
Zombie Cheminformatics - Extraction and

Conversion of Wiswesser Line Notation (WLN)

from Chemical Documents

Michael Blakey1*, Samantha Pearman-Kanza1 and Jeremy G. Frey1

1*Department of Chemistry, University of Southampton, University
Road, Southampton, SO17 1BJ, Hampshire, United Kingdom.

*Corresponding author(s). E-mail(s): M.Blakey@soton.ac.uk;
Contributing authors: s.pearman-kanza@soton.ac.uk;

J.G.Frey@soton.ac.uk;

Abstract

Purpose: Wiswesser Line Notation (WLN) is a old line notation for encoding
chemical compounds for storage and processing by computers. Whilst the nota-
tion itself has long since been surpassed by SMILES and InChI, distribution
of WLN during its active years was extensive. In the context of modernising
chemical data, we present a comprehensive WLN parser developed using the
OpenBabel toolkit, capable of translating WLN strings into various formats
supported by the library. Furthermore, we have devised a specialised Finite
State Machine (FSM) tool, constructed from the rules of WLN, enabling the
recognition and extraction of chemical strings out of large bodies of text. Avail-
able open-access WLN data with corresponding SMILES or InChI notation is
rare, however ChEMBL, ChemSpider and PubChem all contain WLN records
which were used for conversion scoring. Our investigation revealed a notable
proportion of inaccuracies within the database entries, and we have taken steps
to rectify these errors whenever feasible.

Scientific contribution: Tools for both the extraction and conversion of WLN
from chemical documents have been successfully developed. Both the Determin-
istic Finite Automaton (DFA) and parser handle the majority of WLN rules
officially endorsed in the three major WLN manuals, with the parser showing a
clear jump in accuracy and chemical coverage over previous submissions. The
GitHub repository can be found here: https://github.com/Mblakey/wiswesser.
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1 Background

In the field of computational chemistry, a key requirement is to represent molecular
structures in machine readable formats[1]. These include file types that correspond to
the complete molecular graph, such as SDF/Mol formats, and simpler string sequences
known as chemical line notations. Whilst the majority of line notations generally do
not include supplementary data beyond the traditional connection table[2], they are
significantly leaner in size, and are a convenient method for compound sharing in
large databases[3]. Regardless of the input format, chemical tool kits such as RDKit,
OpenBabel and CDK[4–6] facilitate reading of the input format and construct an
internal molecular object where various manipulations and transformations can take
place. Due to these software packages, it is possible to interchange between formats
depending on which is more well-suited to a particular objective[7]. Even traditional
IUPAC nomenclature can be successfully parsed and converted by OPSIN[8]. Software
such as NextMove’s LeadMine employs a grammar-based approach for the efficient
parsing and extraction of chemical entities from documents[9, 10]. These grammars
require expert construction, and offer highly effective matching of entities within the
text. When coupled with format conversion capabilities, this entity matching process
enables rapid extraction and curation of data, valuable for various cheminformatics
tasks.

There are well-established algorithms for parsing and converting between line
notations such as SMILES and InChI, which are contained in most conversion tool-
kits[11, 12]. However, when it comes to notations predating these modern standards,
there are either no existing processes, or concerns about their completeness and
reliability[13]. As a result, access to information encoded in these older notations has
been effectively limited to individuals with first hand knowledge of the notation’s rules.

Wiswesser Line Notation (WLN)[14] is one such line notation that predated
SMILES, and saw widespread use amongst chemists and early cheminformatics soft-
ware during its active years. Early look up systems such as the Index Chemicus
Registry System (ICRS)[15] and the CROSSBOW software package[16] gave access
to large chemical queries, and algorithms using WLN allowed for early substructure
searching[17]. While the notation adheres to strict mathematical principles, the WLN
language is conveyed through a set of verbose written English rules. As such, chemists
had to be trained specifically in the rule set, and the input of compounds was done by
hand on punch card machines[18], which was one of many reasons the notation was
dropped in favour of systems with more rigorous foundations.

Due to the extensive distribution of chemical entities in WLN, and the importance
for text mining and modernisation of old data[19, 20], there has been an interest in
both recognising and parsing WLN, and creating the algorithms necessary for con-
verting compounds represented in WLN to the modern formats. The first instance of
a modern WLN reader was submitted to OpenBabel by Roger Sayle, claiming a 70%
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accuracy rate on the WLN strings available in the PubChem database[13]. As we will
demonstrate in this work, this was likely an underestimate due to inaccuracies in the
WLN strings themselves. Following this, a demoWLN reader was hosted by ChemDoo-
dle, with similar results[21]. Both readers provided comprehensive coverage of acyclic
compounds, but there was limited implementation of the rules for cyclic compounds.
The encoding manuals that distributed WLN versions contained some revisions that
omitted the cyclic rules, likely accounting for these gaps in coverage[22].

These parsers can attempt a conversion on a candidate WLN string, however when
mining text, there is currently no method for extracting these candidate strings. In
this work, we present a grammar for the WLN syntax, which subsequently enables fast
identification and extraction of potential WLN strings, alongside a complete parser
that covers all the WLN rules.

2 Glossary

This section introduces some technical terms that will be used throughout the rest of
the paper to describe the theoretical underpinnings of the software development.

• Parsing: The process of analyzing a sequence of symbols (usually text) to determine
its grammatical structure or syntax.

• Context-Free Grammar (CFG): A formal language model used to describe the
syntax of languages. It consists of a set of rules that specify how symbols can be
combined to form valid strings.

• Deterministic Finite Automaton (DFA)): A theoretical model of computa-
tion used to recognise regular languages. It processes input symbols one at a time,
transitioning between states based on the input.

• Non-Deterministic Finite Automaton (NFA): Another theoretical model of
computation used to recognise regular languages. Unlike DFAs, NFAs can have
multiple possible transitions for a given input symbol.

3 WLN Syntax and Productions

TheWLN rules are given in verbose English statements, with the most modern revision
being seen in the encoding manual by Elbert G. Smith[23]. Whilst the notation was
designed to have an unambiguous string for any given molecule, the design of the rules
does leave room for interpretation on certain compounds, especially when it comes to
aromaticity and kekulization in compound cycles. There are also additional constraints
that are imposed by the WLN rules that limit the types of compounds that can be
effectively represented. These limitations are inherent to how WLN represents rings,
although possessing a valid representation, certain compounds would be impractical
when expressed as WLN strings.

In order to parse WLN strings, the syntax and semantic structure needs to be
represented in a formal way. One method is the Context Free Grammar (CFG), which
uses a finite set of productions which encapsulate a language. A production is a simple
rule or instruction that defines how to construct sentences or strings by replacing
symbols with other symbols, enabling the formal representation of language structure.
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In this section, we give an base overview of the WLN rules, and how these can be
formally represented as a set of productions for string parsing.

3.1 WLN Tokens and Symbol Definitions

WLN is an encoding language consisting of strings of alphanumeric symbols, classified
as a linear notation system. Formed of the alphabetic symbols [A-Z], punctuation
symbols [-,&,/], numerals [0-9] and the space as a separator (Figure 1). Historically
the notation preceded the invention of ASCII[24], with only the upper case alphabetic
characters available on the punch card computers of that era.

letter: (‘A’|‘B’|‘C’|‘D’|‘E’|‘F’|‘G’|‘H’|‘I’|‘J’|‘K’|‘L’|‘M’|‘N’|‘O’|‘P’|‘Q’|‘

R’|‘S’|‘T’|‘U’|‘V’|‘W’|‘X’|‘Y’|‘Z’);

digit:(‘0’|‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’|‘9’);

space: ‘ ’;

ampersand: ‘&’

dash: ‘-’

slash: ‘/’

Fig. 1: Terminal Characters (tokens) given for the WLN language

As the character set is so limited, each token naturally takes on various semantics
depending on the syntax of the surrounding string. WLN syntax can be classified and
separated into two primary environments: Acyclic, and Cyclic.

In the context of acyclic notation, tokens within WLN correspond to chemical
elements or convey information about various levels of branching within the molecular
structure. However, when situated within a cyclic environment, these symbols play a
dual role. They not only define the presence of a ring but also serve as indicators of
positions for acyclic substituents. These position indicators are commonly referred to
as locants. Acyclic symbol definitions for the whole character set are shown in Table 1.

3.2 Acyclic Productions

In instances where WLN is applied outside of a ring system, the symbols employed
in the notation construct the molecular representation in a tree-like structure. Punc-
tuation marks serve the purpose of specifying branches within the structure and
demarcating ionic components. In this context, each alphanumeric symbol within
WLN corresponds to either a chemical element or a frequently encountered func-
tional group, where each symbol can only have one parent in the hierarchical tree-like
structure. As a result of the condensation of functional groups, particularly in acyclic
notations, WLN proves to be remarkably compact.

Each functional symbol is then assigned a branching property that both enforces
the allowed chemistry of an element, and removes the amount of punctuation needed
in the string. These can be separated into distinct token classes, shown in Figure 2.

WLN Degree: Similar to SMILES, WLN strings represent the underlying molec-
ular graph, allowing the assignment of a valence to each symbol. WLN bases its
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WLN Symbol Meaning Allowed Branches Terminating Locant

A Locant Only 0 ✓
B Boron 3 ✓
C Carbon 4 exactly ✓
D Open Chelate 0 ✓
E Bromine 1 ✓ ✓
F Fluorine 1 ✓ ✓
G Chlorine 1 ✓ ✓
H Hydrogen 1 ✓ ✓
I Iodine 1 ✓ ✓
J Ring Closure 0 ✓
K Nitrogen (1+ charge, with 4 implied methyls) 4 ✓
L Open Carbocycle 0 ✓
M Secondary Amine (NH) 2 ✓
N Nitrogen 3 ✓
O Oxygen 2 ✓
P Phosphorous 3 ✓
Q Hydroxyl 1 ✓ ✓
R Benzene 1 (expandable) ✓
S Sulphur 3 ✓
T Open Heterocycle 0 ✓
U Unsaturate bond 0 ✓
V Carbonyl 2 ✓
W Add -oxylate 0 ✓
X Carbon (4 implied methyls) 4
Y Carbon (3 implied methyls) 3
Z Primary Amine (NH2) 0 ✓
0..9 Alkane chain of length n 0

& Punctuation
- Punctuation
space Punctuation
/ Punctuation

Table 1: WLN symbol definitions and their corresponding properties

character branch values on the number of allowed branches, rather than the sum of
bond orders more commonly associated with atom valence. For instance, the symbol
Y represents a carbon that can have three connected children, independent of whether
one of these children is double bonded.

Branching Symbol: Compound branches in WLN can only be started with spe-
cific characters, in general these have to be elements with a WLN degree greater
than 2. All periodic code denotations are allowed to start branches, including single
character hypervalence.

Terminating Symbol: In the WLN notation, when a branch is initiated, certain
characters are designated as terminating symbols. These symbols typically have a
general valence of 1 or represent a group where the implicit hydrogen count does
not permit further atomic definitions. These terminating symbols effectively close the
branch, and the notation subsequently continues from the last branching symbol used.
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linear: (‘C’|‘M’|‘O’|‘W’|‘V’)

terminators: (‘E’|‘F’|‘G’|‘H’|‘I’|‘Q’|‘Z’);

branched: (‘B’|‘K’|‘N’|‘P’|‘S’|‘X’|‘Y’);

Fig. 2: Degree specific productions given for the WLN language

3.2.1 Linear Compounds

To define a linear compound, symbols can follow sequentially without any punctuation.
If an element is required for which a specific symbol is not provided, the periodic
character code can be inserted between two - characters. Alkyl chains are given as
numerical strings, where the number indicates the number of carbons in the chain. It
is important to note that in this context, if a terminator symbol is utilised anywhere
except as the starting character, it promptly terminates the chain, preventing any
further symbols from following it, except in cases where a new ion needs to be specified.
To define an ion, the commencement of a new molecule can be signalled by a space
followed by the & character. For any bond unsaturations, the character U indicates
the degree of the unsaturation (at most 2). These rules are represented as productions
in Figure 3 with example compounds given in Figure 4.

element: dash letter letter dash;

hypervalent: dash letter dash;

alkyl_chain: (‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’|‘9’) digit*;

double_bond: ‘U’;

triple_bond: ‘U’‘U’;

linear_chain:

(element|hypervalent|alkyl_chain|linear) (double_bond|triple_bond)?

linear_chain;

terminal_chain: terminator? linear_chain terminator?

ion: space ampersand terminal_chain

unbranched_wln: terminal_chain ion*

Fig. 3: Linear compound productions given for the WLN language

It is important to recognise the recursive nature inherent in the linear chain pro-
duction. This recursion is employed to ensure that the unsaturation character must
have both a parent and a child to be considered valid within the context of WLN.
While recursive rules such as this are the most straightforward means of representing
WLN, it is crucial to acknowledge that, when it comes to creating a parser, enforcing
such rules can pose challenges.

3.2.2 Branching Compounds

Within WLN, various symbols have the capacity to accommodate more than a sin-
gle child, resulting in the formation of branching structures that can be interpreted
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(a) 2U2VQ (b) -CA- &OVO

(c) 2Y2M2QQ

Fig. 4: Smith reference compound examples created from the set of linear productions;
bonding, ions and terminator characters are shown. Double bond stereochemistry has to be
implied, as explicit descriptions were an notational element added in later versions.

through unbounded trees of WLN characters. In this context, a branch can be termi-
nated through two distinct methods: either by employing an& symbol or by utilising a
terminator symbol. Upon the termination of a branch, the subsequent symbols become
attached to the last branching character encountered. It is important to highlight that
the presence of consecutive & characters will lead to popping back (returning to pre-
vious) the designated number of branching symbols. When a branch is closed in this
manner, no additional groups can be appended to that particular symbol. The produc-
tions for branching WLN strings replace the linear chain production seen in Figure 3,
adding in a recursive rule to allow branching. The base structure of this production is
shown in Figure 5. In the example branch production, the number of branches can be
enforced with multiple recursive components. In this example, the symbol Y can have
two subsequent branches, which is shown by two optional calls of the example branch
production on the right hand side. This structure can be followed for the other branch-
ing symbols, effectively limiting the branch count. Some examples are given in Figure
6.

3.3 Cyclic Productions

The syntax for cyclic structures in WLN consists of two primary components: the
cycle definition and any substituent groups intended to be attached to the ring. The
cycle definition is encapsulated by the use of specific characters, namely (L,T,D) to
initiate and (J) to close the cycle. Within this boundary, the notation describes the
Smallest Subset of Ring Systems (SSRS) as well as any heteroatom designations and
aromaticity assignments associated with the cycles within the subset. Heteroatom and
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branching_chain:

(element|hypervalent|branched) ((double_bond|triple_bond)? branching_chain (

terminator|ampersand)?)*

example_branch:

’Y’ ( (double_bond|triple_bond)? example_branch (terminator|ampersand)?)? ( (

double_bond|triple_bond)? example_branch (terminator|ampersand)?)?

Fig. 5: Branching compound production structure given for the WLN language. For specific
branch counts, example branch gives a structure that can be repeated for each available
branch symbol

(a) GXGG2NY&&Y (b) QVYZY2&2

(c) 1Y&N1VM1O1O1&Y

Fig. 6: Smith reference compound examples created from the set of branching productions;
The ampersand here is introduced here as a method for closing, and returning to previous
branching characters

R-group positions are defined by index lookup on a defined ring path using character
locants.

3.3.1 The Locant Path

This ring path, called the locant path in WLN rules, is a singular path starting from a
base atom indexed A, which traverses each atom only once until a loop is formed, see
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Figure 7. Notably, the locant path concept in WLN is analogous to the Hamiltonian
path concept in non-directed graphs[25]. It is important to recognise that there exists
several valid cycle structures that do not possess such a path. For these compounds,
a ring branching notation becomes necessary.

In the WLN rules, the starting position and direction of the locant path is given
by the minimisation of a locant sum, defined as the sum of locant values shared
between two sub-cycles. Nevertheless, it is often more intuitive to conceptualise this
in terms of shared rings and allowed directions, which in turn give rise to the following
foundational rules:

1) The starting position for the locant path is determined by the number of shared
rings, the atom with the highest share count is the starting point. If the share count
is above two, the atom is deemed multicyclic.

2) The locant path can never cross a fuse junction, unless to move to a multicyclic
point.

3) If on a multicyclic point, and there is another multicyclic point connected, the path
must travel through this second point.

(a) L B666J (b) L666 1A MJ

Fig. 7: Locant Paths shown on chemical structures for a) Phenanthrene and b) Phenalene.
WLN alphabetic indexing is shown on each atom. For Phenalene, the highest priority atom is
the perifused center, and therefore it takes the starting point. Any further peri-fused points
will force the path to travel in that direction.

3.3.2 Cycle Structure

As previously mentioned, the characters (L,T,D) initiate a cycle and the (J) character
closes the cycle. Sub-cycle sizes are then given by their digit value, if the cycle size
has more than one digit, they are wrapped between two - symbols, similar to how
elements are defined outside of rings. Attachment position of the ring is either given
with no locant symbol, which implies the ring is created around the A position in the
path, or, a space followed by a locant indicates its lowest position. A locant symbol
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is any letter character up to X, to index past this, & symbols are used. For example,
in Figure 7, Anthracene would be L C666J. Heteroatoms then follow with a similar
format, although instead of taking on A if no locant is specified, the implied position
is the position after the last locant seen. Prior to the closure of a ring within WLN,
aromaticity designations are provided for each sub-cycle. Specifically, the symbols &
and T are used to signify aromatic or alphatic status, respectively. When only one of
these symbols is provided for a sub-cycle, it applies to the entire system, indicating
whether the entire system is either aromatic or aliphatic. These productions are given
in Figure 8 with example compounds seen in Figure 9.

ring_open: ‘L’;

ring_close: ‘J’;

sub_size: (‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’|‘9’);

big_size: dash sub_size digit* dash;

ring_size: (sub_size|big_size);

hetero_atom: (branched|linear|element|hypervalent);

locant: letter (‘&’)*;

aromatic: (‘&’|‘T’);

cycle:

ring_open (ring_size+ | (space locant ring_size ring_size*)+ (hetero_atom* (

space locant hetero_atom heteroatom)* ) aromatic* ring_close;

Fig. 8: Basic cycle production structure given for the WLN language.

The production in Figure 8 describes all ring systems that have atoms only sharing
two or less sub-cycles. When this isn’t the case, further notation is needed which
designates: the number and position of the multicyclic points and the size of the ring
system as a locant value. These are both given before the heteroatom syntax, and
syntax rules are shown in Figure 10 with compound examples given in Figure 11.
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(a) L66&TJ (b) L E5 B666 OV MUTJ

(c) L D6 C6 B566 MNJ

Fig. 9: Smith reference compound examples created from the set of polycyclic productions;
A demonstration is given for cycle open and closure, alongside heteroatoms and aromaticity
assignments.

multi_count: (‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’|‘9’);

multi_cycle:

ring_open (ring_size+ | (space locant ring_size ring_size*)+ space multi_count

locant+ space locant space? (hetero_atom* (space locant hetero_atom

heteroatom)* ) aromatic* ring_close;

Fig. 10: Multicyclic production structure given for the WLN language.

3.3.3 Bridges, Crossed Bonds and Macro cycles

Specific rules are established for bridging positions and crossed bonds across a cycle,
enabling the definition of complex interconnected ring structures. Bridges are repre-
sented using single-letter locants, separated by spaces, indicating the locant position
that transitions into a bridging environment. Crossed bond notation is presented with
a ring size followed by the character / and two locant characters, specifying the
locants where the crossing of the bond begins and ends. Crossed bond notation offers
a straightforward method for defining the bonds involved in ring junctions. However
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(a) L566 1A LJ (b) L666 B6 2AB PJ

(c) T B6666 C6 3ABC S EMJ

Fig. 11: Smith Reference compound examples created from the set of multicyclic productions;
Here the syntax expects a multicyclic block corresponding to the number of atoms shared
between more then two subcycles.

in the WLN rules, crossed bonds are primarily employed when no other means of
representation are available.

Macrocyclic compounds use an embedded style ring notation, which allows the
definition of a branch that will wrap back to a specific locant position on the ring,
demonstrated for the WLN string of Morphine, shown in Figure 12. This does however
have its limitations, which are apparent from looking at the last production in Figure
13. The notation requires that before closing, the cycle defined in the embedded envi-
ronment must have its sub-ring size defined. A consequence is that only one returning
substructure can be added to any given ring. Productions for bridges, crossed bonds
and macrocycles are given in Figure 13. With bridges and crossed bond productions
added as optionals into the general cycle rule. Discussions on this syntax revealed
it was rarely used, as macro-cycles were typically outside the scope of WLNs usable
chemical space, a comment not untrue to many modern line notations.

3.3.4 Locant Substituents and Spiro Rings

Once a ring system is closed, locants are then used to specify acyclic branches as R-
groups. For chaining rings together, branches can be followed by - symbols and the
attachment position of the new ring. Similar to regular branches, the & symbol can
be used to close and pop back rings, in order attach locants to a ring defined earlier.
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Fig. 12: Morphine WLN: T-T665 B6 2AB O KO NUT&TTJ IQ MQ B2N1&- D6J.
Shown with macro-cyclic notation. Since Morphine has a valid locant path, this notation is
left to the discretion of the user, an alternate form is T B65 H6 F6 F6 3FGH R AO DU
GX PN HU- MTT&TTJ CQ JQ P1

bridge: locant space locant;

crossed_bond: ring_size dash locant locant;

macrocycle: ring_open dash cycle locant ring_size ring_close;

Fig. 13: Bridge, crossed bond and macrocyclic productions for the WLN language.

The productions for this again can be defined recursively, as technically an infinite
chain of rings is allowed. Productions are given in Figure 14;

The rules for a spiro compound are relatively simple, the locant branch character
is substituted for an &, and a chained ring is defined as previously stated, with the
positional locant being the shared atom between the two rings.

rgroup: space locant branching_chain;

cycle_chain: cycle rgroup* (rgroup dash space locant cycle_chain)*

Fig. 14: Recursive cycle chain productions for the WLN language.

4 Matching WLN strings

For a given grammar, various parsing techniques are available to match a given input
string. In the case of WLN, similar to IUPAC nomenclature, the grammar describes
an infinite number of terms[26]. If parsing in a traditional way with a framework such
as ANTLR, various techniques are used to handle the recursion but will come at the
cost of run time speed, and are therefore not practical for text mining [27, 28].

Alternatively, one could employ a Finite State Machine (FSM) for parsing, which
offers the advantage of linear time complexity[29]. We can also guarantee that the
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Deterministic Finite Automata (DFA) is minimal. However, for a DFA representation
to be feasible, the language itself must be regular in definition.

4.0.1 WLN Text Matching

To employ a DFA for matching WLN, certain rule relaxations are necessary. These
relaxations result in strings that are syntactically valid according to the WLN rules but
may not necessarily be semantically correct. The key modifications involve permitting
any number of branches after a given symbol and allowing any number of closures
at any point in the string. To address the omissions by relaxing the rules, a push-
down style automaton with a stack can track open and closures of given branches.
This method was heavily inspired by the bracket matching seen in LeadMine and
CaffeineFix[30].

DFA-based text matching offers a highly efficient method for extracting strings[31]
that could be valid WLN expressions. Subsequently, these potential WLN strings can
be further validated by the converter to ensure semantic correctness. An example FSM
that matches simple 5 and 6-membered (bi)cyclic rings is given in Figure 15.

Fig. 15: DFA that matches WLN strings for Benzene, Cyclopenta-1,3-diene, Cyclohexane,
Cyclopentane,4H-indene and Hexahydroindan. Root state is given in red, with the only accept
shown with a double circle.

In the process of constructing a DFA from the WLN rules, there exists greater
flexibility in initially creating a Non-deterministic Finite Automaton (NFA) and sub-
sequently converting it to a DFA through the subset construction method, followed
by minimisation with the equivalence principle[29]. This approach results in a Finite
State Machine (FSM) with a total of 59 states and 1028 edges, a small machine that
enables very fast parsing.

The tool developed around this DFA, known as wlngrep, employs a greedy matching
approach to extract WLN strings from text data. Similar to the conventions observed
in the standard grep tool, matches can be retrieved using wlngrep. Exact matching will
yield a result only if an entire line corresponds to a syntactically valid WLN string. If
an entire line is not a valid WLN string, it will return the longest sequences of valid
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WLN strings present within that line. A consideration, is that most lone capital letters
are themselves WLN strings, which would return matches for the start of any properly
formatted sentence, or name/place. Therefore, single letter matches are turned off by
default, but can be enabled with a flag if required. An example use is seen in Figure 16.

“Although connecting atoms in a molecule are frequently found as noncontiguous
symbols in a WLN string, they will be contiguous in a fragment. For example, the
structure in Figure 2, 3-chloro-M/V-dimethyl-1 -piperidinecarboxamide, has the
WLN notation T6NTJ AVN1&1 CG. In this WLN, the N symbol, representing

nitrogen within the ring system T6NTJ, is not contiguous to the VN symbols which
represent the carbonyl and nitrogen of the carboxamide group. However, the

program which generates the codes from the WLN does recognise the connectivity of
the atoms and connects the symbols as NVN”.

Fig. 16: Excerpt taken from “Using the Wiswesser line notation (WLN) for online, interactive
searching of chemical structures” [32], extracted WLN strings from wlngrep are highlighted
in blue.

5 Parsing and Converting WLN

The base idea for parsing/reading WLN is to form a tree or directed component graph
of the WLN characters for a given input string, see Figure 17. This data structure cap-
tures all branching and cyclic features, which can then be transformed into the internal
molecular graphs of any desired toolkit. Similar to the text matching in the DFA, the
WLN string is read character by character, updating the WLN graph at each step.
For cyclic structures, all ring information is needed before the cycle can be created,
as such, the starting position of any open and close characters are recorded enabling
the string to be spliced into separate routines. WLN symbols are often shorthand for
functional groups, so these symbols need to be expanded after the graph is created.

For acyclic compounds building the graph is trivial, each character corresponds to
a node in the graph, and can be built as the characters are read. For cyclic molecules,
specific algorithms were developed to handle the different types of fuses and ring
arrangements, whilst also maintaining the correct locant path. WLN has a strange
way of denoting aromaticity, Hückel’s rule [33] does not need to be obeyed, instead
a cycle is deemed aromatic if it has the maximum number of double bonds placed
after heteroatom assignment. This is equivalent to the maximal matching problem in
combinatorics, and solved easily for bipartite graphs using Ford-Fulkerson, and in the
general case with Edmond’s Blossom[34]. Modern toolkits do employ this algorithm
for kekulisation, but they tend to enforce stricter criteria regarding what is considered
aromatic, in contrast to WLN, which has a more relaxed definition. Additionally, a
deliberate design choice in the parser was to keep the majority of functions native,
ensuring portability across different toolkits. It should be noted in later versions of
the WLN rule set the aromaticity criteria was stricter, and at the discretion of the
user, however for backwards compatibility across various WLN versions we maintain
the relaxed scheme.
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With the proper WLN graph constructed, symbols and edges can be read and
interpreted as a SCT XI connection table, containing all atom types and bonds in an
adjacency matrix. An advantage of this method is the WLN reader’s functions are
all native, with a toolkit being able to simply loop through the atoms and edges to
construct the internal molecular graph. The parser presented here uses OpenBabel
to provide the subsequent conversions to SMILES or InChI, however with very few
changes to the underlying source code this can work with RDKit or CDK.

Fig. 17: Interpreted WLN graph from input string: Q1XGG2Y1Q1Z and corresponding
chemical graph from conversion to SMILES: OCC(Cl)(Cl)CCC(CO)CN. Numerical char-
acters such as ‘2’ are turned into singular ones at graph formation. Other symbols such as
Q and Z are evaluated at connection table creation. Note this WLN string does not follow
Rule 2 canonicalisation rules.

5.1 Rules Supported

The following list is the WLN rule headings outlined in the revised version of Elbert G.
Smith’s encoding book. All numbered rules given in the headings below are supported
and handled by the parser and the reader. In addition to the standard set, all elements
in the current periodic table (as of 2023) are supported by their 2 letter codes.

1. Unbranched and Branched Chains
2. Systematic Contractions
3. Organic Salts
4. Benzene Derivatives
5. Multisubstituted Benzene Rings
6. Benzene Rings in Branching Chains
7. Monocyclic Rings
8. Bicyclic Rings
9. Polycyclic Rings

10. Perifused Rings
11. Chains of Rings other than Benzene
12. Spiro Rings
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13. Bicyclic Bridged Rings
14. Rings with Pseudo Bridges
15. Ring Structures with Crossed Bonds and Unbranched Bridges
16. Rings of Rings Contraction
17. Metallocenes and Catanenes
18. Chelete Compounds
19. Ionic Charges, Free Radicals and Isotopes

5.2 Unsupported Rules

The parser incorporates support for all fundamental rules, while certain provisional
rules, such as mixture codes, inorganic formula notation, and stereoisomerism addi-
tions, have been intentionally omitted from its functionality. Additionally, the decision
was made to adopt a more flexible approach with regard to the canonicalisation of
WLN, deviating from the stringent character ordering stipulated by the official WLN
specifications.

5.2.1 MANTRAP Rules

Within the WLN, there exists an unpublished subset of rules. Readers learning
the manuals will notice a gap in the rule set, eluding to a large set of rules that
later revisions deemed unnecessary. These omitted rules likely constitute a subset of
experimental regulations denoted by the acronym MANTRAP, representing Mixtures,
Alternates, Not assigned, Tautomers, Reactants, Addition compounds, and Polymers.

In the context of more modern line notations, character representation of these
areas of chemistry are still under development, with Tautomers being a large focus for
the next iteration of InChI. Since these rules are undocumented in the official manuals,
it was deemed sensible to leave them unsupported in the parser, rather then to guess
what the rules might of been based on very limited examples.

5.2.2 WLN Canonicalisation - Rule 2

WLN did aim to achieve a unique canonical representation for each compound, where
rules were created to enforce the ordering of symbols in various contexts, these include
alphanumeric ordering, locant ordering in cycles, R-group ordering to name a few.

For example, outside of any cycle, preference is given to higher alphabetic charac-
ters. Figure 17 is a good example, the true canonical WLN for this compound would
prefer the Z symbol to come before the starting Q, leading to Z1Y1Q2X1QGG being
the technically correct string (Rule 2). Both examples are presented here to highlight
a specific design decision made for the parser. The intention behind this software is
to facilitate the modernisation of chemical documents. In this context, it cannot be
assumed that all WLN strings were precisely encoded with the canonical rule set. It
would be unreasonable to reject a string outright and not attempt a conversion if this
were the case. Therefore, in the parser, canonical rules are not enforced.
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5.3 Implied WLN Conventions

During the development of algorithms for WLN interpretation, it’s evident that the
notation was originally intended for human interpretation, often by expert chemists
who could infer implied information based on context. Hence, there exists a set of
rules where validity hinges on users agreeing upon shared conventions. While these
conventions may have been appropriate at the time, they introduce challenges when
choosing to obey a convention or not in the parser design.

An example of this is implied double bonding, normally a bond unsaturation is
given with a U symbol, however there are instances where the double bond could be
assumed, and the U character omitted, an example is given in Figure 18.

(a) T6S CS ESTJ AO or T6S CS
ESTJ AUO

(b) OO or OUO

Fig. 18: Smith Reference compound examples showing instances of implied double bonding.
In both instances it would be valid to omit the U character.

For an output SMILES, a valid implementation would be to balance charges by
adding double bonds where necessary, however this would lead to some ionic species
lacking a valid WLN representation. A simple example is the peroxide ion. In WLN,
when two “O” characters appear together, it implies a double bond to form O2, which
is represented as OO or OUO. To represent hydrogen peroxide, you’d need to change
the symbols to Hydrogen-attached Oxygens, resulting in QQ.

This poses a challenge in trying to represent the peroxide ion, O2−
2 . Convention-

ally, a negatively charged oxygen species is denoted with a single O.” As mentioned
above, WLN automatically assumes the presence of a double bond in this context,
even without using the U character, making OO unable to adopt a single bond rep-
resentation. Tentative rules were later introduced to specify charges for each symbol,
but these rules were considered supplementary and weren’t officially part of the lan-
guage. For historical reasons, the WLN parser will default to implied double bonding,
but a flag is available to turn this feature off, as this behaviour can lead to unexpected
compounds.

5.4 Error Handling

Errors in the WLN processing can be identified and flagged in a couple of ways. Firstly,
if nodes within the structure exceed their associated valence or if expected notations
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are absent during the parsing process, errors can be flagged immediately on the specific
character and positions. Additionally, informative messages are provided to suggest
potential changes that may resolve the issue.

For cyclic structures, it’s important to note that a single symbol may not always
be the sole cause of an invalid WLN string. Therefore, when errors occur in cyclic
structures, the closing J symbol is highlighted to pinpoint the problematic ring. Mul-
tiple error messages are then presented to assist the user in diagnosing and debugging
the string effectively.

Some errors can be handled at run-time, for instance, certain WLN symbols corre-
spond to the same element with different levels of WLN degree. If a connection exceeds
the valence of a given symbol, in these cases, we have the option of raising the degree
and changing the symbol to accommodate the potential increase. As an example, a
common fault seen in the WLN strings is stating an M character for a branching nitro-
gen, where M disallows branching by definition. At run-time, we can raise this to an
N, allowing the branching to continue as normal. Such errors are often encountered
when working with older chemical data, where inaccuracies may arise during the OCR
(Optical Character Recognition) process. Additionally, space characters are a known
OCR-related fault, and measures have been implemented to skip space characters if
they do not make semantic sense within a given WLN string.

6 Conversion Testing

For testing the precision of the WLN reader, the output SMILES must be compared
against the identifiers given in external data sources. WLN identifiers with correspond-
ing SMILES and InChI notations are accessible and searchable within databases such
as ChEMBL[35], ChemSpider[36], and PubChem[37]. These databases provide public
APIs that allow for simple retrieval. Compound structures are given in Figures 19,20
and 21.

A consistent method of testing, is to read in both molecules, output the canonical
SMILES and do a simple string comparison between the two. This also ensures that
all explicit/implicit hydrogens are correct, information that may be lost if comparing
read in molecular graphs. For compounds that fail the conversion, it’s useful to assess
how close the attempt was, which can be done by creating fingerprints for both the
accepted SMILES in the database, and the output SMILES from the WLN reader,
then subsequently computing the Tanimoto similarity coefficient. A score close to 1
indicates small changes needed to either the WLN string or the algorithms developed.
Before fingerprint generation, it is also key to remove any stereochemistry from the
public identifiers, as WLN inherently had little to no stereo information in the nota-
tion. Compounds represented with WLN typically lie in the small drug-like region
of chemical space, and as such, an FP2 Fingerprint generated with OpenBabel is an
appropriate choice for computing the similarity[38].

With an exception to the WLN strings given in Smith’s encoding book, the cor-
rectness of the WLN string also needs to be evaluated. A pipeline using the wlngrep
tool is therefore set up:

• Attempt to match the string with wlngrep.
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• If the whole string passes exactly, test the full WLN string conversion with its
associated SMILES.

• If the string is partially correct, test extracted valid WLN sub-strings against the
SMILES. Recording the incorrect string and potential corrections.

• Else the string is not a suitable test case, and flagged as an incorrect WLN.

(a) ZMV4 (b) ZSWO2G

(c) QV1UU1VQ (d) QV2O2I

(e) QMSW1 (f) NC1VO4

Fig. 19: Examples of ChEMBL WLN compounds
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(a) T45 ANV ESTJ CMVYZR DQ&
F1 F1 GVQ

(b) T B6566 B6/CO 4ABBC R BX
HO PN GHT&&TTJ FQ JO1 P1

(c) T6VMVTJ D2 DR (d) T-T66 CNT&J C1 HO1 IO- JT66
CNT&J C1 HO1 IO1 B1R DQ COR
D1- B-18-J

(e) T5NXTJ B-& AL6XTJ (f) T556/FJ 2AE J BVOV IUTJ

Fig. 20: Examples of PubChem WLN compounds

6.1 Benchmark Rule Set

Within Elbert G. Smith’s encoding reference book [23], each rule definition is accom-
panied by illustrative compounds presented as WLN strings along with corresponding
structural formulas. Following the implementation of these rules, a comprehensive
benchmark dataset consisting of 412 WLN compounds was curated across all the rules
supported, giving a diverse set to assess precision. The development of the reader was
grounded in these rules and examples, leading to an expected and indeed observed con-
version precision of 100%. Naturally, as a WLN encoding book, all the WLN strings
passed exact matching with wlngrep.
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(a) T56 BMJ D1VQ (b) T B566 BNVON HNJ

(c) QVX1&1&2VQ (d) T5NNVSJ B1SPS&O1&O1 EO1

(e) OS1&R B1 DOPO&O2&MY1&1 (f) T6N CNJ B1 DG FG EM- BT5N
CN AUTJ CV1

Fig. 21: Examples of ChemSpider WLN compounds

In this context, where SMILES representations were not provided, a evaluation of
the similarity between the generated SMILES and the source compounds’ drawn struc-
tures was conducted to ensure correctness before associating the accurate SMILES
with the respective WLN string. With the exception of selective rule procedures that
were intentionally omitted, all WLN strings were successfully parsed.

6.2 ChEMBL

In the ChEMBL database, there exists a collection of 2934 compounds with associated
WLN identifiers. Using the DFA confirmed that nearly all 2934 WLN strings are
syntactically valid under exact matching. The failed strings were traced back and all
attributed to the WLN character C which is meant to force a full valence carbon with
at least one unsaturated bond, either triple or double. Since this bonding is implied,
use of the U symbol is both redundant and disallowed notation. For instance, the
WLN string SCN corresponds to SMILES: SC#N, where the presence of a triple
bond between the carbon and nitrogen atoms is implied. The ChEMBL entry for this
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compound is given as SCUUN.On conversion, only three compounds did not produce
the expected SMILES, all attributed to these bond order descriptions. In this case, we
can conclude our precision on read is at 100% with a correction required in ChEMBL.

6.3 PubChem

For PubChem, 6589 compounds are associated with WLN identifiers. Exact match-
ing reveals that only 5745 of these strings follow accepted WLN syntax. While it is
not possible to list all the rejected strings here, a comprehensive list of the rejected
strings will be provided for each relevant set. WLN strings sourced from PubChem
have evidently undergone OCR, resulting in a considerable number of errors that are
typical for OCR’d text. An example is the WLN string Z2Z & GH, where a spacing
between the & and the G is invalid notation. Other errors are due to WLN strings
that whilst syntactically valid, could not possibly equal the SMILES they are associ-
ated with. During the conversion testing process on the remaining WLN strings from
PubChem, accurate SMILES representations were obtained for 4934/5745 strings,
which accounts for a success rate of slightly over 85%. A review of the WLN strings
and their corresponding expected SMILES revealed a substantial number of incorrect
WLN strings.

6.4 ChemSpider

ChemSpider is the largest data source available, with 15941 compounds present with
corresponding WLN strings. Comparable to PubChem, not all strings pass on exact
match, giving a total of 12949 valid WLN candidates. The parser achieved an accuracy
score of 11962/12949, and 92% as final precision on the syntactically correct WLN
entries. Errors in the WLN strings are consistent with the findings seen in PubChem.

6.5 Results Summary

Table 2 summarises precision and matching success across all the data sources from the
new parser. We also provide the precision seen from the old parser in OpenBabel. The
conversion values given here are from the greedy matching procedure, with percentages
relative to the starting set size instead of the exact matches given earlier. Greedy
matches are given alongside exact matches, where all valid sub-strings are extracted.
The greedy procedure can extract multiple sub-strings per line, accounting for a match
value over the starting size for ChEMBL, PubChem and ChemSpider.

Considering the old parser only contained rules up to bicyclic rings, the results
on external data are much closer than first imagined. This suggests that the WLN
strings present in the external data primarily adhere to the rules outlined in the initial
chapters of the encoding books. Which, is somewhat expected as several renditions of
encoding books stop before complex cyclic structures are discussed.
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Data Set Set Size Exact
Matches

Greedy
Matches

New Parser Old Parser

Smith WLN 421 421 421 421 (100%) 217 (52%)

ChEMBL 2934 2931 2934 2931
(99.8%)

2930 (99.7%)

PubChem 6589 5745 7810 4934 (75%) 4364 (66%)

ChemSpider 15941 12949 20264 11962
(75%)

11526(71%)

Table 2: Results summary of the new parser from the Smith, ChEMBL, PubChem
and ChemSpider WLN conversion and match testing

6.6 Incorrect WLN Entries

Within the databases PubChem and ChemSpider, there are roughly 10% WLN iden-
tifiers that may appear incorrect based solely on the rule criteria outlined in Elbert
G. Smith’s revised edition[14]. Nonetheless, this observation does not imply that these
supplementary string elements were inappropriate when initially employed. Histori-
cally, chemists might have used personalised abbreviations to depict structures that
the WLN system struggled to comprehensively or conveniently represent within the
confines of the accepted rule set. Examples of such strings are given in Figure 22.

At a first glance, some of these could be omitted very easily, due to the use of lower
case characters which were never specified in the language. This however is not the
right approach, discussions with Barrie Walker gave some insight into string suffixes,
where a double ampersand (&&) followed by any valid description would still yield a
valid WLN string. These suffixes could be a mixture of upper or lower case and were
commonly used in the Commercially Available Organic Chemicals Index (CAOCI), a
historic data repository that contained available compounds with both IUPAC and
WLN strings [39]. For example, in Figure 22 (a), a valid correction would be L F6
E6 B666 CV DUTJ A1 HVQ H1 K1 N1 O1 S1 S1 TQ &&Alpha.

Chemspider contains a lot of these string additions (submitted by Barrie Walker
himself), and are instances of completely valid notation. A quantitative test is to use
wlngrep to remove the suffix, and parse test the remaining string with the target
compound, in all cases this produced a successful match.

String additions without the double ampersand are more problematic, as upper
case codes are a common format for the MANTRAP rules, as mentioned in Section
5.2.1. In cases where the suffix is all uppercase, and the remaining WLN string success-
fully matches the target SMILES, it is reasonable to assume that this form assignment
was valid, and no correction will be provided. In all other instances the suffix can be
either omitted, or corrected to the double ampersand format and resubmitted to the
corresponding repository.
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(a) L F6 E6 B666 CV DUTJ A1 HVQ
H1 K1 N1 O1 S1 S1 TQ -.alpha.

(b) L F6 E6 B666 CV DUTJ A1 HVQ
H1 K1 N1 O1 S1 S1 TQ -BETA

(c) .Tl2.C-O3
(d) T56 BN DN FVM INJ HZ B1-
BT5OTJ CQ DQ EQ -D,XYLO

(e) L E5 B666TTT&J E1 FQ OQ 17-
ALPHA

(f) 2OPO&O2&OPO&O2&O2 -DRY
MIX

Fig. 22: Examples of WLN entries that failed initial conversion. Strings (a),(b) contain codes
for specifying alternate forms, which should either be given after a double &&. (c) and (d)
are cases where disallowed characters have been mixed into the notation, specifically dots
and commas. (e) and (f) contains MANTRAP specifiers, but incorrect appended.
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7 Conclusions and Future Work

In conclusion, tools for both the extraction and conversion of WLN from chemical
documents have been successfully developed. Both the DFA and parser handle the
majority of WLN rules officially endorsed in various WLN manuals.

The parser demonstrates strong performance across a wide range of compound
types, from four different sources. Successfully parsing all the WLN strings provided in
the rule book instils a high degree of confidence that the rules have been accurately and
comprehensively described. Of particular note is the ability to effectively handle cyclic
structures, representing a clear advancement compared to previous submissions. Both
systems will enable the community to modernise legacy notation data that otherwise
would have remained unusable.

Nonetheless, inaccuracies within the external data sources present a challenge when
attempting to precisely quantify the true conversion accuracy. We can however confi-
dently establish a lower bound of no less than 80%. It is worth emphasising that the
development of these tools has led to the identification of errors in industry-standard
data sources. In turn, enabling corrections and improvements that benefit the scientific
community.

Future work will encompass the development of methods for correcting these WLN
strings, with the intention of formally submitting these corrections to the respective
libraries. To facilitate this process, we will also submit a WLN writer to OpenBabel.
The writer will allow for the transformation of input SMILES and InChI notations
into WLN. At the time of publication, all rules have been successfully covered, and
will be presented in future articles. We will also be exploring whether WLN itself has
any merit as an intermediate for string based cheminformatics, requiring the round-
trip and conversion of well-curated standardised data sets. We hope these tools help
the modernisation of any legacy chemical documents.
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