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Abstract—With the increasing demands from passengers for
data-intensive services, millimeter-wave (mmWave) communi-
cation is considered as an effective technique to release the
transmission pressure on high speed train (HST) networks.
However, mmWave signals encounter severe losses when passing
through the carriage, which decreases the quality of services
on board. In this paper, we investigate an intelligent refracting
surface (IRS)-assisted HST communication system. Herein, an
IRS is deployed on the train window to dynamically reconfigure
the propagation environment, and a hybrid time division multiple
access-nonorthogonal multiple access scheme is leveraged for in-
terference mitigation. We aim to maximize the overall throughput
while taking into account the constraints imposed by base station
beamforming, IRS discrete phase shifts and transmit power. To
obtain a practical solution, we employ an alternating optimization
method and propose a two-stage algorithm. In the first stage,
the successive convex approximation method and branch and
bound algorithm are leveraged for IRS phase shift design. In the
second stage, the Lagrangian multiplier method is utilized for
power allocation. Simulation results demonstrate the benefits of
IRS adoption and power allocation for throughput improvement
in mmWave HST networks.

Index Terms—Millimeter-wave, intelligent refracting surface,
hybrid time division multiple access-nonorthogonal multiple ac-
cess, phase shift design, power allocation.

I. INTRODUCTION

As an efficient, green and eco-friendly transport mode, high-
speed train (HST) has attracted worldwide attention in the
past two decades. By 2022, the total millage of HST rail
lines, with the speed of train exceeding 200 km/h, has reached
56,000 km and is expected to double in 30 years [1]. In many
countries, like China and Spain, HSTs link the major city
clusters, fasten long-distance travel, and are changing people’s
mobility habits deeply. Fast growing number of passengers has
demanded much stricter safe operation as well as multimedia
services from railway systems, which powers the sustainable
development of wireless communications for HST systems
[2]. Initially, the Global System for Mobile Communications
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Railway [3] provisioned services of voice communications and
control signaling transmission but failed to satisfy personal
broadband applications. To handle this problem, Long Term
Evolution for Railway [3] was introduced at the beginning of
2010s, which supports megabits-per-second order data rate but
it still does not meet the requirements of massive connectivity
and intensive data exchange for the future HST system [2], [3].
The fifth-generation (5G) technologies are expected to ensure
real-time and high-quality transmissions for both passengers
and railway operation messages, to start a new era in HST
communications [4].

Exploiting millimeter-wave (mmWave) communications,
5G for Railway [5] has the potential to offer multimedia
services that require multi-gigabit rate, e.g., video conference,
live broadcast, online gaming, etc., thereby enhancing the
customer experience. In addition, mmWave integrated with
multiple-input multiple-output (MIMO) and beamforming
techniques is capable of offering comprehensive perception,
interconnection, and information interaction among railway
users and infrastructures, which subsequently contributes to
the construction of intelligent transportation system (ITS) [5].
However, given the propagation characteristics of mmWave
signals and dynamic nature of railway scenarios, there are
many challenges to overcome in order to maintain high-quality
on-board services. Specifically, experiencing severe path loss,
the coverage radius of mmWave is limited, and frequent
handover occurs in train-to-ground (T2G) communications.
Moreover, mmWave signals suffer from serious penetration
loss when passing through solid materials, including glasses,
metals and trees, and consequently they are vulnerable to
blockage [6]. During mobility, the quality of services (QoS)
degrades significantly once line-of-sight (LoS) links between
passengers and the base station (BS) are blocked by the
carriage or other obstacles [7]. To this end, many researchers
deploy mobile relay stations (MRSs) on the train to combat
penetration loss and control handover, whereas MIMO tech-
nologies are typically involved as well [3], [8], [9]. These
solutions, however, require extra hardware cost and energy
consumption, while introducing transmission delay.

Fortunately, the authors of [10] have confirmed the feasibil-
ity of adopting intelligent refracting surface (IRS) in future
wireless communications, which provides a new means to
improve the QoS and energy efficiency of HST communi-
cations [11], [12]. Specifically, by adjusting the coefficient
of each refractive element, the propagation channel is recon-
figured dynamically to enable robust wireless links, serving
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as a promising technique to extend the coverage inside the
train and improve communication quality without extra power
consumption [13]. Inspired by this, we consider enhancing the
throughput of downlink HST communications by a window-
deployed IRS, which refracts incident signals to users on
board during mobility. Under the condition that the channel
state information (CSI) remains unchanged in one frame but
can vary from frame to frame, we can update the system
design dynamically. Note that the amplitude gain at IRS
is neglected since signals experience severe penetration loss
when passing through the window anyway. Moreover, to
eliminate transmission interference and fully exploit the effect
of IRS, both clustering and hybrid transmission techniques
[14], [15] are leveraged. The main contributions of this paper
are summarized as follows.
• We study an IRS-assisted hybrid time division multiple

access (TDMA)-nonorthogonal multiple access (NOMA)
mmWave HST communication system, where a trans-
parent IRS is deployed to assist T2G communications.
Based on the practical position-prediction model and
channel model, we formulate the throughput maximiza-
tion problem that takes into account the constraints on
BS beamforming, IRS refraction and transmit power.

• We propose a two-stage optimization algorithm to solve
this optimization. Specifically, first we alternately opti-
mize beamforming and IRS phase shift in each frame,
where the maximum ratio combining (MRT), successive
convex approximation (SCA) and branch and bound (BB)
algorithm are utilized. Based on these optimization results
and by incorporating the characteristics of high-speed
mobility, we perform local power allocation in every fixed
interval, to improve the overall throughput effectively.

• By comparing the achievable performance of the pro-
posed algorithm with other existing schemes given dif-
ferent numbers of users, IRS sizes, Rician K-factors
and quantization bits, the simulation results reveal the
effectiveness of IRS adoption and power allocation for
throughput improvement in the HST scenario.

The remainder of this paper is organized as follows. Sec-
tion II summarizes the related work. Section III introduces the
system model and then formulates the throughput maximiza-
tion problem. In Section IV, a two-stage solution is proposed
based on alternating optimization and Lagrangian multiplier
method. Simulation results and discussions are presented in
Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

Recently, the research in applying reconfigurable intelligent
surfaces (RISs) to HST networks has attracted increasing
interests. For example, the authors of [14] employed an RIS-
assisted approach to increase the anti-interference capability of
railway wireless communication systems that require ultra high
reliability. Likewise, base on the deep reinforcement learning,
Xu and Ai [15] optimized the BS beamforming and RIS phase
shifts to enhance the resilience of mmWave HST networks.
The work [16] proposed a RIS-assisted unmanned aerial
vehicle scheme to provide stable communication services for

HST users, demonstrating its superior performance in obstacle
avoidance and resource utilization. Based on the statistical
CSI, the study [17] jointly designed the beamforming and RIS
phase shift matrix in the downlink of mmWave MIMO HST
system to reduce the outage probability. The work [18] pre-
sented a train-ground time division duplexing based wireless
mobile communication design with double RISs deployed at
both BS and MRS sides, to achieve significant performance
gain in uplink transmission. Typically, most existing works
leverage the reflecting mode of RISs to assist HST commu-
nications, which enhances the system performance to some
extent but fails to resolve the challenging problem of signal
attenuation caused by train carriages.

As a new type of RIS, the emerging IRS offers a new
paradigm for mobile communications. Initially, efficient re-
fractive metasurfaces were designed based on physical prop-
erty requirements in [19], [20], paving the way for IRS solu-
tions. Furthermore, the authors of [13] implemented optically
transparent metasurfaces to expand the mmWave coverage,
which can be attached to existing walls and glass windows.
IRS is capable of aiding mobile communications in vehicular
networks. For example, the work [21] successfully deployed
the IRS on a moving vehicle for enhancing the transmission
rate and reliability between in-vehicle users and the roadside
BS by channel estimation and refraction optimization. To date,
few works have noted IRS-assisted HST communications.
The study [7] investigated the possibility of IRS solutions to
address the mobility characteristics and design challenges of
HST networks, and verified the benefits of adopting IRSs to
HST communications. Likewise, the authors of [22] presented
a low-complexity channel estimation method with Doppler
shifts recovery, which is shown to be effective in ITS-assisted
HST wireless communication systems. These limited efforts of
applying IRSs however are still limited to channel design, and
they seldom involve signal processing or resource management
techniques for performance improvement.

III. SYSTEM MODEL

We investigate the IRS-assisted mmWave HST communica-
tion system illustrated in Fig. 1, where I users on board are
served by a track-side BS with L antennas. Since direct links
are easily blocked during mobility, an IRS with M refractive

Fig. 1. IRS-assisted mmWave HST communication system.
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elements is mounted on the train window to aid downlink
power transfer and communications. A smart controller adjusts
the IRS elements independently so as to enhance QoS on board
and improve network throughput. For ease of exposition, we
assume that the train runs at a constant speed of v and passes
through the cell with a coverage radius of R in time t = 2R/v.
In practice, users remain relative stationary with each other in
a frame while the BS transmits data streams concurrently.

A hybrid TDMA-NOMA transmission scheme is leveraged
to balance the complexity and performance. As such, I users
are equally grouped into K clusters based on their requesting
time, and N users in each cluster simultaneously access the
network by employing NOMA. Denoting the duration of each
TDMA frame as τ , different clusters communicate with the BS
in an orthogonal TDMA manner. The communication distance
and channel model are updated frame by frame, which are
specified as follows.

......

RR BS

𝐷0

Rail

midpoint

𝐷𝑓 = 𝑣𝜏

Fig. 2. The mobility trajectory of HST.

A. Distance-Prediction Model

Because of the short frame duration, it is reasonable to
assume that the communication distance between the BS and
the train remains approximately constant in a frame, but it
changes from frame to frame. Therefore, we consider the
mobility model illustrated in Fig. 2, where the distance from
the BS to the rail is denoted by D0, and the position of the
train in frame k can be approximated with the midpoint of
the corresponding segment. Thus, we estimate the distance
between the BS and IRS in frame k, denoted as Dk, by

Dk =


((
R− (k − 1

2 )Df

)2
+D2

0

) 1
2

, k ≤ bK2 c,((
(k − 1

2 )Df −R
)2

+D2
0

) 1
2

, k > bK2 c,
(1)

with Df = vτ denoting the distance advanced in a frame.

B. Channel Model

Consider a quasi-static fast fading channel, with the CSI
remaining constant within a frame but changing in the sub-
sequent frames [11]. The channel gains from the BS to the
IRS and from the IRS to users are modeled as Rician fading,
where the contribution of LoS and non-LoS (NLoS) multipath
components are taken into account [23]. Specifically, in frame
k, the BS-IRS channel gain matrix Gk ∈ CM×L is given by

Gk =

√
Kf

Kf + 1
Gk +

√
1

Kf + 1
Ĝk, (2)

where Kf denotes the Rician K-factor. In (2), Gk ∈ CM×L
represents the LoS component given by

Gk=

√
h0D

−β1

k

 αk
(
φA1,1, ω

A
1,1

)
. . . αk

(
φA1,L, ω

A
1,L

)
...

. . .
...

αk
(
φAM,1, ω

A
M,1

)
. . . αk

(
φAM,L, ω

A
M,L

)
,
(3)

where αk(·, ·) denotes the array response, φAm,l and ωAm,l are
the azimuth and elevation angles-of-arrival (AoAs), respec-
tively, from the l-th BS antenna to the m-th IRS element
at frame k, and h0 is the reference path loss at distance of
1 m, while β1 is the path loss exponent. As aforementioned,
Dk is the distance between the BS and IRS, kept fixed
in frame k. Moreover, Ĝk ∈ CM×L represents the NLoS
component matrix, whose elements follow the complex normal
distribution with zero mean and unit variance [24].

Similarly, the LoS component of the channel gain vector
vT
k,i ∈ C1×M from the IRS to user i in frame k is given by

vT
k,i=

√
h0d
−β2

k,i

[
αk,i

(
φD1,1, ω

D
1,1

)
, . . . , αk,i

(
φD1,M , ω

D
1,M

)]
,

(4)
where dk,i is the distance between the IRS and the i-th user,
β2 denotes the path loss exponent insider the carriage, φD1,m
and ωD1,m are the azimuth and elevation angles of departure
(AoDs), respectively, from the m-th IRS element to the i-
th user. The elements of the NLoS component vector v̂T

k,i ∈
C1×M also follow the complex normal distribution with zero
mean and unit variance.

We assume that the perfect CSI for BS to IRS and IRS
to users are available. Since refracting elements have no
digital processing ability, we perform digital beamforming
at the BS and analog beamforming at the IRS. Denote the
transmit signal for user j, BS beamforming vector, IRS phase
shift vector in frame k by sk,j , fk ∈ CL×1 and Θk =
diag

(
ejψk,1 , . . . , ejψk,M

)
. The received signal for user i can

be expressed as

rk,i =vT
k,iΘkGkfk

N∑
j=1

√
Pksk,j + wi = vT

k,iΘkGkfk
√
Pksk,i︸ ︷︷ ︸

desired signal

+

N∑
j=1,j 6=i

vT
k,iΘkGkfk

√
Pksk,j︸ ︷︷ ︸

user interference

+wi, (5)

where Pk is the transmit power in frame k, and wi is the
additive white Gaussian noise (AWGN) at user i, with zero
mean and variance σ2, and E

[
|sk,j |2

]
= 1, ∀k, j.

By exploiting the successive interference cancellation en-
abled NOMA, N users can be multiplexed on the same
channel [25], [26], and the SINR received by user i in frame
k can be written as

γk,i =
Pk

∣∣∣vT
k,iΘkGkfk

∣∣∣2
N∑

j=i+1

Pk

∣∣∣vT
k,jΘkGkfk

∣∣∣2 + σ2

, (6)
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The aggregate achievable data rate in frame k is given by [27]

Rk =

N∑
i=1

log2 (1 + γk,i)

= log2

1 +

N∑
i=1

Pk

∣∣∣vT
k,iΘkGkfk

∣∣∣2
σ2

 . (7)

C. Problem Formulation

First we recap the system configuration and parameters. The
BS has L antennas, and the IRS has M refractive elements.
The system supports I users, and they are divided equally
into K clusters, each having N users, i.e., I = KN . The time
duration t is divided into K TDMA frames, each having the
duration of τ , i.e., t = Kτ . Each group is assigned with a
distinct frame, and the N users of the same group share the
same frame. Furthermore, the total transmit power over time
duration t is set to Psum. Each refractive element θ = ejψ of
the IRS can take the value from the set of 2e values, namely,
the phase shift ψ = 2πa

2e−1 , a ∈ {0, 1, . . . , 2e − 1}, with the
magnitude ‖θ‖ = 1, where e denotes the quantization bits.
We also define the transmit power vector over the K TDMA
frames by p =

[
P1, . . . , PK

]T
.

Our goal is to maximize the overall throughput in time
duration t by jointly optimizing the beamforming, IRS phase
shift and power allocation. The problem is defined as

P : max
p,{Θk}Kk=1,{fk}

K
k=1

K∑
k=1

τ

t
Rk, (8)

s.t.

K∑
k=1

Pk = Psum, (9)

0 ≤ Pk ≤ Psum, ∀ k, (10)

fHk fk ≤ 1, ∀ k, (11)

ψk,m =
2πa

2e − 1
, a ∈ {0, 1, . . . , 2e − 1}, ∀ k,m, (12)∥∥θk,m∥∥ = 1, ∀ k,m. (13)

The constraints (9) and (10) limit the total power consumption
to Psum, which is the upper bound of power allocated to each
cluster. Next (11) imposes a magnitude constraint on each
beamforming vector, while (12) specifies the discrete set from
which the phase shift of each element takes value, and (13)
imposes the unit amplitude constraints on IRS elements.

IV. THROUGHPUT MAXIMUM ALGORITHM

In the joint optimization problem P , the optimization
variables in the objective function are coupled while the
constraints in (13) are non-convex. Thus there exists no
standard method to solve P directly. We propose a two-stage
optimization algorithm by leveraging problem decoupling and
alternating optimization. In the first stage, we exploit MRT in
beamforming design and optimize the phase shifts, while in
the second stage we adjust the power allocated to each frame
with the optimization results obtained in the first stage, to
maximize the total throughput.

A. Stage One: Joint Optimization of Beamforming and IRS
Phase Shifts

In this stage, we fix the power allocated to each frame to
P = Psum/K and make the overall power allocation as p =[
P , P , . . . , P

]
. With the power allocation vector p fixed to p,

the optimization P is simplified to

P1 : max
{Θk}Kk=1,{fk}

K
k=1

K∑
k=1

τ

t
Rk (14)

s.t. fHk fk ≤ 1, ∀ k, (15)
ψk,m ∈ [0, 2π], ∀ k,m, (16)∥∥θk,m∥∥ = 1, ∀ k,m. (17)

Note that we have relaxed the phase shift of each refractive
element to be a continuous variable taking value in [0, π].
To avoid high complexity of the joint optimization over the
beamforming and IRS phase shifts, we further decouple P1
into the two sub-problems, each involving one set of variables
only with the other fixed, and an alternating algorithm is
adopted to alternately optimize the transmit beamforming and
the IRS phase shifts until converges.

1) Beamforming Optimization at BS: Given p = p and the
set of {Θk}Kk=1, the objective function of P1 is monotonically
increasing with the aggregate signal to noise ratio (SNR) of
each cluster. Therefore, the optimization over {fk}Kk=1 can be
equivalently solved by maximizing the SNR of each cluster,
where the optimal beamforming vectors can be obtained by
solving the following K sub-problems

P1fk : max
fk

N∑
i=1

P
∣∣∣vT
k,iΘkGkfk

∣∣∣2
σ2

, (18)

s.t. fHk fk ≤ 1, (19)

for 1 ≤ k ≤ K. Although P1fk is non-convex with respect to
fk, the closed-form optimal solution can be driven by

f?k =

N∑
i=1

(
vT
k,iΘkGk

)H∥∥vT
k,iΘkGk

∥∥ , (20)

which enables the MRT [28], [29].
2) IRS Phase Shift Design: Given the power allocation p

and the beamforming vectors {fk}Kk=1, the optimization of the
IRS phase shifts can be simplified as

P1Θ : max
{Θk}Kk=1

K∑
k=1

τ

t
Rk (21)

s.t. ψk,m ∈ [0, 2π], ∀ k,m, (22)∥∥θk,m∥∥ = 1, ∀ k,m. (23)

Due to the TDMA mode, the above problem can be decom-
posed into the following K separate sub-problems

P1Θk
: max

Θk

τ

t
Rk, (24)

s.t. ψk,m ∈ [0, 2π], ∀m, (25)∥∥θk,m∥∥ = 1, ∀m, (26)

for 1 ≤ k ≤ K.
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2.1) Continuous Phase Shifts: The non-convex unit modulus
constraint (26) can be relaxed as∥∥θk,m∥∥ ≤ 1, ∀ k,m, (27)

which is convex. In addition,
∣∣vT
k,iΘkGkfk

∣∣2 is a convex
quadratic function of Θk, and by applying SCA, it can be
approximated by the first-order Taylor expansion. Specifically,
given local point Θr

k in the r-th iteration, the following
relationship holds

N∑
i=1

∣∣vT
k,iΘkGkfk

∣∣2 ≥ − N∑
i=1

∣∣vT
k,iΘ

r
kGkfk

∣∣2
+ 2<

{ N∑
i=1

(
vT
k,iΘ

r
kGkfk

)H(vT
k,iΘkGkfk

)}
, (28)

which is linear and convex. As a result, P1Θk
can be

approximated as a convex problem, which can be solved
by an interior-point method [30]. Therefore, we can obtain
the optimal phase shift vector ϕ?k for each cluster, with
ϕ?k =

[
ϕ?k,1, ϕ

?
k,2, . . . , ϕ

?
k,M

]
.

2.2) Discrete Phase Shifts: Since it is challenging to re-
alize continuous amplitude phase-shift values in practice, we
quantize the obtained solutions to the discrete values within
the intervals of length ∆ = 2π

2e−1 . Let lm =
⌊ϕ?

k,m

∆

⌋
. Then

ϕ?k,m ∈
[
lm∆, (lm + 1)∆

]
. The search space for the M

discrete phase shifts comprises 2M possibilities. To select the
optimal discrete phase shift set from them, a decision method
based on the BB algorithm is proposed.

As shown in Algorithm 1, we input the optimal continuous
phase shift vector ϕ?k, an initial feasible discrete solution ψ0

k =[
ψ0
k,1, . . . , ψ

0
k,M

]
and the corresponding throughput qLk as the

Algorithm 1: BB-based Phase Shift Algorithm
Input: The optimal continuous phase shift vector ϕ∗k,

A feasible solution of discrete phase shift vector
ψ0
k and the corresponding throughput qLk ;

Initialization: The optimal discrete phase shift vector
ψ?k ← ∅;

1 function BRANCH(m)
2 for j = 0 : 1 do
3 ψk,m = (lm + j)∆;
4 if m = M then
5 Calculate the corresponding throughput qk;
6 if qk > qLk then
7 qLk = qk;
8 ψ?k is the set of all phase shift values at

current path;

9 else
10 Calculate qUk = max

ψ̃

τ
tRk;

11 if qUk > qLk then
12 Call BRANCH(m+1);

13 BRANCH(1);
14 return ψ?k, qLk .

lower bound of P1. Besides, ψ?k is initialized as an empty set
to store the optimal discrete phase shifts. Next, starting from
m = 1, the algorithm calls function BRANCH(m) (line 13
of Algorithm 1) to traverse feasible discrete phase shifts and
find the optimal solution. For current element m, BRANCH(m)
considers its two possible values iteratively. Note that in each
loop, the following two cases are considered.
a) When m arrives at the final element, a complete set of phase
shift values is obtained and the corresponding throughput qk is
obtained. Then it is compared with the current lower bound,
and if qk > qLk , qLk is updated to qLk = qk and terminate
BRANCH(m).
b) When m has not reached M , we calculate qUk (the upper
bound of the throughput) by relaxing the phase shifts from m
to M to continuous values in ψ (denoted as ψ̃). If qUk > qLk ,
call function BRANCH(m+1); otherwise, terminate this path.

The above procedure iterates until all the possible paths
are tried, after which the optimal discrete-valued phase shift
vector ψ?k and the corresponding maximum throughput qLk
are returned. The worst-case computation complexity of this
algorithm is on the order of O

(
2M
)
.

3) Alternating Optimization: Based on the solutions of
Subsections IV-A1 and IV-A2, we devise an alternating op-
timization (AO) method to solve the optimization problem
P1, as summarized in Algorithm 2. To begin with, we fix
the transmit power to p, and initialize f0 and ψ0 as well
as calculate the corresponding throughput q0. Furthermore,
stopping criterion δ is set and iteration count is initialized to
s = 0. In each loop, first fs+1

k of each cluster is calculated by
the closed-form solution (20) with fixed ψs. Then with fixed
fs+1, the continuous phase shifts are obtained by optimizing
the convex approximation of the optimization P1Θk

, based
on which the discrete ψs+1 are obtained using Algorithm 1.
Lastly, the corresponding throughput is calculated. The itera-
tion procedure is terminated when the throughput difference
between two successive iterations is smaller than δ, yielding
the optimal solution

(
f?,ψ?, q?

)
. The discussions on the

Algorithm 2: Alternating Optimization for Solving P1

Initialization: p =
[
P , P , . . . , P

]
, f0 =

[
f01, f

0
2, . . . , f

0
K

]
,

ψ0 =
[
ψ0

1 ,ψ
0
2 , . . . ,ψ

0
K

]
, corresponding

throughput q0, stopping criterion
δ = 10−3, iteration count s = 0;

1 do
2 for k = 1 : K do
3 Update beamforming vector fs+1

k by Eq. (20) with
given ψsk;

4 for k = 1 : K do
5 Obtain optimal continuous phase shifts using

interior-point method [30] with given fs+1
k ;

6 Calculate discrete phase shift vector ψs+1
k by

Algorithm 1;

7 Calculate qs+1 with given p, fs+1 and ψs+1;
8 while |qs+1 − qs| ≥ δ;
9 return f? = fs, ψ? = ψs and throughput q? = qs.
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convergence and complexity of Algorithm 2 is given below.
3.1) Convergence: Denote the throughput at the s-th itera-

tion as qs = q (p, fs,ψs), where p, fs, ψs are the input of next
iteration. As steps 2-3 solve the optimal beamforming vector
fs+1
k for each cluster, q (p, fs,ψs) ≤ q

(
p, fs+1,ψs

)
holds.

Then steps 4-6 update the phase shift vector for each cluster
into ψs+1

k based on fs+1, and the resulting q
(
p, fs+1,ψs+1

)
satisfies the following inequality

q
(
p, fs,ψs

)
≤ q
(
p, fs+1,ψs

)
≤ q
(
p, fs+1,ψs+1

)
, (29)

which indicates that the objective function is non-decreasing
in the consecutive iterations. Since the throughput is upper-
bounded by a finite value due to the power constraint, we
conclude that Algorithm 2 converges.

3.2) Complexity: In each iteration of Algorithm 2, the
optimal beamforming is given by the closed form and its
computational complexity is negligible. The main computa-
tional complexity O

(
N 3.5 + 2M

)
comes from solving the

optimal discrete phase shifts (steps 4-6), where N denotes
the number of variables utilized by the interior-point method.
As the iteration is conducted for s times, the total complexity
of Algorithm 2 is O

(
s
(
N 3.5 + 2M

))
.

B. Stage two: Power Allocation and Throughput Maximization

Because the CSI may change significantly over the trans-
mission duration of t or K frames, we execute the power
allocation every l frames given the beamformers and IRS phase
shifts obtained in Stage one, where l is chosen such that the
CSI remains approximately unchanged over the duration of
lτ . Obviously, the power allocation among l clusters can be
reduced to the following optimization problem

max
pl

ρ+l∑
k=ρ+1

τ

t
log2

(
1 + Pk

N∑
i=1

|vT
k,iΘkGkfk|2

σ2

)
, (30)

s.t.

ρ+l∑
k=ρ+1

Pk = lP , (31)

0 ≤ Pk ≤ lP , ρ+ 1 ≤ k ≤ ρ+ l, (32)

where pl =
[
Pρ+1, . . . , Pρ+l

]T
is the power allocation vector

for the current l frames, and ρ is the number of clusters
whose power allocations have been executed. Note that we
have set the total power consumption for every l frames to
lP = l

KPsum. As (30) is convex with respect to Pk and all
the constraints are linear, this optimization is convex and can
be solved by the Lagrangian multiplier method. Specifically,
the Lagrangian function can be expressed as

L (pl,λ,β, µ) =

ρ+l∑
k=ρ+1

−Rk − λkPk − βk
(
lP − Pk

)
− µ

 ρ+l∑
k=ρ+1

Pk − lP

 , (33)

where λ =
[
λρ+1, . . . , λρ+l

]T
and β =

[
βρ+1, . . . , βρ+l

]T
are the Lagrangian multipliers associated with the constraints

(32), while µ is the Lagrangian multiplier associated with the
constraint (31).

The Karush-Kuhn-Tucker (KKT) condition of (33) associ-
ated with Pk is given by

∂L (pl,λ,β, µ)

∂Pk
= −

N∑
i=1
|vTk,iΘkGkfk|2

σ2

ln 2

1 + Pk

N∑
i=1
|vTk,iΘkGkfk|2

σ2


− λk + βk − µ = 0, ρ+ 1 ≤ k ≤ ρ+ l. (34)

An iterative gradient descent procedure can be utilized to
obtain the optimal solutions P ?k , λ?k, β?k and µ? based on the
KKT conditions of (33) associated with Pk, λk, βk and µ. Let
λrk, βrk and µrk be the Lagrangian multiplier solutions after the
r-th iteration. From (34), the power allocation solution P rk ,
ρ+ 1 ≤ k ≤ ρ+ l, after the r-th iteration, can be obtained in
the closed-form as

P rk =
1

ln 2
(
βrk − λrk − µr

) − σ2

N∑
i=1

∣∣vT
k,iΘkGkfk

∣∣2 . (35)

Then the Lagrangian multipliers are updated according to the
associated KKT conditions as

λr+1
k =λrk − crkP rk , ρ+ 1 ≤ k ≤ ρ+ l (36)

βr+1
k =βrk − drk

(
lP − P rk

)
, ρ+ 1 ≤ k ≤ ρ+ l (37)

µr+1 =µr − er
 ρ+l∑
k=ρ+1

P rk − lP

 , (38)

where crk, drk and er denote the corresponding step sizes.
Algorithm 3 summarizes the proposed power allocation pro-

cedure for throughput maximization based on the Lagrangian
multiplier method. For notation convenience, we still denote
the optimal beamformers and IRS phase shifts of the users

Algorithm 3: Power Allocation for Throughput Maximiza-
tion

Input: Optimal beamformers and IRS phase shifts of the
users in every l clusters f? and ψ?;

Initialization: Maximum iteration times rmax = 100, λ0,
β0, c0, d0, µ0 = 50, e0 = 10, stopping
criterion ε = 10−2, iteration index r = 0;

1 while r ≤ rmax do
2 Calculate prl with (35);
3 Update λr, βr, µr with (36)-(38);
4 if any of cri , d

r
i , e

r > 1 then
5 Decrease its value by half in the next iteration;

6 if
∥∥λr+1 − λr

∥∥ < ε and
∥∥βr+1 − βr

∥∥ < ε and∣∣µr+1 − µr
∣∣ < ε then

7 break;

8 r = r + 1;

9 Calculate the optimal throughput q
(
p?l = prl , f

?,ψ?
)
;

10 return p?l , q
(
p?l , f

?,ψ?
)
.
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in every l clusters obtained in Stage One by f? and ψ?,
which together with the maximum iteration times rmax and
stopping criterion ε are inputted to the algorithm. Also, the
initial values of Lagrangian multipliers and the corresponding
gradient descent step sizes are given. In each iteration, each Pk
is calculated by (35) in line 2, and the Lagrangian multipliers
are updated according to (36)-(38) in line 3. Then the step sizes
are adjusted appropriately in lines 4-5. After convergence,
the optimal power allocation vector p?l and the corresponding
throughput q

(
p?l , f

?,ψ?
)

are returned.
Observe that the step sizes in Algorithm 3 remain posi-

tive and non-increasing over the iteration procedure. More
importantly, due to the convexity of the problem (30)-(32),
the KKT point is also the global optimal solution in the l
frames. Executing this algorithm for K

l times, we obtain the
total power allocation for the entire transmission period.

V. PERFORMANCE EVALUATION

We provide numerical simulation results to verify the effec-
tiveness of our proposed IRS assisted throughput maximization
approach for mmWave HST communication systems.

A. Simulation Setup

Unless otherwise stated, the simulation system’s parameters
used are listed in Table I. With reference to [31]–[33], the
simulated HST communication system operates at 28 GHz,
with signal attenuation h0 = −61.3849 dB at 1 m reference
distance. The IRS is a uniform square array of 64 elements,
with the element spacing being half the wavelength. The num-
ber of BS transmit antennas is 16, with the antenna spacing
being half the wavelength. The locations of communication
nodes are represented by three-dimensional (3D) coordinates.
Specifically, we fix the BS at (20, 0, 2), place the IRS on the
YZ plane at the height of 1 m, i.e., at (0, 0, 1), and update the
positions of IRS and users frame by frame. All the simulation
results are averaged over 200 independent experiments.

TABLE I
DEFAULT SYSTEM PARAMETERS

Parameter Symbol Value

Frame duration τ 0.1 s
Carrier frequency f 28 GHz
Coverage radius of the cell R 1 km
Distance between BS and rail D0 20 m
Average transmit power P 20 dBm
Number of BS antennas L 16
IRS elements M 64
System bandwidth W 2000 MHz
Background noise N0 −80 dBm/Hz
Rician K-factor Kf 3 dB
PL factor of BS-IRS links β1 2 dB
PL factor of IRS-user links β2 3 dB
Speed of HST v 300 km/h
Length of power allocation l 10
Phase shift quatization bits e 2
Total number of users served I 400

Four existing schemes are utilized for performance compar-
ison with our proposed approach, which include
• Neighbor-based Cross-entropy (NCE) [32]: This low-

complexity algorithm selects phase shifts of the IRS
in the candidate set, which is generated based on the
probability distribution function and extended through
neighbor extraction.

• Successive Refinement (SR) [23], [34]: This scheme
considers the suboptimal zero-forcing (ZF) beamforming
at the BS and alternately optimizes the phase shift of each
programmable element by fixing the others.

• Random Phase Shift (RPS): This scheme randomly
selects a feasible phase shift for each IRS element.

• Without-RIS: This scheme does not consider the assis-
tance of IRS, and on-board users can only receive signals
going through the carriage.

B. The effect of IRS adoption

In this subsection, we evaluate the sum-rate of users in
one frame to demonstrate the effect of IRS deployment and
compare the performance of the five schemes by varying the
number of users, the number of IRS elements, the K-factor
and the quantification bits e, respectively. In the experiments,
users are distributed randomly in the carriage. Note that the
sum-rate is the throughput in one frame.

In Fig. 3, we plot the sum-rates achieved by the five schemes
as the functions of the number of users per cluster N . Observe
that the sum rate increases logarithmically with N , and our
scheme outperforms the other four schemes. At N = 10,
the performance gains of our scheme over the NCE, SR and
RPS are around 3.7%, 6.9% and 12.9%, respectively, which
clearly demonstrates the design benefits of jointly optimizing
beamforming and phase shifts. Furthermore, at N = 10, our
scheme outperforms the scheme without IRS by 20.1%, which
confirms the effectiveness of the window-deployed IRS.

Fig. 4 illustrates the influence of IRS size on the throughput
performance of the five schemes, by varying the number of
IRS elements M from 64 to 320. As expected, the four

2 4 6 8 10
Number of users N

2.2

2.6

3

3.4

3.8

4.2

4.6

Su
m

-r
at

e 
(b

it/
s/

H
z)

Proposed algorithm
NCE
SR
RPS
Without IRS

Fig. 3. Sum rate versus the number of users per frame.
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Fig. 4. Sum rate versus the number of IRS elements.

schemes with IRS significantly outperform the scheme without
IRS, and their sum-rate performance increase with M , since
more RIS elements result in sharper beams which refract inci-
dent signals towards desired devices and mitigate interferences
among users more effectively. Again our scheme achieves the
best performance. It can be seen from Fig. 4 that the perfor-
mance gap between our proposed scheme and the second-best
NCE is 0.15 bit/s/Hz to 0.1 bit/s/Hz for 128 ≤M ≤ 320. But
the NCE algorithm offers the advantage of low complexity.
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Fig. 5. Sum rate versus K-factor.

Fig. 5 shows the impact of Rician K-factor on the achievable
sum-rates of the five schemes. Observe that the sum rate is a
decreasing function with respect to Kf , and the performance
gap among the five schemes becomes negligible when Kf ≥ 5.
This is because as Kf increases, the LoS path becomes
stronger while the adjustable multipaths decrease, thus limiting
the capacity improvement obtained through IRS deployment.
Considering the characteristics of railway communication,
Kf = 3 or 4 is typical in practice [35].

Fig. 6 compares the sum-rates of the five schemes at differ-
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Fig. 6. Sum rate versus quantification bits.

ent quantization bits e. As expected, the proposed algorithm
attains the best performance and the curve without IRS stays
flat. Moreover, the achievable rates of the proposed, NCE
and SR schemes first increase with e and then reach their
respectively saturation values of 3.53 bit/s/Hz, 3.42 bit/s/Hz
and 3.36 bit/s/Hz when the number of quantization bits e
exceeds 4. By contrast, the performance of the RPS decreases
as e increases, and becomes close to that of the scheme
without-IRS at e = 5. The reason is that RPS adjusts the phase
shift of each element in a completely random manner, and the
adjusted signal is not necessarily stronger than the incident
signal. Evidently, IRS deployment with suitable optimization
and quantization bits enables higher network throughput.

C. The overall throughput

Next we evaluate the achievable overall throughput of the
proposed algorithm, the NCE, SR and RPS schemes as well as
the scheme without-IRS. Fig. 7 depicts the average throughput
of these five schemes as the functions of the HST speed v in
time duration t, given the default system parameters of N = 4,
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M = 64, e = 2 and Kf = 3. As expected, the throughput of
all the five schemes decrease as v increases, and the proposed
scheme attains the best performance.

As explained in Section IV, our proposed scheme consists of
two stages, with the stage one performing joint optimization
of beamforming and IRS phase shifts, while the stage two
carrying out power allocation for throughput maximization
based on the results of the stage one. The proposed power
allocation, namely, Algorithm 3, is crucial for maximizing the
throughput. To demonstrate the effectiveness of Algorithm 3,
in Fig. 7, we also plot the average throughput achieved by
performing the stage-one optimization only with equal power
allocation, denoted as the proposed algorithm without power
allocation. It can be seen that the proposed power allocation
algorithm significantly improves the system throughput, and
it outperforms the scheme without power allocation by 10.4%
at v = 200 km/h and by 20.7% at v = 600 km/h.

VI. CONCLUSIONS

In this paper, we have considered the downlink communi-
cation in an IRS-assisted mmWave HST system, where user
clustering and hybrid TDMA-NOMA technique are leveraged
to mitigate transmission interference. To enhance the commu-
nication quality of on-board services, our main contribution
has been to formulate the throughput maximization problem
and propose a two-stage solution. In stage one, beamforming
and phase shift are alternately optimized frame by frame.
Specifically, given the fixed phase shifts, the optimal beam-
forming is enabled by MRT, after which phase shifts are
optimized with SCA and the BB algorithm. Then in stage
two, based on the results of stage one, the power allocation
is performed to maximize the overall throughput. Numerical
simulation results have verified the effectiveness of IRS adop-
tion and confirmed the superior performance of the proposed
algorithm over existing solutions. Furthermore, the results have
demonstrated that the proposed power allocation algorithm in
stage two significantly improves the system throughput.
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