.

The lower the level of admissible errors, the more clerical resolution is generally needed.

There was some interest in linkage error in relation to the dual system estimation, including ad-

justment of the dual system estimates for linkage errors (Biemer, 1988; Ding & Fienberg, 1994; Di

Consiglio & Tuoto, 2015; Tuoto, 2016; de Wolf et al., 2019). The conceptual framework for linkage

error adjustment is set out in Ding & Fienberg (1994) with the majority of later research building on
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it. These methods require an external estimate of the linkage error rates. The estimation of these error

rates often depends on a supplementary data collection and processing exercise.

In this thesis we are focusing on linkage without actual classification of record pairs into links

and non-links. The no-classification methods we develop aim on producing an accurate estimate of

M or τ with a carefully specified linkage model. As a result, the notions of false negative and false

positive errors are irrelevant for such methods. Instead, the error in estimation of M or τ becomes

important. We will show that the dual system estimation follows from a certain linkage model, called

here a mixture-like model. Other work that discuss the close relationship of dual system estimation

and / or fully automated record linkage are Tancredi & Liseo (2011); Johndrow et al. (2018); Tancredi

et al. (2020); Lee et al. (2022).

Among the largest population size estimation exercises that employ dual system estimation are

censuses of human populations. Despite the aim to survey every member of a population, no census

is perfect. Therefore, an independent data collection exercise is carried out for a sample of the target

population and dual system estimation using the census and survey data is carried out to estimate the

size of the missed population. While the goal is to reliably estimate the population total of a large

human population, several practical considerations influence the data collection design. This, in turn,

affects how the dual system estimator is applied. In order to keep two data collection exercises opera-

tionally independent, different data collection modes are employed for each of the data sources. One of

them, usually a smaller sample-based survey, is conducted as face-to-face interviews. It is operationally

easier to achieve a high response rate and cheaper to run a survey with a cluster design. In addition,

since no perfect sampling frame of ultimate sampling units (which are usually households in coverage

surveys) exists, clusters, such as postcodes, allow the capture and use in estimation elements that could

not otherwise be captured due to the frame imperfections. With such a cluster design it is convenient

to produce separate dual system estimates of the population size of each such geographical cluster (or

aggregation of neighbouring clusters), usually post-stratifying the population by some demographic

variable. For example, by age-sex group. These separate dual system estimates can then be used as

input for other estimators, that produce estimates for the large domains, such as local authority by

age-sex group. A more detailed overview of the census coverage estimation is presented in Section

2.3. What is really important for the methods discussed in this thesis, is that in the census coverage

context the dual system estimator is applied to estimate the population size of relatively small and to

a degree homogeneous groups. In addition, the coverage of the clusters in each survey is quite high in

such situations. The no-classification approaches developed in this thesis are best suited for the size

estimation of such small populations (reasons are explained in Section 3.3). Therefore, the main focus

is on the census coverage-like situations, where individual population size estimates for small groups

can be obtained. Hence, we explore how well the no-classification methods can estimate a domain

with size varying between 250 and 1000 individuals, with coverage probabilities ranging between 0.7

and 0.9. These configurations are very common for censuses and coverage (post-enumeration) sur-

veys. Similar data collection design may be used with an incomplete population register or a nearly

exhaustive administrative data set instead of a census. The success of the no-classification methods is

not guaranteed with an arbitrary data collection design and is not explored in this thesis, but left for
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future development.

2.1.3 Variance estimation

The dual system estimator is a non-linear function of M,N1 and N2. Therefore, it is hard to obtain an

exact variance estimator for ˆ︁τ . The linearisation approach based on the Taylor series is usually used

in this case. Sekar & Deming (1949) have shown that the approximate variance estimator is

ˆ︃Var(ˆ︁τ) ≈ n1n2n10n01
m3

, (6)

and this result is generally accepted since (Wolter, 1986; Bishop et al., 1975, chap. 6.2.2).

In the capture-recapture literature, there exists a tradition of distinguishing two types of variance

estimators. The first estimator is conditional on the observed sample sizes n1 and n2, the second

one is unconditional on the observed sample sizes (Seber, 1982; Buckland & Garthwaite, 1991). Some

researchers also talk about variance estimation conditional or unconditional on the unique number

of captures among all the samples (Norris & Pollock, 1996). Such a distinction stems from the fact

that there are several ways to represent the data generating mechanism for the data used in dual

system estimation. The first way, discussed in Section 2.1.2, uses the multinomial distribution for the

four outcomes of a capture-recapture data collection. In this case, the population size and coverage

probabilities are fixed, but the realized sample sizes are random variables. The number of matches in

this case is binomially distributed. An alternative way to conceptualize the data generating mechanism,

is to fix the population size as well as the sizes of sample. Then the hypergeometric distribution is a

convenient one for the number of matches. The true variance of the dual system estimator differs under

these two generating models. Whenever variance estimation of the dual system estimator is considered,

variance unconditional on the observed sample size is related to the multinomial generating mechanism

with fixed coverage probabilities but varying (random) sample sizes, whereas variance conditional on

the observed sample sizes is related to the hypergeometric generating mechanism with the fixed sample

sizes. When using the variance approximation presented above, there is often little difference between

these two views (Seber, 1982). However, resampling methods, in particular the parametric bootstrap,

allow the distinction between the two generating mechanisms to be reflected (Buckland & Garthwaite,

1991). Therefore, one often uses the terms ‘conditional’ and ‘unconditional’ variance in this case.

2.2 Record linkage

In a narrow sense, record linkage is a process of classifying n-tuples, where each entry of the tuple is an

observation from a particular one of the n datasets, as either referring to the same entity in the target

population or not, given no unique identifiers of the population entities are available. An absence of

unique identifiers means that attributes of the population elements used in linkage are not necessarily

unique for each of the elements. Examples of such attributes can be names, surnames, age, marital

status, ethnicity and many others. In addition to non-uniqueness of the attributes, record linkage

often needs to perform the mentioned classification in the situation when attributes for some of the

elements in certain data sources are recorded with errors. In a wider sense, record linkage comprises
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the theory and practice of such classification as well as the related fields of data preparation, indexing

and comparison. See Herzog et al. (2007); Christen (2012) for detailed overviews.

The simplest, arguably the most frequent and the most researched case of record linkage concerns

linking two data sets or surveys related to the same population. In this work, only the case of two-

survey linkage is considered. Whenever two data sources are involved, a linkage process concerns

classification of 2-tuples or ordered record pairs, which we for simplicity call just record pairs.

The modern theory of record linkage and the term itself goes back to work by Dunn (1946). It

was followed by several papers by Newcombe and co-authors (Newcombe et al., 1959; Newcombe

& Kennedy, 1961) where a general conceptual framework still in use today was developed, though

informally. Note that, despite a crucial role played by clerical revision of potential links, this early

research was aimed at a computer assisted record linkage and therefore frequently was called automatic

record linkage. Nowadays, when pretty much any statistical or data processing task is done using a

computer, automatic record linkage is a more suitable name for a process where there is no clerical

involvement beyond some general assessment of a record linkage task and response to initial results by

a statistician undertaking the linkage.

A seminal paper by Fellegi & Sunter (1969) formalised the earlier work and became the departure

point for many later variants of record linkage. Methods developed in this thesis, while having some

substantial deviations from the Fellegi–Sunter approach, derive from their work. Below in Sections

2.2.2 and 2.2.3 we discuss the Fellegi–Sunter approach and some important descendants of it in more

detail.

Record linkage can be approached from various perspectives. It can be deterministic or probabilis-

tic. Dependent on the data available, record linkage can employ supervised or unsupervised statistical

learning methods. It can be viewed as a clustering or microclustering task. The problem of record

linkage can be treated either within the frequentist or Bayesian paradigm. Unfortunately, we can-

not discuss all the aspects of record linkage in this thesis. A very good overview of these aspects is

presented in Binette & Steorts (2022).

The linkage method presented in this thesis has population size estimation as its ultimate goal and

differs from many existing approaches by not producing classified pairs as links and non-links. Instead,

this method targets accurate estimation of certain linkage model parameters that in turn lead to dual

system estimates. While many existing probabilistic record linkage techniques aim at estimating either

probabilities or scores associated with record pairs, the majority of methods produce classification as

an output. In a sense, the approach we developed in this thesis, being purely estimation focused,

contradicts the definition of record linkage. However, as will be shown, in a problem like dual system

estimation, there is no strict necessity in classification and accurate estimation is sufficient.

2.2.1 Preparing for linkage

While the main focus of this thesis is the estimation of the linkage model and related parameters, it is

important to bear in mind that substantial effort is needed when preparing the data for these tasks.

This section offers a very brief outline of the processes preceding linkage and estimation. For an in-

depth overview see again Herzog et al. (2007); Christen (2012). Typically, there are three preparatory
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stages for record linkage once the data exist in the digital form: data cleaning and standardisation,

data indexing or blocking, comparison of values of the linkage variables.

Data cleaning and standardisation tasks are needed in order to correct the collected data for

nuisance errors and to put both data sets into the common format used in the processing pipeline.

This is especially important when dealing with data related to human populations and linkage variables

such as name, surname, address and date of birth. Data cleaning usually involves removing special

characters, symbols or words from the recorded values of linkage variables. This is followed by correcting

obvious or easy to detect misspellings, expanding abbreviations and looking up nicknames. The set

of linkage variables chosen for a linkage task may not correspond to the variables collected in the raw

input data and values of the variables may be collected differently in each of the surveys. Therefore,

the values of linkage variables should be populated with the relevant attribute values collected on both

surveys. Moreover, these attributes should be formatted or standardized in the same way for both

surveys. For instance, one of the surveys may record first name as a separate variable and surname as

a separate variable, while another survey may collect both within a single ‘name’ variable. If the linkage

process uses the first name and surname variables, the ‘name’ variable on the second survey should

be parsed in order to correctly populate the relevant linkage variables. Standardisation of address

attributes may be particularly difficult as it requires parsing of several attributes such as street or

locality name, house number or name and apartment number into a standard format. If circumstances

allow, the verification of certain attributes can be performed. For instance, if both street name and

postcode are collected and good quality data mapping streets to postcodes exist, typos in the street

name can be corrected based on the value of the postcode. Ideally, both surveys will be collected

in a controlled way having record linkage and other statistical usage of the data in mind. In this

case, either the linkage variables or parts of the linkage variables can be collected in an explicit and

standardised manner. For instance, both surveys may explicitly collect the ‘name’ and ‘surname’

variables that are used in linkage. Attributes constituting the ultimate address linkage variable, such

as street name, house name, etc., can also be directly collected. Moreover, if the data collection is

digital in the first place, such as online self-completion questionnaire or a tablet / smartphone assisted

face-to-face interview, verification of certain attributes, such as addresses, can be performed at the

time the data are collected. In general, a well-designed data collection can enhance the quality of

linkage and estimation substantially. But even when data collection is planned and carefully thought

about up-front, the tasks of cleaning and standardisation require non-trivial effort. More on designed

data collection for population size estimation will be covered in Section 2.3.

Data indexing or blocking is used to reduce the number of record tuples to process. For instance,

linking two data sets aims to find all members of the set of matches M, as discussed in 2.1.1. In

order to do it, n1n2 pairs must be considered. The number of pairs to process grows approximately

quadratically in τ , while the size of the set of matches grows linearly. Hence, as the population

size gets larger, the number of pairs to process becomes very large with the majority of pairs being

non-matches. To make the linkage process more efficient and reduce the computational burden, only

records that satisfy certain criteria in both surveys are compared. For instance, only records within

the same postcode or records with surnames starting with a certain letter are compared. Such splitting
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of records is called blocking and the resulting groups of records satisfying the given criteria are called

blocks. When blocking by first name or surname, phonetic encoding algorithms, such as Soundex

or Phonex may be used. Those algorithms convert strings into codes and allow certain simple and

common typographical errors to be bypassed. Detailed overviews of blocking can be found in Herzog

et al. (2007, chap. 12) and Christen (2012, chap. 4). In Section 3.4 we introduce a special case of

blocking that plays an important role beyond reducing the computational burden in the linkage model.

Finally, the values of linkage variables must be compared. The comparison can be exact, that is

two values of a given variable must be exactly the same for a certain pair of records for a comparison

to be declared as agreement. In this case, the outcome of comparison is in the set {0, 1}. In reality,

however, even when the high quality data collection and processing practices are followed, the values

of a variable of a record pair belonging to the set of matches may not agree exactly due to small

typographical differences. These differences can come from scanning errors, typos, interviewer mistakes

and many other reasons. Therefore, an approximate or fuzzy comparison is employed. This type of

comparisons uses various edit distance functions that measure the similarity or dissimilarity of two

strings. The definition of similarity varies from function to function. Among the most commonly

used edit distance functions for names and surnames are Levenshtein distance, the Jaro function and

the Winkler function. When comparing dates or age, methods based on the absolute difference are

common. Again, a great overview of approximate comparison can be found in Christen (2012, chap. 5).

The majority of edit distance functions return a normalised value within the [0, 1] interval. Not all

linkage models can accept values different from 0 and 1. Often, when a linkage model requires the

binary comparison outcomes, an edit distance function is used to produce the comparison value first.

Then this value is converted into 0 or 1 using some threshold for the comparison value above which

the outcome of the comparison is treated as agreement, while treated as disagreement below that

threshold.

2.2.2 Fellegi-Sunter approach

The majority of probabilistic linkage methods stem from the model proposed by Fellegi & Sunter

(1969). In their paper, important record linkage concepts were introduced and an entirely formal

approach for linkage was developed for the first time. While later developments in this area brought

new ideas and ways of performing probabilistic linkage, very few of the innovations broke completely

away from that classical work. The method developed in this thesis is no exception: while being quite

different in many respects, certain basic premises remain the same.

Since this thesis aims at a more holistic approach viewing the areas of record linkage and dual

system estimation as interrelated, we deliberately use a unified notation across these two areas. Recall

that in Section 2.1.1 we introduced the population of elements of interest P = {ei : i = 1, . . . , τ} and

two surveys, S1 = {s1,a : a = 1, . . . , n1} and S2 = {s2,b : b = 1, . . . , n2}, of this population. Linking

S1 and S2 in the absence of unique identifiers concerns the classification of ordered pairs of records

(s1,a, s2,b). Let W = S1 × S2 = {(s1,a, s2,b) : s1,a ∈ S1, s2,b ∈ S2, a = 1, . . . , n1, b = 1, . . . , n2} be the

set of all ordered pairs, where × is the Cartesian product. The set W can be partitioned into two

disjoint sets. The set of matches, M = {(s1,a, s2,b) : s1,a ∈ S1, s2,b ∈ S2, id(s1,a) = id(s2,b)}, was
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already introduced when discussing the dual system estimator. The second is the set of non-matches

U = {(s1,a, s2,b) : s1,a ∈ S1, s2,b ∈ S2, id(s1,a) ̸= id(s2,b)} which consists of all pairs of records that do

not represent the same element in the population. Recall, that M is the random variable that maps

the outcome of undertaking two surveys to the size of the resulting set of matches and the realization of

this random variable is m. Put simply, m is the corresponding size of the set of matches M for a given

linkage exercise. The random variables U and W are defined in a similar way: they map the outcome

of undertaking two surveys to the sizes of the resulting set of non-matches and the total number of

resulting pairs, respectively. The realization of U is u and the realization of W is w.

As already mentioned in Section 2.1.1, every element ei has a number of attributes associated with

it. These attributes, like name, surname, address, are not necessarily unique for a particular element

and there may be other elements in the population P with some or even all attributes being the same

as those of ei. Such non-uniqueness of attributes can also be called the absence of unique identifiers.

Each of the surveys S1 and S2 collects or records the values of some of these attributes and these

values are recorded as the values of linkage variables on these surveys. There are K linkage variables

in common in the two surveys. We denote a specific linkage variable as vk, k = 1, . . . ,K, and we

use subscripts k = 1, . . . ,K when dealing with functions or random variables associated with the kth

linkage variable. For some elements, the recorded values of the attributes may contain errors in one or

both surveys. These errors may be misspellings, missing values, scanning errors or errors of any other

nature. A further discussion of errors can be found in Section 2.2.5.

Recall that if a record pair represents the same element in a population, it is said that the pair is

a match. Otherwise, the pair is a non-match. If a record pair is classified as a match (or estimated to

be a match), but its true match / non-match status is unknown, then it is said that the pair is a link.

If a pair is classified as a non-match, but its true match / non-match status is unknown, then it is said

that the pair is a non-link (Larsen & Rubin, 2001).

Classification of record pairs into links and non-links is carried out based on the comparison out-

comes of the values of linkage variables. Consider a record pair (s1,a, s2,b). Then we write γk(s1,a, s2,b)

to denote the outcome of comparing the values of the kth linkage variable for the pair. Whenever

there is no risk of ambiguity, we use the shorter notation γk(a, b) instead of γk(s1,a, s2,b). In principle,

γk(a, b) can be in any range, but in this work we are dealing with a linkage model that only allows

the binary outcome γk(a, b) ∈ {0, 1}. This outcome may be a result of an exact comparison of the

values of the kth linkage variable of records s1,a and s2,b, denoted s1,a,k and s2,b,k respectively. So

that γk(a, b) = 1 if s1,a,k = s2,b,k, and 0 otherwise. Alternatively, if some edit distance function f is

used, then γk(a, b) = 1 if edit distance f(s1,a,k, s2,b,k) is above a certain threshold, and 0 otherwise.

For some of the records, certain variables may have missing values, which is treated as error, and the

comparison outcome is set to 0 in that case in all approaches discussed in this work. The outcome of

comparisons of all linkage variables of a record pair (s1,a, s2,b) is denoted γ(s1,a, s2,b) or simply γ(a, b).

This outcome is a vector of individual comparisons, γ(a, b) = (γ1(a, b), . . . , γK(a, b))T . There are no

restriction on the number of comparison outcomes in the original paper by Fellegi & Sunter (1969)

and all the general results in this chapter hold for arbitrary comparisons. Nevertheless, since the

models developed in this work are exclusively for binary comparisons, we prefer to introduce notation
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with these comparisons in mind. For binary comparison outcomes and K linkage variables, there are

2K different combinations of comparison outcomes. Each such combination is called a comparison

pattern, and is denoted γp, p = 1, . . . , 2K . For instance, with K = 4, the comparison patterns are

γ1 = (1, 1, 1, 1)T ,γ2 = (0, 1, 1, 1)T ,γ3 = (1, 0, 1, 1)T , . . . ,γ15 = (0, 0, 0, 1)T ,γ16 = (0, 0, 0, 0)T . When-

ever we want to refer to the kth entry of a comparison pattern γp, we use γkp . For instance, the first

and fourth entries of the pattern γ2 = (0, 1, 1, 1)T are γ12 = 0 and γ42 = 1, respectively. The reason

that entries in comparison patters are not all 1’s or all 0’s is the non-uniqueness of attributes, on the

one hand, and error recording these attributes, on the other hand. So that if the linkage variables

are address, surname, first name and date of birth, the pattern (1, 1, 0, 0)T when comparing two pairs

may, for instance, mean that two members of the same household / address with the same surname

but different names and dates of birth are comprising the pair (s1,a, s2,b). Alternatively, (s1,a, s2,b) may

refer to the same individual, but on one or both sources the person’s name and date of birth were

incorrectly recorded. In Section 2.2.6 we give a more detailed example of this notation.

Often blocking is employed to reduce the number of pairs to compare and classify. Blocking

ensures that only those records satisfying certain condition or multiple conditions, such as agreeing on

a particular variable, are considered for comparison. The above notation still applies when blocking is

used, but now each block has the corresponding set Wb, for a block b, etc. Linkage is either carried

out on the pairs pooled from different blocks once the blocking has been applied, or sometimes in each

block separately.

The collection of all possible comparisons γp is called the space of all comparisons in the original

paper by Fellegi & Sunter (1969). The comparison outcomes for each pair are observable, but their

match status is not. Each comparison outcome γp can be classified as either a link, possible link or

non-link.

Linkage rule d(γp) associates each of the three possible classifications with the probability of making

that classification. So that for a given γp, d(γp) = {pr(link | γp),pr(possible link | γp),pr(non-link |
γp)}.

In order to formalize the errors associated with the linkage rule, the following conditional probabil-

ities are defined. The probability that comparison of a pair (s1,a, s2,b) will produce a pattern γp given

the pair is a match: µ(γp) = pr(γ(a, b) = γp | (a, b) ∈ M). The probability that comparison of a pair

(s1,a, s2,b) will produce a pattern γp given the pair is a non-match: ν(γp) = pr(γ(a, b) = γp | (a, b) ∈ U).
There are two errors related to the linkage rule d(γ). The first is the false positive error which

occurs when a pair from the non-matched set is classified as a link. The corresponding probability is

πfp = pr(declare (a, b) a link | (a, b) ∈ U) =
2K∑︂
p=1

ν(γp)pr(declare (a, b) a link | γ(a, b) = γp).

The second error is the false negative which occurs when a pair from the matched set is classified

as a non-link. The corresponding probability is

πfn = pr(declare (a, b) a non-link | (a, b) ∈ M) =

2K∑︂
p=1

µ(γp)pr(declare (a, b) a non-link | γ(a, b) = γp).
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If a linkage rule leads to πfp and πfn, then it is said that the linkage rule is at the levels πfp, πfn.

The optimal linkage rule at some fixed admissible levels πfp, πfn is defined as the rule that minimizes

the probability of possible links. Hence, in this classical approach, the optimal linkage rule minimizes

the amount of clerical review needed to resolve possible links while ensuring that errors made in

classification are at the admissible level.

Fellegi & Sunter (1969) demonstrated that for an admissible pair of error levels πfp, πfn the optimal

linkage rule is

d(γp) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1, 0, 0) if Tfp ≤ µ(γp)/ν(γp)

(0, 1, 0) if Tfn < µ(γp)/ν(γp) < Tfp

(0, 0, 1) if µ(γp)/ν(γp) ≤ Tfn

where Tfp = µ(γp=x)/ν(γp=x), Tfn = µ(γp=y)/ν(γp=y) are decision thresholds obtained at the com-

parison patterns x and y, respectively. Here (1, 0, 0) means that a link is declared with probability 1,

(0, 1, 0) that a possible link that requires clerical review is declared with probability 1, (0, 0, 1) that

a non-link is declared with the probability 1. Hence, all patterns satisfying Tfp ≤ µ(γp)/ν(γp) are

declared links, while all patterns satisfying µ(γp)/ν(γp) ≤ Tfn are declared non-links.

In practical terms, employing the optimal linkage rule involves the estimation of µ(γp) and ν(γp)

followed by ordering of all comparison patterns by the decreasing ‘likelihood’ or weight of a pair having

this patterns. This ‘likelihood’ is based either directly on the ratio µ(γp)/ν(γp) or some monotone

increasing function of the ratio. For given admissible error levels πfp, πfn, the thresholds Tfn and

Tfp can be determined by cumulative sums of µ(γp) and ν(γp) of the ordered patterns. That is,

πfp <=
∑︁x

p=x(1) ν(γp), where x(1) is the index of pattern with the highest ‘likelihood’ or weight

determined by µ(γp)/ν(γp) or its function as above and x is the pattern for which the cumulative sum

becomes less or equal than the admissible false positive error. Similarly, πfn <= 1−
∑︁y(1)

p=y µ(γp), where

y(1) is the pattern with the smallest weight, and y is the pattern that satisfies the given inequality

for πfn and such that the corresponding weight is smaller than the weight of any other pattern also

satisfying the inequality. A worked-out example is provided later in Section 7.4.

Fellegi & Sunter (1969) proposed two approaches to estimate µ(γp) and ν(γp). We focus on the one

that bears most resemblance to the approach we develop in this work. First, to make the estimation

tractable, Fellegi and Sunter proposed a linkage model with binary comparisons of the values of linkage

variables. Second, given the set of matches, agreements / disagreements on each of the K linkage

variables are assumed to be independent. The same holds for the set of non-matches. This assumption

is known as the conditional independence assumption given the match status. That is, the probability

of agreement on the kth linkage variable given a record pair belongs to the set of matches is µk, and the

probability of disagreement is 1 − µk. Thus the probability of observing a certain pattern given that

a record pair (s1,a, s2,b) belongs to the set of matches is
∏︁K

k=1 µ
γk(a,b)
k (1 − µk)

1−γk(a,b). Similarly, the

probability of agreement on the kth linkage variable given a record pair belongs to the set of non-matches

is νk, and the probability of disagreement is 1−νk. The joint probability of a given comparison pattern

given that a record pair (s1,a, s2,b) belongs to the set of non-matches is
∏︁K

k=1 ν
γk(a,b)
k (1 − νk)

1−γk(a,b).

Let w be as above in this chapter and m denote the mean of M , then for the case of three linkage
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variables, we have k = 1, 2, 3 and the following system of 7 equations can be solved to produce the

estimates of µk, νk and the mean number of matches m:⎧⎪⎪⎪⎨⎪⎪⎪⎩
wE
(︂

proportion of agreements
on all variables except the kth

)︂
= m

∏︁3
j=1,j ̸=k µj + (w −m)

∏︁3
j=1,j ̸=k νj

wE
(︁
proportion of agreements on the kth

)︁
= mµk + (w −m)νk

wE (proportion of agreements on all variables) = m
∏︁3

k=1 µk + (w −m)
∏︁3

k=1 νk.

(7)

There are many other topics discussed in the paper by Fellegi and Sunter. What is of interest for

this thesis is that in their paper Fellegi and Sunter explicitly state that the estimate of the number

of matches (or the mean number of matches) is available upon solving the equation (7). Neverthe-

less, their approach and the majority of the approaches that evolved from their approaches remained

classification-based and aimed to follow the optimal linkage rule by minimising the number of possible

links to be resolved by clerical review.

While not wording it as the reason for not pursuing a pure estimation-based approach to linkage,

Fellegi and Sunter give some explanations that probably influenced the classification-based approaches

and discouraged estimation-focused ones. They warned that the conditional independence assumption

given the match status is unlikely to hold in practice. They argued, nevertheless, that failure of

this assumption, while resulting in inaccurate estimates of the linkage model parameters, will not

affect substantially the ordering of comparison patterns based on a monotone increasing function of

µ(γp)/ν(γp). This is indeed one of the reasons why such a classification approach works in practice

(see simulation results in Section 7.5). However, in this case the probabilistic nature of the linkage is in

doubt since the estimates of πfp and πfn are incorrect. There exist models that allow the specification

of models with dependencies between outcomes of linkage variables; see for instance Winkler (1993);

Armstrong & Mayda (1993); Thibaudeau (1993); Belin & Rubin (1995); Larsen & Rubin (2001). Some

of these approaches require training data. In this thesis, we will discuss the nature of these dependencies

and will use models allowing for between linkage variables dependence without any training data and

will show the effect of not accounting for this kind of dependence. In our view, accounting for between-

variables dependencies is among the most important features of any approach that avoids classification

and clerical resolution.

Another reason implied by Fellegi and Sunter is the excessive variability in the estimation approach

presented in this chapter. There are two points regarding the excessive variability. First, while there

may be indeed a substantial variability in the estimation of record linkage parameters, there is an

effective way of dealing with it. Its use in the classical classification-based linkage is discussed in

Section 2.2.4 and we show how to use it within the no-classification methods in Section 4.2. Second,

the approaches to assess the variability suggested by Fellegi and Sunter are not quite adequate in the

context of record linkage. This is discussed in Section 2.2.5 and Chapter 6.

There are possibly a few more reasons why a purely estimation-focused approach to linkage was

not initially accepted. We will discuss these reasons as the development of the classification free

approach progresses. One of the goals of this work is to re-ignite the interest and prospect of the solely

estimation-based probabilistic record linkage.
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2.2.3 Formulation of the Fellegi-Sunter approach in terms of mixture models

Since W is partitioned into two non-overlapping sets M and U , it is sensible to think that the observed

comparison outcomes γ(a, b) follow some mixture distribution with two mixture components. The

corresponding probability mass or density function is

pr(γ(a, b);π,µ,ν) = πpr(γ(a, b) | M;µ) + (1− π)pr(γ(a, b) | U ;ν), (8)

where µ and ν are the vectors of probabilities of agreements on K linkage variables (or their combi-

nations) given the set of matches and the set of non-matches, respectively. For instance, in the case of

conditional independence given the match status presented in the previous section, µ = (µ1, . . . , µK)T

and ν = (ν1, . . . , νK)T . These vectors may contain probabilities that take into account dependencies

between outcomes of linkage variables; see Section 2.2.5. The parameter π is the mixing proportion

in mixture models language. In a record linkage model this is the proportion of matches among all

record pairs. Note, the mixing proportion π should not be confused with the coverage probabilities π1

and π2. In principle, W can be partitioned into more than two non-overlapping sets if it is practical

to do so (Winkler, 1993; Larsen & Rubin, 2001). However, it is easy to show that the parameters of a

two component mixture can be related to dual system estimation and therefore only two component

cases are considered in this thesis.

A mixture model is implicitly present in the system of equations (7). Say, the last equation when

divided by w is the same as (8) for γ(a, b) = (1, 1, 1)T , and the rest of the equations can be viewed as

different marginalisations that involve only µk and νk, but not 1−µk and 1−νk. The first known explicit

formulation of a record linkage model in terms of mixtures is apparently in Jaro (1989). Formulating

record linkage using a mixture models approach may seem very alluring as it places the problem at

hand into the vast area of results and estimation methods available for mixture models (Everitt &

Hand, 1981; Titterington et al., 1985; McLachlan & Basford, 1988; McLachlan & Peel, 2000; Böhning,

2005; Frühwirth-Schnatter et al., 2019). There is a wide range of approaches to estimate parameters of

mixture models, including method of moments, maximum likelihood estimation via the expectation-

maximization and related algorithms, minimum distance methods, Bayesian methods, spectral methods

(Frühwirth-Schnatter et al., 2019) and many more. It is unsurprising that researchers turned their

attention to mixture models and maximum likelihood estimation (Jaro, 1989; Larsen & Rubin, 2001;

Herzog et al., 2007, chap. 9.4), given all the important properties of maximum likelihood estimation

(Zehna, 1966; Lehmann & Casella, 1998, chap. 6.3; Pawitan, 2013, chap. 9). Many Bayesian approaches

also adopted a mixture model perspective in one way or another (Fortini et al., 2001; Larsen, 2005;

Sadinle, 2017).

The problem with employing mixture models for record linkage tasks is that the data generating

mechanism associated with these tasks is not a mixture in its usual sense. Therefore, certain estimation

methods, including the method of maximum likelihood estimation, are not strictly valid in the form they

are usually applied, even though these methods are capable of producing acceptable point estimates.

Specifically for the maximum likelihood estimation this means that there are no desired properties

of estimates when dealing with linkage. Yet, approaches with mixture models may perform better
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than other methods (Jaro, 1989) and be easier to work with. More on the data generating mechanism

in record linkage is presented in Section 2.2.5. Nevertheless, the mixture model-based perspective is

worth discussing since it motivates the linkage model proposed later in this thesis. The proposed model

is not a mixture in an ordinary sense, but is parametrised as a mixture, therefore we will call it the

mixture-like model.

Most mixture model non-Bayesian record linkage approaches rely on the maximum likelihood es-

timation via the expectation-maximization algorithm (Dempster et al., 1977). This algorithm is an

iterative technique for obtaining maximum likelihood estimates. It is primarily used in the situa-

tions where the maximum likelihood estimation by other means is either difficult or even impossible

(McLachlan & Krishnan, 2008), for instance, in missing data situations. Record linkage can be viewed

as a missing data problem. In this case, the membership indicator g(a, b), that is whether a record

pair belongs to the M or U , is not observable:

g(a, b) =

⎧⎨⎩1 if (a, b) ∈ M

0 if (a, b) ∈ U .

The complete data are not observable and comprised of record pairs membership of one of M,

U as well as their comparison outcomes: (g(a, b), . . . ,γ(a, b), . . . )T , a = 1, . . . , n1, b = 1, . . . , n2. The

expectation-maximization maximizes the observed or incomplete data likelihood∏︂
(s1,a,s2,b),
a=1,...,n1,
b=1,...,n2

[πpr(γ(a, b) | M;µ) + (1− π)pr(γ(a, b) | U ;ν)] , (9)

by maximizing the complete data likelihood∏︂
(s1,a,s2,b),
a=1,...,n1,
b=1,...,n2

{πpr(γ(a, b) | M;µ)}g(a,b){(1− π)pr(γ(a, b) | U ;ν)}1−g(a,b). (10)

Similarly to the presentation in Section 2.2.2, we consider the case with binary comparisons of the

values of linkage variables and the conditional independence of comparisons given the match status,

but this can be extended to more complex cases. Note that such conditional independence given the

match status is often referred to as the latent class model (Vermunt & Magidson, 2004) outside the

record linkage community. Under the conditional independence given a record pair is either in the set

of matches M or the set of non-matches U with binary comparison outcomes, we have

pr(γ(a, b) | M) =
K∏︂
k=1

µ
γk(a,b)
k (1− µk)

1−γk(a,b) (11)

and

pr(γ(a, b) | U) =
K∏︂
k=1

ν
γk(a,b)
k (1− νk)

1−γk(a,b).
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Then the expectation-maximization algorithm is run to find solutions for µ,ν and π. At the first

step of the algorithm we use some initial guess for the values of parameters, and at iteration ι we

use the estimates obtained at iteration ι − 1. At each iteration, the algorithm has expectation and

maximization step.

At the expectation step of iteration ι we compute the conditional expectation of the indicator

function ˆ︁g(a, b)(ι−1) = g
(︁
a, b | γ(a, b), ˆ︁µ(ι−1), ˆ︁ν(ι−1), ˆ︁π(ι−1)

)︁
given the observed comparison pattern and

the estimates ˆ︁µ(ι−1), ˆ︁ν(ι−1) and ˆ︁π(ι−1) from the previous step

ˆ︁g(a, b)(ι−1) =
ˆ︁π∏︁K

k=1 ˆ︁µγk(a,b)k (1− ˆ︁µk)1−γk(a,b)

ˆ︁π∏︁K
k=1 ˆ︁µγk(a,b)k (1− ˆ︁µk)1−γk(a,b) + (1− ˆ︁π)∏︁K

k=1 ˆ︁νγk(a,b)k (1− ˆ︁νk)1−γk(a,b)
. (12)

Note, we omitted the step indicator ι − 1 on the right-hand side of the above expression as it is

already clunky; however, all the parameters are from the step ι−1. In fact, (12) is just the conditional

expectation of a Bernoulli random variable g(a, b) given that we observe the pattern γ(a, b) out of

2K possible patterns. The numerator is the probability of a pair belonging to the set of matches (a

success) and the denominator is the probability of observing the pattern γ(a, b).

At the maximization step, we obtain ˆ︁µ(ι)k , ˆ︁ν(ι)k and ˆ︁π(ι) that maximize ˆ︁g(a, b)(ι−1). This is achieved

by the usual means of maximization: differentiating the conditional expectation (12) with respect to

each of the parameter of interest, equating the partial derivatives to 0 and solving the corresponding

equations. The estimates are

ˆ︁µ(ι)k =

∑︁
(a,b) ˆ︁g(a, b)(ι−1)γk(a, b)∑︁

(a,b) ˆ︁g(a, b)(ι−1)
, ˆ︁ν(ι)k =

∑︁
(a,b)(1− ˆ︁g(a, b)(ι−1))γk(a, b)∑︁

(a,b)(1− ˆ︁g(a, b)(ι−1))
, ˆ︁π(ι) = ∑︁

(a,b) ˆ︁g(a, b)(ι−1)

w
.

The algorithm runs until a pre-specified level of tolerance achieved. Like many other optimization

techniques, the expectation-maximization algorithm does not guarantee convergence to the global

maximum, but almost always converges to a local maximum. Procedures like simulated annealing are

required when searching for the global maximum.

Once the parameter estimates are obtained, the rest of the linkage usually follows the approach of

Fellegi and Sunter presented above. That is, comparison patterns are ordered by a monotone function

of µ(γp)/ν(γp), which in the case of the conditional independence given the match status is often the

natural logarithm. Then these patterns are classified as links and non-links to achieve the admissible

level of errors and clerical resolution of possible links is undertaken. Ignoring that the maximum

likelihood estimation of mixture model parameters is not the most statistically justified approach, it

only simplifies the estimation of linkage model parameters in comparison to the original Fellegi and

Sunter approach. It neither attempts to depart from the classification paradigm, nor circumvents the

obstacles that prevented a pure estimation-focused approach in the first place, though, it is possible to

specify a more complex model that accounts for between-variables associations of comparison outcomes

(Larsen & Rubin, 2001). As before, it is not meant to produce good parameter estimates as such, but

is meant to provide a good ordering of comparison patterns.

While we will not directly use proper mixture models, it is useful to be aware of some complexity of
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mixtures that make dealing with this kind of model very challenging at times. At least some of these

challenges are relevant for the mixture-like models. Most of the difficulties arise from several closely

related concepts.

The first challenge is the identifiability of mixtures. Put simply, a model is said to be identifiable

if all its parameters can be uniquely estimated from the observed data. In the case of mixture models,

this definition is slightly relaxed to allow for label permutation in mixing proportions (Frühwirth-

Schnatter et al., 2019). Since there exist many types of identifiability, such as global, generic, rational

and local (Sullivant, 2018), there may sometimes be conflicting accounts on identifiability of certain

types of mixture models. As an illustration, it has been proved that the mixtures of Bernoulli random

variables such as (9) discussed above are non-identifiable (Gyllenberg et al., 1994). However, this model

type is only globally non-identifiable and in work by Allman et al. (2009) it was established that the

parameters of the finite mixtures of multivariate Bernoulli distributions are generically identifiable in

the case of the latent class model, and conditions for such identifiability were provided. Practically,

it means that such a model is identifiable with the exception of a few parameter values. We provide

an overview of the methods to establish identifiability in discrete mixture and mixture-like models

using the methods from computational commutative algebra and algebraic statistics in Section 2.5. In

Chapter 5 we consider a set of useful record linkage models with four linkage variables and establish

which of them are identifiable and which are not.

Another closely related issue is that the mixtures of binomial and multinomial distributions belong

to the class of singular models (Watanabe, 2009). A model is regular if it is identifiable and its Fisher

information matrix is positive definite. Models that are not regular are strictly singular (Watanabe,

2009). Note, that according to Watanabe ‘identifiability is neither necessary not a sufficient condition

of positive definiteness of the Fisher information matrix’ (Watanabe, 2009, p. 10). Strictly singular

models contain singularities that cannot be resolved by transformation or by restrictions made on the

parameter space. As a result of singularity, certain properties of the maximum likelihood estimators

may not hold. For instance, the goodness of fit cannot be reliably assessed by information criteria such

as the Akaike information criterion or Bayesian information criterion.

Yet another layer of complexity is due to the fact that mixture (8) does not belong to the exponential

family, but to the so-called stratified exponential family (Geiger et al., 2001). As a result, many nice

properties of the exponential family do not hold in the case of mixtures. For instance, it is impossible

to reduce information in the mixture through sufficiency since the only sufficient statistic is the vector

of observed counts (Fienberg et al., 2009). In general, many properties of such mixtures are unknown.

Another issue with mixtures is that the data may be easily generated by a model with more

parameters than it is possible to estimate. As an example, suppose we are dealing with a two-component

mixture with K binary variables. The observed distribution of the model has 2K observations, and

it lies in the space of dimension 2K − 1. However, each of the components of the mixture on its own

may have up to 2K − 1 parameters, plus the mixture parameter. This means that the most complex

estimable model may be not complex enough to adequately model the distribution of interest and there

is no easy way of testing whether this occurs.

There is also some confusion around whether the intercept terms in each mixture component should
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be counted as parameters, when the mixture is represented as a log-linear model (Haberman, 1974;

Vermunt & Magidson, 2004). From the theory of log-linear models, it is known that a log-linear model

for Poisson sampling gives the same parameter estimates as the log-linear model for multinomial

sampling (Agresti, 2002). In the case of mixtures, the equivalence is not that obvious. However, the

probability product parameterization (8) suggests that the intercept terms are redundant.

2.2.4 One-to-one linkage

In many record linkage applications, especially in linking surveys of human populations, it is expected

to have 1-to-1 matches underpinning the data. That is, assuming there are no duplicates in the surveys

or duplicates were removed, every record on the first survey either matches to one and only one record

on the second survey, or does not have a corresponding match. Recall, that the term match refers to

the true status. The record linkage approaches presented above and those that will be developed later

in this thesis are dealing primarily with record pairs, not the individual records. Therefore, it is often

the case that two record pairs involving the same observation from one of the surveys, say pairs (a, b)

and (a, c), have the same comparison outcome γ(a, b) = γp and γ(a, c) = γp with γp such that it should

be declared a link under chosen linkage rule. Under a 1-to-1 match constraint and again assuming no

duplications, or resolving them beforehand, s1,a can match only to one of s2,b or s2,c. Hence, it is often

desirable to enforce the 1-to-1 linkage when doing an actual record linkage exercise, which enforces the

above condition on the classification outcomes.

Such 1-to-1 linkage can be achieved either näıvely or through formulation and solution of an optimi-

sation problem. A näıve classification may simply involve declaring a link for the pair whose comparison

pattern has the highest weight based on µ(γp)/ν(γp). If both pairs have the same comparison pattern,

then either some clerical involvement may be needed to resolve the situation, or a random decision may

be made. Alternatively, a more sophisticated approach to 1-to-1 linkage is to formulate this task as an

optimization problem. Jaro (1989) proposed to see the 1-to-1 linkage as the assignment problem that

achieves the task in an optimal way. We discuss the assignment problem in more detail and employ it

in the context of no-classification record linkage and related dual system estimation in Section 4.2. In

no-classification record linkage the 1-to-1 constraint provides a useful source of information allowing

the variability of no-linkage dual system estimates to be reduced substantially. The approach of Jaro

(1989) with 1-to-1 linkage is essentially the Fellegi-Sunter approach with a mixture model, but after

the parameter estimates are obtained, the assignment problem is solved and then the remaining pairs

are declared as links or non-links based on the desired thresholds. All possible links are then clerically

reviewed.

Bayesian (Fortini et al., 2001; Larsen, 2005; Sadinle, 2017) and maximum entropy-based (Lee et al.,

2022) estimation approaches allow incorporation of the 1-to-1 constraint into the main model instead

of doing it after the parameter estimation.

2.2.5 A linkage experiment and the invalidity of mixture models for record linkage

Statistical formulation of a record linkage task is not a trivial problem. It is not surprising that the

approaches presented in Sections 2.2.2 and 2.2.3 have compromised certain aspects of the structure of
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the data underlying record linkage. In this section we discuss why the mixture model representation of

record linkage is not an appropriate representation. As a result, the maximum likelihood approach is

not well justified and alternative model specifications and estimation methods are required. In Section

3.2 we will show that a mixture-like model, that is a model parametrized as a mixture but conceptually

not being a mixture, is a more suitable model candidate for record linkage. Section 3.5 presents a well

justified and flexible estimation method. For now, it is going to be demonstrated that the record

pairs cannot be drawn independently of each other as the methods in Section 2.2.3 imply. In fact, the

notion of drawing pairs does not seem applicable for record linkage in general. The insights on which

this chapter is based are not new. At the dawn of automated record linkage, Newcombe et al. (1959)

observed that record pairs obtained by comparing all the records of the first survey to all the records

of the second survey are not necessarily independent, though the issue was not explicitly formulated

as the lack of independence. More recently, Tancredi & Liseo (2011); Lee et al. (2022) turned their

attention to this issue and proposed methods for record linkage that do not assume the independence

of record pairs.

First, recall that a standard mixture model (8), with say two mixture components, implies the

following sampling or data generating scheme of nmix observations; see for instance McLachlan & Peel

(2000, chap. 1). For the first observation a random draw of a mixing component is carried out. In the

context of record linkage, this is drawing a pair’s membership in either of M or U . Next, the outcomes

for the selected component are generated, that is the vector γ(a, b) given a probability mass or density

function associated with the selected component in the previous step. Then, for the second and all the

remaining observations, the same two-step procedure is repeated independently from any other draws.

Having a closer look at the underlying sampling or data generating mechanism in the case of record

linkage reveals that it cannot be represented by such a standard mixture.

In order to see it, we present a possible view on how the data used in record linkage are generated.

We call this generating mechanism the record linkage experiment. The linkage experiment is a sort of

thought experiment or an instruction for simulation. In this experiment we have total control over its

course and observe every outcome, even those that are not observable in real situations. This is not a

formal discussion, as making it formal would be complicated and would not have much benefit beyond

what is provided. We keep using all the notation introduced up to this point. Our discussion is partly

based on Tancredi & Liseo (2011).

While the presented experiment is applicable for many types of population, our focus is a human

population P = {ei : i = 1, . . . , τ}, as everywhere else in this work, where ei are elements of population,

that is individuals. Discussing a human population will allow us to touch an important topic of why

the comparison outcomes of different linkage variables may be associated in certain situations. The

population P has a habitual organisation in a modern society. That is, individuals are nested in house-

holds or addresses. In addition, at least a reasonable proportion of households in the population have

individuals that tend to share, or have very similar, attributes, such as surname, due to relationships

between the members of a household. For simplicity, in this discussion we assume that households and

addresses exactly coincide.

In accordance with the above discussion of the dual system estimation and record linkage, in
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our linkage experiment the population size is a fixed parameter τ . Consider k = 1, . . . ,K ′,K ′ ≥ K

attributes associated with every element ei. Each of these attributes has a fixed corresponding set Rk

of distinct and genuine values that this attribute can take. The size of this set, also called the range,

is a fixed parameter ρk ∈ Z+. For instance, if attribute is the ‘month of birth’, then the corresponding

set of possible values is R = {‘January’, ‘February’, . . . , ‘December’} and the corresponding range is

ρ = 12. Some attributes may be uniformly or nearly uniformly distributed, while other are not and

certain values from Rk are more prevalent in the population than others. Examples of such non-

uniformly distributed attributes can be names and surnames – some are a lot more common than

others. We are not specifying any particular probability distribution of members of Rk, but we think

that there is some distribution Dist(θk,Rk), where θk is an unspecified vector of parameters. Some

attributes, such as the full address, are ‘parent’ attributes to other attributes and the corresponding

distribution Dist(θk,Rk) is then bivariate: one variate is for the attribute’s value and another for the

number of ‘children’ in the ‘parent’. In this example, the number of ‘children’ would be the household

size associated with the house number.

The linkage experiment starts by randomly generating values of the attributes for the population

elements. The data generating mechanism is multistage, nested and complex, with intricate depen-

dencies between certain attributes. What attribute we start with may depend on the population and

geographical structure. Suppose we start with the full address attribute, which is a combination of a

street name, house number or name and apartment number or name if applicable. A value is drawn

from the corresponding Dist(θk,Rk). Since this is a ‘parent’ attribute, the size of the household related

to the address is also drawn. Then the attributes of the first individual are drawn from the correspond-

ing distributions. For instance, the surname value is drawn from the distribution of surnames. Some

attribute values are associated with each other: the date of birth can be associated with the marital

status or the highest degree achieved. Likewise, the surname can be associated with the ethnicity or

country of birth attributes. Once all attributes for the first individual in the household are drawn and

there is another individual in the household, their attributes are drawn next. Now values for certain

attributes of the second individual may be associated with the values of the first one. If association

exists, it can be such that certain attributes are exactly the same or are variants of the attribute of

the first person. For instance, the surname may be exactly the same, or be a male, female or child

variant of the surname’s value of the first element. Examples of other associated attributes include

relationship, marital status, tenure, ethnicity. Once the household is populated in the described way

the next full address is generated. The value of the next full address may be strongly associated with

the preceding value, so that it is a consecutive / preceding value. The process continues until all τ

individual values are generated.

The next stage is to draw two samples S1 and S2 from the population P, as presented in Sections

2.1.1 and 2.1.2, so that each element ei has an equal probability of selection π1 in the first survey, and

π2 of being selected in the second survey. The two selection processes are completely independent.

This selection results in n1 elements being selected in the first survey and n2 in the second. Recall that

in Section 2.1.2 we proposed to use the multinomial distribution associated with the sampling, which

also leads to the survey sizes N1 and N2 being binomially distributed. We also said that this is not an
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exact model for the given situation: the sampling in both surveys in the linkage experiment is without

replacement. Hence, it is impossible to maintain the same πj , j = {1, 2} for every ei, and N1 and N2

are not exactly binomially distributed. An alternative could be the hypergeometric distribution for M

(Seber, 1982) conditional on fixed n1 and n2. However, it is often difficult to work analytically with

the hypergeometric distribution. Also, in our sampling mechanism we want N1 and N2 to be random

variables. For human populations in general, and particularly in the census coverage situations, it is

virtually impossible to achieve a fixed sample size, that is fix the number of individuals observed in a

study. This is not only due to the fact that it is hard to plan and control the ‘catch’ effort. The main

reason stems from dealing with large human populations where the primary sampling units are some

geographical areas and the ultimate sampling units are households. Therefore, there is an inevitable

variation in the sizes of samples. We accept this discrepancy between the theoretical conceptualization

presented earlier and the sampling mechanism used in the linkage experiment, but for large τ there

should be no substantial differences between the two. In fact, in the simulation work in Chapter 7,

sampling without replacement is used and the theoretical and empirical results agree well.

The third stage of the linkage experiment is to record the values of attributes of interest into the

values of record linkage variables k = 1, . . . ,K on each of the surveys. This process of recording is

subject to errors such as missingness, mistyping, mishearing, scanning, etc. Errors occur randomly

where the probability of error occurring in the kth variable of Sj is ξj,k, j = {1, 2}.
Once the surveys are drawn and the values of attributes are recorded with some errors, the Cartesian

product of S1 and S2 is taken that produces the set W of all possible record pairings. Every record

pair (a, b) ∈ W belongs to one and only one subset of W: ether the set of matches M or the set of

non-matches U . Here id(s1,a), id(s2,b) are unique identifier attributes of the corresponding elements

in the population. These attributes are never observed on the actual surveys, but are known in the

linkage experiment.

For every record pair (a, b) ∈ W the value of the linkage variable as recorded on the first survey

is compared with the value of the same variable as recorded on the second survey for all K variables

in turn. Comparison on each of the variables gives a binary outcome γk(a, b) of agreement of the

values, γk(a, b) = 1, or disagreement of values / missing value on one or both surveys, γk(a, b) =

0. The agreement of the values need not be exact, but based on some accepted score of a specific

distance function. One can think that if the comparisons are not exact and some threshold exists for

binary classification of outcomes, then the use of fuzzy comparisons changes the error probabilities

ξj,k, j = {1, 2} as well as the size of the set of possible values ρk. The vector of comparisons is

γ(a, b) = (γ1(a, b), . . . , γK(a, b))T .

Now for a pair in the set of matches, (a, b) ∈ M, whether the comparison on the kth variable yields

γk(a, b) = 1 or γk(a, b) = 0, depends on whether an error occurred in the kth variable in either of the

surveys or simultaneously on both of them. That is, whether one or both of s1,a,k, s1,b,k captured the

attribute’s value with an error. Let γk,l(a, b) = (γk(a, b), γl(a, b))
T be the comparison outcome on two

variables, (a, b) ∈ M. If for one of the surveys Sj , j = {1, 2}, an error made in vk affects whether or

not the error was made in vl, or an error present in variable vk in survey Sj affects the probability of

an error in variable vl in So, j ̸= o, then the outcomes of γk(a, b) and γl(a, b) will be dependent. We
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write the corresponding conditional probabilities

µl|k(1)(a, b) = pr(γl(a, b) = 1 | M, γk(a, b) = 1), (13)

µl|k(0)(a, b) = pr(γl(a, b) = 1 | M, γk(a, b) = 0),

for binary outcomes we have

1− µl|k(1)(a, b) = pr(γl(a, b) = 0 | M, γk(a, b) = 1),

1− µl|k(0)(a, b) = pr(γl(a, b) = 0 | M, γk(a, b) = 0).

On the other hand, for a pair in the set of non-matches, (a, b) ∈ U , the comparison on the kth

variable yields γk(a, b) = 1 if by chance s1,a,k = s1,b,k or the value of f(s1,a,k, s1,b,k) is above a chosen

acceptance thresholds for some edit distance function f . Say, two common first names agree for two

different individuals in the population. Consider γk,l(a, b) = (γk(a, b), γl(a, b))
T , (a, b) ∈ U . Now if

the values of vl do not depend on the values of vk in the population, then the comparison outcomes

γk(a, b) and γl(a, b) will be independent. However, if the values of vl depend on the values of vk in

the population, then the comparison outcomes γk(a, b) and γl(a, b) will be associated. From the data

generating mechanism of the attributes of ei ∈ P, we see that this association happens mainly as the

result of nested data structure. That is, if vk is the ‘parent’ attribute relative to vl, and the attribute

vl is such that the ‘children’ tend to share the value of this attribute, then the comparisons γl(a, b) will

tend to be equal to 1 given γk(a, b) = 1. For example, if vk is the full address and vl is the surname,

than given that the address agrees, there will be more agreements on the surname for the pairs that

belong to the set of non-matches than for the members of two different addresses in general. Therefore,

outcomes for γk(a, b) and γl(a, b) are likely to be dependent for the ‘parent’–‘child’ variables and we

expect to see the excess of γk,l(a, b) = (1, 1)T . We write the corresponding conditional probabilities

νl|k(1)(a, b) = pr(γl(a, b) = 1 | U , γk(a, b) = 1), (14)

νl|k(0)(a, b) = pr(γl(a, b) = 1 | U , γk(a, b) = 0).

Again, binary outcomes mean that

1− νl|k(1)(a, b) = pr(γl(a, b) = 0 | U , γk(a, b) = 1),

1− νl|k(0)(a, b) = pr(γl(a, b) = 0 | U , γk(a, b) = 0).

This illustrates how the dependencies between comparison outcomes of different linkage variables

originate. We will usually refer to this dependence as a between-variables dependence or between-

variables association. The between-variables dependencies given the set of matches will stem from the

error generating mechanism. It is reasonable to expect that in high quality surveys and with good

edit distance functions, the extent of such a dependence may be minimised. Alternatively, between-

variables dependencies in the set of matches should be dealt with by appropriate model specification.
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Whereas the between-variables dependencies given the set of non-matches have a different nature and

will stem from the population structure. To avoid these dependencies, one may choose linkage variables

that evade the situation described above. If a choice leading to the between-variables dependencies in

the set of non-matches is unavoidable, then appropriate identifiable model specifications must be used.

Going back to the linkage experiment, it is important to note that apart from the generation of

population values, sampling survey and making errors when recording the values of linkage variables

there is no randomness in the experiment. So the process of comparing the values of linkage variables

does not have any randomness in itself and is completely determined by the three earlier stages.

Therefore, comparison outcomes are in a sense produced by a deterministic process. In addition, we

observe that each of n1 elements of the first survey is paired with every one of n2 elements of the

second survey. Because the comparison outcomes are deterministic given the sampling of population

elements and the errors made in recording the values of the linkage variables, any two record pairs

that share the same element of either of the lists also share some common information. This leads

to a certain restriction on the comparison outcomes that any two pairs sharing the same element can

take from the space of all possible comparison values. The deterministic nature of comparisons and

the fact that the vast majority of record pairs share information imply that in general the observed

comparison outcomes for a given variable k cannot be treated as independent. Note that in this case

there is a lack of independence in outcomes for a given linkage variable, so we are dealing with a

sort of within-variable dependence. This should not be confused with the dependence of comparison

outcomes between several linkage variables (between-variables dependence) discussed earlier in this

section. To illustrate the within-variable dependence, consider a simple example with two records

on the first survey, s1,a, s1,d and two records on the second survey s2,b, s2,c and let vk be the linkage

variable ‘month of birth’. There are four record pairs in this case: (a, b), (a, c), (d, b), (d, c). Suppose,

the recorded value of s1,a is s1,a,k = ‘January’. Then, assuming exact comparison for simplicity,

γk(a, b) = 1 if s2,b,k = ‘January’. Then γk(a, c) = 1 also if s2,c,k = ‘January’. Now if γk(d, b) = 1 then

s1,d,k = ‘January’ and γk(d, c) must be 1. Contrarily, if γk(d, b) = 0 then s1,d,k is any month except

‘January’ and γk(d, c) must be 0. Overall, there are only 12 unique outcomes of comparisons for these

four pairs:

γk(a, b) = 1, γk(a, c) = 1, γk(d, b) = 1, γk(d, c) = 1,

γk(a, b) = 1, γk(a, c) = 1, γk(d, b) = 0, γk(d, c) = 0,

γk(a, b) = 0, γk(a, c) = 0, γk(d, b) = 1, γk(d, c) = 1,

γk(a, b) = 0, γk(a, c) = 0, γk(d, b) = 0, γk(d, c) = 0,

γk(a, b) = 1, γk(a, c) = 0, γk(d, b) = 1, γk(d, c) = 0,

γk(a, b) = 1, γk(a, c) = 0, γk(d, b) = 0, γk(d, c) = 1,

γk(a, b) = 0, γk(a, c) = 1, γk(d, b) = 1, γk(d, c) = 0,

γk(a, b) = 0, γk(a, c) = 1, γk(d, b) = 0, γk(d, c) = 1,

γk(a, b) = 0, γk(a, c) = 0, γk(d, b) = 0, γk(d, c) = 1,

γk(a, b) = 0, γk(a, c) = 0, γk(d, b) = 1, γk(d, c) = 0,
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γk(a, b) = 0, γk(a, c) = 1, γk(d, b) = 0, γk(d, c) = 0,

γk(a, b) = 1, γk(a, c) = 0, γk(d, b) = 0, γk(d, c) = 0,

while none of the combinations of three agreements and one disagreement is possible.

Even more important, there is no sequential independent draws of observations as described in

the beginning of this section. Since our ultimate observations are comparison patterns for record

pairs, and record pairs are generated in bulk by taking the Cartesian product, there is no decision on

which component the current observation will come from. Instead, every record from the first survey

is necessarily paired with n2 observations from the second survey. Also, there is no usual way of

controlling how many observations to draw. For instance, the only way to achieve a prime number of

overall record pairs w, is to have n1 = 1 and n2 a prime number, or vice versa. Another example of

a peculiar behaviour around the sample size is the impossibility to increase in general the number of

record pairs, w, by 1. Sampling an additional record in S1 results in w increasing by n2, and sampling

an additional record in S2 results in w increasing by n1. In addition, under the 1-to-1 match restriction,

only a single pair may belong to the set of matches after sampling a single additional record in S1 or

S2. If a particular record on S1 is compared to n2 records of S2, it is necessary that there are either

n2 or n2 − 1 corresponding pairs in the set of non-matches U .
All in all, these two points demonstrate that the process of generating the ultimate observations,

that is comparison outcomes, in the linkage experiment does not follow a regular mixture distribution.

It also means that the observed joint probability (or corresponding likelihood) cannot be factorised as

in (9):

pr(γ(a, b),γ(a, c), . . . ) ̸= [πpr(γ(a, b) | M;µ) + (1− π)pr(γ(a, b) | U ;ν)]×

[πpr(γ(a, c) | M;µ) + (1− π)pr(γ(a, c) | U ;ν)]× . . . .
(15)

Also, the complete joint probability (or corresponding likelihood) cannot be factorized as in (10):

pr(g(a, b), g(a, c), . . . ) ̸={pr(γ(a, b) | M;µ}g(a,b){(1− π)pr(γ(a, b) | U ;ν)}1−g(a,b)×

{pr(γ(a, c) | M;µ}g(a,c){(1− π)pr(γ(a, c) | U ;ν)}1−g(a,c) × . . . .
(16)

Hence, the maximum likelihood estimation approach presented in Section 2.2.3, being based on max-

imisation of the observed data likelihood via the maximisation of the complete data likelihood is,

strictly speaking, not correct. Despite theoretically not being the most appropriate approach, the

maximum likelihood estimation using the expectation-maximization algorithm (whether referred to as

the maximum likelihood or not) in record linkage applications has been in use for a long time and has

not been invalidated (Winkler, 2002; Herzog et al., 2007, chap. 9; Christen, 2012, chap. 6.3). Among

explanations for why it might still work see Lee et al. (2022).

While the maximum likelihood approach is capable of producing reasonable and practically useful

estimates of the parameters of the record linkage model specified as a regular mixture, without the

mixture being a good representation of the data generating mechanism, there are several issues with

this approach. First, we cannot be sure that the maximum value of the likelihood attained gives the

best solution. Second, with a regular mixture any attempts at variance estimation using the mixture
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representation will be wrong. In fact, multiple simulated datasets generated according to the linkage

experiment show that the data do not follow a multinomial distribution, something that is be expected

in a regular mixture; results are presented in Section 7.7. Some research in record linkage assumes a

multinomial distribution for the outcomes of a linkage exercise, for instance Chipperfield & Chambers

(2015), which is unlikely to be the case in reality.

In this work we will show how a mixture-like parameterization makes sense in the case of record

linkage, will resort to Markov chain Monte Carlo based methods for parameter estimation that are

more in line with the nature of the problem and will show how valid variance estimates can be obtained.

2.2.6 Notation in a context

In this section through an artificial example of a human population P we show how notation introduced

earlier corresponds to data encountered in record linkage tasks. A small sample of observations from

this population is displayed in Table 4. The true population size is τ = 250 individuals in some

geographical domain, but τ is unknown to the subject conducting the record linkage exercise. The

columns of the table include a unique index i of the corresponding element ei (this unique identifying

index only exists in an abstract sense, there are no real unique identifiers in the population) and four

attributes associated with the population elements. For simplicity, we ignore the data preparation

process and these attributes are the same as the linkage variables used in this record linkage exercise.

The variable v1 is the true standardized address, v2 is the true surname, v3 is the true first name and

v4 is the true full date of birth. Here, individuals are nested within households and each address for

simplicity contains exactly one household. The values as presented in Table 4 are the true values and

any attempt to collect these values may results in some errors. The column with dots indicate that

there exist other population attributes.

Table 4: Population P

i ei v1 v2 v3 v4 . . .
1 e1 1 Census road Miller John 23-07-1989 . . .
2 e2 1 Census road Miller George 03-01-2020 . . .
3 e3 1 Census road Miller Mary 15-08-1989 . . .
4 e4 2 Census road Lee Andrew 21-04-1991 . . .
5 e5 2 Census road McGann Clare 11-02-1993 . . .
6 e6 3 Census road Conrad George 03-01-2020 . . .
7 e7 3 Census road Conrad Susana 27-10-1990 . . .
8 e8 4 Census road Anderson Mike 15-05-1985 . . .
9 e9 5 Census road Clark Jane 01-08-1992 . . .

10 e10 5 Census road Keegan Peter 13-01-1993 . . .
. . . . . . . . . . . . . . . . . . . . .
250 e250 . . . . . . . . . . . . . . .

Two independent surveys of the population are S1 and S2. Both surveys attempt to collect infor-

mation on all occupants of all households in the population. The first survey, S1, captures individuals

e1, e2, e3, e6, e7, e8, e9, e10, . . . . The size of S1 is n1 = 231. The second survey, S2, captures individuals

e1, e2, e3, e4, e6, e7, . . . . The size of this survey is n2 = 222. The data as collected in these surveys are

displayed in Table 5 and Table 6. The columns of these tables are: index a of a given record s1,a on
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survey S1 and b of a given record s2,b on survey S2; the corresponding identifying index, id(s1,a) = i or

id(s2,b) = i, of the population element ei followed by four linkage variables which are exactly the same

as in the population table. Clearly, n1 and n2 are smaller than the population size τ due to both the

entire household non-response and the within household non-response. An example of the former is

the entire household with individuals e4 and e5 missing in S1, an example of the latter is the missing

individual e5 in S2.

Some of the values of the population attributes get recorded incorrectly or are not recorded at all.

In our example we have the following errors in S1: the survey record s1,3 that captures the population

element e3 gets the date of birth recorded incorrectly, the survey record s1,5 that captures element

e7 has the name recorded as ‘Susan’ instead of ‘Susana’ and the survey record s1,8 contains missing

information on the date of birth of the individual e10. The errors in S2 are: a survey record s2,2 misses

the surname and date of birth of the individual e2, the record s2,3 incorrectly records the name of

individual e3, and records s2,5 and s2,6 captures the address of the individuals e6 and e7 incorrectly.

Table 5: Survey S1

a s1,a id(s1,a) v1 v2 v3 v4
1 s1,1 1 1 Census road Miller John 23-07-1989
2 s1,2 2 1 Census road Miller George 03-01-2020
3 s1,3 3 1 Census road Miller Mary 15-08-1999
4 s1,4 6 3 Census road Conrad George 03-01-2020
5 s1,5 7 3 Census road Conrad Susan 27-10-1990
6 s1,6 8 4 Census road Anderson Mike 15-05-1985
7 s1,7 9 5 Census road Clark Jane 01-08-1992
8 s1,8 10 5 Census road Keegan Peter NA

. . . . . . . . . . . . . . . . . . . . .
231 s1,231 . . . . . . . . . . . . . . .

Table 6: Survey S2

b s2,b id(s2,b) v1 v2 v3 v4
1 s2,1 1 1 Census road Miller John 23-07-1989
2 s2,2 2 1 Census road NA George NA
3 s2,3 3 1 Census road Miller Carey 15-08-1989
4 s2,4 4 2 Census road Lee Andrew 21-04-1991
5 s2,5 6 1 Census road Conrad George 03-01-2020
6 s2,6 7 1 Census road Conrad Susana 27-10-1990

. . . . . . . . . . . . . . . . . . . . .
222 s2,222 . . . . . . . . . . . . . . .

A record pair is a tuple like (s1,4, s2,3) and the classical record linkage attempts to classify these

pairs. The observed set of all ordered pairs is W = {(s1,1, s2,1), (s1,1, s2,2), (s1,1, s2,3), . . . }. An example

of a match is the record pair (s1,4, s2,5) as both records refer to the same population element e6. The

set of matches M = {(s1,1, s2,1), (s1,2, s2,2), (s1,3, s2,3), (s1,4, s2,5), . . . } is unobservable as is the set of

non-matches U = {(s1,1, s2,2), (s1,2, s2,3), (s1,2, s2,4), . . . }. An example of a non-match is the record pair

(s1,4, s2,3), since s1,4 refers to the population element e6, whereas s2,3 refers to the population element
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e3.

The following is an example of exact comparison of the values of a linkage variable k for a given

record pair (a, b), γk(s1,a, s2,b) = γk(a, b): comparing the values of the surname variable, v2, of a record

pair (s1,1, s2,1) with the binary comparison outcome. Here, we are comparing ‘Miller’ with ‘Miller’ and

γ2(s1,1, s2,1) = γ2(1, 1) = 1. Another example, the exact comparison of the values of the first name

linkage variable, v3, of a pair (s1,5, s2,6). Here we are comparing the values ‘Susan’ and ‘Susana’ and

γ3(s1,5, s2,6) = γ3(5, 6) = 0.

Comparing all variables of some record pair produces a certain comparison pattern, γ(s1,a, s2,b) =

γ(a, b) = (γ1(a, b), . . . , γK(a, b))T . For instance, when performing exact comparison of the values of

linkage variables for the pair (s1,5, s2,6) with the binary comparison outcome, we get the following

comparison patter γ(s1,5, s2,6) = γ(5, 6) = (γ1(5, 6), γ2(5, 6), γ3(5, 6), γ4(5, 6))
T = (0, 1, 0, 1)T .

Because of the errors, a matching record pair can have a comparison patterns with some (or even all)

disagreements. Say, in the above example, a pair (s1,5, s2,6) = (5, 6) ∈ M, but there are disagreements

on several linkage variables in the corresponding comparison outcome (0, 1, 0, 1)T . On the other hand,

a non-matching pair can have agreements on some (or even all) linkage variables by chance or due to

errors or missingness. Say, a pair (s1,2, s2,5) = (2, 5) ∈ U , but the corresponding comparison pattern is

(1, 0, 1, 1)T .

Comparisons need not to be exact and some distance or similarity functions may be helpful. The

resulting comparison score can be then used to decide whether values agree or disagree based on

some chosen acceptance threshold. For instance, we have already seen an example of a pair (s1,5, s2,6)

where the values ‘Susan’ and ‘Susana’ were compared leading to γ3(s1,5, s2,6) = γ3(5, 6) = 0. Al-

ternatively, we could try, say, the Jaro-Winkler similarity function, fJW , and treat scores equal

or greater than 0.9 as agreements and as disagreements otherwise. The Jaro-Winkler similarity in

this case is fJW (‘Susan’, ‘Susana’) ≈ 0.96, and this comparison is regarded as agreement, so that

γ3,JW,0.9(5, 6) = 1.

For a given record pair, say, (s1,5, s2,6) = (5, 6) using a mixture model (8) for record linkage gives

pr(γ(5, 6) =(0, 1, 0, 1)T ;π,µ,ν) =

πpr(γ(5, 6) = (0, 1, 0, 1)T | M;µ) + (1− π)pr(γ(5, 6) = (0, 1, 0, 1)T | U ;ν),

with the vector of probabilities µ and ν reflecting any possible between-variables associations of com-

parisons. Suppose, we have a reason to believe, that within the set of matches all comparisons between

variables are independent. Then µ = (µ1, . . . , µ4)
T with µk(5, 6) = pr(γk(5, 6) = 1 | (5, 6) ∈ M).

At the same time, the population structure is such that the comparison outcomes of the address and

surname variables must be associated. In this case, the conditional probability that the surname agrees

if the address agrees for a non-matching pair (a, b) = (1, 3) is νl|k(1)(a, b) = ν2|1(1)(1, 3) = pr(γ2(1, 3) =

1 | γ1(1, 3) = 1, (1, 3) ∈ U), and the conditional probability that the surname agrees if the address

disagrees is νl|k(0)(a, b) = ν2|1(0)(1, 3) = pr(γ2(1, 3) = 1 | γ1(1, 3) = 0, (1, 3) ∈ U). The mixture-like

models for record linkage that are introduced and discussed in Sections 3.1 and 3.2 are conceptually

different from regular mixtures, but the notation is very similar.

Most often, we are interested in the frequencies, fp, of the comparison patterns γp. The estimation
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methods employed in this thesis use such frequencies as an input after the comparison outcomes of the

individual record pairs are established. Individual pair information is only required by the methods

that take into account 1-to-1 constraint. In fact, the expectation-maximization approach presented

in Section 2.2.3 can be run very efficiently when the frequencies of comparison patterns are obtained

first. An example of the frequencies generated by comparing records of S1 and S2 is provided Table 7.

Note that in this thesis there is no fixed correspondence between the index p and the value taken by

a comparison pattern γp. In most cases, we are just interested in an arbitrary pattern γp. Whenever

we are dealing with examples where we are interested in a few specific γp, the correspondence between

the index and the patterns is evident from the context.

Table 7: Example of frequencies of the comparison patterns

p γp fp
1 0000 24626
2 0001 243
3 0010 94
4 0011 2
5 0100 144
6 0101 1
7 0110 3
8 0111 10
9 1000 209

10 1001 7
11 1010 5
12 1011 14
13 1100 272
14 1101 18
15 1110 14
16 1111 134

Finally, suppose some classification-based approach is used and all pairs (a, b) ∈ W are classified

into links and non-links. The examples of true positive, true negative, false positive and false negative

could be as follows. If a pair (s1,1, s2,1) is classified as a link, then it is a true positive since this pair

is a match. If a pair (s1,7, s2,6) is classified as a non-link, then it is a true negative since this pair is

a non-match. If a pair (s1,3, s2,3) is classified as a non-link, this is a false negative since this pair is a

match. If a pair (s1,2, s2,5) is classified as a link, this is a false positive since this pair is a non-match.

2.3 An overview of census coverage estimation

Among the most remarkable applications of dual system estimation and record linkage is census cov-

erage estimation and adjustment. In fact, many important developments in the theory and practice

of dual system estimation of human populations and record linkage originated or matured within the

field of census coverage estimation (Wolter, 1986; Jaro, 1989; Winkler & Thibaudeau, 1991; Hogan,

1992, 1993; Anderson & Fienberg, 1999; Brown, 2000; US Census Bureau, 2008; Brown et al., 2019). It

may seem at first that there is a contradiction between the definition of a census as a complete survey

of a population and two incomplete surveys of the population that are used in the dual system estima-

tion of the total. In fact, any census of a large human population is imperfect and contains coverage
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errors such as undercoverage (missingness of population elements) and overcoverage (elements being

counted more than once or counted in a wrong location). Furthermore, these errors are not always

small enough to be ignored and vary substantially by domains in the population; see for instance ONS

(2012). Hence, often the extent of the census coverage error needs to be estimated. In the case of

the United Kingdom countries, the census is actually adjusted for the coverage errors (Brown et al.,

1999; Cabinet Office, 2008, chap. 5; Cabinet Office, 2018, chap. 4). While coverage estimation combines

together undercoverage and overcoverage estimation as well as adjustment for biases, the dual system

estimation itself deals specifically with the undercoverage error. The first survey is the census itself,

and the second is the post-enumeration survey, which conceptually has its origins in the 1950 Census

of the United States (Marks et al., 1953). This survey is usually called the Census coverage survey

in the Census of England and Wales and other United Kingdom’s countries. In this chapter we are

mostly describing the Census of England and Wales.

Census coverage estimation is a fine example of how a careful design and implementation of data

collection can substantially facilitate successful record linkage and dual system estimation. The main

goal of this section is to overview these design features and how they fit together, rather than provide a

full account of the intricacies of the coverage estimation. Certain of these design features are important

for making the classification free linkage and related dual system estimation feasible in practice. On

the other hand, such classification free approaches for linkage and estimation seem very suitable for

the census-like estimation. In Section 2.2.1 we stressed how much effort is needed when preparing the

data for record linkage, in this section we want to stress how much a structured and planned data

collection can contribute to high quality outputs or enable a higher degree of automated processing at

the later stages of data analysis.

Many modern censuses use the post-out model: either a paper questionnaire or an access code to

an electronic questionnaire is posted to all the addresses on the address frame first. At the core of

the census data collection lies an address frame which attempts to compile all the addresses in the

population of interest as best as possible (ONS, 2010, 2023). Usually, some response chasing schedule

exists that involves sending a reminder letter to the non-responding addresses after a certain amount of

time. If no return is made after a reminder, the field interviewer may attempt to remind or collect the

information from the address (ONS, 2015, chap. 3; Cabinet Office, 2018, chap. 4, ONS, 2021a, chap. 3).

In any case, the vast majority of census returns are made for the addresses on the address frame and a

very good quality frame is essential. In addition, the questionnaires are designed to confirm or rectify

the addresses they were sent to. For example, in the 2021 Census of England and Wales the online

questionnaire had an address look-up functionality (ONS, 2021b). The paper questionnaire had an

address, to which it was posted, printed on the front page and fields for a corrected address were

provided, in case the address was not accurate (ONS, 2021c).

Household and person attributes collected on the census questionnaire enable good quality linkage

and coverage estimation. These attributes include explicitly collected name, middle name and surname

as well as the full date of birth (ONS, 2021c). Such explicit collection simplifies data cleaning and

standardization, but even in this case the preprocessing is far from simple.

Another key success factor in the census coverage estimation is the Census coverage survey (Brown
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et al., 2011; Castaldo, 2018; Burke & Račinskij, 2020). This is a re-count of a population within

a large sample (approximately 340,000 households in England and Wales are sampled) carried out

independently of the census. The coverage survey takes place several weeks after the census reference

date (census day) in the form of face-to-face interviews. The fact that the survey starts soon after the

census day ensures that the target population remains nearly closed. This survey data collection is

operationally as independent of the census data collection as possible. Such operational independence

contributes to statistical dependence minimization between the two data. Therefore, no census address

frame is used for the coverage survey. Instead, the survey’s sampling frame is based on the postcode

directory. The survey has a stratified multistage cluster design. It is stratified by local authority by the

hard-to-count index. The hard-to-count index is a variable specifically created for the coverage survey;

it had five levels in the 2021 and 2011 Censuses and three levels in the 2001 Census (Brown, 2000; Brown

et al., 2011; Dini, 2018). The hard-to-count index is derived at the lower super output area level, a unit

of geography for statistical reporting with the size ranging from 400 to 1200 households (ONS, 2021d),

and indicates relative ease or difficulty of obtaining a census return in that area. An area that has the

hard-to-count ‘1’ is the easiest to enumerate in a census and an area that belongs to the hard-to-count

‘5’ is the hardest to enumerate. The sampling probabilities are unequal, reflecting the fact that the

sample is allocated disproportionally to the harder to count areas relatively to the sample allocated

to those easier to count areas. The primary sampling units are output areas, another geography for

reporting census outputs with size ranging from 40 to 250 households (ONS, 2021d), and the secondary

sampling units are postcodes. At least one output area is sampled from a local authority by hard-

to-count combination; therefore, the sample is spread across the entire target population. Before the

interviews begin, a field interviewer creates an address listing for the sampled postcodes by physically

inspecting the area. This address listing is thus independent of the census address frame. After that,

the attempt to collect information about all members (usually, interviewing only a single person within

a household) of each of the households in the address list is made. The coverage survey questionnaire

collects many attributes similar to those collected in the census and in a similar format. The address

is always checked with the householder and names, surnames, date of birth and other attributes are

collected in a structured way for all members of the household.

There are many stages of processing before the collected data reach record linkage and estimation

(ONS, 2021a, chap. 4). Among those relevant for our discussion is the process of resolving multiple

responses. This process aims to deduplicate cases within the same household / address and facilitates

later linkage and estimation. Another important process is the imputation (ONS, 2018a). This process

imputes the missing values of variables for the collected population units in the coverage survey and

census data. Imputation allows the use of all the valid observations in estimation even if the originally

collected values of certain variables are missing. Note that record linkage is performed on the non-

imputed data. Outputs of record linkage and imputation are combined together for the estimation.

Record linkage itself is a combination of deterministic and probabilistic methods similar to those

described in Section 2.2.3 with a substantial amount of clerical review (ONS, 2018b,c). While the

combination of linkage methods and actual implementation may vary from census to census, what is

important for us is that estimation-wise there is a need for two linkage exercises (Račinskij & Hammond,
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2018). The first one is done for undercoverage estimation, while the second is done for overcoverage

estimation. The correct location of an element is defined first and it is both assumed and ensured

during the data collection that the coverage survey captures elements in the correct location. In

principle, the correct location is a relative notion and depends on the goals of estimation and various

practical considerations. In the census coverage estimation, being captured in the correct location

usually means being captured within the postcode of the true location or in a neighbouring postcode

(so that even if the reported address is not exactly correct, but a link is establishing within the postcode

or neighbouring postcode, the linked case counts as being captured in the correct location). Therefore,

in the undercoverage estimation, record linkage aims to determine whether a given element captured in

the survey in a particular postcode was captured in the census in the same postcode or in neighbouring

postcodes. On the contrary, in the overcoverage estimation, for a given element captured in the survey

in the given postcode, record linkage aims to determine whether the element was captured in the census

outside the given or neighbouring postcodes.

Coverage estimation itself is done in several steps. Undercoverage is estimated first, then overcover-

age is estimated, and these estimates are combined to provide the net coverage adjusted estimate. Dual

system estimation, our topic of interest, deals with the undercoverage and we are not discussing the

overcoverage estimation in this thesis. There are two broad strategies for applying the dual system es-

timation in order to mitigate the bias due to heterogeneity. The first strategy is to use logistic or mixed

effects logistic regression (Alho, 1990; US Census Bureau, 2008; Račinskij, 2018, 2020). This approach

usually pools the entire sample data together and fits one undercoverage model. This undercoverage

model reflects how the coverage probability varies by demographic and geographic variables as well

as their interactions, which allows us to tackle heterogeneity. As we are dealing with the simple dual

system estimator in this thesis, we do not delve into the logistic regression-based approaches here. The

second approach is post-stratification, which involves obtaining the individual dual system estimates

for every post-stratum in turn (Brown, 2000; Brown et al., 2019). In the 2011 Census of England and

Wales such post-strata were defined to be a variable of interest, with the primary variable of interest

being quinary age-sex groups, by aggregation of postcodes within sampled output area. Therefore,

such post-stratification implicitly reflected stratification by local authority by hard-to-count index,

due to the sampling design. The resulting post-strata sizes can be quite small in this case, and the

dual system estimator with the Chapman correction is often used to avoid small sample bias (Seber,

1982): ˆ︁τcc = (n1 + 1)(n2 + 1)

m+ 1
− 1.

Note that the dual system estimation post-stratum is constructed by aggregation of postcodes which

also happen to be linkage blocks. Such individual dual system estimates were then summed across

sample clusters and used with the ratio estimator to produce the estimation area (combination of local

authorities) by hard-to-count by the variable of interest domain totals at the population level (Brown

et al., 2019). The local authority by hard-to-count by the variable of interest estimates were produced

using the simple synthetic estimator. Such individual estimates are then summed together to produce

the higher level totals. Another post-stratification approach was used in the United States Census

prior to 2010 (Hogan, 1992, 1993). The post-stratification was by region by age group by ethnicity by
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tenure and possibly by other variables if the size of the corresponding post-stratum was large enough.

Again, individual dual system estimates were produced for these post-strata. One way or another, the

important fact for us is that often in the large estimation exercises multiple dual system estimates are

produced, rather than pooling the data and then estimating.

Estimation is followed by a dependence bias adjustment (Brown et al., 2006; Račinskij, 2022), but

for our discussion it is sufficient to know that there is often this additional processing step. It is based

on either demographic analysis data or some additional information collected during the census field

follow up.

Finally, variance estimation is carried out. Unlike the variance estimator (6) for the simple case of

dual system estimation, variance estimation for the coverage error corrected census population totals

needs to take into account the design variance associated with the coverage survey. Since the design of

the coverage survey is complex and multiple estimators are involved, Taylor series approximation be-

comes impractical and resampling methods, such as the jackknife or bootstrap, are used. For instance,

in the case of the post-stratified dual system and ratio estimation the bootstrap variance estimation is

as follows. The output areas with the corresponding parent sample dual system estimates are resam-

pled according to the sampling design of the parent sample. Then the rest of the estimation process

is carried out for every bootstrap resample. It is important to see that there is no recalculation of the

dual system estimates, just the sampling of the output areas with their original estimates. Note that

unless the coverage probabilities are small, the component of variability due to dual system estimation

in each dual system post-stratum is small relative to the overall sampling variability.

In summary, the following features of the census coverage estimation are noteworthy for the dis-

cussion of the classification free record linkage and related dual system estimation. Existence of the

address frame and / or address listings; a careful and well designed collection of attributes used in link-

age and estimation with a special attention to addresses; blocking by low level geography; applying the

dual system estimator at the level that aggregates several linkage blocks; sequential application of the

dual system estimator in each post-stratum; carrying out undercoverage and overcoverage estimation

separately; existence of bias adjustment procedures.

2.4 Simulated annealing

Simulated annealing is an optimization method originally proposed by Kirkpatrick et al. (1983). In

this brief discussion of the algorithm we follow closely Liu (2004).

The task is to find the minimum of a target function h(x) which is the same as finding a maximum of

exp(−h(x)/T ) at any value ot the artificial temperature parameter T . We then consider a sequence of

monotone decreasing temperatures T1 > T2 > . . . Tt > . . . with T1 being sufficiently large and Tt → 0 as

t→ ∞. At each Tt, Nt iterations of Metropolis-Hastings sampling are run with Πt(x) ∝ exp(−h(x)/Tt)
as the equilibrium distribution. The simulated annealing algorithm uses the fact that in any system

satisfying
∫︁
exp(−h(x)/Tt)dx < ∞, T > 0 the distribution Πt puts more and more of its probability

mass close to the global maximum of h as t keeps increasing. Hence, when Tt is close to 0, the sample

drawn from Πt is in vicinity of the global minimum of the target function.

Therefore, at least in principle the global minimum of h(x) can be reached if the number Nt is
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sufficiently large and the temperature Tt decreases sufficiently slowly.

The simulated annealing algorithm consists of those steps

� Initialize an arbitrary solution x(0) and temperature T1;

� For each t run Nt iterations of a Markov chain Monte Carlo scheme with Πt(x) being its target

distribution. The final solution at a step t is used at the initial solution for a step t+ 1;

� Increment t by 1.

In this work we use the Metropolis algorithm as a Markov chain Monte Carlo scheme which proceeds

in the following way; see Liu (2004) for more details:

1. Start with a random configuration x(0);

2. At a state x(t) make a random ‘unbiased’ perturbation x′ and compute the change ∆h = h(x′)−
h(x(t));

3. Generate Y ∼ Uniform [0, 1] and make a decision regarding the next configuration x(t+1):

x(t+1) =

⎧⎨⎩x′ if Y ≤ Π(x′)
Π(x(t+1))

= exp(−∆h)

x(t) otherwise.

2.5 Identifiability

Identifiability is a property of a statistical model allowing non-ambiguous recovery of model parameters

from the observed data generated by the model (Allman et al., 2009, Sullivant, 2018, chap. 16.1). A

statistical model p : Θ → PΘ,θ ↦→ pθ is globally or strictly identifiable if any two parameters θ ̸= θ′ in

Θ produce different probability distributions pθ and pθ′ . In other words, the mapping is one-to-one.

However, in certain cases, finitely many-to-one mappings can also be regarded as globally identifiable.

Moreover, the global identifiability is not the only type of identifiability. We will discuss different cases

of identifiability later in this chapter.

Identifiability is crucial in statistical applications. If a parameter of interest is used for inference,

it is desirable that a chosen statistical model produces a unique estimate of the parameter given the

data. If a model is not identifiable, then information about the parameter of interest is not recoverable

and the model is not practically useful. Therefore, establishing identifiability or non-identifiability of

a model, despite often being a difficult exercise, is generally worth the effort.

We focus only on identifiability of record linkage models that can be represented or parameterized

as finite mixtures of discrete probability distributions:

pr(xj ;Θ) =

g∑︂
i=1

πipr(xj ;θi), (17)

where πi = pr(θ = θi) are mixing proportions, and pr(xj ;θi) are probability mass functions that

usually belong to the same family of distributions (but in principle may belong to different families).
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We already encountered two-component mixtures in Section 2.2.3. For a detailed discussion of finite

mixture models see, for instance, McLachlan & Peel (2000). Note that we are deliberately saying that

a model of interest can be represented or parameterized rather than that the model follows some finite

mixture of discrete distributions. This is because in record linkage problems, the sampling is not carried

out from a mixture distribution in the usual sense; see the presentation of the linkage experiment in

Section 2.2.5. Nevertheless, generated data can be meaningfully summarized in the form of (17) and

provide a means of estimating the first moments of the parameters of interest, but not higher moments.

For more details see Section 3.2 of this thesis.

For the regular mixtures, classic presentations of identifiability are Teicher (1961, 1963, 1967) and

Yakowitz & Spragins (1968). A good discussion of the problem can be found in Titterington et al.

(1985, chap. 3.1). Also, Rao (1992, chap. 8) is dedicated to identifiability of finite mixtures which,

among other methods, reviews and consolidates methods presented in the above papers.

In this thesis, we are relying on the methods from algebraic statistics (Drton et al., 2009; Sullivant,

2018). Algebraic statistics provides methods from computational algebra and algebraic geometry that

can be used to establish identifiability / non-identifiability of statistical models of interest. There are

many other areas where algebraic statistics can be applied or used to study statistical properties, such

as the maximum likelihood estimation (Hosten et al., 2005; Allman et al., 2019) or model selection

(Krampe & Kuhnt, 2010). In this thesis, we only focus on use of algebraic statistics to study identi-

fiability of the models of interest. Algebraic methods for identifiability are viable since the problem

of identifiability of a statistical model can be regarded as equivalent to injectivity of a polynomial or

rational map (Sullivant, 2018, chap. 16). The algebraic approach to identifiability offers a variety of

conceptual and computational methods to tackle the problem as well as a rich selection of tools to

study related properties. These are more flexible than those methods presented in Rao (1992, chap. 8)

since these classical results are mainly concerned with the families of distributions. In our case, we

quite often deal with models within the same family, but some of the models are identifiable, while

others are not. Being able to tackle this case by case is important. Here we will consider the following

algebraic approaches: checking the dimension of the image of a rational map, tensor methods and

Gröbner basis based methods. Note that these algebraic methods allow identifiability for a general

model specification to be established, without any restrictions on how the actual sampling works.

Therefore, they are as applicable for regular mixtures as for the mixture-like models of our interest.

2.5.1 Types of identifiability

While identifiability of a model in general means that the parameters of the model can be recovered

from the data in a non-ambiguous way, there exist several types of identifiability. It is not always

made clear in the literature which type of identifiability is being established. We start our discussion

by providing the classification of identifiability types. Below we largely follow the presentation by

Sullivant (2018, chap. 16.1).

The theory as presented here and below assumes that we are dealing with an extension of the

regular exponential family called the algebraic exponential family (Sullivant, 2018, chap. 6.5). We have

a rational map ϕ : Θ → η. A rational map is a map ϕ : Cm → Cn with ϕi = fi/gi, where fi, gi

41



are polynomials and gi ̸= 0. Here Θ is a parameter space and η is the natural parameter space of

an exponential family or its transformation. Recall, that the natural parameter space is the set of all

values η where the function fX(x;θ) is finite. Also, it is assumed that Θ ⊆ Rd is a semialgebraic set.

Informally, a semialgebraic set is a subset of Rd given by polynomial equations and inequalities. For

more formal definition of a semialgebraic set and its relation to statistical models; see Zwiernik (2016,

chap. 2.2.2) and Sullivant (2018, chap. 6.4).

The following is based on Godfrey & DiStefano (1987) and Definition 16.1.1 of Sullivant (2018,

chap. 16.1): let ϕ : Θ → η with model Q = im ϕ. Here, im ϕ means the image of map ϕ, that is the

set of all possible outputs of the map. The model Q is

� globally identifiable if ϕ is a one-to-one map on Θ;

� generically identifiable (also known as almost everywhere identifiable) if ϕ−1(ϕ(θ)) = θ for almost

all θ ∈ Θ (that is, the probability of drawing data points that lead to non-identifiable parameter

equals zero in this case);

� rationally identifiable if there is a dense open subset of Y ⊆ Θ (informally, it means that every

member of Y is either in Θ or arbitrarily close to a member of Θ) and a rational function

ψ : η → Θ such that ψ ◦ ϕ(θ) = θ on Y ;

� locally identifiable if there exists an open neighbourhood Yθ around a generic point θ such that

ϕ is identifiable;

� nonidentifiable if for some θ ∈ Θ the set of values ϕ−1(ϕ(θ)) is greater than 1;

� generically nonidentifiable if almost for all θ ∈ Θ the set of values ϕ−1(ϕ(θ)) is infinite.

In certain situations, a model may be generically nonidentifiable, but some individual parame-

ters or functions of individual parameters may be identifiable. Types of identifiability for individual

parameters are similar to the types of a model identifiability presented above.

Practically, one aims to establish whether a model or a parameter of interest is identifiable and what

the corresponding type of identifiability is. First, an attempt to determine local identifiability is made.

If the model is locally non-identifiable, no further computations are needed and the model is declared

non-identifiable. If the model is locally identifiable, then generic or rational identifiability is checked

dependent of what is feasible. As we will see, quite often it is computationally too difficult to work out

if a model is generically or rationally identifiable, so there may be cases where no result is obtained.

Informally, global identifiability means that there is a unique parameter θ that results in output ϕ(θ).

Generic identifiability means that there are some points θ for which the output is not unique, but

those points have corresponding zero probabilities of being selected. For instance, given the mixing

proportion is exactly 0.5, component parameters can be swapped with other component parameters

without affecting the value of ϕ(θ). However, the probability of the mixture proportion being exactly

equal to 0.5 is 0. Rational identifiability means that every θi ∈ θ can be expressed as the rational

function ψ of ϕ(θ). Finally, local identifiability means that a model is identified in the neighbourhood

of θ, but there may in general be several θ that produce the same ϕ(θ). For example, in mixture
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models swapping the components will lead to the same model output, the phenomena known as label

switching. Say, in the two component mixture, we have pr(x;θ) = πpr(x;θ1) + (1 − π)pr(x;θ2) =

π′pr(x;θ′
1) + (1− π′)pr(x;θ′

2) with π
′ = (1− π),θ′

1 = θ2,θ
′
2 = θ1. Still the model is identifiable in the

neighbourhood of π.

2.5.2 Number of observables and number of parameters

Before starting to assess identifiability, the basic check of whether the number of observables does

not exceed the number of parameters that need to be estimated is needed. In the linkage model with

binary comparisons and K linkage variables there are 2K observed quantities that correspond to unique

comparison patterns γp. Hence, we cannot estimate more than 2K parameters. The parameters are

π, µk, νk and, when between-variables dependencies are present, µl|k(1), µl|k(0), νl|k(1), νl|k(0).

2.5.3 Assessing local identifiability

Local identifiability of a model or a single parameter is the easiest type of identifiability to check.

The approach is based on checking the dimension of the image of a rational map ϕ. Sullivant (2018,

chap. 16.1) states, that if the dimension of the image of ϕ equals the dimension of the parameter space

Θ then a generic point has a fixed finite number of preimages (where a preimage is the inverse of an

image). A fixed finite number of preimages means that there are finitely many θ that produce the

same ϕ(θ). For instance, in the example of label swapping mentioned in Section 2.5.1, for any ϕ(θ),

we have two preimages: {π,θ1,θ2} and {π′,θ′
1,θ

′
2}.

The following is Proposition 16.1.7 from Sullivant (2018, chap. 16.1): let Θ ⊆ Rd with dim Θ = d

and suppose that ϕ is a rational map. Then dim im ϕ is equal to the rank of the Jacobian matrix

evaluated at a generic point:

J(ϕ) =

⎛⎜⎜⎝
∂ϕ1

∂θ1
. . . ∂ϕ1

∂θd
...

. . .
...

∂ϕr

∂θ1
. . . ∂ϕr

∂θd

⎞⎟⎟⎠ .

In particular, the parameter vector θ is locally identifiable if rank J(ϕ) = d and the parameter vector is

generically nonidentifiable if rank J(ϕ) < d. For the precise definition of a generic point, see Hartshorne

(1977, chap. 2), but loosely speaking it is a point at which all generic properties of a set hold. In this

particular case, there may be some points that lead to the components of the Jacobian matrix being

undefined, say, due to division by 0, but for any ‘non-extreme’ point, the property that the rank of

J(ϕ) is d holds.

Given a model that is parameterized in a similar way to the models presented in 2.2.3, one can use

symbolic computation software like Mathematica (Wolfram Research, Inc., 2022) or Maple (Maple,

2021) to compute the Jacobian matrix and find its rank. There are several examples of checking local

identifiability in Chapter 5.
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2.5.4 Tensor methods to assess identifiability

Identifiability of mixtures of discrete probability distributions can often be checked using tensor meth-

ods. Tensors are multidimensional arrays describing multilinear relationships. They are generalizations

of vectors and matrices. While a vector has only one index and a matrix has two indices, a tensor

has an arbitrary number of indices. Our discussion of the tensor methods requires only superficial

knowledge of tensors and operations with them. We will only be dealing with the tensor product,

denoted ⊗. The tensor product is a generalization of the outer product. For instance, given two arrays

a = (a1, a2)
T and b = (b1, b2)

T , the corresponding tensor product is

a⊗ b =

(︄
a1

a2

)︄
⊗

(︄
b1

b2

)︄
=

(︄
a1b1 a1b2

a2b1 a2b2

)︄
.

In the case of the two above arrays and an additional one c = (c1, c2)
T , the product of these three

arrays is

a⊗ b⊗ c =

(︄
a1

a2

)︄
⊗

(︄
b1

b2

)︄
⊗

(︄
c1

c2

)︄
=

⎛⎜⎜⎜⎜⎝
a1b1c1 a1b2c1

a2b1c1 a2b2c1

a1b1c2 a1b2c2

a2b1c2 a2b2c2

⎞⎟⎟⎟⎟⎠ .

The tensor product is associative: (a⊗ b)⊗ c = a⊗ (b⊗ c).

Tensor methods for checking identifiability are based on the results first obtained in Kruskal (1976)

and Kruskal (1977). This approach was refined and extended in Allman et al. (2009). As before, we

follow Sullivant (2018) in our discussion.

Key to our discussion is that 3-way tensors can be related to a g-component mixture model with

3 discrete variables X1, X2, X3 that are independent given a mixing component. Each variable has rk

levels. With g and rk as defined above, let a1, . . . ,ag ∈ Kr1 , b1, . . . , bg ∈ Kr2 , and c1, . . . , cg ∈ Kr3 ,

where K is a field such as the field of the rational numbers R, or the field of the complex numbers C.
Those vectors can be arranged into matrices A ∈ Kr1×g, B ∈ Kr2×g, and C ∈ Kr3×g with columns of

these matrices being a1, . . . ,ag ∈ Kr1 , b1, . . . , bg ∈ Kr2 , and c1, . . . , cg ∈ Kr3 . Note that in Allman

et al. (2009) the above arrays are rows of the matrices and the algebra is different from the one used

here.

The following is the Definition 16.3.1 from Sullivant (2018, chap. 16.3): let A ∈ Kr×g be a matrix.

The Kruskal rank of A, denoted rankK(A), is the largest number lc such that any lc columns of A are

linearly independent.

A tensor of the form a ⊗ b ⊗ c is called a rank one tensor or decomposable tensor. A tensor

M ∈ Kr1 ⊗Kr2 ⊗Kr3 has rank g if it can be written as

M =

g∑︂
i=1

ai ⊗ bi ⊗ ci ∈ Kr1 ⊗Kr2 ⊗Kr3 (18)

for some a1, . . . ,ag ∈ Kr1 , b1, . . . , bg ∈ Kr2 , and c1, . . . , cg ∈ Kr3 but cannot be written as a sum of

fewer rank one tensors.
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An important result regarding the uniqueness of the decomposition of a tensor into rank one tensors

is Theorem 16.3.2 in Sullivant (2018, chap. 16.3), known as Kruskal’s theorem: let M ∈ Kr1⊗Kr2⊗Kr3

be a tensor, and let

M =

g∑︂
i=1

ai ⊗ bi ⊗ ci ∈ Kr1 ⊗Kr2 ⊗Kr3 ,

M =

g∑︂
i=1

a′
i ⊗ b′i ⊗ c′i ∈ Kr1 ⊗Kr2 ⊗Kr3

be two decompositions of M into rank one tensors. Let A,B,C be the matrices whose columns are

a1, . . . ,ag, b1, . . . , bg, and c1, . . . , cg, respectively. Matrices A′,B′,C ′ are defined in a similar way. If

rankK(A)+ rankK(B)+ rankK(C) ≥ 2g + 2, then there exists a permutation σ ∈ Sg and non-zero

λ1, . . . , λg, γ1, . . . , γg ∈ K such that

aσ(i) = λia
′
i, bσ(i) = γib

′
i and cσ(i) = λ−1

i γ−1
i c′i for all i ∈ [g] = {1, . . . , g}.

In particular, M has rank g.

A toy example related to the Kruskal theorem will be presented after we introduce the triple product

notation which simplifies the presentation.

The triple product notation allows us to write M compactly as M = [A,B,C] to denote the rank

one decomposition of (18). The Kruskal theorem can also be more compactly stated that if rankK(A)+

rankK(B)+ rankK(C) ≥ 2g+2 and M = [A,B,C] = [A′,B′,C ′], then there is a permutation matrix

P and invertible diagonal matrices D1,D2,D3 with D1D2D3 = I such that

D1PA = A′,D2PB = B′,D3PC = C ′.

The Kruskal theorem gives us conditions under which a decomposition of tensors is unique as

much as it is possible. This general result can be applied to the mixtures of three discrete variables

that are independent given a mixing component (the conditional independence model). Such a model

is denoted here as Mixtg(X1 ⊥⊥ X2 ⊥⊥ X3). The following is Corollary 16.3.3 in Sullivant (2018,

chap. 16.3): consider the mixture model Mixtg(X1 ⊥⊥ X2 ⊥⊥ X3), where Xk has rk levels for k = 1, 2, 3.

This model is generically identifiable up to relabelling of mixture components (up to label switching)

if

min(r1, g) + min(r2, g) + min(r3, g) ≥ 2g + 2.

It is worth replicating the proof of this corollary given in Sullivant (2018, chap. 16.3), since the main

argument of this proof is used when applying the Kruskal theorem in practice. We use the familiar

parameterization of Mixtg(X1 ⊥⊥ X2 ⊥⊥ X3) with some slight changes in notation to facilitate the

discussion:

pr(X1 = x1, X2 = x2, X3 = x3) =

g∑︂
i=1

πiαi(x1)βi(x2)γi(x3),

where αi(x1), βi(x2), and γi(x3) represent conditional probabilities of X1 = x1, X2 = x2, X3 = x3 given

a mixture component i, respectively. The parameterization is similar to the one of rank g tensors.
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However, there are additional restrictions on the matrices α,β, and γ as their columns must add

to one. Also, we have an additional parameter π. We let Π denote the diagonal matrix of mixing

proportions diag(π1, . . . , πg). Let A = αΠ,B = β,C = γ, so that the above distribution can be

written as the triple product M = [A,B,C]. For generic choices of the conditional distributions and

generic choices of rk, g we have

rankK(A) + rankK(B) + rankK(C) = min(r1, g) + min(r2, g) + min(r3, g)

and we can apply Kruskal’s theorem. Suppose that there is another decomposition of the above

distribution, that is [︁
A′,B′,C ′]︁ = [A,B,C] .

By Kruskal’s theorem, there must exist a permutation matrix P and invertible diagonal matrices

D1,D2,D3 with D1D2D3 = I such that

D1PA = A′,D2PB = B′,D3PC = C ′.

However, since we are dealing with the probability distributions, the columns of B′ and C ′ sum to one.

This forces D2 = I and D3 = I, which in turn forces D1 = I. This means that the matrices A,B,C

and A′,B′,C ′ only differ by simultaneous permutations of the columns. So up to those permutations,

A = A′,B = B′,C = C ′. This means that both β and γ can be recovered up to permutation of the

labels of mixing components. Finally, π and α can be recovered from A noting that π is the vector of

column sums of A, and then α = AΠ−1. This finishes the proof.

The proof of the above corollary gives us a good opportunity to give an example of how the Kruskal

theorem works. Consider a two component mixture with binary variables, so that we are dealing with

the following:

α =

(︄
µ1 ν1

1− µ1 1− ν1

)︄
, α1 =

(︄
µ1

1− µ1

)︄
, α2 =

(︄
ν1

1− ν1

)︄
,

B = β =

(︄
µ2 ν2

1− µ2 1− ν2

)︄
, β1 =

(︄
µ2

1− µ2

)︄
, β2 =

(︄
ν2

1− ν2

)︄
,

C = γ =

(︄
µ3 ν3

1− µ3 1− ν3

)︄
, γ1 =

(︄
µ3

1− µ3

)︄
, γ2 =

(︄
ν3

1− ν3

)︄
,

Π =

(︄
π 0

0 1− π

)︄
.

Kruskal’s theorem above is formulated for 3-way tensors, but the above problem is of higher order,

so in order to apply it we define

A = αΠ =

(︄
µ1 ν1

1− µ1 1− ν1

)︄(︄
π 0

0 1− π

)︄
=

(︄
πµ1 (1− π)ν1

π(1− µ1) (1− π)(1− ν1)

)︄
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and now we are dealing with a 3-way tensor and can apply the triple product notation.

First, we check that rankK(A) = 2, because 2 is the largest number of columns that can be linearly

independent. Kruskal ranks of B and C are also 2. Hence, rankK(A) + rankK(B) + rankK(C) = 6 ≥
2g + 2 = 6 and Kruskal’s theorem tells us that all rank one decompositions of M = [A,B,C] differ

only up to permutation of the elements in the columns of A,B,C. It is easy to find invertible diagonal

matrices D1,D2,D3 and a permutation matrix P in this case. Let

P =

(︄
0 1

1 0

)︄

and

D1 =

(︄
1 0

0 1

)︄
.

This gives

D1PA = A′ =

(︄
1 0

0 1

)︄(︄
0 1

1 0

)︄(︄
πµ1 (1− π)ν1

π(1− µ1) (1− π)(1− ν1)

)︄
=

(︄
π(1− µ1) (1− π)(1− ν1)

πµ1 (1− π)ν1

)︄
.

Also, letting D2 = D3 = D1, we have

D2PB = B′ =

(︄
1 0

0 1

)︄(︄
0 1

1 0

)︄(︄
µ2 ν2

1− µ2 1− ν2

)︄
=

(︄
1− µ2 1− ν2

µ2 ν2

)︄
,

D3PC = C ′ =

(︄
1 0

0 1

)︄(︄
0 1

1 0

)︄(︄
µ3 ν3

1− µ3 1− ν3

)︄
=

(︄
1− µ3 1− ν3

µ3 ν3

)︄
.

Indeed, these matrices give the same rank one tensors, but differ only by permutation of the elements

in columns and hence can be identified up to these permutations. The parameters µ2, µ3, ν2, ν3 are

recovered directly alongside the functions s1(θ) = πµ1, s2(θ) = π(1 − µ1), s3(θ) = (1 − π)ν1, s4(θ) =

(1− π)(1− ν1). Then π can be recovered using s1(θ) + s2(θ) = πµ1 + π(1− µ1) = π and µ1 recovered

using µ1 = s1(θ)/π and finally ν1 recovered using ν1 = s3(θ)/(1− π).

Kruskal’s theorem can be generalized to higher order tensors. However, the theorem for 3-way

tensors can be used to determine identifiability for models with an arbitrary finite number of variables.

This result is given as Corollary 16.3.4. in Sullivant (2018, chap. 16.3): let X1, . . . , XK be discrete

random variables, where Xk has rk levels. Let (X1 ⊥⊥ . . . ⊥⊥ XK) denote the complete independence

model. Let A | B | C be a tripartition of [K] = {1, . . . ,K} with no empty parts. Then the mixture

model Mixtg(X1 ⊥⊥ . . . ⊥⊥ XK) is generically identifiable up to label swapping if

min(
∏︂
a∈A

ra, g) + min(
∏︂
b∈B

rb, g) + min(
∏︂
c∈C

rc, g) ≥ 2g + 2.

We do not replicate the proof here. It is based on ‘clumping’ random variables into three blocks and

flattening the array into a 3-way array.

A related important and apparently easier to use result regarding the models of conditional inde-
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pendence given the component membership with arbitrary number of variables K, Mixtg(X1 ⊥⊥ . . . ⊥
⊥ XK), is given and proved in Allman et al. (2009). The model Mixtg(X1 ⊥⊥ . . . ⊥⊥ XK) is generically

identifiable up to label switching if

K ≥ 2⌈log2g⌉+ 1, (19)

where ⌈x⌉ is the smallest integer at least as large as x.

Whenever dealing with models having some association between the variables, tensor methods need

to be applied for each case individually. However, one always tries to ‘clump’ variables to arrive to

Mixtg(X1 ⊥⊥ X2 ⊥⊥ X3) as the first step. Some examples can be found in Allman et al. (2015) and

some of our later results will be based on their work.

2.5.5 Gröbner basis based methods

Another class of methods for checking identifiability is based on Gröbner bases. These methods utilise

computational algebra and algebraic geometry. There are several advantages of those methods. First,

identifiability of a statistical model is largely checked in an algorithmic way. Second, these methods

allow checking identifiability of an entire model or just a single parameter of interest. Third, rational,

generic and global identifiability can be checked. Finally, it is very flexible and any model that is

parameterized as a polynomial map can be assessed for identifiability. Among disadvantages we can

mention computational complexity associated with computing the Gröbner basis as well as the relative

unfamiliarity of many statisticians with this concept. To address this unfamiliarity, we included a small

chapter in Appendix A with a short primer on basic concepts from computational commutative algebra

and algebraic geometry needed to understand the notion of a Gröbner basis. A detailed discussion of

the ideas can be found in Becker & Weispfenning (1993); Cox et al. (2004, 2015). Usage of these key

concepts in algebraic statistics is covered in Sullivant (2018). Most of the definitions in the appendix

are from Cox et al. (2015) and Sullivant (2018).

2.5.6 Assessing global and generic identifiability with Gröbner basis based methods

We assume that at this point we are equipped for presentation of the Gröbner basis based methods

of establishing identifiability. This method was introduced by Garćıa-Puente et al. (2010) and is also

discussed in Sullivant (2018) and corresponding proofs of the results can be found in the references.

Below is the Proposition 16.1.8 from Sullivant (2018, chap. 16.1). For a given rational map ϕ

and parameter s, let ϕ̃ be augmented rational map ϕ̃ : Θ → Rn+1,θ ↦→ (s(θ), ϕ(θ)). We denote

the coordinates of R by q, x1, . . . , xn. Suppose that g(q, x1, . . . , xn) ∈ I(ϕ̃(Θ)) ⊆ R[q, x1, . . . , xn] is
a polynomial such that q appears in this polynomial, g(q, x1, . . . , xn) =

∑︁d
i=0 gi(x1, . . . , xn)q

i, and

g0(x1, . . . , xn) does not belong to I(ϕ(Θ)).

1. If g is linear in q, g = g1(x1, . . . , xn)q − g0(x1, . . . , xn), then s is generically identifiable by the

rational formula s = g0(x1,...,xn)
g1(x1,...,xn)

. If, in addition, g1(x1, . . . , xn) ̸= 0 for x1, . . . , xm ∈ ϕ(Θ), then s

is globally identifiable.

2. If g has higher degree d in q, then s may or may not be generically identifiable. Generically, there

are at most d possible choices for the parameter s(θ) given ϕ(θ).
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3. If no such polynomial g exists, then the parameter s is not generically identifiable.

It is possible to provide an intuitive and informal explanation of why the above proposition works.

We are dealing with vanishing ideals I(ϕ(Θ)) and I(ϕ̃(Θ)). A vanishing ideal of a set of points is

the set of polynomials that vanish (equals to zero) on this set of points; see Appendix A for more

details. If a polynomial g(q, x1, . . . , xn) ∈ I(ϕ̃(Θ)) then it means that for every θ ∈ Θ this polynomial

must evaluate to zero. In addition, if g(q, x1, . . . , xn) ∈ I(ϕ̃(Θ)) is linear, then g(q, x1, . . . , xn) may

be written as g = g1(x1, . . . , xn)q − g0(x1, . . . , xn) = g1(x1, . . . , xn)s(θ) − g0(x1, . . . , xn). Note that

q = s(θ) by construction of the augmented map ϕ̃ : Θ → Rn+1. Since g ∈ I(ϕ̃(Θ)), we have

g1(x1, . . . , xn)s(θ) − g0(x1, . . . , xn) = 0, and the fact that g1 /∈ I(ϕ(Θ)) allows this linear equation to

be solved for s(θ).

If g(q, x1, . . . , xn) is of some higher degree d, one solves the corresponding equation of this degree

to find s(θ). If multiple solutions exist this may mean that s(θ) is at least locally identifiable. Note,

that unlike the method of checking for local identifiability based on the rank of the Jacobian matrix

presented in Section 2.5.3, the current approach not only tells us whether s(θ) is identifiable or not,

but also provides additional information in the form of the polynomial g. Thus, if we know that s(θ)

has certain constraints, for instance is a real number in the interval (0, 1) and there is only one solution

that satisfies this condition, then s(θ) is globally identifiable.

The above proposition does not say how to find such a polynomial g(q, x1, . . . , xn) or show that

it does not exist. However, it is possible to solve this problem using Gröbner bases. Below is the

Proposition 16.1.9 from Sullivant (2018, chap. 16.1).

Let G be a reduced Gröbner basis for I(ϕ̃(Θ)) ∈ R[q, x1, . . . , xn] with respect to an elimina-

tion ordering such that q ≻ xi for all i. Suppose that there is a polynomial g(q, x1, . . . , xn) =∑︁d
i=0 gi(x1, . . . , xn)q

i ∈ I(ϕ̃(Θ)) with g0(x1, . . . , xn) /∈ I(ϕ(Θ)) that has non-zero degree in q. Then

a polynomial of lowest non-zero degree in q of this form appears in G. If no such polynomial exist in

I(ϕ̃(Θ)), then G does not contain any polynomial involving the indeterminate q.

In other words, if we have a model parameterized as a rational map ϕ and we are interested in

checking if a parameter or a function of certain parameters of this map is identifiable, we augment

the map ϕ with an additional parameter q. In this case, q equals to the parameter (or function of

parameters) which identifiability we are interested in. Then we find a reduced Gröbner basis of the

augmented map with respect to any elimination order and check if it contains a polynomial g in q as

described above.

2.5.7 Assessing rational identifiability with Gröbner basis based methods

In practice, assessing global and generic identifiability using Gröbner bases may yield no results in real

time due to computational complexity issues. However, Gröbner bases can be used to check rational

identifiability. In many cases we have considered so far, computations can be carried out in real time.

The following is the Proposition 16.4.8 from Sullivant (2018, chap. 16.4). Let c : Rd → Rn be a

polynomial map, and let Ic be the ideal

Ic = ⟨c1(t)− c1(θ), . . . , cn(t)− cn(θ)⟩ ⊆ R(t)[θ].
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Let f ∈ R[θ]. Then f is rationally identifiable if and only if f(t)− f(θ) ∈ Ic.

Here, R(t)[θ] means that we are dealing with polynomials in indeterminates θ with symbolic

parameters in the coefficients t ∈ Rd. For example, consider a quadratic polynomial f = ax2+bx+c ∈
R(a, b, c)[x]. This polynomial is in indeterminate x while a, b, c are some unspecified (varying) symbolic

parameters.

Sullivant (2018, chap. 16.4) suggests one way of using the above proposition for checking rational

identifiability of f(θ). First, compute a Gröbner bases of the ideal Ic with respect to a random

lexicographic order and inspect the results for polynomials in the form f(t)− f(θ). Some examples of

this approach in the case of determining identifiability of ordinary differential equations can be found

in Meshkat et al. (2009).

We note, that checking f(t)−f(θ) ∈ Ic means solving the ideal membership problem. Since we are

interested in a particular parameter or a function of parameters, we can make some simple guesses of

f . Suppose we are interested in the mixing proportion, θ = π, and we expect the model to have label

switching. Then we can guess f(θ) = θ(1− θ) as θ(1− θ)− t(1− t) = 0 has exactly two solutions, so

we check whether θ(1− θ)− t(1− t) ∈ Ic. If it is, then f(θ) = θ(1− θ) is rationally identifiable and it

means that we also can find solutions f(θ) = 0 and identify θ. Interestingly, that in this case θ itself

is not rationally but rather generically identifiable, since the solution involves square roots. If no label

switching is expected, then our simplest guess is f(θ) = θ and we are solving the ideal membership

problem for θ − t ∈ Ic to check if θ is rationally identifiable.

3 Parameter estimation in mixture-like models

In this chapter we begin developing the key ideas of this thesis. We start by introducing a mixture-like

model which, despite being parameterized in a similar way, suits record linkage data better than a

regular two component mixture of discrete random variables. We provide a justification of model’s

suitability for record linkage and demonstrate how the model relates to the underlying data and redefine

the parameters introduced in Section 2.2 according to the mixture-like conceptualization. This type

of modelling does not require knowledge of the joint distribution of the comparisons vectors. We also

explore some cases where the mixture-like approach may be inaccurate or even fail altogether when

applied to record linkage tasks. As already discussed, the sampling or data generation mechanism

behind the record linkage data is quite unusual and complicated. In this chapter we show that this

mechanism has important consequences for the properties of parameter estimates of the mixture-like

model (and regular mixtures as well). Nevertheless, at least in theory, an estimator that has a better

agreement with the record linkage data generating mechanism can be obtained. To construct such

an estimator, a special case of blocking is introduced. Finally, we discuss a method for estimating

parameters of a mixture-like model.

3.1 Mixture-like model

We start discussing how record linkage and dual system estimation are connected by a more for-

mal presentation of what we refer to as a mixture-like model. Suppose a vector X that can take
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finitely many values xj , j = 1, . . . , J . For every value xj of X and some finite vector of param-

eters υ = (υ1, . . . , υg)
T ,Θ = (θ1, . . . ,θg)

T , a mixture-like model puts into correspondence a value

π(X = xj ;υ,Θ) ∈ [0, 1]. Furthermore, in the case of the mixture-like model, it is possible to write

π(X = xj ;υ,Θ) =

g∑︂
i=1

υipi(xj ;Θi) (20)

where 0 ≤ υi ≤ 1 and the following equality holds:

g∑︂
i=1

υi = 1;

as well as for all i, 0 ≤ pi(xj ;Θi) ≤ 1 and the following holds

J∑︂
j=1

pi(xj ;Θi) = 1.

Clearly, any discrete mixture model is mixture-like. For instance, mixture model (8) from Section

2.2.3 is such that X is the comparison outcome on K linkage variables, with possible values xj being

γ1, . . . ,γp, p = 1, . . . , 2K , where π(X = xj ;υ,Θ) = pr(γ(a, b);π,µ,ν), υ1p1(xj ;Θ1) = πpr(γ(a, b) |
M;µ) and υ2p2(xj ;Θ2) = (1− π)pr(γ(a, b) | U ;ν).

Now X can be partitioned into several vectors, or scalars, or a combination of both and there is a

corresponding factorization pi(xj ;Θi) = pi,1(xj,1)pi,2(xj,2) . . . which for all i satisfies∑︂
xj,n

pi,n(xj,n) = 1,

when summing across unique values of xj,n and 0 ≤ pi,n(xj,n) ≤ 1.

In terms of partitioning of X, one example could be the case of conditional independence between

linkage variables given the match status. Then, with K = 4 linkage variables, X is partitioned into

four scalars where each xj,k is either 0 or 1. Here xj,k is the kth entry of xj , which corresponds to a

comparison pattern γj in the case of the linkage model. For instance, if x1 = γ1 = (1, 1, 1, 1)T and

x2 = γ2 = (0, 1, 1, 1)T , then x1,1 = 1 and x2,1 = 0. Hence, in our record linkage example p1,k(xj,k) = µk,

p2,k(xj,k) = νk if xj,k = 1 and p1,k(xj,k) = 1− µk, p2,k(xj,k = 0) = 1− νk if xj,k = 0 for j = 1, . . . , J .

Another example of partitioning of X is when there is association between comparisons on a

second linkage variable given the comparison outcome of the first linkage variable within both the

sets of matches and non-matches. Then X is partitioned into three components, one is vector-valued

and the remaining ones are scalars. Possible values of xj,k are xj,1 ∈ {(1, 1)T , (1, 0)T , (0, 1)T , (0, 0)T }
for simultaneous agreements and disagreements on the first and second variables; xj,2 ∈ {0, 1} and

xj,3 ∈ {0, 1}.
Mixture-like models are more general than regular mixtures. In certain situations they are a more

appropriate representation of a problem of interest. Specifically, π(X = xj ;υ,Θ), υi and pi(xj ;Θi)

need not be probabilities. Instead, they can be expectations of random variables or functions of random
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variables that happen to satisfy the above conditions. Therefore, mixture-like models can be used in

the situations where (20) models well the first moments, but not the higher moments.

In this thesis we are only considering two component variant of the mixture-like model (20) with

π(X = xj ;υ,Θ) = π(γp;π,µ,ν), υ1p1(xj ;Θ1) = πµ(γp;µ) and υ2p2(xj ;Θ2) = (1− π)ν(γp;ν):

π(γp;π,µ,ν) = πµ(γp;µ) + (1− π)ν(γp;ν), (21)

where γp is the comparison pattern indexed p = 1, . . . , 2K , µ is the vector of parameters related to the

outcomes in the set of matches, ν is the vector of parameters related to the outcomes in the set of non-

matches and the factorization of µ(γp;µ), ν(γp;ν) depends on the model specification used. Often, a

model for the set of matches and the set of non-matches is not the same and therefore factorizations

differ.

In order to see more clearly the difference between mixture models and mixture-like models, recall

that by definition mixtures are suitable to model independent and identically distributed random

variables or vectors (McLachlan & Peel, 2000, chap. 1.9). In other words, if we have a sample of w

random vectors, every one of them has the common mass (or density) π(X = xj ;υ,Θ). In particular,

the component memberships are also independent and identically distributed. Specifically, in the case

of a finite number of components, these components are multinomially distributed (McLachlan & Peel,

2000, chap. 1.9). In record linkage models, we are dealing with two possible memberships. Therefore,

in a regular mixture, the component membership is binomially distributed and the parameter π is the

probability parameter of such a distribution. Also, µ and ν in (21) would be probabilities in a regular

record linkage mixture. In principle, the component memberships may be associated in mixture models.

If this is the case, hidden Markov models are used to estimate the parameters of interest (McLachlan

& Peel, 2000, chap. 13). However, then the model is not parameterized exactly as (21) any more since

it needs to reflect the transition probabilities between the components.

Recall the discussion of the record linkage experiment where we demonstrated that both the ob-

served comparisons and component memberships lack independence. Particularly, we cannot think

about record pairs, which constitute the data points used in parameter estimation, as being drawn

independently. As an illustration, imagine a small population of size τ = 3, with the population el-

ements {e1, e2, e3}. As everywhere else in this thesis, we assume no duplication. Therefore, we have

1-to-1 matching. The first survey is a sample of n1 records from {s1,1, s1,2, s1,3} and the second survey

is a sample of n2 records from {s2,1, s2,2, s2,3}. Hence, there are 9 possible record pairs. Without

loss of generality, let id(s1,i) = id(s2,i) = ei, so that the pairs (1, 1), (2, 2), (3, 3) are matches. Let

n1 = n2 = 2, so we observe four record pairs. Since the record pairs are produced by taking the Carte-

sian product of s1,a and s2,b, it is impossible, for instance, to observe the following sample of pairs:

{(1, 1), (2, 2), (2, 3), (3, 3)}. On the other hand, having sampled, say, s1,1, s1,2 in the first sample and

s2,1, s2,2 in the second implies the observed sample of pairs {(1, 1), (1, 2), (2, 1), (2, 2)}. Provided the

pairs (1, 1) and (2, 2) are in a sample, (2, 1) and (1, 2) also must be in the sample. Furthermore, if (1, 1)

and (2, 2) are matches, then (2, 1) and (1, 2) must be non-matches with probability 1, rather than with

probability 1− π. Since in a regular record linkage mixture the component membership is determined

for each individual pair by the probability π which is same for each record pair, such a regular mixture
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is not a correct model for the data in the linkage experiment. Nevertheless, in certain situation it is

possible to usefully model the data by (21), but to do it at the aggregate rather than at the individual

level and with expectations of certain ratios instead of the probabilities as the parameters.

More generally, for any population size τ there will be τ matches in the population and up to

τ2 record pairs can be observed, depending on the obtained sample sizes. The difference between

mixture and mixture-like record linkage models, with respect to the mixing proportion π, is then as

follows. In a regular mixture inspired by the above setting, the probability of getting a success (a pair

being a match in the record linkage situation) is π = 1/τ and the total number of successes m (the

total number of matches) out of w = n1n2 ≤ τ2 trials is binomially distributed with pr(M = m) =(︁
w
m

)︁
(1/τ)m(1 − 1/τ)w−m. Each success (match) on a given trial (drawing a single record pair) occurs

independently of the outcomes of other trials with the same fixed probability π = 1/τ . There is no

theoretical restriction on how many successes will be observed, as long as the number ranges between

0 and w. The expected number of successes is w/τ = n1n2/τ . There are many situations where such

a model is a good representation of the data generating mechanism. For instance, the cheating coin

flipper in Drton et al. (2009, chap. 2.2) is such an example. This binomial model is not appropriate for

record linkage, since the selections of the component memberships of record pairs are correlated. In

other words, there is no fixed probability π = 1/τ of getting a match (success) in a sequence of draws.

Hence, (21) cannot be a correct probability mass function of each record pair having a comparison γ.

It is possible to derive the probability mass function for the number of matches in a record linkage

situations by using a combinatorial argument. This probability mass function accounts for correlated

draws. The assumptions outlined in Section 2.1.2 are relevant here. We have
(︁
τ
n1

)︁
and

(︁
τ
n2

)︁
ways to

draw the first and second samples, respectively. Then the total number of samples of record pairs

that takes into account the constraints on the combinations of pairs that can be drawn in a particular

sample is
(︁
τ
n1

)︁(︁
τ
n2

)︁
. There are

(︁
τ
m

)︁
ways to select exactly m matches out of the total τ matches. Note

again, that we are choosing from τ , not from w because of the restrictions on what combinations of

pairs can be selected. Then there are
(︁
τ−m
n1−m

)︁
ways to select the remaining non-matches in the first

sample and there are
(︁
τ−n1

n2−m

)︁
ways to select the remaining non-matches in the second sample. Provided

n1 −m ≥ 0 and n2 −m ≥ 0 the probability of observing exactly m matches (matching pairs) is

pr(M = m) =

(︁
τ
m

)︁(︁
τ−m
n1−m

)︁(︁
τ−n1

n2−m

)︁(︁
τ
n1

)︁(︁
τ
n2

)︁ .

After some manipulations, we can show that pr(M = m) =
( τ
m)(

τ−m
n1−m)(

τ−n1
n2−m)

( τ
n1
)( τ

n2
)

=
(n1
m)( τ−n1

n2−m)

( τ
n2
)

, which

is just a hypergeometric distribution where τ is the population size, n1 is the number of successes in

the population, n2 is the number of draws and m is the number of observed successes. This is the

same distribution which is frequently used in the simple dual system estimator to model the number

of matches. What matters to our discussion on the distinction between mixture and mixture-like

models, is the fact that in a sequence of draws from a hypergeometric distribution, the probability of

getting, say, a second success is not the same as getting the first success (as the population size and the

number of successes change as draws are carried out and successes are observed). Which shows that

we are not dealing with a constant match (success) probability π = 1/τ . Actually, a hypergeometric
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distribution has a certain constant probability associated with it. It is the probability of observing a

success on the ith draw (which is obtained by summing up the probabilities of all possible sequences

with a success on the ith draw). This probability equals n1/τ . Again, this is not π = 1/τ , which we

dealt with in the above example of a standard mixture. Since we are dealing with a hypergeometric

distribution, the expected number of matches is n1n2/τ , the same as in the binomial model. Now we

observe, that for fixed n1, n2 the expectation of the ratio of matches to the number of observed record

pairs is E(M/W ) = E(M)/w = (n1n2/τ)(1/n1n2) = 1/τ = π. Therefore, instead of postulating a

regular mixture model which treats each observation as being drawn or generated independently, in the

situation where it is not the case, we can postulate a mixture-like model. This model is parameterized

in exactly the same way as a regular mixture, but its parameters are the expected values of the ratios

of random variables rather than probabilities, as in the example above, where π = E(M/W ). Such a

postulation of course requires the remaining parameters µ and ν also to be meaningful expectations.

It also requires ensuring that a mixture-like model for a given problem gives a reasonably accurate

factorized approximation of the expected value of the random variable of interest. In Section 3.2

we demonstrate the suitability of a mixture-like approximation of the expectation of the ratio of a

comparison pattern γp to the total number of record pairs.

For a given record linkage problem, there would be no differences between the parameterization

of a regular mixture and mixture-like model. Also, at least with the parameter estimation methods

discussed in this thesis, the parameter estimates would be exactly the same for these two types of

models. The differences are conceptual and affect the way we think about record linkage and what can

be deduced from each of the conceptualizations. A standard mixture is not a quite correct probability

model. It implies incorrect variance estimation and cannot explain why the record linkage model works.

More importantly, it does not offer the means to study properties of record linkage models and deter-

mine where such a model becomes less reliable. On the contrary, a mixture-like model is a well-defined

approximation of the expectation of a random variable or vector, it prompts a careful consideration

of variance estimation (though does not offer a straightforward solution), allows estimation of useful

parameters and clarifies the nature of these parameters. It also provides a better explanation for why

record linkage models work with the data generated by such a specific mechanism. Finally, as will be

demonstrated in Section 3.2, it allows certain properties of the model to be studied.

An analogy from dual system estimation can be useful here. The estimators (4) and (5) give the

same estimate of the population size. The latter, however, gives us not only the means to discover

that the dual system estimator is biased whenever the inclusion probabilities are heterogeneous, but

also provides a theoretical approximation of the extent of this bias (Wolter, 1986). Moreover, a post-

stratification solution to reduce the heterogeneity bias is obvious from the analysis of (5), but not from

(4).

3.2 Justification of the mixture-like model for record linkage

It was discussed earlier in Section 2.2.5 that, despite widespread applications to record linkage tasks,

a finite mixture is not a valid statistical model for the problem. Yet, in this section we demonstrate

that a mixture-like model (21) is a meaningful model for record linkage and the linkage free dual sys-
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tem estimation. As already claimed, a mixture-like model means that a statistical model is genuinely

parameterized as a mixture, but such a model, among other things, does not impose that every ob-

servation is drawn in turn from a certain component independently of other observations, but allow

useful description of the record linkage data. The demonstration below is not a rigorous proof.

As far as parameter estimation approaches that do not require or assume the knowledge of joint

distribution of comparison outcomes are available and a model in consideration is identifiable, mean-

ingful parameter estimates of the mixture-like model can be obtained. However, as it is going to be

shown, unlike well-defined probability parameters of a regular mixture, the parameters of the mixture-

like model are ratios of the expectations of certain events. It is helpful to use the law of averages

(Grimmet & Stirzaker, 2001, chap. 2.2) as an illustration of the difference here. If the law of averages

allows us to näıvely regard the probability of an event A as the ratio of occurrences of this event

to the number of trials, that is pr(A) = N(A)/N , then the corresponding ratio of expectations is

R(A) = E(N(A))/E(N). We can think that a series of experiments are run under similar conditions

with variable number of trials for each member of the series, rather than a single experiment with N

trials. While it may be hard to see the reason for considering such a ratio here, it will be important in

the later development.

It will be demonstrated that in the mixture-like record linkage model, instead of the probability

π of a record pair being in the set of matches M, the corresponding parameter is the ratio of the

expected number of matches to the expected number of record pairs in repeated linkage experiments

with a fixed setup. Also, instead of the probability π(γp;π,µ,ν) of observing a comparison pattern

γp, the parameter of the mixture-like linkage model is the ratio of the expected number of the pth

pattern to the expected number of all record pairs. Similarly, instead of the probability µ(γp;µ) of

the joint agreements and disagreements associated with a comparison pattern γp for a record pair

(s1,a, s2,b) = (a, b) belonging to the set of matches M, the parameter of the mixture-like linkage model

is the ratio of the expected number of matching pairs where comparison results in the pattern γp to the

expected number of matched pairs. Finally, instead of the probability ν(γp;ν) of the joint agreements

and disagreements in the set of non-matches U for the pth pattern, the actual parameter we are dealing

with in linkage is the ratio of the expected number of non-matching pairs where comparison results in

the pattern γp to the expected number of non-matched pairs, and so on for any parameter of interest.

Recall from the previous discussion of the linkage model that we have a random variable N1 that

maps the outcome of drawing the first sample from the population to the size of the sample. Similarly

N2 maps the outcome of drawing the second sample to the size of this sample. The two samples are

drawn independently. The number of record pairs is W = N1N2, while the number of matches is M .

None of the issues arising in the linkage model is related to W and M . For a long sequence of repeated

linkage experiments with the fixed conditions, the expectations are w and m, respectively. The number

of non-matches is U = W −M , its expected values is u. Unless stated otherwise, all expectations in

this and following sections are obtained over a long sequence of repeated linkage experiments with the

fixed set-up. It will be necessary later to know some distributional properties of W and M , but for

the time being we do not assume any specific distribution.

Let an indicator function be I{(a, b) : some property} = 1 if a record pair (a, b) satisfies this
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property, and I{(a, b) : some property} = 0 otherwise. As before, we are dealing with K linkage

variables. For the record pairs in the set of non-matches U , let Uk(1) =
∑︁
I{(a, b) : s1,a,k = s2,b,k, (a, b) ∈

U} be the number of agreements and Uk(0) = U − Uk(1) =
∑︁
I{(a, b) : s1,a,k ̸= s2,b,k, (a, b) ∈ U} be

the number of disagreements on the kth variable. There are no assumptions on how either of Uk(1),

Uk(0) is distributed and the numbers of agreements and disagreements are sums of outcomes that

are in general correlated. The expected values are uk(1) and uk(0), respectively. In order to avoid

overloading notation, we choose to abuse it slightly and, whenever it is possible, do not explicitly

distinguish between Uk(1) and Uk(0), simply writing Uk in both cases. The corresponding expectation

of Uk is uk. It will be clear whether agreements or disagreements are considered based on a given

comparison pattern γp. Also, define Uk(1),j(1) =
∑︁
I{(a, b) : s1,a,k = s2,b,k, s1,a,j = s2,b,j , (a, b) ∈ U},

Uk(1),j(0) =
∑︁
I{(a, b) : s1,a,k = s2,b,k, s1,a,j ̸= s2,b,j , (a, b) ∈ U} for a combination of simultaneous

agreements and disagreements on two linkage variables. The expected values are uk(1),j(1) and uk(1),j(0),

respectively. Then Uk(0),j(1) = Uj(1)−Uk(1),j(1) and Uk(0),j(0) = Uj(0)−Uk(1),j(0). Whenever distinction

between agreements and disagreements is not needed, or a given comparison pattern indicates which

one of the events is meant, we write Uk,j which has the expected value uk,j . No assumptions about

the distribution of these random variables are made.

In the same vein, variables Mk(1) =
∑︁
I{(a, b) : s1,a,k = s2,b,k, (a, b) ∈ M}, Mk(0) = M −Mk(1),

Mk(1),j(1) and Mk(1),j(0) are defined for the matching pairs. Since each comparison patterns γp gives

information on whether agreements or disagreements are of interest for the kth linkage variable, we

again abuse the notation by simply using Mk. The expected values of Mk, Mk(1),j(1) and Mk(1),j(0) are

mk, mk(1),j(1) and mk(1),j(0), respectively. As before, no distributional assumptions are made.

We can now use the above definition to facilitate understanding of the reasoning behind the param-

eterization of the linkage model as a mixture-like. Since some technical details related to the discussion

become tedious as the complexity of models increases, we give a generalised presentation for the case

of the conditional independence of comparison outcomes between linkage variables given the match

status. After, we look only at several special cases of the models with dependence in comparison

outcomes between linkage variables.

We revisit the record linkage experiment introduced earlier (Section 2.2.5). Suppose we run a record

linkage data generating experiment in which we can observe all outcomes of interest, including those

that are not directly observed in real linkage exercises. The conditions of this particular experiment

are such that neither errors of recording values of the linkage variables are correlated between any

variables, nor the values of any linkage variable, given the value of another linkage variable, tend to get

selected substantially more frequently compared to what would be obtained by simple random sampling

of the values of the linkage variable. Such conditions lead to the case of conditional independence in

comparisons between the linkage variables given the match status. For any given linkage variable,

individual agreement and disagreement outcomes are correlated in the set of non-matches U .
Since every record pair is either a match or a non-match, once the linkage experiment is run and the

binary comparison outcomes are summed for each of the comparison pattern within matches and non-

matches, the result can be viewed as two contingency tables with 2K cells in each of the table. We can

call the table related to the matching pairs the match table, and the table related to the non-matching
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pairs the non-match table. Each of the cells of both tables corresponds to the comparison pattern γp

and contains the number of cases of this particular pattern in the M or U-sets. The marginal counts

of the first table are Mk(1) and Mk(0), while the marginal counts of the second table are Uk(1) and

Uk(0). Since these random variable are sums of correlated outcomes in general and there are many

parameters in play (such as the range of the possible values of linkage variables), the distributions of

Mk, Uk are unknown. It is only known that, in this setup, the margins are independent.

Summing two cells for a given comparison pattern gives the frequency, fp, of the pattern which is

observed in a linkage exercise. Dividing this number by the number of pairs w gives the overall relative

frequency of the pattern, π(γp).

There can be between 2K +1 to 2(2K − 1)+ 1 = 2 · 2K − 1 parameters needed to parameterize the

model (two tables and the mixing proportion), but only 2K observables. We attempt to achieve some

reduction in parameters and model π(γp) = fp/w with 2K − 1 or fewer parameters. In the case of the

conditional between-variables independence given the match status we are aiming for the model with

the minimum possible number of parameters 2K + 1. Estimate the ratio of the number of matches to

the overall number of pairs by the realization of M/W . For each linkage variable in the matching set

estimate the ratio of agreements or disagreements to the number of matching pairs by the realization of

Mk/M . Now fix an arbitrary comparison pattern γp, which is the equivalent of fixing a corresponding

cell in the contingency tables. Estimate the relative frequency of the comparison pattern (or cell) in

the set of matches to the number of matches by the realization of (M1/M)(M2/M).... This is similar

to estimating the probability of a particular cell in a 2 × 2 × . . . contingency table under the mutual

independence assumption. The key difference from modelling a regular contingency table is that the

‘number of trials’ M or U are random variables and no assumption about the distribution of a cell

count is made. Then we can estimate the relative frequency of the cell in the match table to the overall

number of record pairs by (M/W )(M1/M)(M2/M).... The same is done for the set of non-matches

and the results are summed to produce the estimate of π(γp). Overall, for a given comparison pattern

γp we are dealing with the following random variable

Πp = gp(W,M,U,M1, . . . ,MK , U1, . . . , UK) =
M

W

M1

M
. . .

MK

M
+
U

W

U1

U
. . .

UK

U
, (22)

with deliberately avoided cancellation of M and U . Note that it is the pattern γp that tells us for

which k we have Mk(1), Uk(1) and for which we have Mk(0), Uk(0). For instance, if K = 4 and, say,

the pattern γ2 = (1, 1, 1, 0)T , then in this case we are dealing with M1 = M1(1),M2 = M2(1),M3 =

M3(1),M4 =M4(0) and U1 = U1(1), U2 = U2(1), U3 = U3(1), U4 = U4(0).

Suppose we run the linkage experiment with a fixed set-up repeatedly and we are interested in

approximating the expected value E(Πp) using the second order Taylor expansion around the point

(w,m,m1, . . . ,mK , u1, . . . , uK) to see if

E(Πp) = E
(︃
M

W

M1

M
. . .

MK

M
+
U

W

U1

U
. . .

UK

U

)︃
≈ m

w

m1

m
. . .

mK

m
+
u

w

u1
u
. . .

uK
u
. (23)

This will allow us to answer the question of whether and under what conditions we can achieve the

desired reduction of the number of parameters in a repeated linkage exercise using the mixture-like
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parameterization.

Recall, that for a function g(x1, . . . , xK) of K variables, the second order Taylor series gT around

the point (a1, . . . , aK) is given by

gT (a1, . . . , aK) = g(a1, . . . , aK) +

K∑︂
k=1

∂g(a1, . . . , aK)

∂xk
(xk − ak)

+
1

2

K∑︂
k=1

K∑︂
j=1

∂2g(a1, . . . , aK)

∂xk∂xj
(xk − ak)(xj − aj),

(24)

where g(a1, . . . , aK) is function g evaluated at the point (a1, . . . , aK), ∂g(a1, . . . , aK)/∂xk is the partial

derivative of g with respect to xk evaluated at the same point, and ∂2g(a1, . . . , aK)/∂xk∂xj is the

second partial derivative of g with respect to xk and xj also evaluated at the above point.

When taking the expectation of the Taylor expansion around the points that are the expected values

of the random variables, the following expectations arise: E(xk − xk) = 0, E[(xk − xk)
2] = Var(xk)

and E[(xk − xk)(xj − xj)] = Cov(xk, xj). It means that all terms related to the first derivatives can be

disregarded.

The first term in the approximation is gp evaluated at (w,m,m1, . . . ,mK , u1, . . . , uK):

gp(w,m,m1, . . . ,mK , u1, . . . , uK) =
m

w

m1

m
. . .

mK

m
+
u

w

u1
u
. . .

uK
u
.

Our strategy to check if this expression is a good approximation for E(Πp) is going to consist in

working out the order of gp(w,m,m1, . . . ,mK , u1, . . . , uK) as well as the order of the remaining terms

and checking whether the remaining terms have substantially smaller order. Here by order O(xn) of

a function g(x) we mean that |g(x)| ≤ Cxn for some constant C. Since we are interested in order, we

can disregard the sign and a numeric coefficient of each term in the expansion. That is the reason why

we do not need to distinguish at this point between Mk(1) and Mk(0) as defined above. The derivative

of the corresponding terms will only differ in sign.

Note that the first term on the right hand side of (22) is structurally the same as the second term.

Therefore, it is sufficient to work out the relevant set of derivatives for one of the terms and then re-use

them for the second term.

Working out all the derivatives and considering only those that are unique up to some constant

multiple, hence the use proportionality rather than equality, we have to deal with 5 terms:

E
(︃
∂2gp(w,m, . . . ,mk, . . . uk, . . . )

∂W 2
(W − w)(W − w)

)︃
∝
∏︁K

k=1mk

w3mK−1
Var(W ), (25)

E
(︃
∂2gp(w,m, . . . ,mk, . . . uk, . . . )

∂M2
(M −m)(M −m)

)︃
∝
∏︁K

k=1mk

w ·mK+1
Var(M), (26)

E
(︃
∂2gp(w,m, . . . ,mk, . . . uk, . . . )

∂M∂W
(M −m)(W − w)

)︃
∝
∏︁K

k=1mk

w2mK
Cov(M,W ), (27)
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E
(︃
∂2gp(w,m, . . . ,mk, . . . uk, . . . )

∂M∂Mj
(M −m)(Mj −mj)

)︃
∝
∏︁K

k=1,k ̸=j mk

w ·mK
Cov(M,Mj), (28)

E
(︃
∂2gp(w,m, . . . ,mk, . . . uk, . . . )

∂W∂Mj
(W − w)(Mj −mj)

)︃
∝
∏︁K

k=1,k ̸=j mk

w2mK−1
Cov(W,Mj). (29)

The derivatives for the second term of the right-hand side of (22) are as above with U and Uk

instead of M and Mk.

Now we focus on the order of w,m and mk. Since the population size is τ , neither m nor mk can

exceed it. Therefore we conclude that the O(m) is τ . Since w involves the product of sizes of two

samples from a population of size τ , O(w) is τ2. Now if dealing with the agreements on the kth linkage

variable, the order of mk is also τ . If dealing with disagreements, let the positive integer ϵ be some

number of disagreements we observe on the kth variable, ϵ <= τ . For simplicity, we use a common ϵ

for all of the linkage variables. Then, assuming that the number of disagreements is small relatively

to the number of agreements, O(mk) (for the number of disagreements on the kth variable) is ϵ. In

addition, let z be the number of disagreements in the pattern γp. Then the order

O

(︃
m

w

m1

m
. . .

mK

m

)︃
is

τ

τ2
τ

τ
. . .

ϵ

τ
· · · = ϵz

τ z+1
, (30)

so the order of the above term is between ϵK/τK+1 and 1/τ .

Regarding the order of w, u and uk for the second term of the right-hand side of (22), we have

the following. Clearly O(w) is τ2. Now in majority of the cases u is close to w, hence we can think

that O(u) is also τ2. We expect a fair number of disagreements on the linkage variable vk among the

non-matches. Hence, in case of disagreements we are safe to think that O(uk) is again τ
2. In the case

of agreements, recall that ρk is the number of unique values the kth linkage variable can take. Assume

for simplicity the same ρ for all of the linkage variables. Then roughly, the number of agreements on a

certain linkage variable among non-matches is τ2/ρ. This figure is not necessarily very accurate, but

it should be sufficient when discussing the orders. Again, let z be the number of disagreements and

the order of the term

O

(︃
u

w

u1
u
. . .

uK
u

)︃
is
τ2

τ2
τ2/ρ

τ2
. . .

τ2

τ2
· · · = 1

ρK−z
. (31)

Overall we have a tuple of orders (︃
ϵz

τ z+1
,

1

ρK−z

)︃
(32)

associated with gp(w,m,m1, . . . ,mK , u1, . . . , uK).

We can work out the order for each variance and covariance in (25) – (29). In several instances,

we will be using the fact that

−
√︁
Var(X)Var(Y ) ≤ Cov(X,Y ) ≤

√︁
Var(X)Var(Y ). (33)

Fix τ, π1 and π2. Suppose that N1 ∼ Bin(τ, π1), N2 ∼ Bin(τ, π2) and N1, N2 are independent.
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Then M ∼ Bin(τ, π1π2). Note that these distributions are the consequence of assumption that the

cells of a contingency table are distributed according to the multinomial distribution, when odds ratio

is 1 (see Section 2.1.2). As we have seen earlier, the multinomial distribution is frequently used

when discussing the dual system estimation. There is no particular reason confining to the binomial

distribution except the fact that the orders of variances and covariances can be easily obtained for in

this case. In principle, any distributions can be used, as long as such orders are similar to the orders

under the binomial distribution. At the end of this section, we will visit a distribution which can lead

to a different order of variance.

Since the variance of M is Var(M) = π1π2(1− π1π2)τ , the order O(π1π2(1− π1π2)τ) is τ .

Aiming to work out the order of Var(W ), we use W = N1N2 and the assumption that two samples

are independent, so that E(W ) = E(N1N2) = E(N1)E(N2). Now, E(N1) = π1τ and Var(N1) = E(N2
1 )−

E(N1)
2 = π1(1− π1)τ imply that E(N2

1 ) = π1τ(1− π1 + π1τ). Similarly, E(N2
2 ) = π2τ(1− π2 + π2τ).

Then
Var(W ) = E(W 2)− E(W )2 = E(N2

1N
2
2 )− E(N1N2)

2 = E(N2
1 )E(N2

2 )− E(N1N2)
2

= π1τ(1− π1 + π1τ)π2τ(1− π2 + π2τ)− π21π
2
2τ

4

= −2π21π
2
2τ

3 + π21π2τ
3 + π1π

2
2τ

3 + π21π
2
2τ

2 − π21π2τ
2 − π1π

2
2τ

2 + π1π2τ
2

and the order of E(W ) is τ3.

We use (33) to work out conservatively the order of covariance terms:

O(Cov(W,M)) ≤ O
(︂√︁

Var(W )Var(M)
)︂

is τ1.5τ0.5 = τ2,

O(Cov(W,Mk)) is

⎧⎨⎩τ1.5τ0.5 = τ2 if Mk is the number of agreements

τ1.5ϵ0.5 ≤ τ2 if Mk is the number of disagreements,

O(Cov(M,Mk)) is

⎧⎨⎩τ0.5τ0.5 = τ if Mk is the number of agreements

τ0.5ϵ0.5 ≤ τ if Mk is the number of disagreements.

In most situations it is the case that U ≈ W , hence the order of Var(U) is the same as the order

of Var(W ), which is τ3.

With the help of (33) it is possible to determine the orders of covariance terms associated with the

non-match table:

O(Cov(W,U)) ≤ O
(︂√︁

Var(W )Var(U)
)︂

is τ1.5τ1.5 = τ3,

O(Cov(W,Uk)) ≈ O(Cov(U,Uk)) is

⎧⎨⎩τ1.5τ/ρ0.5 = τ2.5/ρ0.5 if Uk is the number of agreements

τ1.5τ = τ2.5 if Uk is the number of disagreements.

Now it is possible to determine the order of (25) − (29) associated with both the match and non-

match tables by plugging in the orders of individual terms. For the match table the orders of terms
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are following:

O

(︄∏︁K
k=1mk

w3mK−1
Var(W )

)︄
is

ϵz

τ z+2
,

O

(︄∏︁K
k=1mk

w ·mK+1
Var(M)

)︄
is

ϵz

τ z+2
,

O

(︄∏︁K
k=1mk

w2mK
Cov(M,W )

)︄
is

ϵz

τ z+2
,

O

(︄∏︁K
k=1,k ̸=j mk

w ·mK
Cov(M,Mj)

)︄
is

⎧⎨⎩ ϵz
∗

τz∗+2 if Mj is the number of agreements

ϵz
∗+0.5

τz∗+2.5 if Mj is the number of disagreements,

O

(︄∏︁K
k=1,k ̸=j mk

w2mK−1
Cov(W,Mj)

)︄
is

⎧⎨⎩ ϵz
∗

τz∗+2 if Mj is the number of agreements

ϵz
∗+0.5

τz∗+2.5 if Mj is the number of disagreements.

We use z∗ in the terms that already incorporate an agreement or a disagreement. This means

that there may be some restrictions on what values z∗ can take. For instance, if Mj is the number of

agreements, then z∗ ̸= K. It reflect the fact, that there are situations, where the order of some terms

remains unchanged for the different numbers of the overall disagreements.

For the non-match table the orders are following:

O

(︄∏︁K
k=1 uk

w3uK−1
Var(W )

)︄
is

1

ρK−zτ
,

O

(︄∏︁K
k=1 uk

w · uK+1
Var(U)

)︄
is

1

ρK−zτ
,

O

(︄∏︁K
k=1 uk

w2uK
Cov(U,W )

)︄
is

1

ρK−zτ
,

O

(︄∏︁K
k=1,k ̸=j uk

w · uK
Cov(U,Uj)

)︄
is

⎧⎨⎩
1

ρK−z∗−0.5τ1.5
if Uj is the number of agreements

1
ρK−z∗−1τ1.5

if Uj is the number of disagreements,

O

(︄∏︁K
k=1,k ̸=j uk

w2uK−1
Cov(W,Uj)

)︄
is

⎧⎨⎩
1

ρK−z∗−0.5τ1.5
if Uj is the number of agreements

1
ρK−z∗−1τ1.5

if Uj is the number of disagreements.

It can be seen that the above terms generally have substantially smaller order than the terms of

interest (32). There may be several cases when this is not true. First, when ρ is small, that is all or

just certain linkage variable have a few possible values they can take. The extreme examples would
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be binary variables like sex, student indicator, born in the country of residence, etc. In this case the

term 1/ρK−zτ from the non-match table need not be substantially smaller than the main term of

the match table ϵz/τ z+1. This is later confirmed in simulation work, results are presented in Section

7.6. On the other hand, if ρ is substantially larger than τ , then the order ϵz/τ z+2 of the term (25)

from the match table may be larger than the main term of the non-match table 1/ρK−z. This is also

confirmed in simulations. However, the effect of having variables with a small number of levels appears

to have a bigger effect on the performance of the methods and is arguably more likely to occur in real

applications.

Hence, as long as we are dealing with W and M of similar order as above and ρ is neither very

small, say binary or ternary, nor very large relatively to τ for all or most variables, the following

approximation

E(Πp) = E
(︃
M

W

M1

M
. . .

MK

M
+
U

W

U1

U
. . .

UK

U

)︃
≈ m

w

m1

m
. . .

mK

m
+
u

w

u1
u
. . .

uK
u

holds.

The beta-binomial would be an example of a distribution that may result in orders of the above

terms being different from those considered in our discussion. If N1 follows the beta-binomial distri-

bution with the number of trials τ , and parameters α, β, then the variance of this random variable is

(ταβ(α+β+τ))/((α+β)2(α+β+1)). If N2 also follows the beta-binomial with the same number of tri-

als, then for some choices of parameters α and β the order of Var(W ) can be τ4 and some of (25)−(29)

may be of order similar to the order of the terms (32). It is not clear if such an extreme situation can

occur in real applications since it requires extraordinary heterogeneous response probabilities.

With those caveats in mind, we we can now redefine the parameters of the linkage model as

π =
m

w
,

µk =
mk

m
,

1− µk = 1− mk

m
,

νk =
uk
u
,

1− νk = 1− uk
u
,

and replace the ratios in (23) with the above parameters to get the mixture-like model of independence

between the outcomes of comparisons on different linkage variables given the match status. In this

case µ = (µ1, µ2, µ3, µ4)
T and ν = (ν1, ν2, ν3, ν4)

T , and the relative frequency of each pattern γp can

be written as
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π(γ1;π,µ,ν) = πµ1µ2µ3µ4 + (1− π)ν1ν2ν3ν4,

π(γ2;π,µ,ν) = π(1− µ1)µ2µ3µ4 + (1− π)(1− ν1)ν2ν3ν4,

π(γ3;π,µ,ν) = πµ1(1− µ2)µ3µ4 + (1− π)ν1(1− ν2)ν3ν4,

. . .

From now on we will often be using the compact notation for mixture-like models. In this notation

the between-variables associations of the comparison outcomes will be given in brackets after µp and

νp corresponding to the set of matches and non-matches, respectively. A single γk means that the

comparison on the kth variable is independent of comparisons on any other variables, and γk,l means

that there is association between comparisons on the kth and lth linkage variables. So the compact

form for the above independence model is π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4).

It is possible to use the above approach to show that dependencies between comparison outcomes

of the linkage variables can be similarly taken into account. We consider here only two models with

between-variables dependencies for the case of K = 4 linkage variables. The first model is considered

throughout this work because it is likely to appear in practical applications. The second model is less

useful in practice, but serves as a good example of what happens to the approximation like (23) when

the complexity of a model of interest increases. Both models considered are identifiable. The above

approach can be applied for any parameterization of a mixture-like model if required.

The first model is of the conditional between-variables independence given the set of matches and

dependence between vk and vj , say between v1 and v2, in the set of non-matches. We write this model

in a compact form as

π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ3, γ4)

and it is parameterized as

π(γ1;π,µ,ν) = πµ1µ2µ3µ4 + (1− π)ν1ν2|1(1)ν3ν4,

π(γ2;π,µ,ν) = π(1− µ1)µ2µ3µ4 + (1− π)(1− ν1)ν2|1(0)ν3ν4,

π(γ3;π,µ,ν) = πµ1(1− µ2)µ3µ4 + (1− π)ν1(1− ν2|1(1))ν3ν4,

. . .

for the comparison patterns γ1 = (1, 1, 1, 1)T , γ2 = (0, 1, 1, 1)T , γ3 = (1, 0, 1, 1)T , . . . , γ16 = (0, 0, 0, 0)T .

The terms related to the match table are the same as in the discussion above. The ratio of the

interest when the dependence between two variables is present is estimated as (U1/U)(U2,1/U1). So

this time we are aiming to show that the following approximation holds:

E(Πp,2|1) = gp,2|1(W,M,U,M1, . . . ,M4, U1, U2,1, . . . , U4)

= E
(︃
M

W

M1

M

M2

M

M3

M

M4

M
+
U

W

U1

U

U2,1

U1

U3

U

U4

U

)︃
≈ m

w

m1

m
. . .

m4

m
+
u

w

u1
u

u2,1
u1

u3
u

u4
u
.

(34)

First, we determine the order of (U1/U)(U2,1/U1). Note, that if U1 is the number of agreements,
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then U2,1/U1 is of order 1/ρ, no matter whether U2,1 is the number of agreements or disagreements. If

U1 is the number of disagreements, then the order of U2,1/U1 is 1/ρ and 1 for agreements and disagree-

ments, respectively. Then the tuple of orders associated with gp,2|1(w,m,m1, . . . ,m4, u1, u2,1, . . . , u4)

is ⎧⎨⎩
(︂

ϵz

τz+1 ,
1

ρ2−z∗

)︂
if U1, U2,1 are the numbers of disagreements(︂

ϵz

τz+1 ,
1

ρ3−z∗

)︂
otherwise.

(35)

Note that z in this case is the number of disagreements in a comparison pattern related to two remaining

independent variables. So z can take values of 0, 1 or 2 in this model.

Accounting for between-variables dependence in this model results in the order having a smaller

power of ρ compared to the case when comparisons are independent between linkage variables in the

non-match table. A similar reduction of the power of ρ occurs in the remaining terms (25)−(29) of the

approximation. It is sufficient to check whether the term with Var(W ) is substantially smaller than

the terms (35). For the model of interest, this term is

u2,1u3u4
w3u2

Var(W )

and the corresponding order is⎧⎨⎩
1

ρ2−z∗τ
if U1, U2,1 are the numbers of disagreements

1
ρ3−z∗τ

if otherwise.

Again, the approximation (34) holds as long as the ρ not too small compared to τ . Since having

between-variables dependency reduces the power of ρ, one can anticipate that for a given ρ with a

few levels the approximation is less accurate when the above dependence is present compared to the

accuracy in the independence between linkage variables case.

We can now define the parameters of the linkage model similarly to the model of conditional

independence between variables given the match status presented above, but with ν2,1 = u2,1/u1.

The second model is of the conditional independence between linkage variables given the set of

matches and dependence in the set of non-matches of variables vj , vl on the value of vk. For instance,

v2 and v3 depend on the value of v1. A compact form is

π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ1,3, γ4)

and is parameterized as

π(γ1;π,µ,ν) = πµ1µ2µ3µ4 + (1− π)ν1ν2|1(1)ν3|1(1)ν4,

π(γ2;π,µ,ν) = π(1− µ1)µ2µ3µ4 + (1− π)(1− ν1)ν2|1(0)ν3|1(0)ν4,

π(γ3;π,µ,ν) = πµ1(1− µ2)µ3µ4 + (1− π)ν1(1− ν2|1(1))ν3|1(1)ν4,

. . .

for the patterns γ1 = (1, 1, 1, 1)T , γ2 = (0, 1, 1, 1)T , γ3 = (1, 0, 1, 1)T , . . . , γ16 = (0, 0, 0, 0)T .
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We want to show that the following approximation holds:

E(Πp,2|1,3|1) = gp,2|1,3|1(W,M,U,M1, . . . ,M4, U1, U2,1, U3,1, U4)

= E
(︃
M

W

M1

M

M2

M

M3

M

M4

M
+
U

W

U1

U

U2,1

U1

U3,1

U1

U4

U

)︃
≈ m

w

m1

m
. . .

m4

m
+
u

w

u1
u

u2,1
u1

u3,1
u1

u4
u
.

(36)

The tuple of orders associated with gp,2|1(w,m,m1, . . . ,m4, u1, u2,1, u3,1u4) is⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︂

ϵz

τz+1 ,
1

ρ1−z∗

)︂
if U1, U2,1, U3,1 are the numbers of disagreements(︂

ϵz

τz+1 ,
1

ρ3−z∗

)︂
if U1 is the number of disagreements, U2,1, U3,1 are the number of agreements(︂

ϵz

τz+1 ,
1

ρ2−z∗

)︂
otherwise.

(37)

Again, we need only to check the order of the term with Var(W ), which is either 1
ρ3−z∗τ

, or 1
ρ2−z∗τ

,

or 1
ρ1−z∗τ

. As in the previous model, z is the number of disagreements on the remaining variable not

involved in dependencies, so that z can take values of 0, 1 in this model.

The desired approximation holds under the same conditions as before, but accuracy deteriorates

even faster than in all models considered so far if the number of levels in ρ decreases. Again, we define

the parameters of the corresponding mixture-like model as above, this time with ν2,1 = u2,1/u1 and

ν3,1 = u3,1/u1.

3.3 Some issues related to parameter estimation of a mixture-like model

The previous section discussed the nature of the parameters of a mixture-like linkage model. It also

highlighted several cases, where the parameterization may fail to provide an accurate reflection of the

outcomes of the linkage experiment. Such failure results from a mixture-like model’s drastic reduction

of the number of original parameters involved in the linkage experiment and associated loss of the

important information required for accurate representation of the outcomes. In this section, a few

more issues with the model will be looked at, this time in relation to parameter estimation of mixture-

like models.

Note again that the parameters of interest are the ratios of the means. Take for instance, π = m/w,

where m = E(M), w = E(W ). However, in any real application, we are dealing with a single observable

realisation of W , and a single unobservable realization of M . Essentially, we have a single observation

available for estimation, which is different from the most cases of estimation or statistical analysis

where we have a sequence of observation x1, . . . , xn that are, say, generated from the same distribution

or are drawn according to the same sampling design. Dealing with a single observation has several

implications both for the point and variance estimation.

One way to see the issues related to the point estimation is to observe that estimating the above

linkage model parameter does not conform to the law of large numbers. Recall, that according to the

law of large numbers if random variables X1, X2, . . . are independent and identically distributed and

have the mean µx, then
∑︁n

i=1Xi/n→ µx as n→ ∞. However, in the linkage exercise n corresponds to

the number of repetitions of the linkage experiment, rather than a sample size, and n = 1 in practice.
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With a single observable realisation of W and a single unobserved realisation of M , we can obtain

neither the estimate of m/w, nor w, nor m with the above properties. While we can anticipate, and

it is confirmed with the simulation work (Section 7.5), ˆ︁π to be in general quite close to m/w to be

a useful estimator, this estimator does not tend to m/w with the increase of τ and therefore is not

consistent.

The impact on variance estimation of essentially dealing with a single observation is rather obvious:

there is no information available to make inference of uncertainty associated with the estimation of the

linkage parameters.

Another complication associated with a mixture-like (and regular mixture) linkage model is that

the principal parameter of interest π tends to 0 as the population size τ tends to infinity. This follows

from E(M) = π1π2τ , W = π1π2τ
2 so that

E(M)

E(W )
=

π1π2τ

π1π2τ2
=

1

τ
→ 0 as τ → ∞. (38)

Therefore, there is none of the asymptotic behaviour one usually expects from a well-defined statistical

estimator for the estimator of the linkage parameter π and its functions.

In many practical applications, blocking is used to reduce the number of record pairs W and the

above limit may not hold. However, a blocking simply aiming at a reduction of the number of pairs

may have the adverse effect on the accuracy of the approximation of the mixture-like record linkage

model since the orders of the terms involving W may be different to what we used in Section 3.2. Note

also that an arbitrary blocking makes analysis similar to the one in previous section more difficult.

Finally, being able to estimate the parameter π at the population or estimation stratum level is crucial

for the no-classification dual system estimation as will be shown in Section 4.1.

In the next section, we will discuss how the issues described in this section can, at least in theory,

be overcome. We will also see that a certain special case of blocking not only reduces the number of

record pairs in processing, but has a more profound impact on the parameter estimation. This in turn

opens opportunities for variance estimation.

In spite of these drawbacks, a mixture-like model is a useful approach to linkage and related pa-

rameters estimation as demonstrated by simulation work. It also allows some possibilities for studying

certain properties of the model and the corresponding estimators. Such theoretical tractability should

not be taken for granted given the complexity of record linkage problem from the statistical point of

view.

3.4 Constructing a data-conforming estimator and averaging blocking

An approach to constructing an estimator for linkage and related parameters that corresponds or

conforms to the data as generated in the repeated record linkage experiment is outlined in this section.

Again, it is not a rigorous demonstration, which is left for the future work. However, the conceptual

development presented here agrees well with the simulations (Section 7.6) and paves the way for

variance estimation.

Suppose we are performing a single iteration of the linkage experiment with the population size
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τ and the coverage probabilities of two data samples π1, π2. We stress again, that each element of

the population has a constant or near constant probability π1 to be selected in the first sample, and

constant or near constant probability π2 to be selected in the second sample. We also assume that

all remaining parameters of the experiment, such as error rates and ranges of the values of linkage

variables, do not vary substantially between possible subsets of the population. This experiment gives

rise to two data sets S1, S2 of the size N1 and N2, respectively.

As always, comparing every record of S1 with every record of S2 results in the W = N1N2 record

pairs, M of which are matches. Suppose that the set-up of the experiment remains unchanged, but

the population is split into B non-overlapping groups, G1, . . . , Gβ, . . . , GB, of equal or nearly equal

size τβ, so that τ =
∑︁B

β=1 τβ. In this case we have several non-overlapping samples S1,1, . . . , S1,B,

such that S1 = ∪B
β=1S1,β, and non-overlapping samples S2,1, . . . , S2,B, such that S2 = ∪B

β=1S2,β. Each

S1,β, S2,β is drawn from Gβ. The corresponding random variables that map the outcome of sampling to

the sample sizes are N1,1, . . . , N1,B, with N1 =
∑︁B

β=1N1,β, and N2,1, . . . , N2,B, with N2 =
∑︁B

β=1N2,β.

Note, that while N1,β, N1,α, β ̸= α are generated from the same model, they are not in general equal;

the same applies for N2,β, N2,α.

Instead of making comparisons between every record of S1 with every record of S2, every record of

S1,β is compared to every record of S2,β, for β = 1, . . . , B. For each group β, the number of resulting

record pairs is Wβ and the number of matches is Mβ. Since we assume the absence of overcount,

it follows that M =
∑︁B

β=1Mβ, where M is the number of matches resulting from comparing the

entire S1 to the entire S2. However, because no comparisons between S1,β and S2,α, β ̸= α are made,

W ̸=
∑︁B

β=1Wβ. For the pth comparison pattern in the group β, the corresponding frequency is fp,β

and the relative frequency is πβ(γp) = fp,β/wβ. Consider the average πp of πβ(γp), β = 1, . . . , B. This

average is an empirical version of (22), with the Wβ and wβ instead of W and w. Estimation of πp

allows estimation of m, which then allows estimation of the remaining parameters of interest. What

is really important here is that having a single iteration of the linkage experiment, we constructed a

situation that mimics multiple runs of the linkage experiment, corresponds to the conceptualisation

(22) of a mixture-like model and also conforms with the law of large numbers in the way explained

in the previous section. This addresses the first issue with the estimation of linkage parameters and

allows, at least in theory, obtaining an estimate of the actual parameter π = m/w.

Grouping and making comparisons as described above can also be used to avoid convergence to

0 as shown in (38). Let the population size τ increase. While it is increasing, gradually increase B

so that τ1, . . . , τβ, . . . τB are approximately of the same size that allows stable estimation and do not

increase as τ increases. Then τ → ∞ causes B → ∞, but the ratio of expectations (38) remains 1/τβ.

Splitting the population or stratum of interest into non overlapping groups generated by the same or

very similar mechanisms G1, . . . , Gβ, . . . , GB, of equal or nearly equal size τβ, and making comparisons

of records in S1,β to the records in S2,β is a special case of blocking. So that Gβ is essentially a block.

This blocking differs from standard blocking approaches used in record linkage in a number of ways.

Usually, a classical blocking is done to reduce the computational burden by discarding vast numbers

of pairs that most likely are not matches. Such blocking is deemed efficient as long it does not lead

to matching pairs being missed while substantially reducing the overall number of pairs. Also, in a
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classical blocking, comparisons are made within blocks and then the comparison results are either

pooled together for parameter estimation or analysis or estimation is done for each block separately.

The blocking we are presenting here requires data points in blocks to be generated by the same or very

similar models and be of the same or very similar size. The goal of such blocking is not only to reduce

the number of record pairs to process, but also to get the data into a format that corresponds to the

conceptualisation of a mixture-like model under repetitive linkage experiment. To achieve the latter

goal, comparisons are not pulled together, but averaged out for each of the comparison pattern γp, to

satisfy the nature of the record linkage model. In order to distinguish this blocking from any classical

blocking approach, we call such blocking the averaging blocking. In fact, outcomes averaged across

the blocks and those pooled across the blocks are proportional to each other, since
∑︁
fp,β = Bfp.

Hence, we can see that this certain type of blocking sets the data in accordance with the model if the

conditions of the same block generating model and block size are satisfied. Nevertheless, the averaging

blocking does not mean that the corresponding estimator is consistent. This is due to the fact that a

mixture-like model is an approximation that depends on the properties of the population attributes.

Averaging blocking has been considered from the purely theoretical viewpoint. But is it possible

in any real applications where nearly equal size blocks are required? This seems difficult and even

may look like a contradiction if the population size estimation is ones goal. However, in applications

like the census, address frames or address listings are available for both data sources and postcodes

rather than individuals or households are the sampling units. So it is possible to aggregate postcodes

or output areas together using the address frame information into blocks with approximately similar

numbers of households. This still may lead to a reasonably high variation of τβ. The reason for τβ

to be of equal or nearly equal sizes is that it guarantees orders of W and M for which a mixture-like

model holds. Some variation in τβ does not affect the model itself. Some simulations related to the

practical application of averaging blocking are presented in Section 7.5.

The development in this section has an important consequence for variance estimation as it allows

outcomes in each block obtained by averaging blocking to be treated as a realization of a random

vector. With several blocks constructed as above, one has a few realisations of the random vector and

can proceed to variance estimation. There are certain problems associated with the variation of τβ

and the fact that we will be interested in the estimate of π, or τ rather than πβ or τβ. Solutions of

these problems and variance estimation for the linkage free dual system estimator will be presented in

Chapter 6.

3.5 Parameter estimation using Markov chain Monte Carlo methods

Complex data generating mechanism encountered in the case of record linkage (see Section 2.2.5) leads

to modelling the resulting data by mixture-like models (see Section 3.2). Such models are models for

expectations of ratios of random variables, rather than regular well-defined probability models. These

data complexities and the nature of linkage model do limit estimation methods that can be justified

for parameter estimation. Earlier, it was demonstrated, that the maximum likelihood method is not

fully justifiable in the record linkage setting. Note, we are not saying that the maximum likelihood

approach for record linkage is not feasible in general, but an underlying statistical model cannot be as
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simple as a two-component mixture of discrete random variables (8).

The approach chosen for the parameter estimation of the record linkage model is to minimize the

distance between the observed ratios π(γp) of the number of cases in a given comparison pattern

γp to the number of record pairs (which would be probabilities in a regular probability model) and

the estimated ratios π(γp; ˆ︁π, ˆ︁µ, ˆ︁ν) = [ˆ︁πµ(γp; ˆ︁µ) + (1− ˆ︁π)ν(γp; ˆ︁ν)] /fp, where µ,ν are parameters for

a given specification of the model. Such a specification may take into account between-variables

associations of the comparison outcomes either in the set of non-matches, or the set of matches, or

both. For instance, a model with the conditional independence between linkage variables given the

set of matches and association between first and second linkage variables given the set of non-matches

is π(γ1;π,µ,ν) = πµ1µ2µ3µ4 + (1 − π)ν1ν2|1(1)ν3ν4, π(γ2;π,µ,ν) = π(1 − µ1)µ2µ3µ4 + (1 − π)(1 −
ν1)ν2|1(0)ν3ν4, . . . and so on.

The distance minimization approach used in this thesis is the minimummodified chi-squared estima-

tor (Agresti, 2002, chap. 15). In this case for given observables w and π = (π(γ1), . . . , π(γ2K ))
T , we are

searching for ˆ︁π, ˆ︁µ, ˆ︁ν which produce the estimated values π(ˆ︁π, ˆ︁µ, ˆ︁ν) = (π(γ1; ˆ︁π, ˆ︁µ, ˆ︁ν), . . . , π(γ2K ; ˆ︁π, ˆ︁µ, ˆ︁ν))T
that minimize the modified chi-squared statistic

χ2 [π,π(ˆ︁π, ˆ︁µ, ˆ︁ν)] = w
2K∑︂
p=1

[π(γp)− π(γp; ˆ︁π, ˆ︁µ, ˆ︁ν)]2
π(γp)

. (39)

The actual vector of parameter values (ˆ︁π, ˆ︁µ, ˆ︁ν)T that minimizes the modified chi-squared statistic is

obtained by the Markov chain Monte Carlo algorithm called the simulated annealing, briefly presented

in Section 2.4. In this case the target function is χ2 [π,π(ˆ︁π, ˆ︁µ, ˆ︁ν)] and the equilibrium distribution

is Π = (π(γ1), . . . , π(γ2K ))
T . For a given model specification, the first step is to randomly produce

the vector of parameter values (π,µ,ν)T and compute the corresponding value of the target function.

Values are drawn from the admissible range (0, 1) and for some parameters certain constraints may be

imposed. For instance the maximum of π may be quite small, or at least smaller than 0.5 to prevent

label switching in certain model specifications. For each temperature parameter t, nt iterations of the

Metropolis algorithm are run. At each iterations, one parameter from (π,µ,ν)T is randomly chosen

and the value for this parameter is drawn randomly from the uniform distribution of possible values of

the parameter and the value of χ2 [π,π(ˆ︁π, ˆ︁µ, ˆ︁ν)] is recomputed. If this value is smaller than the value

on the previous step, than the current vector of parameter values is accepted with some probability

that depends on the temperature t. Otherwise, the vector of parameter values from the previous step

is used. The next step repeats the above routine. As the temperature t decreases, the probability

of rejecting a solution that is better on the current step than a solution on the previous, decreases.

However, allowance to reject a better solution avoids being trapped about a local minimum of χ2. The

temperature decreases gradually using the parameter known as the cooling rate. Parameters such as

temperature, cooling rate and the number of iterations of the Metropolis algorithm at each value of

the temperature parameter are customized and need to be tuned. Once the algorithm terminates, the

outcome is the vector (ˆ︁π, ˆ︁µ, ˆ︁ν)T of estimated parameters of the linkage model that minimizes χ2. As

already mentioned, theoretically if the algorithm runs long enough, it should result in global minimum.

This estimation approach neither makes any assumptions about how the data are distributed, nor
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postulates that π(γp;π,µ,ν) should be a probability and not an expected ratio. The only condition is

that the model is identifiable. This approach is very flexible and can easily work with various model

specification so that it can be used with models that account for association between comparison

outcomes of linkage variables. It works both without blocking and with the averaging blocking. In

principle, such chi-squared estimators are the best asymptotic estimators. However, given that record-

linkage is rather non-regular statistical problem, it is not known whether and in what sense the above

property holds. This is left for future work. Note that in the case of regular mixtures, other methods

to find the parameters that minimize the modified chi-squared statistic are suggested in the literature

(Titterington et al., 1985, chap. 4.5.3), for instance, the Newton-Raphson method. But given our

interest in estimating parameters of various parameterizations of a mixture-like model, the simulating

annealing seems more flexible and reliable.

4 Connection between record linkage and dual system estimation

In this chapter we show that there is a close connection between certain parameters of probabilistic

record linkage based on the mixture-like model and dual system estimation. More precisely, under

a specific set-up, the dual system estimate of the population size follows from such a linkage model.

This relationship implies that, at least in principle, population size estimation from two incomplete

lists is feasible through the estimation of the linkage model parameters without the classification of

the record pairs into links and non-links. More generally it means that some linkage requiring tasks do

not need classification-based linkage and purely estimation-based linkage is sufficient. As a result, as

long as an adequate linkage model can be specified, a fully automated record linkage without clerical

reviews can be achieved; no matches are erroneously classified as non-links or non-matches classified

as links; seamless dual system estimation and better uncertainty measures for the resulting population

size estimates are possible. While our focus is on linkage for population size estimation, the ideas

presented here can certainly be used for other applications as well.

4.1 Linkage free dual system estimator

We now show that the dual system estimator can be expressed as a function of one of the parameters

of a mixture-like record linkage model. This relationship demonstrates that record linkage under the

mixture-like model and dual system estimation are closely related. Since the population size estimate

can be obtained using a parameter estimate of a linkage model rather than using a set of records

classified as links, we will be calling the corresponding estimator the linkage free estimator or no-

classification estimator. Also, given that estimation of linkage model parameters is sufficient for the

task, we will refer to the corresponding linkage as no-classification linkage. While the motivation and

meaning of ‘no-classification linkage’ is quite self-explanatory, despite contradicting the strict definition

of record linkage, some clarification of why the name ‘linkage free dual system estimation’ was chosen

is needed. The word ‘linkage’ in ‘linkage free dual system estimation’ is used in its narrow meaning

as a process of establishing whether several records correspond to the same entity in a population or

not manifested in the form of classification. Obviously, the linkage free dual system estimator requires
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all the data preparation of any other linkage exercise. However, since there is no-classification, there

is no linkage in the narrow sense of the term. Furthermore, anybody familiar with the dual system

estimation knows that this estimator requires the number of linked records as an input. Therefore,

saying ‘no-classification dual system estimator’ does not immediately tell us where to expect differences

compared to the classical estimator.

The set up is the same as presented in Sections 2.1.1 and 2.2.2. We are interested in estimating

the unobservable size τ of the population of interest P. Two surveys of the population are available:

S1 and S2 with n1 and n2 observations, respectively. We start with a situation where record linkage

is carried out using S1 and S2 without blocking. It is important to note that in this case such entities

as our population domain, estimation stratum and linkage block are equivalent and have the same

number τ of the population elements belonging to them. The number of record pairs is w = n1n2.

Recall that n1, n2 and w are the realizations of the corresponding random variables N1, N2 and W .

Assume also that all the additional parameters, such as sets of genuine values population attributes

can take or probabilities of errors recording these attributes, that influence the results of linkage but

are not directly reflected in the mixture-like record linkage model, are fixed.

Derivation of the linkage free dual system estimator is simple. Fix a particular set-up of a linkage

experiment and suppose that the experiment is run repeatedly many times. Recall, that the dual

system estimator itself can be derived using the relationship (5). Combining it with the relevant

mixture-like model parameters we obtain

τ ≈ E(N1)E(N2)

E(M)
=
n1n2
m

=
n1n2

mw
w

=
n1n2
πw

=
w

πw
=

1

π
. (40)

This demonstrates how the dual system estimator of the population size τ and the parameter π of

the record linkage model are related, given the assumptions of the dual system estimation, except

the perfect linkage one, are satisfied and the estimation stratum and linkage block being the same.

Certainly, both the dual system estimator and the parameters of the mixture-like linkage model are

based on approximations, so that the relationship is also approximate.

The linkage free dual system estimator, sometimes referred to as the π-based estimator, is defined

as ˜︁τ =
1ˆ︁π (41)

where ˆ︁π is the estimate of π obtained using the simulated annealing algorithm as presented in Sections

2.4 and 3.5. This estimator demonstrates, that in the case of population size estimation, linkage need

not necessarily involve classification and can be entirely estimation-based. However, it requires an

accurate estimate ˆ︁π which requires specification of an identifiable model that adequately accounts for

association between the linkage variables used. Note that while this estimator explicitly involves only

one parameter, the simulated annealing approach cannot estimate π without estimating µ(γp;µ) and

ν(γp;ν). Recall, however, that some identifiability checking methods allow the identifiability of a single

parameter to be established. From that perspective, it can be sufficient to check if π is identifiable in a

particular model for the linkage free dual system estimation. As a side note, the fact that identifiability

of a single parameter can be checked also means that it is in principle possible to use a method similar
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to the method of inversion (Everitt & Hand, 1981, chap. 1.4.3) in order to obtain an estimate of π only.

In this case, however, one still needs to correctly specify the linkage model.

Another way to derive the linkage free dual system estimator is as follows. For a comparison pattern

γp multiply both sides of a mixture-like record linkage model π(γp;π,µ,ν) = πµ(γp;µ)+(1−π)ν(γp;ν)

by the average number of record pairs w to obtain

f̄p = π(γp;π,µ,ν)w = πµ(γp;µ)w + (1− π)ν(γp;ν)w = mp + up,

where f̄p is the mean number of record pairs in the pth comparison pattern and

mp = πµ(γp;µ)w (42)

is the mean number of matches in the pattern γp. Similarly, up is the mean number of non-matches

in the same pattern. Since we are dealing with a mixture-like model, we have
∑︁2K

p=1 µ(γp;µ) = 1, and

hence we can work out the mean for matches across all comparison patterns

2K∑︂
p=1

πµ(γp;µ)w = πw =
m

w
w = m. (43)

All these derivations come directly from the definitions of the parameters as presented in Section 3.2.

This allows a slightly different linkage free dual system estimator to be derived. We first use the

simulated annealing method to obtain the parameter estimates for the appropriate record linkage model

and use them alongside the observed number of record pairs, w to estimate of the number of matches

ˆ︁m = wˆ︁π 2K∑︂
p=1

µ(γp; ˆ︁µ).
Now we can define the m-based linkage free dual system estimator

˜︁τm =
n1n2ˆ︁m . (44)

Suchm-based estimator is more flexible than the π-based and can work when averaging blocking and for

other blocking strategies, provided blocking does not result in some true matches being excluded from

the input data and model specification adequately reflects between-variables associations of comparison

outcomes. Suppose there we are dealing with B blocks. Then with the averaging blocking, the

corresponding m-based linkage free dual system estimator of the population total τ is

τ̇m =
n1n2

B ˆ︁m̄ =
n1n2

Bwb
∑︁2K

p=1
ˆ︁π̄µ(γp; ˆ︁µ̄) , (45)

where ˆ︁m̄ is the estimate of the number of matches based on the averaged observed frequencies, fp, of

B blocks when the averaging blocking is employed with ˆ︁π̄, µ(γp; ˆ︁µ̄) being the corresponding parameter

estimates of the mixture-like linkage model, and wb is the average number of pairs in blocks. Based
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on the discussion in Section 3.4, the above estimator has the best theoretical justification for practical

usage among all linkage free dual system estimators. Simulations show, however, that in many practical

situations the distinction in performance between (41) and (44) is not so prominent.

If an arbitrary blocking on the population P of the size τ is applied and blocks β = 1, . . . , B are

not too small, then either (41) or (44) can be applied within each block to estimate the size of the

block and then individual estimates can be summed:

τ̌ =

B∑︂
β=1

1ˆ︁πβ , (46)

τ̌m =
B∑︂

β=1

n1,β, n2,βˆ︁mβ
, (47)

where ˆ︁πβ, ˆ︁mβ are estimates and n1,β, n2,β are observed survey counts related to the block β. This

approach can be used with the post-stratification as described in Section 2.3.

The main attractiveness of the linkage free estimation approach is that is does not require cleri-

cal resolution which leads to a higher level of automation of record linkage and seamless population

size estimation. Taking out the clerical part of the record linkage process reduces the associated cost

substantially. The linkage free dual system estimation may also be beneficial from the privacy per-

spective as it does not create links between records found on two surveys. The described approach,

however, requires thoughtful model specification and checking of this model for identifiability. This

may mean, that not all linkage variables available can be used in the linkage exercise. As discussed

earlier, the simulated annealing-based parameter estimation approach neither requires knowledge of

the joint distribution of the comparisons outcomes within each linkage variable, nor make any unre-

alistic assumptions about it. An estimation-based approach will generally have higher variance than

the classification-based approach, even if the same linkage model and parameter estimation procedure

were employed in both cases.

A worked-out example of how the application of the linkage free dual system estimator looks like

is presented later in this work in Section 7.4.

4.2 Modified linkage free dual system estimator to reflect 1-to-1 matches

The linkage free dual system estimator seamlessly integrates record linkage and capture-recapture

estimation. However, the absence of classification and clerical resolution of harder cases results in

the higher variability of the linkage free estimates compared to the classical classification approaches

involving some clerical resolution; see Section 7.5 with the simulation and estimation results. It is

therefore important to explore ways of reducing variability of the linkage free estimator. Given the

nature of mixture-like record linkage models it is difficult to establish the theoretical minimum of the

variance of the linkage free estimator. After all, even for regular mixtures data reduction via sufficiency

cannot be achieved (Fienberg et al., 2009). Nevertheless, it is possible to improve the efficiency of the

estimator. In this section, a modified version of the linkage free estimator is presented. As shown by

simulations, this modified estimator reduces the variability of the linkage free estimator by 5 to 35%.
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The nature of linkage problem for population size estimation when undercoverage is present on

both surveys, gives some additional information or some constraining conditions. This is known as the

1-to-1 match constraint and was briefly discussed in Section 2.2.4. Assuming that both surveys S1 and

S2 either contain no duplicates, or were deduplicated prior to linkage, the 1-to-1 matching implies that

every record on survey S1 either matches to one and only one record on survey S2, or has no match. In

linkage terms it means that every record on survey S1 can be either linked to one and only one record

on survey S2 or be classified as a non-link.

This constraint provides important and useful information about the data structure and one may

expect that harnessing it will improve the precision of the estimation. Obviously, no-classification

record linkage does not produce the classification in the first place. Therefore, the task is to integrate a

classification constraint into an approach that avoids classification. The modified linkage free estimator

presented in this section is one of the ways to achieve the task.

The modified linkage free dual system estimator has the same assumptions and set up as the

standard linkage free estimator discussed in the previous section. In fact, the modified version uses the

linkage free estimator as the basis, but has several additional steps. Recall, that the sizes of the surveys

S1, S2 are n1 and n2, respectively. Carrying out the binary comparison of record pairs on K linkage

variables yields 2K comparison patterns γ1, . . . ,γp, . . . ,γ2K . The corresponding observed frequencies

of comparison patterns are f1, . . . , fp, . . . , f2K . The modified estimator consists of the following steps.

1. The linkage free estimator (41) or (44) and related parameters of the mixture-like linkage model

are obtained first using the simulated annealing approach. A model specification must take into

account potential dependencies between linkage variables either in the set of non-matches, or the

set of matches, or both. The estimated parameters are:ˆ︁π is the estimate of the ratio of the mean number of matches to the mean number of record pairs,

m/w;

˜︁τ = 1/ˆ︁π is the corresponding linkage free estimator;

µ(γp; ˆ︁µ) is the estimate of the ratio of the number of matches in a comparison pattern γp to

the total number of matches. The estimate of the number of matches in the pth pattern based

on (42) is also available as the result of parameter estimation

ˆ︁mp = wˆ︁πµ(γp; ˆ︁µ), (48)

where w is the observed number of record pairs;

ν(γp; ˆ︁ν) is the estimate of the ratio of the number of non-matches in a comparison pattern

γp to the total number of non-matches;

2. Since the parameters of mixture-like models employed in record linkage are expectations rather

than probabilities, we cannot use the definition of the conditional probability to obtain the
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relationship pr((a, b) ∈ M | γ(a, b) = γp) = πµ(γp;µ)/ (πµ(γp;µ) + (1− π)ν(γp;ν)). However,

for each comparison pattern γp define the ratio of the contribution of the matches to the pth

comparison pattern to the proportion of the pth pattern among all patterns:

r(M | γp) =
πµ(γp;µ)

πµ(γp;µ) + (1− π)ν(γp;ν)
=

πµ(γp;µ)

π(γp;π,µ,ν)
. (49)

Clearly

r(U | γp) = 1− r(M | γp) =
(1− π)ν(γp;ν)

πµ(γp;µ) + (1− π)ν(γp;ν)
=

(1− π)ν(γp;ν)

π(γp;π,µ,ν)
,

and r(M | γp) + (1 − r(M | γp)) = 1. Again, we use the fact that the record linkage mixture-

like model has relationships similar to those one would encounter in a regular mixture, but not

necessarily with probabilities as parameters.

We obtain the estimates of the above ratios: ˆ︁r(M | γp) = ˆ︁πµ(γp; ˆ︁µ)/π(γp; ˆ︁π, ˆ︁µ, ˆ︁ν) and ˆ︁r(U |
γp) = (1− ˆ︁π)ν(γp; ˆ︁ν)/π(γp; ˆ︁π, ˆ︁µ, ˆ︁ν).

3. For a pattern γp compute the following log-odds ratio (or a pseudo log-odds ratio since we are

not dealing with probabilities):

l̂p = log
r̂(M | γp) [1− r̂(U | γp)]

[1− r̂(M | γp)] r̂(U | γp)
. (50)

Note that this log-odds ratio has a proper probabilistic counterpart in a univariate logistic re-

gression (Agresti, 2002, chap. 5). If x = {0, 1} and a logistic model is logit [p(x)] = α + βx,

then

β = logit [p(1)]− logit [p(0)] = log
ˆ︁pr(1) [1− ˆ︁pr(0)]
[1− ˆ︁pr(1)] ˆ︁pr(0) .

In the case of linkage, for a comparison pattern γp, xp = {IM|γp
, IU|γp

} = {0, 1}, where IM|γp

and IU|γp
are mutually exclusive indicator functions. Using the relation above

l̂p = log
r̂(M | γp) [1− r̂(U | γp)]

[1− r̂(M | γp)] r̂(U | γp)
= ˆ︁βp

in logit [r(M | γp)] = α+ ˆ︁βpxp.
4. Once l̂p are obtained, they can be used as weights in solving an optimization problem called

the assignment problem (Bertsekas, 1998, chaps. 1, 7). In our situation, solving the assignment

problem will lead to an optimal pairing of each record in S1 with one and only one record in S2

based on the above weights. Overall, min(n1, n2) pairs are formed when solving the assignment

problem. The actual algorithm for solving the assignment problem requires a square matrix of

weights as an input. Therefore, a max(n1, n2) × max(n1, n2) matrix is used as an input with

some of the ‘redundant’ entries set to 0. Note that comparison of an arbitrary record pair (a, b)

results in one and only one comparison pattern γp, so that it is always possible to find all a and
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b that result in comparison pattern γp. This is useful, because it is sometimes more convenient

to write l̂p = l̂ab for a certain pattern γp and a pair (a, b).

The assignment problem is formulated in the following way: for Xab ∈ {0, 1} and weights l̂ab find

max

[︄
Z =

∑︂
a

∑︂
b

l̂abXab

]︄

subject to the constraint ∑︂
a

Xab = 1, b = 1, 2, . . . ,max(n1, n2)

and ∑︂
b

Xab = 1, a = 1, 2, . . . ,max(n1, n2).

The solution of the assignment problem finds exactly one record from the survey with the larger

size to every record of the survey with the smaller size. No record on either of surveys can be

paired more than once. Effectively, all records of the smaller survey are in 1-to-1 pairings with

the records of the larger survey and some of the records of the larger survey have no pairings.

In record linkage terms this is 1-to-1 linkage. In other words, for a particular specification of

the record linkage model and the corresponding estimates of π, µ(γp;µ), ν(γp;ν) obtained by

the simulated annealing, we obtained an optimal (in a sense presented in the formulation of the

assignment problem) 1-to-1 pairing of observations of two surveys of the population of interest.

5. The solution of the assignment problem can be used to determine the number of 1-to-1 pairings

for each comparison pattern γp, denoted f̃1, . . . , f̃p, . . . , f̃2K . At this stage these counts cannot

be used to estimate the number of matches since their sum equals min(n1, n2), which is the upper

bound for the number of matching record pairs.

6. Our goal is no-classification linkage and linkage free dual system estimation which can be achieved

by combining the results of 1-to-1 pairing obtained by solving the assignment problem and the

initial linkage free estimates of the number of matches in each comparison pattern in a composite

estimator. The weights of the composite estimator are r̂(M | γp) and 1 − r̂(M | γp). Provided

that the linkage model was carefully specified for the set of available linkage variables, we would

like to rely more on the results of 1-to-1 pairings, f̃p, for the comparison patterns with the

large r̂(M | γp). This is because we expect the results of 1-to-1 pairing to be slightly more

accurate than the original linkage free estimates in such cases. Meanwhile, for the situations

where r̂(M | γp) is small, we would like to rely more on the original linkage free estimate. This

is because we expect that accepting the results of 1-to-1 pairings will result in a larger error

than the original linkage free estimate. The composite estimator (hence c in the subscript) of

the number of matches in the pth pattern is then

˜︁mc,p = ˆ︁r(M | γp)f̃p + (1−ˆ︁r(M | γp))ˆ︁mp. (51)
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The total number of estimated matches is obtained by summing each pattern’s composite esti-

mates

˜︁mc =
2K∑︂
p=1

˜︁mc,p. (52)

Finally, the modified linkage free (m-based) dual system estimator of the population total τ is

˜︁τc = n1n2˜︁mc
. (53)

Observe, that unlike any regular instance of composite estimation in which two or more estimates

obtained by different procedures are combined, the case of (51) involves ˆ︁mp = wˆ︁πµ(γp; ˆ︁µ), f̃p andˆ︁r(M | γp) = ˆ︁πµ(γp; ˆ︁µ)/π(γp; ˆ︁π, ˆ︁µ, ˆ︁ν). These are all based on the same estimates of π, µ(γp;µ) and

ν(γp;ν). One way of thinking about it is that the modified linkage free dual system estimator is an

attempt to improve the simple linkage free estimator with very little additional information about the

data available. Obtaining the 1-to-1 pairings, f̃p, for each comparison pattern is a combination of the

linkage free estimator with the knowledge of 1-to-1 match constraints. These f̃p are an improvement

of the original linkage free estimator for some comparison patterns as they incorporate additional

information and reduce both the variability and bias. However, this improvement is not without flaws,

since at this stage we only achieved 1-to-1 pairings, that is every record in the smallest survey is

uniquely linked to one of the records on the lager survey. Clearly, there will be f̃p where some or even

the majority of pairs obtained by 1-to-1 pairing will be the true non-matches, but there is no way of

determining which ones are the true matches.

In the classification-based approaches, after 1-to-1 pairing, all the pairs with corresponding com-

parison patterns for which the estimated ‘likelihood’ is above a certain threshold would be classified as

links, all the pairs below the certain threshold classified as non-links, and pairs trapped between the

thresholds would be clerically reviewed and classified. On the one hand, such a method satisfies the

definition of the 1-to-1 linkage constraint as it is formulated in Section 2.2.4: every record on the first

survey either links to one record on the second survey, or has no link. On the other hand, accepting

and rejecting pairs as they are leads to errors in the established number of matches as one accepts

some false links and rejects some true links. One of the aims of the no-classification approaches is

to circumvent such errors by estimating the number of matches in each of the comparison pattern.

Therefore, even a pattern with very few or no agreements on linkage variables has some contribution

to the estimated number of matches, reflecting the fact that there is a non-zero chance that such a

pattern contains a true match. Also, a pattern where nearly all linkage variables agree may have a

contribution to the number of matches that is smaller than the number of 1-to-1 constrained record

pairs in this pattern. Therefore, in linkage free dual system-estimation we would like to rely more on

the 1-to-1 constrained estimates where it is safe to do so, but rely on the pure linkage free estimates

where it is not safe to use the constrained estimates.

Now there is no additional independent source of information that would tell us for which compar-

ison patterns it is safe to use the constrained estimator and for which it is not. In this case ˆ︁r(M | γp)

is perhaps the one reasonable source of such information. So in a way we have two versions of the
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estimator and we try to combine these two versions in the best way possible given very limited in-

formation. It is clear that such an estimator, while using the fact that linkage must obey the 1-to-1

constraint, does not produce the outcome which satisfies the definition of this constraint. In general,

the estimate of the number of matches in each pattern is not an integer, but a real number. Hence, it

is inappropriate to say that a record has a corresponding match or has no match at all. The modified

linkage free estimator achieves a reduction in both variance and bias employing the knowledge that

there is a 1-to-1 constraint, while remaining purely an estimation based approach, that is not imposing

this constraint on the outcome.

If, for some reason, one wants to enforce the 1-to-1 constraint for such a no-classification approach, a

possible solution would be to use the modified no-classification estimates for each pattern and integerize

them using the modified no-classification estimate of the total number of matches as a benchmark.

Note, that for such an approach, there would be comparison patterns for which we would not be able

to determine which specific pair should be treated as a link. For instance, if there are 20 record pairs

that result in no agreements and no records forming these pairs are forming other pairs (this is what

the solution of the assignment problem produces), and a single pair is estimated to be a link, there is

no way of telling which one of these 20 is a linking pair.

The modified estimator can also be used similarly to the estimator (47) by being applied in indi-

vidual linkage blocks, and block estimates are then summed to estimate the population total τ .

A useful consequence of the modified linkage free dual system estimator, is that it permits a

linkage weight to be associated with each observation on the survey with the smallest size. This in

turn allows to work with the linked data at the individual level, but with each observation having some

positive weight reflecting its contribution to the total number of estimated links, rather than a 0 or 1

classification to non-link and link. The smallest survey is used again due to the fact that the number

of links cannot exceed min(n1, n2) and the assignment problem produces solution such that the sum

of ˜︁fp equals the size of the smallest survey. However, this does not have any impact on the usage of

the results of the modified estimator since all that matters is the estimate of the number of matches.

Each comparison pattern has an associated positive linkage weight derived as

ˆ︁ωp =
ˆ︁mc,p˜︁fp . (54)

Note that this weight is always greater than 0 and also could be greater than 1. In the case ˜︁fp = 0 for

some p the weight either can be set to 0 or the contribution of (1−ˆ︁r(M | γp))ˆ︁mp can be redistributed

across the non-zero frequency patterns, proportional to ˆ︁r(M | γp).

Let Sj=x be the survey with the smallest size among Sj , j ∈ 1, 2. The size of this survey is

nj=x, observations of it are indexed a = 1, . . . , nj=x and after solving the assignment problem we have∑︁2K

p=1
˜︁fp = nj=x. For every a we can determine an individual linkage weight as

ˆ︁ωp,a =

⎧⎨⎩ˆ︁ωp if a makes a pair (a, b) such as γ(a, b) = γp

0, otherwise.
(55)
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When population size estimation is the goal, these weights can be used to produce the linkage

free dual system estimates for the subdomains of the population P at which the modified linkage free

estimator is initially applied. This, at least in principle, may allow the heterogeneity of the responses in

different domains of the population to be taken into account, but also prompts an interesting question

which will be discussed in Chapter 9. Let d be a domain of interest. Define the indicator function

Ij,a,d =

⎧⎨⎩1 if a record a on the survey Sj belongs to domain d

0 if a record a on the survey Sj does not belong to domain d.
(56)

The estimate of the number of matches in domain d is then

ˆ︁mc,d =

nj=x∑︂
a=1

Ij=x,a,dˆ︁ωp,a. (57)

The linkage free dual system estimator for domain d can be obtained using estimator (57) and

observed survey counts for the domain of interest n1,d =
∑︁n1

a=1 I1,a,d, n2,d =
∑︁n2

b=1 I2,b,d, as

˜︁τc,d =
n1,dn2,dˆ︁mc,d

. (58)

In this thesis we are assessing the performance of estimator (53), but assessing the performance of

(58) is left for future research.

A worked-out example of how the application of the modified linkage free dual system estimator

looks like is presented later in this work in Section 7.4.

Note that in the classification-based context it is in principle possible to estimate the linkage

model parameters, apply the 1-to-1 constraint and then specify only a single threshold. In this case

min(n1, n2) pairs would be classified into links and non-links only: all the pairs with corresponding

comparison patterns for which the estimated ‘likelihood’ is above the threshold would be classified as

links, while the rest of the pairs would be classified as non-links. There would be no clerical resolutions

in such a scenario. Nevertheless, such an approach can hardly be more practical or outperform the

modified linkage free dual system estimator in general. First, the classification with a single threshold

would require careful model specification, since the incorrect ordering of the comparison patterns by

the ‘likelihood’ of containing a link would have severe consequences for the outcome of classification.

Hence, one would need to carry out the steps 1 to 5 of the modified linkage free dual system estimation.

This would be followed by setting a threshold. It seems implausible that in general it is possible to

select a single threshold with some near symmetric distribution of errors, so that the number of false

positive errors would not substantially differ from the number of false negative errors. Recall, that

this difference is the factor that drives the overall error in classification-based approaches. If one can

somehow find such an ‘optimal’ threshold, it means that one is capable of obtaining a good estimate of

the errors in each pattern after the 1-to-1 constraint was applied. Finding such estimates, however, is

similar to modified linkage free estimation, with the difference that the latter is estimating the number

of matches (instead of the number of errors) in each pattern after the 1-to-1 constraint was applied. In
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a sense, such a hypothetical single threshold approach at best would perform as well as the modified

no-classification method. In this thesis we are not considering how to develop a well-performing single

threshold linkage approach. This simulation study demonstrates, that in fact the performance of the

modified linkage free estimation is often as good or better than the classification-based approach with

clerical resolution under the acceptance rate of of 10−3 for false negatives and 10−6 for false positives.

Since we are discussing how additional information can be used to improve the performance of the

linkage free dual system estimator, there is a natural question of whether information from clerical

revisions can be incorporated into the no-classification approaches. While this aspect is not developed

and assessed in this thesis, clerical information can be fed into no-classification estimation in several

ways. It is easiest to insert such information into the modified estimator. If a certain comparison

pattern γp is fully clerically reviewed and the number of links is determined for this pattern, the

estimate ˜︁mc,p can be replaced by the clerically established number of links. More generally, irrespective

of whether clerical resolution of an entire pattern or just some individual pairs was carried out, one

can shift the solution of the assignment problem to reflect the clerical reviews. So, if clerical review

established that a pair (a, b) should be a link, but the solution of the assignment problem resulted in

Xab = 0, this solution can be forced to be 1. This requires revising the solutions for the remaining pairs.

Thus, this approach would require some workaround to deal with such constraints of the assignment

problem.

4.3 Quality measures

When assessing theoretical performance of record linkage approaches the following metrics are of-

ten used: precision and recall; false positive rate; accuracy; F -measure. In the situation where no-

classification linkage is used to enable the linkage free dual system estimation, it is more convenient

to use the estimates of m and τ straight away and compare them to the true values of m and the

population size. Of course, such quality measures are only available in simulation studies, but such

studies are indispensable in assessing properties of methods. In Chapter 7, where the performance of

methods developed in this thesis is assessed, the only quality measures are via m and τ as those also

allow easy comparison to the dual system estimation with perfect linkage and dual system estimation

under classification-based linkage with clerical resolutions.

4.4 Heuristics in model specification and goodness-of-fit

The formal record linkage model specification and goodness-of-fit assessment approaches are beyond

the scope of this thesis. Nevertheless, when linking two population surveys similar to a coverage survey

and a census within specified geographies, a selection of linkage variables can be used to determine a

suitable model specification, at least for the component corresponding to non-matches. This is due

to between-variable dependencies being a consequence of the population structure, which is known in

such applications.

Once a certain model is chosen and its parameters are estimated, an obvious, though informal,

indicator of goodness-of-fit is the value of a modified chi-squared statistic. The results of simulations,

not presented in this thesis, suggest that whenever an identifiable model is suitably parametrized or
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is more complex than required, the modified chi-squared statistic is small. Whenever a parameteri-

zation misses some between linkage variable dependencies, the modified chi-square statistic becomes

noticeably large.

5 Checking identifiability of certain linkage models with four linkage

variables

In this chapter we will use several methods presented in Section 2.5 to check if certain linkage models

with four linkage variables are identifiable or not. Our choice of models with four variables is motivated

by the good balance of generality and computational tractability these models often offer. In addition,

the number of useful linkage variables when linking surveys of human populations may be quite limited

in practice. There are two aspects of usefulness of linkage variables. First, a linkage variable is useful

if it can take sufficiently many values to satisfy the properties studied in Section 3.2. Second, a linkage

variable is useful if upon addition to the model it either does not result in between-variables dependence

of the comparison outcomes, or this dependence can be taken into account by an identifiable model

specification. Linkage variables such as address, surname, first name and date of birth are among

those having the largest number of possible values. However, the combination of these variables results

in dependencies between comparisons on the address and surname variables, as discussed in Section

2.2.5. It will be shown in this chapter that this model is identifiable. While adding variables such as

sex, ethnicity, marital status, relationship, tenure and accommodation type into a linkage model may

seem tempting, each of these variables has just a few levels. Furthermore, many of these variables,

when used with the address or surname variables, will result in associated comparison outcomes. The

identifiability of the corresponding models is not guaranteed. Finally, using more linkage variables will

result in some of the comparison patterns γp having sparse frequency as the number of patterns is 2K .

This sparseness may need additional machinery to deal with, which is beyond the scope of this thesis.

Note, that it is sometimes argued that no more than 6 − 10 linkage variables are needed (Winkler,

2006).

5.1 Linkage models and identifiability

The meaning and justification of a generic mixture-like model

π(γp;π,µ,ν) = πµ(γp;µ) + (1− π)ν(γp;ν)

was presented in Section 3.2. In the above model µ(γp;µ) and ν(γp;ν) are appropriate factorizations

of the expected ratios of the matches / non-matches in a pattern p to the number of matches / non-

matches for a given model specifications. This is similar to the factorization of the joint probability

distribution when some of the variables are independent or conditionally independent. For instance, one

may be interested in the model where the between-variables independence of the comparison outcomes

among the matches is assumed while allowing for dependence between the comparison outcomes of the
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variables v1 and v2 in the set of non-matches. Recall that we write this model in a compact form as

π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ3, γ4)

and its parameterization is written as

π(γ1;π,µ,ν) = πµ1µ2µ3µ4 + (1− π)ν1ν2|1(1)ν3ν4,

π(γ2;π,µ,ν) = π(1− µ1)µ2µ3µ4 + (1− π)(1− ν1)ν2|1(0)ν3ν4,

π(γ3;π,µ,ν) = πµ1(1− µ2)µ3µ4 + (1− π)ν1(1− ν2|1(1))ν3ν4,

. . .

π(γ16;π,µ,ν) = π(1− µ1)(1− µ2)(1− µ3)(1− µ4) + (1− π)(1− ν1)(1− ν2|1(0))(1− ν3)(1− ν4).

Note that this is the polynomial map, which is the special case of the rational map ϕ : Θ → R2K ,

where Θ = {π,µ,ν} and µ and ν are collections of parameters, reflecting between-variables dependen-

cies if needed, conditional on the set of matches and set of non-matches. Hence, the results presented

in Section 2.5 can be used, irrespective of whether we dealing with regular mixtures of mixture-like

models. For some model specifications instead of just polynomial functions the parameterization may

actually involve explicit rational functions in the form f/g, where f and g are polynomials.

When using simulated annealing to find ˆ︁π, µ(γp; ˆ︁µ) and ν(γp; ˆ︁ν) such that the χ2 based on the

estimated values ˆ︁πµ(γp; ˆ︁µ)+(1−ˆ︁π)ν(γp; ˆ︁ν) and the given observed data fp/w is minimized, a generically

identifiable model means that we are obtaining unique ˆ︁π, µ(γp; ˆ︁µ) and ν(γp; ˆ︁ν) that achieve such a

minimization. In the case of local identifiability, we either obtain finitely many solution, or we obtain

a single solution that satisfies certain knowledge about the model, for instance, that π is small, or that

the values of all parameters lie in the interval (0, 1).

In many practical applications, including many record linkage applications, the model of indepen-

dence conditional on the mixture component is used. In the record linkage case the components are

the set of matches and non-matches. This model is generically identifiable up to label switching if

the conditions presented in Section 2.5 are satisfied. Recall, however, that when dealing with human

populations, such a specification is not always suitable. There may be between-variables dependence

of the comparison outcomes in the set of non-matches U if either entire households are sampled or

there is a high likelihood that multiple members of the same household are sampled. When comparing

the values of linkage variables for any two individuals in the same household, the address will almost

certainly agree while variables like surname, ethnicity, country of birth, address one year ago will have

high likelihood of agreeing. On the other hand, if the probability of making a typographical error in a

value of one of the linkage variables is associated with the probability of making an error in a value of

another variable, there is between-variables dependence in the set of matches M.

The between-variables dependencies in the set of matches may be reduced by the approximate

comparison of the values of linkage variables. For example, consider a situation where an interviewer

fails to record less familiar, long or hard-to-spell names and surnames correctly, but those recorded

values are close to the true ones. Then the events of making a mistake recording the values of surname

82



and name are associated. Nevertheless, since the values recorded are close to the true ones, and

provided that the values of the same variables on the another survey are also spelt close to the correct

spelling or correctly, the approximate comparison will result in high similarity scores. Hence, many

cases of what would be a simultaneous disagreement on both variables in the case of exact comparison,

will often be either a simultaneous agreement of both of the variables, or an agreement on at least one

of the variables. The between-variables associations in the set of non-matches is harder to mitigate

for a given set of linkage variables as it is related to the way the values of population attributes are

structured. Also, if the between-variables associations of comparisons are present in both the set of

matches and set of non-matches, different variables will be associated in different sets. For instance,

in the set of matches the association between the surname and name variables may be present while

the association between the address and surname variables may be present in the set of non-matches.

Therefore, different model specification in the set of matches compared to the set of non-matches will be

emphasised in the cases considered below. This differs from the examples of establishing identifiability

for mixtures or similar models known to us. In the examples available in the literature, identical

model specifications are used in all of the model components. For example, in Allman et al. (2015),

identifiability of discrete Bayesian networks with hidden variables is discussed and tensor methods

are used to check identifiability. While some of these models may seem similar to what is considered

below, all of the models in the cited paper have the same model specification on each level of the

hidden variable, which is equivalent to using the same model in both the M and U sets.

5.2 Checking identifiability for a selection of models

In this section we check the identifiability for a selection of linkage models with four linkage variables.

This selection is driven mainly by the potential practical usefulness of the models and in part by

academic interest. For every model considered we give a possible set of variables that may lead to this

model in real applications. We then check that the number of parameters to estimate is not larger than

the number of observables 2K . If the number of parameters does not exceed the number of observables,

then local identifiability is checked using the Wolfram Mathematica software (Wolfram Research, Inc.,

2022). If the model is locally identifiable, then generic identifiability is checked using either the tensor

or Gröbner basis-based methods. When employing the Gröbner basis-based methods, we either use the

Wolfram Mathematica, or Maple (Maple, 2021), or Singular (Decker et al., 2022) or some combination

of the software packages. Singular, being specifically designed for polynomial computations, has a wider

choice of functionality relevant for Gröbner basis computation and analysis. Often, however, once a

basis is computed it is easier to carry out the remaining analysis in Mathematica. There is a sample

of code for various identifiability checking approaches and different software packages in Appendix C.

5.2.1 Model π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4)

The first model we are looking at is the model of the conditional between-variables independence of

comparisons given the match status. This is the simplest and one of the most frequently considered

models (with varying numbers of linkage variables). We already know that this model is identifiable,

but it allows a gentle start of the discussion. In real applications, it can be suitable when linkage
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variables are, say, surname, first name, date of birth and sex, provided errors in recording the true

values of attributes are not correlated or this correlation is very small after applying approximate

(fuzzy) comparison functions on the values of variables. It is also reasonable to expect that for non-

matching pairs, observing an agreement on one of the variables is not associated with observing an

agreement on any other variables. There may in principle be some association between agreement on

the surname variable and the name variable, provided individuals with certain cultural backgrounds

tend to select from a small pool of names for the first male or female child in a family. However,

association is unlikely to be very strong at the population level; see for instance the distribution of

baby names (ONS, 2021e). The compact form of this model is

π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4)

and the corresponding parameterization is

π(γ1;π,µ,ν) = πµ1µ2µ3µ4 + (1− π)ν1ν2ν3ν4,

π(γ2;π,µ,ν) = π(1− µ1)µ2µ3µ4 + (1− π)(1− ν1)ν2ν3ν4,

· · ·

π(γ16;π,µ,ν) = π(1− µ1)(1− µ2)(1− µ3)(1− µ4) + (1− π)(1− ν1)(1− ν2)(1− ν3)(1− ν4).

This model has 9 parameters and 16 observables, so we can check for its local identifiability. We

work out the Jacobian

J(π) =

⎛⎜⎜⎝
∂π1
∂π . . . ∂π1

∂ν4
...

. . .
...

∂π16
∂π . . . ∂π16

∂ν4

⎞⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
µ1µ2µ3µ4 − ν1ν2ν3ν4 . . . (1− π)ν1ν2ν3

...
. . .

...

(1−µ1)(1−µ2)(1−µ3)(1−µ4)

−(1− ν1)(1− ν2)(1− ν3)(1− ν4) . . . −(1− π)(1− ν1)(1− ν2)(1− ν3)

⎞⎟⎟⎟⎟⎠ .

The rank of this Jacobian matrix, computed using the symbolic computation software, is 9. That is,

the rank is the same as the number of parameters. Therefore, using the results presented in Section

2.5 the model is locally identifiable. Note the Jacobian is too big to be printed on a page, but it is

easy to replicate it using the code provided in Appendix C. We will omit printing even partial results

for subsequent examples since the process is exactly the same for all the models when checking local

identifiability.

To check that this model is generically identifiable, we can use the established result (19). This is

the conditional between-variables independence model given the match status, that is g = 2 and we

have four linkage variables K = 4. We check K = 4 ≥ 2⌈log22⌉+ 1 = 3, which means that the model

is generically identifiable up to label switching.

This particular model also allows generic identifiability to be assessed with the Gröbner basis
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approach as presented in Section 2.5.6. This approach works for individual parameters. In the context

of this thesis the key parameter of interest is π and identifiability of this parameters can be checked.

We are dealing with the following ideal

I(ϕ(Θ)) = ⟨πµ1µ2µ3µ4 + (1− π)ν1ν2ν3ν4 − p1, . . . ,

π(1− µ1)(1− µ2)(1− µ3)(1− µ4) + (1− π)(1− ν1)(1− ν2)(1− ν3)(1− ν4)− p16⟩

while the ideal corresponding to the augmented map is

I(ϕ̃(Θ)) = ⟨π − q, πµ1µ2µ3µ4 + (1− π)ν1ν2ν3ν4 − p1, . . . ,

π(1− µ1)(1− µ2)(1− µ3)(1− µ4) + (1− π)(1− ν1)(1− ν2)(1− ν3)(1− ν4)− p16⟩.

Proposition 16.1.9 in Sullivant (2018) can be applied. We find a reduced Gröbner basis G for the

ideal I(ϕ̃(Θ)) with respect to lexicographic or any other elimination order with π ≻ µ1 ≻ . . . µ4 ≻ · · · ≻
ν1 ≻ . . . ν4 ≻ q ≻ p1 ≻ · · · ≻ p16. Note, that the relative order of π ≻ µ1 ≻ . . . µ4 ≻ · · · ≻ ν1 ≻ · · · ≻ ν4

is not important, but all these indeterminates have to come before q, as well as the relative order

of p1 ≻ · · · ≻ p16 is not important after q. Once G is obtained, we either find the elimination

ideal Gq = G ∩ R[q, p1, . . . , p16] or search for a polynomial of lowest non-zero degree q in the form

g(q, x1, . . . , xn) =
∑︁d

i=0 gi(x1, . . . , xn)q
i ∈ I(ϕ̃(Θ)). In this case, such a polynomial exists, though we

do not present it here as it has a very large number of monomials. This polynomial has degree d = 2.

So there are 2 choices for the parameters. These choices reflect the label switching behaviour of the

model. Hence, the model is generically identifiable up to label switching.

Unfortunately, for the majority of record linkage models, the computational complexity is immense

and we manage to get results on generic identifiability in real time only for this conditional between-

variables independence model. Even this example requires computation of the basis using product

order with graded reverse lexicographic orders and then using the Gröbner walk algorithm (Collart

et al., 1997) to obtain the basis in lexicographic order; see the related Maple example in Appendix C.

However, the situation with rational identifiability appears to be more promising and several examples

below allow us to establish rational identifiability.

5.2.2 Model π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ3, γ4)

The next model is the conditional between-variables independence given the set of matches and asso-

ciation between two variables in the set of non-matches. Clearly, the association can be between any

pair without changing the general structure of the model, our presentation uses an association between

v1 and v2. This is an important model for real applications and it was also analysed in the model

justification Section 3.2 of this thesis. It can correspond to the case where there is no dependence

in errors for true matches, or this dependence is minimal after use of approximate comparison, as

mentioned in Section 2.2.1. Given that entire households are sampled, linkage variables that can lead

to such model specifications can be the following: full standardized address, surname, first name and

date of birth. As discussed in the linkage experiment Section 2.2.5, we expect the comparisons on the

surname variable to agree more often within an agreeing address compared to a non-agreeing address,
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which results in lack of independence for comparison outcomes on these two variables in the set on

non-matches U .
The model’s parameterization is

π(γ1;π,µ,ν) = πµ1µ2µ3µ4 + (1− π)ν1ν2|1(1)ν3ν4,

π(γ2;π,µ,ν) = π(1− µ1)µ2µ3µ4 + (1− π)(1− ν1)ν2|1(0)ν3ν4,

π(γ3;π,µ,ν) = πµ1(1− µ2)µ3µ4 + (1− π)ν1(1− ν2|1(1))ν3ν4,

. . .

π(γ6;π,µ,ν) = π(1− µ1)(1− µ2)µ3µ4 + (1− π)(1− ν1)(1− ν2|1(0))ν3ν4,

. . .

π(γ16;π,µ,ν) = π(1− µ1)(1− µ2)(1− µ3)(1− µ4) + (1− π)(1− ν1)(1− ν2|1(0))(1− ν3)(1− ν4).

There are 10 parameters and 16 observables in this model. Checking local identifiability shows that

the corresponding Jacobian has rank 10. Since the rank equals the number of parameters, this model

is locally identifiable.

We use the tensor methods to assess generic identifiability of this model. Note, that this model is

similar to one of those considered in Allman et al. (2015) in the context of discrete Bayesian networks

with hidden variables. The difference between the specification of our model of interest and one

analysed in the cited paper is that in our case there is between-variables association only in one of the

two components of the model (in the set of non-matches), rather than in both components. In fact,

it is easier to start with the model where association between linkage variables v1 and v2 is present in

both M and U :

π(γ1;π,µ,ν) = πµ1µ2|1(1)µ3µ4 + (1− π)ν1ν2|1(1)ν3ν4,

π(γ2;π,µ,ν) = π(1− µ1)µ2|1(0)µ3µ4 + (1− π)(1− ν1)ν2|1(0)ν3ν4,

. . .

π(γ16;π,µ,ν) = π(1− µ1)(1− µ2|1(0))(1− µ3)(1− µ4) + (1− π)(1− ν1)(1− ν2|1(0))(1− ν3)(1− ν4).

We can marginalize variable v2 in the above model, which yields a model with three linkage variables:

π∗1 = πµ1µ3µ4 + (1− π)ν1ν3ν4,

π∗2 = π(1− µ1)µ3µ4 + (1− π)(1− ν1)ν3ν4,

· · ·

π∗8 = π(1− µ1)(1− µ3)(1− µ4) + (1− π)(1− ν1)(1− ν3)(1− ν4).

This model is the equivalent of the model considered in Section 2.5.4 and all 7 parameters are iden-

tifiable up to label switching. Now for µ2|1(1), ν2|1(1) and (1 − µ2|1(1)), (1 − ν2|1(1)) marginalize over
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variables v3, v4 to obtain the system of equations

x1 = πµ1µ2|1(1) + (1− π)ν1ν2|1(1)

x2 = πµ1(1− µ2|1(1)) + (1− π)ν1(1− ν2|1(1)),

where π, µ1, ν1 are known up to label switching and x1, x2 are the sums of observables. Both µ2|1(1)

and ν2|1(1) can be recovered from the above system up to label switching. In the same way we can

obtain the system of equations

y1 = π(1− µ1)µ2|1(0) + (1− π)(1− ν1)ν2|1(0)

y2 = π(1− µ1)(1− µ2|1(0)) + (1− π)(1− ν1)(1− ν2|1(1)),

and recover the parameters µ2|1(0) and ν2|1(0) up to label switching.

The above argument can be repeated for the model of interest by replacing µ2|1(1) and µ2|1(0) with

µ2 and all the parameters of interest can be recovered. However, this time, there is no label switching.

Recall that the label switching means that πµ1µ2 · · ·+ (1− π)ν1ν2 · · · = π∗µ∗1µ
∗
2 · · ·+ (1− π∗)ν∗1ν

∗
2 . . .

for π∗ = (1− π), µ∗1 = ν1, µ
∗
2 = ν2, etc. Now in the model of interest the parameters related to the set

of matches are all independent, so that µ2|1(1) = µ2|1(0) = µ2, but ν2|1(1) and ν2|1(0) are distinct. Label

switching would mean that there is some ν∗2|1(1) = µ2|1(1) and ν
∗
2|1(0) = µ2|1(0), but this contradicts the

previous statement. Hence, the model parameters are generically identifiable without label switching.

We can also check that parameters are identifiable without label switching by checking rational

identifiability. Using the language of computational algebra, the vector of indeterminates is

θ = (π, µ1, . . . , µ4, ν1, ν2|1(1), ν2|1(0), . . . , ν4)
T

and the vector of symbolic parameters is

t = (πc, µc1, . . . , µ
c
4, ν

c
1, ν

c
2|1(1), ν

c
2|1(0), . . . , ν

c
4)

T .

The ideal Ic ⊆ R(πc, µc1, . . . , µc4, νc1, νc2|1(1), ν
c
2|1(0), . . . , ν

c
4)[π, µ1, . . . , µ4, ν1, ν2|1(1), ν2|1(0), . . . , ν4] is

Ic = ⟨πµ1µ2µ3µ4 + (1− π)ν1ν2|1(1)ν3ν4 − (πcµc1µ
c
2µ

c
3µ

c
4 + (1− πc)νc1ν

c
2|1(1)ν

c
3ν

c
4),

. . . ,

π(1− µ1)(1− µ2)(1− µ3)(1− µ4) + (1− π)(1− ν1)(1− ν2|1(0))(1− ν3)(1− ν4)

− (πc(1− µc1)(1− µc2)(1− µc3)(1− µc4) + (1− πc)(1− νc1)(1− νc2|1(0))(1− νc3)(1− νc4))⟩.

Our guess is that parameters are identifiable without label switching, so that the ‘simplest’ functions

of the parameters of interest are f(π) = π, f(µ1) = µ1, f(ν2|1(1)) = ν2|1(1), and so on. To check

it we solve (by computing a Gröbner basis) the corresponding ideal membership problems π − πc ∈
Ic, µ1−µc1 ∈ Ic, . . . , ν2|1(1)−νc2|1(1) ∈ Ic, . . . . Indeed, all such polynomials belong to the ideal Ic. Hence,

all individual parameters are rationally identifiable without label switching. Note that π − πc ∈ Ic

implies π(1− π)− πc(1− πc) ∈ Ic. While in the case of label switching the ‘simplest’ polynomial in π
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that belongs to the above ideal would be π(1 − π) − πc(1 − πc) ∈ Ic. If this was the case, we would

have π − πc /∈ Ic.

5.2.3 Model π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ3,4)

The next model is the one of between-variables independence within the set of matches and association

for two non-overlapping pairs of linkage variables in the set of non-matches: v1 and v2 are associated

as well as v3 and v4. Perhaps, this is not a model that would be used very often in practice since

not so many meaningful combinations of linkage variables would require such a model specification.

A slightly artificial example, in the situation where entire households are sampled, could involve the

following set of variables: full standardized address, surname, quinary age, the highest degree attained

(or years in education). In this case the agreements on the surname variable would depend on the

agreement on the address variable, while the agreement on the highest degree attained would depend

to some extent on the agreement on quinary age. This model can be written as

π(γ1;π,µ,ν) = πµ1µ2µ3µ4 + (1− π)ν1ν2|1(1)ν3ν4|3(1),

π(γ2;π,µ,ν) = π(1− µ1)µ2µ3µ4 + (1− π)(1− ν1)ν2|1(0)ν3ν4|3(1),

. . .

π(γ16;π,µ,ν) = π(1− µ1)(1− µ2)(1− µ3)(1− µ4) + (1− π)(1− ν1)(1− ν2|1(0))(1− ν3)(1− ν4|3(0)).

There are 11 parameters and 16 observables in this case. A check for local identifiability shows that the

rank of the corresponding Jacobian equals the number of parameters. Therefore, this model is locally

identifiable. Interestingly, the related model π(γp;π,µ,ν) = πµp(γ1,2, γ3,4) + (1− π)νp(γ1,2, γ3,4) with

the same sort of between-variables associations in the both sets has 13 parameters, but the rank of

the corresponding Jacobian is only 11 and the model is nonidentifiable, this agrees with the results

presented in (Allman et al., 2015).

Generic identifiability of this model cannot be checked using the tensor methods. It is impossible

to marginalize the given model to obtain a model Mixt2(X1 ⊥⊥ X2 ⊥⊥ X3). We resort to checking

rational identifiability. Given the ideal

Ic = ⟨πµ1µ2µ3µ4 + (1− π)ν1ν2|1(1)ν3ν4|3(1) − (πcµc1µ
c
2µ

c
3µ

c
4 + (1− πc)νc1ν

c
2|1(1)ν

c
3ν

c
4|3(1)),

. . . ,

π(1− µ1)(1− µ2)(1− µ3)(1− µ4) + (1− π)(1− ν1)(1− ν2|1(0))(1− ν3)(1− ν4|3(0))

− (πc(1− µc1)(1− µc2)(1− µc3)(1− µc4) + (1− πc)(1− νc1)(1− νc2|1(0))(1− νc3)(1− νc4|3(0)))⟩

in R(πc, µc1, . . . , µc4, νc1, νc2|1(1), ν
c
2|1(0), ν3, ν

c
4|3(1), ν

c
4|3(0))[π, µ1, . . . , µ4, ν1, ν2|1(1), ν2|1(0), ν3, ν4|3(1), ν4|3(0)], we

are interested in checking whether polynomials like π − πc ∈ Ic or π(1 − π) − πc(1 − πc) ∈ Ic. After

finding a Gröbner basis G of Ic, we see that neither of the polynomials of interest are in Ic. In fact,

expressing π in terms of other indeterminates gives a complex equation of high degree. So in principle,

this model, or at least some parameters of interest, may be identifiable. Since this model is unlikely in

practice, we left solution of this equation for future research.
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5.2.4 Model π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2,3, γ4)

We now consider a model with between-variables independent comparison outcomes in the set of

matches and the three-way interaction between variables v1, v2 and v3 in the set of non-matches.

Given that households are sampled, this model may be needed if one is dealing with the following

linkage variables: full standardized address, surname, country of birth (or ethnicity, or relationship to

the head of household) and date of birth. Basically, this model can be considered whenever agreement

on address leads to likely agreement on another two linkage variables, while agreement on the fourths

variable is independent of all the rest of the agreements. It is important to observe that agreements on

v2 and v3 given the agreement on address will result in the three-way association since within a given

address the population values for the members of this address will tend to be the same for variable

v2 and the same for variable v3. For example, within an address, all members of the address tend to

share the same surname and have the same country of birth. A more detailed explanation is provided

in Section 7.2. This model is parameterized as

π(γ1;π,µ,ν) = πµ1µ2µ3µ4 + (1− π)ν1(1),2(1),3(1)ν4,

π(γ2;π,µ,ν) = π(1− µ1)µ2µ3µ4 + (1− π)ν1(0),2(1),3(1)ν4,

. . .

π(γ16;π,µ,ν) = π(1− µ1)(1− µ2)(1− µ3)(1− µ4)

+ (1− π)(1− ν1(1),2(1),3(1) − ν1(0),2(1),3(1) − ν1(1),2(0),3(1) − ν1(1),2(1),3(0)

− ν1(0),2(0),3(1) − ν1(0),2(1),3(0) − ν1(1),2(0),3(0))(1− ν4),

where ν1(1),2(1),3(1) = u1(1),2(1),3(1)/u, . . . , ν1(1),2(0),3(0) = u1(1),2(0),3(0)/u.

This model has 13 parameters and 16 observables. The rank of the corresponding Jacobian is 12,

which means that the model is not identifiable.

Alternatively, this model can be parameterized as

π(γ1;π,µ,ν) = πµ1µ2µ3µ4 + (1− π)ν1|2(1),3(1)ν2|3(1)ν3ν4,

π(γ2;π,µ,ν) = π(1− µ1)µ2µ3µ4 + (1− π)(1− ν1|2(1),3(1))ν2|3(1)ν3ν4,

π(γ3;π,µ,ν) = πµ1(1− µ2)µ3µ4 + (1− π)ν1|2(0),3(1)(1− ν2|3(1))ν3ν4,

. . .

π(γ16;π,µ,ν) = π(1− µ1)(1− µ2)(1− µ3)(1− µ4)

+ (1− π)(1− ν1|2(0),3(0))(1− ν2|3(0))(1− ν3)(1− ν4),

Again, model has 13 parameters, but the rank of the corresponding Jacobian is 12, which means

that the model is not identifiable.

The fact that this model is not identifiable is important. When entire households are sampled from

a population of humans, the majority of variables will result in associated comparisons in the set of non-

matches. Therefore, a great deal of care must be taken in specifying linkage models. Either the address

variable is included and an identifiable model is specified, such as π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) +
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(1 − π)νp(γ1,2, γ3, γ4), or the combination of variables that lead to nonidentifiable models must be

avoided. In both cases, a restriction on the use of the available linkage variables is enforced. That is

why it seems unlikely to be able to use many linkage variables in the no-classification linkage and linkage

free dual system estimation. Note, that many model specifications found in the literature on record

linkage, say Jaro (1989) or Larsen & Rubin (2001), have models that are most likely nonidentifiable

as the result of combining multiple associated variables.

5.2.5 Model π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ1,3, γ4)

The next model for identifiability investigation has independent comparison outcomes between linkage

variables in the set of matches, while in the set of non-matches there is association between v1 and v2 as

well as between v1 and v3. There are several practical situations where such a model can be considered.

This model can be tried as a simpler alternative for the model π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4)+(1−
π)νp(γ1,2,3, γ4). That is, instead of trying to model a three-way dependence, one chooses to take into

account the association between the full standardized address and surname as well as the association

between the address and country of birth (or ethnicity, relationship to the head of household, etc.).

Another situation is when the variables are full standardized address, surname, first name and date

of birth of the π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1 − π)νp(γ1,2, γ3, γ4) model are used, but this

time association between the address and surname as well as association between the surname and

first name variables are taken into account. To be precise, the corresponding model in this case is

π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1 − π)νp(γ1,2, γ2,3, γ4), but this model differs from the previous

one by the permutation of indices of linkage variables only (that is, the same number and type of

associations, but between a different combination of variables) as the model in the title of this section

so these are structurally exactly the same models and it is sufficient to establishing identifiability for just

one variant of the model. Another structurally the same model is π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) +

(1 − π)νp(γ1,3, γ2,3, γ4), which can be regarded as another simplification of the three-way association

model. The parameterization is

π(γ1;π,µ,ν) = πµ1µ2µ3µ4 + (1− π)ν1ν2|1(1)ν3|1(1)ν4,

π(γ2;π,µ,ν) = π(1− µ1)µ2µ3µ4 + (1− π)(1− ν1)ν2|1(0)ν3|1(0)ν4,

. . .

π(γ16;π,µ,ν) = π(1− µ1)(1− µ2)(1− µ3)(1− µ4) + (1− π)(1− ν1)(1− ν2|1(0))(1− ν3|1(0))(1− ν4).

There are 11 parameters and the rank of the corresponding Jacobian matrix is also 11. Therefore,

the model is locally identifiable.

It is possible to check the rational identifiability of this model in a similar way to several examples

examined above. Computing the corresponding Gröbner basis we find that for every parameter of this

model the polynomials in the form π − πc are in the ideal Ic. Therefore, all parameters are rationally

identifiable without label switching.
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5.2.6 Model π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ1,3, γ2,3, γ4)

This model can be seen as another simplification of a more complex specification π(γp;π,µ,ν) =

πµp(γ1, γ2, γ3, γ4) + (1 − π)νp(γ1,2,3, γ4). In terms of the regular probability models a model with

all pairwise but no three-way associations is called the homogeneous association model (Agresti, 2002,

chap. 8). The mixture-like model considered in this section takes into account only pairwise association

between comparison outcomes for three linkage variables in the set of non-matches while the fourth

variable is independent of the rest of the variables.

Parameterizing this model is slightly more cumbersome than models considered so far. It is easier

to start working with a regular probability model. We can later shift to a mixture-like model since

algebraic manipulation with components of this model are equivalent to the regular models. Consider

a binary outcome model with three variables pr(X1 = 1, X2 = 1, X3 = 1), pr(X1 = 0, X2 = 1, X3 =

1), . . . ,pr(X1 = 0, X2 = 0, X3 = 0). If the pairwise dependence between all three variables exists, then

the following relationship holds (Agresti, 2002, chap. 8):

pr(X1 = 1, X2 = 1, X3 = 1)pr(X1 = 0, X2 = 0, X3 = 1)pr(X1 = 0, X2 = 1, X3 = 0)pr(X1 = 1, X2 = 0, X3 = 0)

= pr(X1 = 0, X2 = 1, X3 = 1)pr(X1 = 1, X2 = 0, X3 = 1)pr(X1 = 1, X2 = 1, X3 = 0)pr(X1 = 0, X2 = 0, X3 = 0).

This relationship can also be found by computing a Gröbner basis for this homogenous association

model expressed in the exponential product form, which can be obtained by taking the exponent of

the standard log-linear formulation of the model. Now we can combine the relationship implied by

the homogeneous association model and the expression pr(X1 = x1, X2 = x2, X3 = x3) = pr(X1 =

x1 | X2 = x2, X3 = x3)pr(X2 = x2 | X3 = x3)pr(X3 = x3) for the joint probability in order to

write one of pr(X1 = x1 | X2 = x2, X3 = x3) as a function of the remaining probabilities and thus

reduce the number of parameters from 7 to 6. Denoting ν∗1|2(1),3(1) = pr(γ1 = 1 | U , γ2 = 1, γ3 =

1), ν∗1|2(0),3(1) = pr(γ1 = 1 | U , γ2 = 0, γ3 = 1), ν∗1|2(1),3(0) = pr(γ1 = 1 | U , γ2 = 1, γ3 = 0) and

ν∗1|2(0),3(0) = pr(γ1 = 1 | U , γ2 = 0, γ3 = 0), it is possible to express, for instance, ν∗1|2(1),3(1) in terms

of the remaining three probabilities. Using the properties of the components of a mixture-like model,

the probabilities can be replaced by the ratios of expectations in the resulting expression when dealing

with mixture-like record linkage models. Hence, we can then write the corresponding relationship for

the expectations of a mixture-like model as

ν1|2(1),3(1) =
ν1|2(1),3(0)ν1|2(0),3(1) − ν1|2(1),3(0)ν1|2(0),3(1)ν1|2(0),3(0)

ν1|2(1),3(0)ν1|2(0),3(1) + ν1|2(0),3(0) − ν1|2(1),3(0)ν1|2(0),3(0) − ν1|2(0),3(1)ν1|2(0),3(0)
. (59)

Therefore, the model π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4)+(1−π)νp(γ1,2, γ1,3, γ2,3, γ4) can be written
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as
π(γ1;π,µ,ν) = πµ1µ2µ3µ4 + (1− π)ν1|2(1),3(1)ν2|3(1)ν3ν4,

π(γ2;π,µ,ν) = π(1− µ1)µ2µ3µ4 + (1− π)(1− ν1|2(1),3(1))ν2|3(1)ν3ν4,

π(γ3;π,µ,ν) = πµ1(1− µ2)µ3µ4 + (1− π)ν1|2(0),3(1)(1− ν2|3(1))ν3ν4,

. . .

π(γ16;π,µ,ν) = π(1− µ1)(1− µ2)(1− µ3)(1− µ4)

+ (1− π)(1− ν1|2(0),3(0))(1− ν2|3(0))(1− ν3)(1− ν4),

with ν1|2(1),3(1) replaced by (59).

This model has 12 parameters as the rank of corresponding Jacobian is also 12, hence, the model

is locally identifiable.

Checking generic or rational identifiability is hard in this case. The tensor methods cannot be

applied here as we cannot marginalize the above model to obtain the model of between-variables con-

ditional independence given M and U . When checking the rational identifiability with the Gröbner

basis method, we did not manage to obtain a basis for this model after hundreds of hours of compu-

tations. Note, that the model specification involves rational functions due to the presence of (59) and

this should be reflected when computing the Gröbner basis; see Cox et al. (2015, chap. 3).

5.2.7 Model π(γp;π,µ,ν) = πµp(γ1, γ2,3, γ4) + (1− π)νp(γ1,2, γ3, γ4)

The final model to consider has association between v2 and v3 in the set of matches and association

between variables v1 and v2 in the set of non-matches. In record linkage and related applications

this model specification can be used when linkage variables available are the full standardized address,

surname, first name and date of birth. In this case, the association between comparisons on the address

and surname variables are expected just as in one of the models presented above. In addition, this

time it is assumed that there is association between errors made recording the values of surname and

first name and this association either cannot be made nearly ignorable by approximate comparisons

or approximate comparisons are not available. Provided there is a high quality address checking

mechanism, we regard the dependence between surname and first name as the most likely dependence

in the set of matches as these two variables are hardest to record and ‘difficult’ surnames are often

accompanied by ‘difficult’ first names. This dependence is most likely in an interviewer led survey,

where ‘unfamiliar’ or ‘difficult’ surnames and names are likely to be misheard or spelt incorrectly. The

corresponding parameterization is

π(γ1;π,µ,ν) = πµ1µ2µ3|2(1)µ4 + (1− π)ν1ν2|1(1)ν3ν4,

π(γ2;π,µ,ν) = π(1− µ1)µ2µ3|2(1)µ4 + (1− π)(1− ν1)ν2|1(0)ν3ν4,

π(γ3;π,µ,ν) = πµ1(1− µ2)µ3|2(0)µ4 + (1− π)ν1(1− ν2|1(1))ν3ν4,

. . .

. . .

π(γ16;π,µ,ν) = π(1− µ1)(1− µ2)(1− µ3|2(0))(1− µ4) + (1− π)(1− ν1)(1− ν2|1(0))(1− ν3)(1− ν4).
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There are 11 parameters in this model and the rank of the corresponding Jacobian is 11, which

means that the model is locally identifiable.

It is possible to check rational identifiability for this model using the same approach we used for

the rest of models considered in this chapter. In this case, Singular software is used. We found that

functions such as π−πc are in the ideal Ic and hence all parameters are rationally identifiable without

label switching. The related Singular example is in Appendix C.

6 Estimating the variance of the linkage free dual system estimator

It was discussed in Section 3.3 that the data generating mechanism in a record linkage problem ef-

fectively produces a single realization of a random vector. Therefore, the parameter estimation of a

mixture-like model is based on a single observation only. Doing point estimation with a single observa-

tion results in a discrepancy between the model, which holds whenever multiple outcomes of the linkage

experiment are averaged, and the actual data available in real applications. As a result, estimators

of the linkage model and related parameters are not consistent. Nevertheless, even without all the

desirable statistical properties, achievable point estimates are still useful and admissible estimates of

the linkage model parameters. Given the complexity of the linkage problem, these estimates may well

be the best or close to the best results one can obtain. The situation seems more grim when it comes

to measuring the uncertainty around these estimates. With a single available observation, the variance

estimation seems impossible at first. However, if a special case of blocking, called averaging blocking

(see Section 3.4), is achievable, then it is feasible to obtain the approximate variance estimate for the

linkage and related parameters using resampling methods.

6.1 General approach

Recall that the averaging blocking splits the population or estimation stratum of interest into non-

overlapping groups, G1, . . . , Gβ, . . . , GB, of equal or nearly equal size τβ. It is assumed that the values

of linkage variables in each Gβ are generated by the same or very similar mechanisms. Data sub-

samples S1,β ⊂ S1 and S2,β ⊂ S2 are independent enumerations of a block β. The comparisons of the

values of linkage variables are made between the records of the sub-sample S1,β and the records of the

sub-sample S2,β, but not between any sub-samples S1,α, S2,β, α ̸= β. The important assumption behind

the averaging blocking is that for each of j = 1, 2 every Sj,β is generated by the same or nearly the

same mechanism. Moreover, every Sj,β is generated by the same mechanism as Sj is generated, only

the population size parameters are different. Clearly, S1,β and S2,β are generally generated by different

mechanisms. If such averaging blocking is achievable, then it is possible to estimate the approximate

variance of the linkage free estimator ˜︁τ , as well as the variance of the other linkage parameters. Our

focus here is on the variance estimation of ˜︁τ , though.
First, the basic approach for the variance estimation of ˜︁τ for an idealised case where all blocks

G1, . . . , GB are of the same size τβ is presented. Achieving such a fine blocking is hard or even

impossible in practice which means there will be an artefactual variability due to varying block sizes.

Two ways of addressing this problem in practical applications will be presented. Note, that we are not
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discussing variance estimation with complex sampling of either or both of S1 and S2 from the finite

population. It is assumed in this work, that observations for both S1 and S2 are selected using simple

random sampling without replacement (though for simplicity we often use models where sampling

is with replacement in this thesis). Also, for simplicity, we are not correcting for finite population

sampling here. Recall, that in applications like the census, at least one of the samples would be drawn

using some stratified multistage sampling design: a selection of output areas would be drawn within

a stratum and then a sample of postcodes would be drawn from each selected output area. It is most

likely, however, that within a sample stratum every sampled postcode would have the same sampling

fraction.

The aim is to obtain an approximate variance estimator ˆ︃Var(˜︁τ) of the linkage free dual system

estimator ˜︁τ = 1ˆ︁π from two independent samples S1 and S2, where τ is the size of a population P. In

our idealised case we perform the averaging blocking which partitions the population P into B blocks

of nearly equal unknown size τβ. The linkage free dual system estimates are obtained for each block

first, ˜︁τβ = 1ˆ︁πβ
. Consider the following approximation

˜︁τ ≈
B∑︂

β=1

ˆ︁π−1
β =

B∑︂
β=1

˜︁τβ = B˜︁τ , (60)

where ˜︁τ =
1

B

B∑︂
β=1

˜︁τβ.
Then we propose to use the following approximation to estimate the variance of ˜︁τ

Var(˜︁τ) ≈ B2Var(˜︁τ), (61)

which employs the basic fact that for a random variable X and a constant y we have Var(yX) =

y2Var(X).

Estimate the variance of ˜︁τ using the method of random groups (Wolter, 2007; chap. 2) by treating

every block as a random group with common expected population size

ˆ︃Var(˜︁τ) = 1

B(B − 1)

B∑︂
β=1

(˜︁τβ − ˜︁τ)2. (62)

Finally, obtain the approximate variance estimator of the population size

ˆ︃Var(˜︁τ) ≈ B2ˆ︃Var(˜︁τ). (63)

The approximate variance estimator for the 1-to-1 constrained linkage free dual system estimator

(53) is defined in exactly the same way. We replace ˜︁τ with ˜︁τc, ˜︁τβ with ˜︁τc,β and ˜︁τ with ˜︁τ c in the

above derivations. The linkage free estimate of the size of each block is obtained first. The modified

composite linkage free estimator is then used to obtain the size of each block under the 1-to-1 linkage
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constraint. The corresponding variance estimator for the population size is ˆ︃Var(˜︁τc) ≈ B2ˆ︃Var(˜︁τ c).
Regarding the distinction that exists in the capture-recapture literature between the variance con-

ditional or unconditional on the observed sample sizes, theoretically, the method presented in this

thesis can be used to estimate either the unconditional or conditional variance. This depends on what

kind of data generating mechanism the population of interest has: either fixed sample sizes or random

sample sizes (but fixed coverage probabilities). As stated above, it is assumed that each block has

the same or a very similar generating mechanism to the one used to generate the target population.

Then, in theory, for the fixed sample sizes case, each block also has fixed sample sizes. Whereas for

the random sample sizes case, each block has a random sample size. The method developed here

will always have some artefactual variability when applied in practice which is attributable to some

inevitable variability in the population size of each block. This means that the sample sizes will also

vary between the blocks, no matter what the true generating mechanism is. The conclusion would be

that in practice the proposed variance estimator cannot estimate the conditional variance, even if the

sample sizes were fixed at the data collection stage.

6.2 Practical approach: no auxiliary data

As already mentioned, it is not in general possible to achieve the perfect averaging blocking when the

linkage exercise is carried out with the goal to estimate the population size (but it may be possible

in some linkage exercises where the population size is known). Therefore, in the situations we are

interested in, no blocks of approximately equal size τβ are directly available. Nevertheless, in many

well-planned and designed data collection exercises for the population size estimation, there are good

quality address frames or / and address listings available. Those are data with the approximate number

of addresses for low level geography units such as postcodes and output areas. Knowing how many

postcodes are in the population of interest P and how many addresses are in each of these postcodes,

allows postcodes to be collapsed into blocks with the number of addresses being as equal between the

blocks as possible. This still will not result in blocks of nearly equal size τβ for at least two reasons.

First, postcodes vary considerably in size. Hence, collapsing postcodes within the population P into

blocks that have equal numbers of addresses is generally unlikely. Second, despite a strong correlation

between the number of addresses and the number of individuals within a certain geographical unit,

there is still substantial variability of the number of individuals given the number of addresses. Overall,

this additional variability will result in (63) overestimating the variance of τ .

Two solutions to the above problem are proposed and presented. Both solutions aim to adjust for

differential sizes of the blocks. There may be variations of these solutions, dependent on the situation

and data available.

The first solution is rather crude, has certain flaws in the justification and its performance is far

from perfect. Nevertheless, it is capable of providing an indicative variance estimate and does not

require much effort to be computed. We use the observed sizes of two samples n1,β, n2,β for a block β

to do the adjustment. Of course, there is an obvious flaw in such attempt since the observed size of

any of these samples is not only a function of the block’s size τβ, but is also affected by the variability

of πβ, which drives the variability we are trying to estimate. The adjustment and variance estimation
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are as follow. Let

µadj =
1

B

B∑︂
β=1

(n1,βn2,β)
1
2 ,

be the mean of the square root of the product of the sample sizes within each block. The square root

is needed to ensure that µadj and τβ are on the same scale. Then every τβ is adjusted to produce

˜︁τadj,β = ˜︁τβ µadj

(n1,βn2,β)
1
2

. (64)

The method of random groups is used in the way described above, so that

ˆ︃Var(˜︁τadj) = 1

B(B − 1)

B∑︂
β=1

(˜︁τadj,β − ˜︁τadj)2,
where ˜︁τadj = 1

B

B∑︂
β=1

˜︁τadj,β.
The approximate variance estimator is

ˆ︃Var(˜︁τ) ≈ B2ˆ︃Var(˜︁τadj). (65)

The same derivation can be used for the one-to-one constrained linkage free dual system estimator.

6.3 Practical approach: with auxiliary data

The second approach is slightly more elaborated, has a better justification and performs quite well. It

relies on the availability of the auxiliary data such as an address frame or address listing, may need

some additional processing effort and is more complicated. Let lβ be the number of addresses in the

block β as found in the address frame or address listing. Let l1,β and l2,β be the number of responding

addresses in the block in the first and second samples, respectively. Some comments are needed here.

Establishing l1,β and l2,β may involve just counting the numbers of responding addresses in each of

the samples irrespective of the counts in the auxiliary data, or it may involve mapping the responding

addresses to those contained in the auxiliary data. There may be some discrepancy between those

counts and lβ in practical applications. For instance, the observed count may be higher than one found

on the address list. Also, responses at the address level may be mapped to the address frame in the

case of the first sample, but to the address listing in the case of the second sample. One way or another,

there is additional processing required. Nevertheless, the method presented here does not need perfect

pre-processing. Rather, it requires high correlation between n1,β and l1,β as well as between n2,β and

l2,β and reasonably accurate lβ.
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Let Aβ = lβ
(n1,βn2,β)

1
2

(l1,β l2,β)
1
2

and Ā = 1
B

∑︁B
β=1Aβ. Then every τβ is adjusted this way

˜︁τaux,β = ˜︁τβ Ā
Aβ

. (66)

As before, the method of random groups is used:

ˆ︃Var(˜︁τaux) = 1

B(B − 1)

B∑︂
β=1

(˜︁τaux,β − ˜︁τaux)2,
where ˜︁τaux =

1

B

B∑︂
β=1

˜︁τaux,β
and the approximate variance estimator is

ˆ︃Var(˜︁τ) ≈ B2ˆ︃Var(˜︁τaux). (67)

Again, the derivation is similar for the one-to-one constrained linkage free dual system estimator.

In Chapter 8 we assess the performance of the above variance estimators through simulations.

6.4 Why not just use bootstrap?

Variance estimation methods presented in this chapter may seem excessive at first glance. Why not

do something simpler, say, the bootstrap, instead? The reason why the bootstrap method is not

appropriate is related to the sampling or data generating mechanism associated with the record linkage

task, as described in Section 2.2.5. It turns out, at least with simple bootstrapping approaches, that

it is hard to adequately approximate the original distribution of the record linkage data.

Before showing the inappropriateness of several potential bootstrap approaches to the variance

of the linkage free estimator, we make a few important observations. First, recall that we usually

model the number of matches either with binomial or hypergeometric distribution. Second, sampling

with replacement from {x1, . . . , xn}, is the same as sampling from a multinomial distribution, with

the number of trials being n and the probability of drawing xi being 1/n (Efron & Tibshirani, 1993,

chap. 20.2).

The third observation concerns the simplest implementation of the bootstrap method for the vari-

ance of the dual system estimator (Buckland & Garthwaite, 1991; Norris & Pollock, 1996). What is

resampled with replacement in the case of the non-parametric implementation are the so-called capture

histories. That is, the observed matches (in simple dual system estimation, unlike the no-classification

methods, matches are treated as observable values), cases in the first sample only and cases in the

second sample only. It is easy to see that such an implementation will generally underestimate the

true variance. The relationship between sampling with replacement and a multinomial distribution

means that we resample from x1, . . . , xm+n10+n01 capture histories with each xi taking one of the three

possible values. Therefore, given the original sample, the bootstrap samples will be from a multinomial
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distribution with the number of trials equal to the number of captures at least in one of the surveys,

m+ n10 + n01, and the probabilities of resampling a certain event will be the observed number of that

event divided by m+n10+n01. It is clear that such an approach does not account for the cases missed

in both samples. Therefore it does not always accurately estimate the variance of the dual system

estimator. Buckland & Garthwaite (1991) suggest estimating the population size τ first and then sam-

pling from the observed capture histories as well as from the estimated ˆ︁n00 histories of being missed

completely. The number of observations to resample (or the number of trials in the corresponding

multinomial distribution) is ˆ︁τ in this case. It is a peculiar example, since the bootstrap distribution

(multinomial) coincides with the possible original distribution of the events. Note, that in Buckland &

Garthwaite (1991) this approach is referred to as the non-parametric bootstrap. The parametric case

uses the estimates of τ, π1, π2 and, if needed, the observed quantities n1, n2 to generate samples from

either a multinomial or hypergeometric distribution.

The no-classification methods are quite different from simple dual system estimation due to linkage

being an integral part of the estimation. Therefore, one can think that the variance of these methods

combines the variance of the simple dual system estimator (which is mainly driven by the variation

in the number of matches) and the variance associated with estimating the number of matches. The

input data are not m+ n10 + n01 capture histories, but w = n1n2 record pairs with the corresponding

comparison outcomes. In other words, there are no capture histories available, as there is no classifi-

cation. Even if we treat the outcomes of 1-to-1 pairings as a kind of capture history, there will be no

values of the linkage variables available for the ˆ︁n00 estimated cases missed in both surveys. Therefore,

there is no straightforward way of creating the comparison patterns for such estimated cases. Below

we overview and present arguments against several possible implementations of the bootstrap variance

estimation of the linkage free dual system estimator.

One could attempt the non-parametric bootstrap from a set of all ordered pairsW. That is, produce

a bootstrap resample by sampling with replacement from the w observed record pairs. However, such

a sampling draws each pair independently from the rest of the pairs. It was shown in Section 2.2.5 that

there is within-variables associations in the comparison outcomes. Therefore, sampling the original

pairs independently would not preserve the underlying associations between record pairs and would

not reflect the true variance of the no-classification estimator.

An alternative approach would be to estimate the parameters of the record linkage model and

obtaining the no-classification based population size estimate first, then proceed with the parametric

bootstrap. Unfortunately, we do not know exactly what the underlying distribution of the record

linkage data is. Hence, we cannot implement the parametric bootstrap.

One may try to bootstrap the original survey observations, make the comparison and proceed with

the estimation for each bootstrap replicate. Below we discuss two strategies to resample the original

survey observations and demonstrate that the resulting variance estimates will be inadequate. The

crucial observation here is that the no-classification approaches have the variance component due to

variability ofM,N1, N2 and linkage variability (which is at least partly driven by the distribution of the

attributes and errors). Therefore, in order for a bootstrap scheme to work it must approximate well the

distribution of matches M in the first place. If the bootstrap distribution of the number of matches is
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far from the true distribution of matches, the distribution of the bootstrap no-classification estimates

will also be far from the true distribution of estimates. As before, two working distribution for M are

the binomial and hypergeometric. Supports for these distributions are {0, . . . , τ} and {max(0, n1 +

n2 − τ), . . . ,min(n1, n2)}, respectively. Given that in this thesis we focus on the application of the

no-classification methods to estimate a relatively small domain with high coverage in the surveys, the

number of matches generally lies between max(0, n1 + n2 − τ) and min(n1, n2).

The first strategy to resample the original survey observation is the following one. Once the data

from two surveys are collected, we use simple random sampling with replacement to draw n1 records

from the first survey and n2 records form the second survey. These resampled records give rise to w

record pairs. Then comparisons of the values of linkage variables are carried out for these pairs and

we proceed with the parameter estimation in the same manner we do with the original data. Now

observe that the distribution of the number of matches associated with such a resampling scheme has

support {0, . . . , n1n2}. Here is an example of the extreme case of no matches in a bootstrap sample.

Suppose that a record pair (a, b) is a non-match. Then drawing n1 records s1,a from the first survey

and n2 records s2,b from the second survey will result in 0 matches among n1n2 pairs. The extreme

case of getting n1n2 matches is as above, but with a record pair (a, b) being a match. It is possible

to work out the probability mass function of obtaining exactly m matches when using the above

bootstrapping scheme. Nevertheless, this probability function is very cumbersome. It has to reflect

the fact that exactly m matches can be obtained in multiple ways. For instance, by resampling only

a single matching pair that results in m matches; or by resampling any two matching pairs in such

a way that m matches are achieved, and so on. In any case, it is clear that this distribution differs

substantially both from the binomial and hypergeometric distributions. In order to get an idea how

much the variability of matches under such a bootstrap scheme differs from the variability under the

two usually used distributions, one can conduct a simple simulation. For instance, let the population

size be τ = 500, and the coverage probabilities be π1 = π2 = 0.9, so that the expected sample size is 450

for the both surveys. If M follows the hypergeometric distribution with τ = 500, n1 = n2 = 450, then

its variance equals 4.05. If M follows the binomial distribution with τ = 500 and the probability of

success π1π2 = 0.81, then its variance equals 76.95. Suppose now that the collected data are perfectly

calibrated to the expected values, so that n1 = n2 = 450,m = 405 and the bootstrap samples are

drawn from these data. The bootstrap should approximate the original distribution reasonably well

in order to be useful. The bootstrapped variance of M , however, is 437.80 in this case, which is

substantially larger than the possible true variances. It is clear that such a bootstrapping scheme

is not approximating well the distribution of the number of matches. Experiments confirmed severe

overestimation of the variance of the no-classification estimators under such a bootstrapping scheme.

An alternative approach would be to fix the records of one of the surveys and bootstrap from the

remaining one. Without loss of generality, suppose that we fix the sample S2 and use simple random

sampling with replacement to draw n1 records from S1. Then we create record pairs and proceed with

estimation. Observe, that given the observed records of the first survey each resampled s1,a either

has a corresponding match among the records of the second survey or not. Therefore, the number

of matches in a bootstrap sample follows the binomial distribution with the number of trials n1 and
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the probability of success #{matches in the original sample}/n1 = ˆ︁π2. Recall, that if the original

model for the number of matches is binomial, then M ∼ Bin(τ, π1π2), not M ∼ Bin(n1, ˆ︁π2) as in

the case of the bootstrap. Experiments demonstrated, that in most cases such an approach leads to

underestimation of the variance of the no-classification estimators, but the deviation from the true

variance is not as severe as when records from the two surveys are resampled. This is what one might

expect for good coverage in both surveys, as n1 is close to τ and ˆ︁π2 does not differ substantially from

π1π2.

The fact that we are dealing with pairwise comparisons in record linkage also means that we cannot

use some arbitrary random groups that are independent between the surveys. In this case, we would

have an additional source of variation, since there is no guarantee that a population element captured

in both S1 and S2 will end up in the same random group. Therefore, the averaging blocking based

random groups provide the means for a meaningful variance estimation.

7 Simulation study for point estimation

In this chapter a simulation study to assess (a) the validity of the mixture-like conceptualisation of

record linkage, as developed in Chapter 3, and (b) the performance of the linkage free and modified

linkage free dual system estimators, as described in Chapter 4, is presented. Before the results are

summarized and analysed, all the key aims of this simulation study are outlined and the properties

of simulated data are introduced alongside a description of the data generating mechanism. The

combination of parameters that constitute the simulation scenarios are also given. The population

size estimators based on the no-classification linkage approach developed in this thesis are assessed

from two perspectives in this study. The first is the practical perspective which considers application

of the estimators as they would be applied in most practical situations. That is, given the data,

applying the estimator to some estimation strata without averaging blocking or with averaging blocking

done similarly to the post-stratification. Such practical application has certain caveats (Section 3.3).

Alternatively, the theoretical perspective concerns the application of the estimators in the near perfect

averaging blocking set up. This set up leads to a theoretically better justified and data-conforming

estimation. However, it is not in general feasible to achieve such a set up. The same data generating

mechanism is used in the investigation of point estimates in this chapter, and of variance estimates in

Chapter 8, but the variance estimation is assessed on a smaller number of scenarios.

7.1 Aims of the simulation study

The data generating mechanism associated with record linkage (Section 2.2.5), its representation via

mixture-like models (Section 3.1), the estimation of the linkage model parameters and deriving the

related linkage free dual system estimator using the simulated annealing approach (Sections 3.5 and

Section 4.1) and finally reflecting the 1-to-1 matching constraints (Section 4.2) are all too complex to

be dealt with analytically. A simulation study, while lacking the ability to establish general properties,

allows us to assess the performance of the estimators and check whether certain features predicted in

theory are substantiated in empirical results. Therefore several goals are pursued in this study:
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1. Check whether the linkage free and modified linkage free dual system estimators have compa-

rable performance to the dual system estimator with the number of links obtained by a usual

classification-based approach; what is the performance of the estimators of interest benchmarked

against the dual system estimator with perfect linkage;

2. Determine how big, if any, is the reduction in variance and bias when using the modified linkage

free estimator compared to the linkage free dual system estimator;

3. Check whether the linkage free dual system estimator constructed to be data-conforming (Section

3.4) functions as anticipated and whether the bias is incurred for certain combinations of the

number of unique values of attributes ρv as demonstrated using the Taylor series approximations

in Section 3.2;

4. Check if the process of replicated values of a certain attribute within the given value of another

attribute (like repeating the value for the surname attribute within the household address at-

tribute) in the population results in between-variables dependence of the comparison outcomes

as described in the linkage experiment (Section 2.2.5);

5. Check if the probability distribution of the number of comparisons is not multinomial when the

data are generated as described in the linkage experiment (Section 2.2.5);

6. Assess whether the averaging blocking strategy outperforms estimation at the aggregate level in

practical applications;

7. Check if the identifiability and non-identifiability of models established in Chapter 5 are supported

by empirical simulations.

7.2 Simulating data

The data generating mechanism used in this simulated study is an implementation of the linkage

experiment described above in Section 2.2.5. Here, we give more details on the kind of data and how

they are generated. We also present the actual parameters used in the simulations and scenarios made

by combining the individual parameters. All simulation and estimation related code is written in the R

language (R Core Team, 2020). Most of the simulation and estimation work was run on the University

of Southampton Iridis 5 supercomputer cluster. Some of the simulation and estimation jobs and all

the development and testing was carried out on the workstation with 256GB RAM and Intel®Coretm

i9-10920X CPU with twelve 3.50GHz dual cores.

There are several stages in the data generation mechanism aiming to mimic as closely as possible

the process that brings about the data used in real world record linkage situations. These stages are:

(a) generate the target population with a specific nesting of individuals within addresses / households

and nesting of households within geographic areas such as postcodes or output areas, also generate

the values for attributes associated with each household and individual such as address, surname, etc.;

(b) decide which elements in the population responded in the first survey and which responded in

the second survey, the decision process is independent for each of the population elements (so that
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the decision whether a certain household responds is independent of the decision whether any other

household responds, also within a responding household, the decisions on individual responses are

made independently for every member of the household) and is independent between two surveys; (c)

for each of the surveys, record the population attributes as the values of linkage variables allowing for

some of the values to be missing or be recorded incorrectly; (d) pair the records of the two surveys and

for every pair carry out a binary comparison of the values of each linkage variable; this process results

in a comparison pattern γ(a, b) for every record pair (a, b); (e) finally, compute the frequency of the

each of 2K comparison patterns. The data obtained at the last stage (e) are actually used in parameter

estimation of the mixture-like model by the simulated annealing approach and the linkage free dual

system estimator is based on these estimates. However, the data from stages (b) and (d) are also kept

and used in the modified linkage free dual system estimator and in variance estimation. On top of

these generated data, there is an output containing the true match status of each pair and the total

number of true matches, data tables associated with the set of matches and the set of non-matches,

so that the perfect linkage outcome is available for benchmarking. For a simulation scenario, defined

by a particular combination of simulation parameters, the simulation process as outlined above runs a

specified number of iterations. In this study, the number of iterations is 1000 for all scenarios. In the

case of assessing practical application of the linkage free dual system estimator, the simulated data for

each iteration are passed to the estimation in turn. Thus, 1000 independent estimates are produced

and then analysed. When assessing the possibility to construct a data-conforming estimator, 1000

simulated outcomes from the stage (e) are averaged, thus mimicking the perfect averaging blocking

(where each block has the fixed unobservable size τ), and then passed to parameter estimation. The

simulated annealing is run with 10 random starts for the same input data to account for the small

variability in the outputs of the algorithm for the fixed input data. Then these 10 estimates are

averaged to produce only a single estimate which allows assessing whether the estimator converges to

the true parameter value or not. All simulations are conducted with K = 4 linkage variables. However,

the simulation system itself has no limit on the number of linkage variables. Below we provide a more

detailed description of the stages and parameter values used in the study.

At the first stage of simulation a population of interest P is produced using a set of fixed parameters

defining this population. The first parameter is the population size τ . Three values of this parameters

are used, τ ∈ {250, 500, 1000}. Recall, that in this thesis the dual system estimation of the population

total of a relatively small stratum or post-stratum is considered. If the population of interest is large,

then it must be further stratified in a meaningful way and estimates for each stratum are obtained

in turn. Recall also, that the simple dual system estimators (4) or (5) will have a small bias unless

τ is large. We do not explore the scenarios where τ is large enough to make the bias in the dual

system estimator near non-existent. This is because the contribution of such bias to the mean square

error is small even for the values of τ considered in this thesis. Another reason is that computational

burden which is associated with the linkage free estimation grows rapidly because the number of pairs

is quadratic in the population size (unless blocking is used, but many of the scenarios of interest do

not use any blocking).

Each individual observation representing a person in the population can be nested in a higher level
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unit. In this simulation study every person is nested in a household. The average size of households

is another parameter defining the population and in all scenarios its value is set to be 2.4. A person

can belong to only one household. Also, every household is nested in one and only one artificial

geographical unit with the mean size of 60 persons. This unit can be thought as a combination of

neighbouring postcodes.

Attributes of the population elements are generated with the help of two parameters. The first

parameter is the number ρk of unique values the kth attribute can take. The second parameter controls

the frequency distribution of the values, with some attributes being uniformly distributed, while others

may have certain values to be substantially more frequent than other values of the same attribute. This

corresponds to the situation with names or surnames where there are a few very common names or

surnames while many other names or surnames are infrequent. The actual values of attributes are

just numbers from 0 to ρk − 1, rather than real names and surnames, with some of the distributional

properties similar to the real-world attributes. It is easier and more efficient to work with such numerical

attributes. Clearly, if the distribution of values of the kth attribute is uniform, then each value occurs

in the population with probability 1/ρk. On the other hand, if the distribution of values is not uniform,

then the value xk,i, where xk,i ∈ Z lies in the interval [0, . . . , ρk − 1], will occur with the probability

λkexp(−λkxk,i)/
∑︁ρk

i=1 λkexp(−λkxk,i). Here λkexp(−λkxk,i) is the probability density function of the

exponential distribution with parameter λk and xk,i are the values of the kth attribute. The following

values of the parameters ρk and λk are used to test practical applications of the estimators. The

first linkage variable has ρ1 = 10000 and is uniformly distributed (so λk is irrelevant in this case).

We usually think of the first variable as the full standardized address. The reason to have that many

possible values for the address attribute is to mimic the situation where within a small population with

the size up to 1000 individuals, the chance of having genuinely the same address is rather small. The

uniform distribution of values helps to achieve this. The second and third variables have ρ2 = ρ3 = 500

and λ2 = λ3 = 0.01. We usually think about the second variable as being surname and third one

being first name. Clearly, there are a lot more names and surnames in the population. However,

the 500 most common names may account for about 75% − 85% of all names in the population and

only around 300 most common surnames may account for 30% of all surnames, while 3500 next most

frequent surnames account for another third of all surnames (US Census Bureau, 1990). Given that

we work with a population size which does not exceed 1000 individuals, the chosen sizes are reasonable

and practical. The values of the fourth variable are uniformly distributed and there are ρ4 = 100

distinct values. This variable can be thought as a sort of ‘compressed’ or ‘binned’ date of birth. We

note that some of the models considered in Chapter 5 and used in simulations below do not support

the presented selection of variables and related numbers of unique values. For instance, we said that

v3 in model π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1 − π)νp(γ1,2,3, γ4) can be relationship to the head

of household. Clearly, this variable cannot have 500 levels. In order to have the results of simulations

comparable between different model specifications, we had to fix the above parameters regardless of

such discrepancies.

The final feature related to generation of the population, is the association between the values of

certain attributes given another attribute. Such associations in the values of population attributes
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lead to dependence between the frequencies of comparison patterns in the set of non-matches U as

obtained at stage (e) of the simulations. There are three settings of such associations in this thesis.

The first one is independence between all of the population attributes. That is, every population

element has the values of attributes generated in such a way that these values are independent both

within the population element and between the values of attributes of the rest of population elements.

The resulting stage (e) data generated under such conditions are referred to as the conditional between-

variables independence given the set of non-matches. The second setting is the association between

the first and second attributes, where the first attribute can be thought of as address and the second

as surname. The association is achieved in the following way. Within each address the address value

is repeated for all individuals that are nested in this address. The address attribute is thus a ‘parent’

attribute. Then for the first individual within an address, the value of surname is generated in the

way described above. For every remaining individual within the address, the value of the surname is

the same as the value of the first individual’s with probability 0.8. If the value of surname is different,

it is drawn using the same mechanism as the value for the first person within the address. Population

attributes generated in this way result in dependence between the frequencies of the first two variables

at the final stage of simulation. Recall, that such dependence may be generated for any pair of attributes

/ linkage variables, the specific choice of the first two attributes is arbitrary. Finally, the third setting

is exactly the same as the second one, but the values of the third attribute are generated in the same

way as the values of the second attribute. Therefore, there is a multi-way dependence between the

frequencies of these three variables. Observe, that while the population attribute generating process

does not explicitly produce association between the second and third variables, once the comparisons

are made and their frequencies are computed, there will be association in frequencies between the

second and third variables. This is because the comparison outcomes are functions of the attribute

values of the population elements. Simultaneous agreements on the second and third variables among

non-matches within matching households occur only for the households where at least two populations

elements have the same values of the second and third attributes. Whereas marginally an agreement

among non-matches within matching households for the second (and similarly third) linkage variable

occurs not only in the above case, but also when at least two population elements within a household

have the same values for the second variable only. Therefore, the product of marginal probabilities is

larger than the joint probability of observing simultaneous agreement on the second and third linkage

variables.

Once the population is generated, the next step is to produce two data surveys with non-response

(undercoverage in the census coverage terminology). There are two stages of non-response in each of

the surveys. The first stage is the household response at which any given household on the census

address frame or coverage survey address listing either responds or not. The second stage is the

within household response at which individuals within responding household either respond or not.

The probability of within household response is fixed at 0.98 for both surveys and for all scenarios.

The values of the household response are selected in such a way, that the probability of response for

a person in a given survey is approximately one of the following: π1, π2 ∈ {0.9, 0.8, 0.7}. In order to

keep the number of simulation scenarios manageable, the response probabilities for all scenarios satisfy

104



π1 = π2.

The next step is to generate errors in the values of the linkage variables. Those errors are generated

using the vectors of the fixed error probabilities ξj , where j ∈ {1, 2} is the index of the survey.

Again, to keep the number of scenarios manageable, ξ1 = ξ2 = ξ is used. Three distinct vectors

ξ ∈ {(0.003, 0.01, 0.01, 0.01)T , (0.015, 0.05, 0.05, 0.05)T , (0.03, 0.1, 0.1, 0.1)T } of the error probabilities

are explored in the studies. The error probabilities in the vector are indexed in the same way as the

linkage variables. Observe, that the errors occur in both surveys independently of each other, and

the overall probability of error for the kth variable is ξ1,k + ξ2,k − ξ1,kξ2,k. The reason why the first

variable has a smaller probability than the rest of the variables is related to the fact that we tend to

think about the first variable as the standardized full address. The quality of collection values for this

variable is expected to be higher than the quality of the remaining variables for the reasons explained

in Section 2.3. There are two types of errors. The first type is a missing or genuinely non-existent

value. For instance, a real world equivalent of a genuinely non-existent population value would be if a

name ‘John’ was recorded as ‘gnh’. The second type of error is such that while a value of an attribute is

recorded incorrectly, the recorded value exists in the population. For instance, a real world equivalent

would be if a name ‘John’ was recorded as ‘Johnny’. Given that the attribute’s value is erroneously

recorded, the probabilities of the error of the first type occurring are: 0 in the first variable (which

always has some address from the frame, so is never missing or non-existent in the population), 0.3

in the second and third variables and 0.2 in the fourth variable. The probability of the first type for

the surname variable may seem too low as one would expect typographical or phonetic errors to result

in surnames that do not genuinely exist in the population. However, assuming that the data undergo

thorough data cleaning and validation checks, this process will fix cases with small typos, but will

not always fix them correctly relatively to the true attribute’s value. For instance, suppose that the

actual value of the surname attribute is ‘Johnson’ and it gets mistyped as ‘Jhns’. Then at the data

cleaning and validation step the following resolutions are possible: ‘Johnson’, ‘Johnston’, ‘Johnstone’,

John’, ‘Johns’, ‘Johnsen’, ‘Johnsey’, etc. While all these values exist in the population, only one of

them is actually correct. Therefore, it is reasonable to consider a situation where there are fewer cases

of completely missing surnames or surnames with failed verification than the cases where verification

incorrectly resolved mistyped surname.

The next step is to generate an association between the errors if necessary. There are two settings

regarding dependent errors. The first one, is when all errors are independent. The second setting, is

an association in errors of the second and third variables, say, surname and name. In this case, the

errors are associated for a given element on a given survey, but are not associated between different

elements within a household (which can be quite likely in reality, however, it will result in association

within a given variable k and the mixture-like model does not make any assumptions of absence of such

associations) and are not associated between different surveys. Unlike between-variables dependence

in the set of non-matches that are the consequence of the properties of the population attributes,

the between-variables dependence in the set of matches is more straightforward. In this case we can

directly obtain the joint probability of the errors in two variables such that it does not equal the

product of their marginal probabilities. The association is controlled via the odds ratio parameter and
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only pairwise dependence is allowed at the moment. In the case that the association between the errors

of the second and third variables exists, the corresponding odds ratio parameter is equal to 5.

After surveys are drawn, records from S1 are paired with records from S2. For every pair, it is

checked for each linkage variable in turn whether a value of the variable on S1 is the same as the value

of the variable on S2 or not. This process produces the comparison pattern vectors γ(a, b). Pairs can

be formed either across the entire population or within blocks for the averaging blocking. In the case of

pairing across the entire population, the number of pairs in each iteration is n1n2 for the corresponding

realization n1 and n2 of the random variables N1 and N2. In the case of averaging blocking, the number

of pairs is
∑︁B

β=1 n1,βn2,β.

Finally, the frequencies of comparison patterns γk are calculated. If no blocking is used, then the

frequencies are calculated across the entire population and the results are ready for the estimation

using the simulated annealing approach. In the case of averaging blocking the frequencies are calcu-

lated for each block and then averaged for each of the comparison pattern. These are the ultimate

simulated data. We stress again, that these final data are not just drawn from some parametric family

of probability distributions, but instead constructed hierarchically from ‘first principles’. While careful

simulating from a certain parametric distributions ensures that the achieved relationships between

random variables are as intended (for instance, total between-variables independence, etc.) simulating

from ‘first principles’ leaves some uncertainty about whether the result is exactly as intended. There-

fore, we prefer to say that we aim at certain relationships between random variables (say, aim at total

between-variables independence).

The scenarios are produced by taking the outer product, denoted ⊗, of the individual parameters

and we have 189 scenarios when assessing the linkage free population size estimators from a practical

perspective. It is easiest to present the combinations of parameters in batches, even though later we

use other ways of organising scenarios when presenting our simulation results. This first batch of 108

scenarios is obtained by the following combination:

{batch 1} = {250, 500, 1000} (population size τ)

⊗ {0.9, 0.8, 0.7} (response probabilities π1, π2)

⊗ {(10000, 500, 500, 100)T } (distribution parameter ρ)

⊗ {(0, 0.01, 0.01, 0)T } (distribution parameter λ)

⊗ {(0.003, 0.01, 0.01, 0.01)T , (0.015, 0.05, 0.05, 0.05)T , (0.03, 0.1, 0.1, 0.1)T } (errors ξ)

⊗ {1} (log-odds for errors)

⊗ {independence, association between two attributes} (association between population attributes)

⊗ {no blocking, average blocking with E(τb) = 100} (blocking).
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Another bath is formed in the similar way and has 27 scenarios:

{batch 2} = {250, 500, 1000} (population size τ)

⊗ {0.9, 0.8, 0.7} (response probabilities π1, π2)

⊗ {(10000, 500, 500, 100)T } (distribution parameter ρ)

⊗ {(0, 0.01, 0.01, 0)T } (distribution parameter λ)

⊗ {(0.003, 0.01, 0.01, 0.01)T , (0.015, 0.05, 0.05, 0.05)T , (0.03, 0.1, 0.1, 0.1)T } (errors ξ)

⊗ {1} (log-odds for errors)

⊗ {association between three attributes} (association between population attributes)

⊗ {no blocking} (blocking).

The third batch of scenarios contains 54 scenarios:

{batch 3} = {250, 500, 1000} (population size τ)

⊗ {0.9, 0.8, 0.7} (response probabilities π1, π2)

⊗ {(10000, 500, 500, 100)T } (distribution parameter ρ)

⊗ {(0, 0.01, 0.01, 0)T } (distribution parameter λ)

⊗ {(0.003, 0.01, 0.01, 0.01)T , (0.015, 0.05, 0.05, 0.05)T , (0.03, 0.1, 0.1, 0.1)T } (errors ξ)

⊗ {log-odds for association between second and third variables is 5} (log-odds for errors)

⊗ {independence, association between two attributes} (association between population attributes)

⊗ {no blocking} (blocking).

7.3 Measures of performance and tuning parameters

In this simulation study the linkage free dual system estimator (44) and its modified version with

1-to-1 constraint (53) are compared to the basic dual system estimator (4) with perfect linkage and

to the basic dual system estimator with classification-based linkage as presented in Section 2.2.2. In

the case of classification-based linkage, the linkage models and parameter estimation are exactly the

same as in the case of linkage free estimation. That is, we are not exploring how the conceptualisation

of record linkage with regular mixtures and the use of maximum likelihood estimation is different

from the mixture-like conceptualisation with simulated annealing to estimate the model parameters.

Nevertheless, we have the means to check the robustness of the classification-based approach when the

linkage model is incorrectly specified, and to assess the bias incurred by classification as well as to get

an idea about the effort needed to resolve the possible links. Whenever a possible link is ‘clerically’

resolved, its true match status is used in the simulations below. Of course, in reality clerical linkage is

also prone to errors, but in this thesis we impose a perfect outcome.

For all four estimators the following measures of performance are considered: the relative bias,
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relative standard error and relative root mean square error. All three measures are relative to and in

the same units as the population size and we choose to report them in percentages. For some arbitrary

estimator ˆ︁τ , with ˆ︁τr being an estimate at the rth iteration, these measures are calculated as

rb(ˆ︁τ) = 1000−1
∑︁1000

r=1 (ˆ︁τr − τ)

τ
· 100%; (68)

rse(ˆ︁τ) = sd(ˆ︁τ)
τ

· 100%, (69)

where

sd(ˆ︁τ) = [︄1000−1
1000∑︂
r=1

(︁
τr − ˆ︁τ̄)︁2]︄0.5 and ˆ︁τ̄ = 1000−1

1000∑︂
r=1

ˆ︁τr;
and

rrmse(ˆ︁τ) =
[︂
1000−1

∑︁1000
r=1 (τr − τ)2

]︂0.5
τ

· 100%. (70)

For each of these three measures of performance, the closer the value to zero, the better its perfor-

mance. The relative root mean square error, which simultaneously accounts for the bias and variance,

can be thought of as the best measure of performance. For a given scenario, an estimator with the

smallest relative root mean square error, among several estimators under consideration, can be declared

as having the best overall performance.

For the classification-based dual system estimator we also report the percentage (relative to the

true population size) of unique records that constitute record pairs classified as possible links. This

figure only gives some general idea of the amount of clerical work needed. For instance, it cannot tell

how many record pairs must be clerically checked for each such unlinked record. In real applications,

there may be a situation where checking just a handful of pairs is sufficient, but it is also passible to

have a situation where a more thorough and labour intensive investigation is needed. On the other

hand, there may be cases when a pattern with all disagreements is put into a possible link category and

the number of records in this pattern is often large. Obviously, there is virtually no way to clerically

resolve such cases and therefore they would not be contributing to clerical resolution effort.

There are several aspects of the classification-based dual system estimator to mention. Unlike

the no-classification approach where the outcome depends on the input data and model specification,

the classification method also depends on the choice of acceptance and rejection thresholds. Hence,

given the data and fixing a model, there are still multiple choices of thresholds, each choice leading

to a different relative root mean square error and the clerical effort required to resolve possible links.

This means that there is no firm and fair reference to compare the classification and no-classification

focused methods. Therefore, one needs to be cautious about making statements in favour or against

the no-classification methods when comparing the method involving classification. In the main body

of this thesis we use the acceptance ‘probability’ (or rate) πfn = 10−2 for the false negatives and

πfp = 10−4 for the false positives; see Section 2.2.2 on how the decision is made that a specified

threshold is achieved. This choice of thresholds is quite arbitrary, but it results in accepting a majority

of patterns where at least three linkage variables agree and rejecting a majority of patterns where
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at most one linkage variable agrees across wide range of scenarios. In the Appendix B, we present

results with the acceptance rate of 10−3 for false negatives and 10−6 for false positives, which reduce

the error by increasing the amount of clerical work. Another aspect is related to 1-to-1 constraining.

Once the constraint enforced through the solution of the assignment problem, the estimated rates of

false negatives and false positives corresponding to a chosen threshold are meaningless even if they

are correctly estimated. This follows from the fact that the model estimates are for the pairs, and

1-to-1 resolution results in most pairs being discarded in favour of the most likely assignment given the

parameter estimates. Overall, the need for thresholds and their arbitrariness is a nuisance when making

a comparison with the no-classification methods, and is a weakness of classification-based frameworks

in practice.

The simulated annealing approach has several tuning parameters. The values of these parameters

when assessing the practical performance of the estimators are following. The cooling rate is 0.995,

the target temperature is 10−6, the number of iterations of the Metropolis algorithm at each value

of the temperature parameter is 150, the interval from which the values of parameter π are drawn

is
[︁
7 · 10−5, 3.3 · 10−2

]︁
, the interval from which the values of µk, µk|j are drawn is [0.55, 0.99] and the

interval from which the values of νk, νk|j are drawn is
[︁
5 · 10−8, 0.55

]︁
. The tuning parameters for the

verification of the theoretical results are the same, except that the cooling rate is 0.999, which aims to

make the differences between the runs with different random starts very small.

7.4 Worked-out examples of no-classification estimators

Before we analyse the results of our simulation study, we present two worked-out examples of appli-

cation of the linkage free dual system estimator (Section 4.1) and its modified version that accounts

for the 1-to-1 constraint (Section 4.2). The data used in these examples are simulated as described in

Section 7.2. We generated two input data sets, one per example: the first one aims at between-variables

independence in both the set of matches and the set of non-matches (Section 7.4.1), the second aims

at between-variables independence in the set of matches and association between the linkage variables

v1 and v2 in the set of non-matches (Section 7.4.2). When estimating the parameters of a mixture-like

model we use the closest mixture-like parameterization to the aimed data structure.

Our simulated population has the size τ = 500 in both examples and the underlying parameters of

the distributions of the population attributes are as presented in Section 7.2. The coverage probabilities

are 0.9 and the vector of the probabilities of errors is (0.015, 0.05, 0.05, 0.05)T in both surveys.

Each example is accompanied by two tables. The first table is related to the linkage free dual system

estimator. It displays the true frequencies (or numbers) of the record pairs in each of the comparison

patterns as well as the corresponding estimates of these frequencies. These frequency estimates are

the product of the observed number of record pairs w and the estimated parameters of an appropriate

mixture-like model. The parameter estimates are obtained with the simulated annealing algorithm. In

the table each row is associated with a particular comparison pattern γp and the columns are as follows:

the first column is the index p of a comparison patter; the second column is the comparison pattern

γp itself; the third column is the observed frequency fp of a comparison pattern; the fourth column is

the true unobserved frequency fp,M of matching pairs with comparison resulting in a pattern γp; the
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fifth column is the true unobserved frequency fp,U of non-matching pairs with comparison resulting in

a pattern γp; the sixth column is the estimated frequency ˆ︁fp of the corresponding pattern; the seventh

column is the estimated number ˆ︁fp,M of matches and, finally, the last column is the estimated numberˆ︁fp,U of non-matches. While the linkage free dual system estimator uses only an estimate of π, providing

the estimated frequencies alongside the individual parameter estimates gives a broader picture. For

instance, simulated annealing searches for the parameter estimates that minimize the distance between

fp and ˆ︁fp, and the table gives a feeling of how close or far apart these two quantities are.

The second table is related to the modified linkage free dual system estimator, but also contains

some columns relevant to the classification-based approach. The comparison patterns in both tables

are indexed in the same way. The values in the second table are sorted by the ‘likelihood’ of a pattern

to be a link, from the highest to the lowest, based on the pseudo log-odds (50), denoted ˆ︁lp. The first

column is the index of a comparison pattern; the second column is the comparison pattern γp itself; the

third column is the frequency ˜︁fp of the corresponding patter after applying the 1-to-1 constraint; the

fourth column, ˆ︁r(M | γp), is the ratio of the contribution of the matches in the pth comparison pattern

to the proportion of the pth pattern among all patterns (49); the fifth column is the estimated frequencyˆ︁fp,M of the links without the 1-to-1 constraint; the sixth column is the modified linkage free estimate˜︁mc,p of the number of links in the corresponding pattern (51). The remaining columns are related

to the classification-based approach. The seventh column is the estimated ‘probability’ ˆ︁pr(γp | M)

of observing a certain comparison pattern given a record pair is a match; the eighth column is the

estimated ‘probability’ ˆ︁pr(γp | U) of observing a certain comparison pattern given a record pair is a

non-match; the ninth column is the value of pseudo log-odds ratio ˆ︁lp. Note, that this log-odds is also

used in the modified estimator and is based on the ˆ︁r(M | γp), rather than on ˆ︁pr(γp | M) and ˆ︁pr(γp | U)
as in Section 2.2.2. However, it does not affect the ordering in the examples considered. Finally, the

last column, d(γp), is the classification decision, where ‘l’ stands for ‘link’, ‘u’ stands for ‘unresolved’

(possible) link and ‘n’ stands for ‘non-link’. Recall, that in this thesis the classification-based approach

classifies cases after constraining for the 1-to-1 matches. Note, that the number of decimal places vary

between the columns since the values in some of columns tend to be small.

7.4.1 Between-variables independence in both sets of matches and non-matches

In this example the simulated data aim at between-variables independence in the both sets of matches

and non-matches. The observed frequencies are displayed in the third column of Table 8. In this

case n1 = 453, n2 = 452 and the number of observed record pairs is w = 204756. The closest

possible identifiable mixture-like parameterization of the simulated data is the model of between-

variables independence of the comparisons in the set of matches and non-matches, π(γp;π,µ,ν) =

πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4).

The simulated annealing algorithm searches for the parameter estimates that minimizes the value

of the chi-squared statistic (39). In this case the achieved value of the chi-squared statistic is 4.95

and the corresponding parameter estimate are (with varying number of decimal places) as follows:ˆ︁π = 0.001986, ˆ︁µ1 = 0.956, ˆ︁µ2 = 0.903, ˆ︁µ3 = 0.927, ˆ︁µ4 = 0.917, ˆ︁ν1 = 0.000124, ˆ︁ν2 = 0.004630, ˆ︁ν3 =

0.004890, ˆ︁ν4 = 0.009942. The linkage free dual system estimate in this case is ˜︁τ = 1/ˆ︁π = 0.001986−1 =
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503.52. These estimates can be used to obtain the estimated frequencies ˆ︁fp,M and ˆ︁fp,U by plugging

the estimates into the corresponding parameterization of a pth pattern to get ˆ︁πp and then computing

the related frequency ˆ︁fp = wˆ︁πp.
Table 8: Between-variables independence in both the set of matches and the set of non-matches:
observed data, true and estimated frequencies of comparison patterns in the set of matches and the
set of non-matches

p γp fp fp,M fp,U ˆ︁fp ˆ︁fp,M ˆ︁fp,U
1 0000 200366 0 200366 200371.18 0.01 200371.17
2 0001 2015 0 2015 2012.26 0.12 2012.14
3 0010 986 0 986 984.77 0.13 984.64
4 0011 9 1 8 11.37 1.48 9.89
5 0100 931 0 931 932.06 0.10 931.97
6 0101 10 1 9 10.45 1.09 9.36
7 0110 7 3 4 5.82 1.24 4.58
8 0111 14 14 0 13.77 13.73 0.05
9 1000 25 0 25 25.12 0.23 24.89

10 1001 2 2 0 2.80 2.55 0.25
11 1010 6 6 0 3.02 2.90 0.12
12 1011 32 32 0 32.12 32.11 0.00
13 1100 1 1 0 2.25 2.14 0.12
14 1101 28 28 0 23.67 23.67 0.00
15 1110 28 28 0 26.94 26.94 0.00
16 1111 296 296 0 298.41 298.41 0.00

Table 9: Between-variables independence in both sets of matches and non-matches: outputs for the
modified linkage free dual system estimator and classification-based linkage

p γp
˜︁fp ˆ︁r(M | γp) ˆ︁fp,M ˜︁mc,p ˆ︁pr(γp | M) ˆ︁pr(γp | U) ˆ︁lp d(γp)

16 1111 296 1.0000 298.41 296.00 0.73349 0.00000 35.54 l
15 1110 28 1.0000 26.94 28.00 0.06621 0.00000 21.53 l
12 1011 32 1.0000 32.11 32.00 0.07894 0.00000 20.34 l
14 1101 28 1.0000 23.67 28.00 0.05818 0.00000 19.84 l
8 0111 14 0.9967 13.73 14.00 0.03374 0.00000 11.40 l

11 1010 6 0.9595 2.90 5.87 0.00713 0.00000 6.33 l
13 1100 1 0.9486 2.14 1.06 0.00525 0.00000 5.83 l
10 1001 2 0.9106 2.55 2.05 0.00626 0.00000 4.64 l
7 0110 3 0.2130 1.24 1.61 0.00305 0.00002 -2.61 u
4 0011 1 0.1300 1.48 1.42 0.00363 0.00005 -3.80 u
6 0101 1 0.1042 1.09 1.08 0.00268 0.00005 -4.30 n
9 1000 0 0.0092 0.23 0.23 0.00057 0.00012 -9.37 n
3 0010 7 0.0001 0.13 0.13 0.00033 0.00482 -17.81 n
5 0100 6 0.0001 0.10 0.10 0.00024 0.00456 -18.31 n
2 0001 4 0.0001 0.12 0.12 0.00029 0.00985 -19.50 n
1 0000 23 0.0000 0.01 0.01 0.00003 0.98053 -33.51 n

The above parameter estimates can be used to produce the modified linkage free dual system

estimate of the population size that account for the 1-to-1 match constraint. First, the linkage free

dual system estimates are used to compute ˆ︁r(M | γp) and the pseudo log-odds ratios ˆ︁lp, which are

(49) and (50) in Section 4.2, respectively. These log-odds ratios are fed to the assignment algorithm

that produces the frequencies ˜︁fp which reflect the 1-to-1 constraint. The next step is for the composite

estimator (51) to use ˜︁fp, ˆ︁fp,M and ˆ︁r(M | γp) to estimate the number of matches in each of the
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comparison pattern. By summing these estimates, we obtain the estimated number of matches under

the 1-to-1 match constraint. We then use this estimate with (53) to produce the modified linkage free

dual system estimate of the population size, which is ˜︁τc = 497.52.

The classification-based approach uses the estimates ˆ︁pr(γp | M) and ˆ︁pr(γp | U) to classify the

records, or more precisely, patterns as links, non-links and possible links. Our chosen acceptance

thresholds are 0.01 for false positives and 0.0001 for false negatives. We start summing the values

of ˆ︁pr(γp | U), as presented in Table 9, from top to bottom. As long as the cumulative sum up to

and including a given pattern is smaller or equal to the threshold, we accept the pattern as a link.

Then, we sum the values of ˆ︁pr(γp | M) from the bottom to top. As long as this cumulative sum at

a given pattern is larger or equal to the threshold, we declare the pattern as a non-link. Everything

in between is unresolved and needs clerical resolution. Recall, that the thresholds are computed with

respect to the total number of record pairs, whereas after the accounting for 1-to-1, the majority of

pairs are dropped from the process. Since we fixed the thresholds in advance for all scenarios (rather

than doing it once the parameters are estimated), there may be situations where no pattern is declared

as a potential link while some patterns are simultaneously declared as links and non-links. In this case,

such overlapping classifications are clerically revised.

7.4.2 Between-variables independence in the set of matches, association between v1 and

v2 in the set of non-matches

In this example the simulated data aim at between-variables independence of the comparison out-

comes in the set of matches and association in comparison outcomes of the first and second linkage

variables in the set of non-matches. The estimation model used is the closest identifiable mixture-like

parameterization to the simulated data, π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ3, γ4).

Table 10: Between-variables independence in the set of matches, association between the first and
second variable in the set of non-matches: observed data, true and estimated frequencies of comparison
patterns in the set of matches and the set of non-matches

p γp fp fp,M fp,U ˆ︁fp ˆ︁fp,M ˆ︁fp,U
1 0000 199663 0 199663 199674.19 0.03 199674.16
2 0001 1980 0 1980 1979.91 0.29 1979.62
3 0010 978 0 978 975.34 0.27 975.07
4 0011 12 2 10 12.00 2.33 9.67
5 0100 1092 0 1092 1087.39 0.37 1087.02
6 0101 12 3 9 14.00 3.22 10.78
7 0110 5 2 3 8.30 2.99 5.31
8 0111 29 29 0 26.21 26.15 0.05
9 1000 381 0 381 380.17 0.34 379.83

10 1001 11 4 7 6.75 2.99 3.77
11 1010 2 1 1 4.62 2.77 1.85
12 1011 27 27 0 24.25 24.23 0.02
13 1100 527 4 523 527.71 3.83 523.88
14 1101 38 29 9 38.70 33.51 5.19
15 1110 41 39 2 33.60 31.05 2.56
16 1111 267 267 0 271.86 271.83 0.03

The observed frequencies of the comparison patterns are displayed in Table 10. Note the difference
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from the case of between-variables independence presented in Table 8. Namely, the frequencies of

the patterns with agreements on both the address and surname variables (first two variables) are

substantially larger. The size of S1 is n1 = 441 and the size of S2 is n2 = 465, the number of

observed record pairs is 205065. The value of the chi-squared statistic achieved in this case is 9.60. The

corresponding parameter estimates are ˆ︁π = 0.001981, ˆ︁µ1 = 0.912, ˆ︁µ2 = 0.918, ˆ︁µ3 = 0.890, ˆ︁µ4 = 0.897.

We report the joint parameter estimates for the associated comparisons: ˆ︁ν1,1 = 0.000618, ˆ︁ν1,0 =

0.324592, ˆ︁ν0,1 = 0.001281. Finally, ˆ︁ν3 = 0.004860, ˆ︁ν4 = 0.009816. The linkage free dual system

estimate in this case is ˜︁τ = 1/ˆ︁π = 0.001981−1 = 504.80

The derivation of the modified linkage free dual system estimate is the same as in the previous

example in Section 7.4.1. The modified estimate is 502.33. The corresponding data are displayed in

Table 11. Note that both examples considered have the estimates close to the true population value.

However, in general, they can be quite spread out around the parameter τ .

Table 11: Observed data, true and estimated frequencies of comparison patterns in the sets of matches
and non-matches: outputs for the modified linkage free dual system estimator and classification-based
linkage

p γp
˜︁fp ˆ︁r(M | γp) ˆ︁fp,M ˜︁mc,p ˆ︁pr(γp | M) ˆ︁pr(γp | U) ˆ︁lp d(γp)

16 1111 267 0.9999 271.83 267.00 0.66923 0.00000 18.56 l
12 1011 27 0.9992 24.23 27.00 0.05966 0.00000 14.37 l
8 0111 29 0.9980 26.15 28.99 0.06439 0.00000 12.42 l

15 1110 39 0.9239 31.05 38.39 0.07643 0.00001 4.99 l
14 1101 28 0.8658 33.51 28.74 0.08249 0.00003 3.73 l
11 1010 1 0.5987 2.77 1.71 0.00681 0.00001 0.80 l
10 1001 4 0.4423 2.99 3.43 0.00735 0.00002 -0.46 l
7 0110 2 0.3601 2.99 2.63 0.00735 0.00003 -1.15 l
6 0101 3 0.2302 3.22 3.17 0.00794 0.00005 -2.41 u
4 0011 2 0.1943 2.33 2.27 0.00574 0.00005 -2.84 u

13 1100 5 0.0073 3.83 3.84 0.00942 0.00256 -9.84 n
9 1000 0 0.0009 0.34 0.34 0.00084 0.00186 -14.03 n
5 0100 4 0.0003 0.37 0.37 0.00091 0.00531 -15.98 n
3 0010 8 0.0003 0.27 0.27 0.00066 0.00476 -16.41 n
2 0001 9 0.0001 0.29 0.29 0.00071 0.00967 -17.68 n
1 0000 13 0.0000 0.03 0.03 0.00008 0.97564 -31.24 n

7.5 Simulations assessing practical performance

In this section we demonstrate the results of the simulation study assessing practical application of the

linkage free and modified linkage free dual system estimators. Each subsection below corresponds to a

specific type of a simulation model. For instance, a model aiming at the between-variables independence

of comparison outcomes. Recall, we prefer saying ‘aiming at’ some between-variables independence /

dependence relationships of the comparison outcomes since the data are predominantly generated in

hierarchical way using the ‘first principles’ approach rather than employing some parametric distribu-

tion that guarantees such relationships. The parametric approach is only well-justified and used to

generate between-variables associations in the set of matches. When discussing the outputs of each

simulation model type, we follow this order. First, for a given type of the simulated data, an esti-

mation model that has the closest parameterization to the aimed data structure is discussed. This is
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followed by presenting either a less complex or a more complex estimation model, which depends on

the simulated outcome. Some results are moved to Appendix B.1.

There are several cases where we compare the estimates of τ obtained without blocking against those

obtained with the averaging blocking (in a way that is achievable in practice); however, the majority

of the outputs are for applications without blocking (at the population level). Tables with the results

without blocking have the following structure. The first three columns contain these simulation param-

eters: the population size τ ; the response probability for two surveys πj = π1 = π2; the probability of

the error recording the values of linkage variables. To save space, here the value ξ = 0.01 corresponds to

the vector of errors ξ1 = ξ2 = (0.003, 0.01, 0.01, 0.01)T , ξ = 0.05 to ξ1 = ξ2 = (0.015, 0.05, 0.05, 0.05)T ,

and ξ = 0.10 to ξ1 = ξ2 = (0.03, 0.1, 0.1, 0.1)T . The fourth column, labelled CFS, contains the per-

centage of clerically resolved records relative to the population size in the regular classification-based

approach with the acceptance rate of 10−2 for the false negatives and 10−4 for the false positives.

The remaining columns are divided into three blocks for the relative bias, relative standard error and

relative root mean square error. All three statistics are reported in percentages for each of the estima-

tors: the dual system estimator with the regular classification-based linkage, ˆ︁τFS; the linkage free dual

system estimator, ˜︁τ ; the modified linkage free dual system estimator, ˜︁τc; the dual system estimator

with perfect linkage, ˆ︁τ . Tables comparing the estimation without blocking to the estimation with the

averaging blocking contain the simulation parameters as well as the relative bias, relative standard er-

ror and relative root mean square error in percentages for two estimators: the linkage free dual system

estimator without blocking, ˜︁τ ; and the linkage free dual system estimator with the averaging blocking,˜︁τG.
7.5.1 Between-variables independence in both sets of matches and non-matches

We start with the analysis of the estimates obtained with the simulated data aiming at between-

variables independence in both the sets of matches and non-matches. The first estimation model

we consider is the closest possible mixture-like parameterization of the simulated data, that is the

model of between-variables independence of the comparisons in the set of matches and non-matches,

π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1 − π)νp(γ1, γ2, γ3, γ4). This model is identifiable (see Section

5.2.1). The results are presented in Table 12.

Certain characteristic trends observed in this between-variables independence case repeat in the

majority of simulation and estimation scenarios explored in this thesis, provided that estimation models

are identifiable. In particular, the relative bias and the relative standard error of the linkage free,

modified linkage free and classification-based dual system estimators increase when either one of the

following occurs (or both occur simultaneously): when the probabilities of making errors recording the

values of population attributes increase, or when the coverage probabilities of the surveys decrease.

Obviously, the relative root mean square error also increases in these situations. Hence, the worst

performance is expected in the scenarios with the highest errors and lowest coverage, which seems

quite intuitive. The relative bias and relative standard error decrease, and so does the relative root

mean square error as a result, when the population size increases. Recall, however, that following the

discussion in Section 3.3, we know that the linkage free dual system estimator is not anticipated to
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behave well as the population size tends to infinity. The dual system estimator with perfect linkage,

of course, does not vary with the errors in linkage variables (except for some random fluctuations in

the simulated outcomes) and depends only on the population size and coverage probabilities.

When the probabilities of making errors recording the values of population attributes are small,

then the linkage free, modified linkage free and the classification-based dual system estimators have very

similar performance in terms of the relative root mean square error to performance of the dual system

estimator with perfect linkage. As the probabilities of errors increase, the gap in performance between

the dual system estimator with perfect linkage and the rest of the estimators become noticeable.

Table 12: Simulated data: between-variables independence in sets of both matches and non-matches.
Estimation model: π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 2.08 0.06 -0.17 0.02 0.01 1.12 1.23 1.14 1.11 1.12 1.24 1.14 1.11

0.9 0.05 0.67 1.04 2.33 0.35 0.09 1.36 2.13 1.34 1.09 1.71 3.16 1.38 1.10
0.10 1.92 1.62 3.90 0.58 -0.02 1.57 3.25 1.69 1.12 2.25 5.07 1.79 1.12

0.01 1.73 0.04 -0.25 0.01 0.01 2.63 2.68 2.64 2.63 2.63 2.69 2.64 2.63
250 0.8 0.05 0.52 1.01 2.09 0.26 0.10 2.85 3.18 2.77 2.68 3.02 3.81 2.78 2.68

0.10 1.95 1.93 4.80 0.84 0.20 3.07 4.67 3.12 2.73 3.63 6.70 3.23 2.74

0.01 1.25 0.25 -0.29 0.19 0.20 4.73 4.72 4.74 4.72 4.73 4.73 4.74 4.72
0.7 0.05 0.48 1.06 2.26 0.39 0.21 4.64 5.02 4.63 4.54 4.76 5.50 4.64 4.54

0.10 2.11 1.95 5.88 0.91 0.16 4.95 6.51 4.97 4.62 5.32 8.77 5.05 4.63
0.01 1.97 0.04 -0.07 0.00 0.00 0.77 0.82 0.78 0.76 0.77 0.82 0.78 0.76

0.9 0.05 0.43 1.06 1.35 0.18 0.00 1.00 1.49 1.06 0.78 1.46 2.01 1.07 0.78
0.10 2.58 1.51 1.78 0.35 0.03 1.00 2.04 1.30 0.74 1.81 2.71 1.34 0.74

0.01 1.64 0.22 0.09 0.19 0.18 1.87 1.92 1.88 1.87 1.89 1.93 1.89 1.88
500 0.8 0.05 0.41 1.06 1.70 0.27 0.07 2.02 2.44 2.06 1.90 2.29 2.97 2.07 1.90

0.10 3.12 1.54 2.34 0.46 0.06 2.03 2.99 2.25 1.82 2.55 3.80 2.30 1.82

0.01 1.34 0.13 -0.05 0.08 0.09 3.21 3.24 3.22 3.21 3.22 3.24 3.22 3.21
0.7 0.05 0.39 1.01 1.76 0.22 0.12 3.46 3.70 3.46 3.36 3.60 4.10 3.47 3.36

0.10 3.25 1.61 3.32 0.66 0.24 3.39 4.44 3.56 3.25 3.75 5.54 3.62 3.25
0.01 1.88 0.04 0.00 0.01 0.01 0.57 0.61 0.59 0.57 0.58 0.61 0.59 0.57

0.9 0.05 0.33 1.04 0.62 0.07 0.00 0.69 1.03 0.78 0.54 1.25 1.20 0.78 0.54
0.10 3.57 1.34 0.77 0.17 0.01 0.73 1.47 1.05 0.54 1.53 1.66 1.06 0.54

0.01 1.65 0.08 -0.01 0.03 0.04 1.37 1.39 1.37 1.37 1.37 1.39 1.37 1.37
1000 0.8 0.05 0.34 0.93 0.80 0.04 -0.01 1.38 1.64 1.42 1.32 1.66 1.82 1.42 1.32

0.10 4.66 1.20 1.10 0.15 0.04 1.46 1.99 1.66 1.38 1.89 2.27 1.67 1.38

0.01 1.46 0.22 0.14 0.17 0.18 2.41 2.42 2.42 2.41 2.42 2.42 2.42 2.41
0.7 0.05 0.33 0.69 0.91 -0.08 -0.05 2.36 2.63 2.42 2.32 2.46 2.78 2.42 2.33

0.10 5.25 0.98 1.50 0.10 0.17 2.36 2.99 2.58 2.32 2.55 3.35 2.59 2.33

While the classification-based approach is not our estimator of interest, it is worth examining

its performance. Recall, that this performance is somehow arbitrary due to the chosen acceptance

and rejection thresholds. The relative root mean square error of the classification-based dual system

estimator is up to 2.8 times of the dual system estimator with perfect linkage. The error is around 1.5

times that of the perfect linkage based estimator across the majority of scenarios. The main source of

the increased error in the classification-based method is bias, but there is also a slight increase in the

standard error. For the chosen thresholds, the bias is positive. This indicates that the false negative

errors dominate the false positives. In other words, there are more matches in the comparison patterns
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classified as non-links than there are non-matches in the patterns classified as links. With the selected

thresholds and all caveats mentioned in Section 7.3, the amount of clerical resolution is reasonably low,

which is largely due to the 1-to-1 constraint leaving a small number of records to resolve. Observe, that

for the fixed population size and coverage probabilities the amount of clerical work does not gradually

increase as the error recording the values of population attributes increases for the chosen thresholds

(it does increase for different choices of thresholds; see Appendix B). This may seem counter-intuitive

at first glance, but can be easily explained.

When the errors in recording the values of population attributes are small, the majority of matches

are concentrated in the patterns with agreements on all or nearly all linkage variables, while most of

the non-matches are concentrated in the patterns with no agreements or agreements on a few vari-

ables only. There are several aspects contributing to the observed behaviour. Consider the sequence

of patterns ordered by the ratio of ‘likelihoods’. Since there are only 2K comparison patterns, it is

difficult to get a fine classification in the sense that both the desired thresholds are achieved and

no substantial changes in the results occur if one more comparison pattern is classified as a link or

non-link instead of being classified as a possible link. Say, for a small error, the following compari-

son patterns (1, 1, 1, 1)T , (1, 1, 1, 0)T , (1, 1, 0, 1)T are accepted as links because the specified threshold

for the false positives is achieved, while (0, 1, 1, 1)T is classified as a possible link, despite contain-

ing very few non-matches, but containing reasonably many matches after application of the 1-to-1

linkage constraint. On the other end of the sequence of ordered patterns, the following comparison

patterns (0, 0, 0, 0)T , (1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T , (0, 0, 0, 1)T , (1, 1, 0, 0)T , (0, 1, 1, 0)T are classi-

fied as non-links. Because the error probability is low and the 1-to-1 constraint is used, the pattern

(0, 1, 1, 1)T may make a substantial contribution to the number of records classified as possible links

among all the patterns with such classification. When the error gradually increases, more matches start

to appear in the patterns with agreements on some but not all linkage variables, while there is little to

no effect on the true non-matches. The increasing error affects how much matches and non-matches

are mixed in each pattern as well as how many patterns end up classified as possible links. The latter is

again not a smooth process, and some substantial shifts can appear in the number of records classified

as possible links. Thus, at some point the discussed pattern (0, 1, 1, 1)T starts getting classified as a

link. Therefore, the number of records for clerical resolution drops. When the error keeps increasing,

more matches and non matches start appearing in the patterns like (1, 1, 0, 0)T , (0, 1, 1, 0)T that grad-

ually start to be classified as possible links and the amount of clerical work increases. This is what

we observe for our combination of increment in the errors and acceptance / rejection thresholds. In

short, for a sufficiently large increase in the errors, we will definitely see the increase in clerical effort.

However, it is possible to find such increments in the errors, for which this effort will not increase or

may even decrease.

Back to our key estimator of interest, we can see that the linkage free dual system estimator demon-

strates a good performance given it is a fully automated approach. Unsurprisingly, its performance is

inferior to the performance of other estimators considered in this thesis. Its relative root mean square

error can be up to 3.6 times that of the dual system estimator with perfect linkage in the hardest

of scenarios. However, the error rarely exceeds 1.8 times what can be achieved in the perfect case
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and 1.3 times the error of the classification-based approach with the chosen thresholds. This seems

a reasonable trade-off between the need to resolve some records clerically and the loss of accuracy.

Both the bias and variance contribute to the increase in the relative root mean square error for this

no-classification approach. The increased variance of the linkage free dual system estimator compared

to the classification approach is largely explainable by the absence of the 1-to-1 constrain in the basic

no-classification approach. As discussed in Section 3.3, the linkage free dual system estimator is not

consistent and thus most likely biased. While the empirical results confirm that the estimator is biased,

we do not have the means to explain the bias incurring mechanism in practical applications except the

factors related to mixture-like representation of the record linkage data (Section 3.2).

Table 13: Simulated data: between-variables independence in both sets of matches and non-matches.
Estimation model: π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 1.80 0.07 -0.13 0.05 0.01 1.12 1.23 1.15 1.11 1.13 1.23 1.15 1.11

0.9 0.05 0.65 1.23 2.49 0.52 0.09 1.47 2.14 1.38 1.09 1.92 3.28 1.48 1.10
0.10 2.73 1.67 4.41 0.95 -0.02 1.62 3.39 1.84 1.12 2.33 5.56 2.08 1.12

0.01 1.42 0.06 -0.21 0.04 0.01 2.63 2.68 2.65 2.63 2.63 2.69 2.65 2.63
250 0.8 0.05 0.51 1.26 2.26 0.48 0.10 2.89 3.19 2.80 2.68 3.15 3.91 2.84 2.68

0.10 2.53 2.06 5.35 1.30 0.20 3.13 4.84 3.27 2.73 3.74 7.21 3.52 2.74

0.01 0.98 0.26 -0.24 0.22 0.20 4.73 4.72 4.74 4.72 4.74 4.72 4.75 4.72
0.7 0.05 0.44 1.45 2.46 0.71 0.21 4.74 5.05 4.70 4.54 4.96 5.62 4.75 4.54

0.10 2.57 2.19 6.49 1.50 0.16 5.05 6.58 5.06 4.62 5.50 9.24 5.27 4.63
0.01 1.93 0.04 -0.04 0.02 0.00 0.77 0.82 0.78 0.76 0.77 0.82 0.78 0.76

0.9 0.05 0.44 1.08 1.49 0.30 0.00 1.00 1.51 1.07 0.78 1.47 2.12 1.12 0.78
0.10 2.82 1.53 2.20 0.59 0.03 1.00 2.16 1.37 0.74 1.83 3.08 1.49 0.74

0.01 1.58 0.22 0.12 0.22 0.18 1.87 1.93 1.89 1.87 1.89 1.93 1.90 1.88
500 0.8 0.05 0.42 1.10 1.84 0.41 0.07 2.03 2.48 2.09 1.90 2.31 3.09 2.13 1.90

0.10 3.36 1.58 2.79 0.74 0.06 2.06 3.08 2.30 1.82 2.60 4.15 2.42 1.82

0.01 1.31 0.13 -0.01 0.11 0.09 3.21 3.24 3.22 3.21 3.22 3.24 3.23 3.21
0.7 0.05 0.39 1.07 1.91 0.38 0.12 3.46 3.73 3.48 3.36 3.62 4.19 3.50 3.36

0.10 3.35 1.69 3.81 1.01 0.24 3.44 4.55 3.67 3.25 3.83 5.94 3.80 3.25
0.01 1.89 0.04 0.01 0.03 0.01 0.57 0.61 0.59 0.57 0.58 0.61 0.59 0.57

0.9 0.05 0.34 1.04 0.72 0.13 0.00 0.70 1.04 0.79 0.54 1.25 1.26 0.80 0.54
0.10 3.60 1.36 1.08 0.31 0.01 0.73 1.54 1.07 0.54 1.54 1.88 1.12 0.54

0.01 1.66 0.08 0.01 0.05 0.04 1.37 1.39 1.37 1.37 1.37 1.39 1.37 1.37
1000 0.8 0.05 0.35 0.93 0.92 0.14 -0.01 1.38 1.65 1.44 1.32 1.66 1.89 1.44 1.32

0.10 4.58 1.23 1.43 0.32 0.04 1.46 2.06 1.68 1.38 1.91 2.51 1.71 1.38

0.01 1.47 0.22 0.16 0.20 0.18 2.41 2.42 2.41 2.41 2.42 2.43 2.42 2.41
0.7 0.05 0.34 0.69 1.04 0.03 -0.05 2.37 2.64 2.44 2.32 2.47 2.84 2.44 2.33

0.10 5.16 1.03 1.87 0.31 0.17 2.36 3.13 2.65 2.32 2.58 3.64 2.67 2.33

The modified linkage free dual system estimator demonstrates a remarkable performance given it

is a fully automated approach. Recall that this estimator is the no-classification method combining

the linkage free dual system estimator and the fact (or assumption) that the matches obey the 1-to-1

constraint. The modified version outperforms substantially the basic version of the linkage free dual

system estimator both in terms of the bias and variance across all scenarios. Actually, the modified

version of the no-classification method has better performance than the classification-based approach

(with chosen thresholds) across the majority of scenarios. This outperformance of the classification-

117



based method by the modified no-classification estimator is due to the absence of classification and

accurate estimation of the parameters when the model is correctly specified. That is, the error incurred

by accepting all the cases belonging to a particular comparison pattern after applying the 1-to-1

constraint exceeds the estimation error of the modified no-classification approach. The performance of

the modified linkage free dual system estimator is not too far away from the performance of the perfect

dual system estimator in the case of between-variables independence of comparisons in both the set

of matches and the set of non-matches. The error of this no-classification estimator is on average 1.17

the estimator with perfect linkage. In summary, the modified linkage free dual system estimator for

this type of relationship between the variables is the best choice among all the estimators available in

practice.

Table 14: Single block vs averaged blocking: between-variables independence in both sets of matches
and non-matches

RB RSE RRMSE

τ πj ξ ˜︁τ ˜︁τG ˜︁τ ˜︁τG ˜︁τ ˜︁τG
0.01 -0.17 -0.25 1.23 1.18 1.24 1.20

0.9 0.05 2.33 2.11 2.13 1.91 3.16 2.85
0.10 3.90 4.08 3.25 2.98 5.07 5.05

0.01 -0.25 -0.16 2.68 2.49 2.69 2.50
250 0.8 0.05 2.09 1.96 3.18 3.30 3.81 3.84

0.10 4.80 4.89 4.67 4.37 6.70 6.56

0.01 -0.29 -0.45 4.72 4.57 4.73 4.59
0.7 0.05 2.26 2.23 5.02 5.02 5.50 5.49

0.10 5.88 5.81 6.51 6.27 8.77 8.55
0.01 -0.07 -0.01 0.82 0.85 0.82 0.85

0.9 0.05 1.35 1.64 1.49 1.54 2.01 2.25
0.10 1.78 1.90 2.04 1.83 2.71 2.63

0.01 0.09 -0.09 1.92 1.94 1.93 1.94
500 0.8 0.05 1.70 1.97 2.44 2.35 2.97 3.06

0.10 2.34 2.48 2.99 2.79 3.80 3.73

0.01 -0.05 0.21 3.24 3.19 3.24 3.19
0.7 0.05 1.76 2.10 3.70 3.80 4.10 4.34

0.10 3.32 3.36 4.44 4.29 5.54 5.45
0.01 0.00 -0.01 0.61 0.61 0.61 0.61

0.9 0.05 0.62 0.84 1.03 0.98 1.20 1.29
0.10 0.77 0.94 1.47 1.11 1.66 1.45

0.01 -0.01 0.06 1.39 1.34 1.39 1.34
1000 0.8 0.05 0.80 1.22 1.64 1.67 1.82 2.07

0.10 1.10 1.18 1.99 1.76 2.27 2.11

0.01 0.14 0.12 2.42 2.26 2.42 2.26
0.7 0.05 0.91 1.46 2.63 2.60 2.78 2.98

0.10 1.50 1.59 2.99 2.77 3.35 3.19

Table 13 contains the outputs obtained by fitting the model of between-variables independence in

the set of matches and association between two variables in the set of non-matches, π(γp;π,µ,ν) =

πµp(γ1, γ2, γ3, γ4)+(1−π)νp(γ1,2, γ3, γ4), to the data aiming at between-variables independence in both

the matches and non-matches. When an identifiable, but more complex than needed, estimation model

is specified, the increase in the relative root mean square error of the no-classification approaches is

driven not only by increased variance, but also by increased bias. Increased variance in this case is
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what is expected in general statistical model-based estimation applications. A possible explanation

for increased bias is related to the fact that we are dealing with the unobservable data in the tables

of matches and non-matches. So that fitting a model to random fluctuations incurs the bias in the

estimate of the parameter π, rather than just increasing the variance. Meanwhile, the errors for the

classification based approach are very similar to the correct model case.

We complete the discussion of the between-variables independence model by comparing the results

obtained without blocking, ˜︁τ , to those with the practically achievable averaging blocking, ˜︁τG. Re-

sults are displayed in Table 14. Such averaging blocking requires the information from the address or

sampling frame in order to construct the blocks of approximately equal size. As we can see, there is

no clear-cut evidence that would allow us to say that one approach performs better than the other.

Neither the bias nor variance is considerably lower or higher consistently for the averaging blocking

approach comparing to the estimation at the population level. Tentatively, one can say that the aver-

aging blocking tends to produce slightly better results judging by the relative root mean square error.

Certainly, the linkage free dual system estimator with the averaging blocking has better statistical

justification than the estimator applied at the population level. However, it is questionable if the

observed gains are worth additional effort creating the blocks of approximately the same size in the

case of independence.

7.5.2 Between-variables independence in the set of matches, association between v1 and

v2 in the set of non-matches

The next set of results corresponds to the data simulation model that aims at the between-variables

independence of comparison outcomes in the set of matches and association in comparison outcomes of

the first and second linkage variables in the set of non-matches. We start with the estimates produced

by the model that has the closest identifiable mixture-like parameterization to the simulated data,

π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ3, γ4).

The results are tabulated in Table 15. All the main trends are similar to those observed in the case

of between-variables independence in Section 7.5.1. However, once the between-variables association

of the comparison outcomes is present in the set of non-matches, the relative root mean square error

increases in both no-classification estimators as well as in the classification-based estimator. The

approach with classification can have the error up to 3 times of the perfect dual system estimator’s in

this case and is roughly 1.5 times the perfect case in the majority of scenarios. The amount of clerical

resolution needed is also larger than in the case of between-variables independence.

As for the linkage free dual system estimator and its modified version, the increase in the relative

root mean square error is mainly explained by the increased variance. This is not surprising and is

similar to what one usually observes in regular statistical models. Unlike the case of between-variables

independence, here the relationships in the data are more complicated so that the simulation outcomes

are more variable while the estimation model is also more complex. Hence, the increased variability.

What looks like striking behaviour at first glance is the reduction in the relative bias compared to

the case of independence. However, it is unlikely to be a real bias reduction. It is most likely that

this between-variables dependence model is slightly negatively biased; see the corresponding results
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for a data-conforming theoretical version in Table 27. So that the tendency of the no-classification

estimators in practical applications to have positive bias is counterbalanced by the negative bias in

this between-variables dependence model. We will come back to other aspects related to the bias in a

paragraph below. The basic linkage free dual system estimator has again the highest error among the

all estimators considered. It demonstrates reasonable performance given it is fully automated, does

not use 1-to-1 constraining and has to deal with the between-variables association of the comparison

outcomes. Its modified version, however, demonstrates a remarkable performance once again. The

modified linkage free dual system estimator either slightly outperforms or slightly falls behind the

classification-based approach. The relative root mean square error of the modified no-classification

approach is between 0.67 and 1.27 times the classification-based one. The error of the modified no-

classification estimator is between 1.02 and 2.7 times the dual system estimator with perfect linkage.

Table 15: Simulated data: between-variables independence in the set of matches, association be-
tween the first and second variable in the set of non-matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 1.71 0.51 -0.26 0.18 0.03 1.28 1.96 1.30 1.05 1.38 1.97 1.32 1.05

0.9 0.05 2.18 1.76 2.27 0.56 0.02 1.57 2.86 1.67 1.06 2.36 3.65 1.76 1.06
0.10 8.77 1.91 3.60 0.97 0.01 1.81 4.33 2.51 1.12 2.63 5.63 2.69 1.12

0.01 1.38 0.70 -0.21 0.34 0.15 2.85 3.24 2.88 2.78 2.94 3.25 2.90 2.78
250 0.8 0.05 1.69 1.80 2.27 0.52 0.02 3.08 3.99 3.07 2.73 3.57 4.59 3.11 2.73

0.10 7.52 2.12 4.39 1.15 0.13 3.26 5.62 3.83 2.70 3.88 7.13 4.00 2.70

0.01 1.19 0.84 -0.25 0.52 0.32 4.77 5.11 4.87 4.76 4.84 5.12 4.90 4.77
0.7 0.05 1.43 1.90 2.09 0.53 0.14 5.05 5.63 5.01 4.75 5.40 6.01 5.04 4.75

0.10 6.18 2.42 5.26 1.33 0.25 5.41 7.50 5.69 4.95 5.92 9.16 5.85 4.95
0.01 1.90 0.19 0.10 0.23 0.05 0.75 1.37 0.95 0.73 0.77 1.37 0.98 0.73

0.9 0.05 0.89 1.57 1.10 0.29 0.02 1.08 1.97 1.25 0.76 1.91 2.26 1.28 0.76
0.10 6.59 1.53 1.68 0.57 -0.03 1.08 2.87 1.85 0.75 1.87 3.33 1.93 0.75

0.01 1.59 0.22 0.10 0.27 0.08 1.82 2.20 1.92 1.82 1.84 2.20 1.94 1.82
500 0.8 0.05 0.77 1.65 1.44 0.39 0.10 2.11 2.90 2.20 1.89 2.68 3.23 2.23 1.89

0.10 6.08 1.55 1.98 0.51 -0.01 2.07 3.71 2.68 1.83 2.58 4.21 2.73 1.83

0.01 1.27 0.25 0.04 0.32 0.09 3.30 3.64 3.39 3.27 3.31 3.64 3.41 3.27
0.7 0.05 0.64 1.68 1.72 0.42 0.18 3.57 4.27 3.65 3.40 3.94 4.61 3.68 3.40

0.10 5.57 1.76 2.55 0.61 0.07 3.74 5.16 4.14 3.45 4.13 5.76 4.19 3.45
0.01 1.76 0.16 0.08 0.14 0.04 0.56 1.01 0.70 0.54 0.58 1.01 0.72 0.54

0.9 0.05 0.64 1.43 0.60 0.21 -0.01 0.81 1.40 0.95 0.54 1.64 1.53 0.98 0.54
0.10 5.35 1.38 0.78 0.30 0.01 0.72 1.96 1.37 0.52 1.56 2.10 1.41 0.52

0.01 1.52 0.09 0.07 0.12 -0.03 1.32 1.60 1.39 1.31 1.32 1.60 1.40 1.31
1000 0.8 0.05 0.60 1.28 0.60 0.13 -0.03 1.42 2.01 1.53 1.27 1.91 2.10 1.54 1.27

0.10 5.93 1.17 0.91 0.23 0.01 1.47 2.58 2.01 1.30 1.87 2.74 2.02 1.30

0.01 1.26 0.06 0.00 0.09 -0.06 2.23 2.50 2.32 2.23 2.23 2.50 2.32 2.23
0.7 0.05 0.57 1.11 0.87 0.15 0.02 2.38 2.87 2.49 2.27 2.63 3.00 2.50 2.27

0.10 5.99 0.91 1.12 0.06 0.04 2.32 3.30 2.74 2.29 2.49 3.49 2.74 2.29

Table 16 contains the outputs for a simpler parameterization of the mixture-like estimation model,

namely, the model of between-variables independence of the comparison outcomes in both the set of

matches and the set of non-matches, π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4). The

results in this table demonstrate several points. First, comparing to Table 12, suggests that the sim-

120



ulation approach indeed produces data different from the between-variables independence data (since

the independence model results in substantial bias). Second, comparing with Table 15, we see that

these associations are between the first and second variables (since the mixture-model parameterized

for this association produce high-quality outputs). Third, comparing with Table 15 again, we see that

the model specification with the between-variables associations works very well and that the model

is identifiable as predicted by our theoretical exploration. Fourth, that failure to specify the correct

model when relying on the pure estimation-based approach without classification may lead to very

poor results.

Table 16: Simulated data: between-variables independence in the set of matches, association be-
tween the first and second variable in the set of non-matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 1.66 0.11 -3.01 -19.19 0.03 1.08 1.87 7.22 1.05 1.09 3.54 20.50 1.05

0.9 0.05 0.53 1.41 -1.45 -19.29 0.02 1.46 2.82 4.19 1.06 2.03 3.17 19.74 1.06
0.10 4.84 1.38 -1.86 -8.55 0.01 1.52 4.09 3.16 1.12 2.06 4.49 9.12 1.12

0.01 1.28 0.26 -3.07 -18.96 0.15 2.80 3.20 7.78 2.78 2.82 4.43 20.50 2.78
250 0.8 0.05 0.43 1.35 -1.62 -19.17 0.02 2.95 4.08 4.92 2.73 3.24 4.39 19.80 2.73

0.10 4.59 1.56 -2.54 -8.20 0.13 3.06 6.00 4.16 2.70 3.43 6.52 9.20 2.70

0.01 0.78 0.41 -3.06 -18.34 0.32 4.77 5.03 9.32 4.76 4.79 5.89 20.57 4.77
0.7 0.05 0.41 1.42 -1.89 -18.65 0.14 4.94 5.65 6.44 4.75 5.13 5.95 19.73 4.75

0.10 4.07 1.78 -2.13 -8.28 0.25 5.29 8.01 6.27 4.95 5.58 8.29 10.39 4.95
0.01 1.94 0.14 -2.72 -20.34 0.05 0.75 1.34 5.14 0.73 0.76 3.03 20.97 0.73

0.9 0.05 0.34 1.16 -2.68 -19.33 0.02 1.01 2.07 2.87 0.76 1.53 3.39 19.54 0.76
0.10 3.89 1.20 -4.25 -8.28 -0.03 1.01 2.80 2.07 0.75 1.56 5.09 8.54 0.75

0.01 1.60 0.16 -2.73 -20.14 0.08 1.82 2.18 6.07 1.82 1.83 3.50 21.03 1.82
500 0.8 0.05 0.30 1.21 -2.42 -19.25 0.10 2.06 2.98 3.62 1.89 2.39 3.84 19.59 1.89

0.10 4.28 1.15 -5.14 -8.12 -0.01 2.01 4.14 2.79 1.83 2.32 6.60 8.58 1.83

0.01 1.24 0.18 -2.76 -19.65 0.09 3.28 3.59 7.13 3.27 3.29 4.53 20.90 3.27
0.7 0.05 0.31 1.22 -2.13 -19.12 0.18 3.48 4.31 4.56 3.40 3.69 4.81 19.65 3.40

0.10 4.44 1.24 -4.69 -8.02 0.07 3.61 5.68 4.07 3.45 3.82 7.36 8.99 3.45
0.01 1.93 0.10 -2.63 -20.39 0.04 0.55 0.99 3.78 0.54 0.56 2.81 20.74 0.54

0.9 0.05 0.24 0.97 -3.23 -19.57 -0.01 0.69 1.51 2.11 0.54 1.19 3.57 19.68 0.54
0.10 3.97 1.09 -5.79 -8.25 0.01 0.70 1.90 1.40 0.52 1.30 6.10 8.37 0.52

0.01 1.69 0.03 -2.64 -20.32 -0.03 1.31 1.59 4.40 1.31 1.31 3.08 20.79 1.31
1000 0.8 0.05 0.23 0.85 -3.25 -19.60 -0.03 1.34 2.10 2.50 1.27 1.59 3.87 19.76 1.27

0.10 4.94 0.94 -6.44 -8.31 0.01 1.42 3.03 1.88 1.30 1.71 7.12 8.52 1.30

0.01 1.46 -0.01 -2.71 -20.31 -0.06 2.23 2.47 5.18 2.23 2.23 3.67 20.96 2.23
0.7 0.05 0.25 0.67 -2.95 -19.57 0.02 2.31 2.91 3.20 2.27 2.40 4.15 19.83 2.27

0.10 5.91 0.68 -6.31 -8.43 0.04 2.32 3.71 2.73 2.29 2.41 7.32 8.86 2.29

When the estimation model does not account for the between-variables associations of the compar-

ison outcomes in the set of non-matches, the no-classification estimators are negatively biased. Note

an irregular trend in the bias of the linkage free dual system estimator as the coverage and error prob-

abilities vary. Most likely, this is due to the positive bias in estimation interfering with the negative

bias of model misspecification. Another very interesting outcome of ignoring the between-variables

associations is increased variance of the estimates produced by a simpler model. This looks like yet an-

other irregularity of the mixture / mixture-like model in comparison with the regular models (see some

121



known irregularities mentioned in Section 2.2.3). It is also interesting to see how the modified linkage

free dual system estimator, which demonstrates a very good performance under the correctly specified

model, performs worse than any other estimators when the model does not take the associations into

account. The difference in estimates between the linkage free estimator and its modified version are

often so large, that maybe such a difference can be used as an indicator of a model misspecification.

Table 17: Single block vs averaged blocking: between-variables independence in the set of matches,
association between the first and second variable in the set of non-matches

RB RSE RRMSE

τ πj ξ ˜︁τ ˜︁τG ˜︁τ ˜︁τG ˜︁τ ˜︁τG
0.01 -0.26 -1.05 1.96 1.96 1.97 2.23

0.9 0.05 2.27 1.54 2.86 2.88 3.65 3.27
0.10 3.60 3.40 4.33 4.07 5.63 5.30

0.01 -0.21 -1.19 3.24 3.34 3.25 3.55
250 0.8 0.05 2.27 1.92 3.99 4.17 4.59 4.59

0.10 4.39 3.73 5.62 5.51 7.13 6.65

0.01 -0.25 -1.23 5.11 5.27 5.12 5.41
0.7 0.05 2.09 1.86 5.63 5.63 6.01 5.93

0.10 5.26 4.56 7.50 7.19 9.16 8.51
0.01 0.10 -0.85 1.37 1.38 1.37 1.62

0.9 0.05 1.10 0.95 1.97 2.15 2.26 2.35
0.10 1.68 1.48 2.87 2.62 3.33 3.01

0.01 0.10 -0.91 2.20 2.32 2.20 2.49
500 0.8 0.05 1.44 1.28 2.90 2.91 3.23 3.18

0.10 1.98 1.91 3.71 3.45 4.21 3.95

0.01 0.04 -0.93 3.64 3.57 3.64 3.69
0.7 0.05 1.72 1.44 4.27 4.08 4.61 4.32

0.10 2.55 2.81 5.16 5.04 5.76 5.77
0.01 0.08 -0.86 1.01 0.98 1.01 1.30

0.9 0.05 0.60 0.33 1.40 1.47 1.53 1.51
0.10 0.78 0.58 1.96 1.73 2.10 1.82

0.01 0.07 -0.75 1.60 1.63 1.60 1.79
1000 0.8 0.05 0.60 0.55 2.01 2.10 2.10 2.17

0.10 0.91 1.00 2.58 2.26 2.74 2.48

0.01 0.00 -0.78 2.50 2.50 2.50 2.62
0.7 0.05 0.87 1.04 2.87 2.92 3.00 3.10

0.10 1.12 1.31 3.30 3.33 3.49 3.58

One interesting behaviour related to the classification-based approach is worth mentioning here.

For the chosen thresholds, the simpler incorrect model (Table 16) has better performance than the

correct model (Table 15) in terms of the overall error as well as the amount of clerical work. This is

another counter-intuitive result which can be easily explained. Regarding the amount of clerical work,

the correct model yields reliable parameter estimates and therefore the cut-off points for accepting

/ rejecting the comparison patterns as links and non-links do correspond well to the chosen nominal

thresholds (with respect to the record pairs). These result in fewer patterns being accepted as links

than in the case of the between-variables independence model. The between-variables independence

model results in an incorrect but more optimistic acceptance and rejection decision. As a result, there

is less clerical review under the incorrect model. The main source of the reduction of the error in

the classification-based approach with the between-variables independence model is the bias. Recall,
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that the overall bias in the classification-based approaches is a linear combination of the number of

matches classified as non-links (false negatives) and the number of non-matches classified as links

(false positives). Across all scenarios, the bias is positive, meaning that there are more false negatives

than false positives. As observed above, the incorrect model classifies several patterns as links while

the correct model classifies the same patterns as possible links. Therefore, the classification with the

incorrect model has a few more false positive errors than the classification with the correct model. These

additional errors reduce the absolute value of the linear combination of the errors which manifests in

the simulation work in the reduced bias. In other words, this is just a case of uncontrolled cancellation

of errors. We will see a similar behaviour in some other scenarios, but not in all.

Finally, comparing the estimates obtained with the averaging blocking to those obtained estimating

directly at the population level, outputs displayed in Table 17, we see again that there is no strong

evidence in favour of one or another approach. There are several cases where the averaging blocking

leads to slightly better results. However, there is no clear consistency in such performance. More

thorough comparison of these two approaches in practical situations is left for future research.

7.5.3 Association between v2 and v3 in the set of matches, between-variables indepen-

dence in the set of non-matches

The next set of results we analyse are those for the simulation model aiming at the association in the

comparison outcomes of the second and third variables in the set of matches, and between-variables

independence in the set of non-matches. In other words, this is a situation where the errors of record-

ing two population attributes are correlated, rather than the values of population attributes being

correlated. As always, we start with the closest parameterization of the mixture-like model, which is

the identifiable model π(γp;π,µ,ν) = πµp(γ1, γ2,3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4). The relevant results

are displayed in Table 18.

Yet again, the main trends are similar to those presented in Section 7.5.1 for the case of the between-

variables independence model. In fact, the quality of the estimates in the event of associations between

comparison outcomes of two variables in the set of matches is broadly similar to the quality achieved

under between-variables independence. However, for the no-classification methods the relative root

mean square error is smaller in the case of the associations under discussion when compared with the

error in the case of between-variables independence. This ‘improvement’ in performance is largely

attributable to the decreased bias. As we can see in Table 27 the equivalent model under perfect

averaging blocking has a small negative bias across the majority of scenarios. Therefore, we think that

this is not a genuine improvement, but the effect of blending the positive bias in the linkage free dual

system estimation in practical applications and the negative bias in the between-variables dependence

model of interest. We have already seen a similar behaviour in Section 7.5.2.

The amount of clerical effort generally exceeds the amount of reviews needed when no between-

variables associations are present. At the same time, the percentage of clerically reviewed records is

smaller when comparing the current model with the model aiming at the between-variables associations

in the set of non-matches. The caveat in the last statement is that the strengths of the between-

variables associations of the outcomes in the set of matches and the strengths of the between-variables
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associations of the outcomes in the set of non-matches are not easy to compare due to the different

mechanisms by which these associations are achieved.

As in all the results seen so far, the modified version of the linkage free dual system estimator shows a

good performance and outperforms the classification-based approach with the chosen thresholds. The

modified no-classification estimator beats the classification approach both in terms of the bias and

variance. Note that the estimates in the case of the between-variables associations in the set of non-

matches presented in Table 15 are more variable than the estimates presented in this section. Again,

despite the results, we cannot claim that this is a general property, because of the different ways the

associations are generated. However, given that the set of matches is usually very small compared

to the set on non-matches, it is likely that associations between the linkage variables in the set of

non-matches are main contributors to the variability.

Table 18: Simulated data: association between the second and third variable in the set of matches,
between-variables independence in the set of non-matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2,3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 2.25 0.00 -0.50 -0.08 -0.06 1.14 1.22 1.16 1.13 1.14 1.32 1.17 1.13

0.9 0.05 0.49 0.85 1.60 0.03 0.03 1.31 2.06 1.30 1.08 1.56 2.61 1.31 1.08
0.10 3.79 1.98 3.66 0.83 0.06 1.65 3.17 1.98 1.09 2.57 4.84 2.15 1.09

0.01 1.74 0.12 -0.50 0.01 0.05 2.67 2.69 2.67 2.65 2.67 2.74 2.67 2.65
250 0.8 0.05 0.45 0.61 0.67 -0.09 0.06 2.75 3.16 2.75 2.69 2.81 3.23 2.75 2.69

0.10 2.13 1.64 3.62 0.44 -0.13 3.09 4.29 3.24 2.77 3.50 5.61 3.27 2.77

0.01 0.95 0.22 -0.75 0.11 0.18 4.41 4.33 4.42 4.4 4.41 4.40 4.42 4.41
0.7 0.05 0.38 0.76 0.67 0.15 0.29 4.57 4.76 4.54 4.47 4.64 4.80 4.54 4.48

0.10 0.93 1.77 3.88 0.46 0.10 4.93 5.82 4.89 4.65 5.24 6.99 4.91 4.65
0.01 1.47 0.04 -0.40 -0.01 0.02 0.75 0.85 0.76 0.75 0.75 0.94 0.76 0.75

0.9 0.05 0.37 0.66 0.56 -0.22 -0.03 0.90 1.35 0.96 0.75 1.11 1.46 0.99 0.75
0.10 2.99 1.40 1.12 -0.01 -0.03 1.03 2.08 1.40 0.77 1.74 2.36 1.40 0.77

0.01 1.27 0.20 -0.31 0.13 0.17 1.84 1.87 1.84 1.83 1.85 1.89 1.85 1.84
500 0.8 0.05 0.40 0.64 0.75 -0.15 0.04 1.96 2.24 1.98 1.89 2.06 2.36 1.99 1.89

0.10 4.12 1.42 1.70 0.11 0.00 2.05 3.02 2.30 1.85 2.49 3.46 2.30 1.85

0.01 1.14 0.06 -0.48 -0.04 0.03 3.23 3.24 3.22 3.22 3.23 3.27 3.22 3.22
0.7 0.05 0.38 0.74 1.00 -0.06 0.17 3.41 3.60 3.40 3.38 3.49 3.74 3.40 3.38

0.10 4.61 1.37 2.42 0.21 0.05 3.35 4.24 3.56 3.24 3.62 4.88 3.57 3.24
0.01 1.81 0.03 -0.27 -0.05 0.00 0.54 0.63 0.55 0.53 0.54 0.68 0.55 0.53

0.9 0.05 0.13 1.24 0.53 0.08 0.01 0.72 0.97 0.79 0.54 1.44 1.11 0.80 0.54
0.10 4.17 1.56 0.79 0.29 0.02 0.82 1.51 1.18 0.53 1.76 1.70 1.21 0.53

0.01 1.40 0.07 -0.26 -0.01 0.04 1.28 1.33 1.29 1.28 1.29 1.36 1.29 1.28
1000 0.8 0.05 0.14 1.07 0.65 0.06 -0.05 1.38 1.63 1.45 1.30 1.75 1.76 1.45 1.30

0.10 5.90 1.29 0.75 -0.01 0.02 1.45 2.03 1.72 1.29 1.94 2.16 1.72 1.29

0.01 1.28 0.00 -0.39 -0.11 -0.03 2.36 2.36 2.36 2.36 2.36 2.39 2.36 2.36
0.7 0.05 0.33 0.56 0.45 -0.27 0.05 2.28 2.45 2.31 2.26 2.35 2.49 2.32 2.26

0.10 7.52 1.03 0.97 -0.18 0.08 2.38 2.82 2.54 2.26 2.59 2.98 2.54 2.26

Applying a simpler between-variables independence model to the data with the associations under

discussion, we observe several curious features in the results; see Table 19. The classification-based

approach requires less clerical intervention with this simpler but incorrect model than it requires with

the correct model. This is similar to what we have seen in the case of the associations between the
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comparison outcomes of two variables in the set on non-matches. However, this time the relative bias

increases when the incorrect model is used. It again demonstrates some unpredictability in performance

of the classification-based approach. The results for the linkage free dual system estimator and its

modified version, when comparing with the results in Table 18, show that the correct model specification

is important in order to obtain accurate estimates. Nevertheless, there is not such a dramatic loss

of accuracy when a model is misspecified in comparison with the situation when between-variables

associations are present in the set of non-matches. Specifically, the modified linkage free dual system

estimator still performs very well and outperforms the classification-based method.

Table 19: Simulated data: association between the second and third variable in the set of matches,
between-variables independence in the set of non-matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 2.56 0.00 -0.20 -0.07 -0.06 1.14 1.20 1.16 1.13 1.14 1.21 1.17 1.13

0.9 0.05 0.77 0.86 2.65 0.21 0.03 1.31 2.30 1.30 1.08 1.57 3.51 1.31 1.08
0.10 2.68 2.65 7.28 2.15 0.06 1.74 3.71 1.94 1.09 3.17 8.18 2.90 1.09

0.01 2.25 0.12 -0.18 0.03 0.05 2.67 2.69 2.67 2.65 2.67 2.70 2.67 2.65
250 0.8 0.05 0.65 0.62 1.42 0.04 0.06 2.74 3.25 2.75 2.69 2.81 3.55 2.75 2.69

0.10 1.36 2.39 7.42 1.57 -0.13 3.22 4.91 3.29 2.77 4.01 8.90 3.65 2.77

0.01 1.39 0.22 -0.35 0.13 0.18 4.41 4.35 4.42 4.4 4.41 4.37 4.42 4.41
0.7 0.05 0.63 0.77 1.49 0.28 0.29 4.58 4.89 4.54 4.47 4.64 5.11 4.55 4.48

0.10 0.61 2.39 7.71 1.39 0.10 4.99 6.46 4.92 4.65 5.53 10.06 5.11 4.65
0.01 1.64 0.04 -0.15 0.00 0.02 0.75 0.81 0.76 0.75 0.75 0.82 0.76 0.75

0.9 0.05 0.65 0.67 1.72 -0.02 -0.03 0.90 1.58 0.96 0.75 1.12 2.34 0.96 0.75
0.10 1.83 1.96 4.44 1.11 -0.03 1.20 2.55 1.38 0.77 2.30 5.12 1.77 0.77

0.01 1.45 0.20 -0.03 0.14 0.17 1.84 1.86 1.84 1.83 1.85 1.86 1.85 1.84
500 0.8 0.05 0.70 0.66 1.79 0.03 0.04 1.96 2.38 1.99 1.89 2.07 2.98 1.99 1.89

0.10 2.03 2.06 5.27 1.33 0.00 2.20 3.50 2.30 1.85 3.02 6.33 2.65 1.85

0.01 1.30 0.06 -0.19 -0.02 0.03 3.23 3.23 3.22 3.22 3.23 3.24 3.22 3.22
0.7 0.05 0.63 0.79 2.07 0.13 0.17 3.41 3.70 3.39 3.38 3.50 4.24 3.40 3.38

0.10 2.12 2.11 5.88 1.39 0.05 3.48 4.71 3.58 3.24 4.07 7.53 3.84 3.24
0.01 1.89 0.03 -0.10 -0.04 0.00 0.54 0.57 0.55 0.53 0.54 0.58 0.55 0.53

0.9 0.05 0.32 1.28 1.63 0.34 0.01 0.72 1.09 0.78 0.54 1.47 1.97 0.85 0.54
0.10 2.43 2.11 4.09 1.47 0.02 0.90 1.77 1.14 0.53 2.29 4.46 1.86 0.53

0.01 1.50 0.07 -0.09 0.00 0.04 1.28 1.30 1.29 1.28 1.29 1.30 1.29 1.28
1000 0.8 0.05 0.29 1.16 1.70 0.30 -0.05 1.39 1.75 1.45 1.30 1.81 2.44 1.48 1.30

0.10 2.55 1.92 4.13 1.20 0.02 1.54 2.39 1.71 1.29 2.46 4.77 2.09 1.29

0.01 1.41 0.00 -0.18 -0.09 -0.03 2.36 2.35 2.36 2.36 2.36 2.36 2.36 2.36
0.7 0.05 0.51 0.66 1.55 -0.04 0.05 2.29 2.56 2.32 2.26 2.38 2.99 2.32 2.26

0.10 3.02 1.63 4.34 1.05 0.08 2.38 3.17 2.55 2.26 2.88 5.37 2.76 2.26

7.5.4 Association between v2 and v3 in the set of matches, association between v1 and v2

in the set of non-matches

The input data used to produce the estimates in this section were simulated aiming at the associ-

ation between the comparison outcomes of the variables v2 and v3 in the set of matches and asso-

ciation between the comparison outcomes of the variables v1 and v2 in the set of non-matches. As

always, we consider the closest mixture-like parameterization first. This identifiable parameterization
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is π(γp;π,µ,ν) = πµp(γ1, γ2,3, γ4) + (1− π)νp(γ1,2, γ3, γ4).

All the general trends seen before are present in the results of this section, displayed in Table 20.

One exception to the trends is that the percentage of clerical resolutions in the classification-based

approach increases as the error recording the population attributes increases for the population size

τ = 250. The previously observed non-monotone trend persists for other values of the population size

parameter.

Table 20: Simulated data: association between the second and third variable in the set of matches,
association between the first and second variable in the set of non-matches. Estimation model:
π(γp;π,µ,ν) = πµp(γ1, γ2,3, γ4) + (1− π)νp(γ1,2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 1.30 0.69 -0.48 0.04 0.05 1.36 1.95 1.33 1.07 1.53 2.01 1.33 1.07

0.9 0.05 2.91 1.61 1.38 0.30 0.01 1.60 2.87 1.74 1.13 2.27 3.19 1.77 1.13
0.10 11.25 1.86 2.78 0.78 -0.03 1.67 4.03 2.65 1.11 2.50 4.89 2.76 1.11

0.01 1.09 0.81 -0.53 0.17 0.16 2.79 3.24 2.83 2.71 2.90 3.28 2.84 2.72
250 0.8 0.05 1.51 1.28 0.63 -0.09 -0.07 2.95 3.84 2.92 2.63 3.22 3.89 2.92 2.63

0.10 7.28 2.05 2.86 0.72 0.03 3.03 4.76 3.48 2.61 3.66 5.55 3.56 2.61

0.01 0.90 0.88 -0.87 0.15 0.18 4.77 5.05 4.84 4.79 4.85 5.12 4.85 4.79
0.7 0.05 1.08 1.69 0.82 0.31 0.44 4.96 5.52 4.95 4.74 5.24 5.58 4.96 4.76

0.10 4.62 2.05 2.57 0.25 0.06 5.02 6.68 5.35 4.69 5.42 7.16 5.36 4.69
0.01 1.72 0.16 -0.22 0.09 0.07 0.75 1.41 0.95 0.73 0.76 1.42 0.95 0.73

0.9 0.05 0.53 1.27 0.48 -0.02 0.00 0.98 1.99 1.20 0.77 1.61 2.04 1.20 0.77
0.10 6.26 1.47 1.00 0.13 -0.04 1.07 2.67 1.84 0.76 1.82 2.85 1.84 0.76

0.01 1.39 0.14 -0.34 0.02 0.03 1.84 2.19 1.92 1.83 1.84 2.22 1.92 1.83
500 0.8 0.05 0.44 1.39 0.63 0.12 0.05 2.10 2.75 2.18 1.95 2.52 2.82 2.19 1.95

0.10 6.48 1.63 1.39 0.26 0.03 2.10 3.63 2.73 1.83 2.66 3.89 2.74 1.83

0.01 1.12 0.35 -0.28 0.24 0.24 3.15 3.45 3.25 3.14 3.17 3.46 3.26 3.15
0.7 0.05 0.48 1.59 1.08 0.35 0.18 3.47 3.95 3.50 3.35 3.81 4.09 3.52 3.35

0.10 6.43 1.42 1.49 0.00 -0.13 3.49 4.75 3.91 3.37 3.77 4.98 3.91 3.37
0.01 1.60 0.09 -0.18 -0.04 0.01 0.56 0.98 0.70 0.55 0.57 1.00 0.70 0.55

0.9 0.05 0.84 1.36 0.53 0.28 0.03 0.78 1.47 0.99 0.53 1.56 1.56 1.03 0.53
0.10 5.69 1.53 0.61 0.29 0.01 0.86 2.04 1.51 0.57 1.75 2.13 1.53 0.57

0.01 1.39 0.12 -0.20 -0.01 0.04 1.30 1.60 1.37 1.30 1.31 1.61 1.37 1.30
1000 0.8 0.05 0.83 1.27 0.61 0.29 -0.03 1.47 2.00 1.61 1.30 1.94 2.09 1.63 1.30

0.10 6.75 1.36 0.53 0.01 0.03 1.47 2.45 1.97 1.34 2.00 2.50 1.97 1.34

0.01 1.20 0.12 -0.18 0.01 0.03 2.35 2.56 2.40 2.34 2.35 2.57 2.40 2.34
0.7 0.05 0.50 0.84 0.18 -0.20 0.06 2.21 2.75 2.37 2.21 2.37 2.75 2.38 2.21

0.10 7.60 1.08 0.86 0.04 0.02 2.38 3.35 2.86 2.26 2.61 3.46 2.86 2.26

The linkage free dual system estimators with this model specification account well for the asso-

ciations between the comparisons of linkage variables. The modified linkage free estimator yet again

shows very good performance outperforming the classification-based approach. Having said that the

no-classification approach outperforms the classification-based, we have to remain a little bit critical

about such a claim. If we compare the relative root mean square error of the current simulation and

estimation model case with the error for the case of between-variables associations of the comparison

outcomes in the set of non-matches only (Table 15), we notice that the former is smaller. This again

can be explained by the fact that the models that account for associations have a tendency to incur

some negative bias. Theoretical results in Table 27 confirm that the model with between-variables as-
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sociations in both the set of matches and non-matches has the largest negative bias among the models

explored.

Table 21: Simulated data: association between the second and third variable in the set of matches,
association between the first and second variable in the set of non-matches. Estimation model:
π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 1.62 0.51 -0.16 0.17 0.05 1.27 1.89 1.33 1.07 1.37 1.90 1.34 1.07

0.9 0.05 2.48 1.92 2.65 0.85 0.01 1.73 3.01 1.83 1.13 2.59 4.01 2.02 1.13
0.10 10.71 2.86 6.28 2.41 -0.03 2.02 4.66 2.77 1.11 3.50 7.82 3.67 1.11

0.01 1.39 0.66 -0.19 0.29 0.16 2.77 3.22 2.83 2.71 2.85 3.23 2.85 2.72
250 0.8 0.05 1.26 1.56 1.53 0.27 -0.07 2.99 3.88 2.96 2.63 3.38 4.17 2.97 2.63

0.10 6.63 3.30 6.45 2.25 0.03 3.25 5.48 3.66 2.61 4.63 8.46 4.30 2.61

0.01 1.16 0.71 -0.49 0.28 0.18 4.76 5.03 4.85 4.79 4.81 5.06 4.86 4.79
0.7 0.05 0.93 2.05 1.81 0.73 0.44 5.06 5.60 5.01 4.74 5.46 5.89 5.06 4.76

0.10 4.11 3.29 6.40 1.70 0.06 5.26 7.36 5.55 4.69 6.20 9.75 5.80 4.69
0.01 1.87 0.15 0.04 0.20 0.07 0.75 1.35 0.94 0.73 0.76 1.35 0.96 0.73

0.9 0.05 0.44 1.43 1.66 0.55 0.00 0.97 2.06 1.27 0.77 1.73 2.64 1.39 0.77
0.10 5.00 2.16 4.16 1.49 -0.04 1.38 3.07 1.89 0.76 2.56 5.17 2.41 0.76

0.01 1.53 0.14 -0.09 0.12 0.03 1.84 2.16 1.91 1.83 1.84 2.17 1.92 1.83
500 0.8 0.05 0.36 1.53 1.66 0.58 0.05 2.09 2.80 2.20 1.95 2.59 3.25 2.28 1.95

0.10 4.48 2.37 4.70 1.69 0.03 2.29 4.02 2.77 1.83 3.29 6.18 3.24 1.83

0.01 1.22 0.35 -0.01 0.35 0.24 3.15 3.46 3.25 3.14 3.17 3.46 3.27 3.15
0.7 0.05 0.43 1.70 2.28 0.87 0.18 3.47 4.05 3.56 3.35 3.86 4.65 3.66 3.35

0.10 3.89 2.28 4.82 1.45 -0.13 3.73 5.22 4.02 3.37 4.37 7.10 4.27 3.37
0.01 1.67 0.09 0.01 0.05 0.01 0.56 0.96 0.69 0.55 0.57 0.96 0.69 0.55

0.9 0.05 0.59 1.69 1.64 0.85 0.03 0.85 1.54 1.04 0.53 1.89 2.25 1.34 0.53
0.10 3.90 2.08 3.61 1.58 0.01 0.93 2.27 1.53 0.57 2.28 4.26 2.20 0.57

0.01 1.47 0.12 0.00 0.08 0.04 1.30 1.57 1.36 1.30 1.31 1.57 1.36 1.30
1000 0.8 0.05 0.61 1.60 1.70 0.85 -0.03 1.53 2.05 1.63 1.30 2.21 2.66 1.84 1.30

0.10 3.66 1.93 3.68 1.35 0.03 1.52 2.73 2.01 1.34 2.46 4.58 2.42 1.34

0.01 1.25 0.11 0.05 0.11 0.03 2.35 2.56 2.41 2.34 2.35 2.56 2.41 2.34
0.7 0.05 0.37 1.03 1.29 0.34 0.06 2.24 2.81 2.42 2.21 2.46 3.09 2.44 2.21

0.10 3.70 1.71 4.01 1.39 0.02 2.46 3.67 2.91 2.26 3.00 5.44 3.22 2.26

We now briefly look at the results for three simpler and identifiable but incorrect models: π(γp;π,µ,ν) =

πµp(γ1, γ2, γ3, γ4) + (1 − π)νp(γ1,2, γ3, γ4), π(γp;π,µ,ν) = πµp(γ1, γ2,3, γ4) + (1 − π)νp(γ1, γ2, γ3, γ4),

and π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4).

The outputs for the model π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ3, γ4) are displayed

in Table 21. This estimation model accounts only for the between-variables association in the set of

non-matches. The increase in the relative root means square error is observed when comparing this

simpler model with the model accounting for the between-variables associations in both the set of

matches and non-matches. This increase is mainly inflicted by the increased bias, but there is some

contribution from the variability as well. The quality of the modified linkage free dual system estimator

seems largely acceptable across all of the scenarios. The quality of the basic linkage free estimator is

mainly acceptable for the scenarios with higher coverage and smaller errors.
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Table 22: Simulated data: association between the second and third variable in the set of matches,
association between the first and second variable in the set of non-matches. Estimation model:
π(γp;π,µ,ν) = πµp(γ1, γ2,3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 1.23 0.15 -3.14 -17.85 0.05 1.10 1.82 7.13 1.07 1.11 3.63 19.22 1.07

0.9 0.05 0.51 1.05 -2.15 -19.72 0.01 1.46 2.79 4.06 1.13 1.80 3.52 20.13 1.13
0.10 7.01 1.62 -2.02 -9.21 -0.03 1.59 4.05 3.46 1.11 2.27 4.53 9.84 1.11

0.01 0.90 0.28 -3.32 -18.61 0.16 2.73 3.21 7.84 2.71 2.75 4.62 20.19 2.72
250 0.8 0.05 0.35 0.91 -2.88 -21.72 -0.07 2.82 3.82 4.70 2.63 2.96 4.79 22.22 2.63

0.10 3.90 1.71 -2.98 -10.09 0.03 2.92 5.15 4.63 2.61 3.38 5.95 11.10 2.61

0.01 0.60 0.28 -3.66 -19.42 0.18 4.79 4.99 9.01 4.79 4.80 6.19 21.41 4.79
0.7 0.05 0.30 1.23 -2.63 -21.62 0.44 4.78 5.49 6.01 4.74 4.94 6.09 22.44 4.76

0.10 1.96 1.55 -3.51 -10.80 0.06 4.88 7.04 6.33 4.69 5.12 7.87 12.52 4.69
0.01 1.42 0.13 -3.01 -20.15 0.07 0.74 1.38 5.43 0.73 0.75 3.31 20.87 0.73

0.9 0.05 0.29 0.76 -3.09 -20.90 0.00 0.92 2.02 2.90 0.77 1.19 3.69 21.10 0.77
0.10 4.21 1.20 -4.22 -9.67 -0.04 1.04 2.62 2.31 0.76 1.58 4.96 9.95 0.76

0.01 1.21 0.10 -3.14 -20.65 0.03 1.84 2.18 5.85 1.83 1.84 3.82 21.46 1.83
500 0.8 0.05 0.29 0.77 -3.06 -20.94 0.05 2.03 2.82 3.56 1.95 2.17 4.16 21.24 1.95

0.10 5.23 1.24 -4.57 -9.60 0.03 2.02 3.94 3.11 1.83 2.37 6.03 10.09 1.83

0.01 1.04 0.31 -3.05 -19.93 0.24 3.14 3.43 7.08 3.14 3.16 4.60 21.15 3.15
0.7 0.05 0.30 0.86 -2.62 -20.50 0.18 3.36 3.94 4.50 3.35 3.47 4.73 20.98 3.35

0.10 5.73 1.04 -4.32 -9.89 -0.13 3.46 4.98 4.23 3.37 3.61 6.59 10.76 3.37
0.01 1.78 0.06 -2.87 -20.51 0.01 0.56 0.98 3.84 0.55 0.56 3.03 20.87 0.55

0.9 0.05 0.11 1.17 -3.05 -20.00 0.03 0.71 1.53 2.07 0.53 1.37 3.42 20.11 0.53
0.10 4.83 1.34 -5.20 -9.28 0.01 0.77 2.01 1.67 0.57 1.55 5.57 9.43 0.57

0.01 1.38 0.10 -2.90 -20.97 0.04 1.30 1.58 4.20 1.30 1.30 3.31 21.39 1.30
1000 0.8 0.05 0.13 1.03 -3.03 -19.72 -0.03 1.45 2.05 2.58 1.30 1.78 3.66 19.89 1.30

0.10 6.61 1.19 -5.69 -9.55 0.03 1.44 2.72 2.08 1.34 1.87 6.31 9.78 1.34

0.01 1.29 0.08 -2.85 -20.36 0.03 2.35 2.53 5.26 2.34 2.35 3.82 21.03 2.34
0.7 0.05 0.25 0.45 -3.43 -21.09 0.06 2.25 2.77 3.18 2.21 2.30 4.41 21.33 2.21

0.10 8.15 0.92 -5.39 -9.75 0.02 2.36 3.63 2.82 2.26 2.54 6.50 10.15 2.26

The situation is less favourable for the no-classification approaches when only the between-variables

association in the set of matches is accounted for. The corresponding results are presented in Table

22. The results are similar to those in Table 19 and the linkage free estimators are doing poorly

when the estimation model is misspecified for the set of non-matches. Note that among all four

models considered in this section, the classification-based approach achieves the best performance

for π(γp;π,µ,ν) = πµp(γ1, γ2,3, γ4) + (1 − π)νp(γ1, γ2, γ3, γ4). This is another example of somehow

unpredictable behaviour of the classification approach.

Finally, the results for the estimation model with between-variables independence in both the set of

matches and the set of non-matches are tabulated in Table 23. These results are very similar to those

discussed in the previous paragraph. The linkage free estimators suffer from model misspecification.

The classification-based approach demonstrates an impressive level of robustness, but it is difficult to

determine its exact behaviour for any given combination of the input data and model specification.

Also, it is obvious that the classification-based approach cannot be robust across all the choices of the

thresholds and it is not clear how one would choose such a set of thresholds that guarantee robustness

in practice.
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Table 23: Simulated data: association between the second and third variable in the set of matches,
association between the first and second variable in the set of non-matches. Estimation model:
π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 1.58 2.74 -2.89 -17.79 0.05 1.10 1.80 7.18 1.07 1.10 3.41 19.18 1.07

0.9 0.05 0.67 3.78 -1.20 -19.30 0.01 1.51 2.96 4.07 1.13 1.94 3.20 19.73 1.13
0.10 6.69 4.35 0.22 -7.72 -0.03 1.74 4.81 3.27 1.11 2.75 4.82 8.38 1.11

0.01 1.19 6.80 -3.03 -18.49 0.16 2.72 3.19 7.88 2.71 2.74 4.40 20.09 2.72
250 0.8 0.05 0.44 7.12 -2.12 -21.55 -0.07 2.85 3.87 4.68 2.63 3.02 4.41 22.06 2.63

0.10 3.42 7.75 -0.35 -8.67 0.03 3.10 6.00 4.50 2.61 3.86 6.01 9.77 2.61

0.01 0.76 12.00 -3.33 -19.30 0.18 4.80 4.98 9.04 4.79 4.81 5.99 21.31 4.79
0.7 0.05 0.41 12.09 -1.78 -21.42 0.44 4.84 5.58 6.02 4.74 5.03 5.85 22.25 4.76

0.10 1.72 12.62 -0.64 -9.42 0.06 5.05 7.91 6.19 4.69 5.46 7.93 11.27 4.69
0.01 1.68 3.70 -2.80 -20.03 0.07 0.74 1.33 5.45 0.73 0.75 3.10 20.76 0.73

0.9 0.05 0.41 4.69 -2.17 -20.45 0.00 0.94 2.12 2.91 0.77 1.24 3.03 20.66 0.77
0.10 3.22 5.37 -2.24 -8.34 -0.04 1.07 3.19 2.17 0.76 1.88 3.89 8.62 0.76

0.01 1.44 9.17 -2.92 -20.52 0.03 1.83 2.15 5.88 1.83 1.84 3.63 21.34 1.83
500 0.8 0.05 0.40 10.13 -2.24 -20.60 0.05 2.03 2.88 3.55 1.95 2.18 3.65 20.91 1.95

0.10 3.41 10.48 -2.16 -8.21 0.03 2.10 4.41 3.01 1.83 2.67 4.91 8.74 1.83

0.01 1.21 15.71 -2.82 -19.80 0.24 3.14 3.44 7.11 3.14 3.16 4.45 21.04 3.15
0.7 0.05 0.42 16.89 -1.64 -20.12 0.18 3.38 4.04 4.52 3.35 3.50 4.36 20.62 3.35

0.10 3.49 17.77 -1.83 -8.51 -0.13 3.55 5.52 4.21 3.37 3.85 5.82 9.49 3.37
0.01 1.93 5.59 -2.71 -20.39 0.01 0.56 0.96 3.85 0.55 0.56 2.88 20.75 0.55

0.9 0.05 0.21 7.00 -2.19 -19.53 0.03 0.70 1.62 2.05 0.53 1.42 2.72 19.64 0.53
0.10 3.29 8.16 -3.40 -8.02 0.01 0.82 2.48 1.55 0.57 1.85 4.21 8.17 0.57

0.01 1.52 13.01 -2.73 -20.85 0.04 1.30 1.56 4.22 1.30 1.30 3.14 21.27 1.30
1000 0.8 0.05 0.19 14.30 -2.17 -19.27 -0.03 1.43 2.11 2.57 1.30 1.84 3.02 19.44 1.30

0.10 3.82 14.61 -3.43 -8.19 0.03 1.46 3.06 2.01 1.34 2.12 4.60 8.43 1.34

0.01 1.42 23.44 -2.67 -20.24 0.03 2.34 2.53 5.27 2.34 2.35 3.68 20.91 2.34
0.7 0.05 0.36 22.52 -2.54 -20.67 0.06 2.25 2.84 3.20 2.21 2.32 3.81 20.92 2.21

0.10 4.33 23.83 -3.15 -8.41 0.02 2.38 4.02 2.76 2.26 2.71 5.11 8.85 2.26

7.5.5 Between-variables independence in the set of matches, three-way association be-

tween v1, v2 and v3 in the set of non-matches

Until now all the examples considered involved data with associations for which an identifiable para-

metric proxy of the mixture-like model existed. Such identifiable models demonstrated the feasibility of

the no-classification methods for population size estimation. In this section we will look at an example

of data that have between-variables associations of the comparison outcomes without a corresponding

identifiable parameterization of the mixture-like model. The simulation model in this case aims at

between-variables independence of the comparisons in the set of matches and a 3-way association in

the comparison outcomes between variables v1, v2 and v3 in the set of non-matches. The closest pa-

rameterization is π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4)+(1−π)νp(γ1,2,3, γ4), which is non-identifiable (see

Section 5.2.4). A simpler candidate is the model with pairwise associations between three variables

in the set of non-matches, π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1 − π)νp(γ1,2, γ1,3, γ2,3, γ4). It is not

known whether this model is identifiable or not.

129



Table 24: Simulated data: between-variables independence in the set of matches, association between
the first, second and third variable in the set of non-matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2,3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 2.23 0.28 -51.47 -6.80 0.00 1.29 2.79 4.82 1.12 1.32 51.54 8.33 1.12

0.9 0.05 9.40 1.24 -44.18 -17.85 -0.02 1.47 3.54 4.43 1.09 1.92 44.32 18.40 1.09
0.10 18.25 1.65 -33.21 -19.81 0.01 1.46 6.60 4.23 1.02 2.20 33.86 20.25 1.02

0.01 1.61 0.37 -51.17 -6.58 0.05 2.67 3.28 5.59 2.60 2.69 51.27 8.64 2.60
250 0.8 0.05 7.28 1.29 -44.12 -17.40 0.03 2.94 4.24 5.16 2.69 3.21 44.32 18.15 2.69

0.10 14.78 2.06 -32.93 -19.05 0.26 2.99 7.86 5.53 2.59 3.63 33.85 19.83 2.61

0.01 1.08 0.43 -51.19 -6.21 0.16 4.67 4.22 6.60 4.61 4.69 51.36 9.07 4.61
0.7 0.05 5.62 1.37 -44.06 -16.79 0.01 4.77 4.98 6.73 4.57 4.96 44.34 18.08 4.57

0.10 11.78 1.73 -32.47 -18.27 -0.12 5.12 9.74 7.06 4.86 5.41 33.90 19.59 4.86
0.01 1.87 0.22 -51.48 -7.60 0.00 0.83 1.87 3.60 0.77 0.86 51.52 8.41 0.77

0.9 0.05 8.85 1.34 -44.28 -19.01 0.01 1.12 2.39 3.06 0.79 1.75 44.34 19.26 0.79
0.10 18.75 1.56 -34.50 -21.07 0.03 1.05 3.37 2.47 0.77 1.88 34.66 21.22 0.77

0.01 1.55 0.28 -51.44 -7.72 0.04 1.92 2.24 4.36 1.90 1.95 51.49 8.87 1.90
500 0.8 0.05 6.82 1.44 -44.39 -18.53 0.01 2.09 2.88 3.82 1.86 2.54 44.48 18.92 1.86

0.10 15.69 1.70 -34.14 -20.68 0.10 2.04 4.33 3.13 1.88 2.65 34.42 20.92 1.89

0.01 1.06 0.45 -51.27 -7.55 0.23 3.25 2.99 5.36 3.21 3.28 51.36 9.26 3.22
0.7 0.05 5.32 1.79 -44.03 -18.20 0.34 3.40 3.64 4.79 3.25 3.84 44.18 18.82 3.26

0.10 12.94 1.62 -33.68 -20.33 0.04 3.57 5.94 4.61 3.36 3.92 34.20 20.85 3.36
0.01 0.92 0.19 -51.03 -9.78 0.02 0.56 1.37 2.91 0.52 0.59 51.05 10.21 0.52

0.9 0.05 8.61 1.40 -44.26 -20.13 0.00 0.89 1.54 2.12 0.54 1.66 44.28 20.24 0.54
0.10 19.56 1.40 -34.72 -21.69 -0.01 0.74 1.98 1.58 0.56 1.58 34.78 21.75 0.56

0.01 0.70 0.17 -51.15 -9.55 0.02 1.30 1.62 3.31 1.28 1.32 51.18 10.11 1.28
1000 0.8 0.05 6.67 1.46 -44.23 -20.02 0.03 1.52 1.90 2.60 1.29 2.11 44.27 20.19 1.29

0.10 17.14 1.43 -34.68 -21.55 -0.01 1.48 2.40 2.06 1.35 2.06 34.77 21.65 1.35

0.01 0.59 0.23 -51.14 -9.40 0.10 2.22 2.06 4.08 2.21 2.23 51.18 10.24 2.21
0.7 0.05 5.15 1.61 -44.01 -19.70 0.18 2.55 2.55 3.25 2.39 3.01 44.09 19.96 2.39

0.10 14.81 1.41 -34.48 -21.39 -0.04 2.30 3.86 3.14 2.21 2.69 34.69 21.62 2.21

The results produced by the non-identifiable model π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1 −
π)νp(γ1,2,3, γ4) are displayed in Table 24. It is clear that the no-classification approaches perform

very poorly in this case. It is what was expected with a non-identifiable model. The relative bias is

extremely large across all the scenarios. In fact, it is often so large, that the population size estimate

is smaller than the number of observed individuals in the surveys used in the estimation. Hence, if

somebody risks using this non-identifiable model in practice, it may be easy to see from the outputs

that it does not work well. It is worth noting that the variance of the linkage free estimators is very

low given that the model is not identifiable. This is somehow unexpected, as one would anticipate the

simulated annealing to produce estimates of the population size τ that are far apart. However, it is

possible that there are infinitely many solutions concentrated around a certain region. This may be a

topic for future investigations.

The classification-based approach performs well despite the model being non-identifiable, but now

requites substantial clerical contribution. Note the regular pattern in the percentage of clerically

resolved records as the error ξ increases.

The results for a simpler model π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1 − π)νp(γ1,2, γ1,3, γ2,3, γ4)
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are presented in Table 25. These results are very similar to those obtained with the more complex

non-identifiable model. It is reasonable to assume that this simpler model is also non-identifiable.

Several other simpler but identifiable models produce outputs similar in nature to those seen in the

above sections when an incorrect identifiable model is used instead of the closest parameterization of

the mixture-like model, these outputs are placed in Appendix B.1.

Table 25: Simulated data: between-variables independence in the set of matches, association between
the first, second and third variable in the set of non-matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ1,3, γ2,3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 1.74 0.33 -52.44 -8.94 0.00 1.35 2.73 5.01 1.12 1.39 52.51 10.24 1.12

0.9 0.05 8.25 0.53 -46.91 -16.46 -0.02 1.63 3.08 4.72 1.09 1.71 47.01 17.12 1.09
0.10 15.35 0.18 -38.63 -18.92 0.01 1.78 3.53 3.30 1.02 1.79 38.79 19.21 1.02

0.01 1.26 0.37 -52.15 -8.57 0.05 2.70 3.20 5.71 2.60 2.73 52.24 10.30 2.60
250 0.8 0.05 6.29 0.63 -46.91 -15.83 0.03 3.00 3.71 5.50 2.69 3.07 47.06 16.76 2.69

0.10 12.59 0.62 -38.38 -18.11 0.26 3.17 4.44 4.33 2.59 3.23 38.64 18.62 2.61

0.01 0.86 0.45 -52.15 -8.10 0.16 4.66 4.15 6.69 4.61 4.68 52.31 10.51 4.61
0.7 0.05 4.87 0.60 -46.89 -15.31 0.01 4.94 4.35 7.00 4.57 4.97 47.09 16.84 4.57

0.10 10.19 0.28 -38.40 -17.67 -0.12 5.29 5.65 6.03 4.86 5.29 38.82 18.67 4.86
0.01 1.40 0.26 -52.44 -11.79 0.00 0.90 1.84 3.84 0.77 0.93 52.47 12.40 0.77

0.9 0.05 8.10 0.57 -47.04 -18.85 0.01 1.16 2.27 3.33 0.79 1.30 47.09 19.14 0.79
0.10 16.06 0.51 -39.25 -20.75 0.03 1.20 2.41 2.35 0.77 1.31 39.32 20.88 0.77

0.01 1.18 0.36 -52.39 -11.83 0.04 1.95 2.19 4.36 1.90 1.99 52.43 12.61 1.90
500 0.8 0.05 6.26 0.74 -47.14 -18.34 0.01 2.12 2.65 4.08 1.86 2.24 47.21 18.79 1.86

0.10 13.56 0.65 -39.07 -20.37 0.10 2.23 2.92 2.95 1.88 2.32 39.18 20.58 1.89

0.01 0.83 0.50 -52.21 -11.52 0.23 3.27 2.96 5.36 3.21 3.31 52.30 12.70 3.22
0.7 0.05 4.95 1.17 -46.80 -17.94 0.34 3.46 3.34 5.03 3.25 3.65 46.92 18.63 3.26

0.10 11.41 0.63 -38.86 -20.21 0.04 3.61 3.76 4.01 3.36 3.67 39.04 20.60 3.36
0.01 0.65 0.21 -52.00 -16.12 0.02 0.58 1.34 2.78 0.52 0.62 52.01 16.36 0.52

0.9 0.05 8.54 0.63 -47.09 -22.16 0.00 0.83 1.45 2.17 0.54 1.04 47.11 22.27 0.54
0.10 17.12 0.55 -39.43 -23.11 -0.01 0.84 1.65 1.65 0.56 1.01 39.47 23.17 0.56

0.01 0.49 0.20 -52.10 -15.77 0.02 1.31 1.58 3.10 1.28 1.33 52.13 16.08 1.28
1000 0.8 0.05 6.60 0.66 -47.06 -21.98 0.03 1.48 1.80 2.69 1.29 1.62 47.10 22.15 1.29

0.10 15.29 0.55 -39.39 -22.94 -0.01 1.53 1.99 2.09 1.35 1.62 39.44 23.03 1.35

0.01 0.45 0.27 -52.08 -15.45 0.10 2.23 2.01 3.89 2.21 2.25 52.12 15.93 2.21
0.7 0.05 5.12 0.88 -46.83 -21.54 0.18 2.50 2.41 3.36 2.39 2.65 46.89 21.80 2.39

0.10 13.49 0.56 -39.40 -22.88 -0.04 2.35 2.54 2.67 2.21 2.41 39.48 23.03 2.21

The results produced using the estimation model of between-variables independence in both the

set of matches and non-matches are in Table 26. As in all the examples seen in this thesis, the

simple between-variables independence model with the classification-based approach and 1-to-1 con-

straint (and the chosen thresholds) demonstrates a good performance no matter how complicated the

between-variables associations in the underlying data are. Interestingly, the modified linkage free dual

system estimator is not as extremely biased as it is in other cases of applying the between-variables

independence model in the presence of between-variables associations of the comparison outcomes.

The results in this chapter demonstrate empirically the importance of the identifiability of models in

the no-classification estimation of the population size τ . At the same time, the classification approach

with clerical resolutions does not appear affected much by the use of non-identifiable models.
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Table 26: Simulated data: between-variables independence in the set of matches, association between
the first, second and third variable in the set of non-matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 0.16 0.00 -54.37 -4.18 0.00 1.14 2.35 2.23 1.12 1.14 54.43 4.74 1.12

0.9 0.05 0.77 0.27 -53.36 -4.86 -0.02 1.21 1.98 1.86 1.09 1.24 53.40 5.20 1.09
0.10 3.32 0.96 -49.58 -7.72 0.01 1.37 2.25 2.17 1.02 1.67 49.63 8.02 1.02

0.01 0.16 0.06 -54.09 -4.24 0.05 2.62 2.91 3.38 2.60 2.62 54.17 5.42 2.60
250 0.8 0.05 0.62 0.28 -53.22 -4.79 0.03 2.77 2.53 3.01 2.69 2.78 53.28 5.66 2.69

0.10 3.19 1.24 -49.25 -7.29 0.26 2.83 2.89 3.33 2.59 3.09 49.34 8.01 2.61

0.01 0.13 0.12 -54.01 -4.09 0.16 4.62 3.86 4.99 4.61 4.62 54.15 6.45 4.61
0.7 0.05 0.60 0.25 -53.07 -4.80 0.01 4.68 3.33 4.74 4.57 4.69 53.17 6.75 4.57

0.10 3.12 0.77 -48.97 -7.53 -0.12 5.00 4.06 5.19 4.86 5.06 49.14 9.15 4.86
0.01 0.19 -0.03 -54.38 -4.42 0.00 0.78 1.55 1.69 0.77 0.78 54.41 4.73 0.77

0.9 0.05 0.63 0.22 -53.76 -5.87 0.01 0.85 1.44 1.42 0.79 0.88 53.77 6.04 0.79
0.10 3.27 0.97 -50.42 -8.91 0.03 0.99 1.55 1.75 0.77 1.39 50.44 9.08 0.77

0.01 0.21 0.03 -54.38 -4.59 0.04 1.91 1.95 2.45 1.90 1.91 54.42 5.20 1.90
500 0.8 0.05 0.56 0.17 -53.68 -5.77 0.01 1.89 1.76 2.27 1.86 1.90 53.71 6.20 1.86

0.10 3.85 1.02 -50.23 -8.87 0.10 1.97 1.90 2.50 1.88 2.22 50.27 9.21 1.89

0.01 0.20 0.21 -54.27 -4.48 0.23 3.22 2.59 3.58 3.21 3.23 54.33 5.73 3.22
0.7 0.05 0.56 0.40 -53.44 -5.60 0.34 3.29 2.42 3.41 3.25 3.31 53.49 6.56 3.26

0.10 4.23 0.78 -50.10 -8.99 0.04 3.47 2.57 3.71 3.36 3.55 50.16 9.72 3.36
0.01 0.21 0.00 -54.36 -5.20 0.02 0.53 1.12 1.24 0.52 0.53 54.37 5.34 0.52

0.9 0.05 0.63 0.15 -54.07 -7.21 0.00 0.59 0.99 1.22 0.54 0.61 54.08 7.31 0.54
0.10 3.83 0.89 -50.87 -10.57 -0.01 0.71 1.06 1.45 0.56 1.14 50.89 10.66 0.56

0.01 0.27 -0.01 -54.41 -5.21 0.02 1.29 1.32 1.75 1.28 1.29 54.42 5.50 1.28
1000 0.8 0.05 0.64 0.03 -54.03 -7.25 0.03 1.31 1.22 1.73 1.29 1.31 54.04 7.46 1.29

0.10 5.00 0.76 -50.82 -10.56 -0.01 1.45 1.35 1.96 1.35 1.63 50.84 10.74 1.35

0.01 0.32 0.07 -54.38 -5.24 0.10 2.20 1.74 2.58 2.21 2.21 54.41 5.84 2.21
0.7 0.05 0.60 -0.07 -53.80 -7.16 0.18 2.35 1.69 2.54 2.39 2.35 53.83 7.60 2.39

0.10 6.10 0.43 -50.78 -10.74 -0.04 2.23 1.80 2.65 2.21 2.27 50.81 11.07 2.21

7.5.6 Conclusions

This simulation study for the practical applications of the linkage free dual system estimator and its

modified version has several important points to summarize.

The linkage free dual system estimators can work very well, especially the modified version that

utilizes the 1-to-1 linkage constraint. The performance of the modified linkage free estimator is as good

or even better than the standard classification-based approach with clerical resolution, bearing in mind

that the performance of the latter depends on the choice of acceptance and rejection thresholds.

The successful performance of the linkage free estimation largely depends on the estimation model

taking into account the between-variables associations of the comparison outcomes, if those associations

are present in the data. Model misspecification often leads to unacceptable estimates. Specifying a

more complex model than needed is less of an issue than specifying a model that misses associations.

Identifiability of an estimation model is paramount in obtaining reliable parameter estimates. Es-

timates produced by a non-identifiable model may be nowhere near the true value of the parameter of

interest.

While we are not focussed on the classification-based approach in this thesis and were only using it
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for comparison purposes, the simulation results demonstrate its remarkable robustness. On the other

hand, this approach lacks regularity in its behaviour and its performance depends on the choice of the

thresholds, making it difficult to allocate the clerical resources and anticipate the extent of the error.

Given the performance of the modified linkage free dual system estimator is superior to the perfor-

mance of the simple no-classification estimator in most scenarios, we would recommend to use it in the

majority of real life applications. Simple linkage free estimates are faster to obtain and they constitute

the basis for the modified estimates. Hence, the simple version may be used when fast preliminary

estimates are needed.

7.6 Simulations verifying theoretical results

In this section we empirically verify the Taylor series approximation-based justification of the suit-

ability of the mixture-like models for the no-classification record linkage and related population size

estimation (Section 3.2). We also empirically assess the conjecture that it is possible to construct

a data-conforming estimator with the help of the averaging blocking (Section 3.4). The underlying

simulation approach is as described in Section 7.2. Unlike in the simulations assessing the practical ap-

plications of the linkage free dual system estimation, here we are only interested in the simulated data

that have corresponding identifiable parameterizations. We are also only interested in the mixture-like

model parameterizations closest to the simulated data.

There are three batches of simulations. The first one uses the same parameters ρ and λ charac-

terizing the distribution of the population attributes as in the simulations above (Section 7.2). The

second batch only differs from the first by having the binary fourth linkage variable, v4. In other words,

the parameter ρ takes the value (10000, 500, 500, 2)T in this case. The third batch differs from the

first by using a population where attributes have many distinct uniformly distributed values. That is,

the parameter ρ takes the value (10000, 1000000, 1000000, 1000000)T and the parameter λ takes the

value (0, 0, 0, 0)T in this case. Note, that it is unlikely to have that many distinct uniformly distributed

attributes in a real situation (unless the attributes are telephone number, national insurance number,

etc.), but such an extreme selection allows the anticipated behaviour to be checked more easily.

Across all three batches we generate data that aim at four types of the associations between the

outputs of comparison outcomes (with the closest mixture-like model parameterization in brackets):

� between-variables independence in outcomes in both the set of matches and non-matches (π(γp;π,µ,ν) =

πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4));

� between-variables independence in the set of matches and dependence between v1 and v2 in the

set of non-matches (π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ3, γ4));

� dependence between v2 and v3 in the set of matches and between-variables independence in the

set of non-matches (π(γp;π,µ,ν) = πµp(γ1, γ2,3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4));

� dependence between v2 and v3 in the set of matches and dependence between v1 and v2 in the

set of non-matches (π(γp;π,µ,ν) = πµp(γ1, γ2,3, γ4) + (1− π)νp(γ1,2, γ3, γ4)).
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The results are presented in tables where the first three columns are the simulation parameters

τ, πj , ξ followed by four columns, each containing the relative bias of the four models under consid-

eration. There are 1000 iterations of the simulations. Simulated data for each iteration are regarded

as an output for a single block. Therefore, the blocks are perfectly same-sized for each parameter τ .

The simulated data are averaged across all iterations achieving the perfect average blocking and the

averaged data are passed to the estimation. We use ten random starts for the simulated annealing and

the estimates are averaged across these ten trials. This is to minimize the effect of variation in the

simulated annealing output for a fixed data set. Only the linkage free dual system estimator is used.

Table 27: Population attributes as in the main simulations, Section 7.5

Relative bias

τ πj ξ
πµp(γ1,γ2,γ3,γ4)

+(1−π)νp(γ1,γ2,γ3,γ4)
πµp(γ1,γ2,γ3,γ4)

+(1−π)νp(γ1,2,γ3,γ4)
πµp(γ1,γ2,3,γ4)

+(1−π)νp(γ1,γ2,γ3,γ4)

πµp(γ1,γ2,3,γ4)

+(1−π)νp(γ1,2,γ3,γ4)

0.01 0.00 -0.08 -0.06 -0.04
0.9 0.05 0.14 0.07 -0.25 -0.14

0.10 0.00 0.00 0.27 0.00

0.01 -0.04 0.08 -0.03 -0.01
250 0.8 0.05 -0.02 0.03 -0.17 -0.56

0.10 0.07 0.01 -0.07 -0.12

0.01 -0.03 0.08 -0.07 -0.19
0.7 0.05 0.03 -0.18 0.25 -0.13

0.10 0.00 -0.04 -0.35 -0.71
0.01 -0.01 0.05 0.01 0.01

0.9 0.05 0.02 -0.08 -0.38 -0.30
0.10 -0.02 0.10 -0.38 -0.26

0.01 0.15 0.04 0.12 -0.08
500 0.8 0.05 0.09 0.00 -0.31 -0.24

0.10 0.03 -0.13 -0.21 -0.29

0.01 -0.02 -0.02 -0.10 -0.01
0.7 0.05 0.00 0.00 -0.22 -0.02

0.10 0.26 -0.16 -0.12 -0.65
0.01 0.00 0.01 -0.04 -0.05

0.9 0.05 -0.02 0.09 0.04 0.17
0.10 -0.04 0.06 0.14 0.10

0.01 0.00 0.01 0.00 -0.05
1000 0.8 0.05 -0.03 -0.01 0.08 0.16

0.10 0.04 -0.03 -0.07 -0.16

0.01 0.13 -0.11 -0.12 -0.02
0.7 0.05 -0.13 -0.01 -0.26 -0.34

0.10 0.13 -0.08 -0.14 -0.08

We refer to Sections 3.2 and 3.4 for a detailed discussion of the mixture-like conceptualization of

the record linkage and no-classification population size estimation as well as the idea of the average

blocking. We repeat here that our analysis carried out in the relevant sections suggested that the

mixture-like representation should yield a good approximation overall. Yet, we identified several cases,

where this approximation may not be as accurate. Specifically, our analysis shows that as a model

becomes more complex, the approximation becomes less accurate. This loss of accuracy manifests itself

in the increased bias in the estimates of the linkage model and the related parameters, such as the

linkage free dual system estimate of the population size parameter. The accuracy also drops if one or
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more linkage variables has very few levels or, on the contrary, linkage variables can take excessively

many distinct values.

Table 27 displays the results obtained using the distributional parameters of the population at-

tributes identical to those in the simulations assessing the practical applications of the no-classification

estimators. The between-variables independence model produces results that are very close to the true

values of the parameters. It is hard to determine if there is any true under- or overestimation, as there

is no clear pattern in the way results vary. Increasing the number of iterations may be helpful in this

case, but we tried to keep the theoretical simulations in line with the practical, because the increase

in iterations is computationally expensive. It is also quite likely that the simulation parameters such

as population size and coverage probabilities also contribute to the results, but we did not attempt to

analyse this contribution in Sections 3.2. In addition, we chose the distributional parameters of the

population attributes to make a realistic population, rather than to find a set of parameters that would

lead to unbiased estimators. It is likely, that there are no such parameters at all, and the estimator is

always at least slightly biased.

Table 28: One binary population attribute

Relative bias

τ πj ξ
πµp(γ1,γ2,γ3,γ4)

+(1−π)νp(γ1,γ2,γ3,γ4)
πµp(γ1,γ2,γ3,γ4)

+(1−π)νp(γ1,2,γ3,γ4)
πµp(γ1,γ2,3,γ4)

+(1−π)νp(γ1,γ2,γ3,γ4)

πµp(γ1,γ2,3,γ4)

+(1−π)νp(γ1,2,γ3,γ4)

0.01 -0.01 -1.17 -0.03 -0.16
0.9 0.05 0.11 0.48 -0.34 0.76

0.10 -0.01 -0.21 0.73 1.43

0.01 -0.06 -1.36 -0.12 0.01
250 0.8 0.05 -0.10 0.88 -0.24 -0.65

0.10 0.12 -0.37 0.26 0.43

0.01 -0.13 -2.04 -0.09 -1.30
0.7 0.05 0.10 0.50 -0.05 0.03

0.10 -0.01 0.27 -0.24 -0.83
0.01 -0.01 -0.04 0.02 0.16

0.9 0.05 0.04 0.67 -0.37 -0.39
0.10 -0.24 0.17 -0.44 -0.03

0.01 0.10 -0.74 -0.14 0.37
500 0.8 0.05 0.02 0.06 -0.23 -0.01

0.10 -0.11 0.34 0.03 0.37

0.01 0.03 -0.86 -0.04 0.24
0.7 0.05 -0.06 0.58 -0.26 -0.35

0.10 0.11 0.07 0.04 0.32
0.01 0.02 -0.31 -0.12 -0.37

0.9 0.05 -0.01 0.46 0.17 -0.03
0.10 -0.04 0.12 0.41 0.62

0.01 0.04 -0.10 -0.06 0.26
1000 0.8 0.05 -0.05 -0.06 0.04 0.62

0.10 -0.04 0.11 -0.10 -0.27

0.01 -0.21 0.10 -0.09 -0.42
0.7 0.05 0.05 0.39 -0.21 -0.62

0.10 -0.03 0.33 -0.11 -0.65

As the model becomes more complex, the accuracy drops and mainly negative bias is incurred.

For the model with a single association in the set of non-matches, there is no clear tendency towards
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negative bias. However, for the model with a single association in the set of matches and the model

with associations in both sets, this tendency is more prominent. We observe that not all scenarios lead

to negative bias, which again suggests that other simulation parameters may influence the results.

Table 28 presents the results of the simulations with the population where the fourth attribute,

corresponding to the variable v4, is binary. There is a slight but not substantial difference for the

between-variables independence model between this batch of the simulations and the one considered

above. However, as anticipated by our theoretical analysis in Section 3.2 once a binary attribute is

present and an estimation model becomes more complex, the approximation becomes less accurate.

This is clearly visible for all three models with the between-variables associations. The interesting

feature of these results is that there is no clear pattern in the bias. As already suggested, it is likely

that there is a complex interplay between the parameters ρ, τ, πj and ξ that has not been analysed.

Table 29: Population attributes with excessively many uniformly distributed values

Relative bias

τ πj ξ
πµp(γ1,γ2,γ3,γ4)

+(1−π)νp(γ1,γ2,γ3,γ4)
πµp(γ1,γ2,γ3,γ4)

+(1−π)νp(γ1,2,γ3,γ4)
πµp(γ1,γ2,3,γ4)

+(1−π)νp(γ1,γ2,γ3,γ4)

πµp(γ1,γ2,3,γ4)

+(1−π)νp(γ1,2,γ3,γ4)

0.01 0.00 -0.59 0.09 -0.56
0.9 0.05 0.07 -0.75 0.14 -0.65

0.10 0.28 -1.21 0.47 -0.06

0.01 0.01 -0.63 0.07 -0.60
250 0.8 0.05 0.08 -0.85 0.09 -0.77

0.10 0.19 -1.42 0.55 -1.01

0.01 -0.18 -0.33 0.08 -0.61
0.7 0.05 0.29 -0.87 0.44 -0.84

0.10 0.09 -1.10 0.52 -1.73
0.01 0.02 -0.36 0.07 -0.32

0.9 0.05 0.28 -0.65 0.21 -0.59
0.10 0.17 -1.05 0.26 -0.96

0.01 -0.01 -0.23 0.02 -0.33
500 0.8 0.05 0.21 -0.71 0.14 -0.45

0.10 0.33 -1.08 0.32 -1.07

0.01 0.18 -0.38 0.02 -0.21
0.7 0.05 0.20 -0.91 0.12 -0.46

0.10 0.24 -1.07 0.59 -0.67
0.01 -0.03 -0.18 0.06 -0.13

0.9 0.05 0.28 -0.52 0.49 -0.41
0.10 0.38 -0.81 0.35 -0.43

0.01 0.02 -0.18 0.07 -0.25
1000 0.8 0.05 0.20 -0.45 0.48 -0.35

0.10 0.30 -0.84 0.51 -0.76

0.01 0.08 -0.13 0.10 -0.13
0.7 0.05 0.34 -0.36 0.12 -0.63

0.10 0.52 -0.73 0.54 -0.53

Finally, we look at the behaviour of the well-constructed linkage free dual system estimator in the

case when there are many distinct uniformly distributed values of the population attributes, the results

are displayed in Table 29. As predicted, the accuracy of the mixture-like model based estimation

decreases. Positive bias is most frequently incurred in the cases of between-variables independence

and the between-variables association of the comparison outcomes in the set of matches. Meanwhile,
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between-variables association in the set of non-matches and between-variables association in both sets

result in negative bias.

7.6.1 Conclusions

The simulation results support our analysis presented in Sections 3.2 and 3.4. It is possible to con-

struct the data-conforming no-classification dual system estimator by the means of averaging blocking.

While the simulations show that this estimator is (as expected) biased, conceptually this estimator

corresponds better to the mixture-like conceptualization than the estimator without averaging blocking

and therefore in theory has a superior performance (compare with the results presented in Section 7.5).

We also confirmed that the accuracy of the mixture-like representation of record linkage data

depends on the complexity of an underlying model, in terms of the number of associated comparison

patterns, and the number of unique values the population attributes can take. The more complex is

the model specification, the less accurate is the mixture-like approximation. Also, the accuracy of the

approximation drops when the population attributes have very few unique values or, on the contrary,

when the attributes tend to be unique for every element of the population.

This study suggests that there are other factors contributing to the accuracy of the mixture-like

parameterization, but which our analysis did not account for. In future, a larger number of simulation

iterations would be helpful to discern the trends more clearly. Also, a more detailed investigation of

how the entire ensemble of the parameters work together and affect the approximation may be carried

out.

7.7 Comparing the data generated according to the linkage experiment against a

parametric approach

A two component mixture of the probability mass functions of binary random variables (8) implies that

for a fixed number of draws the observed frequency of the comparison patterns follows a multinomial

distribution with cell probability pr(γp). However, our discussions on the linkage experiment (Section

2.2.5) and justification of the mixture-like model (Section 3.2) demonstrate that the standard mixture

is not an appropriate model for record linkage and related problems. In this section, we present some

empirical results providing an idea how large the discrepancy between the record linkage data generated

from ‘first principles’ mimicking the linkage experiment (including within-variables dependence) and

the parametrically generated data resulting in within-variables independent record pairs can be.

We should bear in mind, that there may be more than one way of demonstrating the discrepancies

between the record linkage data generated from the ‘first principles’ and the parametric approach.

While the standard mixture model relevant to this thesis generates multinomial data, any multinomial

distribution requires a fixed number of trials. The number of trials corresponds to the number of record

pairs in the context of record linkage. However, we generally have varying numbers of record pairs

due to the variability of the survey sizes while keeping the coverage probabilities fixed. We are not

interested in the conditional distribution given the fixed sizes of the two surveys whenever our main

interest is the population size estimation. Hence, there is a room for various alternative approaches

that generate independent observations for a non-fixed number of trials.
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We approach the task in the following way. Once the data are generated from the ‘first principles’,

we can compute the standard deviation of the frequency of each of the comparison patterns across 1000

simulation iterations. We can also compute the probability of a record pair being in each pattern, or a

cell in the standard categorical data language, using the same data. We can imagine that there exists

a probability distribution, possibly quite complex, that uses the above vector of cell probabilities as

its fixed parameter.

Table 30: Standard deviations of the simulated data cells vs parametric approach with within-variables
independence: τ = 500, π1 = π2 = 0.9

πµp(γ1,γ2,γ3,γ4)
+(1−π)νp(γ1,γ2,γ3,γ4)

πµp(γ1,γ2,γ3,γ4)
+(1−π)νp(γ1,2,γ3,γ4)

πµp(γ1,γ2,3,γ4)

+(1−π)νp(γ1,γ2,γ3,γ4)

πµp(γ1,γ2,3,γ4)

+(1−π)νp(γ1,2,γ3,γ4)

ξ γ sd(S) sd(M) sd(S) sd(M) sd(S) sd(M) sd(S) sd(M)

0.01

0000 6671.90 6671.09 7033.22 7045.09 7120.83 7118.19 7126.79 7145.57
0001 88.20 67.19 94.05 70.95 94.17 71.69 94.30 71.87
0010 75.85 33.44 76.52 35.29 76.65 35.78 75.99 36.08
0011 4.39 0.34 4.35 0.36 4.15 0.37 4.33 0.36
0100 76.27 33.62 143.80 36.02 75.83 35.79 144.02 36.22
0101 4.33 0.35 4.34 0.37 4.15 0.37 4.49 0.36
0110 3.10 0.17 2.99 0.18 2.98 0.18 3.09 0.19
0111 5.35 0.25 5.37 0.27 4.59 0.20 4.64 0.20
1000 6.12 0.67 45.38 9.95 6.25 0.71 46.69 10.15
1001 0.71 0.01 2.35 0.10 0.61 0.01 2.49 0.11
1010 0.57 0.01 1.67 0.06 0.49 0.01 1.78 0.06
1011 2.65 0.25 2.71 0.27 2.75 0.26 2.69 0.26
1100 0.57 0.01 60.84 22.68 0.49 0.01 62.77 23.33
1101 2.83 0.26 4.51 0.50 2.67 0.26 4.48 0.49
1110 2.77 0.25 3.80 0.39 2.62 0.25 3.86 0.38
1111 14.63 12.60 15.25 13.35 14.98 13.56 15.00 13.66

0.05

0000 6889.83 6887.89 6960.17 6976.37 6987.70 6986.72 7065.39 7072.94
0001 86.94 68.13 91.32 68.95 89.77 69.16 92.62 70.07
0010 71.36 32.67 71.72 33.08 69.57 33.15 71.24 33.38
0011 4.30 0.43 4.22 0.43 4.02 0.38 4.14 0.38
0100 71.84 32.54 142.73 35.57 73.01 33.09 140.04 35.59
0101 4.50 0.43 4.60 0.45 4.18 0.38 4.44 0.41
0110 3.32 0.26 3.39 0.28 3.13 0.23 3.16 0.23
0111 9.19 0.98 9.02 0.97 8.43 0.78 8.26 0.80
1000 6.49 0.70 47.05 10.62 6.23 0.72 47.81 11.05
1001 1.87 0.12 2.78 0.22 2.75 0.27 3.49 0.38
1010 1.76 0.11 2.37 0.16 1.82 0.11 2.21 0.15
1011 5.50 1.01 5.48 1.04 5.10 0.90 5.20 0.92
1100 1.87 0.11 57.77 18.76 1.70 0.10 55.58 19.74
1101 5.24 1.01 6.59 1.21 4.92 0.90 5.95 1.11
1110 5.13 1.00 5.74 1.12 5.60 1.06 5.76 1.16
1111 15.27 9.38 15.16 9.56 15.26 9.96 15.27 10.13

0.10

0000 7276.55 7277.48 7383.38 7385.21 6781.68 6782.68 7017.72 7027.00
0001 88.78 70.60 91.91 71.68 89.17 65.91 92.96 68.40
0010 71.69 32.08 65.96 32.39 66.95 29.96 68.71 30.90
0011 5.02 0.63 4.93 0.65 4.82 0.53 4.58 0.55
0100 68.54 31.99 127.03 37.07 68.19 29.89 129.63 35.00
0101 4.95 0.64 5.34 0.69 4.61 0.53 5.22 0.58
0110 4.12 0.46 4.38 0.49 4.11 0.43 4.38 0.47
0111 9.31 1.38 9.30 1.42 9.25 1.33 9.22 1.39
1000 6.54 0.80 47.83 11.79 6.99 0.80 46.51 11.24
1001 3.25 0.37 4.03 0.47 4.32 0.63 4.80 0.76
1010 3.20 0.36 3.43 0.42 2.70 0.26 3.10 0.31
1011 6.54 1.53 6.41 1.55 5.97 1.14 5.79 1.17
1100 3.27 0.37 52.58 16.03 2.76 0.27 48.06 15.42
1101 6.57 1.53 7.15 1.70 5.79 1.12 6.23 1.34
1110 6.66 1.52 6.67 1.61 6.42 1.47 6.81 1.61
1111 13.40 6.53 13.76 6.68 13.95 6.50 13.98 6.75
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There are other parameters of this distribution, but we do not know them. Then, given the number of

the record pairs for each iteration of the first principles approach, we use this imagined distribution to

generate exactly the same data we as generated from the first principles. Then the standard deviation

computed above is also the standard deviation for this distribution. Note, that this distribution

preserves the associations between individual observations, if such exist. Now we take the same vector

of the cell probabilities as the parameter of the multinomial distribution. For each iteration, we use

the number of record pairs used in the ‘first principles’ approach as the number of trials and generate

the data that follow the multinomial distribution. This time, however, we know that for each iteration

individual data points are independent (in terms of within-variables independence). We then work out

the standard deviation of the frequencies of each comparison pattern obtained in this way. If these

two distributions are not the same, then comparing the two sets of standard deviations should result

in substantial differences between the ‘first principles’ based data (or imagined distribution) and the

multinomial data with a varying number of trials.

Results are displayed in Table 30. We limit presentation to the case where the population size is

τ = 500 individuals and coverage probabilities are π1 = π2 = 0.9, but vary the errors, which are in

the first column of the table. The second column contains the comparison patterns γ. The rest of the

table is split into four blocks, one for each type of identifiable model, as in the case of the verification

of the theoretical results in Section 7.6. For each model, two values of the standard deviations are

reported. The first one sd(S) is for the data simulated from the ‘first principles’ while sd(M) is for the

parametric approach.

The results demonstrate that, apart from the comparison pattern with all disagreements, (0000),

there is a substantial difference between the data generated from the first principles, which should be

reasonably close to what one expects to encounter when dealing with record linkage tasks, and the

data generated by the parametric approach outlined above. When the probabilities of making errors

recording the population attributes are low, the standard deviation for the pattern with all agreements,

(1111), also has a good degree of similarity. However, as these probabilities increases, the discrepancy

increases.

These results show the value in simulating the data from ‘first principles’, rather than relying

on purely parametric simulations. Also, these results support the use of the parameter estimation

method that does not assume independence between record pairs (also known as the within-variables

independence) as well as relying on the averaging blocking in variance estimation instead of an attempt

to bootstrap the observed pairs.

8 Simulation study for variance estimation

Finally, we present the result of the simulation study assessing the performance of the variance estima-

tors for the linkage free dual system estimator and its modified version (see Chapter 6). Recall, that

two methods were developed for practical applications. The basic one with no auxiliary data (Section

6.2) and the second one which seeks to enhance the performance using the auxiliary data such as the

address frame or address listing (Section 6.3).
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The simulation approach and parameters are as described in Section 7.2. However, we are only

considering a subset of scenarios that produce the data aiming at independence and at the between-

variables associations with the identifiable parameterizations of the mixture-like model. We consider

only those estimation models that have the closest parameterizations to the generated data: between-

variables independence in outcomes in both the set of matches and non-matches, π(γp;π,µ,ν) =

πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4); between-variables independence in the set of matches and

dependence between v1 and v2 in the set of non-matches, π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1 −
π)νp(γ1,2, γ3, γ4); dependence between v2 and v3 in the set of matches and between-variables indepen-

dence in the set of non-matches, π(γp;π,µ,ν) = πµp(γ1, γ2,3, γ4)+(1−π)νp(γ1, γ2, γ3, γ4); dependence
between v2 and v3 in the set of matches and dependence between v1 and v2 in the set of non-matches,

π(γp;π,µ,ν) = πµp(γ1, γ2,3, γ4) + (1− π)νp(γ1,2, γ3, γ4).

Table 31: Variance estimation: between-variables independence in both the set of matches and the set
of non-matches

Emp Est Est aux

τ πj ξ Var(˜︁τ) Var(˜︁τc) ˆ︃Var(˜︁τ) sd(ˆ︃Var(˜︁τ)) ˆ︃Var(˜︁τc) sd(ˆ︃Var(˜︁τc)) ˆ︃Var(˜︁τ) sd(ˆ︃Var(˜︁τ)) ˆ︃Var(˜︁τc) sd(ˆ︃Var(˜︁τc))
0.01 9 8 48 71 49 76 21 32 20 32

0.9 0.05 28 11 59 96 47 77 33 49 20 30
0.10 66 18 114 171 52 78 81 135 28 42

0.01 45 44 142 213 154 235 74 112 76 120
250 0.8 0.05 63 48 163 247 139 212 95 147 70 109

0.10 136 61 222 345 140 227 143 214 78 125

0.01 139 140 274 422 311 568 171 256 184 302
0.7 0.05 157 134 357 610 330 571 224 348 196 314

0.10 265 154 439 687 284 437 282 423 172 245
0.01 17 15 101 96 102 101 45 39 42 39

0.9 0.05 56 28 124 114 99 94 70 61 43 40
0.10 104 42 223 216 113 114 151 139 55 51

0.01 93 89 281 262 301 285 145 142 146 149
500 0.8 0.05 149 106 325 320 304 305 184 174 153 146

0.10 224 127 491 476 295 295 311 279 160 150

0.01 262 260 631 694 714 843 378 385 409 447
0.7 0.05 343 299 718 787 702 785 452 466 412 459

0.10 492 317 928 991 627 710 614 580 379 360
0.01 38 34 200 124 203 128 87 54 83 52

0.9 0.05 106 61 251 158 200 132 142 91 88 53
0.10 217 110 444 271 213 136 304 188 108 62

0.01 192 189 569 354 611 387 287 168 292 169
1000 0.8 0.05 268 202 680 456 620 423 366 236 296 192

0.10 395 275 966 646 602 405 606 385 322 204

0.01 586 584 1285 984 1427 1123 736 488 784 539
0.7 0.05 690 585 1455 1176 1382 1132 896 623 788 560

0.10 896 667 1869 1330 1276 893 1205 801 760 469

As in all the simulations seen so far, we rely on 1000 iterations. For the data simulated at each

iteration, the corresponding variance estimate is obtained and those estimates are then summarized.

We are interested in the mean of the variance estimates and the standard deviation of the distribution

of these estimates.
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The results in tables are organized in the following way. The first three columns are the simulation

parameters τ, πj and ξ as before. The remaining columns are organized into three blocks. The first

block, titled ‘Emp’, contains the empirical variance of the linkage free dual system estimator, Var(˜︁τ),
and the empirical variance of the modified linkage free estimator, Var(˜︁τc). By empirical variance we

mean the variance of the estimates obtained by a specified estimator in the simulation study in Section

7.5. We sometimes refer to these values as the true variance. The second block, titled ‘Est’ contains the

results for the simple variance estimator with no auxiliary data. The columns ˆ︃Var(˜︁τ) and sd(ˆ︃Var(˜︁τ))
are the mean and standard deviation for the distribution of the variance estimates of the linkage free

dual system estimator. The columns ˆ︃Var(˜︁τc) and sd(ˆ︃Var(˜︁τc)) are the mean and standard deviation

for the distribution of the variance estimates of the modified linkage free dual system estimator. The

third bock, titled ‘Est aux’ is similar to the second block, but contains the results for the variance

estimation with the auxiliary data.

Table 32: Variance estimation: between-variables independence in the set of matches, association
between the first and second variable in the set of non-matches

Emp Est Est aux

τ πj ξ Var(˜︁τ) Var(˜︁τc) ˆ︃Var(˜︁τ) sd(ˆ︃Var(˜︁τ)) ˆ︃Var(˜︁τc) sd(ˆ︃Var(˜︁τc)) ˆ︃Var(˜︁τ) sd(ˆ︃Var(˜︁τ)) ˆ︃Var(˜︁τc) sd(ˆ︃Var(˜︁τc))
0.01 24 11 70 107 52 83 41 59 23 34

0.9 0.05 51 17 96 147 57 93 67 95 31 44
0.10 117 39 181 273 71 108 140 206 47 72

0.01 66 52 176 272 160 249 102 151 79 115
250 0.8 0.05 100 59 195 304 141 213 130 201 81 124

0.10 197 92 310 500 158 263 214 338 105 166

0.01 163 148 339 506 340 507 228 327 205 305
0.7 0.05 198 157 384 624 312 541 260 403 200 324

0.10 352 203 602 972 335 527 421 674 230 344
0.01 47 23 133 125 102 104 79 68 44 40

0.9 0.05 97 39 182 161 110 97 127 112 57 52
0.10 206 85 323 287 132 115 258 233 92 84

0.01 121 92 342 317 317 301 201 184 160 146
500 0.8 0.05 210 121 400 362 302 288 255 227 167 154

0.10 345 180 606 555 314 289 431 388 209 194

0.01 331 288 693 840 688 920 447 452 404 445
0.7 0.05 457 334 772 796 625 653 525 490 400 370

0.10 665 429 1103 1174 600 615 777 770 426 413
0.01 101 49 271 160 207 133 161 92 89 53

0.9 0.05 197 91 364 215 224 149 251 155 120 83
0.10 382 189 664 415 280 185 527 306 197 137

0.01 256 194 686 430 631 415 383 231 299 193
1000 0.8 0.05 404 235 837 561 634 438 513 302 332 201

0.10 667 403 1254 823 658 432 864 517 427 273

0.01 625 537 1459 1033 1433 1080 917 598 807 532
0.7 0.05 825 622 1633 1172 1349 1017 1063 669 826 534

0.10 1091 749 2202 1604 1201 884 1555 1035 843 542

Table 31 contains the results for the simulation / estimation model of the between-variables inde-

pendence of the comparison outputs in both the set of matches and non-matches. This table contains

all the characteristic trends that will be visible in all of the simulation / estimation models. We can see

that for the simple approach without the auxiliary data, the mean of the variance estimates indicates a
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substantial overestimation of the variance for both the linkage free and the modified estimators. This

is attributable to all the additional variability in the variance estimation process that is not present in

the no-classification point estimation (see again the discussion in Section 6.2). On the positive side,

there is a good correlation between the true variance and the variance estimation obtained without the

auxiliary data. The standard deviation of the variance estimates is large. This is due to some extreme

results (a few very low and very high estimates) being present in the distribution.

The approach with the auxiliary data, despite resulting in overestimation of the variance, demon-

strates a fair performance for both estimators. On average, the variance estimates are considerably

closer to the true variance. The standard deviations of the variance estimates are still large even when

the auxiliary data are used. The reason is the same as in the case without the auxiliary data: a few

extreme estimates.

Table 33: Variance estimation: association between the second and third variable in the set of matches,
between-variables independence in the set of non-matches

Emp Est Est aux

τ πj ξ Var(˜︁τ) Var(˜︁τc) ˆ︃Var(˜︁τ) sd(ˆ︃Var(˜︁τ)) ˆ︃Var(˜︁τc) sd(ˆ︃Var(˜︁τc)) ˆ︃Var(˜︁τ) sd(ˆ︃Var(˜︁τ)) ˆ︃Var(˜︁τc) sd(ˆ︃Var(˜︁τc))
0.01 9 8 47 71 48 73 21 29 19 27

0.9 0.05 27 11 62 91 49 74 34 51 21 31
0.10 63 25 120 185 63 92 77 117 31 47

0.01 45 44 127 187 139 211 73 106 75 111
250 0.8 0.05 63 47 148 214 139 200 82 115 67 97

0.10 115 66 224 349 153 245 130 194 79 121

0.01 117 122 288 494 334 586 180 301 202 356
0.7 0.05 141 129 317 506 314 499 190 291 182 295

0.10 212 149 364 637 299 588 237 367 173 335
0.01 18 14 101 99 104 110 47 44 44 44

0.9 0.05 46 23 117 115 102 99 61 55 42 39
0.10 108 49 193 174 110 112 129 118 55 53

0.01 87 85 271 284 295 317 137 121 140 129
500 0.8 0.05 125 98 327 343 317 328 175 181 155 150

0.10 228 132 422 410 294 296 259 235 159 153

0.01 262 259 577 603 656 720 346 332 377 378
0.7 0.05 325 288 653 700 632 680 418 396 378 363

0.10 449 317 886 994 635 697 567 631 385 379
0.01 40 30 196 130 202 137 89 61 83 58

0.9 0.05 95 63 252 160 202 126 140 87 90 54
0.10 227 139 418 288 233 156 279 191 124 76

0.01 178 166 572 417 630 475 290 191 302 210
1000 0.8 0.05 266 209 667 476 600 458 374 241 304 216

0.10 411 295 901 640 611 445 553 354 334 210

0.01 556 556 1217 843 1402 1043 712 484 780 559
0.7 0.05 602 532 1313 944 1296 931 796 532 743 516

0.10 793 643 1769 1262 1224 844 1144 740 740 466

The results for the models with various between-variables associations of the comparison outcomes,

displayed in Table 32, Table 33 and Table 34 are similar to those observed for the between-variables

independence model. The approach with no auxiliary data provides only indicative estimates, in the

sense that if the estimate is low, then one can expect that the true variance is also low. The variance

estimator with the auxiliary data enhanced approach performs well, but suffers from sporadic extreme
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variance estimates.

Overall, we can claim that the variance estimation approach with the auxiliary data appears to be

promising, given that there are not many attempts to estimate the variance of the linkage parameters in

the frequentist setting and without unrealistic distributional assumptions. There is an issue of extreme

variance estimates that needs further research.

Table 34: Variance estimation: association between the second and third variable in the set of matches,
association between the first and second variable in the set of non-matches

Emp Est Est aux

τ πj ξ Var(˜︁τ) Var(˜︁τc) ˆ︃Var(˜︁τ) sd(ˆ︃Var(˜︁τ)) ˆ︃Var(˜︁τc) sd(ˆ︃Var(˜︁τc)) ˆ︃Var(˜︁τ) sd(ˆ︃Var(˜︁τ)) ˆ︃Var(˜︁τc) sd(ˆ︃Var(˜︁τc))
0.01 24 11 68 103 52 80 40 62 24 35

0.9 0.05 52 19 96 145 56 88 67 106 31 52
0.10 101 44 156 231 69 118 122 174 49 77

0.01 66 50 151 235 140 229 97 149 78 121
250 0.8 0.05 92 53 182 259 139 206 113 167 76 119

0.10 142 76 273 432 151 223 189 270 101 149

0.01 159 147 336 535 334 560 208 320 187 296
0.7 0.05 191 153 361 578 303 468 229 355 180 274

0.10 279 179 473 991 284 514 342 666 215 362
0.01 49 22 134 123 103 98 79 71 44 42

0.9 0.05 99 36 175 151 111 107 115 99 56 51
0.10 178 84 276 246 133 119 209 196 84 80

0.01 120 92 328 320 308 317 194 171 153 140
500 0.8 0.05 190 119 360 325 273 245 235 198 159 140

0.10 329 186 570 579 303 299 397 388 201 191

0.01 298 264 676 682 669 730 448 442 385 387
0.7 0.05 389 306 773 773 633 663 524 466 406 392

0.10 564 383 1036 1112 535 562 696 676 363 328
0.01 97 49 279 180 210 145 170 104 92 58

0.9 0.05 215 98 366 218 222 147 251 146 117 78
0.10 414 227 594 348 275 172 462 266 191 123

0.01 257 188 690 519 647 506 409 264 324 227
1000 0.8 0.05 401 258 805 554 596 435 511 292 328 194

0.10 599 387 1120 741 601 394 775 496 393 250

0.01 655 578 1349 1007 1375 1093 884 548 807 542
0.7 0.05 754 564 1533 1041 1283 924 990 603 785 512

0.10 1122 816 2184 1670 1169 865 1470 941 797 503

9 Summary, conclusions and future work

We finish this thesis with a short summary of the achieved results, concluding notes and several open

questions as well as suggested areas where improvements can be made.

The conceptual closeness of the automated record linkage problem and dual system estimation

was explored in order to derive a population size estimator that seamlessly integrates record linkage

and dual system estimation within a single framework. The main contribution of this thesis to the

existing corpus of methods and knowledge in the fields of record linkage and dual system estimation

is the development of the no-classification dual system estimator. This estimator is derived from a

purely estimation-based record linkage that does not classify records into links and non-links. The
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proposed approach is fully automated so that there is no need for a clerical resolution of record pairs

that neither have a strong evidence of being links nor a strong evidence of being non-links. This

is the main practical advantage of the developed method over the majority of existing approaches.

We also developed a modified version of the linkage free dual system estimator and this modified

approach demonstrates a remarkable performance. We made several auxiliary developments needed to

enable no-classification dual system estimation in this thesis. These developments include modelling of

record linkage data, explaining the nature of associations between comparison and identifiability issues.

While this thesis was being written, a research project focusing on the closeness of record linkage and

capture-recapture had appeared (Tancredi et al., 2020) and contributed to the topic from the Bayesian

perspective. All the developments in this thesis are within the frequentist paradigm and have a benefit

of relative conceptual and practical simplicity.

In order to appropriately conceptualize the task of record linkage (Fellegi & Sunter, 1969), the notion

of a mixture-like model was introduced in this thesis. Unlike regular mixture-models, the mixture-like

model more adequately represents the complex nature of the record linkage problem without making

or implying strong distributional assumptions, as in the cases of Jaro (1989); Winkler & Thibaudeau

(1991); Larsen & Rubin (2001); Larsen (2005). The mixture-like models allow the assessment of how

accurately a model can approximate the outcomes of the linkage experiment (see Section 2.2.5) and how

the accuracy of approximation is related to the parameters that are not explicitly taken into account

by the linkage model, such as parameters defining the distribution of the values of the population

attributes. The mixture-like approach also demonstrates certain limitations related to the parameter

estimation of record linkage models and functions of these parameters, such as the linkage free dual

system estimator. For the actual parameter estimation we proposed to use simulated annealing, which

is a well-established Markov chain Monte Carlo approach. This approach is attractive since it does

not impose unrealistic distributional assumptions and is relatively easy to implement and adapt for

different models.

A special case of blocking, called the averaging blocking, was proposed in the thesis. Unlike the

usual blocking strategies that aim to reduce the number of pairs in a linkage process (Herzog et al.,

2007, chap. 12; Christen, 2012, chap. 4), averaging blocking allows to construct, at least in principle, a

linkage free dual system estimator as well as estimators of the parameters of record linkage models that

accord with the data generating mechanisms in repeated record linkage tasks. In addition, averaging

blocking enables a framework for variance estimation.

Another contribution of this thesis is the development of two variance estimation methods for the

linkage free dual system estimator and its modified version. These methods assume that the data for

each block in the averaging blocking are produced by the identical data generating mechanism, but

unlike the existing methods (Chipperfield & Chambers, 2015) do not make any distributional assump-

tions about the mechanism itself. The proposed methods are also suitable for variance estimation of

the linkage model parameters.

From the outset of the theory of record linkage (Fellegi & Sunter, 1969), there were concerns

about the comparison outcomes of the linkage variables not being independent and several approaches

to deal with between-variables associations were proposed by Winkler (1993); Armstrong & Mayda
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(1993); Thibaudeau (1993); Belin & Rubin (1995); Larsen & Rubin (2001). In this thesis we explicitly

show how between-variables associations of the comparison outputs emerge in the set of matches and

non-matches. Particular combinations of the population attributes that lead to such associations were

discussed. We also presented the corresponding parameterizations of the mixture-like models that

account for these associations.

Complex models with between-variables associations of the comparison outcomes may or may not

be identifiable. Identifiability of record linkage models was largely overlooked in the past. In this

thesis we reviewed and applied a variety of methods from the field of algebraic statistics to check the

identifiability of several models that are expected to be frequently used in practical applications of the

proposed no-classification approaches to population size estimation.

Finally, a realistic simulation study, in which data were predominantly simulated from ‘first princi-

ples’ rather than using parametric distributions, was conducted. In this study the performance of the

linkage free dual system estimator and its modified version was assessed against the usual classification-

based approach and the dual system estimator with perfect linkage. As a by-product, certain features

of the classification-based approach were also assessed.

The results of the simulation study demonstrate that all the individual pieces of the research listed

above fit together. The most important outcome of this thesis is a demonstration that the linkage free

dual system estimation is feasible. More specifically, the fully automated modified no-classification

estimation displays a promising performance. This performance is close to and often better than the

performance of the classical approach with classification, subject to the choice of thresholds for the

classification-based method. The key benefit of the no-classification methods developed in this thesis

is full automation that makes clerical resolutions redundant. Also, the no-classification methods,

assuming the correct estimation model is specified, produce the objectively best outputs given the

input data. The ‘objectively best’ here is assessed through the minimization of the modified chi-squared

statistic. On the contrary, the classification-based approaches have a certain level of subjective choice

involved in specifying the acceptance and rejection thresholds. The ability to automatically complete

a record linkage task by only maximizing some objective function makes the methods developed in this

thesis akin to recent developments in the field of automated linkage (Lee et al., 2022).

While the work presented in this thesis is self-sufficient in the sense that it answers the key questions

enabling no-classification dual system estimation to be used, there are many questions of a theoretical

and practical importance that are left for future research. We list several questions that, in our opinion,

are worth attention.

Dual system estimation, whether it is employed with the usual classification-based linkage or using

the no-classification approaches, only adjusts for undercoverage, or non-response, in two surveys. It

is often, however, the case that one of the surveys is subject to overcoverage and the corresponding

adjustment of the population size estimate is needed. Therefore, extending the no-classification ap-

proaches to deal with overcoverage is one of the main strands of the future research. Overcoverage

estimation usually involves linking records outside small geographical units. Therefore, the notion of

the averaging blocking may need revision in this case.

In Section 4.2 we derived the modified linkage free dual system estimator (58) for the domains such
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as age-sex group by the coverage survey strata. However, in the simulation study we only assessed

the no-classification approaches applied at the population level. Assessment of the linkage free domain

estimator is an important area of research, since in practice we are often interested in such domain

estimates.

Another domain related research question concerns the fact that dual system estimation may be

biased if the data used in estimation are pooled over domains with variable responses; see Section 2.1.2.

Given that dual system estimation and record linkage are closely related, further research could attempt

to answer the following question: may pooling the data over the domains with variable responses result

in heterogeneity bias in the estimates of the record linkage model parameters or not?

In Section 4.2 we also showed how a weight (54) reflecting the contribution of each individual

record in a given survey to the total number of the estimated links can be derived. At the moment,

these weights are always positive, but can be greater than one. Ideally, we would like to have weights

lying strictly within the interval [0, 1]. Forcing weights into this interval can also be considered as an

additional constraint, that can further improve the modified linkage free dual system estimator.

When justifying the use of the mixture-like models for record linkage and the dual system esti-

mation, we considered how certain population parameters affect the mixture-like approximation. The

simulation work indicates that there may be more parameters influencing the accuracy of the approx-

imation, and a more complicated relationship between the parameters may exist than that discovered

so far. Also, the justification part is not fully formalized at the current stage of research and obtaining

a rigorous demonstration is an outstanding task.

We did not manage to check identifiability for all the models considered in this thesis. The work on

identifiability can be continued, especially as new developments in the field of computational algebra

become available.

So far, we relied on a heuristic approach to model selection. This approach is based on the knowl-

edge of the underlying population structure and attributes used in record linkage and population size

estimation. We would like to have more formal procedures, or at least some indicators of whether a

certain model fits the data well or not. While working on the simulation study, we observed that if

a model is well specified or is more complex than needed, then the chi-squared statistic is very small

and the estimated frequencies for each pattern are very close to the observed frequencies, whereas

in the cases of model misspecification, where insufficiently complex model was used, the chi-squared

statistic was very large and a substantial discrepancy between the observed and estimated frequencies

was present.

The precision of the variance estimators developed in this thesis suffered from extreme estimates.

Finding a way to avoid such extreme cases would make the variance estimates obtained by the approach

with the auxiliary data substantially more accurate.

Simulation work can be improved so that more complex between-variables associations of the

comparison outcomes become available. Some additional functionality, such as correlation between

the errors for the members of the same household, would make simulations even more realistic.

The no-classification population size estimation as developed in this thesis focuses on the combi-

nation of census and the census coverage survey or similar high quality population surveys. Not all
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population size estimation tasks can be supported by such high quality data. Therefore, it would be

interesting to investigate, whether the no-classification population size estimation can be adapted to

work with other types of data.

Finally, assessing the linkage free dual system estimators on real data would allow to identify any

features that are potentially missing in the current framework and any further developments needed

to make the linkage free dual system estimation fully functional in practice.
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Appendices

A Primer on Gröbner basis

This primer is based on Cox et al. (2015, chaps. 1 – 3) and Sullivant (2018, chap. 3). It is a very

short summary of the referenced sources. Whenever applicable, we give the reference to definitions

and theorems.

Definition 1 A field is a set K with two binary operators “+” and “·” defined on K with the properties

listed below.

Associativity: (a+ b) + c = a+ (b+ c), (a · b) · c = a · (b · c) for all a, b, c ∈ K.

Commutativity: a+ b = b+ a, a · b = b · a for all a, b ∈ K.

Distributivity: a · (b+ c) = a · b+ a · c for all a, b, c ∈ K.

Identities: there are 0, 1 ∈ K such that a+ 0 = a · 1 = a for all a ∈ K.

Additive inverses: given a ∈ K there is b ∈ K such that a+ b = 0.

Multiplicative inverses: a ∈ K, a ̸= 0 there is c ∈ K such that a · c = 1.

Most frequently we are dealing with one of the following fields. The rational numbers Q which are

useful to perform computations. The real numbers R which are key in dealing with probabilities

since probabilities are real. The real numbers are also useful for plotting purposes. Finally, the

complex numbers C which are crucial for proving theorems. We use K to denote an arbitrary field

and K(x1, . . . , xr) to denote an arbitrary field in indeterminates x1, . . . , xr. Often, either when r is

not specified or for brevity, we write simply x instead of listing indeterminates x1, . . . , xr. Note that

when discussing algebra and geometry we use the word ‘indeterminates’ instead of ‘variables’ to avoid

confusion with random variables, but also because polynomials in a strict sense do not involve variables.

Definition 2 A commutative ring is a set S with two binary operators “+” and “·” defined on S

with the properties listed below.

Associativity: (a+ b) + c = a+ (b+ c), (a · b) · c = a · (b · c) for all a, b, c ∈ S.

Commutativity: a+ b = b+ a, a · b = b · a for all a, b ∈ S.

Distributivity: a · (b+ c) = a · b+ a · c for all a, b, c ∈ S.

Identities: there are 0, 1 ∈ S such that a+ 0 = a · 1 = a for all a ∈ S.

Additive inverses: given a ∈ S there is b ∈ S such that a+ b = 0.

Ring has no multiplicative inverses. Examples of a commutative ring are fields, integers Z and sets

of polynomials in indeterminates x1, . . . , xr with coefficients in a field K, written K [x1, . . . , xr], that

satisfy the above definition.

Definition 3 (Definition 1, Cox et al. (2015, chap. 1.2)) A monomial in x1, . . . xr is the product in

form

xα1
1 xα2

2 . . . xαr
r ,

where α = (α1, α2, . . . , αr) are non-negative integers.
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Sometimes, we can simplify the notation by letting α = (α1, . . . , αr) be a n-tuple of non-negative

integers. Then we write

xα = xα1
1 xα2

2 . . . xαr
r .

Monomials can be combined in a certain way to produce the entity which is in the core of our

discussion.

Definition 4 (Definition 2, Cox et al. (2015, chap. 1.2)) A polynomial f in indeterminates x1, . . . , xr

with coefficients in a field K is a finite linear combination of monomials

f =
∑︂
α

aαx
α, aα ∈ K,

where the sum is over a finite number of n-tuples α = (α1, . . . , αr). The set of all polynomials in

x1, . . . , xr with coefficients in K is denoted K[x1, . . . , xr] = K[x].

The set K[x1, . . . , xr] = K[x] is a ring since the sum of two polynomials is a polynomial and the product

of two polynomials is again a polynomial; associativity, commutativity and distributivity properties

also hold for polynomials. In addition, there are identities and additive inverses. However, there is no

multiplicative inverse, say, if f = x then 1/x is not a polynomial.

Definition 5 (Definition 3, Cox et al. (2015, chap.1̇.2)) Let f =
∑︁

α aαx
α be a polynomial in K[x1, . . . , xr].

1. We call aα the coefficient of the monomial xα.

2. If aα ̸= 0, then we call aαx
α a term of f .

3. The total degree of f ̸= 0, denoted deg(f), is the maximum |α| such that the coefficient aα is

non-zero. The total degree of the zero polynomial is undefined.

For instance, the polynomial f = 5x3y4z + 3y2z3 + (3/5)xz has three terms and the total degree

eight.

What makes possible to link algebra and geometry is the ability to consider a polynomial f =∑︁
α aαx

α ∈ K [x1, . . . , xr] as a function

f : Kr → K

by replacing every xi in f by ai from an r-tuple (a1, . . . , ar) ∈ Kr.

Definition 6 (Definition 1, Cox et al. (2015, chap. 1.2)) Let K be a field, and let f1 . . . , fs be polyno-

mials in K[x1, . . . , xr]. The we call the set

V = {(a1, . . . , ar) ∈ Kr | fi(a1, . . . , ar) = 0 for all 1 ≤ i ≤ s}

the variety defined by f1, . . . , fs.

In other words, a variety V(f1, . . . , fs) ⊆ Kr is the set of all solutions of the system of equations

f1(x1, . . . , xr) = · · · = fs(x1, . . . , xr) = 0. For example, graphs of polynomial functions are variates:
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the graph of y = f(x) is V(y − f(x)). Another example of varieties is a set of solutions of a system of

linear equations. Such variety is a linear variety. Here, we are mainly interested in non-linear systems,

but as we will see Gröbner basis generalizes certain ideas from linear algebra.

Definition 7 (Definition 1, Cox et al. (2015, chap. 1.3)) Let K be a field. A rational function in

t1, . . . , tm with coefficients in K is a quotient f/g of two polynomials f, g ∈ K[t1, . . . , tm], where g

is not the zero polynomial (a polynomial with all coefficients being 0). The set of all such rational

functions is denoted K(t1, . . . , tm).

Note, that K(t1, . . . , tm) is a field.

A variety can be represented either parametrically or implicitly. Let V = V(f1, . . . , fs) ⊆ Kr be

a variety. A rational parametric representation of V consists of rational functions g1, . . . , gr ∈
K(t1, . . . , tm) such that the points given by

x1 = g1(t1, . . . , tm),

...

xr = gr(t1, . . . , tm)

lie in V . In addition, we requite that V is the smallest (it is beyond the scope of this primer to

explain in what sense a variety is smallest) variety that contains the above points. It is often the case

that g1, . . . , gr in the above expression are polynomial rather than rational functions. We call such

representation of V a polynomial parametric representation.

The original defining equations f1 = · · · = fs = 0 of V are called an implicit representation of

V .

In general, not every variety has a parametric representation. However, given a parametric rep-

resentation of a variety, it is possible to find a corresponding implicit representation or the defining

equations. This fact will be crucial for our discussion of identifiability.

Definition 8 (Definition 1, Cox et al. (2015, chap. 1.4)) A subset I ⊆ K[x1, . . . , xr] is an ideal if it

satisfies:

1. 0 ∈ I.

2. If f, g ∈ I, then f + g ∈ I.

3. If f ∈ I and h ∈ K[x1, . . . , xr] then hf ∈ I.

An ideal is the basic algebraic object featuring in our discussion.

For a collection of polynomials f1, . . . , fs ∈ K[x1, . . . , xr], define the set of polynomials ⟨f1, . . . , fs⟩
as

⟨f1, . . . , fs⟩ =

{︄
s∑︂

i=1

hifi | h1, . . . , hs ∈ K[x1, . . . , xr]

}︄
.

It is easy to check that ⟨f1, . . . , fs⟩ is an ideal of K[x1, . . . , xr] and we call ⟨f1, . . . , fs⟩ the ideal

generated by f1, . . . , fs. (These are Definition 2 and Lemma 3 in Cox et al. (2015, chap. 1.4)).
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The ideal ⟨f1, . . . , fs⟩ can be seen as an infinite set of all possible polynomial equations that can

be obtained from a given collection f1, . . . , fs ∈ K[x1, . . . , xr] of polynomials satisfying

f1 = 0,

...

fs = 0

in the following way: multiply every fi by hi ∈ K[x1, . . . , xr] and add products together. The resulting

polynomial h1f1 + · · · + hsfs = 0 is the consequence of the original system and h1f1 + · · · + hsfs ∈
⟨f1, . . . , fs⟩.

An ideal I is finitely generated if there exist f1, . . . , fs ∈ K[x1, . . . , xr] such that I = ⟨f1, . . . , fs⟩.
In such case we say that f1, . . . , fs is a basis of I. In fact, the following important result, known as

the Hilbert Basis Theorem, states that every ideal of K[x1, . . . , xr] is finitely generated.

Theorem 1 (Hilbert Basis Theorem [Theorem 4, Cox et al. (2015, chap. 2.5)) ] Every ideal I ⊆
K[x1, . . . , xr] has a finite generating set. That is, I = ⟨f1, . . . , fs⟩ for some f1, . . . , fs ∈ I.

It is important to note that a given ideal may have many different bases. However, some of the

bases are more useful than other, as we will see.

There are analogical concepts to ideal and bases in linear algebra. An ideal is similar to a subspace

that is closed both under addition and multiplication. However, in the case of subspace, multiplication

is by scalars, while in the case of ideals multiplication is by polynomials. Also, the ideal generated

by polynomials f1, . . . , fs is similar to the span of finite number of vectors v1, . . . , vs. Polynomial

coefficients are used for the ideals while field coefficients are used in the span.

An important fact is that a variety depends only on the ideal generated by its defining equations. In

other words, if f1, . . . , fs and g1, . . . , gt are bases of the same ideal in K[x1, . . . , xr], so that ⟨f1, . . . , fs⟩ =
⟨g1, . . . , gt⟩, thenV(f1, . . . , fs) = V(g1, . . . , gt). In practice, changing a basis of an ideal by more ‘useful’

one makes easier to determine the variety. In fact, varieties are determined by ideals, not equations.

So far, we have been discussing situation where a common zero set V(f1, . . . , fs) (a geometric

object) was produces for a given collection of polynomials f1, . . . , fs (an algebraic object). However,

the opposite construction can be also regarded: given a zero set, construct the set of polynomials that

vanish on it.

Definition 9 (Definition 3.2.1, Sullivant (2018, chap. 3)) Let V ⊆ Kr be a variety. Then we set

I(V ) = {f ∈ K[x1, . . . , xr] | f(a1, . . . , ar) = 0 for all (a1, . . . , ar) ∈ V } .

An important fact is that I(V ) ⊆ K[x1, . . . , xr] is an ideal. We call I(V ) the ideal of V , or the

vanishing ideal of V , or the defining ideal of V . If f1, . . . , fs ∈ K[x1, . . . , xr], then ⟨f1, . . . , fs⟩ ⊆
I(V(f1, . . . , fs)), but equality need not occur.

Before introducing Gröbner basis, we will briefly discuss the division algorithm for polynomials in

K[x] and in K[x1, . . . , xr] as well as concepts related to division of polynomials. This discussion will

motivate the need of and facilitate understanding of Gröbner basis.
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For division of polynomials in one indeterminate, consider a polynomial f ∈ K[x]. To perform

division of polynomials, we need to define the leading term of a polynomial in one indeterminate.

Definition 10 (Definition 1, Cox et al. (2015, chap. 1.5)) Given a non-zero polynomial f ∈ K[x], let

f = c0x
m + c1x

m−1 + · · ·+ cm,

where ci ∈ K and c0 ̸= 0, so that m = deg(f). Then we say than c0x
m is the leading term of f . We

write LT(f) = c0x
m.

For instance, if f = 5x4 + 2x2 − 8x+ 3, then LT(f) = 5x4. An important observation here is that

if f and g are non-zero polynomials, then

deg(f) ≤ deg(g) ⇐⇒ LT(f) divides LT(g).

If g ∈ K is a non-zero polynomial, then every f ∈ K can be written as

f = qg + r,

where q, r ∈ K, and either r = 0 or deg(f) ≤ deg(g). Furthermore, q and r are unique, and the

division algorithm (Proposition 2, Cox et al. (2015, chap. 1.5)) below produces q and r.

input: g, f

output: q (quotient), r (remainder)

q := 0; r := f

while r ̸= 0 and LT(g) divides LT(r) do

q := q + LT(r)/LT(g)

r := r − (LT(r)/LT(g))g

return q, r

For example, let f = 5x4 + 2x2 − 8x+ 3 and g = 3x2 + 6x+ 1, then

f = qg + r =

(︃
5

3
x2 +

10

3
x+

61

9

)︃(︁
3x2 + 6x+ 1

)︁
−
(︃
136

3
x+

34

9

)︃
.

Before we move to the division algorithm in K[x1, . . . , xr], it is worth making a few remarks about

ideals in K as this helps to understand better the case of several indeterminates. We say that a

polynomial h is a greatest common divisor of polynomials f1, . . . , fr ∈ K if h divides f1, . . . , fr and

if p is another polynomial which divides f1, . . . , fr then p divides h. We write, h = gcd(f1, . . . , fr).

The greatest common divisor can be algorithmically computed by repeatedly applying the Euclidean

Algorithm, which computes the greatest common divisor of two polynomials. What is important, is

that for polynomials in one indeterminate, the gcd(f1, . . . , fr) is the generator of ⟨f1, . . . , fr⟩.
For instance, let f = x8 − 1 and g = x6 − 1 and consider the ideal ⟨f, g⟩ ⊆ K[x]. Then h =

gcd(f, g) = x2−1 and h is the generator of ⟨f, g⟩ ⊆ K[x]. Put it another way, ⟨f, g⟩ = ⟨x2−1⟩. Hence,
both f and g (and infinitely many other polynomials in the ideal), are the consequences of h.
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Using the above results, it is possible to address algorithmically the ideal membership problem

for the the polynomials in one indeterminate. This problem can be stated as follows: given an ideal

⟨f1, . . . , fr⟩ ⊆ K[x] and a polynomial f ∈ K[x], determine whether f lies in ⟨f1, . . . , fr⟩. The solution

has two steps. First, find the generator h = gcd(f1, . . . , fr). Then, use the division algorithm to write

f = qh+ r, where deg(r) < deg(h). Then f is in the ideal if and only if r = 0.

For instance, using the ideal from the previous example I = ⟨x8 − 1, x6 − 1⟩ ⊆ K[x]. The generator

of this ideal is ⟨x2 − 1⟩. Then x5 + 4x3 + 2x2 − 5x − 2 ∈ ⟨x2 − 1⟩, since x5 + 4x3 + 2x2 − 5x − 2 =

(x3 + 5x+ 2)(x2 − 1). While x3 + 2x /∈ ⟨x2 − 1⟩, since x3 + 2x = x(x2 − 1) + 3x.

Looking at the division algorithm in one indeterminate, we see that the leading terms are playing

the key role here. We first divide the leading term of our dividend by the leading term of the divisor and

then we subtract the product of the resulting quotient and the divisor from the dividend to cancel out

the leading term of the original dividend. The process is repeated until the degree of remainder becomes

smaller than the degree of the divisor. A notion of ordering of terms is crucial for determining a

leading term on each iteration of the division algorithm. In the case of a single indeterminate, term

ordering is simply based on the degree of monomials:

· · · ≻ xm+1 ≻ xm ≻ · · · ≻ x2 ≻ x ≻ 1.

Symbols ≻ (succeeds) and ≺ (precedes) are denoting term orders, quite often standard symbols >

and < are used instead, respectively.

In the case of several indeterminates the task of determining order of terms is more complicated.

If all monomials in a polynomial are of degree 1 and there are r indeterminates, we can order indeter-

minates in r! ways. Say,

x1 ≻ x2 ≻ · · · ≻ xr

or

xr ≻ xr−1 ≻ · · · ≻ x1.

In fact, in the row-reduction algorithm on matrices we employ one of those r! orderings, quite

often this ordering is arbitrary. When monomials of a polynomials have higher degrees and there

are r indeterminates, we need more work to arrange the terms of a polynomial in an unambiguously

descending manner. In order to compare every pair of monomials and establish relative positions our

ordering must be linear or total ordering: for every pair of monomials xα and xβ exactly one the

following three statements

xα ≻ xβ, xα = xβ, xα ≺ xβ

should be true. A total order also must be transitive, so that xα ≻ xβ and xβ ≻ xγ always imply

xα ≻ xγ . The following definition reflects the above considerations.

Definition 11 (Definition 1, Cox et al. (2015, chap. 2.2)) A monomial ordering ≻ on K[x1, . . . , xr]

is a relation ≻ on Zr
≥0 (equivalently, a relation on the set of monomials xα, α ∈ Zr

≥0), satisfying:

1. ≻ is a total ordering on K[x1, . . . , xr].
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2. If α ≻ β and γ ∈ Zr
≥0, then α+ γ ≻ β + γ.

3. If A ⊆ Zr
≥0 is non-empty, then there is α ∈ A such that β ≻ α for every β ̸= α in A.

Clearly, there are many possible term orders. We are particularly interested in two term orders: the

lexicographic term order and the graded reverse lexicographic term order, also referred to as reverse

degree lexicographic order.

Definition 12 (Lexicographic monomial order, Definition 3, Cox et al. (2015, chap. 2.2)) Let α =

(α1, . . . , αr) and β = (β1, . . . , βr) be in Zr
≥0. We say that α ≻lex β if the leftmost non-zero entry of the

vector difference α− β ∈ Zr
≥0 is positive. We write xα ≻lex x

β if α ≻lex β.

Note that in the lexicographic monomial ordering we assume that indeterminates are in some fixed

alphabetical order, say, x ≻ y ≻ z, or y ≻ x ≻ z, or order based on indices, x1 ≻lex x2 ≻lex · · · ≻lex xr.

As an example of lexicographic order with x ≻ y ≻ z consider xy3 ≻lex y5z4 (or equivalently

α = (1, 3, 0) ≻lex β = (0, 5, 4)) since α− β = (1,−2,−4).

Definition 13 (Graded reverse lexicographic order, Definition 6, Cox et al. (2015, chap. 2.2)) Let

α, β ∈ Zr
≥0. We say α ≻grevlex β if

|α| =
r∑︂

i=1

αi ≻ |β| =
r∑︂

i=1

βi, or |α| = |β| and the rightmost non-zero entry of α− β is negative.

Grevlex orders by total degree and if degrees of two monomials are equal, it breaks ties by looking

at the rightmost (or smallest) indeterminate in a monomial and favours the smallest power. Hence, the

notion of reverse lexicographic does not mean reversing the order of variables x ≻ y ≻ . . . w used the

lexicographic order. The lexicographic order looks for the leftmost (largest) indeterminate and favours

the largest power. For instance, let x ≻ y ≻ z. Then x6yz2 ≻lex x
5yz3 since we are looking at the

largest indeterminate x having the largest power. On this occasion, we also have x6yz2 ≻grevlex x
5yz3.

This is because the total degree of two monomials is the same, 9, but the time the smallest indeterminate

z having the smallest power. So essentially, it is a double reversing.

In many cases graded reverse lexicographic order is computationally very efficient while lexico-

graphic order allows obtaining important algebraic and geometric results. Often computations are

carried out with graded reverse lexicographic order and then transformed to lexicographic order using

various methods, like Gröbner walk (Collart et al., 1997).

Definition 14 (Definition 7, Cox et al. (2015, chap. 2.2)) Let f =
∑︁

α aαx
α be a non-zero polynomial

in K[x1, . . . , xr] and let ≻ be a monomial order.

1. The multidegree of f is multideg(f) = max(α ∈ Zr
≥0 | aα ̸= 0), where the maximum is taken

with respect to ≻.

2. The leading coefficient of f is LC(f) = amultideg(f) ∈ K.

3. The leading monomial of f is LM(f) = xmultideg(f).
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4. The leading term of f is LT(f) = LC(f) · LM(f).

For example, let f = 7x3y2z − 2x4y + 8y6z3 and ≻ is lex order with x ≻ y ≻ z. Then

multideg(f) = (4, 1, 0),

LC(f) = −2,

LM(f) = x4y,

LT(f) = −2x4y.

Note that multideg(fg) = multideg(f) + multideg(g).

We are now equipped for discussion of the division algorithm in K[x1, . . . , xr]. Let ≻ be a

monomial order on Zr
≥0 and let F = (f1, . . . , fs) be an ordered s-tuple of polynomials in K[x1, . . . , xr].

Then every f ∈ K[x1, . . . , xr] can be written as

f = q1f1 + · · ·+ qsfs + r,

where qi, r ∈ K[x1, . . . , xr], and either r = 0 or r is a linear combination with the coefficients in K, of

monomials, none of which is divisible by any of LT(f1), . . . ,LT(fs). We call r a remainder of f on

division by F . If qifi ̸= 0 then

multideg(f) ≥ multideg(qifi).

The division algorithm, presented in Theorem 3, Cox et al. (2015, chap. 2.3), produces qi and r.

input: f1, . . . , fs, f

output: q1, . . . , qs, r

q1 := 0; . . . ; qs := 0; r := 0

p := f

while p ̸= 0 do

i := 1

d := 0

while i ≤ s and d = 0 do

if LT(fi) divides LT(p) then

qi := qi + LT(p)/LT(fi)

p := p− LT(p)/LT(fi)fi

d := 1

else

i := i+ 1

if d = 0 then

r := r + LT(p)

p := p− LT(p)

return q1, . . . , qs, r

To illustrate the division algorithm and some unwanted behaviour associated with it consider an

example from Cox et al. (2015). Suppose we divide f = x2y + xy2 + y2 by f1 = y2 − 1, f2 = xy − 1
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using lex order with x ≻ y. We get x2y + xy2 + y2 = (x+ 1)(y2 − 1) + x(xy − 1) + 2x+ 1, so that the

reminder is 2x+ 1. Now divide the same f by the same polynomials but permute them, that is f2, f1,

using the same lex order with x ≻ y. We get x2y+xy2+ y2 = (x+ y)(xy− 1)+1 · (y2− 1)+x+ y+1.

The remainder is x+ y + 1 this time around.

The reminder in the division algorithm is not in general uniquely determined. This is an obstacle

in solving the ideal membership problem for f ∈ K[x1, . . . , xr]. It can be shown, that r = 0 is only

sufficient condition for ideal membership, so that even f ∈ ⟨f1, . . . , fr⟩ it is possible to obtain a non-

zero reminder on division by (f1, . . . , fr). The idea of Gröbner basis allows to overcome the issue of

non-uniqueness of a division in K[x1, . . . , xr].

Definition 15 (Ideal of leading terms, Definition 1, Cox et al. (2015, chap. 2.5)) Let I ⊆ K[x1, . . . , xr]

be an ideal other than {0} and fix a monomial ordering on K[x1, . . . , xr]. Then

1. The set of leading terms of non-zero elements of I is defined as

LT(I) = {cxα | there exists f ∈ I\{0} with LT(f) = cxα}

2. We denote by ⟨LT(I)⟩ the ideal generated by the elements of LT(I).

In other words, ⟨LT(I)⟩ is an infinite set of all possible consequences produced by monomials in an

infinite set LT(I). Note that I = ⟨f1, . . . , fs⟩ then ⟨LT(f1), . . . ,LT(fs)⟩ and ⟨LT(I)⟩ may be different

ideals. It is true that ⟨LT(f1), . . . ,LT(fs)⟩ ⊆ ⟨LT(I)⟩, but ⟨LT(I)⟩ can be strictly larger.

We are now in a position to introduce Gröbner basis, a subset of a given ideal, that has remarkable

properties and even more remarkable applications.

Definition 16 (Definition 5, Cox et al. (2015, chap. 2.5)) Fix a monomial order on the polynomial

ring K[x1, . . . , xr]. A finite subset G = {g1, . . . , gt} of an ideal I ⊆ K[x1, . . . , xr] different from {0} is

said to be a Gröbner basis or standard basis if

⟨LT(g1), . . . ,LT(gt)⟩ = ⟨LT(I)⟩.

The Gröbner basis of the zero ideal is the empty set ∅.

Informally, we can say that a set {g1, . . . , gt} ⊆ I is a Gröbner basis of I if and only if the leading

term of any element of I is divisible by one of the LT(gi). There exist several equivalent definitions

of Gröbner basis (Becker & Weispfenning, 1993), but most of them require additional knowledge to

what was introduced in this summary. However, we will see one more definition when discussing the

properties of Gröbner basis.

Recall, that the Hilbert Basis Theorem guarantees that every ideal is finitely generated. Further-

more, it can be shown that for a fixed monomial order every ideal I ⊆ K[x1, . . . , xr] has a Gröbner

basis and that any Gröbner basis for an ideal I is a basis of I. Note, that a Gröbner basis for an ideal

I is not unique. However, we will later introduce a Gröbner basis which is unique for an ideal I.

An important consequence of the Hilbert Basis Theorem is a geometric one and allows us to consider

a variety as being defined by an ideal I ⊆ K[x1, . . . , xr].
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Definition 17 Definition 8, Cox et al. (2015, chap. 2.5) Let I ⊆ K[x1, . . . , xr] be an ideal. Let V(I)

be the following set

V(I) = {(a1, . . . , ar) ∈ Kr | f(a1, . . . , ar) = 0 for all f ∈ I}.

In fact, V(I) is a variety and if I = ⟨f1, . . . , fs⟩, thenV(I) = V(f1, . . . , fs). In other words, varieties

are determined by ideals, or V(f1, . . . , fs) = V(g1, . . . , gt) whenever ⟨f1, . . . , fs⟩ = ⟨g1, . . . , gt⟩. For real
life problems is means that given a variety V(I), we can find the ‘right’ generating set for an I that

allows a better understanding of the variety V(I).

We now discuss the properties of Gröbner bases. Let I ⊆ K[x1, . . . , xr] be an ideal, G = {g1, . . . , gt}
be a Gröbner basis for I. Also, let f ∈ K[x1, . . . , xr]. Then there is a unique r ∈ K[x1, . . . , xr] with

the following properties:

1. No term on r is divisible by any of LT(g1), . . . ,LT(gt).

2. There is g ∈ I such that f = g + r.

In particular, r is the remainder on division of f by G no matter how the elements of G are listed when

using the division algorithm in K[x1, . . . , xr]. Also, f ∈ I if and only if the remainder on division of f

by G is zero. The latter can be regarded as another definition of a Gröbner basis.

Hence, we can see that a Gröbner basis overcomes an issue of a possibly non-unique remainder in

the division algorithm in K[x1, . . . , xr]. Therefore, if we can find a Gröbner basis for a given ideal,

we can solve the ideal membership problem. Luckily, given an ideal I a Gröbner basis for I can be

constructed in a finite numbers of steps. The Buchberger’s algorithm was the first algorithm designed

to construct a Gröbner basis and still often used in many symbolic algebra packages. More recent and

often faster than the Buchberger’s algorithms are Faugère’s F4, F5 and various related variations. A

discussion of algorithms that construct a Gröbner basis is beyond the scope of this primer. We note

here that the row reduction algorithm in matrix algebra is essentially a special case of the Buchberger’s

algorithm.

What is important in practical application is the complexity issues, that is a possibility that a

Gröbner basis might not be computed in real time despite the fact that every ideal has a Gröbner basis

and that Gröbner basis can be constructed in a finite number of steps. The success of constructing the

Gröbner basis may depend on the choice of monomial ordering with grevlex ordering of indeterminates

often being quite efficient. Yet, as we will see, solving certain problems may require lexicographic

monomial ordering. While conversion from one ordering to another is always possible in theory, this

is also not always doable in real time.

An ideal I may have infinitely many Gröbner bases. It is possible, however, to construct the

Gröbner basis which is in a sense better than others.

Definition 18 (Definition 4, Cox et al. (2015, chap. 2.7)) A reduced Gröbner basis for a polyno-

mial ideal I is a Gröbner basis G for I such that

1. LC(p) = 1, for all polynomials p ∈ G.
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2. For all p ∈ G, no monomial of p lies in ⟨LT(G \ {p})⟩.

For an ideal I ̸= {0} and a given monomial ordering, I has a reduced Gröbner basis, and the reduced

Gröbner basis is unique. The uniqueness property of a Gröbner basis allows checking whether two sets

of polynomials {f1, . . . , fs} and {g1, . . . , gt} generate the same ideal. To do that, fix a monomial order

and compute a reduced Gröbner basis for ⟨f1, . . . , fs⟩ and ⟨g1, . . . , gt⟩. Two ideals are equal if and only

if the Gröbner bases are the same.

We have already seen the ideal membership problem for polynomials in one indeterminate. Com-

bining Gröbner bases with the division algorithm in several indeterminates allows to solve the ideal

membership problem in general. Suppose I = ⟨f1, . . . , fs⟩ and we interested in whether f lies in I. To

check it, we compute a Gröbner basis G = {g1, . . . , gt} for I and use the division algorithm to find the

remainder on division of f by G. Then f ∈ I if and only if the remainder is zero.

A very important result for our discussion of identifiability is the Elimination theorem. The Elim-

ination theorem provides the conceptual tools for solving the implicitization problem algorithmically.

Definition 19 Definition 1, Cox et al. (2015, chap. 3.1) Given I = ⟨f1, . . . , fr⟩ ⊆ K[x1, . . . , xr], the

l-th elimination ideal Il is the ideal of K[xl+1, . . . , xr] defined by

Il = I ∩K[xl+1, . . . , xr].

Il is an ideal of K[xl+1, . . . , xr]. It consists of all consequences of f1 = · · · = fs = 0 which eliminate

the indeterminates x1, . . . , xl. Eliminating x1, . . . , xl means finding non-zero polynomials in the l-th

elimination ideal. With certain term orderings, it is possible to find the l-th elimination ideal. Any

term ordering that allows solving this problem is called an elimination order. We are not discussing

elimination orders in general, it is sufficient for our discussion to know that lex order is an elimination

order.

Theorem 2 (The Elimination Theorem, Theorem 2, Cox et al. (2015, chap. 3.1)) Let I ⊆ K[x1, . . . , xr]

be an ideal and let G be a Gröbner basis of I with respect to lex order where x1 ≻ x2 ≻ · · · ≻ xr. Then,

for every 0 ≤ l ≤ r, the set

Gl = G ∩K[xl+1, . . . , xr]

is a Gröbner basis of the l-th elimination ideal Il.
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B Extra simulation results

B.1 Additional scenarios for main results

Table B1: Simulated data: between-variables independence in the set of matches, association between
the first, second and third variable in the set of non-matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ1,3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 1.73 0.67 -43.66 -22.72 0.00 1.48 5.61 2.65 1.12 1.62 44.02 22.87 1.12

0.9 0.05 8.33 0.87 -40.02 -23.54 -0.02 1.48 4.96 3.00 1.09 1.72 40.33 23.73 1.09
0.10 16.90 1.17 -34.36 -21.20 0.01 1.44 3.89 2.75 1.02 1.85 34.58 21.38 1.02

0.01 1.36 0.86 -43.39 -22.22 0.05 2.85 6.67 3.58 2.60 2.98 43.90 22.51 2.60
250 0.8 0.05 6.67 0.97 -40.10 -23.41 0.03 2.92 5.25 3.72 2.69 3.08 40.44 23.71 2.69

0.10 13.91 1.51 -33.98 -20.79 0.26 2.89 4.83 3.75 2.59 3.26 34.32 21.13 2.61

0.01 1.12 1.01 -43.66 -21.95 0.16 4.87 7.37 5.35 4.61 4.97 44.27 22.59 4.61
0.7 0.05 5.40 1.12 -39.89 -23.13 0.01 4.83 6.67 5.23 4.57 4.95 40.44 23.71 4.57

0.10 11.34 1.19 -33.77 -20.64 -0.12 5.06 6.31 5.55 4.86 5.20 34.36 21.37 4.86
0.01 1.84 0.58 -42.97 -23.29 0.00 0.93 3.94 1.75 0.77 1.09 43.15 23.36 0.77

0.9 0.05 8.37 0.73 -40.16 -24.28 0.01 0.97 3.10 1.93 0.79 1.21 40.28 24.36 0.79
0.10 16.08 1.10 -35.18 -22.20 0.03 1.03 2.49 1.86 0.77 1.51 35.27 22.28 0.77

0.01 1.46 0.65 -43.13 -23.23 0.04 2.01 4.50 2.42 1.90 2.11 43.37 23.36 1.90
500 0.8 0.05 6.63 0.87 -40.11 -24.10 0.01 2.01 3.95 2.60 1.86 2.20 40.30 24.23 1.86

0.10 14.11 1.16 -35.09 -21.99 0.10 2.01 2.82 2.35 1.88 2.32 35.20 22.11 1.89

0.01 1.12 0.86 -43.16 -22.89 0.23 3.31 5.41 3.62 3.21 3.42 43.50 23.17 3.22
0.7 0.05 5.29 1.24 -39.94 -23.82 0.34 3.34 4.55 3.65 3.25 3.57 40.19 24.10 3.26

0.10 12.29 1.01 -34.85 -21.95 0.04 3.53 3.89 3.48 3.36 3.67 35.06 22.23 3.36
0.01 1.77 0.49 -41.95 -23.61 0.02 0.59 3.12 1.31 0.52 0.77 42.07 23.65 0.52

0.9 0.05 8.34 0.57 -40.42 -24.99 0.00 0.67 2.02 1.34 0.54 0.88 40.47 25.03 0.54
0.10 17.91 0.95 -35.91 -23.30 -0.01 0.72 1.71 1.31 0.56 1.19 35.95 23.33 0.56

0.01 1.42 0.46 -42.19 -23.56 0.02 1.34 3.45 1.70 1.28 1.41 42.33 23.62 1.28
1000 0.8 0.05 6.74 0.59 -40.30 -24.94 0.03 1.37 2.42 1.73 1.29 1.49 40.38 25.00 1.29

0.10 16.30 0.90 -35.85 -23.24 -0.01 1.49 2.06 1.72 1.35 1.74 35.91 23.30 1.35

0.01 1.11 0.52 -42.34 -23.50 0.10 2.24 3.95 2.39 2.21 2.30 42.53 23.62 2.21
0.7 0.05 5.41 0.73 -40.18 -24.67 0.18 2.41 3.05 2.46 2.39 2.52 40.29 24.79 2.39

0.10 14.92 0.79 -35.80 -23.35 -0.04 2.28 2.62 2.37 2.21 2.41 35.90 23.47 2.21
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Table B2: Simulated data: between-variables independence in the set of matches, association between
the first, second and third variable in the set of non-matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ2,3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 0.95 0.14 -53.07 -4.92 0.00 1.23 2.48 2.96 1.12 1.24 53.13 5.74 1.12

0.9 0.05 7.21 0.48 -49.21 -10.40 -0.02 1.52 2.45 3.67 1.09 1.60 49.27 11.03 1.09
0.10 15.70 0.30 -42.25 -13.53 0.01 1.74 3.15 3.49 1.02 1.76 42.37 13.98 1.02

0.01 0.73 0.22 -52.80 -4.80 0.05 2.65 3.02 3.82 2.60 2.66 52.88 6.14 2.60
250 0.8 0.05 5.45 0.52 -49.09 -10.21 0.03 2.98 3.10 4.42 2.69 3.03 49.19 11.13 2.69

0.10 12.40 0.67 -41.94 -12.94 0.26 3.13 3.91 4.46 2.59 3.20 42.12 13.69 2.61

0.01 0.51 0.27 -52.76 -4.58 0.16 4.66 3.95 5.46 4.61 4.67 52.91 7.13 4.61
0.7 0.05 3.79 0.61 -49.02 -9.97 0.01 4.85 3.76 6.04 4.57 4.89 49.16 11.66 4.57

0.10 9.55 0.38 -41.80 -12.77 -0.12 5.26 5.03 6.25 4.86 5.27 42.10 14.21 4.86
0.01 0.34 0.05 -53.27 -4.46 0.00 0.81 1.59 1.73 0.77 0.81 53.29 4.78 0.77

0.9 0.05 2.18 0.72 -49.99 -9.71 0.01 1.02 1.70 2.15 0.79 1.25 50.02 9.94 0.79
0.10 8.79 1.27 -43.96 -12.57 0.03 1.09 1.94 2.36 0.77 1.68 44.01 12.79 0.77

0.01 0.31 0.11 -53.26 -4.52 0.04 1.91 2.00 2.50 1.90 1.92 53.30 5.17 1.90
500 0.8 0.05 1.67 0.82 -50.02 -9.44 0.01 2.04 2.02 2.87 1.86 2.20 50.06 9.86 1.86

0.10 7.87 1.33 -43.73 -12.50 0.10 2.11 2.34 3.04 1.88 2.49 43.79 12.86 1.89

0.01 0.25 0.28 -53.13 -4.45 0.23 3.21 2.66 3.70 3.21 3.23 53.20 5.79 3.22
0.7 0.05 1.50 1.13 -49.71 -9.30 0.34 3.34 2.73 3.94 3.25 3.52 49.78 10.10 3.26

0.10 6.87 1.24 -43.60 -12.34 0.04 3.58 3.11 4.24 3.36 3.79 43.71 13.05 3.36
0.01 0.18 0.08 -53.27 -4.75 0.02 0.55 1.14 1.10 0.52 0.55 53.28 4.87 0.52

0.9 0.05 2.01 0.58 -50.55 -9.60 0.00 0.73 1.08 1.42 0.54 0.93 50.56 9.71 0.54
0.10 7.58 1.19 -44.76 -12.28 -0.01 0.75 1.29 1.69 0.56 1.41 44.78 12.40 0.56

0.01 0.20 0.07 -53.34 -4.72 0.02 1.30 1.36 1.63 1.28 1.30 53.36 4.99 1.28
1000 0.8 0.05 1.68 0.63 -50.50 -9.63 0.03 1.42 1.34 1.93 1.29 1.56 50.52 9.82 1.29

0.10 7.34 1.16 -44.73 -12.19 -0.01 1.48 1.58 2.20 1.35 1.88 44.75 12.39 1.35

0.01 0.19 0.13 -53.32 -4.71 0.10 2.21 1.78 2.48 2.21 2.22 53.35 5.32 2.21
0.7 0.05 1.40 0.83 -50.28 -9.44 0.18 2.48 1.86 2.71 2.39 2.62 50.31 9.82 2.39

0.10 7.05 0.96 -44.70 -12.24 -0.04 2.31 2.09 2.92 2.21 2.50 44.75 12.59 2.21
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Table B3: Simulated data: between-variables independence in the set of matches, association between
the first, second and third variable in the set of non-matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 0.57 0.02 -53.40 -4.02 0.00 1.16 2.41 2.03 1.12 1.16 53.45 4.50 1.12

0.9 0.05 1.37 0.57 -51.10 -7.12 -0.02 1.33 2.10 2.12 1.09 1.45 51.14 7.43 1.09
0.10 5.83 1.04 -46.26 -9.56 0.01 1.40 2.45 2.58 1.02 1.75 46.33 9.90 1.02

0.01 0.46 0.12 -53.12 -3.91 0.05 2.63 2.98 3.09 2.60 2.63 53.21 4.98 2.60
250 0.8 0.05 1.05 0.60 -50.93 -7.13 0.03 2.87 2.66 3.16 2.69 2.93 51.00 7.80 2.69

0.10 4.94 1.35 -45.88 -9.23 0.26 2.83 3.13 3.58 2.59 3.13 45.99 9.90 2.61

0.01 0.33 0.18 -53.06 -3.74 0.16 4.65 3.92 4.87 4.61 4.65 53.20 6.14 4.61
0.7 0.05 0.88 0.65 -50.78 -7.08 0.01 4.73 3.53 4.75 4.57 4.77 50.90 8.53 4.57

0.10 4.38 0.95 -45.63 -9.29 -0.12 5.04 4.34 5.31 4.86 5.13 45.83 10.70 4.86
0.01 0.40 0.02 -53.44 -4.26 0.00 0.80 1.57 1.49 0.77 0.80 53.47 4.51 0.77

0.9 0.05 1.16 0.45 -51.46 -8.10 0.01 0.94 1.51 1.65 0.79 1.04 51.48 8.27 0.79
0.10 5.20 1.00 -47.08 -10.80 0.03 1.00 1.68 1.94 0.77 1.41 47.11 10.97 0.77

0.01 0.35 0.07 -53.44 -4.31 0.04 1.91 2.00 2.30 1.90 1.92 53.48 4.88 1.90
500 0.8 0.05 0.88 0.50 -51.40 -7.96 0.01 1.97 1.87 2.38 1.86 2.03 51.43 8.31 1.86

0.10 5.08 1.07 -46.87 -10.70 0.10 2.00 2.04 2.63 1.88 2.27 46.91 11.02 1.89

0.01 0.31 0.22 -53.33 -4.21 0.23 3.21 2.64 3.52 3.21 3.22 53.39 5.49 3.22
0.7 0.05 0.74 0.76 -51.13 -7.77 0.34 3.30 2.56 3.45 3.25 3.38 51.19 8.50 3.26

0.10 4.94 0.93 -46.74 -10.70 0.04 3.48 2.76 3.82 3.36 3.60 46.82 11.36 3.36
0.01 0.19 0.07 -53.43 -4.84 0.02 0.55 1.15 1.14 0.52 0.55 53.44 4.97 0.52

0.9 0.05 1.13 0.31 -51.76 -9.29 0.00 0.68 1.03 1.28 0.54 0.75 51.77 9.37 0.54
0.10 5.60 0.89 -47.49 -12.27 -0.01 0.73 1.15 1.50 0.56 1.15 47.50 12.36 0.56

0.01 0.22 0.05 -53.48 -4.83 0.02 1.29 1.36 1.66 1.28 1.29 53.50 5.10 1.28
1000 0.8 0.05 0.95 0.21 -51.71 -9.32 0.03 1.36 1.29 1.77 1.29 1.38 51.73 9.49 1.29

0.10 6.25 0.75 -47.44 -12.21 -0.01 1.46 1.47 2.00 1.35 1.64 47.46 12.37 1.35

0.01 0.23 0.11 -53.45 -4.81 0.10 2.21 1.78 2.51 2.21 2.21 53.48 5.43 2.21
0.7 0.05 0.79 0.18 -51.49 -9.18 0.18 2.40 1.78 2.54 2.39 2.40 51.52 9.52 2.39

0.10 6.64 0.44 -47.40 -12.33 -0.04 2.25 1.95 2.70 2.21 2.29 47.44 12.63 2.21
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B.2 Results with very strict acceptance thresholds for the classical approach

Table B4: Simulated data: between-variables independence in both sets of matches and non-matches.
Estimation model: π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 0.11 0.11 -0.17 0.02 0.01 1.14 1.23 1.14 1.11 1.15 1.24 1.14 1.11

0.9 0.05 2.48 0.30 2.33 0.35 0.09 1.16 2.13 1.34 1.09 1.20 3.16 1.38 1.10
0.10 8.79 0.45 3.90 0.58 -0.02 1.72 3.25 1.69 1.12 1.77 5.07 1.79 1.12

0.01 0.11 0.10 -0.25 0.01 0.01 2.64 2.68 2.64 2.63 2.64 2.69 2.64 2.63
250 0.8 0.05 2.98 0.32 2.09 0.26 0.10 2.73 3.18 2.77 2.68 2.75 3.81 2.78 2.68

0.10 10.26 0.64 4.80 0.84 0.20 2.81 4.67 3.12 2.73 2.88 6.70 3.23 2.74

0.01 0.07 0.29 -0.29 0.19 0.20 4.74 4.72 4.74 4.72 4.75 4.73 4.74 4.72
0.7 0.05 3.45 0.45 2.26 0.39 0.21 4.59 5.02 4.63 4.54 4.62 5.50 4.64 4.54

0.10 11.69 0.68 5.88 0.91 0.16 4.95 6.51 4.97 4.62 5.00 8.77 5.05 4.63
0.01 0.09 0.09 -0.07 0.00 0.00 0.78 0.82 0.78 0.76 0.78 0.82 0.78 0.76

0.9 0.05 3.22 0.18 1.35 0.18 0.00 0.81 1.49 1.06 0.78 0.83 2.01 1.07 0.78
0.10 10.24 0.39 1.78 0.35 0.03 0.83 2.04 1.30 0.74 0.92 2.71 1.34 0.74

0.01 0.08 0.28 0.09 0.19 0.18 1.88 1.92 1.88 1.87 1.90 1.93 1.89 1.88
500 0.8 0.05 4.33 0.27 1.70 0.27 0.07 1.94 2.44 2.06 1.90 1.96 2.97 2.07 1.90

0.10 13.63 0.43 2.34 0.46 0.06 1.90 2.99 2.25 1.82 1.95 3.80 2.30 1.82

0.01 0.08 0.18 -0.05 0.08 0.09 3.22 3.24 3.22 3.21 3.23 3.24 3.22 3.21
0.7 0.05 5.18 0.31 1.76 0.22 0.12 3.40 3.70 3.46 3.36 3.42 4.10 3.47 3.36

0.10 15.75 0.64 3.32 0.66 0.24 3.30 4.44 3.56 3.25 3.36 5.54 3.62 3.25
0.01 0.05 0.11 0.00 0.01 0.01 0.58 0.61 0.59 0.57 0.59 0.61 0.59 0.57

0.9 0.05 4.23 0.16 0.62 0.07 0.00 0.56 1.03 0.78 0.54 0.58 1.20 0.78 0.54
0.10 12.41 0.30 0.77 0.17 0.01 0.60 1.47 1.05 0.54 0.67 1.66 1.06 0.54

0.01 0.06 0.13 -0.01 0.03 0.04 1.37 1.39 1.37 1.37 1.38 1.39 1.37 1.37
1000 0.8 0.05 6.58 0.15 0.80 0.04 -0.01 1.33 1.64 1.42 1.32 1.34 1.82 1.42 1.32

0.10 17.09 0.35 1.10 0.15 0.04 1.43 1.99 1.66 1.38 1.48 2.27 1.67 1.38

0.01 0.07 0.27 0.14 0.17 0.18 2.42 2.42 2.42 2.41 2.43 2.42 2.42 2.41
0.7 0.05 8.53 0.10 0.91 -0.08 -0.05 2.32 2.63 2.42 2.32 2.32 2.78 2.42 2.33

0.10 20.30 0.48 1.50 0.10 0.17 2.37 2.99 2.58 2.32 2.42 3.35 2.59 2.33
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Table B5: Simulated data: between-variables independence in both sets of matches and non-matches.
Estimation model: π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 0.08 0.14 -0.13 0.05 0.01 1.14 1.23 1.15 1.11 1.15 1.23 1.15 1.11

0.9 0.05 2.86 0.31 2.49 0.52 0.09 1.17 2.14 1.38 1.09 1.21 3.28 1.48 1.10
0.10 9.94 0.44 4.41 0.95 -0.02 1.26 3.39 1.84 1.12 1.33 5.56 2.08 1.12

0.01 0.07 0.14 -0.21 0.04 0.01 2.65 2.68 2.65 2.63 2.65 2.69 2.65 2.63
250 0.8 0.05 3.27 0.33 2.26 0.48 0.10 2.73 3.19 2.80 2.68 2.75 3.91 2.84 2.68

0.10 11.21 0.66 5.35 1.30 0.20 2.81 4.84 3.27 2.73 2.89 7.21 3.52 2.74

0.01 0.05 0.31 -0.24 0.22 0.20 4.74 4.72 4.74 4.72 4.75 4.72 4.75 4.72
0.7 0.05 3.71 0.46 2.46 0.71 0.21 4.60 5.05 4.70 4.54 4.62 5.62 4.75 4.54

0.10 12.42 0.66 6.49 1.50 0.16 4.69 6.58 5.06 4.62 4.74 9.24 5.27 4.63
0.01 0.09 0.10 -0.04 0.02 0.00 0.78 0.82 0.78 0.76 0.78 0.82 0.78 0.76

0.9 0.05 3.44 0.19 1.49 0.30 0.00 0.81 1.51 1.07 0.78 0.83 2.12 1.12 0.78
0.10 11.17 0.41 2.20 0.59 0.03 0.84 2.16 1.37 0.74 0.93 3.08 1.49 0.74

0.01 0.07 0.29 0.12 0.22 0.18 1.88 1.93 1.89 1.87 1.90 1.93 1.90 1.88
500 0.8 0.05 4.48 0.27 1.84 0.41 0.07 1.94 2.48 2.09 1.90 1.96 3.09 2.13 1.90

0.10 14.28 0.45 2.79 0.74 0.06 1.89 3.08 2.30 1.82 1.95 4.15 2.42 1.82

0.01 0.08 0.19 -0.01 0.11 0.09 3.22 3.24 3.22 3.21 3.23 3.24 3.23 3.21
0.7 0.05 5.31 0.32 1.91 0.38 0.12 3.40 3.73 3.48 3.36 3.42 4.19 3.50 3.36

0.10 16.20 0.67 3.81 1.01 0.24 3.30 4.55 3.67 3.25 3.37 5.94 3.80 3.25
0.01 0.05 0.10 0.01 0.03 0.01 0.58 0.61 0.59 0.57 0.59 0.61 0.59 0.57

0.9 0.05 4.23 0.16 0.72 0.13 0.00 0.56 1.04 0.79 0.54 0.59 1.26 0.80 0.54
0.10 12.62 0.33 1.08 0.31 0.01 0.61 1.54 1.07 0.54 0.69 1.88 1.12 0.54

0.01 0.06 0.13 0.01 0.05 0.04 1.37 1.39 1.37 1.37 1.38 1.39 1.37 1.37
1000 0.8 0.05 6.55 0.15 0.92 0.14 -0.01 1.33 1.65 1.44 1.32 1.33 1.89 1.44 1.32

0.10 17.19 0.37 1.43 0.32 0.04 1.43 2.06 1.68 1.38 1.48 2.51 1.71 1.38

0.01 0.07 0.27 0.16 0.20 0.18 2.42 2.42 2.41 2.41 2.43 2.43 2.42 2.41
0.7 0.05 8.42 0.10 1.04 0.03 -0.05 2.32 2.64 2.44 2.32 2.33 2.84 2.44 2.33

0.10 20.45 0.50 1.87 0.31 0.17 2.37 3.13 2.65 2.32 2.43 3.64 2.67 2.33
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Table B6: Simulated data: between-variables independence in the set of matches, association be-
tween the first and second variable in the set of non-matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 2.92 0.43 -0.26 0.18 0.03 1.20 1.96 1.30 1.05 1.28 1.97 1.32 1.05

0.9 0.05 15.87 0.28 2.27 0.56 0.02 1.17 2.86 1.67 1.06 1.20 3.65 1.76 1.06
0.10 31.28 0.42 3.60 0.97 0.01 1.25 4.33 2.51 1.12 1.32 5.63 2.69 1.12

0.01 2.28 0.59 -0.21 0.34 0.15 2.84 3.24 2.88 2.78 2.90 3.25 2.90 2.78
250 0.8 0.05 13.35 0.33 2.27 0.52 0.02 2.81 3.99 3.07 2.73 2.83 4.59 3.11 2.73

0.10 28.01 0.57 4.39 1.15 0.13 2.81 5.62 3.83 2.70 2.87 7.13 4.00 2.70

0.01 1.80 0.81 -0.25 0.52 0.32 4.86 5.11 4.87 4.76 4.93 5.12 4.90 4.77
0.7 0.05 11.43 0.46 2.09 0.53 0.14 4.81 5.63 5.01 4.75 4.83 6.01 5.04 4.75

0.10 24.78 0.69 5.26 1.33 0.25 5.02 7.50 5.69 4.95 5.07 9.16 5.85 4.95
0.01 2.99 0.36 0.10 0.23 0.05 0.90 1.37 0.95 0.73 0.97 1.37 0.98 0.73

0.9 0.05 16.35 0.20 1.10 0.29 0.02 0.79 1.97 1.25 0.76 0.81 2.26 1.28 0.76
0.10 26.91 0.33 1.68 0.57 -0.03 0.84 2.87 1.85 0.75 0.90 3.33 1.93 0.75

0.01 2.38 0.44 0.10 0.27 0.08 1.90 2.20 1.92 1.82 1.95 2.20 1.94 1.82
500 0.8 0.05 14.53 0.29 1.44 0.39 0.10 1.90 2.90 2.20 1.89 1.92 3.23 2.23 1.89

0.10 26.23 0.37 1.98 0.51 -0.01 1.91 3.71 2.68 1.83 1.94 4.21 2.73 1.83

0.01 1.85 0.52 0.04 0.32 0.09 3.40 3.64 3.39 3.27 3.44 3.64 3.41 3.27
0.7 0.05 12.60 0.40 1.72 0.42 0.18 3.43 4.27 3.65 3.40 3.45 4.61 3.68 3.40

0.10 25.30 0.50 2.55 0.61 0.07 3.52 5.16 4.14 3.45 3.55 5.76 4.19 3.45
0.01 1.63 0.28 0.08 0.14 0.04 0.70 1.01 0.70 0.54 0.76 1.01 0.72 0.54

0.9 0.05 11.54 0.17 0.60 0.21 -0.01 0.56 1.40 0.95 0.54 0.59 1.53 0.98 0.54
0.10 26.40 0.33 0.78 0.30 0.01 0.60 1.96 1.37 0.52 0.69 2.10 1.41 0.52

0.01 1.36 0.23 0.07 0.12 -0.03 1.38 1.60 1.39 1.31 1.40 1.60 1.40 1.31
1000 0.8 0.05 12.02 0.16 0.60 0.13 -0.03 1.28 2.01 1.53 1.27 1.29 2.10 1.54 1.27

0.10 27.82 0.35 0.91 0.23 0.01 1.36 2.58 2.01 1.30 1.41 2.74 2.02 1.30

0.01 1.10 0.26 0.00 0.09 -0.06 2.34 2.50 2.32 2.23 2.35 2.50 2.32 2.23
0.7 0.05 12.06 0.20 0.87 0.15 0.02 2.28 2.87 2.49 2.27 2.29 3.00 2.50 2.27

0.10 27.90 0.41 1.12 0.06 0.04 2.33 3.30 2.74 2.29 2.36 3.49 2.74 2.29
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Table B7: Simulated data: between-variables independence in the set of matches, association be-
tween the first and second variable in the set of non-matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 0.13 0.16 -3.01 -19.19 0.03 1.08 1.87 7.22 1.05 1.10 3.54 20.50 1.05

0.9 0.05 4.44 0.26 -1.45 -19.29 0.02 1.16 2.82 4.19 1.06 1.19 3.17 19.74 1.06
0.10 14.99 0.34 -1.86 -8.55 0.01 1.23 4.09 3.16 1.12 1.27 4.49 9.12 1.12

0.01 0.12 0.30 -3.07 -18.96 0.15 2.82 3.20 7.78 2.78 2.83 4.43 20.50 2.78
250 0.8 0.05 4.36 0.28 -1.62 -19.17 0.02 2.78 4.08 4.92 2.73 2.79 4.39 19.80 2.73

0.10 15.50 0.50 -2.54 -8.20 0.13 2.80 6.00 4.16 2.70 2.84 6.52 9.20 2.70

0.01 0.09 0.46 -3.06 -18.34 0.32 4.78 5.03 9.32 4.76 4.80 5.89 20.57 4.77
0.7 0.05 4.56 0.41 -1.89 -18.65 0.14 4.81 5.65 6.44 4.75 4.83 5.95 19.73 4.75

0.10 15.56 0.64 -2.13 -8.28 0.25 5.02 8.01 6.27 4.95 5.06 8.29 10.39 4.95
0.01 0.08 0.12 -2.72 -20.34 0.05 0.76 1.34 5.14 0.73 0.77 3.03 20.97 0.73

0.9 0.05 4.39 0.12 -2.68 -19.33 0.02 0.80 2.07 2.87 0.76 0.81 3.39 19.54 0.76
0.10 14.84 0.04 -4.25 -8.28 -0.03 0.81 2.80 2.07 0.75 0.81 5.09 8.54 0.75

0.01 0.09 0.15 -2.73 -20.14 0.08 1.82 2.18 6.07 1.82 1.82 3.50 21.03 1.82
500 0.8 0.05 5.58 0.20 -2.42 -19.25 0.10 1.90 2.98 3.62 1.89 1.91 3.84 19.59 1.89

0.10 17.63 0.06 -5.14 -8.12 -0.01 1.88 4.14 2.79 1.83 1.88 6.60 8.58 1.83

0.01 0.09 0.18 -2.76 -19.65 0.09 3.29 3.59 7.13 3.27 3.29 4.53 20.90 3.27
0.7 0.05 6.04 0.30 -2.13 -19.12 0.18 3.42 4.31 4.56 3.40 3.43 4.81 19.65 3.40

0.10 19.50 0.21 -4.69 -8.02 0.07 3.47 5.68 4.07 3.45 3.48 7.36 8.99 3.45
0.01 0.06 0.08 -2.63 -20.39 0.04 0.55 0.99 3.78 0.54 0.56 2.81 20.74 0.54

0.9 0.05 4.76 0.04 -3.23 -19.57 -0.01 0.56 1.51 2.11 0.54 0.56 3.57 19.68 0.54
0.10 15.05 0.05 -5.79 -8.25 0.01 0.55 1.90 1.40 0.52 0.56 6.10 8.37 0.52

0.01 0.07 0.00 -2.64 -20.32 -0.03 1.32 1.59 4.40 1.31 1.32 3.08 20.79 1.31
1000 0.8 0.05 7.00 0.03 -3.25 -19.60 -0.03 1.28 2.10 2.50 1.27 1.28 3.87 19.76 1.27

0.10 19.84 0.06 -6.44 -8.31 0.01 1.32 3.03 1.88 1.30 1.32 7.12 8.52 1.30

0.01 0.09 -0.03 -2.71 -20.31 -0.06 2.24 2.47 5.18 2.23 2.24 3.67 20.96 2.23
0.7 0.05 8.74 0.08 -2.95 -19.57 0.02 2.29 2.91 3.20 2.27 2.29 4.15 19.83 2.27

0.10 23.17 0.09 -6.31 -8.43 0.04 2.30 3.71 2.73 2.29 2.30 7.32 8.86 2.29
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Table B8: Simulated data: between-variables independence in the set of matches, association be-
tween the second and third variable in the set of matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2,3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 0.04 0.05 -0.50 -0.08 -0.06 1.15 1.22 1.16 1.13 1.16 1.32 1.17 1.13

0.9 0.05 2.27 0.26 1.60 0.03 0.03 1.27 2.06 1.30 1.08 1.29 2.61 1.31 1.08
0.10 12.03 0.44 3.66 0.83 0.06 1.20 3.17 1.98 1.09 1.28 4.84 2.15 1.09

0.01 0.06 0.16 -0.50 0.01 0.05 2.66 2.69 2.67 2.65 2.67 2.74 2.67 2.65
250 0.8 0.05 2.24 0.20 0.67 -0.09 0.06 2.72 3.16 2.75 2.69 2.72 3.23 2.75 2.69

0.10 10.64 0.21 3.62 0.44 -0.13 2.99 4.29 3.24 2.77 3.00 5.61 3.27 2.77

0.01 0.05 0.26 -0.75 0.11 0.18 4.42 4.33 4.42 4.4 4.42 4.40 4.42 4.41
0.7 0.05 2.19 0.42 0.67 0.15 0.29 4.52 4.76 4.54 4.47 4.54 4.80 4.54 4.48

0.10 10.32 0.39 3.88 0.46 0.10 4.70 5.82 4.89 4.65 4.71 6.99 4.91 4.65
0.01 0.03 0.08 -0.40 -0.01 0.02 0.76 0.85 0.76 0.75 0.76 0.94 0.76 0.75

0.9 0.05 2.34 0.13 0.56 -0.22 -0.03 0.80 1.35 0.96 0.75 0.81 1.46 0.99 0.75
0.10 10.77 0.17 1.12 -0.01 -0.03 0.82 2.08 1.40 0.77 0.84 2.36 1.40 0.77

0.01 0.04 0.23 -0.31 0.13 0.17 1.85 1.87 1.84 1.83 1.86 1.89 1.85 1.84
500 0.8 0.05 3.25 0.20 0.75 -0.15 0.04 1.91 2.24 1.98 1.89 1.92 2.36 1.99 1.89

0.10 15.45 0.23 1.70 0.11 0.00 1.88 3.02 2.30 1.85 1.90 3.46 2.30 1.85

0.01 0.04 0.08 -0.48 -0.04 0.03 3.22 3.24 3.22 3.22 3.23 3.27 3.22 3.22
0.7 0.05 4.26 0.36 1.00 -0.06 0.17 3.39 3.60 3.40 3.38 3.41 3.74 3.40 3.38

0.10 18.70 0.31 2.42 0.21 0.05 3.28 4.24 3.56 3.24 3.29 4.88 3.57 3.24
0.01 0.03 0.08 -0.27 -0.05 0.00 0.54 0.63 0.55 0.53 0.55 0.68 0.55 0.53

0.9 0.05 6.17 0.18 0.53 0.08 0.01 0.57 0.97 0.79 0.54 0.60 1.11 0.80 0.54
0.10 13.31 0.25 0.79 0.29 0.02 0.55 1.51 1.18 0.53 0.61 1.70 1.21 0.53

0.01 0.04 0.11 -0.26 -0.01 0.04 1.29 1.33 1.29 1.28 1.29 1.36 1.29 1.28
1000 0.8 0.05 10.30 0.14 0.65 0.06 -0.05 1.30 1.63 1.45 1.30 1.31 1.76 1.45 1.30

0.10 18.86 0.23 0.75 -0.01 0.02 1.32 2.03 1.72 1.29 1.34 2.16 1.72 1.29

0.01 0.07 0.03 -0.39 -0.11 -0.03 2.36 2.36 2.36 2.36 2.36 2.39 2.36 2.36
0.7 0.05 8.05 0.18 0.45 -0.27 0.05 2.28 2.45 2.31 2.26 2.28 2.49 2.32 2.26

0.10 22.75 0.32 0.97 -0.18 0.08 2.27 2.82 2.54 2.26 2.30 2.98 2.54 2.26
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Table B9: Simulated data: association between the second and third variable in the set of matches,
between-variables independence in the set of non-matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 0.12 0.06 -0.20 -0.07 -0.06 1.16 1.20 1.16 1.13 1.16 1.21 1.17 1.13

0.9 0.05 1.84 0.3 2.65 0.21 0.03 1.15 2.30 1.30 1.08 1.19 3.51 1.31 1.08
0.10 10.94 0.99 7.28 2.15 0.06 1.38 3.71 1.94 1.09 1.69 8.18 2.90 1.09

0.01 0.09 0.17 -0.18 0.03 0.05 2.67 2.69 2.67 2.65 2.67 2.70 2.67 2.65
250 0.8 0.05 1.62 0.27 1.42 0.04 0.06 2.73 3.25 2.75 2.69 2.74 3.55 2.75 2.69

0.10 8.42 0.71 7.42 1.57 -0.13 3 4.91 3.29 2.77 3.08 8.90 3.65 2.77

0.01 0.06 0.27 -0.35 0.13 0.18 4.41 4.35 4.42 4.4 4.42 4.37 4.42 4.41
0.7 0.05 1.52 0.52 1.49 0.28 0.29 4.54 4.89 4.54 4.47 4.57 5.11 4.55 4.48

0.10 7.29 0.79 7.71 1.39 0.10 4.74 6.46 4.92 4.65 4.81 10.06 5.11 4.65
0.01 0.09 0.09 -0.15 0.00 0.02 0.76 0.81 0.76 0.75 0.76 0.82 0.76 0.75

0.9 0.05 1.67 0.2 1.72 -0.02 -0.03 0.81 1.58 0.96 0.75 0.83 2.34 0.96 0.75
0.10 8.81 0.81 4.44 1.11 -0.03 0.95 2.55 1.38 0.77 1.25 5.12 1.77 0.77

0.01 0.06 0.24 -0.03 0.14 0.17 1.85 1.86 1.84 1.83 1.86 1.86 1.85 1.84
500 0.8 0.05 1.98 0.27 1.79 0.03 0.04 1.92 2.38 1.99 1.89 1.94 2.98 1.99 1.89

0.10 12.03 0.82 5.27 1.33 0.00 1.98 3.50 2.30 1.85 2.15 6.33 2.65 1.85

0.01 0.08 0.09 -0.19 -0.02 0.03 3.23 3.23 3.22 3.22 3.23 3.24 3.22 3.22
0.7 0.05 2.64 0.43 2.07 0.13 0.17 3.39 3.70 3.39 3.38 3.42 4.24 3.40 3.38

0.10 14.04 0.99 5.88 1.39 0.05 3.35 4.71 3.58 3.24 3.49 7.53 3.84 3.24
0.01 0.03 0.09 -0.10 -0.04 0.00 0.54 0.57 0.55 0.53 0.55 0.58 0.55 0.53

0.9 0.05 4.53 0.29 1.63 0.34 0.01 0.58 1.09 0.78 0.54 0.64 1.97 0.85 0.54
0.10 10.64 1.08 4.09 1.47 0.02 0.77 1.77 1.14 0.53 1.33 4.46 1.86 0.53

0.01 0.04 0.11 -0.09 0.00 0.04 1.29 1.30 1.29 1.28 1.3 1.30 1.29 1.28
1000 0.8 0.05 7.16 0.24 1.70 0.30 -0.05 1.32 1.75 1.45 1.30 1.34 2.44 1.48 1.30

0.10 14.41 1.07 4.13 1.20 0.02 1.43 2.39 1.71 1.29 1.79 4.77 2.09 1.29

0.01 0.06 0.03 -0.18 -0.09 -0.03 2.36 2.35 2.36 2.36 2.36 2.36 2.36 2.36
0.7 0.05 5.04 0.25 1.55 -0.04 0.05 2.28 2.56 2.32 2.26 2.30 2.99 2.32 2.26

0.10 17.84 1.09 4.34 1.05 0.08 2.38 3.17 2.55 2.26 2.62 5.37 2.76 2.26
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Table B10: Simulated data: association between the second and third variable in the set of
matches, association between first and second variable in the set of non-matches. Estimation model:
π(γp;π,µ,ν) = πµp(γ1, γ2,3, γ4) + (1− π)νp(γ1,2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 2.59 0.42 -0.48 0.04 0.05 1.22 1.95 1.33 1.07 1.29 2.01 1.33 1.07

0.9 0.05 16.70 0.27 1.38 0.3 0.01 1.20 2.87 1.74 1.13 1.23 3.19 1.77 1.13
0.10 32.96 0.35 2.78 0.78 -0.03 1.22 4.03 2.65 1.11 1.27 4.89 2.76 1.11

0.01 2.36 0.53 -0.53 0.17 0.16 2.78 3.24 2.83 2.71 2.83 3.28 2.84 2.72
250 0.8 0.05 11.33 0.16 0.63 -0.09 -0.07 2.69 3.84 2.92 2.63 2.69 3.89 2.92 2.63

0.10 28.02 0.36 2.86 0.72 0.03 2.69 4.76 3.48 2.61 2.72 5.55 3.56 2.61

0.01 2.06 0.53 -0.87 0.15 0.18 4.84 5.05 4.84 4.79 4.87 5.12 4.85 4.79
0.7 0.05 8.81 0.66 0.82 0.31 0.44 4.78 5.52 4.95 4.74 4.83 5.58 4.96 4.76

0.10 24.37 0.36 2.57 0.25 0.06 4.71 6.68 5.35 4.69 4.73 7.16 5.36 4.69
0.01 2.66 0.51 -0.22 0.09 0.07 1.00 1.41 0.95 0.73 1.12 1.42 0.95 0.73

0.9 0.05 16.02 0.17 0.48 -0.02 0.00 0.81 1.99 1.20 0.77 0.82 2.04 1.20 0.77
0.10 27.32 0.17 1.00 0.13 -0.04 0.82 2.67 1.84 0.76 0.84 2.85 1.84 0.76

0.01 2.35 0.41 -0.34 0.02 0.03 1.92 2.19 1.92 1.83 1.97 2.22 1.92 1.83
500 0.8 0.05 13.76 0.26 0.63 0.12 0.05 1.99 2.75 2.18 1.95 2.01 2.82 2.19 1.95

0.10 28.12 0.27 1.39 0.26 0.03 1.87 3.63 2.73 1.83 1.89 3.89 2.74 1.83

0.01 1.75 0.64 -0.28 0.24 0.24 3.20 3.45 3.25 3.14 3.27 3.46 3.26 3.15
0.7 0.05 12.65 0.41 1.08 0.35 0.18 3.40 3.95 3.50 3.35 3.42 4.09 3.52 3.35

0.10 27.93 0.15 1.49 0.00 -0.13 3.40 4.75 3.91 3.37 3.40 4.98 3.91 3.37
0.01 1.51 0.21 -0.18 -0.04 0.01 0.68 0.98 0.70 0.55 0.71 1.00 0.70 0.55

0.9 0.05 13.54 0.23 0.53 0.28 0.03 0.56 1.47 0.99 0.53 0.60 1.56 1.03 0.53
0.10 26.68 0.27 0.61 0.29 0.01 0.60 2.04 1.51 0.57 0.66 2.13 1.53 0.57

0.01 1.31 0.35 -0.20 -0.01 0.04 1.43 1.60 1.37 1.30 1.47 1.61 1.37 1.30
1000 0.8 0.05 15.94 0.21 0.61 0.29 -0.03 1.33 2.00 1.61 1.30 1.34 2.09 1.63 1.30

0.10 29.29 0.27 0.53 0.01 0.03 1.36 2.45 1.97 1.34 1.38 2.50 1.97 1.34

0.01 1.14 0.33 -0.18 0.01 0.03 2.44 2.56 2.40 2.34 2.46 2.57 2.40 2.34
0.7 0.05 12.34 0.24 0.18 -0.20 0.06 2.22 2.75 2.37 2.21 2.23 2.75 2.38 2.21

0.10 30.62 0.30 0.86 0.04 0.02 2.29 3.35 2.86 2.26 2.31 3.46 2.86 2.26
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Table B11: Simulated data: association between the second and third variable in the set of
matches, association between first and second variable in the set of non-matches. Estimation model:
π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 2.58 0.44 -0.16 0.17 0.05 1.23 1.89 1.33 1.07 1.30 1.90 1.34 1.07

0.9 0.05 16.24 0.36 2.65 0.85 0.01 1.24 3.01 1.83 1.13 1.29 4.01 2.02 1.13
0.10 31.99 0.84 6.28 2.41 -0.03 1.44 4.66 2.77 1.11 1.66 7.82 3.67 1.11

0.01 2.35 0.55 -0.19 0.29 0.16 2.80 3.22 2.83 2.71 2.85 3.23 2.85 2.72
250 0.8 0.05 10.79 0.21 1.53 0.27 -0.07 2.69 3.88 2.96 2.63 2.70 4.17 2.97 2.63

0.10 25.62 0.82 6.45 2.25 0.03 2.77 5.48 3.66 2.61 2.88 8.46 4.30 2.61

0.01 2.05 0.53 -0.49 0.28 0.18 4.85 5.03 4.85 4.79 4.88 5.06 4.86 4.79
0.7 0.05 8.16 0.75 1.81 0.73 0.44 4.80 5.60 5.01 4.74 4.86 5.89 5.06 4.76

0.10 20.86 0.73 6.40 1.70 0.06 4.74 7.36 5.55 4.69 4.80 9.75 5.80 4.69
0.01 2.68 0.48 0.04 0.20 0.07 0.97 1.35 0.94 0.73 1.08 1.35 0.96 0.73

0.9 0.05 15.25 0.26 1.66 0.55 0.00 0.83 2.06 1.27 0.77 0.87 2.64 1.39 0.77
0.10 25.07 0.82 4.16 1.49 -0.04 0.97 3.07 1.89 0.76 1.27 5.17 2.41 0.76

0.01 2.37 0.36 -0.09 0.12 0.03 1.92 2.16 1.91 1.83 1.96 2.17 1.92 1.83
500 0.8 0.05 12.52 0.34 1.66 0.58 0.05 2.00 2.80 2.20 1.95 2.03 3.25 2.28 1.95

0.10 24.21 0.87 4.70 1.69 0.03 1.97 4.02 2.77 1.83 2.15 6.18 3.24 1.83

0.01 1.74 0.62 -0.01 0.35 0.24 3.23 3.46 3.25 3.14 3.29 3.46 3.27 3.15
0.7 0.05 10.73 0.53 2.28 0.87 0.18 3.40 4.05 3.56 3.35 3.44 4.65 3.66 3.35

0.10 22.95 0.73 4.82 1.45 -0.13 3.45 5.22 4.02 3.37 3.53 7.10 4.27 3.37
0.01 1.51 0.19 0.01 0.05 0.01 0.67 0.96 0.69 0.55 0.70 0.96 0.69 0.55

0.9 0.05 11.57 0.33 1.64 0.85 0.03 0.56 1.54 1.04 0.53 0.65 2.25 1.34 0.53
0.10 23.60 1.07 3.61 1.58 0.01 0.79 2.27 1.53 0.57 1.33 4.26 2.20 0.57

0.01 1.33 0.28 0.00 0.08 0.04 1.37 1.57 1.36 1.30 1.40 1.57 1.36 1.30
1000 0.8 0.05 12.36 0.31 1.70 0.85 -0.03 1.33 2.05 1.63 1.30 1.37 2.66 1.84 1.30

0.10 24.26 1.07 3.68 1.35 0.03 1.45 2.73 2.01 1.34 1.80 4.58 2.42 1.34

0.01 1.12 0.28 0.05 0.11 0.03 2.43 2.56 2.41 2.34 2.44 2.56 2.41 2.34
0.7 0.05 9.03 0.31 1.29 0.34 0.06 2.22 2.81 2.42 2.21 2.24 3.09 2.44 2.21

0.10 24.70 1.09 4.01 1.39 0.02 2.41 3.67 2.91 2.26 2.65 5.44 3.22 2.26
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Table B12: Simulated data: association between the second and third variable in the set of
matches, association between first and second variable in the set of non-matches. Estimation model:
π(γp;π,µ,ν) = πµp(γ1, γ2,3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 0.12 0.15 -3.14 -17.85 0.05 1.11 1.82 7.13 1.07 1.12 3.63 19.22 1.07

0.9 0.05 5.30 0.27 -2.15 -19.72 0.01 1.19 2.79 4.06 1.13 1.22 3.52 20.13 1.13
0.10 18.47 0.37 -2.02 -9.21 -0.03 1.23 4.05 3.46 1.11 1.29 4.53 9.84 1.11

0.01 0.13 0.29 -3.32 -18.61 0.16 2.72 3.21 7.84 2.71 2.74 4.62 20.19 2.72
250 0.8 0.05 3.47 0.19 -2.88 -21.72 -0.07 2.70 3.82 4.70 2.63 2.70 4.79 22.22 2.63

0.10 15.35 0.43 -2.98 -10.09 0.03 2.70 5.15 4.63 2.61 2.73 5.95 11.10 2.61

0.01 0.11 0.28 -3.66 -19.42 0.18 4.79 4.99 9.01 4.79 4.80 6.19 21.41 4.79
0.7 0.05 3.01 0.73 -2.63 -21.62 0.44 4.77 5.49 6.01 4.74 4.83 6.09 22.44 4.76

0.10 13.93 0.42 -3.51 -10.80 0.06 4.72 7.04 6.33 4.69 4.74 7.87 12.52 4.69
0.01 0.08 0.13 -3.01 -20.15 0.07 0.75 1.38 5.43 0.73 0.76 3.31 20.87 0.73

0.9 0.05 4.75 0.11 -3.09 -20.90 0.00 0.80 2.02 2.90 0.77 0.81 3.69 21.10 0.77
0.10 16.08 0.00 -4.22 -9.67 -0.04 0.84 2.62 2.31 0.76 0.84 4.96 9.95 0.76

0.01 0.08 0.09 -3.14 -20.65 0.03 1.84 2.18 5.85 1.83 1.84 3.82 21.46 1.83
500 0.8 0.05 5.07 0.18 -3.06 -20.94 0.05 1.97 2.82 3.56 1.95 1.98 4.16 21.24 1.95

0.10 19.24 0.11 -4.57 -9.60 0.03 1.89 3.94 3.11 1.83 1.89 6.03 10.09 1.83

0.01 0.09 0.30 -3.05 -19.93 0.24 3.15 3.43 7.08 3.14 3.17 4.60 21.15 3.15
0.7 0.05 6.26 0.33 -2.62 -20.50 0.18 3.36 3.94 4.50 3.35 3.37 4.73 20.98 3.35

0.10 21.14 -0.01 -4.32 -9.89 -0.13 3.39 4.98 4.23 3.37 3.39 6.59 10.76 3.37
0.01 0.07 0.05 -2.87 -20.51 0.01 0.56 0.98 3.84 0.55 0.56 3.03 20.87 0.55

0.9 0.05 7.06 0.16 -3.05 -20.00 0.03 0.55 1.53 2.07 0.53 0.58 3.42 20.11 0.53
0.10 17.01 0.06 -5.20 -9.28 0.01 0.61 2.01 1.67 0.57 0.61 5.57 9.43 0.57

0.01 0.07 0.08 -2.90 -20.97 0.04 1.31 1.58 4.20 1.30 1.31 3.31 21.39 1.30
1000 0.8 0.05 10.69 0.13 -3.03 -19.72 -0.03 1.32 2.05 2.58 1.30 1.33 3.66 19.89 1.30

0.10 21.61 0.07 -5.69 -9.55 0.03 1.36 2.72 2.08 1.34 1.36 6.31 9.78 1.34

0.01 0.11 0.06 -2.85 -20.36 0.03 2.35 2.53 5.26 2.34 2.35 3.82 21.03 2.34
0.7 0.05 9.47 0.14 -3.43 -21.09 0.06 2.21 2.77 3.18 2.21 2.21 4.41 21.33 2.21

0.10 24.67 0.10 -5.39 -9.75 0.02 2.28 3.63 2.82 2.26 2.28 6.50 10.15 2.26
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Table B13: Simulated data: association between the second and third variable in the set of
matches, association between first and second variable in the set of non-matches. Estimation model:
π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 0.12 0.15 -2.89 -17.79 0.05 1.11 1.80 7.18 1.07 1.12 3.41 19.18 1.07

0.9 0.05 4.92 0.30 -1.20 -19.30 0.01 1.20 2.96 4.07 1.13 1.24 3.20 19.73 1.13
0.10 18.14 0.57 0.22 -7.72 -0.03 1.34 4.81 3.27 1.11 1.45 4.82 8.38 1.11

0.01 0.13 0.29 -3.03 -18.49 0.16 2.72 3.19 7.88 2.71 2.73 4.40 20.09 2.72
250 0.8 0.05 3.01 0.17 -2.12 -21.55 -0.07 2.68 3.87 4.68 2.63 2.69 4.41 22.06 2.63

0.10 13.89 0.72 -0.35 -8.67 0.03 2.76 6.00 4.50 2.61 2.85 6.01 9.77 2.61

0.01 0.10 0.29 -3.33 -19.30 0.18 4.80 4.98 9.04 4.79 4.81 5.99 21.31 4.79
0.7 0.05 2.46 0.70 -1.78 -21.42 0.44 4.75 5.58 6.02 4.74 4.80 5.85 22.25 4.76

0.10 11.40 0.72 -0.64 -9.42 0.06 4.76 7.91 6.19 4.69 4.81 7.93 11.27 4.69
0.01 0.05 0.09 -2.80 -20.03 0.07 0.75 1.33 5.45 0.73 0.76 3.10 20.76 0.73

0.9 0.05 3.87 0.12 -2.17 -20.45 0.00 0.80 2.12 2.91 0.77 0.81 3.03 20.66 0.77
0.10 15.08 0.24 -2.24 -8.34 -0.04 0.94 3.19 2.17 0.76 0.97 3.89 8.62 0.76

0.01 0.06 0.07 -2.92 -20.52 0.03 1.84 2.15 5.88 1.83 1.84 3.63 21.34 1.83
500 0.8 0.05 3.79 0.18 -2.24 -20.60 0.05 1.98 2.88 3.55 1.95 1.98 3.65 20.91 1.95

0.10 17.49 0.34 -2.16 -8.21 0.03 1.94 4.41 3.01 1.83 1.97 4.91 8.74 1.83

0.01 0.07 0.28 -2.82 -19.80 0.24 3.15 3.44 7.11 3.14 3.16 4.45 21.04 3.15
0.7 0.05 4.34 0.33 -1.64 -20.12 0.18 3.35 4.04 4.52 3.35 3.36 4.36 20.62 3.35

0.10 18.52 0.24 -1.83 -8.51 -0.13 3.42 5.52 4.21 3.37 3.43 5.82 9.49 3.37
0.01 0.04 0.03 -2.71 -20.39 0.01 0.56 0.96 3.85 0.55 0.56 2.88 20.75 0.55

0.9 0.05 5.84 0.19 -2.19 -19.53 0.03 0.56 1.62 2.05 0.53 0.60 2.72 19.64 0.53
0.10 16.28 0.18 -3.40 -8.02 0.01 0.69 2.48 1.55 0.57 0.71 4.21 8.17 0.57

0.01 0.05 0.05 -2.73 -20.85 0.04 1.30 1.56 4.22 1.30 1.31 3.14 21.27 1.30
1000 0.8 0.05 8.22 0.16 -2.17 -19.27 -0.03 1.33 2.11 2.57 1.30 1.34 3.02 19.44 1.30

0.10 20.25 0.24 -3.43 -8.19 0.03 1.41 3.06 2.01 1.34 1.43 4.60 8.43 1.34

0.01 0.08 0.04 -2.67 -20.24 0.03 2.35 2.53 5.27 2.34 2.35 3.68 20.91 2.34
0.7 0.05 6.29 0.15 -2.54 -20.67 0.06 2.22 2.84 3.20 2.21 2.22 3.81 20.92 2.21

0.10 23.08 0.27 -3.15 -8.41 0.02 2.38 4.02 2.76 2.26 2.39 5.11 8.85 2.26
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Table B14: Simulated data: between-variables independence in the set of matches, association between
the first, second and third variable in the set of non-matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2,3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 5.57 0.21 -51.47 -6.80 0.00 1.22 2.79 4.82 1.12 1.23 51.54 8.33 1.12

0.9 0.05 28.70 0.28 -44.18 -17.85 -0.02 1.21 3.54 4.43 1.09 1.24 44.32 18.40 1.09
0.10 55.12 0.28 -33.21 -19.81 0.01 1.11 6.60 4.23 1.02 1.14 33.86 20.25 1.02

0.01 4.44 0.30 -51.17 -6.58 0.05 2.65 3.28 5.59 2.60 2.67 51.27 8.64 2.60
250 0.8 0.05 22.95 0.34 -44.12 -17.40 0.03 2.77 4.24 5.16 2.69 2.79 44.32 18.15 2.69

0.10 46.93 0.56 -32.93 -19.05 0.26 2.69 7.86 5.53 2.59 2.75 33.85 19.83 2.61

0.01 3.60 0.42 -51.19 -6.21 0.16 4.64 4.22 6.60 4.61 4.66 51.36 9.07 4.61
0.7 0.05 19.82 0.32 -44.06 -16.79 0.01 4.61 4.98 6.73 4.57 4.62 44.34 18.08 4.57

0.10 39.17 0.26 -32.47 -18.27 -0.12 4.91 9.74 7.06 4.86 4.91 33.90 19.59 4.86
0.01 4.70 0.28 -51.48 -7.60 0.00 0.83 1.87 3.60 0.77 0.87 51.52 8.41 0.77

0.9 0.05 21.46 0.34 -44.28 -19.01 0.01 0.86 2.39 3.06 0.79 0.92 44.34 19.26 0.79
0.10 43.18 0.27 -34.50 -21.07 0.03 0.83 3.37 2.47 0.77 0.87 34.66 21.22 0.77

0.01 3.67 0.31 -51.44 -7.72 0.04 1.92 2.24 4.36 1.90 1.95 51.49 8.87 1.90
500 0.8 0.05 18.15 0.33 -44.39 -18.53 0.01 1.91 2.88 3.82 1.86 1.94 44.48 18.92 1.86

0.10 40.12 0.37 -34.14 -20.68 0.10 1.93 4.33 3.13 1.88 1.96 34.42 20.92 1.89

0.01 2.78 0.47 -51.27 -7.55 0.23 3.23 2.99 5.36 3.21 3.27 51.36 9.26 3.22
0.7 0.05 15.55 0.71 -44.03 -18.20 0.34 3.29 3.64 4.79 3.25 3.36 44.18 18.82 3.26

0.10 36.52 0.33 -33.68 -20.33 0.04 3.42 5.94 4.61 3.36 3.44 34.20 20.85 3.36
0.01 4.82 0.28 -51.03 -9.78 0.02 0.56 1.37 2.91 0.52 0.63 51.05 10.21 0.52

0.9 0.05 15.25 0.34 -44.26 -20.13 0.00 0.58 1.54 2.12 0.54 0.67 44.28 20.24 0.54
0.10 34.56 0.23 -34.72 -21.69 -0.01 0.62 1.98 1.58 0.56 0.66 34.78 21.75 0.56

0.01 3.80 0.24 -51.15 -9.55 0.02 1.31 1.62 3.31 1.28 1.33 51.18 10.11 1.28
1000 0.8 0.05 14.28 0.37 -44.23 -20.02 0.03 1.32 1.90 2.60 1.29 1.37 44.27 20.19 1.29

0.10 34.84 0.25 -34.68 -21.55 -0.01 1.39 2.40 2.06 1.35 1.41 34.77 21.65 1.35

0.01 2.90 0.30 -51.14 -9.40 0.10 2.22 2.06 4.08 2.21 2.24 51.18 10.24 2.21
0.7 0.05 13.30 0.53 -44.01 -19.70 0.18 2.42 2.55 3.25 2.39 2.48 44.09 19.96 2.39

0.10 34.00 0.26 -34.48 -21.39 -0.04 2.24 3.86 3.14 2.21 2.25 34.69 21.62 2.21
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Table B15: Simulated data: between-variables independence in the set of matches, association between
the first, second and third variable in the set of non-matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ1,3, γ2,3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 4.29 0.26 -52.44 -8.94 0.00 1.23 2.73 5.01 1.12 1.25 52.51 10.24 1.12

0.9 0.05 23.19 0.43 -46.91 -16.46 -0.02 1.31 3.08 4.72 1.09 1.38 47.01 17.12 1.09
0.10 47.34 0.60 -38.63 -18.92 0.01 1.42 3.53 3.30 1.02 1.54 38.79 19.21 1.02

0.01 3.32 0.38 -52.15 -8.57 0.05 2.66 3.20 5.71 2.60 2.68 52.24 10.30 2.60
250 0.8 0.05 18.86 0.48 -46.91 -15.83 0.03 2.81 3.71 5.50 2.69 2.85 47.06 16.76 2.69

0.10 40.69 0.86 -38.38 -18.11 0.26 2.80 4.44 4.33 2.59 2.93 38.64 18.62 2.61

0.01 2.76 0.47 -52.15 -8.10 0.16 4.65 4.15 6.69 4.61 4.67 52.31 10.51 4.61
0.7 0.05 16.64 0.47 -46.89 -15.31 0.01 4.69 4.35 7.00 4.57 4.71 47.09 16.84 4.57

0.10 34.26 0.54 -38.40 -17.67 -0.12 5.08 5.65 6.03 4.86 5.11 38.82 18.67 4.86
0.01 3.29 0.30 -52.44 -11.79 0.00 0.86 1.84 3.84 0.77 0.92 52.47 12.40 0.77

0.9 0.05 16.53 0.42 -47.04 -18.85 0.01 0.87 2.27 3.33 0.79 0.96 47.09 19.14 0.79
0.10 35.44 0.39 -39.25 -20.75 0.03 0.91 2.41 2.35 0.77 0.99 39.32 20.88 0.77

0.01 2.60 0.36 -52.39 -11.83 0.04 1.94 2.19 4.36 1.90 1.98 52.43 12.61 1.90
500 0.8 0.05 14.52 0.44 -47.14 -18.34 0.01 1.92 2.65 4.08 1.86 1.97 47.21 18.79 1.86

0.10 34.06 0.53 -39.07 -20.37 0.10 1.95 2.92 2.95 1.88 2.02 39.18 20.58 1.89

0.01 2.00 0.51 -52.21 -11.52 0.23 3.25 2.96 5.36 3.21 3.29 52.30 12.70 3.22
0.7 0.05 13.18 0.80 -46.80 -17.94 0.34 3.32 3.34 5.03 3.25 3.42 46.92 18.63 3.26

0.10 32.31 0.51 -38.86 -20.21 0.04 3.45 3.76 4.01 3.36 3.48 39.04 20.60 3.36
0.01 3.41 0.33 -52.00 -16.12 0.02 0.56 1.34 2.78 0.52 0.65 52.01 16.36 0.52

0.9 0.05 11.47 0.42 -47.09 -22.16 0.00 0.60 1.45 2.17 0.54 0.73 47.11 22.27 0.54
0.10 27.75 0.30 -39.43 -23.11 -0.01 0.63 1.65 1.65 0.56 0.70 39.47 23.17 0.56

0.01 2.71 0.28 -52.10 -15.77 0.02 1.31 1.58 3.10 1.28 1.34 52.13 16.08 1.28
1000 0.8 0.05 11.59 0.42 -47.06 -21.98 0.03 1.32 1.80 2.69 1.29 1.38 47.10 22.15 1.29

0.10 29.66 0.31 -39.39 -22.94 -0.01 1.41 1.99 2.09 1.35 1.44 39.44 23.03 1.35

0.01 2.13 0.33 -52.08 -15.45 0.10 2.23 2.01 3.89 2.21 2.25 52.12 15.93 2.21
0.7 0.05 11.87 0.56 -46.83 -21.54 0.18 2.41 2.41 3.36 2.39 2.48 46.89 21.80 2.39

0.10 30.50 0.31 -39.40 -22.88 -0.04 2.23 2.54 2.67 2.21 2.25 39.48 23.03 2.21
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Table B16: Simulated data: between-variables independence in the set of matches, association between
the first, second and third variable in the set of non-matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ1,3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 77.21 0.07 -43.66 -22.72 0.00 1.15 5.61 2.65 1.12 1.15 44.02 22.87 1.12

0.9 0.05 74.36 0.13 -40.02 -23.54 -0.02 1.14 4.96 3.00 1.09 1.14 40.33 23.73 1.09
0.10 72.25 0.18 -34.36 -21.20 0.01 1.09 3.89 2.75 1.02 1.10 34.58 21.38 1.02

0.01 59.42 0.15 -43.39 -22.22 0.05 2.63 6.67 3.58 2.60 2.63 43.90 22.51 2.60
250 0.8 0.05 58.08 0.18 -40.10 -23.41 0.03 2.73 5.25 3.72 2.69 2.73 40.44 23.71 2.69

0.10 60.40 0.45 -33.98 -20.79 0.26 2.64 4.83 3.75 2.59 2.68 34.32 21.13 2.61

0.01 44.25 0.26 -43.66 -21.95 0.16 4.66 7.37 5.35 4.61 4.66 44.27 22.59 4.61
0.7 0.05 45.61 0.20 -39.89 -23.13 0.01 4.63 6.67 5.23 4.57 4.63 40.44 23.71 4.57

0.10 49.46 0.11 -33.77 -20.64 -0.12 4.90 6.31 5.55 4.86 4.90 34.36 21.37 4.86
0.01 17.83 0.39 -42.97 -23.29 0.00 0.88 3.94 1.75 0.77 0.96 43.15 23.36 0.77

0.9 0.05 26.80 0.37 -40.16 -24.28 0.01 0.86 3.10 1.93 0.79 0.93 40.28 24.36 0.79
0.10 42.59 0.26 -35.18 -22.20 0.03 0.83 2.49 1.86 0.77 0.87 35.27 22.28 0.77

0.01 14.51 0.45 -43.13 -23.23 0.04 1.96 4.50 2.42 1.90 2.02 43.37 23.36 1.90
500 0.8 0.05 23.84 0.40 -40.11 -24.10 0.01 1.93 3.95 2.60 1.86 1.97 40.30 24.23 1.86

0.10 40.31 0.37 -35.09 -21.99 0.10 1.92 2.82 2.35 1.88 1.96 35.20 22.11 1.89

0.01 11.02 0.63 -43.16 -22.89 0.23 3.28 5.41 3.62 3.21 3.34 43.50 23.17 3.22
0.7 0.05 21.04 0.76 -39.94 -23.82 0.34 3.31 4.55 3.65 3.25 3.40 40.19 24.10 3.26

0.10 37.53 0.33 -34.85 -21.95 0.04 3.42 3.89 3.48 3.36 3.43 35.06 22.23 3.36
0.01 3.42 0.41 -41.95 -23.61 0.02 0.57 3.12 1.31 0.52 0.71 42.07 23.65 0.52

0.9 0.05 17.41 0.41 -40.42 -24.99 0.00 0.60 2.02 1.34 0.54 0.72 40.47 25.03 0.54
0.10 33.60 0.25 -35.91 -23.30 -0.01 0.61 1.71 1.31 0.56 0.66 35.95 23.33 0.56

0.01 2.75 0.37 -42.19 -23.56 0.02 1.33 3.45 1.70 1.28 1.38 42.33 23.62 1.28
1000 0.8 0.05 16.92 0.46 -40.30 -24.94 0.03 1.32 2.42 1.73 1.29 1.39 40.38 25.00 1.29

0.10 34.55 0.26 -35.85 -23.24 -0.01 1.39 2.06 1.72 1.35 1.42 35.91 23.30 1.35

0.01 2.21 0.41 -42.34 -23.50 0.10 2.23 3.95 2.39 2.21 2.26 42.53 23.62 2.21
0.7 0.05 16.28 0.62 -40.18 -24.67 0.18 2.42 3.05 2.46 2.39 2.49 40.29 24.79 2.39

0.10 34.27 0.27 -35.80 -23.35 -0.04 2.23 2.62 2.37 2.21 2.25 35.90 23.47 2.21
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Table B17: Simulated data: between-variables independence in the set of matches, association between
the first, second and third variable in the set of non-matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ2,3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 3.02 0.14 -53.07 -4.92 0.00 1.21 2.48 2.96 1.12 1.22 53.13 5.74 1.12

0.9 0.05 17.06 -0.13 -49.21 -10.40 -0.02 1.41 2.45 3.67 1.09 1.41 49.27 11.03 1.09
0.10 35.17 -0.72 -42.25 -13.53 0.01 1.68 3.15 3.49 1.02 1.83 42.37 13.98 1.02

0.01 2.30 0.24 -52.80 -4.80 0.05 2.64 3.02 3.82 2.60 2.65 52.88 6.14 2.60
250 0.8 0.05 14.33 -0.09 -49.09 -10.21 0.03 2.85 3.10 4.42 2.69 2.85 49.19 11.13 2.69

0.10 31.33 -0.32 -41.94 -12.94 0.26 2.96 3.91 4.46 2.59 2.98 42.12 13.69 2.61

0.01 1.73 0.25 -52.76 -4.58 0.16 4.65 3.95 5.46 4.61 4.66 52.91 7.13 4.61
0.7 0.05 11.82 -0.09 -49.02 -9.97 0.01 4.69 3.76 6.04 4.57 4.69 49.16 11.66 4.57

0.10 27.56 -0.55 -41.80 -12.77 -0.12 4.99 5.03 6.25 4.86 5.02 42.10 14.21 4.86
0.01 2.96 0.08 -53.27 -4.46 0.00 0.82 1.59 1.73 0.77 0.82 53.29 4.78 0.77

0.9 0.05 15.66 -0.09 -49.99 -9.71 0.01 0.95 1.70 2.15 0.79 0.96 50.02 9.94 0.79
0.10 31.05 -0.84 -43.96 -12.57 0.03 1.06 1.94 2.36 0.77 1.35 44.01 12.79 0.77

0.01 2.44 0.15 -53.26 -4.52 0.04 1.93 2.00 2.50 1.90 1.93 53.30 5.17 1.90
500 0.8 0.05 13.61 -0.06 -50.02 -9.44 0.01 1.92 2.02 2.87 1.86 1.92 50.06 9.86 1.86

0.10 30.49 -0.83 -43.73 -12.50 0.10 2.12 2.34 3.04 1.88 2.27 43.79 12.86 1.89

0.01 1.78 0.31 -53.13 -4.45 0.23 3.23 2.66 3.70 3.21 3.25 53.20 5.79 3.22
0.7 0.05 12.26 0.29 -49.71 -9.30 0.34 3.33 2.73 3.94 3.25 3.34 49.78 10.10 3.26

0.10 29.23 -0.84 -43.60 -12.34 0.04 3.46 3.11 4.24 3.36 3.56 43.71 13.05 3.36
0.01 0.90 0.04 -53.27 -4.75 0.02 0.54 1.14 1.10 0.52 0.54 53.28 4.87 0.52

0.9 0.05 13.22 -0.02 -50.55 -9.60 0.00 0.63 1.08 1.42 0.54 0.63 50.56 9.71 0.54
0.10 31.39 -0.80 -44.76 -12.28 -0.01 0.74 1.29 1.69 0.56 1.09 44.78 12.40 0.56

0.01 0.71 0.03 -53.34 -4.72 0.02 1.29 1.36 1.63 1.28 1.29 53.36 4.99 1.28
1000 0.8 0.05 12.80 -0.02 -50.50 -9.63 0.03 1.34 1.34 1.93 1.29 1.34 50.52 9.82 1.29

0.10 32.23 -0.81 -44.73 -12.19 -0.01 1.45 1.58 2.20 1.35 1.66 44.75 12.39 1.35

0.01 0.69 0.11 -53.32 -4.71 0.10 2.21 1.78 2.48 2.21 2.21 53.35 5.32 2.21
0.7 0.05 12.50 0.14 -50.28 -9.44 0.18 2.39 1.86 2.71 2.39 2.40 50.31 9.82 2.39

0.10 32.11 -0.78 -44.70 -12.24 -0.04 2.26 2.09 2.92 2.21 2.39 44.75 12.59 2.21
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Table B18: Simulated data: between-variables independence in the set of matches, association between
the first, second and third variable in the set of non-matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1,2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 2.35 0.08 -53.40 -4.02 0.00 1.18 2.41 2.03 1.12 1.19 53.45 4.50 1.12

0.9 0.05 11.41 0.01 -51.10 -7.12 -0.02 1.19 2.10 2.12 1.09 1.19 51.14 7.43 1.09
0.10 24.27 -0.18 -46.26 -9.56 0.01 1.17 2.45 2.58 1.02 1.18 46.33 9.90 1.02

0.01 1.87 0.19 -53.12 -3.91 0.05 2.63 2.98 3.09 2.60 2.63 53.21 4.98 2.60
250 0.8 0.05 10.02 0.07 -50.93 -7.13 0.03 2.72 2.66 3.16 2.69 2.72 51.00 7.80 2.69

0.10 23.03 0.10 -45.88 -9.23 0.26 2.66 3.13 3.58 2.59 2.66 45.99 9.90 2.61

0.01 1.45 0.27 -53.06 -3.74 0.16 4.65 3.92 4.87 4.61 4.66 53.20 6.14 4.61
0.7 0.05 8.91 0.06 -50.78 -7.08 0.01 4.61 3.53 4.75 4.57 4.61 50.90 8.53 4.57

0.10 21.81 -0.24 -45.63 -9.29 -0.12 4.86 4.34 5.31 4.86 4.86 45.83 10.70 4.86
0.01 1.62 -0.05 -53.44 -4.26 0.00 0.79 1.57 1.49 0.77 0.79 53.47 4.51 0.77

0.9 0.05 9.80 -0.13 -51.46 -8.10 0.01 0.86 1.51 1.65 0.79 0.87 51.48 8.27 0.79
0.10 22.80 -0.44 -47.08 -10.80 0.03 0.91 1.68 1.94 0.77 1.01 47.11 10.97 0.77

0.01 1.32 0.02 -53.44 -4.31 0.04 1.91 2.00 2.30 1.90 1.91 53.48 4.88 1.90
500 0.8 0.05 9.25 -0.11 -51.40 -7.96 0.01 1.90 1.87 2.38 1.86 1.91 51.43 8.31 1.86

0.10 23.85 -0.35 -46.87 -10.70 0.10 1.94 2.04 2.63 1.88 1.97 46.91 11.02 1.89

0.01 1.04 0.19 -53.33 -4.21 0.23 3.22 2.64 3.52 3.21 3.22 53.39 5.49 3.22
0.7 0.05 9.19 0.24 -51.13 -7.77 0.34 3.29 2.56 3.45 3.25 3.30 51.19 8.50 3.26

0.10 24.30 -0.38 -46.74 -10.70 0.04 3.42 2.76 3.82 3.36 3.44 46.82 11.36 3.36
0.01 0.21 0.04 -53.43 -4.84 0.02 0.54 1.15 1.14 0.52 0.54 53.44 4.97 0.52

0.9 0.05 4.91 0.10 -51.76 -9.29 0.00 0.59 1.03 1.28 0.54 0.60 51.77 9.37 0.54
0.10 16.52 -0.04 -47.49 -12.27 -0.01 0.62 1.15 1.50 0.56 0.62 47.50 12.36 0.56

0.01 0.26 0.03 -53.48 -4.83 0.02 1.29 1.36 1.66 1.28 1.29 53.50 5.10 1.28
1000 0.8 0.05 6.65 0.12 -51.71 -9.32 0.03 1.30 1.29 1.77 1.29 1.31 51.73 9.49 1.29

0.10 20.76 -0.02 -47.44 -12.21 -0.01 1.38 1.47 2.00 1.35 1.38 47.46 12.37 1.35

0.01 0.31 0.10 -53.45 -4.81 0.10 2.21 1.78 2.51 2.21 2.22 53.48 5.43 2.21
0.7 0.05 8.17 0.29 -51.49 -9.18 0.18 2.39 1.78 2.54 2.39 2.41 51.52 9.52 2.39

0.10 23.79 -0.04 -47.40 -12.33 -0.04 2.24 1.95 2.70 2.21 2.24 47.44 12.63 2.21
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Table B19: Simulated data: between-variables independence in the set of matches, association between
the first, second and third variable in the set of non-matches. Estimation model: π(γp;π,µ,ν) =
πµp(γ1, γ2, γ3, γ4) + (1− π)νp(γ1, γ2, γ3, γ4)

RB RSE RRMSE

τ πj ξ CFS ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ ˆ︁τFS ˜︁τ ˜︁τc ˆ︁τ
0.01 0.15 -0.02 -54.37 -4.18 0.00 1.15 2.35 2.23 1.12 1.15 54.43 4.74 1.12

0.9 0.05 3.66 0.00 -53.36 -4.86 -0.02 1.14 1.98 1.86 1.09 1.14 53.40 5.20 1.09
0.10 12.71 -0.06 -49.58 -7.72 0.01 1.12 2.25 2.17 1.02 1.12 49.63 8.02 1.02

0.01 0.19 0.04 -54.09 -4.24 0.05 2.61 2.91 3.38 2.60 2.61 54.17 5.42 2.60
250 0.8 0.05 4.04 0.05 -53.22 -4.79 0.03 2.70 2.53 3.01 2.69 2.70 53.28 5.66 2.69

0.10 13.82 0.18 -49.25 -7.29 0.26 2.63 2.89 3.33 2.59 2.64 49.34 8.01 2.61

0.01 0.21 0.12 -54.01 -4.09 0.16 4.63 3.86 4.99 4.61 4.63 54.15 6.45 4.61
0.7 0.05 4.65 0.03 -53.07 -4.80 0.01 4.61 3.33 4.74 4.57 4.61 53.17 6.75 4.57

0.10 14.81 -0.16 -48.97 -7.53 -0.12 4.88 4.06 5.19 4.86 4.89 49.14 9.15 4.86
0.01 0.13 -0.05 -54.38 -4.42 0.00 0.78 1.55 1.69 0.77 0.78 54.41 4.73 0.77

0.9 0.05 3.83 0.02 -53.76 -5.87 0.01 0.82 1.44 1.42 0.79 0.82 53.77 6.04 0.79
0.10 12.63 -0.06 -50.42 -8.91 0.03 0.84 1.55 1.75 0.77 0.84 50.44 9.08 0.77

0.01 0.18 0.00 -54.38 -4.59 0.04 1.90 1.95 2.45 1.90 1.90 54.42 5.20 1.90
500 0.8 0.05 5.03 0.00 -53.68 -5.77 0.01 1.89 1.76 2.27 1.86 1.89 53.71 6.20 1.86

0.10 15.89 0.03 -50.23 -8.87 0.10 1.91 1.90 2.50 1.88 1.91 50.27 9.21 1.89

0.01 0.26 0.18 -54.27 -4.48 0.23 3.22 2.59 3.58 3.21 3.22 54.33 5.73 3.22
0.7 0.05 6.55 0.35 -53.44 -5.60 0.34 3.27 2.42 3.41 3.25 3.29 53.49 6.56 3.26

0.10 18.30 -0.04 -50.10 -8.99 0.04 3.39 2.57 3.71 3.36 3.39 50.16 9.72 3.36
0.01 0.17 -0.03 -54.36 -5.20 0.02 0.53 1.12 1.24 0.52 0.53 54.37 5.34 0.52

0.9 0.05 4.29 0.03 -54.07 -7.21 0.00 0.57 0.99 1.22 0.54 0.57 54.08 7.31 0.54
0.10 12.95 0.04 -50.87 -10.57 -0.01 0.60 1.06 1.45 0.56 0.60 50.89 10.66 0.56

0.01 0.26 -0.03 -54.41 -5.21 0.02 1.29 1.32 1.75 1.28 1.29 54.42 5.50 1.28
1000 0.8 0.05 7.07 0.06 -54.03 -7.25 0.03 1.29 1.22 1.73 1.29 1.29 54.04 7.46 1.29

0.10 17.87 0.05 -50.82 -10.56 -0.01 1.38 1.35 1.96 1.35 1.38 50.84 10.74 1.35

0.01 0.35 0.04 -54.38 -5.24 0.10 2.20 1.74 2.58 2.21 2.21 54.41 5.84 2.21
0.7 0.05 9.31 0.21 -53.80 -7.16 0.18 2.38 1.69 2.54 2.39 2.39 53.83 7.60 2.39

0.10 21.57 0.00 -50.78 -10.74 -0.04 2.22 1.80 2.65 2.21 2.22 50.81 11.07 2.21

C Sample code to check identifiability

WolframMathematica code to check local identifiability of the model π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4)+

(1− π)νp(γ1, γ2, γ3, γ4):

(* ideal *)

id =

{

(p*mx*my*mz*mw + (1 - p)*ux*uy*uz*uw) - p1,

(p*(1 - mx)*my*mz*mw + (1 - p)*(1 - ux)*uy*uz*uw) - p2,

(p*mx*(1 - my)*mz*mw + (1 - p)*ux*(1 - uy)*uz*uw) - p3,

(p*(1 - mx)*(1 - my)*mz*mw + (1 - p)*(1 - ux)*(1 - uy)*uz*uw) - p4,

(p*mx*my*(1 - mz)*mw + (1 - p)*ux*uy*(1 - uz)*uw) - p5,

(p*(1 - mx)*my*(1 - mz)*mw + (1 - p)*(1 - ux)*uy*(1 - uz)*uw) - p6,

(p*mx*(1 - my)*(1 - mz)*mw + (1 - p)*ux*(1 - uy)*(1 - uz)*uw) - p7,

(p*(1 - mx)*(1 - my)*(1 - mz)*mw + (1 - p)*(1 - ux)*(1 - uy)*(1 - uz)*uw) - p8,
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(p*mx*my*mz*(1 - mw) + (1 - p)*ux*uy*uz*(1 - uw)) - p9,

(p*(1 - mx)*my*mz*(1 - mw) + (1 - p)*(1 - ux)*uy*uz*(1 - uw)) - p10,

(p*mx*(1 - my)*mz*(1 - mw) + (1 - p)*ux*(1 - uy)*uz*(1 - uw)) - p11,

(p*(1 - mx)*(1 - my)*mz*(1 - mw) + (1 - p)*(1 - ux)*(1 - uy)*uz*(1 - uw)) - p12,

(p*mx*my*(1 - mz)*(1 - mw) + (1 - p)*ux*uy*(1 - uz)*(1 - uw)) - p13,

(p*(1 - mx)*my*(1 - mz)*(1 - mw) + (1 - p)*(1 - ux)*uy*(1 - uz)*(1 - uw)) - p14,

(p*mx*(1 - my)*(1 - mz)*(1 - mw) + (1 - p)*ux*(1 - uy)*(1 - uz)*(1 - uw)) - p15,

(p*(1 - mx)*(1 - my)*(1 - mz)*(1 - mw) + (1 - p)*(1 - ux)*(1 - uy)*(1 - uz)*(1 - uw)) - p16

}

(* compute Jacobian *)

jac = D[id, {#}] & /@ {mx, my, mz, mw, ux, uy, uz, uw, p}

(* rank of the Jacobian *)

MatrixRank[Transpose[jac]]

Maple code to check generic identifiability of the parameter π in the model π(γp;π,µ,ν) = πµp(γ1, γ2, γ3, γ4)+

(1− π)νp(γ1, γ2, γ3, γ4) using Gröbner basis approach:

# number of cpus to use

kernelopts(numcpus = 8);

# Groebner package

with(Groebner);

# define ideal, t is used to get rid of trivial output p1 + ... + p16 - 1

id :=

[t*p - q,

t*(p*mx*my*mz*mw + (1 - p)*ux*uy*uz*uw) - p1,

t*(p*(1 - mx)*my*mz*mw + (1 - p)*(1 - ux)*uy*uz*uw) - p2,

t*(p*mx*(1 - my)*mz*mw + (1 - p)*ux*(1 - uy)*uz*uw) - p3,

t*(p*(1 - mx)*(1 - my)*mz*mw + (1 - p)*(1 - ux)*(1 - uy)*uz*uw) - p4,

t*(p*mx*my*(1 - mz)*mw + (1 - p)*ux*uy*(1 - uz)*uw) - p5,

t*(p*(1 - mx)*my*(1 - mz)*mw + (1 - p)*(1 - ux)*uy*(1 - uz)*uw) - p6,

t*(p*mx*(1 - my)*(1 - mz)*mw + (1 - p)*ux*(1 - uy)*(1 - uz)*uw) - p7,

t*(p*(1 - mx)*(1 - my)*(1 - mz)*mw + (1 - p)*(1 - ux)*(1 - uy)*(1 - uz)*uw) - p8,

t*(p*mx*my*mz*(1 - mw) + (1 - p)*ux*uy*uz*(1 - uw)) - p9,

t*(p*(1 - mx)*my*mz*(1 - mw) + (1 - p)*(1 - ux)*uy*uz*(1 - uw)) - p10,

t*(p*mx*(1 - my)*mz*(1 - mw) + (1 - p)*ux*(1 - uy)*uz*(1 - uw)) - p11,

t*(p*(1 - mx)*(1 - my)*mz*(1 - mw) + (1 - p)*(1 - ux)*(1 - uy)*uz*(1 - uw)) - p12,

t*(p*mx*my*(1 - mz)*(1 - mw) + (1 - p)*ux*uy*(1 - uz)*(1 - uw)) - p13,
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t*(p*(1 - mx)*my*(1 - mz)*(1 - mw) + (1 - p)*(1 - ux)*uy*(1 - uz)*(1 - uw)) - p14,

t*(p*mx*(1 - my)*(1 - mz)*(1 - mw) + (1 - p)*ux*(1 - uy)*(1 - uz)*(1 - uw)) - p15,

t*(p*(1 - mx)*(1 - my)*(1 - mz)*(1 - mw)

+ (1 - p)*(1 - ux)*(1 - uy)*(1 - uz)*(1 - uw)) - p16];

# suggest orders

vord1 := SuggestVariableOrder(id, [p, mx, my, mz, mw, ux, uy, uz, uw, t]);

vord2 := SuggestVariableOrder(id, [q,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16]);

# compute using the product order with tdeg (graded reverse lexicographic)

gb := Basis(id, prod(tdeg(vord1), tdeg(vord2))):;

# convert to lex using the Groebner walk

gb2 := Walk(gb, prod(tdeg(vord1),tdeg(vord2)),

plex(mw, mz, my, mx, uw, uz, uy, ux, p, t,

p16, p15, p14, p12, p8, p13, p11, p10, p7, p6, p4, p9, p5, p3, p2, p1, q)):;

Singular code to check rational identifiability of the model π(γp;π,µ,ν) = πµp(γ1, γ2,3, γ4) + (1 −
π)νp(γ1,2, γ3, γ4)

/* set-up */

option(prot);

short = 0;

ring r = (0, uy1c, uy0c, mz1c, mz0c, mxc, myc, mwc, uxc, uzc, uwc, pc),

(uy1, uy0, mz1, mz0, mx, my, mw, ux, uz, uw, p), lp;

/* ideal */

ideal I = p*mx*my*mz1*mw + (1 - p)*ux*uy1*uz*uw -

(pc*mxc*myc*mz1c*mwc + (1 - pc)*uxc*uy1c*uzc*uwc),

p*(1 - mx)*my*mz1*mw + (1 - p)*(1 - ux)*uy0*uz*uw -

(pc*(1 - mxc)*myc*mz1c*mwc + (1 - pc)*(1 - uxc)*uy0c*uzc*uwc),

p*mx*(1 - my)*mz0*mw + (1 - p)*ux*(1 - uy1)*uz*uw -

(pc*mxc*(1 - myc)*mz0c*mwc + (1 - pc)*uxc*(1 - uy1c)*uzc*uwc),

p*(1 - mx)*(1 - my)*mz0*mw + (1 - p)*(1 - ux)*(1 - uy0)*uz*uw -

(pc*(1 - mxc)*(1 - myc)*mz0c*mwc + (1 - pc)*(1 - uxc)*(1 - uy0c)*uzc*uwc),

p*mx*my*(1 - mz1)*mw + (1 - p)*ux*uy1*(1 - uz)*uw -

(pc*mxc*myc*(1 - mz1c)*mwc + (1 - pc)*uxc*uy1c*(1 - uzc)*uwc),

p*(1 - mx)*my*(1 - mz1)*mw + (1 - p)*(1 - ux)*uy0*(1 - uz)*uw -

(pc*(1 - mxc)*myc*(1 - mz1c)*mwc + (1 - pc)*(1 - uxc)*uy0c*(1 - uzc)*uwc),

p*mx*(1 - my)*(1 - mz0)*mw + (1 - p)*ux*(1 - uy1)*(1 - uz)*uw -

(pc*mxc*(1 - myc)*(1 - mz0c)*mwc + (1 - pc)*uxc*(1 - uy1c)*(1 - uzc)*uwc),
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p*(1 - mx)*(1 - my)*(1 - mz0)*mw + (1 - p)*(1 - ux)*(1 - uy0)*(1 - uz)*uw -

(pc*(1 - mxc)*(1 - myc)*(1 - mz0c)*mwc + (1 - pc)*(1 - uxc)*(1 - uy0c)*(1 - uzc)*uwc),

p*mx*my*mz1*(1 - mw) + (1 - p)*ux*uy1*uz*(1 - uw) -

(pc*mxc*myc*mz1c*(1 - mwc) + (1 - pc)*uxc*uy1c*uzc*(1 - uwc)),

p*(1 - mx)*my*mz1*(1 - mw) + (1 - p)*(1 - ux)*uy0*uz*(1 - uw) -

(pc*(1 - mxc)*myc*mz1c*(1 - mwc) + (1 - pc)*(1 - uxc)*uy0c*uzc*(1 - uwc)),

p*mx*(1 - my)*mz0*(1 - mw) + (1 - p)*ux*(1 - uy1)*uz*(1 - uw) -

(pc*mxc*(1 - myc)*mz0c*(1 - mwc) + (1 - pc)*uxc*(1 - uy1c)*uzc*(1 - uwc)),

p*(1 - mx)*(1 - my)*mz0*(1 - mw) + (1 - p)*(1 - ux)*(1 - uy0)*uz*(1 - uw) -

(pc*(1 - mxc)*(1 - myc)*mz0c*(1 - mwc) + (1 - pc)*(1 - uxc)*(1 - uy0c)*uzc*(1 - uwc)),

p*mx*my*(1 - mz1)*(1 - mw) + (1 - p)*ux*uy1*(1 - uz)*(1 - uw) -

(pc*mxc*myc*(1 - mz1c)*(1 - mwc) + (1 - pc)*uxc*uy1c*(1 - uzc)*(1 - uwc)),

p*(1 - mx)*my*(1 - mz1)*(1 - mw) + (1 - p)*(1 - ux)*uy0*(1 - uz)*(1 - uw) -

(pc*(1 - mxc)*myc*(1 - mz1c)*(1 - mwc) + (1 - pc)*(1 - uxc)*uy0c*(1 - uzc)*(1 - uwc)),

p*mx*(1 - my)*(1 - mz0)*(1 - mw) + (1 - p)*ux*(1 - uy1)*(1 - uz)*(1 - uw) -

(pc*mxc*(1 - myc)*(1 - mz0c)*(1 - mwc) + (1 - pc)*uxc*(1 - uy1c)*(1 - uzc)*(1 - uwc)),

p*(1 - mx)*(1 - my)*(1 - mz0)*(1 - mw) + (1 - p)*(1 - ux)*(1 - uy0)*(1 - uz)*(1 - uw) -

(pc*(1 - mxc)*(1 - myc)*(1 - mz0c)*(1 - mwc) +

(1 - pc)*(1 - uxc)*(1 - uy0c)*(1 - uzc)*(1 - uwc));

/* compute Groebner basis */

ideal G = slimgb(I);

/* check if f = p - pc is contained in I */

/* if contained, normal form (NF) is 0 */

NF(p - pc, std(I));

/* check the rest in the same way... */

190


